

Exhibit A
(Part 1 of 2)

Bedrock Computer Technologies, LLC v. Softlayer Technologies, Inc. et al Doc. 328 Att. 1

Dockets.Justia.com

http://dockets.justia.com/docket/texas/txedce/6:2009cv00269/116887/
http://docs.justia.com/cases/federal/district-courts/texas/txedce/6:2009cv00269/116887/328/1.html
http://dockets.justia.com/

IN THE UNITED STATES DISTRICT COURT
FOR THE EASTERN DISTRICT OF TEXAS

TYLER DIVISION

Red Hat, Inc.,

Plaintiff,

v.

Bedrock Computer Technologies LLC,

Defendant.

Case No. 6:09-CV-549-LED

JURY TRIAL DEMANDED

JOINT INVALIDITY CONTENTIONS AND PRODUCTION
OF DOCUMENTS PURSUANT TO PATENT RULES 3-3 AND 3-4(b)

 Pursuant to the Rules of Practice for Patent Cases for the Eastern District of Texas

(“Patent Rules” or “P.R.”), Plaintiff Red Hat, Inc.1 and Cross-claim defendants NYSE Euronext,

Rackspace Hosting, Inc., ThePlanet.com Internet Services, Inc., Whole Foods Market, Inc., 1&1

Internet, Inc., ConocoPhillips Co., ConAgra Foods, Inc., Facebook, Inc., Go Daddy Group, Inc.,

Nationwide Mutual Insurance Co., R.L. Polk & Co., SunGard Data Systems, Inc., The Gap Inc.,

and Virgin America Inc. (collectively, the “Defendants”), hereby disclose their Invalidity

Contentions. The Defendants contend that each of the claims asserted by Bedrock Computer

Technologies LLC (“Bedrock”) is invalid under at least 35 U.S.C. §§ 102, 103, and/or 112.

1 All of the references in Red Hat, Inc.’s May 14, 2010 Invalidity Contentions are included in
this Joint Invalidity Contentions and Production of Documents. Given the July 6, 2010 Docket
Control Order (dkt. 170) changing the deadline for serving invalidity contentions, Red Hat, Inc.
does not need to seek leave to supplement its May 14, 2010 Invalidity Contentions.

 2

I. GENERAL STATEMENTS AND OBJECTIONS

A. Asserted Claims

Bedrock has served the Defendants with Infringement Contentions alleging infringement

of U.S. Patent No. 5,893,120 (“the ’120 patent”). Specifically, Bedrock has alleged that the

Defendants infringe claims 1 – 8 of the ’120 patent (collectively, the “Asserted Claims”).

B. Invalidity Contentions

Defendants reserve all rights to modify, amend, and/or supplement their Invalidity

Contentions, including in accordance with P.R. 3-6 and 3-7 following the Court’s claim

construction ruling or upon any alteration/clarification by Bedrock of its asserted claim

construction to the extent permitted by this Court.

C. Claim Construction

The Court has not yet construed the Asserted Claims. The Defendants reserve the right to

identify other art or to supplement their disclosures or contentions because the Defendants’

positions on the invalidity of particular claims will depend on how those claims are construed by

the Court. The Defendants’ Invalidity Contentions are based, at least in part, on their present

understanding of the Asserted Claims and/or their present understanding of the claim

constructions Bedrock appears to be asserting—based on Bedrock’s Infringement Contentions—

whether or not the Defendants agree with such claim constructions.

To the extent that these Invalidity Contentions reflect constructions of claim terms that

may be consistent with or implicit in Bedrock’s Infringement Contentions, no inference is

intended or should be drawn that the Defendants agree with such claim constructions. The

Defendants take no position on any matter of claim construction in these invalidity contentions.

Any statement herein describing or tending to describe any claim element is provided solely for

the purpose of understanding the relevant prior art. The Defendants expressly reserve the right to

 3

propose any claim construction they consider appropriate and/or to contest any claim

construction they consider inappropriate.

In part because of the uncertainty of claim construction, the Defendants’ Invalidity

Contentions are sometimes made in the alternative and are not necessarily intended to be

consistent with each other, and should be viewed accordingly. Further, by including in this

disclosure prior art that would be anticipatory or render a claim obvious based on a particular

scope or construction of the claims, including that apparently applied by Bedrock in its

Infringement Contentions, the Defendants’ Invalidity Contentions herein are not, and should in

no way be seen as adoptions or admissions as to the accuracy of such scope or construction.

The Defendants reserve all rights to further supplement or modify the positions and

information in these Invalidity Contentions, including without limitation, the prior art and

grounds of invalidity set forth herein, after the Court has construed the asserted claims in

accordance with the Patent Rules and/or the Court’s Orders.

D. Ongoing Discovery and Disclosures

Discovery in this case is in its early stages and the Defendants’ investigation, including

the Defendants’ search for prior art, is ongoing. The Defendants therefore reserve the right to

further supplement or alter the positions taken and information disclosed in these Invalidity

Contentions including, without limitation, the prior art and grounds of invalidity set forth herein,

to take into account information or defenses that may come to light as a result of these

continuing efforts. The Defendants hereby incorporate by reference the testimony of any fact

witnesses that are deposed, that provide declarations, or that otherwise testify in this lawsuit.

The Defendants also hereby incorporate by reference the reports and testimony of the

Defendants’ expert witnesses regarding invalidity of the patent.

 4

The Defendants understand and are relying upon the fact that the date to which Bedrock

may be entitled to as the earliest priority date of the ‘120 patent is its earliest filing date. The

Defendants intend to diligently seek discovery to establish conception and reduction to practice

dates, as appropriate, to demonstrate earlier invention by other parties under 35 U.S.C. § 102(g).

The Defendants further intend to take discovery on the issues of improper inventorship and/or

derivation under 35 U.S.C. § 102(f), public use and/or the on-sale bar under 35 U.S.C. § 102(b),

and/or applicant’s failure to comply with 35 U.S.C. § 112. The Defendants therefore reserve all

rights to further supplement or amend these invalidity contentions if and when further

information becomes available.

E. Prior Art Identification and Citation

Pursuant to Patent Rule 3-3(a), the Defendants identify specific portions of prior art

references that disclose the elements of the Asserted Claims. Although the Defendants have

identified at least one citation per element for each reference, each and every disclosure of the

same element in said reference is not necessarily identified. The Defendants identify only

limited portions of the cited references as examples. It should be recognized that a person of

ordinary skill in the art would generally read a prior art reference as a whole and in the context of

other publications, literature, and general knowledge in the field. To understand and interpret

any specific statement or disclosure in a prior art reference, a person of ordinary skill in the art

would rely upon other information including other publications and general scientific or

engineering knowledge. The Defendants therefore reserve the right to rely upon other

unidentified portions of the prior art references and on other publications and expert testimony to

provide context and to aid understanding and interpretation of the identified portions. The

Defendants also reserve the right to rely upon other portions of the prior art references, other

publications, and the testimony of experts to establish that the alleged inventions would have

 5

been obvious to a person of ordinary skill in the art, including on the basis of modifying or

combining certain cited references. The Defendants also reserve the right to rely upon any

admissions relating to prior art in the Asserted Patent or its respective prosecution history.

Where the Defendants identify a particular figure in a prior art reference, the

identification should be understood to encompass the caption and description of the figure as

well as any text relating to the figure in addition to the figure itself. Similarly, where an

identified portion of text refers to a figure or other material, the identification should be

understood to include the referenced figure or other material as well.

F. Reservation of Rights

The Defendants reserve all rights to further supplement or modify these Invalidity

Contentions, including the prior art disclosed and stated grounds of invalidity, pursuant to the

District’s Patent Rules. In addition, the Defendants reserve the right to prove the invalidity of

the asserted claims on bases other than those required to be disclosed in these disclosures and

contentions pursuant to P.R. 3-3. For example, the Defendants further contend that each of the

claims of the ’120 patent is drawn to subject matter that is not patentable under 35 U.S.C. § 101.

For example, the Asserted Claims are drawn to an “abstract idea” and are not patentable as

explained by the Supreme Court in Bilski v. Kappos. 130 S.Ct. 3218, 3229-30 (2010).

II. INVALIDITY CONTENTIONS PURSUANT TO P.R. 3-3

A. Contentions Under P.R. 3-3(a)-(c)

Each of the Asserted Claims is anticipated and/or rendered obvious by prior art. Pursuant

to P.R. 3-3(a) the Defendants identify the prior art that anticipates or renders an Asserted Claim

obvious in Exhibits A - E which are hereby incorporated by reference as if fully set forth herein.

On information and belief, each listed document or item became prior art at least as early as the

 6

dates given. Each of the foregoing prior art references identified in Exhibit A includes a chart in

at least one of Exhibits B - D specifically identifying where each element of each asserted claim

is found in the prior art pursuant to P.R. 3-3(c) including, for claims governed by 35 U.S.C.

§112(6), the identity of structure(s), act(s), or materials(s) in each item of prior art that performs

the claimed function.

To the extent any limitation of any of the Asserted Claims is construed to have a similar

meaning, or to encompass similar feature(s) and/or function(s), with any other claim limitation of

any of the Asserted Claims, as apparently contended by Bedrock in its Infringement Contentions,

or later determined by the Court, and to the extent at least one claim chart in Exhibits B - D

identifies any prior art reference, or a portion thereof, as disclosing or teaching such similarly

construed claim limitation, such identified prior art reference, or the portion thereof, and the

Defendants’ contentions with respect to such claim limitation and such prior art reference as

found in such claim chart, are incorporated by reference, and are part of, the Defendants’

invalidity contentions with respect to each of the Asserted Claims that includes such similarly

construed claim limitation.

To the extent that they are prior art, the Defendants reserve the right to rely upon foreign

counterparts of the U.S. Patents identified in Defendants’ Invalidity Contentions; U.S.

counterparts of foreign patents and foreign patent applications identified in the Defendants’

Invalidity Contentions; U.S. and foreign patents and patent applications corresponding to articles

and publications identified in the Defendants’ Invalidity Contentions; and any systems, products,

or prior inventions that relate to any references identified in the Defendants’ Invalidity

Contentions.

 7

The claim charts in Exhibits B - D provide example sections within the prior art

references that teach or suggest each and every element of the asserted claims. Each reference or

combination of references suggested by each chart indicates whether the prior art renders the

claim obvious or anticipated pursuant to P.R. 3-3(b). In Exhibits B - D for each Asserted Claim,

the Defendants set forth such obviousness combinations, and the motivation to combine such

items.

The U.S. Supreme Court’s decision in KSR International Co. v. Teleflex Inc., et al., 550

U.S. 398, 415-16 (2007) (“KSR”) held that a claimed invention can be obvious even if there is

no teaching, suggestion, or motivation for combining the prior art to produce that invention. In

summary, KSR holds that patents that are based on new combinations of elements or components

already known in a technical field may be found to be obvious. See generally KSR, 550 U.S.

398. Specifically, the Court in KSR rejected a rigid application of the “teaching, suggestion, or

motivation [to combine]” test. Id. at 418. “In determining whether the subject matter of a patent

claim is obvious, neither the particular motivation nor the avowed purpose of the patentee

controls. What matters is the objective reach of the claim.” Id. at 419. “Under the correct

analysis, any need or problem known in the field of endeavor at the time of invention and

addressed by the patent can provide a reason for combining the elements in the manner claimed.”

Id. at 420. In particular, in KSR, the Supreme Court emphasized the principle that “[t]he

combination of familiar elements according to known methods is likely to be obvious when it

does no more than yield predictable results.” Id. at 416. A key inquiry is whether the

“improvement is more than the predictable use of prior art elements according to their

established functions.” Id. at 417.

 8

The rationale to combine or modify prior art references is significantly stronger when the

references seek to solve the same problem, come from the same field, and correspond well. In re

Inland Steel Co., 265 F.3d 1354, 1362 (Fed. Cir. 2001). The Federal Circuit allowed two

references to be combined as invalidating art under similar circumstances, namely “[the prior art]

focus[es] on the same problem that the . . . patent addresses: enhancing [the flexibility of stents].

Moreover, both [prior art references] come from the same field Finally, the solutions to the

identified problems found in the two references correspond well.” Id. at 1364 (concerning

patents and prior art relating to improving the magnetic and electrical properties of steel).

In view of the Supreme Court’s KSR decision, the PTO issued a set of new Examination

Guidelines. See Examination Guidelines for Determining Obviousness Under 35 U.S.C. §103 in

view of the Supreme Court Decision in KSR International Co. v. Teleflex, Inc., 72 Fed. Reg.

57526 (October 10, 2007). These Guidelines summarized the KSR decision, and identified

various rationales for finding a claim obvious, including those based on other precedents. Those

rationales include:

(A) Combining prior art elements according to known methods to yield
predictable results;

(B) Simple substitution of one known element for another to obtain
predictable results;

(C) Use of known technique to improve similar devices (methods, or
products) in the same way;

(D) Applying a known technique to a known device (method, or product)
ready for improvement to yield predictable results;

(E) “Obvious to try” – choosing from a finite number of identified,
predictable solutions, with a reasonable expectation of success;

(F) Known work in one field of endeavor may prompt variations of it for
use in either the same field or a different one based on design incentives or
other market forces if the variations would have been predictable to one of
ordinary skill in the art;

 9

(G) Some teaching, suggestion, or motivation in the prior art that would
have led one of ordinary skill to modify the prior art reference or to combine
prior art reference teachings to arrive at the claimed invention.

Id. at 57529. The Defendants contend that one or more of these rationales apply in considering

the obviousness of the claims of the ’120 patent.

A person of ordinary skill at the time of the invention had reason to combine or modify

one or more of the references listed and charted in Exhibits A - E in light of the knowledge of a

person of ordinary skill in the art at the time of the invention and information in the prior art

cited herein. For example, all of the references listed and/or charted in Exhibits A - E deal with

the application of known techniques for creating and maintaining data structures. Applying these

known techniques to a known system to yield predictable results, the creation and maintenance

of data in the manner recited by the asserted claims, would have been obvious. Further, many of

the references listed and/or charted in Exhibits A - E are excerpts of source code from one or

more derivations of a UNIX operating system kernel. For example, the on-the-fly garbage

collection techniques disclosed by the Morrison and Van Wyk references were incorporated into

a Unix utility called IDEAL. Thus, since each of these references disclose a known technique to

a known system to yield a predictable result, it would have been obvious to combine these

references with each other as well as with IDEAL. Further, because IDEAL was a Unix utility, it

would have been obvious to incorporate these techniques with other Unix and Linux software

such as those listed and charted in Exhibit D. For at least the same reason, it would have been

obvious to combine the techniques disclosed in the Unix and Linux software identified in Exhibit

D with one another. Combining known data creation and storage techniques that have

previously been applied within the kernel of derivations of the same operating system kernel to

create and maintain data in the manner recited in the asserted claims would have been obvious to

one of skill in the art.

 10

It would have been obvious to combine any or all of Linux 1.3.52 route.c, BSD 4.2

if_ether.c, FreeBSD vfs_cache.c, FreeBSD arp.c, FreeBSD wavelan_cs.c, LISP, FreeBSD 2.0.5

kern_proc.c, Linux 1.2.13 – arp.c, Linux 1.3.51 route.c, Xinu Operating System for Sparc,

gcache.c, Naval Research Laboratories IPv6 key.c and key.h, Slackware makepsres.c, Linux

2.0.1 route.c, and GCC 2.7.21 with one another, at least because each uses linked data structures

to store expiring data. Further, each system is a data management utility designed to operate in a

computer operating system. Additionally each system is associated with an open-source

operating system and/or utility. Thus, a person of ordinary skill in the art would recognize that

the combination of any of these systems is a predictable use of elements known in the art to solve

a known problem,.

Furthermore, it would have been obvious to combine any or all of the above systems with

the system described in the Morrison reference (see Exhibit C-2). On information and belief, the

system described in the Morrison reference was implemented and distributed in a Unix utility

known as IDEAL. Like the above systems, IDEAL used linked data structures to manage

expiring data in a Unix environment. Thus, a person of ordinary skill in the art would recognize

that the combination of Morrison with the systems listed above is a predictable use of elements

known in the art to solve a known problem. Additional contentions regarding the combination

and/or modification of and/or motivation to combine references for specific Asserted Claims are

set forth in the claim charts of Exhibits B - D.

B. Contentions Under P.R. 3-3(d)

Pursuant to Patent Local Rule 3-3(d), the Defendants contend that certain claims of the

Asserted Patent are invalid under 35 U.S.C. § 112 because: (1) the claims are indefinite; (2) the

claims are not enabled; (3) the claims lack adequate written description; and/or (4) the

specification fails to set forth the best mode contemplated by the inventor for practicing the

 11

invention. The Defendants’ contentions that the following claims are invalid under 35 U.S.C. §

112 are made in the alternative, and do not constitute, and should not be interpreted as,

admissions regarding the construction or scope of the claims of the ’120 patent, or that any of the

claims of the ’120 patent are not anticipated or rendered obvious by any prior art.

The asserted claims identified below are invalid under 35 U.S.C § 112 paragraph 2,

which requires that the specification “conclude with one or more claims particularly pointing out

and distinctly claiming the subject matter which the applicant regards as his invention.”

Claims 1 and 5 require “a record search means utilizing a search key to access the linked

list” and “a means for identifying and removing at least some of the expired ones of the records

from the linked list when the linked list is accessed.” Claim 1 further requires “a means, utilizing

the record search means, for accessing the linked list and, at the same time, removing at least

some of the expired ones of the records in the linked list.” Claim 5 further requires “a means,

utilizing the record search means, for inserting, retrieving, and deleting records from the system

and, at the same time, removing at least some expired ones of the records in the accessed linked

list of records.” These limitations can be construed to cover only the corresponding specific

algorithmic structure disclosed in the specification under 35 U.S.C. 112, paragraph 6. See WMS

Gaming, Inc. v. Int’l Game Tech., 184 F.3d 1339, 1349 (Fed. Cir. 1999). Because no specific

algorithm is disclosed in the specification for these limitations, Claims 1 and 5 (and the claims

that depend from them) are invalid as indefinite under 35 U.S.C. §112, paragraph 2.

Claim 2 requires “means for dynamically determining maximum number for the record

search means to remove in the accessed linked list of records.” Claim 6 requires “means for

dynamically determining maximum number for the record search means to remove in the

accessed linked list of records.” These limitations can be construed to cover only the

 12

corresponding specific algorithmic structure disclosed in the specification under 35 U.S.C. 112,

paragraph 6. See WMS Gaming, Inc. v. Int’l Game Tech., 184 F.3d 1339, 1349 (Fed. Cir. 1999).

Because no specific algorithm is disclosed in the specification for “means for dynamically

determining maximum number” Claims 2 and 6 are invalid as indefinite under 35 U.S.C. §112,

paragraph 2.

Claim 7 and Claim 8 require “the system.” This is indefinite, violating 35 U.S.C. §112,

paragraph 2. Thus, Claims 7 and 8 are invalid as indefinite under 35 U.S.C. §112, paragraph 2.

The asserted claims identified below are invalid under 35 U.S.C. § 112 paragraph 1,

which requires that the specification “contain a written description of the invention, and of the

manner and process of making and using it, in such full, clear, concise, and exact terms as to

enable any person skilled in the art to which it pertains, or with which it is most nearly

connected, to make and use the same, and shall set forth the best mode contemplated by the

inventor of carrying out his invention.”

Claims 2, 4, 6, and 8 each require “dynamically determining maximum number.” Neither

the ’120 patent nor its application describe “dynamically determining maximum number.” Thus,

Claims 2, 4, 6, and 8 are invalid for lack of written description and/or enablement under 35

U.S.C. §112, paragraph 1. Also, the means-plus-function claims noted above as invalid under 35

U.S.C. §112, paragraph 2 are invalid under 35 U.S.C. §112, paragraph 1 for the same reasons.

III. ADDITIONAL PRIOR ART

In addition to the prior art references charted, the Defendants list in Exhibit E, which is

incorporated herein in its entirety, additional prior art references that are pertinent to the

invalidity of the ’120 patent. At this time, the Defendants are not providing claim charts for each

of these additional references either because these references:

 13

(1) have similar disclosure to the prior art references for which invalidity charts have

been provided;

(2) were discovered recently and Defendants have not had a fair opportunity to

analyze them;

(3) may be used to show state of the art; and/or

(4) may be used as supporting references in an obviousness combination depending

on how the claims are ultimately construed by the Court.

The Defendants also incorporate, in full, all prior art references cited in the ’120 patent

and all prior art references cited in the prosecution histories of the ’120 patent and any foreign

counterparts.

The Defendants reserve the right to revise these Contentions to rely on any of these

references to prove the invalidity of the asserted claims of the ’120 patent in a manner consistent

with the Federal Rules of Civil Procedure, the Court’s Local Rules, and the Local Patent Rules.

IV. ACCOMPANYING DOCUMENT PRODUCTION

Pursuant to Patent Rule 3-4(a), the Defendants will produce, make available for

inspection, or identify publicly available information sufficient to show the operation of any

specifically identified aspects or elements of an Accused Instrumentality identified by Bedrock

in its P. R. 3-1(c) chart to the extent such information is in the Defendants’ possession, custody

or control. If such information comprises source code, the Defendants will produce publicly

available source code or make non-public source code available for inspection after the entry of a

suitable protective order in this action.

Pursuant to Patent Rule 3-4 (b), the Defendants are producing or making available for

inspection copies of each item of prior art identified pursuant to Patent Rule 3-3(a) which does

 14

not appear in the file history of the Asserted Patent. To the extent that such item is not in

English, an English translation is produced where available. The Defendants reserve the right to

identify and produce additional documents pursuant to the Patent Rules and the orders of the

Court.

Table of Exhibits

Exhibit Description

A. List of prior art references that have been charted

B. Invalidity charts for prior art patent references listed in Exhibit A

C. Invalidity charts for prior art literature references listed in Exhibit A

D. Invalidity charts for prior art systems listed in Exhibit A

E. Additional prior art

 15

Respectfully submitted, this the 18th day of October 2010.

/s/ E. Danielle T. Williams
Steven Gardner
E. Danielle T. Williams
John C. Alemanni
Alton L. Absher III
KILPATRICK STOCKTON LLP
1001 West 4th Street
Winston-Salem, NC 27101
Telephone: 336-607-7300
Facsimile: 336-607-7500

William H. Boice
Russell A. Korn
KILPATRICK STOCKTON LLP
Suite 2800
1100 Peachtree Street
Atlanta, GA 30309-4530
Telephone: 404-815-6500
Facsimile: 404-815-6555

J. Thad Heartfield
Texas Bar No. 09346800
thad@jth-law.com
M. Dru Montgomery
Texas Bar No. 24010800
dru@jth-law.com
THE HEARTFIELD LAW FIRM
2195 Dowlen Road
Beaumont, TX 77706
Telephone: 409-866-2800
Facsimile: 409-866-5789

Attorneys for Plaintiff RED HAT, INC., and
Cross-Claim Defendants NYSE EURONEXT,
RACKSPACE HOSTING, INC.,
THEPLANET.COM INTERNET
SERVICES, INC., AND WHOLE FOODS
MARKET, INC.

/s/ Michael E. Jones
Michael E. Jones
State Bar No. 10929400
Allen F. Gardner
State Bar No. 24043679
POTTER MINTON
A Professional Corporation
110 N. College Ave., Suite 500 (75702)
P.O. Box 359
Tyler, TX 75710
Telephone: 903-597-8311
Facsimile: 903-593-0846

H. Michael Hartmann
Robert T. Wittmann
LEYDIG, VOIT & MAYER, LTD.
Two Prudential Plaza
180 North Stetson, Suite 4900
Chicago, Illinois 60601-6731
Telephone: 312-616-5600
Facsimile: 312-616-5700

J. Christopher Erb
ERB LAW FIRM P.C.
5901 Ridge Ave., Suite 100
Philadelphia, PA 19128
Telephone: 215-508-4419
Facsimile: 215-508-4428

Attorneys for Cross-Claim Defendant 1& 1
INTERNET, INC..

 16

/s/ Neil J. McNabnay
Thomas M. Melsheimer
Neil J. McNabnay
J. Nicholas Bunch
FISH & RICHARDSON P.C.
1717 Main Street - Suite 5000
Dallas, TX 75201
Tel: (214) 747-5070
Fax: (214-747-2091

Christopher Hadley
FISH & RICHARDSON P.C.
One Marina Park Drive
Boston, MA 02110
Tel: (617) 542-5070
Fax: (617) 542-8906

Attorneys for Crossclaim Defendant
CONOCOPHILLIPS COMPANY

/s/ Heidi Keefe
Heidi Keefe (CA Bar No. 178960)
Mark Weinstein. (CA Bar No. 193043)
Adam Pivovar (CA Bar No. 246507) (Pro Hac
Vice)
Lam K. Nguyen (CA Bar No. 265285)
COOLEY LLP
Five Palo Alto Square
3000 El Camino Real
Palo Alto, CA 94306-2155
Telephone: (650) 843-5000
Facsimile: (650) 857-0663
hkeefe@cooley.com
mweinstein@cooley.com
apivovar@cooley.com
lnguyen@cooley.com

Deron R. Dacus
State Bar No. 00790553
RAMEY & FLOCK, P.C.
100 E. Ferguson, Suite 500
Tyler, Texas 75702
Phone: (903) 597-3301
Fax: (903) 597-2413
derond@rameyflock.com

Attorneys for Crossclaim Defendant
FACEBOOK, INC.

/s/ Jennifer H. Doan
Jennifer H. Doan
Texas Bar No. 08809050
HALTOM & DOAN
Crown Executive Center, Suite 100
6500 Summerhill Road
Texarkana, TX 75503
Telephone: (903) 255-1000
Facsimile: (903) 255-0800
Email: jdoan@haltomdoan.com

Andrew M. Grove
HONIGMAN MILLER SCHWARTZ AND
COHN LLP
38500 Woodward Avenue, Suite 100
Bloomfield Hills, MI 48304
Telephone: (248) 566-8432
Facsimile: (248) 566-8433
Email: jgrove@honigman.com

/s/ Brian W. LaCorte___________
Brian W. LaCorte (pro hac vice)
GALLAGHER & KENNEDY, P.A.
2575 East Camelback Road
Phoenix, Arizona 85016-9225
Telephone: (602) 530-8020
Facsimile: (602) 530-8500
Email: bwl@gknet.com

Harry L. Gillam, Jr.
GILLAM & SMITH
303 South Washington Avenue
Marshall, Texas 75670
Telephone: (903) 934-8450
Facsimile: (903) 934-9257
Email: gil@gillamsmithlaw.com

Attorneys for Crossclaim Defendant THE GO
DADDY GROUP, INC.

 17

Emily J. Zelenock
HONIGMAN MILLER SCHWARTZ AND
COHN LLP
38500 Woodward Avenue, Suite 100
Bloomfield Hills, MI 48304
Telephone: (248) 566-8508
Facsimile: (248) 566-8509
Email: ezelenock@honigman.com

Attorneys for Crossclaim Defendant R .L.
POLK & CO.

/s/ Yar R. Chaikovsky
Yar R. Chaikovsky
California State Bar No. 175421
McDermott Will & Emery LLP
275 Middlefield Road
Suite 100
Menlo Park, California 94025-4004

Attorneys for Crossclaim Defendant
THE GAP, INC.

/s/ Lynn H. Pasahow________
Lynn H. Pasahow, CA Bar No. 054283
(Admitted E.D. Texas)
Darren E. Donnelly, CA Bar No. 194335
(Admitted E.D. Texas)
Saina S. Shamilov, CA Bar No. 215636
(Admitted E.D. Texas)
Leslie Kramer, CA Bar No. 253313
(Admitted E.D. Texas)
FENWICK & WEST LLP
801 California Street
Mountain View, CA 94041
Telephone: (650) 988-8500
Facsimile: (650) 938-5200

Attorneys for Crossclaim Defendant
VIRGIN AMERICA, INC

 /s/Rick L. Rambo/
Rick L. Rambo
State Bar No. 00791479
MORGAN, LEWIS & BOCKIUS LLP
1000 Louisiana, Suite 4000
Houston, Texas 77002
Telephone No. (713) 890-5000
Telecopier No. (713) 890-5001
rrambo@morganlewis.com

Attorneys for Crossclaim Defendant
NATIONWIDE MUTUAL INSURANCE
COMPANY

 18

/s/ James A. Glenn/
Paul E. Krieger
State Bar No. 11726470
James A. Glenn
State Bar No. 24032357
MORGAN, LEWIS & BOCKIUS LLP
1000 Louisiana, Suite 4000
Houston, Texas 77002
Telephone No. (713) 890-5000
Telecopier No. (713) 890-5001
pkrieger@morganlewis.com
jglenn@morganlewis.com

Attorneys for Crossclaim Defendant
SUNGARD DATA SYSTEMS INC.

/s/ Elizabeth L. DeRieux
S. Calvin Capshaw, III
State Bar No. 03783900
Elizabeth L. DeRieux
State Bar No. 05770585
Capshaw DeRieux, LLP
1127 Judson Road, Suite 220
Longview, Texas 75601
Telephone: (903) 236-9800
Facsimile: (903) 236-8787
E-mail: ccapshaw@capshawlaw.com
E-mail: ederieux@capshawlaw.com

Allen W. Hinderaker
ahinderaker@merchantgould.com
Christopher J. Sorenson (Lead Attorney)
csorenson@merchantgould.com
MERCHANT & GOULD, PC
3200 IDS Center
80 South Eighth Street
Minneapolis, MN 55402
Telephone: 612.332.5300
Facsimile: 612.332.9081

Attorneys for Crossclaim Defendant
CONAGRA FOODS INC

EXHIBIT A

Joint Invalidity Contentions & Production of
Documents

1 Case No. 6:09-cv-549-LED

US2008 1671788.2

IDENTIFICATION OF PRIOR ART

 Pursuant to P.R. 3-3(a) and 3-3(b), Defendants identify prior art references and

combinations of prior art on which Defendants intend to rely for their contentions that one or

more asserted claims of U.S. Patent Number 5,893,120 (“the ’120 patent”) are invalid. The

Defendants provide the following chart to help summarize the Defendants’ Invalidity

Contentions. To the extent that a claim chart in Exhibit B, C, and/or D identifies that a reference

anticipates and/or presents obviousness combinations that are not represented in the following

charts, the claim chart satisfies the Defendants’ disclosure under P.R. 3-3(b).

I. ANTICIPATING PRIOR ART

 At least the following prior art references anticipate one or more of the asserted claims of

the ’120 patent.

A. Prior Art Patents that Anticipate the ’120 Patent under 35 U.S.C. §§ 102(a),
(b), (e), and/or (g)

Defendants identify the following United States patents as prior art references that

anticipate the Asserted Claims of the ’120 patent.

Country of Origin, Patent No., Inventor, Date of Issue Anticipates at
Least Claims:

Exhibit

U.S. Patent No. 4,695,949, Thatte et al., September 22, 1987
(“Thatte”).

1 - 8 B-1

U.S. Patent No. 6,119,214, Dirks, September 12, 2000
(“Dirks”).

1 - 8 B-2

U.S. Patent No. 4,989,132, Mellender et al., January 29, 1991
(“Mellender”).

1 - 8 B-3

U.S. Patent No. 5,043,885, Robinson, August 27, 1991
(“Robinson”).

1, 3, 5, 7 B-4

EXHIBIT A

Joint Invalidity Contentions & Production of
Documents

2 Case No. 6:09-cv-549-LED

US2008 1671788.2

Country of Origin, Patent No., Inventor, Date of Issue Anticipates at
Least Claims:

Exhibit

U.S. Patent No. 5,778,430, Ish et al., July 7, 1998 (“Ish”). 1 - 8 B-5

U.S. Patent No. 5,991,775, Beardsley et al., November 23,
1999 (“Beardsley”).

1 - 8 B-6

U.S. Patent No. 5,765,174, Bishop, June 9, 1998 (“Bishop”). 1 - 8 B-7

U.S. Patent No. 6,243,667, Kerr et al., June 5, 2001 (“Kerr”). 1, 3, 5, 7 B-10

U.S. Patent No. 5,881,241, Corbin, March 9, 1999
(“Corbin”).

1, 3 B-11

U.S. Patent No. 4,996,663, Nemes, February 26, 1991 (“the
‘663 patent”).

1 - 8 B-13

U.S. Patent No. 5,577,237, November 19, 1996 (“the ‘237
patent”)

1 - 8 B-14

B. Prior Art Publications that Anticipate the ’120 Patent Under 35

U.S.C. §§ 102(a) and/or (b)

Defendants identify the following publications as prior art references that anticipate the

Asserted Claims of the ’120 patent.

Author, Title, Publisher, Publication Information, Date of
Publication

Anticipates at
Least Claims:

Exhibit

Christopher J. Van Wyk and Jeffrey Scott Vitter, The
Complexity of Hashing with Lazy Deletion, Springer-Verlag

New York, Algorithmica 1:17-29, 1986 (“Van Wyk”).

1, 3, 5, 7 C-1

John A. Morrison, Larry A. Shepp, and Christopher J. Van
Wyk, A Queueing Analysis of Hashing with Lazy Deletion,

Society for Industrial and Applied Mathematics, Vol. 16, No.
6:1155-1164, December 1987 (“Morrison”); and on
information and belief, the source code for IDEAL.

1, 3, 5, 7 C-2

Claire M. Matheiu and Jeffrey Scott Vitter, Maximum Queue
Size and Hashing with Lazy Deletion, Unite de Recherche

1, 3, 5, 7 C-3

EXHIBIT A

Joint Invalidity Contentions & Production of
Documents

3 Case No. 6:09-cv-549-LED

US2008 1671788.2

Author, Title, Publisher, Publication Information, Date of
Publication

Anticipates at
Least Claims:

Exhibit

Inria-Rocquencort Institut National de recherché en
Informatique, June 1988 (“Matheiu”).

Claire M. Kenyon-Matheiu and Jeffrey Scott Vitter, General
Methods for the Analysis of the Maximum Size of Dynamic
Data Structures, Springer Berlin/Heidelberg, Automata,
Languages and Programming, 473-487, Vol. 372, 1989

(“Kenyon-Matheiu”).

1, 3, 5, 7 C-4

David Aldous, Micha Hofri, and Wojciech Szpankowski,
Maximum Size of a Dynamic Data Structure: Hashing with
Lazy Deletion Revisited, Society for Industrial and Applied

Mathematics, Vol. 21, No. 4:713-732, August 1992
(“Aldous”).

1, 3, 5, 7 C-5

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn,
Friedhelm Meyer auf der Heide, Hans Rohnert, and Robert E.
Tarjan, Dynamic Perfect Hashing: Upper and Lower Bounds,

Revised Version January 7, 1990 (“Dietzfelbinger”).

1 - 8 C-6

Roger Sessions, Reusable Data Structures for C Prentice-
Hall, Inc. 1989 (“Sessions”).

1 - 4 C-9

Christopher J. Van Wyk, Data Structures and C Programs,
Addison-Wesley Publ’g Co. & Bell Telephone Laboratories,

Inc. 1988 (“Van Wyk 2”).

1 - 8 C-10

Mark Allen Weiss, Data Structures & Algorithm Analysis in
C, The Benjamin/Cummings Publ’g Co. 1993 (“Weiss”).

1 - 8 C-11

William B. Frakes & Ricardo Baeza-Yates, Information
Retrieval: Data Structures & Algorithms, Prentice-Hall, Inc.

1992 (“Frakes”).

1, 3, 5, 7 C-12

Eric W. Brown, Execution Performance Issues in Full Text
Information Retrieval, University of Massachusetts Amherst,

October 1995 (“Brown”).

1, 3 , 5, 7 C-13

Costello, Adam, et al., Redesigning the BSD - Callout and
Time Facilities, WUSC 95-23, November 2, 1995

(“Costello”).

1 - 8 C-14

EXHIBIT A

Joint Invalidity Contentions & Production of
Documents

4 Case No. 6:09-cv-549-LED

US2008 1671788.2

Author, Title, Publisher, Publication Information, Date of
Publication

Anticipates at
Least Claims:

Exhibit

J.M. Foster, List Processing, Macdonald & Co., 1967
(“Foster”).

1, 3, 5, 7 C-15

Sirinivasan Keshav, On the Efficient Implementation of
Fair Queueing, Journal of Internetworking: Research and

Experience, 1991 (“Keshav”).

1 – 8 C-16

George Varghese and Tony Lauck, Hashed and Hierarchical
Timing Wheels: Data Structures for the Efficient

Implementation of a Timer Facility, ACM SIGOPS Operating
Systems Review, Vol. 21, Issue 5, p. 25-38 (November 1987)

(“Varghese and Lauck”).

1 - 8 C-17

Robert L. Kruse, Data Structures and Program Design
Prentice-Hall, Inc. 1984 and 1987 (“Kruse”).

1, 3, 5, 7 C-18

Joseph T. Dixon and Kenneth Calvert, Increasing
Demultiplexing Efficiency in TCP/IP Network Servers (1996)

(“Dixon and Calvert”)

1 - 8 C-19

C. Software that Anticipate the ’120 Patent Under 35 U.S.C. §§ 102(a), (b),

and/or (g)

Defendants identify the following software as prior art references that anticipate the

claims of the ’120 patents. Each piece of software was at least (1) known or used in this country

and/or described in a printed publication in this or a foreign country, before the alleged invention

of the claimed subject matter of the patent-in-suit, and/or (2) the invention was described in a

printed publication in this or a foreign country and/or in public use and/or on sale in this country,

more than one year before the filing date of the application for the patent-in-suit, and/or (3) was

invented and not abandoned, suppressed, or concealed prior to the alleged invention of the

EXHIBIT A

Joint Invalidity Contentions & Production of
Documents

5 Case No. 6:09-cv-549-LED

US2008 1671788.2

patent-in-suit. Thus, each piece of software identified here qualifies at least as prior art both as a

publication and as a prior art system or apparatus.

Software, Date Invented / Made / Used / Sold by Anticipates at
Least Claims:

Exhibit

Linux 1.3.52 - route.c, released on December 29, 1995 to the
public.

1, 3, 5, 7 D-1

BSD 4.2 - if_ether.c, released to the public as part of the BSD
4.2 open source operating system in September 1983.

1 - 8 D-2

FreeBSD - vfs_cache.c, developed as part of the FreeBSD
operating system, made public on Dec. 14, 1995 at

http://www.freebsd.org/cgi/cvsweb.cgi/src/sys/kern/vfs_cache.c

1 - 8 D-3

FreeBSD - arp.c, 1994. 1, 3, 5, 7 D-4

FreeBSD - wavelan_cs.c, 1995. 1, 3, 5, 7 D-5

LISP, September 1981. 1 – 4 D-6

FreeBSD 2.0.5 – kern_proc.c, released on June 10, 1995 to the
public.

1 – 8 D-7

Linux 1.2.13 - arp.c, released on August 2, 1995 to the public. 1 – 8 D-8

Linux 1.3.51 - route.c, released on December 27, 1995 to the
public.

1 – 8 D-9

gcache.c from Xinu Operating System for Sparc (1991)
(hereinafter “gcache.c”) and Douglas Comer and Shawn

Ostermann, GCache: A Generalized Caching Mechanism,
Purdue University (Revised March 1992) (hereinafter

“Comer”) (collectively hereinafter “GCache”)

1 – 8 D-10

Naval Research Laboratories IPv6 – key.c and key.h, August
1995

1 – 8 D-11

Linux 2.0.1 - route.c, July 1996 1-8 D-12

GCC 2.7.2.1, August 1996 1-8 D-13

EXHIBIT A

Joint Invalidity Contentions & Production of
Documents

6 Case No. 6:09-cv-549-LED

US2008 1671788.2

MK84 – net_filter() in net_io.c, 1993 1-8 D-14

MK84 – net_set_filter() in net_io.c, 1993 1-8 D-15

Plug and Play Linux – makepsres.c, 1995 1-8 D-16

Local Area Transport Protocol, prior to January 2, 1997 1-8 D-17

II. OBVIOUSNESS BASED ON COMBINATIONS OF PRIOR ART

The following list identifies combinations of prior art that Defendants presently intend to

rely on for their contentions that one or more of the asserted claims of the ’120 patent are

obvious.

Prior Art Reference Prior Art Reference Renders
Obvious at

Least
Claims:

Exhibit

Dirks U.S. Patent No. 5,724,538, Morris et al.,
March 3, 1998 (“Morris”); Thatte; the ’663
patent; Linux 2.0.1; and/or Opportunistic

Garbage Collection

1 - 8 B-2

Robinson U.S. Patent No. 4,530,054, Hamstra et al.,
July 16, 1985 (“Hamstra”); Dirks; Thatte;

the ’663 patent; Linux 2.0.1; and/or
Opportunistic Garbage Collection

2, 4, 6, 8 B-4

Ish at al. Hamstra; Dirks; Thatte; the ’663 patent;
Linux 2.0.1; and/or Opportunistic Garbage

Collection

2, 4, 6, 8 B-5

Beardsley Dirks; Thatte; the ’663 patent; Linux 2.0.1;
and/or Opportunistic Garbage Collection

2, 4, 6, 8 B-6

Bishop U.S. Patent No. 5,991,775, Beardsley et al.,
November 23, 1999 (“Beardsley”); Dirks;

Thatte; the ’663 patent; Linux 2.0.1; and/or

1 - 8 B-7

EXHIBIT A

Joint Invalidity Contentions & Production of
Documents

7 Case No. 6:09-cv-549-LED

US2008 1671788.2

Prior Art Reference Prior Art Reference Renders
Obvious at

Least
Claims:

Exhibit

Opportunistic Garbage Collection

U.S. Patent No. 5,918,249,
Cox et al., June 29, 1999.

Beardsley; Dirks; Thatte; the ’663 patent;
Linux 2.0.1; and/or Opportunistic Garbage

Collection

1 - 8 B-8

U.S. Patent No. 6,424,992,
Devarakonda et al., July

23, 2002.

Dirks; Thatte; the ’663 Patent; The Art of
Computer Programming, Sorting and

Searching, D.E. Knuth, Addison-Wesley
Series in Computer Science and

Information Processing, pp. 513, 518, 1973
(“Knuth”); Weiss; and/or Robert L. Kruse,

Data Structures and Program Design
(Prentice-Hall, Inc. 1984) (“Kruse”); Linux

2.0.1; and/or Opportunistic Garbage
Collection

1 - 8 B-9

Kerr Dirks; Thatte; the ’663 patent; and/or Linux
2.0.1; Opportunistic Garbage Collection

1 - 8 B-10

Corbin Dirks; Thatte; the ’663 patent; and/or Linux
2.0.1; Opportunistic Garbage Collection

1 - 8 B-11

U.S. Patent No. 5,121,495
Nemes, June 9, 1992 (“the

‘495 Patent”).

Dirks; Thatte; the ’663 patent; and/or Linux
2.0.1; Opportunistic Garbage Collection

1 - 8 B-12

U.S. Patent No. 5,577,237,
November 19, 1996 (“the

‘237 patent”)

Dirks; Thatte; the ’663 patent; Linux 2.0.1;
and/or Opportunistic Garbage Collection

2, 4, 6, 8 B-14

Van Wyk Kruse; Knuth; Dirks; Thatte; U.S. Patent
No. 4,996,663, Nemes, February 26, 1991
(“the ’663 Patent”); and/or Paul R. Wilson

and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA

’89 Proceedings, October 1-6, 1989, and
Paul R. Wilson, Opportunistic Garbage

1 - 8 C-1

EXHIBIT A

Joint Invalidity Contentions & Production of
Documents

8 Case No. 6:09-cv-549-LED

US2008 1671788.2

Prior Art Reference Prior Art Reference Renders
Obvious at

Least
Claims:

Exhibit

Collection, ACM SIGPLAN Notices, Vol.
23, No. 12, December 1988 (collectively,

“Opportunistic Garbage Collection”);
and/or Linux 2.0.1.

Morrison Kruse; Knuth; Van Wyk; Dirks; Thatte;
Mathieu; Kenyon-Mathieu; Aldous; the

’663 Patent; Linux 2.0.1; and/or
Opportunistic Garbage Collection.

1 - 8 C-2

Matheiu Kruse; Knuth; Van Wyk; Dirks; Thatte;
Morrison; Kenyon-Mathieu; Aldous; the

’663 Patent; Linux 2.0.1; and/or
Opportunistic Garbage Collection.

1 - 8 C-3

Kenyon-Matheiu Kruse; Knuth; Van Wyk; Dirks; Thatte;
Morrison; Mathieu; Aldous; the ’663

Patent; Linux 2.0.1; and/or Opportunistic
Garbage Collection.

1 - 8 C-4

Aldous Kruse; Knuth; Van Wyk; Dirks; Thatte;
Morrison; Mathieu; Kenyon-Mathieu; the

’663 Patent; Linux 2.0.1; and/or
Opportunistic Garbage Collection.

1 - 8 C-5

James Nelson Griffoen,
Remote Memory Backing
Storage for Distributed

Virtual Memory
Operating Systems,

Purdue University Thesis,
August 1991.

Dirks; Thatte; the ’663 patent;
Opportunistic Garbage Collection; Linux

2.0.1; and/or Weiss

1 - 8 C-7

Douglas Comer and James
Griffioen, A New Design
for Distributed Systems:

The Remote Memory
Model, in Proceedings of

Dirks; Thatte; the ’663 patent;
Opportunistic Garbage Collection; Linux

2.0.1; and/or Weiss

1 - 8 C-8

EXHIBIT A

Joint Invalidity Contentions & Production of
Documents

9 Case No. 6:09-cv-549-LED

US2008 1671788.2

Prior Art Reference Prior Art Reference Renders
Obvious at

Least
Claims:

Exhibit

the USENIX Summer
Conference, June 1990.

Sessions Kit Lester, A Practical Approach to Data
Structures: Related Algorithms in Pascal

with Applications (Ellis Horwood Ltd.
1990) (“Lester”); Dirks; Thatte; the ’663
patent; Linux 2.0.1; and/or Opportunistic

Garbage Collection

2, 4, 5 - 8 C-9

Van Wyk 2 Dirks; Thatte; the ’663 patent; Linux 2.0.1;
and/or Opportunistic Garbage Collection

2, 4, 6, 8 C-10

Weiss Kruse; Dirks; Thatte; the ’663 patent; Linux
2.0.1; and/or Opportunistic Garbage

Collection

1 - 8 C-11

Frakes Dirks; Thatte; the ’663 patent; Linux 2.0.1;
and/or Opportunistic Garbage Collection

2, 4, 6, 8 C-12

Brown Dirks; Thatte; the ’663 patent; Linux 2.0.1;
and/or Opportunistic Garbage Collection

1 - 8 C-13

Foster Dirks; Thatte; the ’663 patent; Linux 2.0.1;
and/or Opportunistic Garbage Collection

1 - 8 C-15

Keshav Dirks; Thatte; the ’663 patent; Linux 2.0.1;
and/or Opportunistic Garbage Collection

1 - 8 C-16

Kruse Dirks; Thatte; the ’663 patent; Linux 2.0.1;
and/or Opportunistic Garbage Collection

2, 4, 6, 8 C-18

Dixon and Calvert Dirks; Thatte; the ’663 patent; Linux 2.0.1;
and/or Opportunistic Garbage Collection

2, 4, 6, 8 C-19

Linux 1.3.52 - route.c Dirks, Thatte, the ’663 patent, and/or
Opportunistic Garbage Collection; Linux

2.0.1; GCache

1 - 8 D-1

EXHIBIT A

Joint Invalidity Contentions & Production of
Documents

10 Case No. 6:09-cv-549-LED

US2008 1671788.2

Prior Art Reference Prior Art Reference Renders
Obvious at

Least
Claims:

Exhibit

BSD 4.2 - if_ether.c Dirks, Thatte, the ’663 patent, and/or
Opportunistic Garbage Collection; Knuth;
Kruse; and/or Weiss; Linux 2.0.1; GCache

1 - 8 D-2

FreeBSD - vfs_cache.c Dirks, Thatte, the ’663 patent, and/or
Opportunistic Garbage Collection; Knuth;

and/or Kruse; Linux 2.0.1; GCache

1 - 8 D-3

FreeBSD - arp.c Dirks, Thatte, the ’663 patent, and/or
Opportunistic Garbage Collection; Linux

2.0.1; GCache

1 - 8 D-4

FreeBSD -wavelan_cs.c Dirks, Thatte, the ’663 patent, and/or
Opportunistic Garbage Collection; Linux

2.0.1; GCache

1 - 8 D-5

Lisp Dirks, Thatte, the ’663 patent, and/or
Opportunistic Garbage Collection; Linux

2.0.1; GCache

5 – 8 D-6

FreeBSD – kern_proc.c Dirks, Thatte, the ’663 patent, and/or
Opportunistic Garbage Collection; Linux

2.0.1; GCache

2, 4, 6, 8 D-7

Linux 1.2.13 – arp.c Dirks, Thatte, the ’663 patent, and/or
Opportunistic Garbage Collection; Linux

2.0.1; GCache

2, 4, 6, 8 D-8

Linux 1.3.51 - route.c Dirks, Thatte, the ’663 patent, and/or
Opportunistic Garbage Collection; Linux

2.0.1; GCache

2, 4, 6, 8 D-9

Xinu Operating System
for Sparc – gcache.c

Dirks, Thatte, the ’663 patent, and/or
Opportunistic Garbage Collection; Linux

2.0.1; Naval Research Laboratories IPv6 –
key.c and key.h

2, 4, 6, 8 D-10

Naval Research Dirks, Thatte, the ’663 patent, and/or 1 - 8 D-11

EXHIBIT A

Joint Invalidity Contentions & Production of
Documents

11 Case No. 6:09-cv-549-LED

US2008 1671788.2

Prior Art Reference Prior Art Reference Renders
Obvious at

Least
Claims:

Exhibit

Laboratories IPv6 – key.c
and key.h

Opportunistic Garbage Collection; Kruse;
Linux 2.0.1; GCache

Linux 2.0.1 - route.c Dirks, Thatte, the ’663 patent, and/or
Opportunistic Garbage Collection; GCache

1-8 D-12

GCC 2.7.21 Dirks, Thatte, the ’663 patent, and/or
Opportunistic Garbage Collection; Linux

2.0.1; GCache

1-8 D-13

MK84 – net_filter() in
net_io.c

Dirks, Thatte, the ’663 patent, and/or
Opportunistic Garbage Collection; Linux

2.0.1; GCache

1-8 D-14

MK84 – net_set_filter() in
net_io.c

Dirks, Thatte, the ’663 patent, and/or
Opportunistic Garbage Collection; Linux

2.0.1; GCache

1-8 D-15

Plug and Play Linux –
makepsres.c

Dirks, Thatte, the ’663 patent, and/or
Opportunistic Garbage Collection; Kruse;

Linux 2.0.1; GCache

1-8 D-16

Local Area Transport
Protocol

Dirks, Thatte, the ’663 patent, and/or
Opportunistic Garbage Collection; Linux

2.0.1

1-8 D-17

EXHIBIT B-1

Joint Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,695,949 to Thatte et al. (“Thatte”)

1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, Thatte discloses an information
storage and retrieval system.

For example, Thatte discloses:

A method and apparatus for managing a block oriented memory of the
type in which each memory block has an associated reference count
representing the number of pointers to it from other memory blocks
and itself. Efficient and cost-effective implementation of reference
counting alleviates the need for frequent garbage collection, which is
an expensive operation. The apparatus includes a hash table into which
the virtual addresses of blocks of memory which equal zero are
maintained. When the reference count of a block increases from zero,
its virtual address is removed from the table. When the reference count
of a block decreases to zero, its virtual address is inserted into the
table. When the table is full, a reconciliation operation is performed to
identify those addresses which are contained in a set of binding
registers associated with the CPU, and any address not contained in
the binding registers are evacuated into a garbage buffer for
subsequent garbage collection operations. The apparatus can be
implemented by a cache augmented by the hash table, providing a
back-up store for the cache. Thatte et al., “Method for Efficient
Support For Reference Counting,” U.S. Patent No. 4,695,949 (issued
Sept, 22, 1987).at Abstract.

In accordance with a broad aspect of the invention, an apparatus is
provided for managing a block oriented memory of the type in which
each memory block has an associated reference count representing the
number of pointers to it from other memory blocks and itself. The
apparatus includes means for implementing a data structure storing

EXHIBIT B-1

Joint Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,695,949 to Thatte et al. (“Thatte”)

virtual addresses, which can be implemented by a hash table or the
like. Means are also provided for performing insert and delete
operations on the data structure, means for inserting in the data
structure the virtual address of each block of memory which has a
reference count of zero, and means for deleting from the data structure
the virtual address of each block of memory whose reference count
changes from zero to one. In one aspect of the invention, the apparatus
further includes means for performing a reconciliation operation on
the data structure when it is full, the reconciliation means including
means for obtaining a dump of pointers in binding registers, means for
comparing the pointers of the pointer dump with the virtual addresses
contained in the data structure, and means for deleting any virtual
addresses contained in the data structure not in the pointer dump. Id. at
5:40-62.

The method and apparatus for reference count management assistance
disclosed in Thatte is referred to as a “reference count filter,” which acts
conceptually as a filter to control reference count management. Id. at 5:66-
68. The reference count filter stores virtual addresses of blocks whose
reference counts have dropped to zero, but which may have pointers to them
at binding registers. Id. at 6:51-57.

The method and apparatus also contains a memory management unit (MMU)
40 which provides memory management functions. Id. at 6:4-24. “[T]he
MMU 40 is responsible for reference count management; that is, it
increments and decrements reference counts of the referent blocks, when
pointers to these blocks are created or destroyed in memory cells. The MMU
40 is also responsible for reclaiming inaccessible blocks.” Id. at 6:25-31.
“The MMU 40 maintains information about blocks which have zero
reference counts, but which may have pointers to them originating at the

EXHIBIT B-1

Joint Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,695,949 to Thatte et al. (“Thatte”)

binding registers. This information is conveniently recorded and maintained
in a data structure, [such as a hash table as shown in Figure 7], in the form of
virtual-addresses of such blocks.” Id. at 6:36-41

EXHIBIT B-1

Joint Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,695,949 to Thatte et al. (“Thatte”)

[1a] a linked list to store
and provide access to
records stored in a
memory of the system, at
least some of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining
technique to store the
records with same hash
address, at least some of
the records automatically
expiring,

Thatte discloses a linked list to store and provide access to records stored in
a memory of the system, at least some of the records automatically expiring.
Thatte also discloses a hashing means to provide access to records stored in a
memory of the system and using an external chaining technique to store the
records with same hash address, at least some of the records automatically
expiring.

For example, Thatte’s reference count filter is preferably implemented in a
“hash table that can efficiently support the insert, delete, and reconcile
operations. Therefore, the basic search operation on the hash table must be
quite fast.” Id. at 8:39-43. “The hash table implementation of the reference
count filter, in accordance with the invention, is illustrated in FIG. 7.” Id. at
8:49-81. Figure 7 displays a virtual address 80 that is applied to a hash
function 92. Id. at Figure 7, 8:39-62. The hashed output is then inserted into
a hash bucket 83 which comprises a linked list 85, 86. Id.

EXHIBIT B-1

Joint Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,695,949 to Thatte et al. (“Thatte”)

Id. at Figure 7.

The records that are contained within the reference count filter automatically
expire. Id. at 7:40-8:18. When the reference count filter is full a
reconciliation operation 62 is performed. Id. The reconciliation operation
removes all of the garbage blocks, i.e. virtual addresses stored in the hash
table that are no longer referenced externally. Id.

The MMU 40 makes the necessary room by performing a
reconciliation operation, box 62. It sends a special command to the
CPU 12 called "Dump-pointers," box 64. In response, the CPU 12
sends the contents of all binding registers that contain pointers (which
are virtual addresses) to the MMU. The set of these pointers is called
the "Dumped-out" set, which is received by the MMU, box 65. The
pointers in the Dumped-out set indicate the block which have

EXHIBIT B-1

Joint Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,695,949 to Thatte et al. (“Thatte”)

references originating at binding registers. Of course, the size of the
dumped-out set cannot exceed the number of binding registers. The
reconciliation operation is guaranteed to create a room in the reference
count filter, as the size of the reference count filter is greater than the
number of binding registers. Therefore, there must be at least one
virtual address in the reference count filter which is not in any binding
register. Id. at 7:44-60.

The MMU reconciles the state of the reference count filter with the set of
Dumped-out pointers, by executing the following operations. (1) Each
pointer from the dumped-out set is attempted to be located by the MMU
within the virtual address contained in the reference count filter, box 67. If
the pointer exists in the reference count filter, the MMU marks the pointer in
the reference count filter, box 68. The pointers in the reference count filter,
thus marked, indicate blocks that are still accessible and hence are not
garbage. All unmarked pointers in the reference count filter, therefore,
indicate garbage blocks. (2) The unmarked pointers are evacuated from the
reference count filter and stored in another data structure, called the "garbage
buffer" (not shown), box 69, which essentially holds pointers to garbage
blocks. A background process not described herein in the MMU operates on
the garbage buffer to reclaim the garbage blocks. As soon as the unmarked
pointers are evacuated from the reference count filter to the garbage buffer,
the reconciliation operation on the reference count filter is over, and the
regular operation is resumed. As a result of the reconciliation operation, the
state of the reference count filter has been reconciled with the state of
binding registers, and pointers to all garbage blocks have been evacuated
from the reference count filter. Id. at 7:61-8:18.

[1b] a record search
means utilizing a search
key to access the linked

[5b] a record search
means utilizing a search
key to access a linked list

Thatte discloses a record search means utilizing a search key to access the
linked list. Thatte also discloses a record search means utilizing a search key
to access a linked list of records having the same hash address.

EXHIBIT B-1

Joint Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,695,949 to Thatte et al. (“Thatte”)

list, of records having the same
hash address,

For example, Thatte states that “the preferred implementation of the
reference count filter is a hash table that can efficiently support the insert,
delete, and reconcile operations. Therefore, the basic search operation on the
hash table must be quite fast.” Id. at 8:39-43.

As shown in Figure 7:

[A] virtual address, shown in block 80, is applied to means for
implementing a hash function, shown in block 82. Hash function
implementing functions are well known in the art, and are not
described in detail herein. The hashed output from the hash function
is applied as an address to a “hash bucket” table 83, in which a
corresponding entry is located. The located entry may be a pointer
which may point to a linked list 85, 86, etc. of virtual addresses. If
the virtual address searched for (i.e. the virtual address contained in
block 80) is in the linked list 85, 86, etc., the "locate" operation is
successful. Id. at 8:49-62.

[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the
records from the linked
list when the linked list is
accessed, and

[5c] the record search
means including means
for identifying and
removing at least some
expired ones of the
records from the linked
list of records when the
linked list is accessed, and

Thatte discloses the record search means including a means for identifying
and removing at least some of the expired ones of the records from the
linked list when the linked list is accessed. Thatte also discloses the record
search means including means for identifying and removing at least some
expired ones of the records from the linked list of records when the linked
list is accessed.

For example, Figure 6 displays a block diagram showing the steps of
maintaining the reference count filter. Id. at 5:10-12. Each time a block is
allocated or a pointer to a block is destroyed the reference count filter is

EXHIBIT B-1

Joint Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,695,949 to Thatte et al. (“Thatte”)

checked to see if the reference count filter is full. Id. at 7:1-26, Figure 6. If
the reference count filter is full, then a reconciliation operation is performed
where expired records are removed. Id.

Id. at Figure 6.

EXHIBIT B-1

Joint Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,695,949 to Thatte et al. (“Thatte”)

Beginning from a start position 49, three possible block affecting
operations may be performed. The first is the allocation of a block [i.e.
insert], the second is the destruction of a pointer to a block [i.e. delete],
and the third is the creation of a pointer to a block. Accordingly, when a
new block is allocated by the MMU 40 in response to an "Allocate"
command from the CPU 12, box 50, the new block starts its life with a
zero reference count. Therefore, in accordance with the invention, the
virtual address of a newly allocated block is inserted into the reference
count filter 25, box 51, assuming that there is a place in the reference
count filter for insertion, i.e., that the reference count filter is not full.
Similarly, when the reference count of a block drops to zero, box 52, the
virtual address of the block is inserted in the reference count filter 25,
again assuming that there is a place in the reference count filter for
[insertion]. The insert operation on the reference count filter is
implemented by the insert operation on the underlying hash table, as
below described. Id. at 7:1-20.

If the reference count filter is determined to be full, box 60, the MMU
suspends the insertion operation and performs a reconciliation operation,
box 62, on the reference count filter, as described below, to create a
room in the reference count filter so that the suspended insertion
operation can be completed. Id. at 7:21-26.

When the reference count of a block goes up from zero to one, box 70,
the virtual address of the block is deleted from the reference count filter,
box 72. The deletion operation is necessary because a block with a non-
zero reference count must not stay in the reference count filter. To
accomplish the deletion, first the virtual address of the block with non-
zero reference count (which is guaranteed to exist in the reference count
filter) is searched for in the reference count filter, and then it is deleted.

EXHIBIT B-1

Joint Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,695,949 to Thatte et al. (“Thatte”)

The delete operation on the reference count filter is implemented by the
delete operation on the underlying hash table implementing the
reference count filter, again as below described. Id. at 7:27-39.

As mentioned above, after an insert operation is suspended due to a full
reference count filter, the MMU needs to make a room in the reference
count filter so that the suspended insert operation can be resumed and
completed. The MMU 40 makes the necessary room by performing a
reconciliation operation, box 62. It sends a special command to the CPU
12 called "Dump-pointers," box 64. In response, the CPU 12 sends the
contents of all binding registers that contain pointers (which are virtual
addresses) to the MMU. The set of these pointers is called the "Dumped-
out" set, which is received by the MMU, box 65. The pointers in the
Dumped-out set indicate the block which have references originating at
binding registers. Of course, the size of the dumped-out set cannot
exceed the number of binding registers. The reconciliation operation is
guaranteed to create a room in the reference count filter, as the size of
the reference count filter is greater than the number of binding registers.
Therefore, there must be at least one virtual address in the reference
count filter which is not in any binding register. Id. at 7:40-60.

The MMU reconciles the state of the reference count filter with the set
of Dumped-out pointers, by executing the following operations. (1)
Each pointer from the dumped-out set is attempted to be located by the
MMU within the virtual address contained in the reference count filter,
box 67. If the pointer exists in the reference count filter, the MMU
marks the pointer in the reference count filter, box 68. The pointers in
the reference count filter, thus marked, indicate blocks that are still
accessible and hence are not garbage. All unmarked pointers in the
reference count filter, therefore, indicate garbage blocks. (2) The

EXHIBIT B-1

Joint Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,695,949 to Thatte et al. (“Thatte”)

unmarked pointers are evacuated from the reference count filter and
stored in another data structure, called the "garbage buffer" (not shown),
box 69, which essentially holds pointers to garbage blocks. A
background process not described herein in the MMU operates on the
garbage buffer to reclaim the garbage blocks. As soon as the unmarked
pointers are evacuated from the reference count filter to the garbage
buffer, the reconciliation operation on the reference count filter is over,
and the regular operation is resumed. As a result of the reconciliation
operation, the state of the reference count filter has been reconciled with
the state of binding registers, and pointers to all garbage blocks have
been evacuated from the reference count filter. Id. at 7:61-8:18.

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

Thatte discloses means, utilizing the record search means, for accessing the
linked list and, at the same time, removing at least some of the expired ones
of the records in the linked list. Thatte also discloses utilizing the record
search means, for inserting, retrieving, and deleting records from the system
and, at the same time, removing at least some expired ones of the records in
the accessed linked list of records.

For example, Figure 6 displays a block diagram showing the steps of
maintaining the reference count filter. Id. at 5:10-12. Each time a block is
allocated or a pointer to a block is destroyed the reference count filter is
checked to see if the reference count filter is full. Id. at 7:1-26, Figure 6. If
the reference count filter is full, then a reconciliation operation is performed
where expired records are removed. Id.

EXHIBIT B-1

Joint Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,695,949 to Thatte et al. (“Thatte”)

 Id. at Figure 6.

Beginning from a start position 49, three possible block affecting
operations may be performed. The first is the allocation of a block [i.e.
insert], the second is the destruction of a pointer to a block [i.e. delete],

EXHIBIT B-1

Joint Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,695,949 to Thatte et al. (“Thatte”)

and the third is the creation of a pointer to a block. Accordingly, when a
new block is allocated by the MMU 40 in response to an "Allocate"
command from the CPU 12, box 50, the new block starts its life with a
zero reference count. Therefore, in accordance with the invention, the
virtual address of a newly allocated block is inserted into the reference
count filter 25, box 51, assuming that there is a place in the reference
count filter for insertion, i.e., that the reference count filter is not full.
Similarly, when the reference count of a block drops to zero, box 52, the
virtual address of the block is inserted in the reference count filter 25,
again assuming that there is a place in the reference count filter for
[insertion]. The insert operation on the reference count filter is
implemented by the insert operation on the underlying hash table, as
below described. Id. at 7:1-20.

If the reference count filter is determined to be full, box 60, the MMU
suspends the insertion operation and performs a reconciliation operation,
box 62, on the reference count filter, as described below, to create a
room in the reference count filter so that the suspended insertion
operation can be completed. Id. at 7:21-26.

When the reference count of a block goes up from zero to one, box 70,
the virtual address of the block is deleted from the reference count filter,
box 72. The deletion operation is necessary because a block with a non-
zero reference count must not stay in the reference count filter. To
accomplish the deletion, first the virtual address of the block with non-
zero reference count (which is guaranteed to exist in the reference count
filter) is searched for in the reference count filter, and then it is deleted.
The delete operation on the reference count filter is implemented by the
delete operation on the underlying hash table implementing the
reference count filter, again as below described. Id. at 7:27-39.

EXHIBIT B-1

Joint Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,695,949 to Thatte et al. (“Thatte”)

As mentioned above, after an insert operation is suspended due to a full
reference count filter, the MMU needs to make a room in the reference
count filter so that the suspended insert operation can be resumed and
completed. The MMU 40 makes the necessary room by performing a
reconciliation operation, box 62. It sends a special command to the CPU
12 called "Dump-pointers," box 64. In response, the CPU 12 sends the
contents of all binding registers that contain pointers (which are virtual
addresses) to the MMU. The set of these pointers is called the "Dumped-
out" set, which is received by the MMU, box 65. The pointers in the
Dumped-out set indicate the block which have references originating at
binding registers. Of course, the size of the dumped-out set cannot
exceed the number of binding registers. The reconciliation operation is
guaranteed to create a room in the reference count filter, as the size of
the reference count filter is greater than the number of binding registers.
Therefore, there must be at least one virtual address in the reference
count filter which is not in any binding register. Id. at 7:40-60.

The MMU reconciles the state of the reference count filter with the set
of Dumped-out pointers, by executing the following operations. (1)
Each pointer from the dumped-out set is attempted to be located by the
MMU within the virtual address contained in the reference count filter,
box 67. If the pointer exists in the reference count filter, the MMU
marks the pointer in the reference count filter, box 68. The pointers in
the reference count filter, thus marked, indicate blocks that are still
accessible and hence are not garbage. All unmarked pointers in the
reference count filter, therefore, indicate garbage blocks. (2) The
unmarked pointers are evacuated from the reference count filter and

EXHIBIT B-1

Joint Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,695,949 to Thatte et al. (“Thatte”)

stored in another data structure, called the "garbage buffer" (not shown),
box 69, which essentially holds pointers to garbage blocks. A
background process not described herein in the MMU operates on the
garbage buffer to reclaim the garbage blocks. As soon as the unmarked
pointers are evacuated from the reference count filter to the garbage
buffer, the reconciliation operation on the reference count filter is over,
and the regular operation is resumed. As a result of the reconciliation
operation, the state of the reference count filter has been reconciled with
the state of binding registers, and pointers to all garbage blocks have
been evacuated from the reference count filter. Id. at 7:61-8:18.

2. The information
storage and retrieval
system according to claim
1 further including means
for dynamically
determining maximum
number for the record
search means to remove in
the accessed linked list of
records.

6. The information
storage and retrieval
system according to claim
5 further including means
for dynamically
determining maximum
number for the record
search means to remove in
the accessed linked list of
records.

Thatte discloses an information storage and retrieval system further
including means for dynamically determining maximum number for the
record search means to remove in the accessed linked list of records.

For example, Thatte discloses a reconciliation operation that is only
performed if the reference counter is full. Id. at 7:21-26, 7:40-8:18, Figure 7.
This dynamic decision is clearly shown at 60 of Figure 6. Id.

If the reference counter is not full, then Thatte dynamically determines that
the maximum number of records to delete is zero. Id. If the reference
counter is full, then Thatte dynamically determines that the maximum
number of records to delete is all of the garbage in reference count filter. Id.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Thatte to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One

EXHIBIT B-1

Joint Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,695,949 to Thatte et al. (“Thatte”)

of ordinary skill in the art would have been motivated to combine the system
disclosed in Thatte with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an
accessed linked list of records to solve a number of potential problems. For
example, the removal of expired records described in Thatte can be
burdensome on the system, adding to the system’s load and slowing down
the system’s processing. Moreover, the removal could also force an
interruption in real-time processing as the processing waits for the removal
to complete. Indeed, part of the motivation for the system disclosed in
Thatte is avoiding these problems. One of ordinary skill in the art would
have known that dynamically determining the maximum number to remove
would limit the burden on the system and bound the length of any real-time
interruption to prevent delays in processing. Indeed, Nemes concedes that
such dynamic determination was obvious when he states in the ‘120 patent
that “[a] person skilled in the art will appreciate that the technique of
removing all expired records while searching the linked list can be expanded
to include techniques whereby not necessarily all expired records are
removed, and that the decision regarding if and how many records to delete
can be a dynamic one.” ‘120 at 7:10-15.

Alternatively, Thatte combined with Dirks discloses an information storage
and retrieval system further including means for dynamically determining
maximum number for the record search means to remove in the accessed
linked list of records.

For example, Dirks discloses the management of memory in a computer
system and more particularly to the allocation of address space in a virtual
memory system, which dynamically determines how many records to
sweep/remove upon each allocation. Disclosure of these claim elements in
Dirks is clearly shown in Exhibit B-2, which is hereby incorporated by

EXHIBIT B-1

Joint Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,695,949 to Thatte et al. (“Thatte”)

reference in its entirety.

As summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to
determine whether they have become inactive, by checking them against
the VSIDs on the recycle list. Each entry which is identified as being
inactive is removed from the page table. After all of the entries in the
page table have been examined in this manner, the VSIDs in the recycle
list can be transferred to the free list, since all of their associated page
table entries will have been removed. This approach thereby guarantees
that a predetermined number of VSIDs are always available in the free
list without requiring a time-consuming scan of the complete page table
at once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is
done by checking whether the inactive list is full, i.e. whether it
contains x entries (Step 22). If the number of entries I on the inactive
list is less than x, no further action is taken, and processing control
returns to the operating system (Step 24). If, however, the inactive list
is full at this time, the flag RFLG is set (Step 26), the VSIDs on the
inactive list are transferred to the recycle list, and an index n is reset to
1 (Step 28). The system then sweeps a predetermined number of page
table entries PTi on the page table, to detect whether any of them are
inactive, i.e. their associated VSID is on the recycle list (Step 30). The
predetermined number of entries that are swept is identified as k,

EXHIBIT B-1

Joint Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,695,949 to Thatte et al. (“Thatte”)

where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number
of entries to be examined during each step of the sweeping process. Id. at
7:37-40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only
criterion is that the number of entries examined on each step be such that
all entries in the page table are examined in a determinable amount of time
or by the occurrence of a certain event, e.g. by the time the list of free
VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Thatte and Dirks relate to memory management systems and
deletion of aged records upon the allocation of a new incoming record, one
of ordinary skill in the art would have understood how to use Dirks’ dynamic
decision making process of determining the maximum number of records to
sweep/remove in other memory management systems such as Thatte.
Moreover, one of ordinary skill in the art would recognize that it would
improve similar systems and methods in the same way. As the ’120 patent
states “[a] person skilled in the art will appreciate that the technique of

EXHIBIT B-1

Joint Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,695,949 to Thatte et al. (“Thatte”)

removing all expired records while searching the linked list can be expanded
to include techniques whereby not necessarily all expired records are
removed, and that the decision regarding if and how many records to delete
can be a dynamic one.” The ’120 patent at 7:10-15. Additionally, one of
ordinary skill in the art would recognize that the result of combining Dirks’
deletion decision procedure with Thatte’s memory management technique
would be nothing more than the predictable use of prior art elements
according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Thatte’s method of
memory management and would have seen the benefits of doing so. For
example, Thatte notes that because “the CPU is stopped during the
reconciliation operation” there could be “performance degradation” and “it is
desirable to reduce the time for reconciliation as much as possible.” See
Thatte, col. 8:19-22. One of ordinary skill in the art would have recognized
that Dirks’ method of dynamically determining a maximum number of
entries to examine could achieve this goal of limiting the performance
degradation in Thatte’s method.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Thatte in combination with Dirks, it is disclosed
by Linux 2.0.1, which describes dynamically determining maximum number
of expired ones of the records to remove when the linked list is accessed. It
would have been obvious to combine Linux 2.0.1 with Thatte. For example,
both Linux 2.0.1 and Thatte describe systems and methods for performing
data storage and retrieval using known programming techniques to yield a
predictable result.

EXHIBIT B-1

Joint Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,695,949 to Thatte et al. (“Thatte”)

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the
function rt_cache_add decrements the variable rt_cache_size. See
Linux 2.0.1, route.c at line 1373. Thus, the variable rt_cache_size
indicates the number of records in the hash table (i.e.,
ip_rt_hash_table). Because the function rt_cache_add
automatically increments and decrements the variable rt_cache_size,
the variable rt_cache_size is determined dynamically.

Furthermore, LINUX 2.0.1 includes the function
rt_garbage_collect_1. The function rt_garbage_collect_1
loops through each of the linked lists in the ip_rt_hash_table global
variable. See Linux 2.0.1, route.c at lines 1122-1138. In this way, the
function rt_garbage_collect_1 accesses the linked list. When the
function rt_garbage_collect_1 identifies a record that is expired, the
function rt_garbage_collect_1 decrements the variable
rt_cache_size and frees the record. See Linux 2.0.1, route.c at lines
1128-1135.

Because all records in the linked list can be expired and all records in the
hash table can be in the linked list, the variable rt_cache_size can
represent a dynamically determined maximum number of expired ones of the
records to remove when function rt_garbage_collect_1 accesses the
linked list.

Furthermore, the function rt_cache_add determines whether the number
of records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds

EXHIBIT B-1

Joint Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,695,949 to Thatte et al. (“Thatte”)

the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at
each record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131.
For each record in a linked list, the function rt_garbage_collect_1
determines whether the record’s last use time plus the record’s expiration
factor is later than the current time. See Linux 2.0.1, route.c at line 1122. If
the record’s last use time plus the record’s expiration factor is less than the
current time, the function rt_garbage_collect_1 removes the record
from the linked list. See Linux 2.0.1, route.c at lines 1124-1130. The
record’s expiration factor is based on a variable expire and the record’s
reference count. See Linux 2.0.1, route.c at line 1122. The variable expire is
initially one half of the fixed timeout value RT_CACHE_TIMEOUT. See
Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of
records in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the
number of items in the hash table is still greater than the predetermined
threshold RT_CACHE_SIZE_MAX, the function
rt_garbage_collect_1 halves the variable expire and loops

EXHIBIT B-1

Joint Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,695,949 to Thatte et al. (“Thatte”)

through each of the linked lists in the hash table. See Linux 2.0.1, route.c at
line 1135. In this way, the function rt_garbage_collect_1 can
remove additional records from the linked lists in the hash table. The
function rt_garbage_collect_1 repeats this process until the total
number of records in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list
when the record’s last use time plus the fixed timeout value
RT_CACHE_TIMEOUT is less than the current time and the record’s
reference count is zero. See Linux 2.0.1, route.c at line 1369. Thus, the
maximum number of records that the function rt_cache_add can remove
from a given linked list is limited to those records whose reference counts
are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than

EXHIBIT B-1

Joint Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,695,949 to Thatte et al. (“Thatte”)

the maximum number of records that the function rt_cache_add can
remove from a linked list.

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide
access to the records and
using an external chaining
technique to store the
records with same hash
address, at least some of
the records automatically
expiring, the method
comprising the steps of:

To the extent the preamble is a limitation, Thatte discloses a method for
storing and retrieving information records using a linked list to store and
provide access to the records, at least some of the records automatically
expiring. Thatte also discloses a method for storing and retrieving
information records using a hashing technique to provide access to the
records and using an external chaining technique to store the records with
same hash address, at least some of the records automatically expiring.

For example, Thatte discloses:

A method and apparatus for managing a block oriented memory of the
type in which each memory block has an associated reference count
representing the number of pointers to it from other memory blocks
and itself. Efficient and cost-effective implementation of reference
counting alleviates the need for frequent garbage collection, which is
an expensive operation. The apparatus includes a hash table into which
the virtual addresses of blocks of memory which equal zero are
maintained. When the reference count of a block increases from zero,
its virtual address is removed from the table. When the reference count
of a block decreases to zero, its virtual address is inserted into the
table. When the table is full, a reconciliation operation is performed to
identify those addresses which are contained in a set of binding
registers associated with the CPU, and any address not contained in
the binding registers are evacuated into a garbage buffer for
subsequent garbage collection operations. The apparatus can be
implemented by a cache augmented by the hash table, providing a

EXHIBIT B-1

Joint Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,695,949 to Thatte et al. (“Thatte”)

back-up store for the cache. Thatte at Abstract.

In accordance with a broad aspect of the invention, an apparatus is
provided for managing a block oriented memory of the type in which
each memory block has an associated reference count representing the
number of pointers to it from other memory blocks and itself. The
apparatus includes means for implementing a data structure storing
virtual addresses, which can be implemented by a hash table or the
like. Means are also provided for performing insert and delete
operations on the data structure, means for inserting in the data
structure the virtual address of each block of memory which has a
reference count of zero, and means for deleting from the data structure
the virtual address of each block of memory whose reference count
changes from zero to one. In one aspect of the invention, the apparatus
further includes means for performing a reconciliation operation on
the data structure when it is full, the reconciliation means including
means for obtaining a dump of pointers in binding registers, means for
comparing the pointers of the pointer dump with the virtual addresses
contained in the data structure, and means for deleting any virtual
addresses contained in the data structure not in the pointer dump. Id. at
5:40-62.

The method and apparatus for reference count management assistance
disclosed in Thatte is referred to as a “reference count filter,” which acts
conceptually as a filter to control reference count management. Id. at 5:66-
68. The reference count filter stores virtual addresses of blocks whose
reference counts have dropped to zero, but which may have pointers to them
at binding registers. Id. at 6:51-57.

The method and apparatus also contains a memory management unit (MMU)

EXHIBIT B-1

Joint Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,695,949 to Thatte et al. (“Thatte”)

40 which provides memory management functions. Id. at 6:4-24. “[T]he
MMU 40 is responsible for reference count management; that is, it
increments and decrements reference counts of the referent blocks, when
pointers to these blocks are created or destroyed in memory cells. The MMU
40 is also responsible for reclaiming inaccessible blocks.” Id. at 6:25-31.
“The MMU 40 maintains information about blocks which have zero
reference counts, but which may have pointers to them originating at the
binding registers. This information is conveniently recorded and maintained
in a data structure, [such as a hash table as shown in Figure 7], in the form of
virtual-addresses of such blocks.” Id. at 6:36-41

[3a] accessing the linked
list of records,

[7a] accessing a linked
list of records having same
hash address,

Thatte discloses accessing a linked list of records. Thatte also discloses
accessing a linked list of records having same hash address.

For example, Thatte’s reference count filter is preferably implemented in a
“hash table that can efficiently support the insert, delete, and reconcile
operations. Therefore, the basic search operation on the hash table must be
quite fast.” Id. at 8:39-43. “The hash table implementation of the reference
count filter, in accordance with the invention, is illustrated in FIG. 7.” Id. at
8:49-81. Figure 7 displays a virtual address 80 that is applied to a hash
function 92. Id. at Figure 7, 8:39-62. The hashed output is then inserted into
a hash bucket 83 which comprises a linked list 85, 86. Id.

EXHIBIT B-1

Joint Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,695,949 to Thatte et al. (“Thatte”)

 Id. at Figure 6.

[3b] identifying at least
some of the automatically
expired ones of the
records, and

[7b] identifying at least
some of the automatically
expired ones of the
records,

Thatte discloses identifying at least some of the automatically expired ones
of the records.

For example, The records that are contained within the reference count filter
automatically expire. Id. at 7:40-8:18. When the reference count filter is full
a reconciliation operation 62 is performed. Id. The reconciliation operation
removes all of the garbage blocks, i.e. virtual addresses stored in the hash
table that are no longer referenced externally. Id.

The MMU 40 makes the necessary room by performing a
reconciliation operation, box 62. It sends a special command to the
CPU 12 called "Dump-pointers," box 64. In response, the CPU 12
sends the contents of all binding registers that contain pointers (which

EXHIBIT B-1

Joint Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,695,949 to Thatte et al. (“Thatte”)

are virtual addresses) to the MMU. The set of these pointers is called
the "Dumped-out" set, which is received by the MMU, box 65. The
pointers in the Dumped-out set indicate the block which have
references originating at binding registers. Of course, the size of the
dumped-out set cannot exceed the number of binding registers. The
reconciliation operation is guaranteed to create a room in the reference
count filter, as the size of the reference count filter is greater than the
number of binding registers. Therefore, there must be at least one
virtual address in the reference count filter which is not in any binding
register. Id. at 7:44-60.

The MMU reconciles the state of the reference count filter with the set of
Dumped-out pointers, by executing the following operations. (1) Each
pointer from the dumped-out set is attempted to be located by the MMU
within the virtual address contained in the reference count filter, box 67. If
the pointer exists in the reference count filter, the MMU marks the pointer in
the reference count filter, box 68. The pointers in the reference count filter,
thus marked, indicate blocks that are still accessible and hence are not
garbage. All unmarked pointers in the reference count filter, therefore,
indicate garbage blocks. (2) The unmarked pointers are evacuated from the
reference count filter and stored in another data structure, called the "garbage
buffer" (not shown), box 69, which essentially holds pointers to garbage
blocks. A background process not described herein in the MMU operates on
the garbage buffer to reclaim the garbage blocks. As soon as the unmarked
pointers are evacuated from the reference count filter to the garbage buffer,
the reconciliation operation on the reference count filter is over, and the
regular operation is resumed. As a result of the reconciliation operation, the
state of the reference count filter has been reconciled with the state of
binding registers, and pointers to all garbage blocks have been evacuated
from the reference count filter. Id. at 7:61-8:18.

EXHIBIT B-1

Joint Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,695,949 to Thatte et al. (“Thatte”)

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

Thatte discloses removing at least some of the automatically expired records
from the linked list when the linked list is accessed.

For example, Figure 6 displays a block diagram showing the steps of
maintaining the reference count filter. Id. at 5:10-12. Each time a block is
allocated or a pointer to a block is destroyed the reference count filter is
checked to see if the reference count filter is full. Id. at 7:1-26, Figure 6. If
the reference count filter is full, then a reconciliation operation is performed
where expired records are removed. Id.

EXHIBIT B-1

Joint Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,695,949 to Thatte et al. (“Thatte”)

Id. at Figure 6.

Beginning from a start position 49, three possible block affecting
operations may be performed. The first is the allocation of a block [i.e.
insert], the second is the destruction of a pointer to a block [i.e. delete],

EXHIBIT B-1

Joint Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,695,949 to Thatte et al. (“Thatte”)

and the third is the creation of a pointer to a block. Accordingly, when a
new block is allocated by the MMU 40 in response to an "Allocate"
command from the CPU 12, box 50, the new block starts its life with a
zero reference count. Therefore, in accordance with the invention, the
virtual address of a newly allocated block is inserted into the reference
count filter 25, box 51, assuming that there is a place in the reference
count filter for insertion, i.e., that the reference count filter is not full.
Similarly, when the reference count of a block drops to zero, box 52, the
virtual address of the block is inserted in the reference count filter 25,
again assuming that there is a place in the reference count filter for
[insertion]. The insert operation on the reference count filter is
implemented by the insert operation on the underlying hash table, as
below described. Id. at 7:1-20.

If the reference count filter is determined to be full, box 60, the MMU
suspends the insertion operation and performs a reconciliation operation,
box 62, on the reference count filter, as described below, to create a
room in the reference count filter so that the suspended insertion
operation can be completed. Id. at 7:21-26.

When the reference count of a block goes up from zero to one, box 70,
the virtual address of the block is deleted from the reference count filter,
box 72. The deletion operation is necessary because a block with a non-
zero reference count must not stay in the reference count filter. To
accomplish the deletion, first the virtual address of the block with non-
zero reference count (which is guaranteed to exist in the reference count
filter) is searched for in the reference count filter, and then it is deleted.
The delete operation on the reference count filter is implemented by the
delete operation on the underlying hash table implementing the
reference count filter, again as below described. Id. at 7:27-39.

EXHIBIT B-1

Joint Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,695,949 to Thatte et al. (“Thatte”)

As mentioned above, after an insert operation is suspended due to a full
reference count filter, the MMU needs to make a room in the reference
count filter so that the suspended insert operation can be resumed and
completed. The MMU 40 makes the necessary room by performing a
reconciliation operation, box 62. It sends a special command to the CPU
12 called "Dump-pointers," box 64. In response, the CPU 12 sends the
contents of all binding registers that contain pointers (which are virtual
addresses) to the MMU. The set of these pointers is called the "Dumped-
out" set, which is received by the MMU, box 65. The pointers in the
Dumped-out set indicate the block which have references originating at
binding registers. Of course, the size of the dumped-out set cannot
exceed the number of binding registers. The reconciliation operation is
guaranteed to create a room in the reference count filter, as the size of
the reference count filter is greater than the number of binding registers.
Therefore, there must be at least one virtual address in the reference
count filter which is not in any binding register. Id. at 7:40-60.

The MMU reconciles the state of the reference count filter with the set
of Dumped-out pointers, by executing the following operations. (1)
Each pointer from the dumped-out set is attempted to be located by the
MMU within the virtual address contained in the reference count filter,
box 67. If the pointer exists in the reference count filter, the MMU
marks the pointer in the reference count filter, box 68. The pointers in
the reference count filter, thus marked, indicate blocks that are still
accessible and hence are not garbage. All unmarked pointers in the
reference count filter, therefore, indicate garbage blocks. (2) The
unmarked pointers are evacuated from the reference count filter and
stored in another data structure, called the "garbage buffer" (not shown),
box 69, which essentially holds pointers to garbage blocks. A

EXHIBIT B-1

Joint Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,695,949 to Thatte et al. (“Thatte”)

background process not described herein in the MMU operates on the
garbage buffer to reclaim the garbage blocks. As soon as the unmarked
pointers are evacuated from the reference count filter to the garbage
buffer, the reconciliation operation on the reference count filter is over,
and the regular operation is resumed. As a result of the reconciliation
operation, the state of the reference count filter has been reconciled with
the state of binding registers, and pointers to all garbage blocks have
been evacuated from the reference count filter. Id. at 7:61-8:18.

 [7d] inserting, retrieving
or deleting one of the
records from the system
following the step of
removing.

Thatte discloses inserting, retrieving or deleting one of the records from the
system following the step of removing.

For example, following the reconciliation operation 62 the next step is to
insert the virtual address of the block in the reference count filter 51. Id. at
7:21-26, 7:40-8:18, Figure 7.

4. The method according
to claim 3 further
including the step of
dynamically determining
maximum number of
expired ones of the
records to remove when
the linked list is accessed.

8. The method according
to claim 7 further
including the step of
dynamically determining
maximum number of
expired ones of the
records to remove when
the linked list is accessed.

Thatte discloses dynamically determining maximum number of expired ones
of the records to remove when the linked list is accessed.

For example, Thatte discloses a reconciliation operation that is only
performed if the reference counter is full. Id. This dynamic decision is
clearly shown at 60 of Figure 6. Id.

If the reference counter is not full, then Thatte dynamically determines that
the maximum number of records to delete is zero. Id. If the reference
counter is full, then Thatte dynamically determines that the maximum
number of records to delete is all of the garbage in reference count filter. Id.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Thatte to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art

EXHIBIT B-1

Joint Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,695,949 to Thatte et al. (“Thatte”)

that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One
of ordinary skill in the art would have been motivated to combine the system
disclosed in Thatte with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an
accessed linked list of records to solve a number of potential problems. For
example, the removal of expired records described in Thatte can be
burdensome on the system, adding to the system’s load and slowing down
the system’s processing. Moreover, the removal could also force an
interruption in real-time processing as the processing waits for the removal
to complete. Indeed, part of the motivation for the system disclosed in
Thatte is avoiding these problems. One of ordinary skill in the art would
have known that dynamically determining the maximum number to remove
would limit the burden on the system and bound the length of any real-time
interruption to prevent delays in processing. Indeed, Nemes concedes that
such dynamic determination was obvious when he states in the ‘120 patent
that “[a] person skilled in the art will appreciate that the technique of
removing all expired records while searching the linked list can be expanded
to include techniques whereby not necessarily all expired records are
removed, and that the decision regarding if and how many records to delete
can be a dynamic one.” ‘120 at 7:10-15.

Alternatively, Thatte combined with Dirks discloses the step of dynamically
determining maximum number of expired ones of the records to remove
when the linked list is accessed

For example, Dirks discloses the management of memory in a computer
system and more particularly to the allocation of address space in a virtual
memory system, which dynamically determines how many records to
sweep/remove upon each allocation. Disclosure of these claim elements in

EXHIBIT B-1

Joint Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,695,949 to Thatte et al. (“Thatte”)

Dirks is clearly shown in Exhibit B-2, which is hereby incorporated by
reference in its entirety.

As summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to
determine whether they have become inactive, by checking them against
the VSIDs on the recycle list. Each entry which is identified as being
inactive is removed from the page table. After all of the entries in the
page table have been examined in this manner, the VSIDs in the recycle
list can be transferred to the free list, since all of their associated page
table entries will have been removed. This approach thereby guarantees
that a predetermined number of VSIDs are always available in the free
list without requiring a time-consuming scan of the complete page table
at once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is
done by checking whether the inactive list is full, i.e. whether it
contains x entries (Step 22). If the number of entries I on the inactive
list is less than x, no further action is taken, and processing control
returns to the operating system (Step 24). If, however, the inactive list
is full at this time, the flag RFLG is set (Step 26), the VSIDs on the
inactive list are transferred to the recycle list, and an index n is reset to
1 (Step 28). The system then sweeps a predetermined number of page
table entries PTi on the page table, to detect whether any of them are
inactive, i.e. their associated VSID is on the recycle list (Step 30). The

EXHIBIT B-1

Joint Invalidity Contentions & Production of
Documents

35 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,695,949 to Thatte et al. (“Thatte”)

predetermined number of entries that are swept is identified as k,
where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number
of entries to be examined during each step of the sweeping process. Id. at
7:37-40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only
criterion is that the number of entries examined on each step be such that
all entries in the page table are examined in a determinable amount of time
or by the occurrence of a certain event, e.g. by the time the list of free
VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Thatte and Dirks relate to memory management systems and
deletion of aged records upon the allocation of a new incoming record, one
of ordinary skill in the art would have understood how to use Dirks’ dynamic
decision making process of determining the maximum number of records to
sweep/remove in other memory management systems such as Thatte.
Moreover, one of ordinary skill in the art would recognize that it would
improve similar systems and methods in the same way. As the ’120 patent

EXHIBIT B-1

Joint Invalidity Contentions & Production of
Documents

36 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,695,949 to Thatte et al. (“Thatte”)

states “[a] person skilled in the art will appreciate that the technique of
removing all expired records while searching the linked list can be expanded
to include techniques whereby not necessarily all expired records are
removed, and that the decision regarding if and how many records to delete
can be a dynamic one.” The ’120 patent at 7:10-15. Additionally, one of
ordinary skill in the art would recognize that the result of combining Dirks’
deletion decision procedure with Thatte’s memory management technique
would be nothing more than the predictable use of prior art elements
according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Thatte’s method of
memory management and would have seen the benefits of doing so. For
example, Thatte notes that because “the CPU is stopped during the
reconciliation operation” there could be “performance degradation” and “it is
desirable to reduce the time for reconciliation as much as possible.” See
Thatte, col. 8:19-22. One of ordinary skill in the art would have recognized
that Dirks’ method of dynamically determining a maximum number of
entries to examine could achieve this goal of limiting the performance
degradation in Thatte’s method.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Thatte in combination with Dirks, it is disclosed
by Linux 2.0.1, which describes dynamically determining maximum number
of expired ones of the records to remove when the linked list is accessed. It
would have been obvious to combine Linux 2.0.1 with Thatte. For example,
both Linux 2.0.1 and Thatte describe systems and methods for performing
data storage and retrieval using known programming techniques to yield a
predictable result.

EXHIBIT B-1

Joint Invalidity Contentions & Production of
Documents

37 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,695,949 to Thatte et al. (“Thatte”)

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the
function rt_cache_add decrements the variable rt_cache_size. See
Linux 2.0.1, route.c at line 1373. Thus, the variable rt_cache_size
indicates the number of records in the hash table (i.e.,
ip_rt_hash_table). Because the function rt_cache_add
automatically increments and decrements the variable rt_cache_size,
the variable rt_cache_size is determined dynamically.

Furthermore, LINUX 2.0.1 includes the function
rt_garbage_collect_1. The function rt_garbage_collect_1
loops through each of the linked lists in the ip_rt_hash_table global
variable. See Linux 2.0.1, route.c at lines 1122-1138. In this way, the
function rt_garbage_collect_1 accesses the linked list. When the
function rt_garbage_collect_1 identifies a record that is expired, the
function rt_garbage_collect_1 decrements the variable
rt_cache_size and frees the record. See Linux 2.0.1, route.c at lines
1128-1135.

Because all records in the linked list can be expired and all records in the
hash table can be in the linked list, the variable rt_cache_size can
represent a dynamically determined maximum number of expired ones of the
records to remove when function rt_garbage_collect_1 accesses the
linked list.

Furthermore, the function rt_cache_add determines whether the number
of records in the hash table exceeds a predetermined threshold

EXHIBIT B-1

Joint Invalidity Contentions & Production of
Documents

38 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,695,949 to Thatte et al. (“Thatte”)

RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at
each record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131.
For each record in a linked list, the function rt_garbage_collect_1
determines whether the record’s last use time plus the record’s expiration
factor is later than the current time. See Linux 2.0.1, route.c at line 1122. If
the record’s last use time plus the record’s expiration factor is less than the
current time, the function rt_garbage_collect_1 removes the record
from the linked list. See Linux 2.0.1, route.c at lines 1124-1130. The
record’s expiration factor is based on a variable expire and the record’s
reference count. See Linux 2.0.1, route.c at line 1122. The variable expire is
initially one half of the fixed timeout value RT_CACHE_TIMEOUT. See
Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of
records in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the
number of items in the hash table is still greater than the predetermined
threshold RT_CACHE_SIZE_MAX, the function

EXHIBIT B-1

Joint Invalidity Contentions & Production of
Documents

39 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,695,949 to Thatte et al. (“Thatte”)

rt_garbage_collect_1 halves the variable expire and loops
through each of the linked lists in the hash table. See Linux 2.0.1, route.c at
line 1135. In this way, the function rt_garbage_collect_1 can
remove additional records from the linked lists in the hash table. The
function rt_garbage_collect_1 repeats this process until the total
number of records in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list
when the record’s last use time plus the fixed timeout value
RT_CACHE_TIMEOUT is less than the current time and the record’s
reference count is zero. See Linux 2.0.1, route.c at line 1369. Thus, the
maximum number of records that the function rt_cache_add can remove
from a given linked list is limited to those records whose reference counts
are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function

EXHIBIT B-1

Joint Invalidity Contentions & Production of
Documents

40 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,695,949 to Thatte et al. (“Thatte”)

rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, Dirks discloses an information
storage and retrieval system.

For example, Dirks discloses “the management of memory in a computer
system, and more particularly to the allocation of address space in a virtual
memory system for a computer.” Dirks, “Method for Allocation of Address
Space In A Virtual Memory System.” U.S. Patent No. 6,119,214 (issued Sept.
12, 2000) at 1:5-8.

In virtual memory technology,

the addresses that are assigned for use by individual programs are
distinct from the actual physical addresses of the main memory. The
addresses which are allocated to the programs are often referred to as
“logical” or “virtual” or “effective” addresses, to distinguish them
from the “physical” addresses of the main memory. Whenever a
program requires access to memory, it makes a call to a logical address
within its assigned address space. A memory manager associates this
logical address with a physical address in the main memory, where the
information called for by the program is actually stored. The
identification of each physical address that corresponds to a logical
address is commonly stored in a data structure known as a page table.
This term is derived from the practice of dividing the memory into
individually addressable blocks known as “pages.” Id. at 1:33-50.

The relationship between the virtual address, page table, and physical
address is shown in Figure 3 reproduced below. Id. at Figure 3.

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

Id.

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

Dirks discloses a linked list to store and provide access to records stored in a
memory of the system, at least some of the records automatically expiring.
Dirks also discloses a hashing means to provide access to records stored in a
memory of the system and using an external chaining technique to store the
records with same hash address, at least some of the records automatically
expiring.

For example, the virtual segment identifiers (VSID) are stored in the page table
by use of a hashing function. Id. at 5:10-31. “Through the use of the hashing
function, the page table entries are efficiently distributed within the page

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

table.” Id. at 5:25-27.

For example, Dirks inherently discloses that page table entry groups, which are
comprised of page table entries, are stored in a linked list. See id. at 9:32-46.

For example, in some page tables, a suitable number of entries are
grouped together, and the addressing of entries is done by groups. In
other words, the page table address PTA that results from the operation
of the hashing function is the physical address of a page table entry
group. Whenever a call is made to a particular virtual address, the
individual page table entries within an addressed group are then
checked, one by one, to determine whether they correspond to the virtual
address that generated a page table search. Thus, it can be seen that it
takes longer to locate an entry that resides in the last position in the
group, relative to an entry in the first position in the group. Id at 9:36-
46.

Because each page table entry stored in a page table entry group has the same
hash address, the page table entries are being stored in a linked list; such an
inherent characteristic necessarily flows from the teachings of the applied
prior art. See id.

To the extent that Bedrock argues that Dirks does not anticipate Claims 1 – 8
because the page table entry groups are not inherently stored in a linked list, it
would have been obvious to one of ordinary skill in the art to store the page
table entries of a page table group in a linked list. The admitted prior art in the
background of the ’120 patent discloses that linked lists/external chaining were
already common place to resolve collisions within hash tables. The ’120 patent

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

at 1:34-2:6. Thus, Dirks and the admitted prior art of the ’120 patent show that
one of ordinary skill in the art understood how to use linked lists/external
chaining to resolve collisions within hash tables, and would recognize that it
would improve similar systems and methods in the same way.

Moreover, as shown in Figure 3 of Morris, it was well known in the prior art to
have page tables entries distributed by a hash function, such as those in Dirks,
and then store the page table entries in a hash table using linked lists or
external chaining. U.S. Pat. No. 5,724,538 to Morris et al. (“Morris”) at 3:54-
4:24, Figure 3.

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

 Id. at Figure 3.

As described by Morris:

FIG. 3 illustrates the process of retrieving the physical page
information given the virtual page number as would be required
to update the TLB after a TLB miss. As described above, the
virtual to physical mappings are maintained in a page table. For
translating a given virtual address to a physical address, one

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

approach is to perform a many-to-one function (hash) on the
virtual address to form an index into the page table. This gives a
pointer to a linked list of entries. These entries are then searched
for a match. To determine a match, the virtual page number is
compared to an entry in the page table (virtual tag). If the two
are equal, that page table entry provides the physical address
translation. Id. at 3:54-65.

In the example illustrated, a hash function 301 is performed on
the virtual page number 203 to form an index. This index is an
offset into the page table 303. As shown, the index is 0, that is,
the index points to the first entry 305 in the page table. Each
entry in the page table consists of multiple parts but typically
contains at least a virtual tag 307, a physical page 309 and a
pointer 311. If the virtual page number 203 equals the virtual
tag 307, then physical page 309 gives the physical (real)
memory page address desired. If the virtual tag does not match,
then the pointer 311 points to a chain of entries in memory
which contain virtual to physical translation information. The
additional information contained in the chain is needed as more
than one virtual page number can hash to the same page table
entry. Id. at 3:66-4:12.

As shown, pointer 311 points to a chain segment 313. This
chain segment contains the same type of information as the
page table. As before, the virtual page number 203 is compared
to the next virtual tag 315 to see if there is a match. If a match
occurs then the associated physical page 317 gives the address

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

of the physical memory page desired. If a match does not occur,
then the pointer 319 is examined to locate the next chain
segment, if any. If the pointer 319 does not point to another
chain segment, as shown, then a page fault has occurred. A page
fault software program is then used, as described in association
with FIG. 1, to update the page table. Id. at 4:12-24.

As both Dirks and Morris disclose systems and methods for allocating memory
address controls using page table entries that are stored in hash tables, one of
ordinary skill in the art would have understood how to combine the hashed
page table with linked lists taught in Morris with Dirks. Moreover, one of
ordinary skill in the art would recognize that it would improve similar systems
and methods in the same way. Additionally, one of ordinary skill in the art
would recognize that the result of combining Dirks with Morris would be
nothing more than the predictable use of prior art elements according to their
established functions. The result would simply be Dirks’ page table being
implemented with a hashing function using linked lists/external chaining.

By way of further example, one of ordinary skill in the art would have
combined linked lists as taught by these references and understood by one of
ordinary skill in the art to the system disclosed in the admitted prior art, and
would have seen the benefits of doing so. One possible benefit, for example, is
hash table collision resolution.

Dirks discloses VSIDs that automatically expire. Dirks at 6:24-30.

At some point in time, the VSID becomes inactive. This can occur, for
example, when a thread terminates. In the inactive state, pages within the

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

virtual address range of the VSID are still mapped to the page table.
However, the data contained in the associated pages of physical memory is
no longer being accessed by the CPU. Id.

Thus, the VSIDs are expired or obsolete. Id.

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of
records having the same
hash address,

Dirks discloses a record search means utilizing a search key to access the
linked list. Dirks also discloses a record search means utilizing a search key to
access a linked list of records having the same hash address.

For example, Dirks discloses hash table search means such as searching,
creation, deletion, and sweeping. Id. at 5:31-47, 5:66-6:15, 5:39-44, 9:39-47.

Whenever a call is made to a particular virtual address, the individual page
table entries within an addressed group are then checked, one by one, to
determine whether they correspond to the virtual address that generated a
page table search. Thus, it can be seen that it takes longer to locate an
entry that resides in the last position in the group, relative to an entry in
the first position in the group. Id. at 9:39-47.

For example, Dirks inherently discloses that page table entry groups, which are
comprised of page table entries, are stored in a linked list. See id. at 9:32-46.

For example, in some page tables, a suitable number of entries are
grouped together, and the addressing of entries is done by groups. In
other words, the page table address PTA that results from the operation
of the hashing function is the physical address of a page table entry
group. Whenever a call is made to a particular virtual address, the

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

individual page table entries within an addressed group are then
checked, one by one, to determine whether they correspond to the virtual
address that generated a page table search. Thus, it can be seen that it
takes longer to locate an entry that resides in the last position in the
group, relative to an entry in the first position in the group. Id.

Because each page table entry stored in a page table entry group has the same
hash address, the page table entries are being stored in a linked list; such an
inherent characteristic necessarily flows from the teachings of the applied
prior art. See id.

To the extent that Bedrock argues that Dirks does not anticipate Claims 1 – 8
because the page table entry groups are not inherently stored in a linked list, it
would have been obvious to one of ordinary skill in the art to store the page
table entries of a page table group in a linked list. The admitted prior art in the
background of the ’120 patent discloses that linked lists/external chaining were
already common place to resolve collisions within hash tables. The ’120 patent
at 1:34-2:6. Thus, Dirks and the admitted prior art of the ’120 patent show that
one of ordinary skill in the art understood how to use linked lists/external
chaining to resolve collisions within hash tables, and would recognize that it
would improve similar systems and methods in the same way.

Moreover, as shown in Figure 3 of Morris, it was well known in the prior art to
have page tables entries distributed by a hash function, such as those in Dirks,
and then store the page table entries in a hash table using linked lists or
external chaining. Morris at 3:54-4:24, Figure 3.

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

Id. at Figure 3.

As described by Morris:

FIG. 3 illustrates the process of retrieving the physical page
information given the virtual page number as would be required
to update the TLB after a TLB miss. As described above, the
virtual to physical mappings are maintained in a page table. For
translating a given virtual address to a physical address, one

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

approach is to perform a many-to-one function (hash) on the
virtual address to form an index into the page table. This gives a
pointer to a linked list of entries. These entries are then searched
for a match. To determine a match, the virtual page number is
compared to an entry in the page table (virtual tag). If the two
are equal, that page table entry provides the physical address
translation. Id. at 3:54-65.

In the example illustrated, a hash function 301 is performed on
the virtual page number 203 to form an index. This index is an
offset into the page table 303. As shown, the index is 0, that is,
the index points to the first entry 305 in the page table. Each
entry in the page table consists of multiple parts but typically
contains at least a virtual tag 307, a physical page 309 and a
pointer 311. If the virtual page number 203 equals the virtual
tag 307, then physical page 309 gives the physical (real)
memory page address desired. If the virtual tag does not match,
then the pointer 311 points to a chain of entries in memory
which contain virtual to physical translation information. The
additional information contained in the chain is needed as more
than one virtual page number can hash to the same page table
entry. Id. at 3:66-4:12.

As shown, pointer 311 points to a chain segment 313. This
chain segment contains the same type of information as the
page table. As before, the virtual page number 203 is compared
to the next virtual tag 315 to see if there is a match. If a match
occurs then the associated physical page 317 gives the address

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

of the physical memory page desired. If a match does not occur,
then the pointer 319 is examined to locate the next chain
segment, if any. If the pointer 319 does not point to another
chain segment, as shown, then a page fault has occurred. A page
fault software program is then used, as described in association
with FIG. 1, to update the page table. Id. at 4:12-24.

As both Dirks and Morris disclose systems and methods for allocating memory
address controls using page table entries that are stored in hash tables, one of
ordinary skill in the art would have understood how to combine the hashed
page table with linked lists taught in Morris with Dirks. Moreover, one of
ordinary skill in the art would recognize that it would improve similar systems
and methods in the same way. Additionally, one of ordinary skill in the art
would recognize that the result of combining Dirks with Morris would be
nothing more than the predictable use of prior art elements according to their
established functions. The result would simply be Dirks’ page table being
implemented with a hashing function using linked lists/external chaining.

By way of further example, one of ordinary skill in the art would have
combined linked lists as taught by these references and understood by one of
ordinary skill in the art to the system disclosed in the admitted prior art, and
would have seen the benefits of doing so. One possible benefit, for example, is
hash table collision resolution.

[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the

Dirks discloses the record search means including a means for identifying and
removing at least some of the expired ones of the records from the linked list
when the linked list is accessed. Dirks also discloses the record search means
including means for identifying and removing at least some expired ones of the
records from the linked list of records when the linked list is accessed.

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

records from the linked list
when the linked list is
accessed, and

linked list of records when
the linked list is accessed,
and

For example, as discussed above at some point VSIDs become inactive. Dirks
at 6:24-30. These expired or inactive VSIDs are not removed “in one colossal
step, for example after all of the free VSIDs have been allocated. Rather, the
sweeping is carried out in an incremental, ongoing manner to avoid significant
interruptions in the running of programs.” Id. at 6:39-44. “More specifically,
each time that a new range of addresses is allocated to a program, a limited
number of entries in the page table are examined, to determine whether the
addresses associated with those entries are no longer in use and the entries can
be removed from the page table.”Id. at 3:14-18. Moreover, Dirks similarly
teaches that a limited number of entries can be examined each time a thread is
deleted. Id. at 10:23-24.

A flowchart which depicts the operation of the address allocation portion
of a memory manager, in accordance with the present invention, is
illustrated in FIG. 6. Referring thereto, operation begins when a request
for address space is generated (Step 10). This can occur when a thread is
created, for example. In response thereto, the operating system checks the
free list to determine whether a free VSID is available (Step 12). If so, a
free VSID is allocated to the thread that generated the request (Step 14). In
the case of an application, two or more VSIDs might be assigned. If no
free VSID is available at Step 12, a failure status is returned (Step 18). In
practice, however, such a situation should not occur, since the process of
the present invention ensures that free VSIDs are always available. Id. at
7:66-8:12.

After the new VSID has been allocated, the system checks a flag RFLG to
determine whether a recycle sweep is currently in progress (Step 20). If

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this time,
the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where

 Id. at 8:12-30.
“[If for example], k=10000/500=20. For a given value of the index n,
therefore, the system sweeps table entries PTk(n-1) to PT(n)-1. Thus, during the
first sweep, table entries PT0 to PT19 are examined in the example given
above.” Id. at 8:34-37.

“If a recycling sweep is already in progress, i.e. the response is affirmative at
Step 20, the index n is incremented (Step 32) and a sweep of the next k
entries is carried out. Thus, where n=2, entries PT[20] to PT39 will be
examined.” Id. at 8:38-41.

The process continues in this manner, with k entries in the page table

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

being examined each time a free VSID is allocated. Each entry is
examined to determine whether it contains a mapping for a VSID on the
recycle list. If it does, that entry is removed from the page table. Id. at
8:42-46.

After each sweep, the system determines whether all entries in the page
table have been checked (Step 36). This situation will occur when n=x.
Once all of the entries have been examined, the VSIDs in the recycle list
are transferred to the free list (Step 38), yielding x new VSIDs that are
available to be allocated. In addition, the recycle sweep flag RFLG is
reset, and control is then returned to the program. If all of the entries in the
page table have not yet been checked, i.e. the response is negative at Step
36, control is directly returned to the application program, at Step 24. Id.
at 8:47-56.

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

Id. at Figure 6.

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

Dirks discloses means, utilizing the record search means, for accessing the
linked list and, at the same time, removing at least some of the expired ones of
the records in the linked list. Dirks also discloses utilizing the record search
means, for inserting, retrieving, and deleting records from the system and, at
the same time, removing at least some expired ones of the records in the
accessed linked list of records.

For example, as discussed above at some point VSIDs become inactive. Id. at
6:24-30. These expired or inactive VSIDs are not removed “in one colossal
step, for example after all of the free VSIDs have been allocated. Rather, the
sweeping is carried out in an incremental, ongoing manner to avoid significant
interruptions in the running of programs.” Id. at 6:39-44. “More specifically,
each time that a new range of addresses is allocated to a program, a limited
number of entries in the page table are examined, to determine whether the
addresses associated with those entries are no longer in use and the entries can
be removed from the page table.” Id. at 3:14-18. Moreover, Dirks similarly
teaches that a limited number of entries can be examined each time a thread is
deleted. Id. at 10:23-24.

A flowchart which depicts the operation of the address allocation portion
of a memory manager, in accordance with the present invention, is
illustrated in FIG. 6. Referring thereto, operation begins when a request
for address space is generated (Step 10). This can occur when a thread is
created, for example. In response thereto, the operating system checks the
free list to determine whether a free VSID is available (Step 12). If so, a
free VSID is allocated to the thread that generated the request (Step 14). In
the case of an application, two or more VSIDs might be assigned. If no
free VSID is available at Step 12, a failure status is returned (Step 18). In

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

practice, however, such a situation should not occur, since the process of
the present invention ensures that free VSIDs are always available. Id. at
7:66-8:12.

After the new VSID has been allocated, the system checks a flag RFLG to
determine whether a recycle sweep is currently in progress (Step 20). If
there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this time,
the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where

 Id. at 8:12-30.
“[If for example], k=10000/500=20. For a given value of the index n,
therefore, the system sweeps table entries PTk(n-1) to PT(n)-1. Thus, during the
first sweep, table entries PT0 to PT19 are examined in the example given
above.” Id. at 8:34-37.

“If a recycling sweep is already in progress, i.e. the response is affirmative at

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

Step 20, the index n is incremented (Step 32) and a sweep of the next k
entries is carried out. Thus, where n=2, entries PT20 to PT39 will be
examined.” Id. at 8:38-41.

The process continues in this manner, with k entries in the page table
being examined each time a free VSID is allocated. Each entry is
examined to determine whether it contains a mapping for a VSID on the
recycle list. If it does, that entry is removed from the page table. Id. at
8:42-46.

After each sweep, the system determines whether all entries in the page
table have been checked (Step 36). This situation will occur when n=x.
Once all of the entries have been examined, the VSIDs in the recycle list
are transferred to the free list (Step 38), yielding x new VSIDs that are
available to be allocated. In addition, the recycle sweep flag RFLG is
reset, and control is then returned to the program. If all of the entries in the
page table have not yet been checked, i.e. the response is negative at Step
36, control is directly returned to the application program, at Step 24. Id.
at 8:47-56.

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

Id. at Figure 6.

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

2. The information storage
and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

6. The information storage
and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

Dirks discloses the information storage and retrieval system according to claim
5 further including means for dynamically determining maximum number for
the record search means to remove in the accessed linked list of records.

For example, “each time that a new range of addresses is allocated to a
program, a limited number of entries in the page table are examined, to
determine whether the addresses associated with those entries are no longer in
use and the entries can be removed from the page table.” Id. at 3:14-18. “Thus,
rather than halting the operation of the computer for a considerable period of
time to scan the entire page table when a logical address area is deleted, the
memory manager of the present invention carries out a limited, time-bounded
examination upon each address allocation.” Id. at 3:25-29 Moreover, Dirks
similarly teaches that a limited number of entries can be examined each time a
thread is deleted. Id. at 10:23-24.

In operation,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to
determine whether they have become inactive, by checking them against
the VSIDs on the recycle list. Each entry which is identified as being
inactive is removed from the page table. After all of the entries in the page
table have been examined in this manner, the VSIDs in the recycle list can
be transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. Id. at 7:2-14.

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

 Id. at Figure 6.

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

As shown in Figure 6,

After the new VSID has been allocated, the system checks a flag RFLG to
determine whether a recycle sweep is currently in progress (Step 20). If
there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this time,
the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-37, 7:66-8:56.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Dirks to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in Dirks
with the fundamental concept of dynamically determining the maximum
number of expired records to remove in an accessed linked list of records to
solve a number of potential problems. For example, the removal of expired
records described in Dirks can be burdensome on the system, adding to the
system’s load and slowing down the system’s processing. Moreover, the
removal could also force an interruption in real-time processing as the
processing waits for the removal to complete. Indeed, part of the motivation
for the system disclosed in Dirks is avoiding these problems. One of ordinary
skill in the art would have known that dynamically determining the maximum
number to remove would limit the burden on the system and bound the length
of any real-time interruption to prevent delays in processing. Indeed, Nemes
concedes that such dynamic determination was obvious when he states in the
‘120 patent that “[a] person skilled in the art will appreciate that the technique

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

of removing all expired records while searching the linked list can be expanded
to include techniques whereby not necessarily all expired records are removed,
and that the decision regarding if and how many records to delete can be a
dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Dirks, it is disclosed by Linux 2.0.1, which
describes dynamically determining maximum number of expired ones of the
records to remove when the linked list is accessed. It would have been obvious
to combine Linux 2.0.1 with Dirks. For example, both Linux 2.0.1 and
Dirks describe systems and methods for performing data storage and retrieval
using known programming techniques to yield a predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records

To the extent the preamble is a limitation, Dirks discloses a method for storing
and retrieving information records using a linked list to store and provide
access to the records, at least some of the records automatically expiring.
Dirks also discloses a method for storing and retrieving information records
using a hashing technique to provide access to the records and using an
external chaining technique to store the records with same hash address, at
least some of the records automatically expiring.

For example, Dirks discloses “the management of memory in a computer

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

automatically expiring, the
method comprising the
steps of:

system, and more particularly to the allocation of address space in a virtual
memory system for a computer.” Dirks at 1:5-8. In virtual memory technology,

the addresses that are assigned for use by individual programs are
distinct from the actual physical addresses of the main memory. The
addresses which are allocated to the programs are often referred to as
“logical” or “virtual” or “effective” addresses, to distinguish them
from the “physical” addresses of the main memory. Whenever a
program requires access to memory, it makes a call to a logical address
within its assigned address space. A memory manager associates this
logical address with a physical address in the main memory, where the
information called for by the program is actually stored. The
identification of each physical address that corresponds to a logical
address is commonly stored in a data structure known as a page table.
This term is derived from the practice of dividing the memory into
individually addressable blocks known as “pages”. Id. at 1:33-50.

The relationship between the virtual address, page table, and physical
address is shown in Figure 3 reproduced below. Id. at Figure 3.

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

Id.

The virtual segment identifiers (VSID) are stored in the page table by use of a
hashing function. Id. at 5:10-31. “Through the use of the hashing function, the
page table entries are efficiently distributed within the page table.” Id. at 5:25-
27.

For example, Dirks inherently discloses that page table entry groups, which are
comprised of page table entries, are stored in a linked list. See id. at 9:32-46.

For example, in some page tables, a suitable number of entries are
grouped together, and the addressing of entries is done by groups. In
other words, the page table address PTA that results from the operation

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

of the hashing function is the physical address of a page table entry
group. Whenever a call is made to a particular virtual address, the
individual page table entries within an addressed group are then
checked, one by one, to determine whether they correspond to the virtual
address that generated a page table search. Thus, it can be seen that it
takes longer to locate an entry that resides in the last position in the
group, relative to an entry in the first position in the group. Id. at 9:36-
46.

Because each page table entry stored in a page table entry group has the same
hash address, the page table entries are being stored in a linked list; such an
inherent characteristic necessarily flows from the teachings of the applied
prior art. See id.

To the extent that Bedrock argues that Dirks does not anticipate Claims 1 – 8
because the page table entry groups are not inherently stored in a linked list, it
would have been obvious to one of ordinary skill in the art to store the page
table entries of a page table group in a linked list. The admitted prior art in the
background of the ’120 patent discloses that linked lists/external chaining were
already common place to resolve collisions within hash tables. The ’120 patent
at 1:34-2:6. Thus, Dirks and the admitted prior art of the ’120 patent show that
one of ordinary skill in the art understood how to use linked lists/external
chaining to resolve collisions within hash tables, and would recognize that it
would improve similar systems and methods in the same way.

Moreover, as shown in Figure 3 of Morris, it was well known in the prior art to
have page tables entries distributed by a hash function, such as those in Dirks,
and then store the page table entries in a hash table using linked lists or

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

external chaining. Morris at 3:54-4:24, Figure 3.

 Id. at Figure 3.

As described by Morris:

FIG. 3 illustrates the process of retrieving the physical page
information given the virtual page number as would be required
to update the TLB after a TLB miss. As described above, the
virtual to physical mappings are maintained in a page table. For
translating a given virtual address to a physical address, one

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

approach is to perform a many-to-one function (hash) on the
virtual address to form an index into the page table. This gives a
pointer to a linked list of entries. These entries are then searched
for a match. To determine a match, the virtual page number is
compared to an entry in the page table (virtual tag). If the two
are equal, that page table entry provides the physical address
translation. Id. at 3:54-65.

In the example illustrated, a hash function 301 is performed on
the virtual page number 203 to form an index. This index is an
offset into the page table 303. As shown, the index is 0, that is,
the index points to the first entry 305 in the page table. Each
entry in the page table consists of multiple parts but typically
contains at least a virtual tag 307, a physical page 309 and a
pointer 311. If the virtual page number 203 equals the virtual
tag 307, then physical page 309 gives the physical (real)
memory page address desired. If the virtual tag does not match,
then the pointer 311 points to a chain of entries in memory
which contain virtual to physical translation information. The
additional information contained in the chain is needed as more
than one virtual page number can hash to the same page table
entry. Id. at 3:66-4:12.

As shown, pointer 311 points to a chain segment 313. This
chain segment contains the same type of information as the
page table. As before, the virtual page number 203 is compared
to the next virtual tag 315 to see if there is a match. If a match
occurs then the associated physical page 317 gives the address

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

of the physical memory page desired. If a match does not occur,
then the pointer 319 is examined to locate the next chain
segment, if any. If the pointer 319 does not point to another
chain segment, as shown, then a page fault has occurred. A page
fault software program is then used, as described in association
with FIG. 1, to update the page table. Id. at 4:12-24.

As both Dirks and Morris disclose systems and methods for allocating memory
address controls using page table entries that are stored in hash tables, one of
ordinary skill in the art would have understood how to combine the hashed
page table with linked lists taught in Morris with Dirks. Moreover, one of
ordinary skill in the art would recognize that it would improve similar systems
and methods in the same way. Additionally, one of ordinary skill in the art
would recognize that the result of combining Dirks with Morris would be
nothing more than the predictable use of prior art elements according to their
established functions. The result would simply be Dirks’ page table being
implemented with a hashing function using linked lists/external chaining.

By way of further example, one of ordinary skill in the art would have
combined linked lists as taught by these references and understood by one of
ordinary skill in the art to the system disclosed in the admitted prior art, and
would have seen the benefits of doing so. One possible benefit, for example, is
hash table collision resolution.

Dirks discloses VSIDs that automatically expire. Dirks at 6:24-30.

At some point in time, the VSID becomes inactive. This can occur, for
example, when a thread terminates. In the inactive state, pages within the

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

35 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

virtual address range of the VSID are still mapped to the page table.
However, the data contained in the associated pages of physical memory is
no longer being accessed by the CPU. Id.

Thus, the VSIDs are expired or obsolete. Id.
[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

Dirks discloses accessing a linked list of records. Dirks also discloses
accessing a linked list of records having same hash address.

For example, Dirks inherently discloses that page table entry groups, which are
comprised of page table entries, are stored in a linked list.See id. at 9:32-46.

For example, in some page tables, a suitable number of entries are
grouped together, and the addressing of entries is done by groups. In
other words, the page table address PTA that results from the operation
of the hashing function is the physical address of a page table entry
group. Whenever a call is made to a particular virtual address, the
individual page table entries within an addressed group are then
checked, one by one, to determine whether they correspond to the virtual
address that generated a page table search. Thus, it can be seen that it
takes longer to locate an entry that resides in the last position in the
group, relative to an entry in the first position in the group. Id. at 9:36-
46.

Because each page table entry stored in a page table entry group has the same
hash address, the page table entries are being stored in a linked list; such an
inherent characteristic necessarily flows from the teachings of the applied
prior art. See id.

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

36 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

To the extent that Bedrock argues that Dirks does not anticipate Claims 1 – 8
because the page table entry groups are not inherently stored in a linked list, it
would have been obvious to one of ordinary skill in the art to store the page
table entries of a page table group in a linked list. The admitted prior art in the
background of the ’120 patent discloses that linked lists/external chaining were
already common place to resolve collisions within hash tables. '120 patent at
1:34-2:6. Thus, Dirks and the admitted prior art of the ’120 patent show that
one of ordinary skill in the art understood how to use linked lists/external
chaining to resolve collisions within hash tables, and would recognize that it
would improve similar systems and methods in the same way.

Moreover, as shown in Figure 3 of Morris, it was well known in the prior art to
have page tables entries distributed by a hash function, such as those in Dirks,
and then store the page table entries in a hash table using linked lists or
external chaining. Morris at 3:54-4:24, Figure 3.

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

37 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

Id. at Figure 3.

As described by Morris:

FIG. 3 illustrates the process of retrieving the physical page
information given the virtual page number as would be required
to update the TLB after a TLB miss. As described above, the
virtual to physical mappings are maintained in a page table. For
translating a given virtual address to a physical address, one

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

38 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

approach is to perform a many-to-one function (hash) on the
virtual address to form an index into the page table. This gives a
pointer to a linked list of entries. These entries are then searched
for a match. To determine a match, the virtual page number is
compared to an entry in the page table (virtual tag). If the two
are equal, that page table entry provides the physical address
translation. Id. at 3:54-65.

In the example illustrated, a hash function 301 is performed on
the virtual page number 203 to form an index. This index is an
offset into the page table 303. As shown, the index is 0, that is,
the index points to the first entry 305 in the page table. Each
entry in the page table consists of multiple parts but typically
contains at least a virtual tag 307, a physical page 309 and a
pointer 311. If the virtual page number 203 equals the virtual
tag 307, then physical page 309 gives the physical (real)
memory page address desired. If the virtual tag does not match,
then the pointer 311 points to a chain of entries in memory
which contain virtual to physical translation information. The
additional information contained in the chain is needed as more
than one virtual page number can hash to the same page table
entry. Id. at 3:66-4:12.

As shown, pointer 311 points to a chain segment 313. This
chain segment contains the same type of information as the
page table. As before, the virtual page number 203 is compared
to the next virtual tag 315 to see if there is a match. If a match
occurs then the associated physical page 317 gives the address

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

39 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

of the physical memory page desired. If a match does not occur,
then the pointer 319 is examined to locate the next chain
segment, if any. If the pointer 319 does not point to another
chain segment, as shown, then a page fault has occurred. A page
fault software program is then used, as described in association
with FIG. 1, to update the page table. Id. at 4:12-24.

As both Dirks and Morris disclose systems and methods for allocating memory
address controls using page table entries that are stored in hash tables, one of
ordinary skill in the art would have understood how to combine the hashed
page table with linked lists taught in Morris with Dirks. Moreover, one of
ordinary skill in the art would recognize that it would improve similar systems
and methods in the same way. Additionally, one of ordinary skill in the art
would recognize that the result of combining Dirks with Morris would be
nothing more than the predictable use of prior art elements according to their
established functions. The result would simply be Dirks’ page table being
implemented with a hashing function using linked lists/external chaining.

By way of further example, one of ordinary skill in the art would have
combined linked lists as taught by these references and understood by one of
ordinary skill in the art to the system disclosed in the admitted prior art, and
would have seen the benefits of doing so. One possible benefit, for example, is
hash table collision resolution.

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

Dirks discloses identifying at least some of the automatically expired ones of
the records.

For example, Dirks discloses hash table search means such as searching,
creation, deletion, and sweeping. Dirks at 5:31-47, 5:66-6:15, 5:39-44, 9:39-

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

40 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

47.

Whenever a call is made to a particular virtual address, the individual page
table entries within an addressed group are then checked, one by one, to
determine whether they correspond to the virtual address that generated a
page table search. Thus, it can be seen that it takes longer to locate an
entry that resides in the last position in the group, relative to an entry in
the first position in the group. Id. at 9:39-47.

For example, Dirks inherently discloses that page table entry groups, which are
comprised of page table entries, are stored in a linked list. See id. at 9:32-46.

For example, in some page tables, a suitable number of entries are
grouped together, and the addressing of entries is done by groups. In
other words, the page table address PTA that results from the operation
of the hashing function is the physical address of a page table entry
group. Whenever a call is made to a particular virtual address, the
individual page table entries within an addressed group are then
checked, one by one, to determine whether they correspond to the virtual
address that generated a page table search. Thus, it can be seen that it
takes longer to locate an entry that resides in the last position in the
group, relative to an entry in the first position in the group. Id.

Because each page table entry stored in a page table entry group has the same
hash address, the page table entries are being stored in a linked list; such an
inherent characteristic necessarily flows from the teachings of the applied
prior art. See id.

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

41 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

To the extent that Bedrock argues that Dirks does not anticipate Claims 1 – 8
because the page table entry groups are not inherently stored in a linked list, it
would have been obvious to one of ordinary skill in the art to store the page
table entries of a page table group in a linked list. The admitted prior art in the
background of the ’120 patent discloses that linked lists/external chaining were
already common place to resolve collisions within hash tables. The ’120 patent
at 1:34-2:6. Thus, Dirks and the admitted prior art of the ’120 patent show that
one of ordinary skill in the art understood how to use linked lists/external
chaining to resolve collisions within hash tables, and would recognize that it
would improve similar systems and methods in the same way.

Moreover, as shown in Figure 3 of Morris, it was well known in the prior art to
have page tables entries distributed by a hash function, such as those in Dirks,
and then store the page table entries in a hash table using linked lists or
external chaining. Morris at 3:54-4:24, Figure 3.

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

42 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

Id. at Figure 3.

As described by Morris:

FIG. 3 illustrates the process of retrieving the physical page
information given the virtual page number as would be required
to update the TLB after a TLB miss. As described above, the
virtual to physical mappings are maintained in a page table. For
translating a given virtual address to a physical address, one
approach is to perform a many-to-one function (hash) on the
virtual address to form an index into the page table. This gives a

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

43 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

pointer to a linked list of entries. These entries are then searched
for a match. To determine a match, the virtual page number is
compared to an entry in the page table (virtual tag). If the two
are equal, that page table entry provides the physical address
translation. Id. at 3:54-65.

In the example illustrated, a hash function 301 is performed on
the virtual page number 203 to form an index. This index is an
offset into the page table 303. As shown, the index is 0, that is,
the index points to the first entry 305 in the page table. Each
entry in the page table consists of multiple parts but typically
contains at least a virtual tag 307, a physical page 309 and a
pointer 311. If the virtual page number 203 equals the virtual
tag 307, then physical page 309 gives the physical (real)
memory page address desired. If the virtual tag does not match,
then the pointer 311 points to a chain of entries in memory
which contain virtual to physical translation information. The
additional information contained in the chain is needed as more
than one virtual page number can hash to the same page table
entry. Id. at 3:66-4:12.

As shown, pointer 311 points to a chain segment 313. This
chain segment contains the same type of information as the
page table. As before, the virtual page number 203 is compared
to the next virtual tag 315 to see if there is a match. If a match
occurs then the associated physical page 317 gives the address
of the physical memory page desired. If a match does not occur,
then the pointer 319 is examined to locate the next chain

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

44 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

segment, if any. If the pointer 319 does not point to another
chain segment, as shown, then a page fault has occurred. A page
fault software program is then used, as described in association
with FIG. 1, to update the page table. Id. at 4:12-24.

As both Dirks and Morris disclose systems and methods for allocating memory
address controls using page table entries that are stored in hash tables, one of
ordinary skill in the art would have understood how to combine the hashed
page table with linked lists taught in Morris with Dirks. Moreover, one of
ordinary skill in the art would recognize that it would improve similar systems
and methods in the same way. Additionally, one of ordinary skill in the art
would recognize that the result of combining Dirks with Morris would be
nothing more than the predictable use of prior art elements according to their
established functions. The result would simply be Dirks’ page table being
implemented with a hashing function using linked lists/external chaining.

By way of further example, one of ordinary skill in the art would have
combined linked lists as taught by these references and understood by one of
ordinary skill in the art to the system disclosed in the admitted prior art, and
would have seen the benefits of doing so. One possible benefit, for example, is
hash table collision resolution.

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

Dirks discloses removing at least some of the automatically expired records
from the linked list when the linked list is accessed.

For example, as discussed above at some point VSIDs become inactive. Dirks
at 6:24-30. These expired or inactive VSIDs are not removed “in one colossal
step, for example after all of the free VSIDs have been allocated. Rather, the
sweeping is carried out in an incremental, ongoing manner to avoid significant

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

45 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

interruptions in the running of programs.” Id. at 6:39-44. “More specifically,
each time that a new range of addresses is allocated to a program, a limited
number of entries in the page table are examined, to determine whether the
addresses associated with those entries are no longer in use and the entries can
be removed from the page table.” Id. at 3:14-18. Moreover, Dirks similarly
teaches that a limited number of entries can be examined each time a thread is
deleted. Id. at 10:23-24.

A flowchart which depicts the operation of the address allocation portion
of a memory manager, in accordance with the present invention, is
illustrated in FIG. 6. Referring thereto, operation begins when a request
for address space is generated (Step 10). This can occur when a thread is
created, for example. In response thereto, the operating system checks the
free list to determine whether a free VSID is available (Step 12). If so, a
free VSID is allocated to the thread that generated the request (Step 14). In
the case of an application, two or more VSIDs might be assigned. If no
free VSID is available at Step 12, a failure status is returned (Step 18). In
practice, however, such a situation should not occur, since the process of
the present invention ensures that free VSIDs are always available. Id. at
7:66-8:12.

After the new VSID has been allocated, the system checks a flag RFLG to
determine whether a recycle sweep is currently in progress (Step 20). If
there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

46 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

operating system (Step 24). If, however, the inactive list is full at this time,
the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where

 Id. at 8:12-30.

“[If for example], k=10000/500=20. For a given value of the index n,
therefore, the system sweeps table entries PTk(n-1) to PT(n)-1. Thus, during the
first sweep, table entries PT0 to PT19 are examined in the example given
above.” Id. at 8:34-37.

“If a recycling sweep is already in progress, i.e. the response is affirmative at
Step 20, the index n is incremented (Step 32) and a sweep of the next k
entries is carried out. Thus, where n=2, entries PT[20] to PT39 will be
examined.” Id. at 8:38-41.

The process continues in this manner, with k entries in the page table
being examined each time a free VSID is allocated. Each entry is
examined to determine whether it contains a mapping for a VSID on the
recycle list. If it does, that entry is removed from the page table. Id. at
8:42-46.

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

47 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

After each sweep, the system determines whether all entries in the page
table have been checked (Step 36). This situation will occur when n=x.
Once all of the entries have been examined, the VSIDs in the recycle list
are transferred to the free list (Step 38), yielding x new VSIDs that are
available to be allocated. In addition, the recycle sweep flag RFLG is
reset, and control is then returned to the program. If all of the entries in the
page table have not yet been checked, i.e. the response is negative at Step
36, control is directly returned to the application program, at Step 24. Id.
at 8:47-56.

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

48 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

 Id. at Figure 6.

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

49 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

 [7d] inserting, retrieving
or deleting one of the
records from the system
following the step of
removing.

Dirks discloses inserting, retrieving or deleting one of the records from the
system following the step of removing.

For example, as discussed above at some point VSIDs become inactive. Id. at
6:24-30. These expired or inactive VSIDs are not removed “in one colossal
step, for example after all of the free VSIDs have been allocated. Rather, the
sweeping is carried out in an incremental, ongoing manner to avoid significant
interruptions in the running of programs.” Id. at 6:39-44 “More specifically,
each time that a new range of addresses is allocated to a program, a limited
number of entries in the page table are examined, to determine whether the
addresses associated with those entries are no longer in use and the entries can
be removed from the page table.” Id. at 3:14-18. Moreover, Dirks similarly
teaches that a limited number of entries can be examined each time a thread is
deleted. Id. at 10:23-24

A flowchart which depicts the operation of the address allocation portion
of a memory manager, in accordance with the present invention, is
illustrated in FIG. 6. Referring thereto, operation begins when a request
for address space is generated (Step 10). This can occur when a thread is
created, for example. In response thereto, the operating system checks the
free list to determine whether a free VSID is available (Step 12). If so, a
free VSID is allocated to the thread that generated the request (Step 14). In
the case of an application, two or more VSIDs might be assigned. If no
free VSID is available at Step 12, a failure status is returned (Step 18). In
practice, however, such a situation should not occur, since the process of
the present invention ensures that free VSIDs are always available. Id. at
7:66-8:12.

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

50 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

After the new VSID has been allocated, the system checks a flag RFLG to
determine whether a recycle sweep is currently in progress (Step 20). If
there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this time,
the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where

 Id. at 8:12-30.
“[If for example], k=10000/500=20. For a given value of the index n,
therefore, the system sweeps table entries PTk(n-1) to PT(n)-1. Thus, during the
first sweep, table entries PT0 to PT19 are examined in the example given
above.” Id. at 8:34-37.

“If a recycling sweep is already in progress, i.e. the response is affirmative at
Step 20, the index n is incremented (Step 32) and a sweep of the next k
entries is carried out. Thus, where n=2, entries PT20 to PT39 will be
examined.” Id. at 8:38-41.

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

51 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

The process continues in this manner, with k entries in the page table
being examined each time a free VSID is allocated. Each entry is
examined to determine whether it contains a mapping for a VSID on the
recycle list. If it does, that entry is removed from the page table. Id. at
8:42-46.

After each sweep, the system determines whether all entries in the page
table have been checked (Step 36). This situation will occur when n=x.
Once all of the entries have been examined, the VSIDs in the recycle list
are transferred to the free list (Step 38), yielding x new VSIDs that are
available to be allocated. In addition, the recycle sweep flag RFLG is
reset, and control is then returned to the program. If all of the entries in the
page table have not yet been checked, i.e. the response is negative at Step
36, control is directly returned to the application program, at Step 24. Id.
at 8:47-56.

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

52 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

 Id. at Figure 6.

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

53 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

As step 24 returns to the application program, a VSID will be inserted,
searched for, or deleted following the step of removing. Id. at Figure 6, 8:55-
56. For example, after step 24, a VSID will be assigned with the next request
for address 10, which would have followed the step of removing. Id.

4. The method according to
claim 3 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

Dirks discloses dynamically determining maximum number of expired ones of
the records to remove when the linked list is accessed.

For example, “each time that a new range of addresses is allocated to a
program, a limited number of entries in the page table are examined, to
determine whether the addresses associated with those entries are no longer in
use and the entries can be removed from the page table.” Id. at 3:14-18. “Thus,
rather than halting the operation of the computer for a considerable period of
time to scan the entire page table when a logical address area is deleted, the
memory manager of the present invention carries out a limited, time-bounded
examination upon each address allocation.” Id. at 3:25-29. Moreover, Dirks
similarly teaches that a limited number of entries can be examined each time a
thread is deleted. Id. at 10:23-24.

In operation,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to
determine whether they have become inactive, by checking them against
the VSIDs on the recycle list. Each entry which is identified as being
inactive is removed from the page table. After all of the entries in the page
table have been examined in this manner, the VSIDs in the recycle list can
be transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

54 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. Id. at 7:2-14.

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

55 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

Id. at Figure 6.

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

56 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

As shown in Figure 6,

After the new VSID has been allocated, the system checks a flag RFLG to
determine whether a recycle sweep is currently in progress (Step 20). If
there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this time,
the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

57 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Dirks to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in Dirks
with the fundamental concept of dynamically determining the maximum
number of expired records to remove in an accessed linked list of records to
solve a number of potential problems. For example, the removal of expired
records described in Dirks can be burdensome on the system, adding to the
system’s load and slowing down the system’s processing. Moreover, the
removal could also force an interruption in real-time processing as the
processing waits for the removal to complete. Indeed, part of the motivation
for the system disclosed in Dirks is avoiding these problems. One of ordinary
skill in the art would have known that dynamically determining the maximum
number to remove would limit the burden on the system and bound the length
of any real-time interruption to prevent delays in processing. Indeed, Nemes
concedes that such dynamic determination was obvious when he states in the
‘120 patent that “[a] person skilled in the art will appreciate that the technique

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

58 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

of removing all expired records while searching the linked list can be expanded
to include techniques whereby not necessarily all expired records are removed,
and that the decision regarding if and how many records to delete can be a
dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Dirks, it is disclosed by Linux 2.0.1, which
describes dynamically determining maximum number of expired ones of the
records to remove when the linked list is accessed. It would have been obvious
to combine Linux 2.0.1 with Dirks. For example, both Linux 2.0.1 and
Dirks describe systems and methods for performing data storage and retrieval
using known programming techniques to yield a predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

59 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

60 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when

EXHIBIT B-2

Joint Invalidity Contentions & Production of
Documents

61 Case No. 6:09-CV-549-LED

US2008 1661503.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 6,119,214 to Dirks (“Dirks”) alone and in combination
with U.S. Patent No. 5,724,538 to Morris et al. (“Morris”)

the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

EXHIBIT B-3

Joint Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

US2008 1661505.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Mellender et al., “Object-Oriented, Logic, and Database Programming
Tool with Garbage Collection,” U.S. Patent No. 4,989,132 (issued Jan. 29,

1991) (“Mellender”)
1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, Mellender discloses an information
storage and retrieval system.

For example, Mellender discloses that “[a] database residing in the mass
memory stores objects and components of logic programs as objects in a
common data structure format, applications data, and application stored as
compiled interpreter code. The database is managed by an [sic] database
manager that represents objects and components of the logic programming
language in the common data structure format as objects and is responsive to
calls for retrieving and storing objects in the database and for automatically
deleting objects from the database when they have become obsolete.” U.S.
Patent No. 4,989,132 (issued Jan. 29, 1991) at 2:22-33.

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

Mellender discloses a linked list to store and provide access to records stored
in a memory of the system, at least some of the records automatically expiring.
Mellender also discloses a hashing means to provide access to records stored in
a memory of the system and using an external chaining technique to store the
records with same hash address, at least some of the records automatically
expiring.

For example, Mellender discloses that “[a] database residing in the mass
memory stores objects and components of logic programs as objects in a
common data structure format, applications data, and application stored as
compiled interpreter code. The database is managed by an [sic] database
manager that represents objects and components of the logic programming
language in the common data structure format as objects and is responsive to
calls for retrieving and storing objects in the database and for automatically
deleting objects from the database when they have become obsolete.” Id.

EXHIBIT B-3

Joint Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

US2008 1661505.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Mellender et al., “Object-Oriented, Logic, and Database Programming
Tool with Garbage Collection,” U.S. Patent No. 4,989,132 (issued Jan. 29,

1991) (“Mellender”)

Furthermore, Mellender discloses that “[t]he database 40 consists of 2 UNIX
files: db.key and db.prime. The key file provides associative access to the
prime file: the access manager hashes into the key file (all of whose records are
of fixed length), and finds the address (file offset) of the object in the prime
file.” Id. at 54:50-53.

Furthermore, Mellender discloses that “[c]ollisions in the key file are handled
by chaining the objects in the prime file together. If the object at the address
indicated by the key file record does not have an id (oop, or string) that
matches the target sought, the access manager 58 follows the ‘overflow’ chain
in the records in the prime file, checking the target against the id until it is
found. Fastest access to newest objects is provided by placing them first in the
overflow chain.” Id. at 55:20-27.

“If the key entry does exist a collision results. The access manager 58 fetches
the record pointed to by the key, updates the new record’s overflow pointer to
point to the record currently pointed to by the key record, and then updates the
key record to point to the new record being added.” Id. at 56:14-19.

Furthermore, Mellender states that “[g]arbage is defined as objects that are no
longer reachable, and therefore can be safely discarded. Since there is no
explicit delete command available to the programmer in Smalltalk language,
removal of objects is entirely up to the system.” Id. at 59:41-45.

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of

Mellender discloses a record search means utilizing a search key to access the
linked list. Mellender also discloses a record search means utilizing a search
key to access a linked list of records having the same hash address.

EXHIBIT B-3

Joint Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

US2008 1661505.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Mellender et al., “Object-Oriented, Logic, and Database Programming
Tool with Garbage Collection,” U.S. Patent No. 4,989,132 (issued Jan. 29,

1991) (“Mellender”)
records having the same
hash address,

For example, Mellender discloses that “[t]he database 40 consists of 2 UNIX
files: db.key and db.prime. The key file provides associative access to the
prime file: the access manager hashes into the key file (all of whose records are
of fixed length), and finds the address (file offset) of the object in the prime
file.” Id. at 54:50-53

Furthermore, Mellender discloses that “[c]ollisions in the key file are handled
by chaining the objects in the prime file together. If the object at the address
indicated by the key file record does not have an id (oop, or string) that
matches the target sought, the access manager 58 follows the ‘overflow’ chain
in the records in the prime file, checking the target against the id until it is
found. Fastest access to newest objects is provided by placing them first in the
overflow chain.” Id. at 55:20-27.

“If the key entry does exist a collision results. The access manager 58 fetches
the record pointed to by the key, updates the new record’s overflow pointer to
point to the record currently pointed to by the key record, and then updates the
key record to point to the new record being added.” Id. at 56:14-19.

[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the
records from the linked list
when the linked list is
accessed, and

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

Mellender discloses the record search means including a means for identifying
and removing at least some of the expired ones of the records from the linked
list when the linked list is accessed. Mellender also discloses the record search
means including means for identifying and removing at least some expired
ones of the records from the linked list of records when the linked list is
accessed.

For example, Mellender states that “[t]he forceit function will put a record in

EXHIBIT B-3

Joint Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

US2008 1661505.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Mellender et al., “Object-Oriented, Logic, and Database Programming
Tool with Garbage Collection,” U.S. Patent No. 4,989,132 (issued Jan. 29,

1991) (“Mellender”)
the database, but (unlike storeit) checks to see if it is already there. If so, it
logically deletes the old copy and adds the new one. This function is called
when an object is newly created with an oop that already exists (e.g. a Class),
and when an object is lengthened. It uses the storeit function if the new object
is not already in the database, or is smaller than the one it is replacing. Else,
the access manager gets the old object and logically deletes it (by placing a
special mark in the rec_type), and then executes the storeit logic." Id. at 56:22-
32

Furthermore, Mellender discloses that “[m]any (non-reference counting)
garbage collectors do little processing at reference creation time, but wait until
the collector is called in order to clean out a region by moving objects to other
regions. Our collector does most of its work when cross-region instance
variable assignments are made, and when processing Smalltalk ‘return’
statements, which distributes the garbage collection processing evenly
throughout the run. This means that the periods when the system is doing
garbage collection (and is thus unavailable to the user) is spread evenly
throughout the session and there are no long periods of time when the system
is unavailable.” Id. at 62:68-70 – 63:1-9.

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed

Mellender discloses means, utilizing the record search means, for accessing the
linked list and, at the same time, removing at least some of the expired ones of
the records in the linked list. Mellender also discloses utilizing the record
search means, for inserting, retrieving, and deleting records from the system
and, at the same time, removing at least some expired ones of the records in the
accessed linked list of records.

For example, Mellender discloses “[t]he fechit function retrieves an object

EXHIBIT B-3

Joint Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

US2008 1661505.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Mellender et al., “Object-Oriented, Logic, and Database Programming
Tool with Garbage Collection,” U.S. Patent No. 4,989,132 (issued Jan. 29,

1991) (“Mellender”)
linked list of records. from the database 40, given a record type and key. The fetched record is

placed in the buffers …along with the disk address of the retrieved record.
This will be used if/when the record needs to be replaced in the database.” Id.
at 55:61-66.

Furthermore, Mellender discloses that “[t]he storeit function is capable of
adding a new object (or replacing same) in the database . . . If no key entry
exists for the new record, it sets one up and adds the record to the end of the
prime file. If the key entry does exist a collision results. The access manager
58 fetches the record pointed to by the key, updates the new record’s overflow
pointer to point to the record currently pointed to by the key record, and then
updates the key record to point to the new record being added.” Id. at 55:67-70
– 56:1-19.

Furthermore, Mellender states that “[t]he forceit function will put a record in
the database, but (unlike storeit) checks to see if it is already there. If so, it
logically deletes the old copy and adds the new one. This function is called
when an object is newly created with an oop that already exists (e.g. a Class),
and when an object is lengthened. It uses the storeit function if the new object
is not already in the database, or is smaller than the one it is replacing. Else,
the access manager gets the old object and logically deletes it (by placing a
special mark in the rec_type), and then executes the storeit logic." Id. at 56:22-
32.

Furthermore, Mellender discloses that “[m]any (non-reference counting)
garbage collectors do little processing at reference creation time, but wait until
the collector is called in order to clean out a region by moving objects to other
regions. Our collector does most of its work when cross-region instance

EXHIBIT B-3

Joint Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

US2008 1661505.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Mellender et al., “Object-Oriented, Logic, and Database Programming
Tool with Garbage Collection,” U.S. Patent No. 4,989,132 (issued Jan. 29,

1991) (“Mellender”)
variable assignments are made, and when processing Smalltalk ‘return’
statements, which distributes the garbage collection processing evenly
throughout the run. This means that the periods when the system is doing
garbage collection (and is thus unavailable to the user) is spread evenly
throughout the session and there are no long periods of time when the system
is unavailable.” Id. at 62:68-70 – 63:1-9.

2. The information storage
and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

6. The information storage
and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

Mellender discloses an information storage and retrieval system further
including means for dynamically determining maximum number for the record
search means to remove in the accessed linked list of records.

For example, Mellender states that “[t]he forceit function will put a record in
the database, but (unlike storeit) checks to see if it is already there. If so, it
logically deletes the old copy and adds the new one. This function is called
when an object is newly created with an oop that already exists (e.g. a Class),
and when an object is lengthened. It uses the storeit function if the new object
is not already in the database, or is smaller than the one it is replacing. Else,
the access manager gets the old object and logically deletes it (by placing a
special mark in the rec_type), and then executes the storeit logic." Id. at 56:22-
32.

In summary, if no old copy of the new record exists or the new record is
smaller than the one it is replacing, the forceit function calls the storeit
function to add the new object and no deletion takes place. If an old copy of
the new record does exist, the access manager deletes the old copy and then
executes the storeit function to store the new record. Therefore, the
determination of when to delete a record is dynamically determined by whether
an old copy of the record exists or when the new record is smaller than the one

EXHIBIT B-3

Joint Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

US2008 1661505.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Mellender et al., “Object-Oriented, Logic, and Database Programming
Tool with Garbage Collection,” U.S. Patent No. 4,989,132 (issued Jan. 29,

1991) (“Mellender”)
it is replacing. Id.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Mellender to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Mellender with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in Mellender can be burdensome on
the system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete. Indeed,
part of the motivation for the system disclosed in Mellender is avoiding these
problems. One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired

EXHIBIT B-3

Joint Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

US2008 1661505.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Mellender et al., “Object-Oriented, Logic, and Database Programming
Tool with Garbage Collection,” U.S. Patent No. 4,989,132 (issued Jan. 29,

1991) (“Mellender”)
records is not disclosed by Mellender, Mellender combined with Dirks, Thatte,
the ’663 patent and/or the Opportunistic Garbage Collection Articles discloses
an information storage and retrieval system further including means for
dynamically determining maximum number for the record search means to
remove in the accessed linked list of records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).

EXHIBIT B-3

Joint Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

US2008 1661505.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Mellender et al., “Object-Oriented, Logic, and Database Programming
Tool with Garbage Collection,” U.S. Patent No. 4,989,132 (issued Jan. 29,

1991) (“Mellender”)
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

EXHIBIT B-3

Joint Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

US2008 1661505.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Mellender et al., “Object-Oriented, Logic, and Database Programming
Tool with Garbage Collection,” U.S. Patent No. 4,989,132 (issued Jan. 29,

1991) (“Mellender”)

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Mellender and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as Mellender. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Mellender nothing more
than the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Mellender and would
have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Mellender with the means

EXHIBIT B-3

Joint Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

US2008 1661505.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Mellender et al., “Object-Oriented, Logic, and Database Programming
Tool with Garbage Collection,” U.S. Patent No. 4,989,132 (issued Jan. 29,

1991) (“Mellender”)
for dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. For example,
Thatte discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, as both Mellender and Thatte teach a system of data
storage and retrieval, one of ordinary skill in the art would recognize that the
result of combining Mellender with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove as taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine
Mellender with Thatte and recognize the benefits of doing so. For example,
the removal of expired records described in Mellender can be burdensome on
the system, adding to the system’s load and slowing down the system’s
processing. One of ordinary skill in the art would recognize that combining
Mellender with the teachings of Thatte would solve this problem by
dynamically determining how many records to delete based on, among other
things, the system load. Moreover, the '120 patent discloses that "[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision

EXHIBIT B-3

Joint Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

US2008 1661505.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Mellender et al., “Object-Oriented, Logic, and Database Programming
Tool with Garbage Collection,” U.S. Patent No. 4,989,132 (issued Jan. 29,

1991) (“Mellender”)
regarding if and how many records to delete can be a dynamic one." '120 at
7:10-15. Thus, the '120 patent provides motivations to combine Mellender
with Thatte.

Alternatively, it would also be obvious to combine Mellender with the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating

EXHIBIT B-3

Joint Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

US2008 1661505.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Mellender et al., “Object-Oriented, Logic, and Database Programming
Tool with Garbage Collection,” U.S. Patent No. 4,989,132 (issued Jan. 29,

1991) (“Mellender”)
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

Id. at Figure 5.

EXHIBIT B-3

Joint Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

US2008 1661505.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Mellender et al., “Object-Oriented, Logic, and Database Programming
Tool with Garbage Collection,” U.S. Patent No. 4,989,132 (issued Jan. 29,

1991) (“Mellender”)
During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Mellender and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in Mellender. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.

EXHIBIT B-3

Joint Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

US2008 1661505.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Mellender et al., “Object-Oriented, Logic, and Database Programming
Tool with Garbage Collection,” U.S. Patent No. 4,989,132 (issued Jan. 29,

1991) (“Mellender”)
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with Mellender would
be nothing more than the predictable use of prior art elements according to
their established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Mellender and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Mellender with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the

EXHIBIT B-3

Joint Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

US2008 1661505.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Mellender et al., “Object-Oriented, Logic, and Database Programming
Tool with Garbage Collection,” U.S. Patent No. 4,989,132 (issued Jan. 29,

1991) (“Mellender”)
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Mellender and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table

EXHIBIT B-3

Joint Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

US2008 1661505.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Mellender et al., “Object-Oriented, Logic, and Database Programming
Tool with Garbage Collection,” U.S. Patent No. 4,989,132 (issued Jan. 29,

1991) (“Mellender”)
implementations such as Mellender. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Mellender would be nothing more than the predictable use of
prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Mellender and
would have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Mellender to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Mellender with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed

EXHIBIT B-3

Joint Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

US2008 1661505.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Mellender et al., “Object-Oriented, Logic, and Database Programming
Tool with Garbage Collection,” U.S. Patent No. 4,989,132 (issued Jan. 29,

1991) (“Mellender”)
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in Mellender can be burdensome on
the system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Mellender in combination with Dirks, Thatte, the
‘663 Patent, or the Opportunistic Garbage Collection References, it is
disclosed by Linux 2.0.1, which describes dynamically determining maximum
number of expired ones of the records to remove when the linked list is
accessed. It would have been obvious to combine Linux 2.0.1 with Mellender.
For example, both Linux 2.0.1 and Mellender describe systems and
methods for performing data storage and retrieval using known programming
techniques to yield a predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.

EXHIBIT B-3

Joint Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

US2008 1661505.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Mellender et al., “Object-Oriented, Logic, and Database Programming
Tool with Garbage Collection,” U.S. Patent No. 4,989,132 (issued Jan. 29,

1991) (“Mellender”)
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function

EXHIBIT B-3

Joint Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

US2008 1661505.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Mellender et al., “Object-Oriented, Logic, and Database Programming
Tool with Garbage Collection,” U.S. Patent No. 4,989,132 (issued Jan. 29,

1991) (“Mellender”)
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash

EXHIBIT B-3

Joint Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

US2008 1661505.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Mellender et al., “Object-Oriented, Logic, and Database Programming
Tool with Garbage Collection,” U.S. Patent No. 4,989,132 (issued Jan. 29,

1991) (“Mellender”)
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function

EXHIBIT B-3

Joint Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

US2008 1661505.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Mellender et al., “Object-Oriented, Logic, and Database Programming
Tool with Garbage Collection,” U.S. Patent No. 4,989,132 (issued Jan. 29,

1991) (“Mellender”)
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

To the extent the preamble is a limitation, Mellender discloses a method for
storing and retrieving information records using a linked list to store and
provide access to the records, at least some of the records automatically
expiring. Mellender also discloses a method for storing and retrieving
information records using a hashing technique to provide access to the records
and using an external chaining technique to store the records with same hash
address, at least some of the records automatically expiring.

For example, Mellender discloses that “[a] database residing in the mass
memory stores objects and components of logic programs as objects in a
common data structure format, applications data, and application stored as
compiled interpreter code. The database is managed by an [sic] database
manager that represents objects and components of the logic programming
language in the common data structure format as objects and is responsive to
calls for retrieving and storing objects in the database and for automatically
deleting objects from the database when they have become obsolete.”
Mellender at 2:22-33.

Furthermore, Mellender discloses that “[t]he database 40 consists of 2 UNIX
files: db.key and db.prime. The key file provides associative access to the
prime file: the access manager hashes into the key file (all of whose records are
of fixed length), and finds the address (file offset) of the object in the prime
file.” Id. at 54:50-53.

EXHIBIT B-3

Joint Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

US2008 1661505.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Mellender et al., “Object-Oriented, Logic, and Database Programming
Tool with Garbage Collection,” U.S. Patent No. 4,989,132 (issued Jan. 29,

1991) (“Mellender”)
Furthermore, Mellender discloses that “[c]ollisions in the key file are handled
by chaining the objects in the prime file together. If the object at the address
indicated by the key file record does not have an id (oop, or string) that
matches the target sought, the access manager 58 follows the ‘overflow’ chain
in the records in the prime file, checking the target against the id until it is
found. Fastest access to newest objects is provided by placing them first in the
overflow chain.” Id. at 55:20-27.

“If the key entry does exist a collision results. The access manager 58 fetches
the record pointed to by the key, updates the new record’s overflow pointer to
point to the record currently pointed to by the key record, and then updates the
key record to point to the new record being added.” Id. at 56:14-19.

Furthermore, Mellender states that “[g]arbage is defined as objects that are no
longer reachable, and therefore can be safely discarded. Since there is no
explicit delete command available to the programmer in Smalltalk language,
removal of objects is entirely up to the system.” Id. at 59:41-45.

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

Mellender discloses accessing a linked list of records. Mellender also
discloses accessing a linked list of records having same hash address.

For example, Mellender discloses that “[t]he database 40 consists of 2 UNIX
files: db.key and db.prime. The key file provides associative access to the
prime file: the access manager hashes into the key file (all of whose records are
of fixed length), and finds the address (file offset) of the object in the prime
file.” Id. at 54:50-53.

Furthermore, Mellender discloses that “[c]ollisions in the key file are handled

EXHIBIT B-3

Joint Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

US2008 1661505.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Mellender et al., “Object-Oriented, Logic, and Database Programming
Tool with Garbage Collection,” U.S. Patent No. 4,989,132 (issued Jan. 29,

1991) (“Mellender”)
by chaining the objects in the prime file together. If the object at the address
indicated by the key file record does not have an id (oop, or string) that
matches the target sought, the access manager 58 follows the ‘overflow’ chain
in the records in the prime file, checking the target against the id until it is
found. Fastest access to newest objects is provided by placing them first in the
overflow chain.” Id. at 55:20-27.

“If the key entry does exist a collision results. The access manager 58 fetches
the record pointed to by the key, updates the new record’s overflow pointer to
point to the record currently pointed to by the key record, and then updates the
key record to point to the new record being added.” Id. at 56:14-19.

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

Mellender discloses identifying at least some of the automatically expired ones
of the records.

For example, Mellender discloses that “[a] database residing in the mass
memory stores objects and components of logic programs as objects in a
common data structure format, applications data, and application stored as
compiled interpreter code. The database is managed by an [sic] database
manager that represents objects and components of the logic programming
language in the common data structure format as objects and is responsive to
calls for retrieving and storing objects in the database and for automatically
deleting objects from the database when they have become obsolete.” Id. at
2:22-33.

Furthermore, Mellender states that “[g]arbage is defined as objects that are no
longer reachable, and therefore can be safely discarded. Since there is no
explicit delete command available to the programmer in Smalltalk language,

EXHIBIT B-3

Joint Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

US2008 1661505.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Mellender et al., “Object-Oriented, Logic, and Database Programming
Tool with Garbage Collection,” U.S. Patent No. 4,989,132 (issued Jan. 29,

1991) (“Mellender”)
removal of objects is entirely up to the system.” Id. at 59:41-45.

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

Mellender discloses removing at least some of the automatically expired
records from the linked list when the linked list is accessed.

For example, Mellender states that “[t]he forceit function will put a record in
the database, but (unlike storeit) checks to see if it is already there. If so, it
logically deletes the old copy and adds the new one. This function is called
when an object is newly created with an oop that already exists (e.g. a Class),
and when an object is lengthened. It uses the storeit function if the new object
is not already in the database, or is smaller than the one it is replacing. Else,
the access manager gets the old object and logically deletes it (by placing a
special mark in the rec_type), and then executes the storeit logic." Id. at 56:22-
32.

Furthermore, Mellender discloses that “[m]any (non-reference counting)
garbage collectors do little processing at reference creation time, but wait until
the collector is called in order to clean out a region by moving objects to other
regions. Our collector does most of its work when cross-region instance
variable assignments are made, and when processing Smalltalk ‘return’
statements, which distributes the garbage collection processing evenly
throughout the run. This means that the periods when the system is doing
garbage collection (and is thus unavailable to the user) is spread evenly
throughout the session and there are no long periods of time when the system
is unavailable.” Id. at 62:68-70 – 63:1-9.

 [7d] inserting, retrieving
or deleting one of the

Mellender discloses inserting, retrieving or deleting one of the records from the
system following the step of removing.

EXHIBIT B-3

Joint Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

US2008 1661505.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Mellender et al., “Object-Oriented, Logic, and Database Programming
Tool with Garbage Collection,” U.S. Patent No. 4,989,132 (issued Jan. 29,

1991) (“Mellender”)
records from the system
following the step of
removing.

For example, Mellender discloses “[t]he fechit function retrieves an object
from the database 40, given a record type and key. The fetched record is
placed in the buffers [] along with the disk address of the retrieved record.
This will be used if/when the record needs to be replaced in the database.” Id.
at 55:61-66.

Furthermore, Mellender discloses that “[t]he storeit function is capable of
adding a new object (or replacing same) in the database . . . If no key entry
exists for the new record, it sets one up and adds the record to the end of the
prime file. If the key entry does exist a collision results. The access manager
58 fetches the record pointed to by the key, updates the new record’s overflow
pointer to point to the record currently pointed to by the key record, and then
updates the key record to point to the new record being added.” Id. at 55:67-70
– 56:1-19.

Furthermore, Mellender states that “[t]he forceit function will put a record in
the database, but (unlike storeit) checks to see if it is already there. If so, it
logically deletes the old copy and adds the new one. This function is called
when an object is newly created with an oop that already exists (e.g. a Class),
and when an object is lengthened. It uses the storeit function if the new object
is not already in the database, or is smaller than the one it is replacing. Else,
the access manager gets the old object and logically deletes it (by placing a
special mark in the rec_type), and then executes the storeit logic." Id. at 56:22-
32.

Furthermore, Mellender discloses that “[m]any (non-reference counting)
garbage collectors do little processing at reference creation time, but wait until

EXHIBIT B-3

Joint Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

US2008 1661505.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Mellender et al., “Object-Oriented, Logic, and Database Programming
Tool with Garbage Collection,” U.S. Patent No. 4,989,132 (issued Jan. 29,

1991) (“Mellender”)
the collector is called in order to clean out a region by moving objects to other
regions. Our collector does most of its work when cross-region instance
variable assignments are made, and when processing Smalltalk ‘return’
statements, which distributes the garbage collection processing evenly
throughout the run. This means that the periods when the system is doing
garbage collection (and is thus unavailable to the user) is spread evenly
throughout the session and there are no long periods of time when the system
is unavailable.” Id. at 62:68-70 – 63:1-9.

4. The method according to
claim 3 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

Mellender discloses dynamically determining maximum number of expired
ones of the records to remove when the linked list is accessed.

For example, Mellender states that “[t]he forceit function will put a record in
the database, but (unlike storeit) checks to see if it is already there. If so, it
logically deletes the old copy and adds the new one. This function is called
when an object is newly created with an oop that already exists (e.g. a Class),
and when an object is lengthened. It uses the storeit function if the new object
is not already in the database, or is smaller than the one it is replacing. Else,
the access manager gets the old object and logically deletes it (by placing a
special mark in the rec_type), and then executes the storeit logic." Id. at 56:22-
32

In summary, if no old copy of the new record exists or the new record is
smaller than the one it is replacing, the forceit function calls the storeit
function to add the new object and no deletion takes place. If an old copy of
the new record does exist, the access manager deletes the old copy and then
executes the storeit function to store the new record. Therefore, the
determination of when to delete a record can be dynamically determined by

EXHIBIT B-3

Joint Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

US2008 1661505.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Mellender et al., “Object-Oriented, Logic, and Database Programming
Tool with Garbage Collection,” U.S. Patent No. 4,989,132 (issued Jan. 29,

1991) (“Mellender”)
whether an old copy of the record exists or when the new record is smaller than
the one it is replacing. Id.
Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Mellender to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Mellender with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in Mellender can be burdensome on
the system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete. Indeed,
part of the motivation for the system disclosed in Mellender is avoiding these
problems. One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired

EXHIBIT B-3

Joint Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

US2008 1661505.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Mellender et al., “Object-Oriented, Logic, and Database Programming
Tool with Garbage Collection,” U.S. Patent No. 4,989,132 (issued Jan. 29,

1991) (“Mellender”)
records is not disclosed by Mellender, Mellender combined with Dirks, Thatte,
the ’663 patent and/or the Opportunistic Garbage Collection Articles discloses
an information storage and retrieval system further including means for
dynamically determining maximum number for the record search means to
remove in the accessed linked list of records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).

EXHIBIT B-3

Joint Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

US2008 1661505.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Mellender et al., “Object-Oriented, Logic, and Database Programming
Tool with Garbage Collection,” U.S. Patent No. 4,989,132 (issued Jan. 29,

1991) (“Mellender”)
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

EXHIBIT B-3

Joint Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

US2008 1661505.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Mellender et al., “Object-Oriented, Logic, and Database Programming
Tool with Garbage Collection,” U.S. Patent No. 4,989,132 (issued Jan. 29,

1991) (“Mellender”)

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Mellender and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as Mellender. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Mellender nothing more
than the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Mellender and would
have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Mellender with the means

EXHIBIT B-3

Joint Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

US2008 1661505.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Mellender et al., “Object-Oriented, Logic, and Database Programming
Tool with Garbage Collection,” U.S. Patent No. 4,989,132 (issued Jan. 29,

1991) (“Mellender”)
for dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. For example,
Thatte discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, as both Mellender and Thatte teach a system of data
storage and retrieval, one of ordinary skill in the art would recognize that the
result of combining Mellender with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove as taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine
Mellender with Thatte and recognize the benefits of doing so. For example,
the removal of expired records described in Mellender can be burdensome on
the system, adding to the system’s load and slowing down the system’s
processing. One of ordinary skill in the art would recognize that combining
Mellender with the teachings of Thatte would solve this problem by
dynamically determining how many records to delete based on, among other
things, the system load. Moreover, the '120 patent discloses that "[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision

EXHIBIT B-3

Joint Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

US2008 1661505.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Mellender et al., “Object-Oriented, Logic, and Database Programming
Tool with Garbage Collection,” U.S. Patent No. 4,989,132 (issued Jan. 29,

1991) (“Mellender”)
regarding if and how many records to delete can be a dynamic one." '120 at
7:10-15. Thus, the '120 patent provides motivations to combine Mellender
with Thatte.

Alternatively, it would also be obvious to combine Mellender with the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating

EXHIBIT B-3

Joint Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

US2008 1661505.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Mellender et al., “Object-Oriented, Logic, and Database Programming
Tool with Garbage Collection,” U.S. Patent No. 4,989,132 (issued Jan. 29,

1991) (“Mellender”)
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

Id. at Figure 5.

EXHIBIT B-3

Joint Invalidity Contentions & Production of
Documents

35 Case No. 6:09-CV-549-LED

US2008 1661505.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Mellender et al., “Object-Oriented, Logic, and Database Programming
Tool with Garbage Collection,” U.S. Patent No. 4,989,132 (issued Jan. 29,

1991) (“Mellender”)
During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Mellender and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in Mellender. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.

EXHIBIT B-3

Joint Invalidity Contentions & Production of
Documents

36 Case No. 6:09-CV-549-LED

US2008 1661505.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Mellender et al., “Object-Oriented, Logic, and Database Programming
Tool with Garbage Collection,” U.S. Patent No. 4,989,132 (issued Jan. 29,

1991) (“Mellender”)
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with Mellender would
be nothing more than the predictable use of prior art elements according to
their established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Mellender and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Mellender with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the

EXHIBIT B-3

Joint Invalidity Contentions & Production of
Documents

37 Case No. 6:09-CV-549-LED

US2008 1661505.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Mellender et al., “Object-Oriented, Logic, and Database Programming
Tool with Garbage Collection,” U.S. Patent No. 4,989,132 (issued Jan. 29,

1991) (“Mellender”)
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Mellender and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table

EXHIBIT B-3

Joint Invalidity Contentions & Production of
Documents

38 Case No. 6:09-CV-549-LED

US2008 1661505.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Mellender et al., “Object-Oriented, Logic, and Database Programming
Tool with Garbage Collection,” U.S. Patent No. 4,989,132 (issued Jan. 29,

1991) (“Mellender”)
implementations such as Mellender. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Mellender would be nothing more than the predictable use of
prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Mellender and
would have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Mellender to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Mellender with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed

EXHIBIT B-3

Joint Invalidity Contentions & Production of
Documents

39 Case No. 6:09-CV-549-LED

US2008 1661505.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Mellender et al., “Object-Oriented, Logic, and Database Programming
Tool with Garbage Collection,” U.S. Patent No. 4,989,132 (issued Jan. 29,

1991) (“Mellender”)
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in Mellender can be burdensome on
the system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Mellender in combination with Dirks, Thatte, the
‘663 Patent, or the Opportunistic Garbage Collection References, it is
disclosed by Linux 2.0.1, which describes dynamically determining maximum
number of expired ones of the records to remove when the linked list is
accessed. It would have been obvious to combine Linux 2.0.1 with Mellender.
For example, both Linux 2.0.1 and Mellender describe systems and
methods for performing data storage and retrieval using known programming
techniques to yield a predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.

EXHIBIT B-3

Joint Invalidity Contentions & Production of
Documents

40 Case No. 6:09-CV-549-LED

US2008 1661505.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Mellender et al., “Object-Oriented, Logic, and Database Programming
Tool with Garbage Collection,” U.S. Patent No. 4,989,132 (issued Jan. 29,

1991) (“Mellender”)
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function

EXHIBIT B-3

Joint Invalidity Contentions & Production of
Documents

41 Case No. 6:09-CV-549-LED

US2008 1661505.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Mellender et al., “Object-Oriented, Logic, and Database Programming
Tool with Garbage Collection,” U.S. Patent No. 4,989,132 (issued Jan. 29,

1991) (“Mellender”)
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash

EXHIBIT B-3

Joint Invalidity Contentions & Production of
Documents

42 Case No. 6:09-CV-549-LED

US2008 1661505.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Mellender et al., “Object-Oriented, Logic, and Database Programming
Tool with Garbage Collection,” U.S. Patent No. 4,989,132 (issued Jan. 29,

1991) (“Mellender”)
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function

EXHIBIT B-3

Joint Invalidity Contentions & Production of
Documents

43 Case No. 6:09-CV-549-LED

US2008 1661505.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Mellender et al., “Object-Oriented, Logic, and Database Programming
Tool with Garbage Collection,” U.S. Patent No. 4,989,132 (issued Jan. 29,

1991) (“Mellender”)
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, Robinson discloses an information
storage and retrieval system.

For example, Robinson discloses “[a] cache directory keeps track of which
blocks are in the cache, the number of times each block in the cache has been
referenced after aging at least a predetermined amount (reference count), and
the age of each block since the last reference to that block, for use in
determining which of the cache blocks is replaced when there is a cache miss.”
Robinson, “Data Cache Using Dynamic Frequency Based Replacement and
Boundary Criteria,” U.S. Patent No. 5,043,885 (issued Aug. 27, 1991) at
Abstract.

“Each block in the cache has a corresponding cache directory entry in the
cache directory and is found by means of the cache directory. The cache
directory consists of an array of cache directory entries, individual pointers and
pointer tables used for locating blocks, updating the directory, and making
replacement decisions. The location in the cache of a block found in the cache
directory is known from the offset (i.e., the position) of the corresponding
cache directory entry in the array of cache directory entries.” Id. at 5:25-34.

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records

Robinson discloses a linked list to store and provide access to records stored in
a memory of the system, at least some of the records automatically expiring.
Robinson also discloses a hashing means to provide access to records stored in
a memory of the system and using an external chaining technique to store the
records with same hash address, at least some of the records automatically
expiring.

For example, Robinson discloses “[a] cache directory keeps track of which

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

automatically expiring, blocks are in the cache, the number of times each block in the cache has been
referenced after aging at least a predetermined amount (reference count), and
the age of each block since the last reference to that block, for use in
determining which of the cache blocks is replaced when there is a cache miss.”
Id. at Abstract.

“Each block in the cache has a corresponding cache directory entry in the
cache directory and is found by means of the cache directory. The cache
directory consists of an array of cache directory entries, individual pointers and
pointer tables used for locating blocks, updating the directory, and making
replacement decisions. The location in the cache of a block found in the cache
directory is known from the offset (i.e., the position) of the corresponding
cache directory entry in the array of cache directory entries.” Id. at 5:25-34.

“The preferred embodiment makes use of several known data structures and
techniques, including a hash table for locating blocks in the cache, and doubly-
linked lists for (1) the overall LRU chain, (2) individual LRU chains for each
count value below a threshold, and (3) the chains of cache directory entries
having identical hash values.” Id. at 5:35-41.

“Since the preferred embodiment makes use of a hash function to locate [cache
directory entries], more than one origin may correspond with the same hash
value. Fields 34, 36 contain the pointers PHASH and NHASH which establish
the doubly-linked list for the hash value which corresponds with the ID in
field.” Id. at 5:65-69 – 6:1-2.

“A [cache directory entry] for a block is found by first hashing the block ID
using a hash function 44 to produce a hash value or offset, which corresponds

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

with a particular element 46 in hash table 48. The hash table is an array of
points to CDEs. The hash table element points either to the head or the tail of
a doubly liked list of CDE having the same hash value. Starting with the CDE
referred to in the hash table, the list of CDEs having the same hash value is
searched sequentially (using either the pointer PHASH or NHASH in the
CDEs depending upon whether the hash table pointed to the head or the tail)
comparing the ID field in each such entry with the ID of the block being
searched for. If an identical ID is found, the block is in the cache, and this case
is referred to as a HIT. Otherwise either the hash table pointer is null or the ID
was not found in the list. In such case the block is not in the cache and must be
brought into the cache, which in general means that an existing block must be
replaced with this new block. This case is referred to as a MISS.” Id. at 6:14-
34.

“[T]he cache directory essentially works in LRU fashion, with a cache
directory entry being put in the MRU position each time a block is referenced.
According to the invention, however, the block associated with the cache
directory entry in the LRU position 16 will not necessarily be the one that it
replaced when there is a miss. Additionally, according to the invention, there
is a preselected boundary (age boundary) 18. Each time a block ages past this
boundary, this fact is updated for that block in the cache directory, so that for
each block in the cache it is known which side of the age boundary it is on.” Id.
at 4:34-45.

“Various versions of the invention result from the way the reference counts are
used to select blocks to replace. One simple version is as follows: when there
is a miss, select the least recently used block in the non-local section whose
count is below a preselected threshold. If there is no such block below the

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

preselected count threshold, then select the least recently used block. Blocks
whose counts are below the threshold can be tracked with a separate LRU
chain, leading to an efficient implementation.” Id. at 4:53-62.

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of
records having the same
hash address,

Robinson discloses a record search means utilizing a search key to access the
linked list. Robinson also discloses a record search means utilizing a search
key to access a linked list of records having the same hash address.

For example, Robinson discloses “[a] cache directory keeps track of which
blocks are in the cache, the number of times each block in the cache has been
referenced after aging at least a predetermined amount (reference count), and
the age of each block since the last reference to that block, for use in
determining which of the cache blocks is replaced when there is a cache miss.”
Id. at Abstract.

“Each block in the cache has a corresponding cache directory entry in the
cache directory and is found by means of the cache directory. The cache
directory consists of an array of cache directory entries, individual pointers and
pointer tables used for locating blocks, updating the directory, and making
replacement decisions. The location in the cache of a block found in the cache
directory is known from the offset (i.e., the position) of the corresponding
cache directory entry in the array of cache directory entries.” Id. at 5:25-34.

“The preferred embodiment makes use of several known data structures and
techniques, including a hash table for locating blocks in the cache, and doubly-
linked lists for (1) the overall LRU chain, (2) individual LRU chains for each
count value below a threshold, and (3) the chains of cache directory entries
having identical hash values.” Id. at 5:35-41.

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

“Since the preferred embodiment makes use of a hash function to locate [cache
directory entries], more than one origin may correspond with the same hash
value. Fields 34, 36 contain the pointers PHASH and NHASH which establish
the doubly-linked list for the hash value which corresponds with the ID in
field.” Id. at 5:65-69 – 6:1-2.

“A [cache directory entry] for a block is found by first hashing the block ID
using a hash function 44 to produce a hash value or offset, which corresponds
with a particular element 46 in hash table 48. The hash table is an array of
points to CDEs. The hash table element points either to the head or the tail of
a doubly liked list of CDE having the same hash value. Starting with the CDE
referred to in the hash table, the list of CDEs having the same hash value is
searched sequentially (using either the pointer PHASH or NHASH in the
CDEs depending upon whether the hash table pointed to the head or the tail)
comparing the ID field in each such entry with the ID of the block being
searched for.” Id. at 6:14-27.

[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the
records from the linked list
when the linked list is
accessed, and

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

Robinson discloses the record search means including a means for identifying
and removing at least some of the expired ones of the records from the linked
list when the linked list is accessed. Robinson also discloses the record search
means including means for identifying and removing at least some expired
ones of the records from the linked list of records when the linked list is
accessed.

Robinson discloses a linked list to store and provide access to records stored in
a memory of the system, at least some of the records automatically expiring.
Robinson also discloses a hashing means to provide access to records stored in

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

a memory of the system and using an external chaining technique to store the
records with same hash address, at least some of the records automatically
expiring.

For example, Robinson discloses “[a] cache directory keeps track of which
blocks are in the cache, the number of times each block in the cache has been
referenced after aging at least a predetermined amount (reference count), and
the age of each block since the last reference to that block, for use in
determining which of the cache blocks is replaced when there is a cache miss.”
Id. at Abstract.

“Each block in the cache has a corresponding cache directory entry in the
cache directory and is found by means of the cache directory. The cache
directory consists of an array of cache directory entries, individual pointers and
pointer tables used for locating blocks, updating the directory, and making
replacement decisions. The location in the cache of a block found in the cache
directory is known from the offset (i.e., the position) of the corresponding
cache directory entry in the array of cache directory entries.” Id. at 5:25-34.

“The preferred embodiment makes use of several known data structures and
techniques, including a hash table for locating blocks in the cache, and doubly-
linked lists for (1) the overall LRU chain, (2) individual LRU chains for each
count value below a threshold, and (3) the chains of cache directory entries
having identical hash values.” Id. at 5:35-41.

“Since the preferred embodiment makes use of a hash function to locate [cache
directory entries], more than one origin may correspond with the same hash
value. Fields 34, 36 contain the pointers PHASH and NHASH which establish

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

the doubly-linked list for the hash value which corresponds with the ID in
field.” Id. at 5:65-69 – 6:1-2.

“A [cache directory entry] for a block is found by first hashing the block ID
using a hash function 44 to produce a hash value or offset, which corresponds
with a particular element 46 in hash table 48. The hash table is an array of
points to CDEs. The hash table element points either to the head or the tail of
a doubly liked list of CDE having the same hash value. Starting with the CDE
referred to in the hash table, the list of CDEs having the same hash value is
searched sequentially (using either the pointer PHASH or NHASH in the
CDEs depending upon whether the hash table pointed to the head or the tail)
comparing the ID field in each such entry with the ID of the block being
searched for. If an identical ID is found, the block is in the cache, and this case
is referred to as a HIT. Otherwise either the hash table pointer is null or the ID
was not found in the list. In such case the block is not in the cache and must be
brought into the cache, which in general means that an existing block must be
replaced with this new block. This case is referred to as a MISS.” Id. at 6:14-
34.

“[T]he cache directory essentially works in LRU fashion, with a cache
directory entry being put in the MRU position each time a block is referenced.
According to the invention, however, the block associated with the cache
directory entry in the LRU position 16 will not necessarily be the one that it
replaced when there is a miss. Additionally, according to the invention, there
is a preselected boundary (age boundary) 18. Each time a block ages past this
boundary, this fact is updated for that block in the cache directory, so that for
each block in the cache it is known which side of the age boundary it is on.” Id.
at 4:34-45.

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

“Various versions of the invention result from the way the reference counts are
used to select blocks to replace. One simple version is as follows: when there
is a miss, select the least recently used block in the non-local section whose
count is below a preselected threshold. If there is no such block below the
preselected count threshold, then select the least recently used block. Blocks
whose counts are below the threshold can be tracked with a separate LRU
chain, leading to an efficient implementation.” Id. at 4:53-62.

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

Robinson discloses means, utilizing the record search means, for accessing the
linked list and, at the same time, removing at least some of the expired ones of
the records in the linked list. Robinson also discloses utilizing the record
search means, for inserting, retrieving, and deleting records from the system
and, at the same time, removing at least some expired ones of the records in the
accessed linked list of records.

Robinson discloses a linked list to store and provide access to records stored in
a memory of the system, at least some of the records automatically expiring.
Robinson also discloses a hashing means to provide access to records stored in
a memory of the system and using an external chaining technique to store the
records with same hash address, at least some of the records automatically
expiring.

For example, Robinson discloses “[a] cache directory keeps track of which
blocks are in the cache, the number of times each block in the cache has been
referenced after aging at least a predetermined amount (reference count), and
the age of each block since the last reference to that block, for use in
determining which of the cache blocks is replaced when there is a cache miss.”

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

Id. at Abstract.

“Each block in the cache has a corresponding cache directory entry in the
cache directory and is found by means of the cache directory. The cache
directory consists of an array of cache directory entries, individual pointers and
pointer tables used for locating blocks, updating the directory, and making
replacement decisions. The location in the cache of a block found in the cache
directory is known from the offset (i.e., the position) of the corresponding
cache directory entry in the array of cache directory entries.” Id. at 5:25-34.

“The preferred embodiment makes use of several known data structures and
techniques, including a hash table for locating blocks in the cache, and doubly-
linked lists for (1) the overall LRU chain, (2) individual LRU chains for each
count value below a threshold, and (3) the chains of cache directory entries
having identical hash values.” Id. at 5:35-41.

“Since the preferred embodiment makes use of a hash function to locate [cache
directory entries], more than one origin may correspond with the same hash
value. Fields 34, 36 contain the pointers PHASH and NHASH which establish
the doubly-linked list for the hash value which corresponds with the ID in
field.” Id. at 5:65-69 – 6:1-2.

“A [cache directory entry] for a block is found by first hashing the block ID
using a hash function 44 to produce a hash value or offset, which corresponds
with a particular element 46 in hash table 48. The hash table is an array of
points to CDEs. The hash table element points either to the head or the tail of
a doubly liked list of CDE having the same hash value. Starting with the CDE
referred to in the hash table, the list of CDEs having the same hash value is

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

searched sequentially (using either the pointer PHASH or NHASH in the
CDEs depending upon whether the hash table pointed to the head or the tail)
comparing the ID field in each such entry with the ID of the block being
searched for. If an identical ID is found, the block is in the cache, and this case
is referred to as a HIT. Otherwise either the hash table pointer is null or the ID
was not found in the list. In such case the block is not in the cache and must be
brought into the cache, which in general means that an existing block must be
replaced with this new block. This case is referred to as a MISS.” Id. at 6:14-
34.

“[T]he cache directory essentially works in LRU fashion, with a cache
directory entry being put in the MRU position each time a block is referenced.
According to the invention, however, the block associated with the cache
directory entry in the LRU position 16 will not necessarily be the one that it
replaced when there is a miss. Additionally, according to the invention, there
is a preselected boundary (age boundary) 18. Each time a block ages past this
boundary, this fact is updated for that block in the cache directory, so that for
each block in the cache it is known which side of the age boundary it is on.” Id.
at 4:34-45.

“Various versions of the invention result from the way the reference counts are
used to select blocks to replace. One simple version is as follows: when there
is a miss, select the least recently used block in the non-local section whose
count is below a preselected threshold. If there is no such block below the
preselected count threshold, then select the least recently used block. Blocks
whose counts are below the threshold can be tracked with a separate LRU
chain, leading to an efficient implementation.” Id. at 4:53-62.

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

2. The information storage
and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

6. The information storage
and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

Robinson combined with Hamstra discloses an information storage and
retrieval system further including means for dynamically determining
maximum number for the record search means to remove in the accessed
linked list of records.

For example, as summarized in Hamstra:

If the data is not resident in the cache memory then it is staged
by segments from a disk, placed in the cache memory, and sent
to the host. However, this may require that some of the
segments in the cache memory be replaced by the segments
from the disks. Hamstra et al., “Processor-Addressable
Timestamp for Indicating Oldest Written-to-Cache Entry Not
Copied Back to Bulk Memory,” U.S. Patent No. 4,530,054
(issued Jul. 16, 1985) at 1:36-41 (emphasis added).

[W]hen a new segment or segments has to be brought from a
device 104 to the cache memory 106 and there are no empty
segments in the cache memory 106 then some of the segments
resident in the cache memory 106 must be deleted or removed
therefrom in order to make room for the new segments.Id. at
6:29-34 (emphasis added).

[W]hen the SCU 100 has no other work to do it may search the
SDT [– the segment descriptor (SDT) contains an entry for each
segment of data resident in the cache memory, similar to a hash
table (Id. at 5:33-35) –] to locate segments which have been
written to the cache and trickle these segments to the devices

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

104 thus making space available in cache 106 for additional
segments. The trickling of written-to segments takes place on
the same basis as segment replacement, that is, the least recently
used segments are trickled first Id. at 6:53-60.

In Hamstra, empty segments are created by either first initialization of the
cache before segments in cache memory are filled or by the trickle down
functionality of the system. According to Hamstra, if there are no empty
segments in the cache memory, then some of the segments in the cache
memory are deleted by the system. However, if there are empty segments in
the cache, then there is no need to delete any segments and the requested
segments are transfered from a disk into those empty segments. Therefore, the
system described in Hamstra dynamically determines whether to delete a
segment based on the availability of empty segments in the cache memory.

As both Robinson and Hamstra relate to a system of cache maintenance using a
least recently used method for replacement of cache segments organized in
linked lists, one of ordinary skill in the art would understand how to use the
Hamstra patent’s dynamic decision on whether to perform a segment deletion
based on the availability of empty segments in a cache memory when
implementing a cache maintenance system such as Robinson. Moreover, one
of ordinary skill in the art would recongize that it would improve similar
systems and methods in the same way.

The fundamental goal of a cache memory, as described by both Robinson and
Hamstra, is to provide users fast access to frequently used data. Robinson, U.S.
Patent No. 5,043,885 at 1:9-36; Hamstra et al, U.S. Patent No. 4,530,054 at
1:22-31. This is achieved by insuring that data residing in the cache is the

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

most recently and frequently used data. A person skilled in the art would
appreciate that the technique of replacing least recently used data segments
from cache memory upon an insertion of a new data segment can be expanded
to include logic for trickling down least recently used segments to make space
available in the cache for additional segments when the system has no other
work to do.

One of ordinary skill in the art would recognize that the result of combining
the system disclosed in Robinson with the additional system of trickling down
least recently used segments and dynamically determining whether a deletion
is necessary upon a call as disclosed in Hamstra would further promote the
goals of a cache memory. For example, such benefits would include creating
faster access to data for the user – the additional step of a deletion would only
take place if there was no empty space in the cache memory, and creating
increased efficiency of system performance by utilizing unused time, when
there is no work to be done, to trickle down least recently used segments from
cache memory back to disk.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Robinson to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Robinson with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

the removal of expired records described in Robinson can be burdensome on
the system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete. Indeed,
part of the motivation for the system disclosed in Robinson is avoiding these
problems. One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Robinson and Hamstra, Robinson combined with
Dirks, Thatte, the ’663 patent and/or the Opportunistic Garbage Collection
Articles discloses an information storage and retrieval system further including
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Robinson and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as Robinson. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Robinson nothing more
than the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Robinson and would
have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Robinson with the means
for dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. For example,
Thatte discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, as both Robinson and Thatte teach a system of data storage
and retrieval, one of ordinary skill in the art would recognize that the result of

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

combining Robinson with Thatte would be nothing more than the predictable
use of prior art elements according to their established functions. The resulting
combination would include the capability to determine the maximum number
for the record search means to remove as taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine
Robinson with Thatte and recognize the benefits of doing so. For example, the
removal of expired records described in Robinson can be burdensome on the
system, adding to the system’s load and slowing down the system’s
processing. One of ordinary skill in the art would recognize that combining
Robinson with the teachings of Thatte would solve this problem by
dynamically determining how many records to delete based on, among other
things, the system load. Moreover, the '120 patent discloses that "[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one." '120 at
7:10-15. Thus, the '120 patent provides motivations to combine Robinson with
Thatte.

Alternatively, it would also be obvious to combine Robinson with the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Robinson and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in Robinson. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with Robinson would
be nothing more than the predictable use of prior art elements according to
their established functions.

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Robinson and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Robinson with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Robinson and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Robinson. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Robinson would be nothing more than the predictable use of
prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Robinson and
would have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Robinson to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Robinson with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in Robinson can be burdensome on
the system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Robinson in combination with Dirks, Thatte, the
‘663 Patent, or the Opportunistic Garbage Collection References, it is
disclosed by Linux 2.0.1, which describes dynamically determining maximum
number of expired ones of the records to remove when the linked list is
accessed. It would have been obvious to combine Linux 2.0.1 with Robinson.
For example, both Linux 2.0.1 and Robinson describe systems and methods for
performing data storage and retrieval using known programming techniques to
yield a predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

remove from a linked list.

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

To the extent the preamble is a limitation, Robinson discloses a method for
storing and retrieving information records using a linked list to store and
provide access to the records, at least some of the records automatically
expiring. Robinson also discloses a method for storing and retrieving
information records using a hashing technique to provide access to the records
and using an external chaining technique to store the records with same hash
address, at least some of the records automatically expiring.

Robinson discloses a linked list to store and provide access to records stored in
a memory of the system, at least some of the records automatically expiring.
Robinson also discloses a hashing means to provide access to records stored in
a memory of the system and using an external chaining technique to store the
records with same hash address, at least some of the records automatically
expiring.

For example, Robinson discloses “[a] cache directory keeps track of which
blocks are in the cache, the number of times each block in the cache has been
referenced after aging at least a predetermined amount (reference count), and
the age of each block since the last reference to that block, for use in
determining which of the cache blocks is replaced when there is a cache miss.”
Robinson, U.S. Patent No. 5,043,885 at Abstract.

“Each block in the cache has a corresponding cache directory entry in the
cache directory and is found by means of the cache directory. The cache
directory consists of an array of cache directory entries, individual pointers and
pointer tables used for locating blocks, updating the directory, and making

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

replacement decisions. The location in the cache of a block found in the cache
directory is known from the offset (i.e., the position) of the corresponding
cache directory entry in the array of cache directory entries.” Id. at 5:25-34.

“The preferred embodiment makes use of several known data structures and
techniques, including a hash table for locating blocks in the cache, and doubly-
linked lists for (1) the overall LRU chain, (2) individual LRU chains for each
count value below a threshold, and (3) the chains of cache directory entries
having identical hash values.” Id. at 5:35-41

“Since the preferred embodiment makes use of a hash function to locate [cache
directory entries], more than one origin may correspond with the same hash
value. Fields 34, 36 contain the pointers PHASH and NHASH which establish
the doubly-linked list for the hash value which corresponds with the ID in
field.” Id. at 5:65-69 – 6:1-2.

“A [cache directory entry] for a block is found by first hashing the block ID
using a hash function 44 to produce a hash value or offset, which corresponds
with a particular element 46 in hash table 48. The hash table is an array of
points to CDEs. The hash table element points either to the head or the tail of
a doubly liked list of CDE having the same hash value. Starting with the CDE
referred to in the hash table, the list of CDEs having the same hash value is
searched sequentially (using either the pointer PHASH or NHASH in the
CDEs depending upon whether the hash table pointed to the head or the tail)
comparing the ID field in each such entry with the ID of the block being
searched for. If an identical ID is found, the block is in the cache, and this case
is referred to as a HIT. Otherwise either the hash table pointer is null or the ID
was not found in the list. In such case the block is not in the cache and must be

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

brought into the cache, which in general means that an existing block must be
replaced with this new block. This case is referred to as a MISS.” Id. at 6:14-
34.

“[T]he cache directory essentially works in LRU fashion, with a cache
directory entry being put in the MRU position each time a block is referenced.
According to the invention, however, the block associated with the cache
directory entry in the LRU position 16 will not necessarily be the one that it
replaced when there is a miss. Additionally, according to the invention, there
is a preselected boundary (age boundary) 18. Each time a block ages past this
boundary, this fact is updated for that block in the cache directory, so that for
each block in the cache it is known which side of the age boundary it is on.” Id.
at 4:34-45.

“Various versions of the invention result from the way the reference counts are
used to select blocks to replace. One simple version is as follows: when there
is a miss, select the least recently used block in the non-local section whose
count is below a preselected threshold. If there is no such block below the
preselected count threshold, then select the least recently used block. Blocks
whose counts are below the threshold can be tracked with a separate LRU
chain, leading to an efficient implementation.”Id. at 4:53-62.

 [3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

Robinson discloses accessing a linked list of records. Robinson also discloses
accessing a linked list of records having same hash address.

For example, Robinson discloses “[a] cache directory keeps track of which
blocks are in the cache, the number of times each block in the cache has been
referenced after aging at least a predetermined amount (reference count), and

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

the age of each block since the last reference to that block, for use in
determining which of the cache blocks is replaced when there is a cache miss.”
Id. at Abstract.

“Each block in the cache has a corresponding cache directory entry in the
cache directory and is found by means of the cache directory. The cache
directory consists of an array of cache directory entries, individual pointers and
pointer tables used for locating blocks, updating the directory, and making
replacement decisions. The location in the cache of a block found in the cache
directory is known from the offset (i.e., the position) of the corresponding
cache directory entry in the array of cache directory entries.” Id. at 5:25-34.

“The preferred embodiment makes use of several known data structures and
techniques, including a hash table for locating blocks in the cache, and doubly-
linked lists for (1) the overall LRU chain, (2) individual LRU chains for each
count value below a threshold, and (3) the chains of cache directory entries
having identical hash values.” Id. at 5:35-41

“Since the preferred embodiment makes use of a hash function to locate [cache
directory entries], more than one origin may correspond with the same hash
value. Fields 34, 36 contain the pointers PHASH and NHASH which establish
the doubly-linked list for the hash value which corresponds with the ID in
field.” Id. at 5:65-69 – 6:1-2.

“A [cache directory entry] for a block is found by first hashing the block ID
using a hash function 44 to produce a hash value or offset, which corresponds
with a particular element 46 in hash table 48. The hash table is an array of
points to CDEs. The hash table element points either to the head or the tail of

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

a doubly liked list of CDE having the same hash value. Starting with the CDE
referred to in the hash table, the list of CDEs having the same hash value is
searched sequentially (using either the pointer PHASH or NHASH in the
CDEs depending upon whether the hash table pointed to the head or the tail)
comparing the ID field in each such entry with the ID of the block being
searched for.” Id. at 6:14-27.

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

Robinson discloses identifying at least some of the automatically expired ones
of the records.

For example, Robinson discloses “[a] cache directory keeps track of which
blocks are in the cache, the number of times each block in the cache has been
referenced after aging at least a predetermined amount (reference count), and
the age of each block since the last reference to that block, for use in
determining which of the cache blocks is replaced when there is a cache miss.”
Id. at Abstract.

“Each block in the cache has a corresponding cache directory entry in the
cache directory and is found by means of the cache directory. The cache
directory consists of an array of cache directory entries, individual pointers and
pointer tables used for locating blocks, updating the directory, and making
replacement decisions. The location in the cache of a block found in the cache
directory is known from the offset (i.e., the position) of the corresponding
cache directory entry in the array of cache directory entries.” Id. at 5:25-34.

“A [cache directory entry] for a block is found by first hashing the block ID
using a hash function 44 to produce a hash value or offset, which corresponds
with a particular element 46 in hash table 48. The hash table is an array of

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

points to CDEs. The hash table element points either to the head or the tail of
a doubly liked list of CDE having the same hash value. Starting with the CDE
referred to in the hash table, the list of CDEs having the same hash value is
searched sequentially (using either the pointer PHASH or NHASH in the
CDEs depending upon whether the hash table pointed to the head or the tail)
comparing the ID field in each such entry with the ID of the block being
searched for. If an identical ID is found, the block is in the cache, and this case
is referred to as a HIT. Otherwise either the hash table pointer is null or the ID
was not found in the list. In such case the block is not in the cache and must be
brought into the cache, which in general means that an existing block must be
replaced with this new block. This case is referred to as a MISS.” Id. at 6:14-
34.

“[T]he cache directory essentially works in LRU fashion, with a cache
directory entry being put in the MRU position each time a block is referenced.
According to the invention, however, the block associated with the cache
directory entry in the LRU position 16 will not necessarily be the one that it
replaced when there is a miss. Additionally, according to the invention, there
is a preselected boundary (age boundary) 18. Each time a block ages past this
boundary, this fact is updated for that block in the cache directory, so that for
each block in the cache it is known which side of the age boundary it is on.” Id.
at 4:34-45.

“Various versions of the invention result from the way the reference counts are
used to select blocks to replace. One simple version is as follows: when there
is a miss, select the least recently used block in the non-local section whose
count is below a preselected threshold. If there is no such block below the
preselected count threshold, then select the least recently used block. Blocks

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

35 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

whose counts are below the threshold can be tracked with a separate LRU
chain, leading to an efficient implementation.” Id. at 4:53-62.

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

Robinson discloses removing at least some of the automatically expired
records from the linked list when the linked list is accessed.

For example, Robinson discloses “[a] cache directory keeps track of which
blocks are in the cache, the number of times each block in the cache has been
referenced after aging at least a predetermined amount (reference count), and
the age of each block since the last reference to that block, for use in
determining which of the cache blocks is replaced when there is a cache miss.”
Id. at Abstract.

“Each block in the cache has a corresponding cache directory entry in the
cache directory and is found by means of the cache directory. The cache
directory consists of an array of cache directory entries, individual pointers and
pointer tables used for locating blocks, updating the directory, and making
replacement decisions. The location in the cache of a block found in the cache
directory is known from the offset (i.e., the position) of the corresponding
cache directory entry in the array of cache directory entries.” Id. at 5:25-34.

“The preferred embodiment makes use of several known data structures and
techniques, including a hash table for locating blocks in the cache, and doubly-
linked lists for (1) the overall LRU chain, (2) individual LRU chains for each
count value below a threshold, and (3) the chains of cache directory entries
having identical hash values.” Id. at 5:35-41.

“Since the preferred embodiment makes use of a hash function to locate [cache

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

36 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

directory entries], more than one origin may correspond with the same hash
value. Fields 34, 36 contain the pointers PHASH and NHASH which establish
the doubly-linked list for the hash value which corresponds with the ID in
field.” Id. at 5:65-69 – 6:1-2.

“A [cache directory entry] for a block is found by first hashing the block ID
using a hash function 44 to produce a hash value or offset, which corresponds
with a particular element 46 in hash table 48. The hash table is an array of
points to CDEs. The hash table element points either to the head or the tail of
a doubly liked list of CDE having the same hash value. Starting with the CDE
referred to in the hash table, the list of CDEs having the same hash value is
searched sequentially (using either the pointer PHASH or NHASH in the
CDEs depending upon whether the hash table pointed to the head or the tail)
comparing the ID field in each such entry with the ID of the block being
searched for. If an identical ID is found, the block is in the cache, and this case
is referred to as a HIT. Otherwise either the hash table pointer is null or the ID
was not found in the list. In such case the block is not in the cache and must be
brought into the cache, which in general means that an existing block must be
replaced with this new block. This case is referred to as a MISS.” Id. at 6:14-
34.

“[T]he cache directory essentially works in LRU fashion, with a cache
directory entry being put in the MRU position each time a block is referenced.
According to the invention, however, the block associated with the cache
directory entry in the LRU position 16 will not necessarily be the one that it
replaced when there is a miss. Additionally, according to the invention, there
is a preselected boundary (age boundary) 18. Each time a block ages past this
boundary, this fact is updated for that block in the cache directory, so that for

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

37 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

each block in the cache it is known which side of the age boundary it is on.” Id.
at 4:34-45.

“Various versions of the invention result from the way the reference counts are
used to select blocks to replace. One simple version is as follows: when there
is a miss, select the least recently used block in the non-local section whose
count is below a preselected threshold. If there is no such block below the
preselected count threshold, then select the least recently used block. Blocks
whose counts are below the threshold can be tracked with a separate LRU
chain, leading to an efficient implementation.” Id. at 4:53-62.

 [7d] inserting, retrieving
or deleting one of the
records from the system
following the step of
removing.

Robinson discloses inserting, retrieving or deleting one of the records from the
system following the step of removing.

For example, Robinson discloses “[a] cache directory keeps track of which
blocks are in the cache, the number of times each block in the cache has been
referenced after aging at least a predetermined amount (reference count), and
the age of each block since the last reference to that block, for use in
determining which of the cache blocks is replaced when there is a cache miss.”
Id. at Abstract.

“Each block in the cache has a corresponding cache directory entry in the
cache directory and is found by means of the cache directory. The cache
directory consists of an array of cache directory entries, individual pointers and
pointer tables used for locating blocks, updating the directory, and making
replacement decisions. The location in the cache of a block found in the cache
directory is known from the offset (i.e., the position) of the corresponding
cache directory entry in the array of cache directory entries.” Id. at 5:25-34.

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

38 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

“The preferred embodiment makes use of several known data structures and
techniques, including a hash table for locating blocks in the cache, and doubly-
linked lists for (1) the overall LRU chain, (2) individual LRU chains for each
count value below a threshold, and (3) the chains of cache directory entries
having identical hash values.” Id. at 5:35-41.

“Since the preferred embodiment makes use of a hash function to locate [cache
directory entries], more than one origin may correspond with the same hash
value. Fields 34, 36 contain the pointers PHASH and NHASH which establish
the doubly-linked list for the hash value which corresponds with the ID in
field.” Id. at 5:65-69 – 6:1-2.

“A [cache directory entry] for a block is found by first hashing the block ID
using a hash function 44 to produce a hash value or offset, which corresponds
with a particular element 46 in hash table 48. The hash table is an array of
points to CDEs. The hash table element points either to the head or the tail of
a doubly liked list of CDE having the same hash value. Starting with the CDE
referred to in the hash table, the list of CDEs having the same hash value is
searched sequentially (using either the pointer PHASH or NHASH in the
CDEs depending upon whether the hash table pointed to the head or the tail)
comparing the ID field in each such entry with the ID of the block being
searched for. If an identical ID is found, the block is in the cache, and this case
is referred to as a HIT. Otherwise either the hash table pointer is null or the ID
was not found in the list. In such case the block is not in the cache and must be
brought into the cache, which in general means that an existing block must be
replaced with this new block. This case is referred to as a MISS.” Id. at 6:14-
34.

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

39 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

“[T]he cache directory essentially works in LRU fashion, with a cache
directory entry being put in the MRU position each time a block is referenced.
According to the invention, however, the block associated with the cache
directory entry in the LRU position 16 will not necessarily be the one that it
replaced when there is a miss. Additionally, according to the invention, there
is a preselected boundary (age boundary) 18. Each time a block ages past this
boundary, this fact is updated for that block in the cache directory, so that for
each block in the cache it is known which side of the age boundary it is on.” Id.
at 4:34-45.

“Various versions of the invention result from the way the reference counts are
used to select blocks to replace. One simple version is as follows: when there
is a miss, select the least recently used block in the non-local section whose
count is below a preselected threshold. If there is no such block below the
preselected count threshold, then select the least recently used block. Blocks
whose counts are below the threshold can be tracked with a separate LRU
chain, leading to an efficient implementation.” Id. at 4:53-62.

4. The method according to
claim 3 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

Robinson combined with Hamstra discloses dynamically determining
maximum number of expired ones of the records to remove when the linked
list is accessed.

For example, as summarized in Hamstra:

If the data is not resident in the cache memory then it is staged
by segments from a disk, placed in the cache memory, and sent
to the host. However, this may require that some of the
segments in the cache memory be replaced by the segments

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

40 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

from the disks. Hamstra et al, “Processor-Addressable
Timestamp for Indicating Oldest Written-to-Cache Entry Not
Copied Back to Bulk Memory,” U.S. Patent No. 4,530,054
(issued Jul. 16, 1985) at 1:36-41 (emphasis added).

[W]hen a new segment or segments has to be brought from a
device 104 to the cache memory 106 and there are no empty
segments in the cache memory 106 then some of the segments
resident in the cache memory 106 must be deleted or removed
therefrom in order to make room for the new segments. Id. at
6:29-34 (emphasis added).

[W]hen the SCU 100 has no other work to do it may search the
SDT [– the segment descriptor (SDT) contains an entry for each
segment of data resident in the cache memory, similar to a hash
table (Id. at 5:33-35) –] to locate segments which have been
written to the cache and trickle these segments to the devices
104 thus making space available in cache 106 for additional
segments. The trickling of written-to segments takes place on
the same basis as segment replacement, that is, the least recently
used segments are trickled first Id. at 6:53-60.

In Hamstra, empty segments are created by either first initialization of the
cache before segments in cache memory are filled or by the trickle down
functionality of the system. According to Hamstra, if there are no empty
segments in the cache memory, then some of the segments in the cache
memory are deleted by the system. However, if there are empty segments in
the cache, then there is no need to delete any segments and the requested

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

41 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

segments are transfered from a disk into those empty segments. Therefore, the
system described in Hamstra dynamically determines whether to delete a
segment based on the availability of empty segments in the cache memory.

As both Robinson and Hamstra relate to a system of cache maintenance using a
least recently used method for replacement of cache segments organized in
linked lists, one of ordinary skill in the art would understand how to use the
Hamstra patent’s dynamic decision on whether to perform a segment deletion
based on the availability of empty segments in a cache memory when
implementing a cache maintenance system such as Robinson. Moreover, one
of ordinary skill in the art would recongize that it would improve similar
systems and methods in the same way.

The fundamental goal of a cache memory, as described by both Robinson and
Hamstra, is to provide users fast access to frequently used data. Robinson, U.S.
Patent No. 5,043,885 at 1:9-36; Hamstra et al, U.S. Patent No. 4,530,054 at
1:22-31. This is achieved by insuring that data residing in the cache is the
most recently and frequently used data. A person skilled in the art would
appreciate that the technique of replacing least recently used data segments
from cache memory upon an insertion of a new data segment can be expanded
to include logic for trickling down least recently used segments to make space
available in the cache for additional segments when the system has no other
work to do.

One of ordinary skill in the art would recognize that the result of combining
the system disclosed in Robinson with the additional system of trickling down
least recently used segments and dynamically determining whether a deletion
is necessary upon a call as disclosed in Hamstra would further promote the

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

42 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

goals of a cache memory. For example, such benefits would include creating
faster access to data for the user – the additional step of a deletion would only
take place if there was no empty space in the cache memory, and creating
increased efficiency of system performance by utilizing unused time, when
there is no work to be done, to trickle down least recently used segments from
cache memory back to disk.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Robinson to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Robinson with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in Robinson can be burdensome on
the system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete. Indeed,
part of the motivation for the system disclosed in Robinson is avoiding these
problems. One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

43 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Robinson and Hamstra, Robinson combined with
Dirks, Thatte, the ’663 patent and/or the Opportunistic Garbage Collection
Articles discloses an information storage and retrieval system further including
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

44 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

45 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Robinson and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as Robinson. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Robinson nothing more
than the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Robinson and would

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

46 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Robinson with the means
for dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. For example,
Thatte discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, as both Robinson and Thatte teach a system of data storage
and retrieval, one of ordinary skill in the art would recognize that the result of
combining Robinson with Thatte would be nothing more than the predictable
use of prior art elements according to their established functions. The resulting
combination would include the capability to determine the maximum number
for the record search means to remove as taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine
Robinson with Thatte and recognize the benefits of doing so. For example, the
removal of expired records described in Robinson can be burdensome on the
system, adding to the system’s load and slowing down the system’s
processing. One of ordinary skill in the art would recognize that combining
Robinson with the teachings of Thatte would solve this problem by

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

47 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

dynamically determining how many records to delete based on, among other
things, the system load. Moreover, the '120 patent discloses that "[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one." '120 at
7:10-15. Thus, the '120 patent provides motivations to combine Robinson with
Thatte.

Alternatively, it would also be obvious to combine Robinson with the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

48 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

49 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

50 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Robinson and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in Robinson. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with Robinson would
be nothing more than the predictable use of prior art elements according to
their established functions.

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

51 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Robinson and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Robinson with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

52 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Robinson and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Robinson. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

53 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Robinson would be nothing more than the predictable use of
prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Robinson and
would have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Robinson to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Robinson with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in Robinson can be burdensome on
the system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

54 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Robinson in combination with Dirks, Thatte, the
‘663 Patent, or the Opportunistic Garbage Collection References, it is
disclosed by Linux 2.0.1, which describes dynamically determining maximum
number of expired ones of the records to remove when the linked list is
accessed. It would have been obvious to combine Linux 2.0.1 with Robinson.
For example, both Linux 2.0.1 and Robinson describe systems and methods for
performing data storage and retrieval using known programming techniques to
yield a predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

55 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

56 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

57 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,043,885 to Robinson (“Robinson”) alone and in
combination with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

EXHIBIT B-4

Joint Invalidity Contentions & Production of
Documents

58 Case No. 6:09-CV-549-LED

US2008 1661508.4

EXHIBIT B-5

Joint Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

US2008 1661509.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,778,430 to Ish et al. (“Ish”) alone and in combination
with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, Ish discloses an information storage
and retrieval system.

For example, Ish discloses an invention that “is implemented in a storage
subsystem having, preferably, an array of selectively accessible direct access
storage devices (disks), a processor, program memory, cache memory, and
non-volatile memory and is responsive to commands received from at least one
external source.” Ish et al., “Method and Apparatus for Computer Disk Cache
Management” U.S. Patent No. 5,778,430 (issued Jul. 7, 1998) at 3:24-29.

“In response to commands received from the external source, i.e., WRITE,
READ, the storage system transfer data, preferably organized as blocks,
to/from the direct access devices to/from the external source, as indicated. In
order to speed access to the data, the blocks are held in an intermediary
cache—when possible. Blocks which are the subject of a READ request and
present in the cache are transferred directly from the cache to the external
source. Conversely, Blocks which are the subject of a READ request and are
not present in the cache, are first transferred from the direct access devices to
the cache. Finally, blocks which are the subject of a WRITE request are stored
in the cache, and subsequently flushed to the direct access devices at a
convenient time.” Id. at 3:30-43.

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with

Ish discloses a linked list to store and provide access to records stored in a
memory of the system, at least some of the records automatically expiring.
Ish also discloses a hashing means to provide access to records stored in a
memory of the system and using an external chaining technique to store the
records with same hash address, at least some of the records automatically
expiring.

EXHIBIT B-5

Joint Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

US2008 1661509.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,778,430 to Ish et al. (“Ish”) alone and in combination
with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

same hash address, at least
some of the records
automatically expiring,

For example, Ish discloses an invention that “is implemented in a storage
subsystem having, preferably, an array of selectively accessible direct access
storage devices (disks), a processor, program memory, cache memory, and
non-volatile memory and is responsive to commands received from at least one
external source.” Id. at 3:24-29.

“In response to commands received from the external source, i.e., WRITE,
READ, the storage system transfer data, preferably organized as blocks,
to/from the direct access devices to/from the external source, as indicated. In
order to speed access to the data, the blocks are held in an intermediary
cache—when possible. Blocks which are the subject of a READ request and
present in the cache are transferred directly from the cache to the external
source. Conversely, Blocks which are the subject of a READ request and are
not present in the cache, are first transferred from the direct access devices to
the cache. Finally, blocks which are the subject of a WRITE request are stored
in the cache, and subsequently flushed to the direct access devices at a
convenient time.” Id. at 3:30-43.

Furthermore, Ish discloses that “[t]he method employs a hashing function
which takes as its input a block number and outputs a hash index into a hash
table of pointers. Each pointer in the hash table points to a doubly-linked list
of headers, with each header having a bit map wherein the bits contained in the
map identify whether a particular block of data is contained within the cache.
Upon entry into the hash table, the linked headers are sequentially searched. If
no header is found that contains the particular block, a cache “miss” occurs, at
which point in time an available space is made within the cache to hold the
block and the block is subsequently retrieved from the direct access device and

EXHIBIT B-5

Joint Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

US2008 1661509.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,778,430 to Ish et al. (“Ish”) alone and in combination
with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

stored within the cache.” Id. at 3:47-59.

Furthermore, Ish discloses that “[e]ach header contains information is
particularly relevant to the implementation of the replacement policy. As show
in Fig. 4b, the Frequency member 406 indicates how many times the particular
cache line has been accessed since it was placed in the cache. The Timestamp
member 407 indicates the time of the last access of the cache line. The
position within the head of the header point to a cache line is determined by its
Frequency member 406 and its Timestamp member 407. In accordance with
the present invention, the replacement head is modified to keep the best
candidate for replacement at the root of the heap.” Id. at 7:16-26.

Moreover, Ish discloses that “structures have been incorporated within the
present invention which further enhance its performance and advances over the
prior art the cache header 403 contains a bitmap, DirtyMap 409, which
like bitmap, ValidMap 408, has a bit in the bitmap for each block of data
contained within the cache line associated by the header. The bits contained in
DirtyMap 409 identify those blocks of data which have been modified, i.e.,
new data has been written into them, and have not yet been written out
“flushed” to the direct access storage devices. Such dirty block could pose a
performance problem for a cache system because if such a block were part of a
cache line identified as a most likely candidate for replacement, the entire
cache line would have be written to the direct access device BEFORE the
cache line was replaced by new blocks, thereby degrading performance of the
overall cache system. The presence of the DirtyMap 409, however, permits a
flushing daemon process to continuously operate, flushing direct blocks to the
direct access storage devices BEFORE the cache line in the block requires
replacement. The daemon sequentially checks the headers identified by the

EXHIBIT B-5

Joint Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

US2008 1661509.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,778,430 to Ish et al. (“Ish”) alone and in combination
with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

array of points (implicit heap) until a first dirty cache line is found and flushed.
In effect, this operation finds the first, direct candidate for replacement and
then flushes it.” Id. at 9:2-26.

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of
records having the same
hash address,

Ish discloses a record search means utilizing a search key to access the linked
list. Ish also discloses a record search means utilizing a search key to access a
linked list of records having the same hash address.

For example, Ish discloses an invention that “is implemented in a storage
subsystem having, preferably, an array of selectively accessible direct access
storage devices (disks), a processor, program memory, cache memory, and
non-volatile memory and is responsive to commands received from at least one
external source.” Id. at 3:24-29.

“In response to commands received from the external source, i.e., WRITE,
READ, the storage system transfer data, preferably organized as blocks,
to/from the direct access devices to/from the external source, as indicated. In
order to speed access to the data, the blocks are held in an intermediary
cache—when possible. Blocks which are the subject of a READ request and
present in the cache are transferred directly from the cache to the external
source. Conversely, Blocks which are the subject of a READ request and are
not present in the cache, are first transferred from the direct access devices to
the cache. Finally, blocks which are the subject of a WRITE request are stored
in the cache, and subsequently flushed to the direct access devices at a
convenient time.” Id. at 3:30-43.

Furthermore, Ish discloses that “[t]he method employs a hashing function
which takes as its input a block number and outputs a hash index into a hash

EXHIBIT B-5

Joint Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

US2008 1661509.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,778,430 to Ish et al. (“Ish”) alone and in combination
with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

table of pointers. Each pointer in the hash table points to a doubly-linked list
of headers, with each header having a bit map wherein the bits contained in the
map identify whether a particular block of data is contained within the cache.
Upon entry into the hash table, the linked headers are sequentially searched. If
no header is found that contains the particular block, a cache “miss” occurs, at
which point in time an available space is made within the cache to hold the
block and the block is subsequently retrieved from the direct access device and
stored within the cache.” Id. at 3:47-59.

[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the
records from the linked list
when the linked list is
accessed, and

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

Ish discloses the record search means including a means for identifying and
removing at least some of the expired ones of the records from the linked list
when the linked list is accessed. Ish also discloses the record search means
including means for identifying and removing at least some expired ones of the
records from the linked list of records when the linked list is accessed.

For example, Ish discloses an invention that “is implemented in a storage
subsystem having, preferably, an array of selectively accessible direct access
storage devices (disks), a processor, program memory, cache memory, and
non-volatile memory and is responsive to commands received from at least one
external source.” Id. at 3:24-29.

“In response to commands received from the external source, i.e., WRITE,
READ, the storage system transfer data, preferably organized as blocks,
to/from the direct access devices to/from the external source, as indicated. In
order to speed access to the data, the blocks are held in an intermediary
cache—when possible. Blocks which are the subject of a READ request and
present in the cache are transferred directly from the cache to the external
source. Conversely, Blocks which are the subject of a READ request and are

EXHIBIT B-5

Joint Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

US2008 1661509.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,778,430 to Ish et al. (“Ish”) alone and in combination
with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

not present in the cache, are first transferred from the direct access devices to
the cache. Finally, blocks which are the subject of a WRITE request are stored
in the cache, and subsequently flushed to the direct access devices at a
convenient time.” Id. at 3:30-43.

Furthermore, Ish discloses that “[t]he method employs a hashing function
which takes as its input a block number and outputs a hash index into a hash
table of pointers. Each pointer in the hash table points to a doubly-linked list
of headers, with each header having a bit map wherein the bits contained in the
map identify whether a particular block of data is contained within the cache.
Upon entry into the hash table, the linked headers are sequentially searched. If
no header is found that contains the particular block, a cache “miss” occurs, at
which point in time an available space is made within the cache to hold the
block and the block is subsequently retrieved from the direct access device and
stored within the cache.” Id. at 3:47-59.

Furthermore, Ish discloses that “[e]ach header contains information is
particularly relevant to the implementation of the replacement policy. As show
in Fig. 4b, the Frequency member 406 indicates how many times the particular
cache line has been accessed since it was placed in the cache. The Timestamp
member 407 indicates the time of the last access of the cache line. The
position within the head of the header point to a cache line is determined by its
Frequency member 406 and its Timestamp member 407. In accordance with
the present invention, the replacement head is modified to keep the best
candidate for replacement at the root of the heap.” Id. at 7:16-26.

Moreover, Ish discloses that “structures have been incorporated within the
present invention which further enhance its performance and advances over the

EXHIBIT B-5

Joint Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

US2008 1661509.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,778,430 to Ish et al. (“Ish”) alone and in combination
with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

prior art the cache header 403 contains a bitmap, DirtyMap 409, which
like bitmap, ValidMap 408, has a bit in the bitmap for each block of data
contained within the cache line associated by the header. The bits contained in
DirtyMap 409 identify those blocks of data which have been modified, i.e.,
new data has been written into them, and have not yet been written out
“flushed” to the direct access storage devices. Such dirty block could pose a
performance problem for a cache system because if such a block were part of a
cache line identified as a most likely candidate for replacement, the entire
cache line would have be written to the direct access device BEFORE the
cache line was replaced by new blocks, thereby degrading performance of the
overall cache system. The presence of the DirtyMap 409, however, permits a
flushing daemon process to continuously operate, flushing direct blocks to the
direct access storage devices BEFORE the cache line in the block requires
replacement. The daemon sequentially checks the headers identified by the
array of points (implicit heap) until a first dirty cache line is found and flushed.
In effect, this operation finds the first, direct candidate for replacement and
then flushes it.” Id. at 9:2-26.

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

Ish discloses means, utilizing the record search means, for accessing the linked
list and, at the same time, removing at least some of the expired ones of the
records in the linked list. Ish also discloses utilizing the record search means,
for inserting, retrieving, and deleting records from the system and, at the same
time, removing at least some expired ones of the records in the accessed linked
list of records.

For example, Ish discloses an invention that “is implemented in a storage
subsystem having, preferably, an array of selectively accessible direct access
storage devices (disks), a processor, program memory, cache memory, and

EXHIBIT B-5

Joint Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

US2008 1661509.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,778,430 to Ish et al. (“Ish”) alone and in combination
with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

non-volatile memory and is responsive to commands received from at least one
external source.” Id. at 3:24-29.

“In response to commands received from the external source, i.e., WRITE,
READ, the storage system transfer data, preferably organized as blocks,
to/from the direct access devices to/from the external source, as indicated. In
order to speed access to the data, the blocks are held in an intermediary
cache—when possible. Blocks which are the subject of a READ request and
present in the cache are transferred directly from the cache to the external
source. Conversely, Blocks which are the subject of a READ request and are
not present in the cache, are first transferred from the direct access devices to
the cache. Finally, blocks which are the subject of a WRITE request are stored
in the cache, and subsequently flushed to the direct access devices at a
convenient time.” Id. at 3:30-43.

Furthermore, Ish discloses that “[t]he method employs a hashing function
which takes as its input a block number and outputs a hash index into a hash
table of pointers. Each pointer in the hash table points to a doubly-linked list
of headers, with each header having a bit map wherein the bits contained in the
map identify whether a particular block of data is contained within the cache.
Upon entry into the hash table, the linked headers are sequentially searched. If
no header is found that contains the particular block, a cache “miss” occurs, at
which point in time an available space is made within the cache to hold the
block and the block is subsequently retrieved from the direct access device and
stored within the cache.” Id. at 3:47-59.

Furthermore, Ish discloses that “[e]ach header contains information is
particularly relevant to the implementation of the replacement policy. As show

EXHIBIT B-5

Joint Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

US2008 1661509.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,778,430 to Ish et al. (“Ish”) alone and in combination
with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

in Fig. 4b, the Frequency member 406 indicates how many times the particular
cache line has been accessed since it was placed in the cache. The Timestamp
member 407 indicates the time of the last access of the cache line. The
position within the head of the header point to a cache line is determined by its
Frequency member 406 and its Timestamp member 407. In accordance with
the present invention, the replacement head is modified to keep the best
candidate for replacement at the root of the heap.” Id. at 7:16-26.

Moreover, Ish discloses that “structures have been incorporated within the
present invention which further enhance its performance and advances over the
prior art the cache header 403 contains a bitmap, DirtyMap 409, which
like bitmap, ValidMap 408, has a bit in the bitmap for each block of data
contained within the cache line associated by the header. The bits contained in
DirtyMap 409 identify those blocks of data which have been modified, i.e.,
new data has been written into them, and have not yet been written out
“flushed” to the direct access storage devices. Such dirty block could pose a
performance problem for a cache system because if such a block were part of a
cache line identified as a most likely candidate for replacement, the entire
cache line would have be written to the direct access device BEFORE the
cache line was replaced by new blocks, thereby degrading performance of the
overall cache system. The presence of the DirtyMap 409, however, permits a
flushing daemon process to continuously operate, flushing direct blocks to the
direct access storage devices BEFORE the cache line in the block requires
replacement. The daemon sequentially checks the headers identified by the
array of points (implicit heap) until a first dirty cache line is found and flushed.
In effect, this operation finds the first, direct candidate for replacement and
then flushes it.” Id. at 9:2-26.

EXHIBIT B-5

Joint Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

US2008 1661509.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,778,430 to Ish et al. (“Ish”) alone and in combination
with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

2. The information storage
and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

6. The information storage
and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

Ish alone or in combination with Hamstra discloses an information storage and
retrieval system further including means for dynamically determining
maximum number for the record search means to remove in the accessed
linked list of records.

It is inherent to the Ish disclosure that upon a call to READ or WRITE, if there
is empty space available in the, created by either (1) the initialization of the
cache when segments within the cache have not yet been filled or (2)
continuous flushing of the cache to remove the best candidates for
replacement, blocks are transferred from a direct device to the cache without a
deletion. If, however, empty space is not available, then the necessary space is
made available within the cache by performing a delete. In order to promote
the goals of a cache memory system, an efficient system would not make a
deletion unless it was necessary, because the system would like to keep the
cache filled to make retrieval for the user as fast as possible. Therefore, Ish
inherently incorporates a dynamic decision making process in determining
whether to delete a block within the cache upon a call to READ or WRITE.

To the extent it is not inherent, it would be obvious to combine Ish with
Hamstra.

For example, as summarized in Hamstra:

If the data is not resident in the cache memory then it is staged
by segments from a disk, placed in the cache memory, and sent
to the host. However, this may require that some of the
segments in the cache memory be replaced by the segments
from the disks. Hamstra et al., “Processor-Addressable

EXHIBIT B-5

Joint Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

US2008 1661509.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,778,430 to Ish et al. (“Ish”) alone and in combination
with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

Timestamp for Indicating Oldest Written-to-Cache Entry Not
Copied Back to Bulk Memory,” U.S. Patent No.4,530,054
(issued Jul. 16, 1985) at 1:36-41 (emphasis added).

[W]hen a new segment or segments has to be brought from a
device 104 to the cache memory 106 and there are no empty
segments in the cache memory 106 then some of the segments
resident in the cache memory 106 must be deleted or removed
therefrom in order to make room for the new segments. Id. at
6:29-34 (emphasis added).

[W]hen the SCU 100 has no other work to do it may search the
SDT [– the segment descriptor (SDT) contains an entry for each
segment of data resident in the cache memory, similar to a hash
table (Id. at 5:33-35) –] to locate segments which have been
written to the cache and trickle these segments to the devices
104 thus making space available in cache 106 for additional
segments. The trickling of written-to segments takes place on
the same basis as segment replacement, that is, the least recently
used segments are trickled first Id. at 6:53-60.

In Hamstra, empty segments are created by either first initialization of the
cache before segments in cache memory are filled or by the trickle down
functionality of the system. According to Hamstra, if there are no empty
segments in the cache memory, then some of the segments in the cache
memory are deleted by the system. However, if there are empty segments in
the cache, then there is no need to delete any segments and the requested
segments are transfered from a disk into those empty segments. Therefore, the

EXHIBIT B-5

Joint Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

US2008 1661509.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,778,430 to Ish et al. (“Ish”) alone and in combination
with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

system described in Hamstra dynamically determines whether to delete a
segment based on the availability of empty segments in the cache memory.

As both Ish and Hamstra relate (1) to a system of cache maintenance using a
least recently used method for replacement of cache segments organized in
linked lists and (2) a system to automatically delete the best candidates for
replacement prior to a call from a user, one of ordinary skill in the art would
understand how to use the Hamstra patent’s dynamic decision on whether to
perform a segment deletion based on the availability of empty segments in a
cache memory when implementing a cache maintenance system such as Ish.
Moreover, one of ordinary skill in the art would recongize that it would
improve similar systems and methods in the same way.

The fundamental goal of a cache memory, as described by both Ish and
Hamstra, is to provide users fast access to frequently used data. Ish et al., U.S.
Patent No. 5,778,430 at 1:6-30; Hamstra et al, U.S. Patent No. 4,530,054 at
1:22-31. This is achieved by insuring that data residing in the cache is the
most recently and frequently used data. A person skilled in the art would
appreciate that the technique of replacing least recently used data segments
from cache memory upon an insertion of a new data segment can be expanded
to include dynamic decision making functionality to delete segments only
when no empty segments are available in the cache.

One of ordinary skill in the art would recognize that the result of combining
the system disclosed in Ish with the logic of dynamically determining whether
a deletion is necessary upon a user call as disclosed in Hamstra would further
promote the goals of a cache memory. For example, one such benefit would
include creating faster access to data for the user – the additional step of a

EXHIBIT B-5

Joint Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

US2008 1661509.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,778,430 to Ish et al. (“Ish”) alone and in combination
with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

deletion would only take place if there was no empty space in the cache
memory.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Ish to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in Ish
with the fundamental concept of dynamically determining the maximum
number of expired records to remove in an accessed linked list of records to
solve a number of potential problems. For example, the removal of expired
records described in Ish can be burdensome on the system, adding to the
system’s load and slowing down the system’s processing. Moreover, the
removal could also force an interruption in real-time processing as the
processing waits for the removal to complete. Indeed, part of the motivation
for the system disclosed in Ish is avoiding these problems. One of ordinary
skill in the art would have known that dynamically determining the maximum
number to remove would limit the burden on the system and bound the length
of any real-time interruption to prevent delays in processing. Indeed, Nemes
concedes that such dynamic determination was obvious when he states in the
‘120 patent that “[a] person skilled in the art will appreciate that the technique
of removing all expired records while searching the linked list can be expanded
to include techniques whereby not necessarily all expired records are removed,
and that the decision regarding if and how many records to delete can be a
dynamic one.” ‘120 at 7:10-15.

EXHIBIT B-5

Joint Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

US2008 1661509.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,778,430 to Ish et al. (“Ish”) alone and in combination
with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Ish and Hamstra, Ish combined with Dirks, Thatte,
the ’663 patent and/or the Opportunistic Garbage Collection Articles discloses
an information storage and retrieval system further including means for
dynamically determining maximum number for the record search means to
remove in the accessed linked list of records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG

EXHIBIT B-5

Joint Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

US2008 1661509.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,778,430 to Ish et al. (“Ish”) alone and in combination
with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the

EXHIBIT B-5

Joint Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

US2008 1661509.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,778,430 to Ish et al. (“Ish”) alone and in combination
with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Ish and Dirks relate to deletion of aged records upon the allocation of
a new incoming record, one of ordinary skill in the art would have understood
how to use Dirks’ dynamic decision making process of determining the
maximum number of records to sweep/remove in other hash tables
implementations such as Ish. Moreover, one of ordinary skill in the art would
recognize that it would improve similar systems and methods in the same way.
As the ’120 patent states “[a] person skilled in the art will appreciate that the
technique of removing all expired records while searching the linked list can
be expanded to include techniques whereby not necessarily all expired records
are removed, and that the decision regarding if and how many records to delete
can be a dynamic one.” The ’120 patent at 7:10-15. Additionally, one of
ordinary skill in the art would recognize that the result of combining Dirks’
deletion decision procedure with Ish nothing more than the predictable use of
prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Ish and would have
seen the benefits of doing so. One possible benefit, for example, is saving the
system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Ish with the means for

EXHIBIT B-5

Joint Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

US2008 1661509.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,778,430 to Ish et al. (“Ish”) alone and in combination
with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. For example,
Thatte discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, as both Ish and Thatte teach a system of data storage and
retrieval, one of ordinary skill in the art would recognize that the result of
combining Ish with Thatte would be nothing more than the predictable use of
prior art elements according to their established functions. The resulting
combination would include the capability to determine the maximum number
for the record search means to remove as taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine Ish with
Thatte and recognize the benefits of doing so. For example, the removal of
expired records described in Ish can be burdensome on the system, adding to
the system’s load and slowing down the system’s processing. One of ordinary
skill in the art would recognize that combining Ish with the teachings of Thatte
would solve this problem by dynamically determining how many records to
delete based on, among other things, the system load. Moreover, the '120
patent discloses that "[a] person skilled in the art will appreciate that the
technique of removing all expired records while searching the linked list can
be expanded to include techniques whereby not necessarily all expired records
are removed, and that the decision regarding if and how many records to delete

EXHIBIT B-5

Joint Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

US2008 1661509.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,778,430 to Ish et al. (“Ish”) alone and in combination
with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

can be a dynamic one." '120 at 7:10-15. Thus, the '120 patent provides
motivations to combine Ish with Thatte.

Alternatively, it would also be obvious to combine Ish with the ’663 patent.
Disclosure of these claim elements in the ’663 patent is clearly shown in the
chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.

EXHIBIT B-5

Joint Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

US2008 1661509.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,778,430 to Ish et al. (“Ish”) alone and in combination
with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load

EXHIBIT B-5

Joint Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

US2008 1661509.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,778,430 to Ish et al. (“Ish”) alone and in combination
with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Ish and the ’663 patent relate to deletion of records from hash tables
using external chaining, one of ordinary skill in the art would understood how
to use the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load in other hash table implementations such as that
described in Ish. Moreover, one of ordinary skill in the art would recognize
that it would improve similar systems and methods in the same way. As the
’120 patent states “[a] person skilled in the art will appreciate that the
technique of removing all expired records while searching the linked list can
be expanded to include techniques whereby not necessarily all expired records
are removed, and that the decision regarding if and how many records to delete
can be a dynamic one.” The ’120 patent at 7:10-15. Additionally, one of
ordinary skill in the art would recognize that the result of combining the ’663

EXHIBIT B-5

Joint Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

US2008 1661509.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,778,430 to Ish et al. (“Ish”) alone and in combination
with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

patent’s deletion decision procedure with Ish would be nothing more than the
predictable use of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Ish and would
have seen the benefits of doing so. One such benefit, for example, is that the
system would avoid performing deletions when the system load exceeded a
threshold.

Alternatively, it would also be obvious to combine Ish with the Opportunistic
Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

EXHIBIT B-5

Joint Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

US2008 1661509.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,778,430 to Ish et al. (“Ish”) alone and in combination
with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Ish and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Ish. Moreover, one of ordinary skill in the art would
recognize that it would improve similar systems and methods in the same way.

EXHIBIT B-5

Joint Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

US2008 1661509.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,778,430 to Ish et al. (“Ish”) alone and in combination
with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

As the ’120 patent states “[a] person skilled in the art will appreciate that the
technique of removing all expired records while searching the linked list can
be expanded to include techniques whereby not necessarily all expired records
are removed, and that the decision regarding if and how many records to delete
can be a dynamic one.” The ’120 patent at 7:10-15. Additionally, one of
ordinary skill in the art would recognize that the result of combining the
Opportunistic Garbage Collection Articles’ deletion decision procedure with
Ish would be nothing more than the predictable use of prior art elements
according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Ish and would have
seen the benefits of doing so. One such benefit, for example, is preventing
slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Ish to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in Ish
with the fundamental concept of dynamically determining the maximum
number of expired records to remove in an accessed linked list of records to
solve a number of potential problems. For example, the removal of expired
records described in Ish can be burdensome on the system, adding to the

EXHIBIT B-5

Joint Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

US2008 1661509.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,778,430 to Ish et al. (“Ish”) alone and in combination
with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

system’s load and slowing down the system’s processing. Moreover, the
removal could also force an interruption in real-time processing as the
processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Ish in combination with Dirks, Thatte, the ‘663
Patent, or the Opportunistic Garbage Collection References, it is disclosed by
Linux 2.0.1, which describes dynamically determining maximum number of
expired ones of the records to remove when the linked list is accessed. It
would have been obvious to combine Linux 2.0.1 with Ish. For example,
both Linux 2.0.1 and Ish describe systems and methods for performing data
storage and retrieval using known programming techniques to yield a
predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function

EXHIBIT B-5

Joint Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

US2008 1661509.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,778,430 to Ish et al. (“Ish”) alone and in combination
with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux

EXHIBIT B-5

Joint Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

US2008 1661509.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,778,430 to Ish et al. (“Ish”) alone and in combination
with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function

EXHIBIT B-5

Joint Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

US2008 1661509.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,778,430 to Ish et al. (“Ish”) alone and in combination
with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than

EXHIBIT B-5

Joint Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

US2008 1661509.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,778,430 to Ish et al. (“Ish”) alone and in combination
with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

the maximum number of records that the function rt_cache_add can
remove from a linked list.

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

To the extent the preamble is a limitation, Ish discloses a method for storing
and retrieving information records using a linked list to store and provide
access to the records, at least some of the records automatically expiring. Ish
also discloses a method for storing and retrieving information records using a
hashing technique to provide access to the records and using an external
chaining technique to store the records with same hash address, at least some
of the records automatically expiring.

For example, Ish discloses an invention that “is implemented in a storage
subsystem having, preferably, an array of selectively accessible direct access
storage devices (disks), a processor, program memory, cache memory, and
non-volatile memory and is responsive to commands received from at least one
external source.” Ish et al., U.S. Patent No. 5,778,430 at 3:24-29.

“In response to commands received from the external source, i.e., WRITE,
READ, the storage system transfer data, preferably organized as blocks,
to/from the direct access devices to/from the external source, as indicated. In
order to speed access to the data, the blocks are held in an intermediary
cache—when possible. Blocks which are the subject of a READ request and
present in the cache are transferred directly from the cache to the external
source. Conversely, Blocks which are the subject of a READ request and are
not present in the cache, are first transferred from the direct access devices to
the cache. Finally, blocks which are the subject of a WRITE request are stored
in the cache, and subsequently flushed to the direct access devices at a
convenient time.” Id. at 3:30-43.

EXHIBIT B-5

Joint Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

US2008 1661509.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,778,430 to Ish et al. (“Ish”) alone and in combination
with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

Furthermore, Ish discloses that “[t]he method employs a hashing function
which takes as its input a block number and outputs a hash index into a hash
table of pointers. Each pointer in the hash table points to a doubly-linked list
of headers, with each header having a bit map wherein the bits contained in the
map identify whether a particular block of data is contained within the cache.
Upon entry into the hash table, the linked headers are sequentially searched. If
no header is found that contains the particular block, a cache “miss” occurs, at
which point in time an available space is made within the cache to hold the
block and the block is subsequently retrieved from the direct access device and
stored within the cache.” Id. at 3:47-59.

Furthermore, Ish discloses that “[e]ach header contains information is
particularly relevant to the implementation of the replacement policy. As show
in Fig. 4b, the Frequency member 406 indicates how many times the particular
cache line has been accessed since it was placed in the cache. The Timestamp
member 407 indicates the time of the last access of the cache line. The
position within the head of the header point to a cache line is determined by its
Frequency member 406 and its Timestamp member 407. In accordance with
the present invention, the replacement head is modified to keep the best
candidate for replacement at the root of the heap.” Id. at 7:16-26.

Moreover, Ish discloses that “structures have been incorporated within the
present invention which further enhance its performance and advances over the
prior art the cache header 403 contains a bitmap, DirtyMap 409, which
like bitmap, ValidMap 408, has a bit in the bitmap for each block of data
contained within the cache line associated by the header. The bits contained in
DirtyMap 409 identify those blocks of data which have been modified, i.e.,

EXHIBIT B-5

Joint Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

US2008 1661509.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,778,430 to Ish et al. (“Ish”) alone and in combination
with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

new data has been written into them, and have not yet been written out
“flushed” to the direct access storage devices. Such dirty block could pose a
performance problem for a cache system because if such a block were part of a
cache line identified as a most likely candidate for replacement, the entire
cache line would have be written to the direct access device BEFORE the
cache line was replaced by new blocks, thereby degrading performance of the
overall cache system. The presence of the DirtyMap 409, however, permits a
flushing daemon process to continuously operate, flushing direct blocks to the
direct access storage devices BEFORE the cache line in the block requires
replacement. The daemon sequentially checks the headers identified by the
array of points (implicit heap) until a first dirty cache line is found and flushed.
In effect, this operation finds the first, direct candidate for replacement and
then flushes it.” Id. at 9:2-26.

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

Ish discloses accessing a linked list of records. Ish also discloses accessing a
linked list of records having same hash address.

For example, Ish discloses an invention that “is implemented in a storage
subsystem having, preferably, an array of selectively accessible direct access
storage devices (disks), a processor, program memory, cache memory, and
non-volatile memory and is responsive to commands received from at least one
external source.” Id. at 3:24-29.

“In response to commands received from the external source, i.e., WRITE,
READ, the storage system transfer data, preferably organized as blocks,
to/from the direct access devices to/from the external source, as indicated. In
order to speed access to the data, the blocks are held in an intermediary
cache—when possible. Blocks which are the subject of a READ request and

EXHIBIT B-5

Joint Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

US2008 1661509.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,778,430 to Ish et al. (“Ish”) alone and in combination
with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

present in the cache are transferred directly from the cache to the external
source. Conversely, Blocks which are the subject of a READ request and are
not present in the cache, are first transferred from the direct access devices to
the cache. Finally, blocks which are the subject of a WRITE request are stored
in the cache, and subsequently flushed to the direct access devices at a
convenient time.” Id. at 3:30-43.

Furthermore, Ish discloses that “[t]he method employs a hashing function
which takes as its input a block number and outputs a hash index into a hash
table of pointers. Each pointer in the hash table points to a doubly-linked list
of headers, with each header having a bit map wherein the bits contained in the
map identify whether a particular block of data is contained within the cache.
Upon entry into the hash table, the linked headers are sequentially searched. If
no header is found that contains the particular block, a cache “miss” occurs, at
which point in time an available space is made within the cache to hold the
block and the block is subsequently retrieved from the direct access device and
stored within the cache.” Id. at 3:47-59.

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

Ish discloses identifying at least some of the automatically expired ones of the
records.

For example, Ish discloses an invention that “is implemented in a storage
subsystem having, preferably, an array of selectively accessible direct access
storage devices (disks), a processor, program memory, cache memory, and
non-volatile memory and is responsive to commands received from at least one
external source.” Id. at 3:24-29.

“In response to commands received from the external source, i.e., WRITE,

EXHIBIT B-5

Joint Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

US2008 1661509.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,778,430 to Ish et al. (“Ish”) alone and in combination
with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

READ, the storage system transfer data, preferably organized as blocks,
to/from the direct access devices to/from the external source, as indicated. In
order to speed access to the data, the blocks are held in an intermediary
cache—when possible. Blocks which are the subject of a READ request and
present in the cache are transferred directly from the cache to the external
source. Conversely, Blocks which are the subject of a READ request and are
not present in the cache, are first transferred from the direct access devices to
the cache. Finally, blocks which are the subject of a WRITE request are stored
in the cache, and subsequently flushed to the direct access devices at a
convenient time.” Id. at 3:30-43.

Furthermore, Ish discloses that “[t]he method employs a hashing function
which takes as its input a block number and outputs a hash index into a hash
table of pointers. Each pointer in the hash table points to a doubly-linked list
of headers, with each header having a bit map wherein the bits contained in the
map identify whether a particular block of data is contained within the cache.
Upon entry into the hash table, the linked headers are sequentially searched. If
no header is found that contains the particular block, a cache “miss” occurs, at
which point in time an available space is made within the cache to hold the
block and the block is subsequently retrieved from the direct access device and
stored within the cache.” Id. at 3:47-59.

Furthermore, Ish discloses that “[e]ach header contains information is
particularly relevant to the implementation of the replacement policy. As show
in Fig. 4b, the Frequency member 406 indicates how many times the particular
cache line has been accessed since it was placed in the cache. The Timestamp
member 407 indicates the time of the last access of the cache line. The
position within the head of the header point to a cache line is determined by its

EXHIBIT B-5

Joint Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

US2008 1661509.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,778,430 to Ish et al. (“Ish”) alone and in combination
with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

Frequency member 406 and its Timestamp member 407. In accordance with
the present invention, the replacement head is modified to keep the best
candidate for replacement at the root of the heap.” Id. at 7:16-26.

Moreover, Ish discloses that “structures have been incorporated within the
present invention which further enhance its performance and advances over the
prior art the cache header 403 contains a bitmap, DirtyMap 409, which
like bitmap, ValidMap 408, has a bit in the bitmap for each block of data
contained within the cache line associated by the header. The bits contained in
DirtyMap 409 identify those blocks of data which have been modified, i.e.,
new data has been written into them, and have not yet been written out
“flushed” to the direct access storage devices. Such dirty block could pose a
performance problem for a cache system because if such a block were part of a
cache line identified as a most likely candidate for replacement, the entire
cache line would have be written to the direct access device BEFORE the
cache line was replaced by new blocks, thereby degrading performance of the
overall cache system. The presence of the DirtyMap 409, however, permits a
flushing daemon process to continuously operate, flushing direct blocks to the
direct access storage devices BEFORE the cache line in the block requires
replacement. The daemon sequentially checks the headers identified by the
array of points (implicit heap) until a first dirty cache line is found and flushed.
In effect, this operation finds the first, direct candidate for replacement and
then flushes it.” Id. at 9:2-26.

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked

Ish discloses removing at least some of the automatically expired records from
the linked list when the linked list is accessed.
For example, Ish discloses an invention that “is implemented in a storage
subsystem having, preferably, an array of selectively accessible direct access

EXHIBIT B-5

Joint Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

US2008 1661509.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,778,430 to Ish et al. (“Ish”) alone and in combination
with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

list is accessed. list is accessed, and storage devices (disks), a processor, program memory, cache memory, and
non-volatile memory and is responsive to commands received from at least one
external source.” Id. at 3:24-29.

“In response to commands received from the external source, i.e., WRITE,
READ, the storage system transfer data, preferably organized as blocks,
to/from the direct access devices to/from the external source, as indicated. In
order to speed access to the data, the blocks are held in an intermediary
cache—when possible. Blocks which are the subject of a READ request and
present in the cache are transferred directly from the cache to the external
source. Conversely, Blocks which are the subject of a READ request and are
not present in the cache, are first transferred from the direct access devices to
the cache. Finally, blocks which are the subject of a WRITE request are stored
in the cache, and subsequently flushed to the direct access devices at a
convenient time.” Id. at 3:30-43

Furthermore, Ish discloses that “[t]he method employs a hashing function
which takes as its input a block number and outputs a hash index into a hash
table of pointers. Each pointer in the hash table points to a doubly-linked list
of headers, with each header having a bit map wherein the bits contained in the
map identify whether a particular block of data is contained within the cache.
Upon entry into the hash table, the linked headers are sequentially searched. If
no header is found that contains the particular block, a cache “miss” occurs, at
which point in time an available space is made within the cache to hold the
block and the block is subsequently retrieved from the direct access device and
stored within the cache.” Id. at 3:47-59.

Furthermore, Ish discloses that “[e]ach header contains information is

EXHIBIT B-5

Joint Invalidity Contentions & Production of
Documents

35 Case No. 6:09-CV-549-LED

US2008 1661509.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,778,430 to Ish et al. (“Ish”) alone and in combination
with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

particularly relevant to the implementation of the replacement policy. As show
in Fig. 4b, the Frequency member 406 indicates how many times the particular
cache line has been accessed since it was placed in the cache. The Timestamp
member 407 indicates the time of the last access of the cache line. The
position within the head of the header point to a cache line is determined by its
Frequency member 406 and its Timestamp member 407. In accordance with
the present invention, the replacement head is modified to keep the best
candidate for replacement at the root of the heap.” Id. at 7:16-26.

Moreover, Ish discloses that “structures have been incorporated within the
present invention which further enhance its performance and advances over the
prior art the cache header 403 contains a bitmap, DirtyMap 409, which
like bitmap, ValidMap 408, has a bit in the bitmap for each block of data
contained within the cache line associated by the header. The bits contained in
DirtyMap 409 identify those blocks of data which have been modified, i.e.,
new data has been written into them, and have not yet been written out
“flushed” to the direct access storage devices. Such dirty block could pose a
performance problem for a cache system because if such a block were part of a
cache line identified as a most likely candidate for replacement, the entire
cache line would have be written to the direct access device BEFORE the
cache line was replaced by new blocks, thereby degrading performance of the
overall cache system. The presence of the DirtyMap 409, however, permits a
flushing daemon process to continuously operate, flushing direct blocks to the
direct access storage devices BEFORE the cache line in the block requires
replacement. The daemon sequentially checks the headers identified by the
array of points (implicit heap) until a first dirty cache line is found and flushed.
In effect, this operation finds the first, direct candidate for replacement and
then flushes it.” Id. at 9:2-26.

EXHIBIT B-5

Joint Invalidity Contentions & Production of
Documents

36 Case No. 6:09-CV-549-LED

US2008 1661509.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,778,430 to Ish et al. (“Ish”) alone and in combination
with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

 [7d] inserting, retrieving

or deleting one of the
records from the system
following the step of
removing.

Ish discloses inserting, retrieving or deleting one of the records from the
system following the step of removing.

For example, Ish discloses an invention that “is implemented in a storage
subsystem having, preferably, an array of selectively accessible direct access
storage devices (disks), a processor, program memory, cache memory, and
non-volatile memory and is responsive to commands received from at least one
external source.” Id. at 3:24-29.

“In response to commands received from the external source, i.e., WRITE,
READ, the storage system transfer data, preferably organized as blocks,
to/from the direct access devices to/from the external source, as indicated. In
order to speed access to the data, the blocks are held in an intermediary
cache—when possible. Blocks which are the subject of a READ request and
present in the cache are transferred directly from the cache to the external
source. Conversely, Blocks which are the subject of a READ request and are
not present in the cache, are first transferred from the direct access devices to
the cache. Finally, blocks which are the subject of a WRITE request are stored
in the cache, and subsequently flushed to the direct access devices at a
convenient time.” Id. at 3:30-43.

Furthermore, Ish discloses that “[t]he method employs a hashing function
which takes as its input a block number and outputs a hash index into a hash
table of pointers. Each pointer in the hash table points to a doubly-linked list
of headers, with each header having a bit map wherein the bits contained in the
map identify whether a particular block of data is contained within the cache.
Upon entry into the hash table, the linked headers are sequentially searched. If

EXHIBIT B-5

Joint Invalidity Contentions & Production of
Documents

37 Case No. 6:09-CV-549-LED

US2008 1661509.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,778,430 to Ish et al. (“Ish”) alone and in combination
with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

no header is found that contains the particular block, a cache “miss” occurs, at
which point in time an available space is made within the cache to hold the
block and the block is subsequently retrieved from the direct access device and
stored within the cache.” Id. at 3:47-59.

Furthermore, Ish discloses that “[e]ach header contains information is
particularly relevant to the implementation of the replacement policy. As show
in Fig. 4b, the Frequency member 406 indicates how many times the particular
cache line has been accessed since it was placed in the cache. The Timestamp
member 407 indicates the time of the last access of the cache line. The
position within the head of the header point to a cache line is determined by its
Frequency member 406 and its Timestamp member 407. In accordance with
the present invention, the replacement head is modified to keep the best
candidate for replacement at the root of the heap.” Id. at 7:16-26.

Moreover, Ish discloses that “structures have been incorporated within the
present invention which further enhance its performance and advances over the
prior art the cache header 403 contains a bitmap, DirtyMap 409, which
like bitmap, ValidMap 408, has a bit in the bitmap for each block of data
contained within the cache line associated by the header. The bits contained in
DirtyMap 409 identify those blocks of data which have been modified, i.e.,
new data has been written into them, and have not yet been written out
“flushed” to the direct access storage devices. Such dirty block could pose a
performance problem for a cache system because if such a block were part of a
cache line identified as a most likely candidate for replacement, the entire
cache line would have be written to the direct access device BEFORE the
cache line was replaced by new blocks, thereby degrading performance of the
overall cache system. The presence of the DirtyMap 409, however, permits a

EXHIBIT B-5

Joint Invalidity Contentions & Production of
Documents

38 Case No. 6:09-CV-549-LED

US2008 1661509.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,778,430 to Ish et al. (“Ish”) alone and in combination
with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

flushing daemon process to continuously operate, flushing direct blocks to the
direct access storage devices BEFORE the cache line in the block requires
replacement. The daemon sequentially checks the headers identified by the
array of points (implicit heap) until a first dirty cache line is found and flushed.
In effect, this operation finds the first, direct candidate for replacement and
then flushes it.” Id. at 9:2-26.

4. The method according to
claim 3 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

Ish alone or in combination with Hamstra discloses dynamically determining
maximum number of expired ones of the records to remove when the linked
list is accessed.

It is inherent to the Ish disclosure that upon a call to READ or WRITE, if there
is empty space available in the, created by either (1) the initialization of the
cache when segments within the cache have not yet been filled or (2)
continuous flushing of the cache to remove the best candidates for
replacement, blocks are transferred from a direct device to the cache without a
deletion. If, however, empty space is not available, then the necessary space is
made available within the cache by performing a delete. In order to promote
the goals of a cache memory system, an efficient system would not make a
deletion unless it was necessary, because the system would like to keep the
cache filled to make retrieval for the user as fast as possible. Therefore, Ish
inherently incorporates a dynamic decision making process in determining
whether to delete a block within the cache upon a call to READ or WRITE.

To the extent it is not inherent, it would be obvious to combine Ish with
Hamstra.

For example, as summarized in Hamstra:

EXHIBIT B-5

Joint Invalidity Contentions & Production of
Documents

39 Case No. 6:09-CV-549-LED

US2008 1661509.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,778,430 to Ish et al. (“Ish”) alone and in combination
with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

If the data is not resident in the cache memory then it is staged
by segments from a disk, placed in the cache memory, and sent
to the host. However, this may require that some of the
segments in the cache memory be replaced by the segments
from the disks. Hamstra et al., “Processor-Addressable
Timestamp for Indicating Oldest Written-to-Cache Entry Not
Copied Back to Bulk Memory,” U.S. Patent No. 4,530,054
(issued Jul. 16, 1985) at 1:36-41 (emphasis added).

[W]hen a new segment or segments has to be brought from a
device 104 to the cache memory 106 and there are no empty
segments in the cache memory 106 then some of the segments
resident in the cache memory 106 must be deleted or removed
therefrom in order to make room for the new segments. Id. at
6:29-34 (emphasis added).

[W]hen the SCU 100 has no other work to do it may search the
SDT [– the segment descriptor (SDT) contains an entry for each
segment of data resident in the cache memory, similar to a hash
table (Id. at 5:33-35) –] to locate segments which have been
written to the cache and trickle these segments to the devices
104 thus making space available in cache 106 for additional
segments. The trickling of written-to segments takes place on
the same basis as segment replacement, that is, the least recently
used segments are trickled first Id. at 6:53-60.

In Hamstra, empty segments are created by either first initialization of the

EXHIBIT B-5

Joint Invalidity Contentions & Production of
Documents

40 Case No. 6:09-CV-549-LED

US2008 1661509.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,778,430 to Ish et al. (“Ish”) alone and in combination
with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

cache before segments in cache memory are filled or by the trickle down
functionality of the system. According to Hamstra, if there are no empty
segments in the cache memory, then some of the segments in the cache
memory are deleted by the system. However, if there are empty segments in
the cache, then there is no need to delete any segments and the requested
segments are transfered from a disk into those empty segments. Therefore, the
system described in Hamstra dynamically determines whether to delete a
segment based on the availability of empty segments in the cache memory.

As both Ish and Hamstra relate (1) to a system of cache maintenance using a
least recently used method for replacement of cache segments organized in
linked lists and (2) a system to automatically delete the best candidates for
replacement prior to a call from a user, one of ordinary skill in the art would
understand how to use the Hamstra patent’s dynamic decision on whether to
perform a segment deletion based on the availability of empty segments in a
cache memory when implementing a cache maintenance system such as Ish.
Moreover, one of ordinary skill in the art would recongize that it would
improve similar systems and methods in the same way.

The fundamental goal of a cache memory, as described by both Ish and
Hamstra, is to provide users fast access to frequently used data. Ish et al., U.S.
Patent No. 5,778,430 at 1:6-30; Hamstra et al, U.S. Patent No. 4,530,054 at
1:22-31. This is achieved by insuring that data residing in the cache is the
most recently and frequently used data. A person skilled in the art would
appreciate that the technique of replacing least recently used data segments
from cache memory upon an insertion of a new data segment can be expanded
to include dynamic decision making functionality to delete segments only

EXHIBIT B-5

Joint Invalidity Contentions & Production of
Documents

41 Case No. 6:09-CV-549-LED

US2008 1661509.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,778,430 to Ish et al. (“Ish”) alone and in combination
with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

when no empty segments are available in the cache.

One of ordinary skill in the art would recognize that the result of combining
the system disclosed in Ish with the logic of dynamically determining whether
a deletion is necessary upon a user call as disclosed in Hamstra would further
promote the goals of a cache memory. For example, one such benefit would
include creating faster access to data for the user – the additional step of a
deletion would only take place if there was no empty space in the cache
memory.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Ish to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in Ish
with the fundamental concept of dynamically determining the maximum
number of expired records to remove in an accessed linked list of records to
solve a number of potential problems. For example, the removal of expired
records described in Ish can be burdensome on the system, adding to the
system’s load and slowing down the system’s processing. Moreover, the
removal could also force an interruption in real-time processing as the
processing waits for the removal to complete. Indeed, part of the motivation
for the system disclosed in Ish is avoiding these problems. One of ordinary
skill in the art would have known that dynamically determining the maximum
number to remove would limit the burden on the system and bound the length
of any real-time interruption to prevent delays in processing. Indeed, Nemes

EXHIBIT B-5

Joint Invalidity Contentions & Production of
Documents

42 Case No. 6:09-CV-549-LED

US2008 1661509.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,778,430 to Ish et al. (“Ish”) alone and in combination
with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

concedes that such dynamic determination was obvious when he states in the
‘120 patent that “[a] person skilled in the art will appreciate that the technique
of removing all expired records while searching the linked list can be expanded
to include techniques whereby not necessarily all expired records are removed,
and that the decision regarding if and how many records to delete can be a
dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Ish and Hamstra, Ish combined with Dirks, Thatte,
the ’663 patent and/or the Opportunistic Garbage Collection Articles discloses
an information storage and retrieval system further including means for
dynamically determining maximum number for the record search means to
remove in the accessed linked list of records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be

EXHIBIT B-5

Joint Invalidity Contentions & Production of
Documents

43 Case No. 6:09-CV-549-LED

US2008 1661509.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,778,430 to Ish et al. (“Ish”) alone and in combination
with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

EXHIBIT B-5

Joint Invalidity Contentions & Production of
Documents

44 Case No. 6:09-CV-549-LED

US2008 1661509.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,778,430 to Ish et al. (“Ish”) alone and in combination
with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Ish and Dirks relate to deletion of aged records upon the allocation of
a new incoming record, one of ordinary skill in the art would have understood
how to use Dirks’ dynamic decision making process of determining the
maximum number of records to sweep/remove in other hash tables
implementations such as Ish. Moreover, one of ordinary skill in the art would
recognize that it would improve similar systems and methods in the same way.
As the ’120 patent states “[a] person skilled in the art will appreciate that the
technique of removing all expired records while searching the linked list can
be expanded to include techniques whereby not necessarily all expired records
are removed, and that the decision regarding if and how many records to delete
can be a dynamic one.” The ’120 patent at 7:10-15. Additionally, one of
ordinary skill in the art would recognize that the result of combining Dirks’
deletion decision procedure with Ish nothing more than the predictable use of
prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have

EXHIBIT B-5

Joint Invalidity Contentions & Production of
Documents

45 Case No. 6:09-CV-549-LED

US2008 1661509.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,778,430 to Ish et al. (“Ish”) alone and in combination
with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Ish and would have
seen the benefits of doing so. One possible benefit, for example, is saving the
system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Ish with the means for
dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. For example,
Thatte discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, as both Ish and Thatte teach a system of data storage and
retrieval, one of ordinary skill in the art would recognize that the result of
combining Ish with Thatte would be nothing more than the predictable use of
prior art elements according to their established functions. The resulting
combination would include the capability to determine the maximum number
for the record search means to remove as taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine Ish with
Thatte and recognize the benefits of doing so. For example, the removal of
expired records described in Ish can be burdensome on the system, adding to
the system’s load and slowing down the system’s processing. One of ordinary

EXHIBIT B-5

Joint Invalidity Contentions & Production of
Documents

46 Case No. 6:09-CV-549-LED

US2008 1661509.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,778,430 to Ish et al. (“Ish”) alone and in combination
with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

skill in the art would recognize that combining Ish with the teachings of Thatte
would solve this problem by dynamically determining how many records to
delete based on, among other things, the system load. Moreover, the '120
patent discloses that "[a] person skilled in the art will appreciate that the
technique of removing all expired records while searching the linked list can
be expanded to include techniques whereby not necessarily all expired records
are removed, and that the decision regarding if and how many records to delete
can be a dynamic one." '120 at 7:10-15. Thus, the '120 patent provides
motivations to combine Ish with Thatte.

Alternatively, it would also be obvious to combine Ish with the ’663 patent.
Disclosure of these claim elements in the ’663 patent is clearly shown in the
chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations

EXHIBIT B-5

Joint Invalidity Contentions & Production of
Documents

47 Case No. 6:09-CV-549-LED

US2008 1661509.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,778,430 to Ish et al. (“Ish”) alone and in combination
with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT B-5

Joint Invalidity Contentions & Production of
Documents

48 Case No. 6:09-CV-549-LED

US2008 1661509.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,778,430 to Ish et al. (“Ish”) alone and in combination
with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does

EXHIBIT B-5

Joint Invalidity Contentions & Production of
Documents

49 Case No. 6:09-CV-549-LED

US2008 1661509.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,778,430 to Ish et al. (“Ish”) alone and in combination
with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Ish and the ’663 patent relate to deletion of records from hash tables
using external chaining, one of ordinary skill in the art would understood how
to use the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load in other hash table implementations such as that
described in Ish. Moreover, one of ordinary skill in the art would recognize
that it would improve similar systems and methods in the same way. As the
’120 patent states “[a] person skilled in the art will appreciate that the
technique of removing all expired records while searching the linked list can
be expanded to include techniques whereby not necessarily all expired records
are removed, and that the decision regarding if and how many records to delete
can be a dynamic one.” The ’120 patent at 7:10-15. Additionally, one of
ordinary skill in the art would recognize that the result of combining the ’663
patent’s deletion decision procedure with Ish would be nothing more than the
predictable use of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have

EXHIBIT B-5

Joint Invalidity Contentions & Production of
Documents

50 Case No. 6:09-CV-549-LED

US2008 1661509.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,778,430 to Ish et al. (“Ish”) alone and in combination
with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Ish and would
have seen the benefits of doing so. One such benefit, for example, is that the
system would avoid performing deletions when the system load exceeded a
threshold.

Alternatively, it would also be obvious to combine Ish with the Opportunistic
Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with

EXHIBIT B-5

Joint Invalidity Contentions & Production of
Documents

51 Case No. 6:09-CV-549-LED

US2008 1661509.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,778,430 to Ish et al. (“Ish”) alone and in combination
with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Ish and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Ish. Moreover, one of ordinary skill in the art would
recognize that it would improve similar systems and methods in the same way.
As the ’120 patent states “[a] person skilled in the art will appreciate that the
technique of removing all expired records while searching the linked list can
be expanded to include techniques whereby not necessarily all expired records
are removed, and that the decision regarding if and how many records to delete

EXHIBIT B-5

Joint Invalidity Contentions & Production of
Documents

52 Case No. 6:09-CV-549-LED

US2008 1661509.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,778,430 to Ish et al. (“Ish”) alone and in combination
with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

can be a dynamic one.” The ’120 patent at 7:10-15. Additionally, one of
ordinary skill in the art would recognize that the result of combining the
Opportunistic Garbage Collection Articles’ deletion decision procedure with
Ish would be nothing more than the predictable use of prior art elements
according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Ish and would have
seen the benefits of doing so. One such benefit, for example, is preventing
slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Ish to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in Ish
with the fundamental concept of dynamically determining the maximum
number of expired records to remove in an accessed linked list of records to
solve a number of potential problems. For example, the removal of expired
records described in Ish can be burdensome on the system, adding to the
system’s load and slowing down the system’s processing. Moreover, the
removal could also force an interruption in real-time processing as the
processing waits for the removal to complete.

EXHIBIT B-5

Joint Invalidity Contentions & Production of
Documents

53 Case No. 6:09-CV-549-LED

US2008 1661509.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,778,430 to Ish et al. (“Ish”) alone and in combination
with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Ish in combination with Dirks, Thatte, the ‘663
Patent, or the Opportunistic Garbage Collection References, it is disclosed by
Linux 2.0.1, which describes dynamically determining maximum number of
expired ones of the records to remove when the linked list is accessed. It
would have been obvious to combine Linux 2.0.1 with Ish. For example,
both Linux 2.0.1 and Ish describe systems and methods for performing data
storage and retrieval using known programming techniques to yield a
predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the

EXHIBIT B-5

Joint Invalidity Contentions & Production of
Documents

54 Case No. 6:09-CV-549-LED

US2008 1661509.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,778,430 to Ish et al. (“Ish”) alone and in combination
with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

EXHIBIT B-5

Joint Invalidity Contentions & Production of
Documents

55 Case No. 6:09-CV-549-LED

US2008 1661509.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,778,430 to Ish et al. (“Ish”) alone and in combination
with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

EXHIBIT B-5

Joint Invalidity Contentions & Production of
Documents

56 Case No. 6:09-CV-549-LED

US2008 1661509.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,778,430 to Ish et al. (“Ish”) alone and in combination
with U.S. Patent No. 4,530,054 to Hamstra et al. (“Hamstra”)

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, Beardsley discloses an information
storage and retrieval system.

For example, Beardsley discloses that “[i]t is one object of the invention to
provide an improved data processing system having two or more levels of data
storage in a data storage system. It is still another object to provide a method
of caching data from a lower level of storage on a higher level of storage both
as individual records and in whole tracks.” Beardsley et al., “Method and
System for Dynamic Cache Allocation Between Record and Track Entries”
U.S. Patent No. 5,991,775 (issued Nov. 23, 1999) at 3:13-18.

“Storage controller 12 is internally divided into sections corresponding
independent power supplies. Two sections are storage clusters 36 and 38
respectively. A third section includes a memory cache 58. . . . Cache 58
provides storage for frequently accessed data and for the buffering functions in
order to provide similar response times for cache writes and cache reads.” Id.
at 5:1-9.

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

Beardsley discloses a linked list to store and provide access to records stored in
a memory of the system, at least some of the records automatically expiring.
Beardsley also discloses a hashing means to provide access to records stored in
a memory of the system and using an external chaining technique to store the
records with same hash address, at least some of the records automatically
expiring.

For example, Beardsley discloses that “[i]t is one object of the invention to
provide an improved data processing system having two or more levels of data
storage in a data storage system. It is still another object to provide a method

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

of caching data from a lower level of storage on a higher level of storage both
as individual records and in whole tracks.” Id. at 3:13-18.

“Storage controller 12 is internally divided into sections corresponding
independent power supplies. Two sections are storage clusters 36 and 38
respectively. A third section includes a memory cache 58. . . . Cache 58
provides storage for frequently accessed data and for the buffering functions in
order to provide similar response times for cache writes and cache reads.” Id.
at 5:1-9.

Furthermore, Beardsley discloses that a “[s]catter index table 80 is used to
quickly determine whether data exists in cache or not. A hashing algorithm is
processed by a microcomputer to convert a device number and physical
address to a scatter index table entry. Hashing functions are well known
techniques used to randomly allocate locations in one address space to
addresses of a second address space. Those skilled in the art will realize that
the usual techniques of hashing chains are used to resolve conflicts. Within the
scatter index table are a plurality of indices to track directory entries 82 and
record directory entries 86.” Id. at 5:65 – 6:8.

Interaction of the various data structures is best understood with reference to
Figure 5A: Id. at Figure 5A.

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

“To determine presence of a record or track in cache, step 202 is executed to

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

process a hashing algorithm on the direct access storage device and physical
address for a track. The hashing algorithm will return an offset into the scatter
index table 80 which in turn provides an index to a track directory entry or
record directory entry, if present. Return of such an index is taken by step 204
to be a cache hit.” Id. at 8:3-10. In the case of a cache miss, the steps of the
process responsive to non-occurrence of a cache hit follow the NO branch
from step 204. Step 218 is then executed.” Id. at 8:44-47.

Furthermore, Beardsley discloses that if “at step 230 [] free segments [are] not
available for caching the track, the NO branch is followed to step 238. . . . Step
238 represents execution of a segment freeing process Upon completion
of step 238 segments will be available for allocation to record caching or track
caching. . . . Execution of the segment freeing process represented by block
238 should rarely be required to make record slots available. A record slot
freeing process is executed upon completion of each access to a record.
Returning to step 216 and following the YES branch to step 242, the record
slot freeing process is initiated. At step 242 the record slot just accessed is
stamped as most recently used in the appropriate segment information block on
the local most recently use/least recently used list of segment information
block. The record slot time stamp is also updated. Next, the segment
information block is accessed to determine the least recently used record in the
segment information block. At step 246, the time stamp of the least recently
used record slot is compared with the global time stamp 94. . . . [i]f the least
recently used record slot time stamp is older than the global time stamp 94 the
record slot is freed.” Id. at 9:11-39.

“[A]t step 314 the segment is deallocated and placed in the free segment list. It
will be understood by those skilled in the art that the process at block 238 is

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

laid out for to illustrate freeing of a single segment, but execution can be
repeated to free several segments if required.” Id. at 10:28-33.

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of
records having the same
hash address,

Beardsley discloses a record search means utilizing a search key to access the
linked list. Beardsley also discloses a record search means utilizing a search
key to access a linked list of records having the same hash address.

For example, Beardsley discloses that “[i]t is one object of the invention to
provide an improved data processing system having two or more levels of data
storage in a data storage system. It is still another object to provide a method
of caching data from a lower level of storage on a higher level of storage both
as individual records and in whole tracks.” Id. at 3:13-18.

“Storage controller 12 is internally divided into sections corresponding
independent power supplies. Two sections are storage clusters 36 and 38
respectively. A third section includes a memory cache 58. . . . Cache 58
provides storage for frequently accessed data and for the buffering functions in
order to provide similar response times for cache writes and cache reads.” Id.
at 5:1-9.

Furthermore, Beardsley discloses that a “[s]catter index table 80 is used to
quickly determine whether data exists in cache or not. A hashing algorithm is
processed by a microcomputer to convert a device number and physical
address to a scatter index table entry. Hashing functions are well known
techniques used to randomly allocate locations in one address space to
addresses of a second address space. Those skilled in the art will realize that
the usual techniques of hashing chains are used to resolve conflicts. Within the
scatter index table are a plurality of indices to track directory entries 82 and

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

record directory entries 86.” Id. at 5:65 – 6:8.

[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the
records from the linked list
when the linked list is
accessed, and

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

Beardsley discloses the record search means including a means for identifying
and removing at least some of the expired ones of the records from the linked
list when the linked list is accessed. Beardsley also discloses the record search
means including means for identifying and removing at least some expired
ones of the records from the linked list of records when the linked list is
accessed.

For example, Beardsley discloses that “[i]t is one object of the invention to
provide an improved data processing system having two or more levels of data
storage in a data storage system. It is still another object to provide a method
of caching data from a lower level of storage on a higher level of storage both
as individual records and in whole tracks.” Id. at 3:13-18.

“Storage controller 12 is internally divided into sections corresponding
independent power supplies. Two sections are storage clusters 36 and 38
respectively. A third section includes a memory cache 58. . . . Cache 58
provides storage for frequently accessed data and for the buffering functions in
order to provide similar response times for cache writes and cache reads.” Id.
at 5:1-9.

Furthermore, Beardsley discloses that a “[s]catter index table 80 is used to
quickly determine whether data exists in cache or not. A hashing algorithm is
processed by a microcomputer to convert a device number and physical
address to a scatter index table entry. Hashing functions are well known
techniques used to randomly allocate locations in one address space to
addresses of a second address space. Those skilled in the art will realize that

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

the usual techniques of hashing chains are used to resolve conflicts. Within the
scatter index table are a plurality of indices to track directory entries 82 and
record directory entries 86.” Id. at 5:65 – 6:8.

Interaction of the various data structures is best understood with reference to
Figure 5A: Id. at Figure 5A.

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

“To determine presence of a record or track in cache, step 202 is executed to

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

process a hashing algorithm on the direct access storage device and physical
address for a track. The hashing algorithm will return an offset into the scatter
index table 80 which in turn provides an index to a track directory entry or
record directory entry, if present. Return of such an index is taken by step 204
to be a cache hit.” Id. at 8:3-10. In the case of a cache miss, the steps of the
process responsive to non-occurrence of a cache hit follow the NO branch
from step 204. Step 218 is then executed.” Id. at 8:44-47.

Furthermore, Beardsley discloses that if “at step 230 [] free segments [are] not
available for caching the track, the NO branch is followed to step 238. . . . Step
238 represents execution of a segment freeing process Upon completion
of step 238 segments will be available for allocation to record caching or track
caching. . . . Execution of the segment freeing process represented by block
238 should rarely be required to make record slots available. A record slot
freeing process is executed upon completion of each access to a record.
Returning to step 216 and following the YES branch to step 242, the record
slot freeing process is initiated. At step 242 the record slot just accessed is
stamped as most recently used in the appropriate segment information block on
the local most recently use/least recently used list of segment information
block. The record slot time stamp is also updated. Next, the segment
information block is accessed to determine the least recently used record in the
segment information block. At step 246, the time stamp of the least recently
used record slot is compared with the global time stamp 94. . . . [i]f the least
recently used record slot time stamp is older than the global time stamp 94 the
record slot is freed.” Id. at 9:11-39.

“[A]t step 314 the segment is deallocated and placed in the free segment list. It
will be understood by those skilled in the art that the process at block 238 is

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

laid out for to illustrate freeing of a single segment, but execution can be
repeated to free several segments if required.” Id. at 10:28-33.

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

Beardsley discloses means, utilizing the record search means, for accessing the
linked list and, at the same time, removing at least some of the expired ones of
the records in the linked list. Beardsley also discloses utilizing the record
search means, for inserting, retrieving, and deleting records from the system
and, at the same time, removing at least some expired ones of the records in the
accessed linked list of records.

For example, Beardsley discloses that “[i]t is one object of the invention to
provide an improved data processing system having two or more levels of data
storage in a data storage system. It is still another object to provide a method
of caching data from a lower level of storage on a higher level of storage both
as individual records and in whole tracks.” Id. at 3:13-18.

“Storage controller 12 is internally divided into sections corresponding
independent power supplies. Two sections are storage clusters 36 and 38
respectively. A third section includes a memory cache 58. . . . Cache 58
provides storage for frequently accessed data and for the buffering functions in
order to provide similar response times for cache writes and cache reads.” Id.
at 5:1-9.

Furthermore, Beardsley discloses that a “[s]catter index table 80 is used to
quickly determine whether data exists in cache or not. A hashing algorithm is
processed by a microcomputer to convert a device number and physical
address to a scatter index table entry. Hashing functions are well known
techniques used to randomly allocate locations in one address space to

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

addresses of a second address space. Those skilled in the art will realize that
the usual techniques of hashing chains are used to resolve conflicts. Within the
scatter index table are a plurality of indices to track directory entries 82 and
record directory entries 86.” Id. at 5:65 – 6:8.

Interaction of the various data structures is best understood with reference to
Figure 5A: Id. at Figure 5A.

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

“To determine presence of a record or track in cache, step 202 is executed to

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

process a hashing algorithm on the direct access storage device and physical
address for a track. The hashing algorithm will return an offset into the scatter
index table 80 which in turn provides an index to a track directory entry or
record directory entry, if present. Return of such an index is taken by step 204
to be a cache hit.” Id. at 8:3-10. In the case of a cache miss, the steps of the
process responsive to non-occurrence of a cache hit follow the NO branch
from step 204. Step 218 is then executed.” Id. at 8:44-47.

Furthermore, Beardsley discloses that if “at step 230 [] free segments [are] not
available for caching the track, the NO branch is followed to step 238. . . . Step
238 represents execution of a segment freeing process Upon completion
of step 238 segments will be available for allocation to record caching or track
caching. . . . Execution of the segment freeing process represented by block
238 should rarely be required to make record slots available. A record slot
freeing process is executed upon completion of each access to a record.
Returning to step 216 and following the YES branch to step 242, the record
slot freeing process is initiated. At step 242 the record slot just accessed is
stamped as most recently used in the appropriate segment information block on
the local most recently use/least recently used list of segment information
block. The record slot time stamp is also updated. Next, the segment
information block is accessed to determine the least recently used record in the
segment information block. At step 246, the time stamp of the least recently
used record slot is compared with the global time stamp 94. . . . [i]f the least
recently used record slot time stamp is older than the global time stamp 94 the
record slot is freed.” Id. at 9:11-39.

“[A]t step 314 the segment is deallocated and placed in the free segment list. It
will be understood by those skilled in the art that the process at block 238 is

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

laid out for to illustrate freeing of a single segment, but execution can be
repeated to free several segments if required.” Id. at 10:28-33.

2. The information storage
and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

6. The information storage
and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

Beardsley discloses an information storage and retrieval system further
including means for dynamically determining maximum number for the record
search means to remove in the accessed linked list of records.

The dynamic decision-making process of the system is best understood with
reference to Figure 5A: Id. at Figure 5A.

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

For example, When the system confronts a cache “miss,” the system follows
“the NO branch from step 204, [and] step 218 is executed.” Id. at 8:44-47.
“The NO branch [from step 218] is followed when track caching has been
requested in the define extent. Step 230 is then executed to determine if free
segments are available for creation of a track slot. If YES, step 232 is executed
to allocate segments from the track slot and to allocate a track slot directory
entry and supplementary track directories entries as required. . . . If, however,
at step 230, free segments were not available for caching the track, the NO
branch is followed to step 238. . . . Step 238 represents execution of a segment
freeing process as described below in relation to FIG. 6. Upon completion of
step 238 segments will be available for allocation to record caching or track
caching. . . . Execution of the segment freeing process represented by block
238 should rarely be required to make record slots available. A record slot
freeing process is executed upon completion of each access to a record.
Returning to step 216 and following the YES branch to step 242, the record
slot freeing process is initiated. At step 242 the record slot just accessed is
stamped as most recently used in the appropriate segment information block on
the local most recently use/least recently used list of segment information
block. The record slot time stamp is also updated. Next, the segment
information block is accessed to determine the least recently used record in the
segment information block. At step 246, the time stamp of the least recently
used record slot is compared with the global time stamp 94. . . . [i]f the least
recently used record slot time stamp is older than the global time stamp 94 the
record slot is freed.” Id. at 9:1-39.

“[A]t step 314 the segment is deallocated and placed in the free segment list. It
will be understood by those skilled in the art that the process at block 238 is

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

laid out for to illustrate freeing of a single segment, but execution can be
repeated to free several segments if required.” Id. at 10:28-33.

In summary, if free segments are available, the system does not delete or free
any allocated segments. If, however, free segments are not available, then the
system executes the segment freeing process, which deallocates segments and
places them in the free segment list for use in the call. Therefore, the
determination of when to delete a segment is dynamically determined by
whether a free segment exists.

Additionally, it would have been obvious to combine Beardsley with Dirks,
Thatte, the ’663 patent and/or the Opportunistic Garbage Collection Articles to
disclose an information storage and retrieval system further including means
for dynamically determining maximum number for the record search means to
remove in the accessed linked list of records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

As summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Beardsley and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as Beardsley. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Beardsley nothing more
than the predictable use of prior art elements according to their established

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Beardsley and would
have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Beardsley with the means
for dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. Thatte,
discloses a system and method using hash tables and/or linked lists and further
discloses means for dynamically determining the maximum number for the
record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Beardsley with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine
Beardsley with Thatte and recognize the benefits of doing so. For example, the

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

removal of expired records described in Beardsley can be burdensome on the
system, adding to the system’s load and slowing down the system’s
processing. One of ordinary skill in the art would recognize that combining
Beardsley with the teachings of Thatte would solve this problem by
dynamically determining how many records to delete based on, among other
things, the system load. Moreover, the '120 patent discloses that "[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one." '120 at
7:10-15. Thus, the '120 patent provides motivations to combine Beardsley
with Thatte.

Alternatively, it would also be obvious to combine Beardsleywith the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. As summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.
As both Beardsley and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in Beardsley. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with Beardsley
would be nothing more than the predictable use of prior art elements according
to their established functions.

By way of further example, one of ordinary skill in the art would have

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Beardsley and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Beardsley with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Beardsley and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Beardsley. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Beardsley would be nothing more than the predictable use of
prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Beardsley and
would have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Beardsley to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Beardsley with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in Beardsleycan be burdensome on
the system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Beardsley in combination with Dirks, Thatte, the
‘663 Patent, or the Opportunistic Garbage Collection References, it is
disclosed by Linux 2.0.1, which describes dynamically determining maximum
number of expired ones of the records to remove when the linked list is
accessed. It would have been obvious to combine Linux 2.0.1 with Beardsley.
For example, both Linux 2.0.1 and Beardsley describe systems and
methods for performing data storage and retrieval using known programming
techniques to yield a predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

3. A method for storing
and retrieving information
records using a linked list

7. A method for storing
and retrieving information
records using a hashing

To the extent the preamble is a limitation, Beardsley discloses a method for
storing and retrieving information records using a linked list to store and
provide access to the records, at least some of the records automatically

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

expiring. Beardsley also discloses a method for storing and retrieving
information records using a hashing technique to provide access to the records
and using an external chaining technique to store the records with same hash
address, at least some of the records automatically expiring.

For example, Beardsley discloses that “[i]t is one object of the invention to
provide an improved data processing system having two or more levels of data
storage in a data storage system. It is still another object to provide a method
of caching data from a lower level of storage on a higher level of storage both
as individual records and in whole tracks.” Beardsley at 3:13-18.

“Storage controller 12 is internally divided into sections corresponding
independent power supplies. Two sections are storage clusters 36 and 38
respectively. A third section includes a memory cache 58. . . . Cache 58
provides storage for frequently accessed data and for the buffering functions in
order to provide similar response times for cache writes and cache reads.” Id.
at 5:1-9.

Furthermore, Beardsley discloses that a “[s]catter index table 80 is used to
quickly determine whether data exists in cache or not. A hashing algorithm is
processed by a microcomputer to convert a device number and physical
address to a scatter index table entry. Hashing functions are well known
techniques used to randomly allocate locations in one address space to
addresses of a second address space. Those skilled in the art will realize that
the usual techniques of hashing chains are used to resolve conflicts. Within the
scatter index table are a plurality of indices to track directory entries 82 and
record directory entries 86.” Id. at 5:65 – 6:8.

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

Interaction of the various data structures is best understood with reference to
Figure 5A: Id. at Figure 5A.

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

“To determine presence of a record or track in cache, step 202 is executed to

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

35 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

process a hashing algorithm on the direct access storage device and physical
address for a track. The hashing algorithm will return an offset into the scatter
index table 80 which in turn provides an index to a track directory entry or
record directory entry, if present. Return of such an index is taken by step 204
to be a cache hit.” Id. at 8:3-10. In the case of a cache miss, the steps of the
process responsive to non-occurrence of a cache hit follow the NO branch
from step 204. Step 218 is then executed.” Id. at 8:44-47.

Furthermore, Beardsley discloses that if “at step 230 [] free segments [are] not
available for caching the track, the NO branch is followed to step 238. . . . Step
238 represents execution of a segment freeing process Upon completion
of step 238 segments will be available for allocation to record caching or track
caching. . . . Execution of the segment freeing process represented by block
238 should rarely be required to make record slots available. A record slot
freeing process is executed upon completion of each access to a record.
Returning to step 216 and following the YES branch to step 242, the record
slot freeing process is initiated. At step 242 the record slot just accessed is
stamped as most recently used in the appropriate segment information block on
the local most recently use/least recently used list of segment information
block. The record slot time stamp is also updated. Next, the segment
information block is accessed to determine the least recently used record in the
segment information block. At step 246, the time stamp of the least recently
used record slot is compared with the global time stamp 94. . . . [i]f the least
recently used record slot time stamp is older than the global time stamp 94 the
record slot is freed.” Id. at 9:11-39.

“[A]t step 314 the segment is deallocated and placed in the free segment list. It
will be understood by those skilled in the art that the process at block 238 is

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

36 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

laid out for to illustrate freeing of a single segment, but execution can be
repeated to free several segments if required.” Id. at 10:28-33.

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

Beardsley discloses accessing a linked list of records. Beardsley also discloses
accessing a linked list of records having same hash address.

For example, Beardsley discloses that “[i]t is one object of the invention to
provide an improved data processing system having two or more levels of data
storage in a data storage system. It is still another object to provide a method
of caching data from a lower level of storage on a higher level of storage both
as individual records and in whole tracks.” Id. at 3:13-18.

“Storage controller 12 is internally divided into sections corresponding
independent power supplies. Two sections are storage clusters 36 and 38
respectively. A third section includes a memory cache 58. . . . Cache 58
provides storage for frequently accessed data and for the buffering functions in
order to provide similar response times for cache writes and cache reads.” Id.
at 5:1-9.

Furthermore, Beardsley discloses that a “[s]catter index table 80 is used to
quickly determine whether data exists in cache or not. A hashing algorithm is
processed by a microcomputer to convert a device number and physical
address to a scatter index table entry. Hashing functions are well known
techniques used to randomly allocate locations in one address space to
addresses of a second address space. Those skilled in the art will realize that
the usual techniques of hashing chains are used to resolve conflicts. Within the
scatter index table are a plurality of indices to track directory entries 82 and
record directory entries 86.” Id. at 5:65 – 6:8.

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

37 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

Beardsley discloses identifying at least some of the automatically expired ones
of the records.

For example, Beardsley discloses that “[i]t is one object of the invention to
provide an improved data processing system having two or more levels of data
storage in a data storage system. It is still another object to provide a method
of caching data from a lower level of storage on a higher level of storage both
as individual records and in whole tracks.” Id. at 3:13-18.

“Storage controller 12 is internally divided into sections corresponding
independent power supplies. Two sections are storage clusters 36 and 38
respectively. A third section includes a memory cache 58. . . . Cache 58
provides storage for frequently accessed data and for the buffering functions in
order to provide similar response times for cache writes and cache reads.” Id.
at 5:1-9.

Furthermore, Beardsley discloses that a “[s]catter index table 80 is used to
quickly determine whether data exists in cache or not. A hashing algorithm is
processed by a microcomputer to convert a device number and physical
address to a scatter index table entry. Hashing functions are well known
techniques used to randomly allocate locations in one address space to
addresses of a second address space. Those skilled in the art will realize that
the usual techniques of hashing chains are used to resolve conflicts. Within the
scatter index table are a plurality of indices to track directory entries 82 and
record directory entries 86.” Id. at 5:65 – 6:8.

Interaction of the various data structures is best understood with reference to

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

38 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

Figure 5A: Id. at Figure 5A.

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

39 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

“To determine presence of a record or track in cache, step 202 is executed to
process a hashing algorithm on the direct access storage device and physical
address for a track. The hashing algorithm will return an offset into the scatter
index table 80 which in turn provides an index to a track directory entry or
record directory entry, if present. Return of such an index is taken by step 204
to be a cache hit.” Id. at 8:3-10. In the case of a cache miss, the steps of the
process responsive to non-occurrence of a cache hit follow the NO branch
from step 204. Step 218 is then executed.” Id. at 8:44-47.

Furthermore, Beardsley discloses that if “at step 230 [] free segments [are] not
available for caching the track, the NO branch is followed to step 238. . . . Step
238 represents execution of a segment freeing process Upon completion
of step 238 segments will be available for allocation to record caching or track
caching. . . . Execution of the segment freeing process represented by block
238 should rarely be required to make record slots available. A record slot
freeing process is executed upon completion of each access to a record.
Returning to step 216 and following the YES branch to step 242, the record
slot freeing process is initiated. At step 242 the record slot just accessed is
stamped as most recently used in the appropriate segment information block on
the local most recently use/least recently used list of segment information
block. The record slot time stamp is also updated. Next, the segment
information block is accessed to determine the least recently used record in the
segment information block. At step 246, the time stamp of the least recently
used record slot is compared with the global time stamp 94. . . . [i]f the least
recently used record slot time stamp is older than the global time stamp 94 the
record slot is freed.” Id. at 9:11-39.

“[A]t step 314 the segment is deallocated and placed in the free segment list. It

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

40 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

will be understood by those skilled in the art that the process at block 238 is
laid out for to illustrate freeing of a single segment, but execution can be
repeated to free several segments if required.” Id. at 10:28-33.

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

Beardsley discloses removing at least some of the automatically expired
records from the linked list when the linked list is accessed.

For example, Beardsley discloses that “[i]t is one object of the invention to
provide an improved data processing system having two or more levels of data
storage in a data storage system. It is still another object to provide a method
of caching data from a lower level of storage on a higher level of storage both
as individual records and in whole tracks.” Id. at 3:13-18.

“Storage controller 12 is internally divided into sections corresponding
independent power supplies. Two sections are storage clusters 36 and 38
respectively. A third section includes a memory cache 58. . . . Cache 58
provides storage for frequently accessed data and for the buffering functions in
order to provide similar response times for cache writes and cache reads.” Id.
at 5:1-9.

Furthermore, Beardsley discloses that a “[s]catter index table 80 is used to
quickly determine whether data exists in cache or not. A hashing algorithm is
processed by a microcomputer to convert a device number and physical
address to a scatter index table entry. Hashing functions are well known
techniques used to randomly allocate locations in one address space to
addresses of a second address space. Those skilled in the art will realize that
the usual techniques of hashing chains are used to resolve conflicts. Within the
scatter index table are a plurality of indices to track directory entries 82 and

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

41 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

record directory entries 86.” Id. at 5:65 – 6:8.

Interaction of the various data structures is best understood with reference to
Figure 5A: Id. at Figure 5A.

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

42 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

“To determine presence of a record or track in cache, step 202 is executed to

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

43 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

process a hashing algorithm on the direct access storage device and physical
address for a track. The hashing algorithm will return an offset into the scatter
index table 80 which in turn provides an index to a track directory entry or
record directory entry, if present. Return of such an index is taken by step 204
to be a cache hit.” Id. at 8:3-10. In the case of a cache miss, the steps of the
process responsive to non-occurrence of a cache hit follow the NO branch
from step 204. Step 218 is then executed.” Id. at 8:44-47.

Furthermore, Beardsley discloses that if “at step 230 [] free segments [are] not
available for caching the track, the NO branch is followed to step 238. . . . Step
238 represents execution of a segment freeing process Upon completion
of step 238 segments will be available for allocation to record caching or track
caching. . . . Execution of the segment freeing process represented by block
238 should rarely be required to make record slots available. A record slot
freeing process is executed upon completion of each access to a record.
Returning to step 216 and following the YES branch to step 242, the record
slot freeing process is initiated. At step 242 the record slot just accessed is
stamped as most recently used in the appropriate segment information block on
the local most recently use/least recently used list of segment information
block. The record slot time stamp is also updated. Next, the segment
information block is accessed to determine the least recently used record in the
segment information block. At step 246, the time stamp of the least recently
used record slot is compared with the global time stamp 94. . . . [i]f the least
recently used record slot time stamp is older than the global time stamp 94 the
record slot is freed.” Id. at 9:11-39.

“[A]t step 314 the segment is deallocated and placed in the free segment list. It
will be understood by those skilled in the art that the process at block 238 is

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

44 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

laid out for to illustrate freeing of a single segment, but execution can be
repeated to free several segments if required.” Id. at 10:28-33.

 [7d] inserting, retrieving
or deleting one of the
records from the system
following the step of
removing.

Beardsley discloses inserting, retrieving or deleting one of the records from the
system following the step of removing.

For example, Beardsley discloses that “[i]t is one object of the invention to
provide an improved data processing system having two or more levels of data
storage in a data storage system. It is still another object to provide a method
of caching data from a lower level of storage on a higher level of storage both
as individual records and in whole tracks.” Id. at 3:13-18.

“Storage controller 12 is internally divided into sections corresponding
independent power supplies. Two sections are storage clusters 36 and 38
respectively. A third section includes a memory cache 58. . . . Cache 58
provides storage for frequently accessed data and for the buffering functions in
order to provide similar response times for cache writes and cache reads.” Id.
at 5:1-9.

Furthermore, Beardsley discloses that a “[s]catter index table 80 is used to
quickly determine whether data exists in cache or not. A hashing algorithm is
processed by a microcomputer to convert a device number and physical
address to a scatter index table entry. Hashing functions are well known
techniques used to randomly allocate locations in one address space to
addresses of a second address space. Those skilled in the art will realize that
the usual techniques of hashing chains are used to resolve conflicts. Within the
scatter index table are a plurality of indices to track directory entries 82 and
record directory entries 86.” Id. at 5:65 – 6:8.

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

45 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

Interaction of the various data structures is best understood with reference to
Figure 5A: Id. at Figure 5A.

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

46 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

“To determine presence of a record or track in cache, step 202 is executed to
process a hashing algorithm on the direct access storage device and physical
address for a track. The hashing algorithm will return an offset into the scatter
index table 80 which in turn provides an index to a track directory entry or
record directory entry, if present. Return of such an index is taken by step 204
to be a cache hit.” Id. at 8:3-10. In the case of a cache miss, the steps of the
process responsive to non-occurrence of a cache hit follow the NO branch
from step 204. Step 218 is then executed.” Id. at 8:44-47.

Furthermore, Beardsley discloses that if “at step 230 [] free segments [are] not
available for caching the track, the NO branch is followed to step 238. . . . Step
238 represents execution of a segment freeing process Upon completion
of step 238 segments will be available for allocation to record caching or track
caching. . . . Execution of the segment freeing process represented by block
238 should rarely be required to make record slots available. A record slot
freeing process is executed upon completion of each access to a record.
Returning to step 216 and following the YES branch to step 242, the record
slot freeing process is initiated. At step 242 the record slot just accessed is
stamped as most recently used in the appropriate segment information block on
the local most recently use/least recently used list of segment information
block. The record slot time stamp is also updated. Next, the segment
information block is accessed to determine the least recently used record in the
segment information block. At step 246, the time stamp of the least recently
used record slot is compared with the global time stamp 94. . . . [i]f the least
recently used record slot time stamp is older than the global time stamp 94 the
record slot is freed.” Id. at 9:11-39.

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

47 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

“[A]t step 314 the segment is deallocated and placed in the free segment list. It
will be understood by those skilled in the art that the process at block 238 is
laid out for to illustrate freeing of a single segment, but execution can be
repeated to free several segments if required.” Id. at 10:28-33.

4. The method according to
claim 3 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

Beardsley discloses dynamically determining maximum number of expired
ones of the records to remove when the linked list is accessed.

The dynamic decision-making process of the system is best understood with
reference to Figure 5A: Id. at Figure 5A.

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

48 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

For example, when the system confronts a cache “miss,” the system follows

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

49 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

“the NO branch from step 204, [and] step 218 is executed the NO branch
[from step 218] is followed when track caching has been requested in the
define extent. Step 230 is then executed to determine if free segments are
available for creation of a track slot. If YES, step 232 is executed to allocate
segments from the track slot and to allocate a track slot directory entry and
supplementary track directories entries as required. . . . If, however, at step
230, free segments were not available for caching the track, the NO branch is
followed to step 238. . . . Step 238 represents execution of a segment freeing
process as described below in relation to FIG. 6. Upon completion of step 238
segments will be available for allocation to record caching or track caching. . .
. Execution of the segment freeing process represented by block 238 should
rarely be required to make record slots available. A record slot freeing process
is executed upon completion of each access to a record. Returning to step 216
and following the YES branch to step 242, the record slot freeing process is
initiated. At step 242 the record slot just accessed is stamped as most recently
used in the appropriate segment information block on the local most recently
use/least recently used list of segment information block. The record slot time
stamp is also updated. Next, the segment information block is accessed to
determine the least recently used record in the segment information block. At
step 246, the time stamp of the least recently used record slot is compared with
the global time stamp 94. . . . [i]f the least recently used record slot time stamp
is older than the global time stamp 94 the record slot is freed.” Id. at 9:1-39.

“[A]t step 314 the segment is deallocated and placed in the free segment list. It
will be understood by those skilled in the art that the process at block 238 is
laid out for to illustrate freeing of a single segment, but execution can be
repeated to free several segments if required.”Id. at 10:28-33.

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

50 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

In summary, if free segments are available, the system does not delete or free
any allocated segments. If, however, free segments are not available, then the
system executes the segment freeing process, which deallocates segments and
places them in the free segment list for use in the call. Therefore, the
determination of when to delete a segment is dynamically determined by
whether a free segment exists.

Additionally, it would have been obvious to combine Beardsley with Dirks,
Thatte, the ’663 patent, and/or the Opportunistic Garbage Collection Articles
to disclose dynamically determining maximum number of expired ones of the
records to remove when the linked list is accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in the
chart of Dirks, which is hereby incorporated by reference in its entirety.

As summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

51 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

52 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Beardsley and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as that described Beardsley. Moreover, one of ordinary
skill in the art would recognize that it would improve similar systems and
methods in the same way. As the ’120 patent states “[a] person skilled in the
art will appreciate that the technique of removing all expired records while
searching the linked list can be expanded to include techniques whereby not
necessarily all expired records are removed, and that the decision regarding if
and how many records to delete can be a dynamic one.” The ’120 patent at
7:10-15. Additionally, one of ordinary skill in the art would recognize that the
result of combining Dirks’ deletion decision procedure with Beardsley would
be nothing more than the predictable use of prior art elements according to
their established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

53 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

examine during each step of the sweeping process with Beardsley and would
have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Beardsley with the means
for dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. Thatte,
discloses a system and method using hash tables and/or linked lists and further
discloses means for dynamically determining the maximum number for the
record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Beardsley with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine
Beardsley with Thatte and recognized the benefits of doing so. For example,
the removal of expired records described in Beardsleycan be burdensome on
the system, adding to the system’s load and slowing down the system’s
processing. One of ordinary skill in the art would recognize that combining
Beardsley with the teachings of Thatte would solve this problem by

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

54 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

dynamically determining how many records to delete based on, among other
things, the system load. Moreover, the '120 patent discloses that "[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one." '120 at
7:10-15. Thus, the '120 patent provides motivations to combine Beardsley
with Thatte.

Alternatively, it would also be obvious to combine Beardsley with the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. As summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

55 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

56 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

57 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Beardsley and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as Beardsley. Moreover, one of ordinary skill in the art would recognize
that it would improve similar systems and methods in the same way. As the
’120 patent states “[a] person skilled in the art will appreciate that the
technique of removing all expired records while searching the linked list can
be expanded to include techniques whereby not necessarily all expired records
are removed, and that the decision regarding if and how many records to delete
can be a dynamic one.” The ’120 patent at 7:10-15. Additionally, one of
ordinary skill in the art would recognize that the result of combining the ’663
patent’s deletion decision procedure with Beardsley would be nothing more
than the predictable use of prior art elements according to their established
functions.

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

58 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Beardsley and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Beardsley with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

59 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Beardsley and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Beardsley. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

60 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Beardsley would be nothing more than the predictable use of
prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Beardsley and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would only perform deletions when the system was not already
too overloaded, thus preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Beardsley to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Beardsley with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in Beardsley can be burdensome on
the system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

61 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Beardsley in combination with Dirks, Thatte, the
‘663 Patent, or the Opportunistic Garbage Collection References, it is
disclosed by Linux 2.0.1, which describes dynamically determining maximum
number of expired ones of the records to remove when the linked list is
accessed. It would have been obvious to combine Linux 2.0.1 with Beardsley.
For example, both Linux 2.0.1 and Beardsley describe systems and
methods for performing data storage and retrieval using known programming
techniques to yield a predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

62 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

63 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

EXHIBIT B-6

Joint Invalidity Contentions & Production of
Documents

64 Case No. 6:09-CV-549-LED

US2008 1661512.4

 Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, Bishop discloses an information
storage and retrieval system.

For example, Bishop discloses that in an “aspect of the invention, a portion of
the computer’s memory is set aside for a primary linker cache and a secondary
linker image cache. Linker images, generated while loading programs for
execution are stored in the primary and secondary linker caches. Each linker
image in the primary linker cache has strong object references to objects
included in corresponding ones of the loaded programs, and each linker image
in the secondary linker cache has weak object references to objects included in
corresponding ones of the loaded programs.” Bishop, “System and Method for
Distributed Object Resource Management” U.S. Patent No. 5,765,174 (issued
Jun. 9, 1998) at 2:9-18.

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

Bishop discloses a linked list to store and provide access to records stored in a
memory of the system, at least some of the records automatically expiring.
Bishop also discloses a hashing means to provide access to records stored in a
memory of the system and using an external chaining technique to store the
records with same hash address, at least some of the records automatically
expiring.

For example, Bishop discloses that in an “aspect of the invention, a portion of
the computer’s memory is set aside for a primary linker cache and a secondary
linker image cache. Linker images, generated while loading programs for
execution are stored in the primary and secondary linker caches. Each linker
image in the primary linker cache has strong object references to objects
included in corresponding ones of the loaded programs, and each linker image
in the secondary linker cache has weak object references to objects included in

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

corresponding ones of the loaded programs.” Id.

Furthermore, Bishop discloses that “[t]he linker cache 170 has a limited
capacity, typically sufficient to hold references to about fifty or so linker
images 160. The linker 152 maintains a hash table 171 and a list 172 of the
cached linker images in “least recently used” order (i.e., each time a linker
image is used, it is moved to the head of the list). The hash table 171 is a
conventional hash table used to quickly locate items in the LRU list 172.” Id.
at 5:29-44.

“[I]n the preferred embodiment the linker cache 170 of FIG. 2 is replaced with
a smaller primary linker cache 220 and an expanded secondary linker cache
222. The primary linker cache 220 includes a hash table 224 and an LRU list
226 that stores strong object references to the least recently used linker images
160, while the secondary linker cache 222 includes a hash table 228 and an
LRU list 230 that stores strong object references to the linker images 160 least
recently used after the linker images referenced by the primary linker cache
220.” Id. at 7:61-67 – 8:1-3.

“When the linker cache is full, and another linker image needs to be generated
in response to a load program command, the reference in the LRU list 172 to
the least recently used linker image is deleted and the resulting space is used to
store a reference to a linker image for the newly loaded program. Deletion of
an object reference in the LRU list 172 enables deletion of the corresponding
linker image 160 when all user program domains also relinquish their
references to the linker image” Id. at 5:35-44.

Furthermore, Bishop inherently discloses that cached linker images are stored

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

in a linked list, “the linker 152 maintains a hash table 171 and a list 172 of the
cached linker images in “least recently used” order The hash table 171 is a
conventional hash table used to quickly locate items in the LRU list.” Id. at
5:31-35 (emphasis added). Because conventional hash tables need a system by
which to deal with the key collision problem and the most frequently used
method in dealing with such collisions is with the use of a linked list, such
inherent characteristic necessarily flows from the teachings of the applied prior
art.

To the extent that Bedrock argues that Bishop does not anticipate Claims 1 – 8
because linker images are not inherently stored in a linked list, it would have
been obvious to one of ordinary skill in the art to store the linker images in a
linked list. The admitted prior art in the background of the ‘120 patent
discloses that linked lists/external chaining were already common place to
resolve collisions within hash tables. Nemes, “Methods and Apparatus for
Information Storage and Retrieval Using a Hashing Technique with external
chaining and On-The-Fly Removal of Expired Data,” U.S. Patent No.
5,893,120 (issued Apr. 6, 1999) at 1:34-2:6 (“the ‘120 patent”). Thus, Bishop
and the admitted prior art of the ‘120 patent show that one of ordinary skill in
the art understood how to use linked lists/external chaining to resolve
collisions within hash tables, and would recognize that it would improve
similar systems and methods in the same way.

Moreover, as disclosed in Beardsley – “[h]ashing functions are well known
techniques used to randomly allocate locations in one address space to
addresses of a second address space. Those skilled in the art will realize that
the usual techniques of hashing chains are used to resolve conflicts” Beardsley
et al., “Method and System for Dynamic Cache Allocation Between Record

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

and Track Entries,” U.S. Patent No. 5,991,775 (issued Nov. 23, 1999) at 6:2-8.
– it was well known in the prior art to have objects distributed by a hash
function, such as those in Bishop, and then store the objects in a hash table
using linked lists or external chaining.

As both Bishop and Beardsley disclose systems and methods for allocating
data structures in segments within a cache that are stored in hash tables with a
least recently used methodology for replacement of old structures, one of
ordinary skill in the art would understand how to combine the hashed page
table with linked lists taught in Beardsley with Bishop. Moreover, one of
ordinary skill in art would recognize that it would improve similar systems and
methods in the same way. Additionally, one of ordinary skill in the art would
recognize that the result of combining Bishop with Beardsley would be nothing
more than the predictable use of prior art elements according to their
established functions. The result would simply be Bishop’s linker cache being
implemented with a hashing function using linked lists/external chaining.

By way of further example, one of ordinary skill in the art would have
combined linked lists as taught by these references and one of ordinary skill in
the art to the system disclosed in the admitted prior and would have seen the
benefits of doing so. One such benefit, for example, is hash table collision
resolution.

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of
records having the same
hash address,

Bishop discloses a record search means utilizing a search key to access the
linked list. Bishop also discloses a record search means utilizing a search key
to access a linked list of records having the same hash address.

For example, Bishop discloses that in an “aspect of the invention, a portion of

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

the computer’s memory is set aside for a primary linker cache and a secondary
linker image cache. Linker images, generated while loading programs for
execution are stored in the primary and secondary linker caches. Each linker
image in the primary linker cache has strong object references to objects
included in corresponding ones of the loaded programs, and each linker image
in the secondary linker cache has weak object references to objects included in
corresponding ones of the loaded programs.” Bishop, U.S. Patent No.
5,765,174 at 2:9-18.

Furthermore, Bishop discloses that “[t]he linker cache 170 has a limited
capacity, typically sufficient to hold references to about fifty or so linker
images 160. The linker 152 maintains a hash table 171 and a list 172 of the
cached linker images in “least recently used” order (i.e., each time a linker
image is used, it is moved to the head of the list). The hash table 171 is a
conventional hash table used to quickly locate items in the LRU list 172.” Id.
at 5:29-44.

“[I]n the preferred embodiment the linker cache 170 of FIG. 2 is replaced with
a smaller primary linker cache 220 and an expanded secondary linker cache
222. The primary linker cache 220 includes a hash table 224 and an LRU list
226 that stores strong object references to the least recently used linker images
160, while the secondary linker cache 222 includes a hash table 228 and an
LRU list 230 that stores strong object references to the linker images 160 least
recently used after the linker images referenced by the primary linker cache
220. Id. at 7:61-67 – 8:1-3.

“When the linker cache is full, and another linker image needs to be generated
in response to a load program command, the reference in the LRU list 172 to

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

the least recently used linker image is deleted and the resulting space is used to
store a reference to a linker image for the newly loaded program. Deletion of
an object reference in the LRU list 172 enables deletion of the corresponding
linker image 160 when all user program domains also relinquish their
references to the linker image” Id. at 5:35-44

Furthermore, Bishop inherently discloses that cached linker images are stored
in a linked list, “the linker 152 maintains a hash table 171 and a list 172 of the
cached linker images in “least recently used” order The hash table 171 is a
conventional hash table used to quickly locate items in the LRU list.” Id. at
5:31-35 (emphasis added). Because conventional hash tables need a system by
which to deal with the key collision problem and the most frequently used
method in dealing with such collisions is with the use of a linked list, such
inherent characteristic necessarily flows from the teachings of the applied prior
art.

To the extent that Bedrock argues that Bishop does not anticipate Claims 1 – 8
because linker images are not inherently stored in a linked list, it would have
been obvious to one of ordinary skill in the art to store the linker images in a
linked list. The admitted prior art in the background of the ‘120 patent
discloses that linked lists/external chaining were already common place to
resolve collisions within hash tables. Nemes, U.S. Patent No. 5,893,120at 1:34-
2:6. Thus, Bishop and the admitted prior art of the ‘120 patent show that one of
ordinary skill in the art understood how to use linked lists/external chaining to
resolve collisions within hash tables, and would recognize that it would
improve similar systems and methods in the same way.

Moreover, as disclosed in Beardsley – “[h]ashing functions are well known

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

techniques used to randomly allocate locations in one address space to
addresses of a second address space. Those skilled in the art will realize that
the usual techniques of hashing chains are used to resolve conflicts” Beardsley
U.S. Patent No. 5,991,775 at 6:2-8. – it was well known in the prior art to have
objects distributed by a hash function, such as those in Bishop, and then store
the objects in a hash table using linked lists or external chaining.

As both Bishop and Beardsley disclose systems and methods for allocating
data structures in segments within a cache that are stored in hash tables with a
least recently used methodology for replacement of old structures, one of
ordinary skill in the art would understand how to combine the hashed page
table with linked lists taught in Beardsley with Bishop. Moreover, one of
ordinary skill in art would recognize that it would improve similar systems and
methods in the same way. Additionally, one of ordinary skill in the art would
recognize that the result of combining Bishop with Beardsley would be nothing
more than the predictable use of prior art elements according to their
established functions. The result would simply be Bishop’s linker cache being
implemented with a hashing function using linked lists/external chaining.

By way of further example, one of ordinary skill in the art would have
combined linked lists as taught by these references and one of ordinary skill in
the art to the system disclosed in the admitted prior and would have seen the
benefits of doing so. One such benefit, for example, is hash table collision
resolution.

[1c] the record search
means including a means
for identifying and

[5c] the record search
means including means for
identifying and removing

Bishop discloses the record search means including a means for identifying
and removing at least some of the expired ones of the records from the linked
list when the linked list is accessed. Bishop also discloses the record search

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

removing at least some of
the expired ones of the
records from the linked list
when the linked list is
accessed, and

at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

means including means for identifying and removing at least some expired
ones of the records from the linked list of records when the linked list is
accessed.

For example, Bishop discloses that in an “aspect of the invention, a portion of
the computer’s memory is set aside for a primary linker cache and a secondary
linker image cache. Linker images, generated while loading programs for
execution are stored in the primary and secondary linker caches. Each linker
image in the primary linker cache has strong object references to objects
included in corresponding ones of the loaded programs, and each linker image
in the secondary linker cache has weak object references to objects included in
corresponding ones of the loaded programs.” Bishop, U.S. Patent No.
5,765,174 at 2:9-18.

Furthermore, Bishop discloses that “[t]he linker cache 170 has a limited
capacity, typically sufficient to hold references to about fifty or so linker
images 160. The linker 152 maintains a hash table 171 and a list 172 of the
cached linker images in “least recently used” order (i.e., each time a linker
image is used, it is moved to the head of the list). The hash table 171 is a
conventional hash table used to quickly locate items in the LRU list 172.” Id.
at 5:29-44

“[I]n the preferred embodiment the linker cache 170 of FIG. 2 is replaced with
a smaller primary linker cache 220 and an expanded secondary linker cache
222. The primary linker cache 220 includes a hash table 224 and an LRU list
226 that stores strong object references to the least recently used linker images
160, while the secondary linker cache 222 includes a hash table 228 and an
LRU list 230 that stores strong object references to the linker images 160 least

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

recently used after the linker images referenced by the primary linker cache
220. Id. at 7:61-67 – 8:1-3.

“When the linker cache is full, and another linker image needs to be generated
in response to a load program command, the reference in the LRU list 172 to
the least recently used linker image is deleted and the resulting space is used to
store a reference to a linker image for the newly loaded program. Deletion of
an object reference in the LRU list 172 enables deletion of the corresponding
linker image 160 when all user program domains also relinquish their
references to the linker image” Id. at 5:35-44.

Furthermore, Bishop inherently discloses that cached linker images are stored
in a linked list, “the linker 152 maintains a hash table 171 and a list 172 of the
cached linker images in “least recently used” order The hash table 171 is a
conventional hash table used to quickly locate items in the LRU list.” Id. at
5:31-35 (emphasis added). Because conventional hash tables need a system by
which to deal with the key collision problem and the most frequently used
method in dealing with such collisions is with the use of a linked list, such
inherent characteristic necessarily flows from the teachings of the applied prior
art.

To the extent that Bedrock argues that Bishop does not anticipate Claims 1 – 8
because linker images are not inherently stored in a linked list, it would have
been obvious to one of ordinary skill in the art to store the linker images in a
linked list. The admitted prior art in the background of the ‘120 patent
discloses that linked lists/external chaining were already common place to
resolve collisions within hash tables. Nemes, U.S. Patent No. 5,893,120 at
1:34-2:6. Thus, Bishop and the admitted prior art of the ‘120 patent show that

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

one of ordinary skill in the art understood how to use linked lists/external
chaining to resolve collisions within hash tables, and would recognize that it
would improve similar systems and methods in the same way.

Moreover, as disclosed in Beardsley – “[h]ashing functions are well known
techniques used to randomly allocate locations in one address space to
addresses of a second address space. Those skilled in the art will realize that
the usual techniques of hashing chains are used to resolve conflicts” Beardsley
U.S. Patent No. 5,991,775 at 6:2-8. – it was well known in the prior art to have
objects distributed by a hash function, such as those in Bishop, and then store
the objects in a hash table using linked lists or external chaining.

As both Bishop and Beardsley disclose systems and methods for allocating
data structures in segments within a cache that are stored in hash tables with a
least recently used methodology for replacement of old structures, one of
ordinary skill in the art would understand how to combine the hashed page
table with linked lists taught in Beardsley with Bishop. Moreover, one of
ordinary skill in art would recognize that it would improve similar systems and
methods in the same way. Additionally, one of ordinary skill in the art would
recognize that the result of combining Bishop with Beardsley would be nothing
more than the predictable use of prior art elements according to their
established functions. The result would simply be Bishop’s linker cache being
implemented with a hashing function using linked lists/external chaining.

By way of further example, one of ordinary skill in the art would have
combined linked lists as taught by these references and one of ordinary skill in
the art to the system disclosed in the admitted prior and would have seen the
benefits of doing so. One such benefit, for example, is hash table collision

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

resolution.

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

Bishop discloses means, utilizing the record search means, for accessing the
linked list and, at the same time, removing at least some of the expired ones of
the records in the linked list. Bishop also discloses utilizing the record search
means, for inserting, retrieving, and deleting records from the system and, at
the same time, removing at least some expired ones of the records in the
accessed linked list of records.

For example, Bishop discloses that in an “aspect of the invention, a portion of
the computer’s memory is set aside for a primary linker cache and a secondary
linker image cache. Linker images, generated while loading programs for
execution are stored in the primary and secondary linker caches. Each linker
image in the primary linker cache has strong object references to objects
included in corresponding ones of the loaded programs, and each linker image
in the secondary linker cache has weak object references to objects included in
corresponding ones of the loaded programs.” Bishop, U.S. Patent No.
5,765,174 at 2:9-18.

Furthermore, Bishop discloses that “[t]he linker cache 170 has a limited
capacity, typically sufficient to hold references to about fifty or so linker
images 160. The linker 152 maintains a hash table 171 and a list 172 of the
cached linker images in “least recently used” order (i.e., each time a linker
image is used, it is moved to the head of the list). The hash table 171 is a
conventional hash table used to quickly locate items in the LRU list 172.” Id.
at 5:29-44.

“[I]n the preferred embodiment the linker cache 170 of FIG. 2 is replaced with

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

a smaller primary linker cache 220 and an expanded secondary linker cache
222. The primary linker cache 220 includes a hash table 224 and an LRU list
226 that stores strong object references to the least recently used linker images
160, while the secondary linker cache 222 includes a hash table 228 and an
LRU list 230 that stores strong object references to the linker images 160 least
recently used after the linker images referenced by the primary linker cache
220. Id. at 7:61-67 – 8:1-3.

“When the linker cache is full, and another linker image needs to be generated
in response to a load program command, the reference in the LRU list 172 to
the least recently used linker image is deleted and the resulting space is used to
store a reference to a linker image for the newly load program. Deletion of an
object reference in the LRU list 172 enables deletion of the corresponding
linker image 160 when all user program domains also relinquish their
references to the linker image” Id. at 5:35-44.

Furthermore, Bishop inherently discloses that cached linker images are stored
in a linked list, “the linker 152 maintains a hash table 171 and a list 172 of the
cached linker images in “least recently used” order The hash table 171 is a
conventional hash table used to quickly locate items in the LRU list.” Id. at
5:31-35 (emphasis added). Because conventional hash tables need a system by
which to deal with the key collision problem and the most frequently used
method in dealing with such collisions is with the use of a linked list, such
inherent characteristic necessarily flows from the teachings of the applied prior
art.

To the extent that Bedrock argues that Bishop does not anticipate Claims 1 – 8
because linker images are not inherently stored in a linked list, it would have

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

been obvious to one of ordinary skill in the art to store the linker images in a
linked list. The admitted prior art in the background of the ‘120 patent
discloses that linked lists/external chaining were already common place to
resolve collisions within hash tables. Nemes, U.S. Patent No. 5,893,120 at
1:34-2:6. Thus, Bishop and the admitted prior art of the ‘120 patent show that
one of ordinary skill in the art understood how to use linked lists/external
chaining to resolve collisions within hash tables, and would recognize that it
would improve similar systems and methods in the same way.

Moreover, as disclosed in Beardsley – “[h]ashing functions are well known
techniques used to randomly allocate locations in one address space to
addresses of a second address space. Those skilled in the art will realize that
the usual techniques of hashing chains are used to resolve conflicts” Beardsley
U.S. Patent No. 5,991,775 at 6:2-8. – it was well known in the prior art to have
objects distributed by a hash function, such as those in Bishop, and then store
the objects in a hash table using linked lists or external chaining.

As both Bishop and Beardsley disclose systems and methods for allocating
data structures in segments within a cache that are stored in hash tables with a
least recently used methodology for replacement of old structures, one of
ordinary skill in the art would understand how to combine the hashed page
table with linked lists taught in Beardsley with Bishop. Moreover, one of
ordinary skill in art would recognize that it would improve similar systems and
methods in the same way. Additionally, one of ordinary skill in the art would
recognize that the result of combining Bishop with Beardsley would be nothing
more than the predictable use of prior art elements according to their
established functions. The result would simply be Bishop’s linker cache being
implemented with a hashing function using linked lists/external chaining.

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

By way of further example, one of ordinary skill in the art would have
combined linked lists as taught by these references and one of ordinary skill in
the art to the system disclosed in the admitted prior and would have seen the
benefits of doing so. One such benefit, for example, is hash table collision
resolution.

2. The information storage
and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

6. The information storage
and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

Bishop discloses an information storage and retrieval system further including
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records.

For example, Bishop discloses that “the 20 or so most recently used linker
images are referenced by the LRU list 226 stored in the primary linker cache
220, while the next 200 or so most recently used linker images are referenced
by the LRU list 230 stored in the secondary linker cache 232. When a new
linker image is generated by the modified linker procedure 234, that causes all
items in the primary linker cache’s LRU list 226 to be moved down one
position in the list. If the primary linker cache 226 was full before the new
linker image was generated, then the object referenced to least recently used of
the linker images in the primary linker cache will be moved into the secondary
linker cache, and all the strong object references in the moved linker image are
replaced by weak object references. When a linker image is moved into the
secondary cache, the objects referenced by the linker image are not
automatically deleted, because other entities in the computer system may also
be referencing those same objects. For instance, if a user process is still
executing the program corresponding to the moved linker image, all the
objects, referenced by the moved linker image will have strong object
references held by that user process.” Bishop, U.S. Patent No. 5,765,174 at

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

8:34-51 (emphasis added).

The dynamic decision-making process of the system is best understood with
reference to Figure 7B: Id. at Figure 7B.

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

“Steps 250c through 250f of the modified linker procedure service to create
room in the primary linker cache’s LRU list 226, if such room is needed, for a

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

reference to the linker image for the user specified program. In particular, if
the primary linker cache is full (step 250c), and the secondary linker cache is
full (step 250d), the last item in the secondary linker cache’s LRU list is
deleted (step 250e). Then the last item in the primary linker cache’s LRU list
226 is inserted at the top of the secondary linker cache’s LRU list 230 and
deleted from the primary linker cache’s LRU list 226 (step 250f).” Id. at 8:60 –
9:3 (emphasis added).

In summary, if there is space available in the primary linker cache or in the
secondary linker cache, then the system does not delete any items from the
cache. If, however, free space is not available in both the primary linker cache
and the secondary linker cache, then the system deletes the last item (i.e., the
least recently used item) in the secondary cache’s LRU list to make room for
the new item. Therefore, the determination of when to delete an item is
dynamically determined by whether a free space exists within either the
primary linker cache or the secondary linker cache.

Additionally it would have been obvious to one of skill in the art to combine
Bishop with Dirks, Thatte, the ’663 patent and/or the Opportunistic Garbage
Collection Articles to disclose an information storage and retrieval system
further including means for dynamically determining maximum number for the
record search means to remove in the accessed linked list of records.

For example, Dirks discloses the management of memory in a computer
system and more particularly to the allocation of address space in a virtual
memory system, which dynamically determines how many records to
sweep/remove upon each allocation. Disclosure of these claim elements in
Dirks is clearly shown in Exhibit B-2, which is hereby incorporated by

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Bishop and Dirks relate to deletion of aged records upon the allocation
of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as Bishop. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Bishop nothing more than
the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Bishop and would have
seen the benefits of doing so. One possible benefit, for example, is saving the
system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Bishop with the means for
dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. Thatte,
discloses a system and method using hash tables and/or linked lists and further
discloses means for dynamically determining the maximum number for the
record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Bishop with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine Bishop
with Thatte and recognize the benefits of doing so. For example, the removal
of expired records described in Bishop can be burdensome on the system,
adding to the system’s load and slowing down the system’s processing. One of
ordinary skill in the art would recognize that combining Bishop with the
teachings of Thatte would solve this problem by dynamically determining how
many records to delete based on, among other things, the system load.
Moreover, the '120 patent discloses that "[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120
patent provides motivations to combine Bishop with Thatte.

Alternatively, it would also be obvious to combine Bishop with the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Bishop and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in Bishop. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with Bishop would be
nothing more than the predictable use of prior art elements according to their
established functions.

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Bishop and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Bishop with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles recite in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Bishop and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Bishop. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Bishop would be nothing more than the predictable use of prior
art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Bishop and would
have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Bishop to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in
Bishop with the fundamental concept of dynamically determining the
maximum number of expired records to remove in an accessed linked list of
records to solve a number of potential problems. For example, the removal of
expired records described in Bishopcan be burdensome on the system, adding
to the system’s load and slowing down the system’s processing. Moreover, the
removal could also force an interruption in real-time processing as the
processing waits for the removal to complete.

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Bishop in combination with Dirks, Thatte, the ‘663
Patent, or the Opportunistic Garbage Collection References, it is disclosed by
Linux 2.0.1, which describes dynamically determining maximum number of
expired ones of the records to remove when the linked list is accessed. It
would have been obvious to combine Linux 2.0.1 with Bishop. For example,
both Linux 2.0.1 and Bishop describe systems and methods for performing
data storage and retrieval using known programming techniques to yield a
predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

To the extent the preamble is a limitation, Bishop discloses a method for
storing and retrieving information records using a linked list to store and
provide access to the records, at least some of the records automatically
expiring. Bishop also discloses a method for storing and retrieving
information records using a hashing technique to provide access to the records
and using an external chaining technique to store the records with same hash
address, at least some of the records automatically expiring.

For example, Bishop discloses that in an “aspect of the invention, a portion of
the computer’s memory is set aside for a primary linker cache and a secondary
linker image cache. Linker images, generated while loading programs for
execution are stored in the primary and secondary linker caches. Each linker
image in the primary linker cache has strong object references to objects
included in corresponding ones of the loaded programs, and each linker image
in the secondary linker cache has weak object references to objects included in
corresponding ones of the loaded programs.” Bishop, U.S. Patent No.
5,765,174 at 2:9-18.

Furthermore, Bishop discloses that “[t]he linker cache 170 has a limited
capacity, typically sufficient to hold references to about fifty or so linker
images 160. The linker 152 maintains a hash table 171 and a list 172 of the
cached linker images in “least recently used” order (i.e., each time a linker
image is used, it is moved to the head of the list). The hash table 171 is a
conventional hash table used to quickly locate items in the LRU list 172.” Id.
at 5:29-44.

“[I]n the preferred embodiment the linker cache 170 of FIG. 2 is replaced with
a smaller primary linker cache 220 and an expanded secondary linker cache

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

222. The primary linker cache 220 includes a hash table 224 and an LRU list
226 that stores strong object references to the least recently used linker images
160, while the secondary linker cache 222 includes a hash table 228 and an
LRU list 230 that stores strong object references to the linker images 160 least
recently used after the linker images referenced by the primary linker cache
220. Id. at 7:61-67 – 8:1-3.

“When the linker cache is full, and another linker image needs to be generated
in response to a load program command, the reference in the LRU list 172 to
the least recently used linker image is deleted and the resulting space is used to
store a reference to a linker image for the newly loaded program. Deletion of
an object reference in the LRU list 172 enables deletion of the corresponding
linker image 160 when all user program domains also relinquish their
references to the linker image” Id. at 5:35-44.

Furthermore, Bishop inherently discloses that cached linker images are stored
in a linked list, “the linker 152 maintains a hash table 171 and a list 172 of the
cached linker images in “least recently used” order The hash table 171 is a
conventional hash table used to quickly locate items in the LRU list.” Id. at
5:31-35 (emphasis added). Because conventional hash tables need a system by
which to deal with the key collision problem and the most frequently used
method in dealing with such collisions is with the use of a linked list, such
inherent characteristic necessarily flows from the teachings of the applied prior
art.

To the extent that Bedrock argues that Bishop does not anticipate Claims 1 – 8
because linker images are not inherently stored in a linked list, it would have
been obvious to one of ordinary skill in the art to store the linker images in a

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

linked list. The admitted prior art in the background of the ‘120 patent
discloses that linked lists/external chaining were already common place to
resolve collisions within hash tables. Nemes, U.S. Patent No. 5,893,120 at
1:34-2:6 Thus, Bishop and the admitted prior art of the ‘120 patent show that
one of ordinary skill in the art understood how to use linked lists/external
chaining to resolve collisions within hash tables, and would recognize that it
would improve similar systems and methods in the same way.

Moreover, as disclosed in Beardsley – “[h]ashing functions are well known
techniques used to randomly allocate locations in one address space to
addresses of a second address space. Those skilled in the art will realize that
the usual techniques of hashing chains are used to resolve conflicts” Beardsley
U.S. Patent No. 5,991,775 at 6:2-8. – it was well known in the prior art to have
objects distributed by a hash function, such as those in Bishop, and then store
the objects in a hash table using linked lists or external chaining.

As both Bishop and Beardsley disclose systems and methods for allocating
data structures in segments within a cache that are stored in hash tables with a
least recently used methodology for replacement of old structures, one of
ordinary skill in the art would understand how to combine the hashed page
table with linked lists taught in Beardsley with Bishop. Moreover, one of
ordinary skill in art would recognize that it would improve similar systems and
methods in the same way. Additionally, one of ordinary skill in the art would
recognize that the result of combining Bishop with Beardsley would be nothing
more than the predictable use of prior art elements according to their
established functions. The result would simply be Bishop’s linker cache being
implemented with a hashing function using linked lists/external chaining.

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

35 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

By way of further example, one of ordinary skill in the art would have
combined linked lists as taught by these references and one of ordinary skill in
the art to the system disclosed in the admitted prior and would have seen the
benefits of doing so. One such benefit, for example, is hash table collision
resolution.

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

Bishop discloses accessing a linked list of records. Bishop also discloses
accessing a linked list of records having same hash address.

For example, Bishop discloses that in an “aspect of the invention, a portion of
the computer’s memory is set aside for a primary linker cache and a secondary
linker image cache. Linker images, generated while loading programs for
execution are stored in the primary and secondary linker caches. Each linker
image in the primary linker cache has strong object references to objects
included in corresponding ones of the loaded programs, and each linker image
in the secondary linker cache has weak object references to objects included in
corresponding ones of the loaded programs.” Bishop, U.S. Patent No.
5,765,174 at 2:9-18.

Furthermore, Bishop discloses that “[t]he linker cache 170 has a limited
capacity, typically sufficient to hold references to about fifty or so linker
images 160. The linker 152 maintains a hash table 171 and a list 172 of the
cached linker images in “least recently used” order (i.e., each time a linker
image is used, it is moved to the head of the list). The hash table 171 is a
conventional hash table used to quickly locate items in the LRU list 172.” Id.
at 5:29-44.

“[I]n the preferred embodiment the linker cache 170 of FIG. 2 is replaced with

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

36 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

a smaller primary linker cache 220 and an expanded secondary linker cache
222. The primary linker cache 220 includes a hash table 224 and an LRU list
226 that stores strong object references to the least recently used linker images
160, while the secondary linker cache 222 includes a hash table 228 and an
LRU list 230 that stores strong object references to the linker images 160 least
recently used after the linker images referenced by the primary linker cache
220.” Id. at 7:61-67 – 8:1-3.

“When the linker cache is full, and another linker image needs to be generated
in response to a load program command, the reference in the LRU list 172 to
the least recently used linker image is deleted and the resulting space is used to
store a reference to a linker image for the newly loaded program. Deletion of
an object reference in the LRU list 172 enables deletion of the corresponding
linker image 160 when all user program domains also relinquish their
references to the linker image” Id. at 5:35-44.

Furthermore, Bishop inherently discloses that cached linker images are stored
in a linked list, “the linker 152 maintains a hash table 171 and a list 172 of the
cached linker images in “least recently used” order The hash table 171 is a
conventional hash table used to quickly locate items in the LRU list.” Id. at
5:31-35 (emphasis added). Because conventional hash tables need a system by
which to deal with the key collision problem and the most frequently used
method in dealing with such collisions is with the use of a linked list, such
inherent characteristic necessarily flows from the teachings of the applied prior
art.

To the extent that Bedrock argues that Bishop does not anticipate Claims 1 – 8
because linker images are not inherently stored in a linked list, it would have

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

37 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

been obvious to one of ordinary skill in the art to store the linker images in a
linked list. The admitted prior art in the background of the ‘120 patent
discloses that linked lists/external chaining were already common place to
resolve collisions within hash tables. Nemes, U.S. Patent No. 5,893,120 at
1:34-2:6. Thus, Bishop and the admitted prior art of the ‘120 patent show that
one of ordinary skill in the art understood how to use linked lists/external
chaining to resolve collisions within hash tables, and would recognize that it
would improve similar systems and methods in the same way.

Moreover, as disclosed in Beardsley – “[h]ashing functions are well known
techniques used to randomly allocate locations in one address space to
addresses of a second address space. Those skilled in the art will realize that
the usual techniques of hashing chains are used to resolve conflicts” Beardsley
U.S. Patent No. 5,991,775 at 6:2-8. – it was well known in the prior art to have
objects distributed by a hash function, such as those in Bishop, and then store
the objects in a hash table using linked lists or external chaining.

As both Bishop and Beardsley disclose systems and methods for allocating
data structures in segments within a cache that are stored in hash tables with a
least recently used methodology for replacement of old structures, one of
ordinary skill in the art would understand how to combine the hashed page
table with linked lists taught in Beardsley with Bishop. Moreover, one of
ordinary skill in art would recognize that it would improve similar systems and
methods in the same way. Additionally, one of ordinary skill in the art would
recognize that the result of combining Bishop with Beardsley would be nothing
more than the predictable use of prior art elements according to their
established functions. The result would simply be Bishop’s linker cache being
implemented with a hashing function using linked lists/external chaining.

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

38 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

By way of further example, one of ordinary skill in the art would have
combined linked lists as taught by these references and one of ordinary skill in
the art to the system disclosed in the admitted prior and would have seen the
benefits of doing so. One such benefit, for example, is hash table collision
resolution.

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

Bishop discloses identifying at least some of the automatically expired ones of
the records. Bishop also discloses identifying at least some of the
automatically expired ones of the records.

For example, Bishop discloses that in an “aspect of the invention, a portion of
the computer’s memory is set aside for a primary linker cache and a secondary
linker image cache. Linker images, generated while loading programs for
execution are stored in the primary and secondary linker caches. Each linker
image in the primary linker cache has strong object references to objects
included in corresponding ones of the loaded programs, and each linker image
in the secondary linker cache has weak object references to objects included in
corresponding ones of the loaded programs.” Bishop, U.S. Patent No.
5,765,174 at 2:9-18.

Furthermore, Bishop discloses that “[t]he linker cache 170 has a limited
capacity, typically sufficient to hold references to about fifty or so linker
images 160. The linker 152 maintains a hash table 171 and a list 172 of the
cached linker images in “least recently used” order (i.e., each time a linker
image is used, it is moved to the head of the list). The hash table 171 is a
conventional hash table used to quickly locate items in the LRU list 172.” Id.
at 5:29-44

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

39 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

“[I]n the preferred embodiment the linker cache 170 of FIG. 2 is replaced with
a smaller primary linker cache 220 and an expanded secondary linker cache
222. The primary linker cache 220 includes a hash table 224 and an LRU list
226 that stores strong object references to the least recently used linker images
160, while the secondary linker cache 222 includes a hash table 228 and an
LRU list 230 that stores strong object references to the linker images 160 least
recently used after the linker images referenced by the primary linker cache
220.” Id. at 7:61-67 – 8:1-3.

“When the linker cache is full, and another linker image needs to be generated
in response to a load program command, the reference in the LRU list 172 to
the least recently used linker image is deleted and the resulting space is used to
store a reference to a linker image for the newly loaded program. Deletion of
an object reference in the LRU list 172 enables deletion of the corresponding
linker image 160 when all user program domains also relinquish their
references to the linker image” Id. at 5:35-44.

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

Bishop discloses removing at least some of the automatically expired records
from the linked list when the linked list is accessed. Bishop also discloses
removing at least some of the automatically expired records from the linked
list when the linked list is accessed.

For example, Bishop discloses that in an “aspect of the invention, a portion of
the computer’s memory is set aside for a primary linker cache and a secondary
linker image cache. Linker images, generated while loading programs for
execution are stored in the primary and secondary linker caches. Each linker
image in the primary linker cache has strong object references to objects

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

40 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

included in corresponding ones of the loaded programs, and each linker image
in the secondary linker cache has weak object references to objects included in
corresponding ones of the loaded programs.” Bishop, U.S. Patent No.
5,765,174 at 2:9-18.

Furthermore, Bishop discloses that “[t]he linker cache 170 has a limited
capacity, typically sufficient to hold references to about fifty or so linker
images 160. The linker 152 maintains a hash table 171 and a list 172 of the
cached linker images in “least recently used” order (i.e., each time a linker
image is used, it is moved to the head of the list). The hash table 171 is a
conventional hash table used to quickly locate items in the LRU list 172.” Id.
at 5:29-44.

“[I]n the preferred embodiment the linker cache 170 of FIG. 2 is replaced with
a smaller primary linker cache 220 and an expanded secondary linker cache
222. The primary linker cache 220 includes a hash table 224 and an LRU list
226 that stores strong object references to the least recently used linker images
160, while the secondary linker cache 222 includes a hash table 228 and an
LRU list 230 that stores strong object references to the linker images 160 least
recently used after the linker images referenced by the primary linker cache
220.” Id. at 7:61-67 – 8:1-3.

“When the linker cache is full, and another linker image needs to be generated
in response to a load program command, the reference in the LRU list 172 to
the least recently used linker image is deleted and the resulting space is used to
store a reference to a linker image for the newly loaded program. Deletion of
an object reference in the LRU list 172 enables deletion of the corresponding
linker image 160 when all user program domains also relinquish their

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

41 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

references to the linker image” Id. at 5:35-44.

Furthermore, Bishop inherently discloses that cached linker images are stored
in a linked list, “the linker 152 maintains a hash table 171 and a list 172 of the
cached linker images in “least recently used” order The hash table 171 is a
conventional hash table used to quickly locate items in the LRU list.” Id. at
5:31-35 (emphasis added). Because conventional hash tables need a system by
which to deal with the key collision problem and the most frequently used
method in dealing with such collisions is with the use of a linked list, such
inherent characteristic necessarily flows from the teachings of the applied prior
art.

To the extent that Bedrock argues that Bishop does not anticipate Claims 1 – 8
because linker images are not inherently stored in a linked list, it would have
been obvious to one of ordinary skill in the art to store the linker images in a
linked list. The admitted prior art in the background of the ‘120 patent
discloses that linked lists/external chaining were already common place to
resolve collisions within hash tables. Nemes, U.S. Patent No. 5,893,120 at
1:34-2:6. Thus, Bishop and the admitted prior art of the ‘120 patent show that
one of ordinary skill in the art understood how to use linked lists/external
chaining to resolve collisions within hash tables, and would recognize that it
would improve similar systems and methods in the same way.

Moreover, as disclosed in Beardsley – “[h]ashing functions are well known
techniques used to randomly allocate locations in one address space to
addresses of a second address space. Those skilled in the art will realize that
the usual techniques of hashing chains are used to resolve conflicts” Beardsley
U.S. Patent No. 5,991,775 at 6:2-8. – it was well known in the prior art to have

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

42 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

objects distributed by a hash function, such as those in Bishop, and then store
the objects in a hash table using linked lists or external chaining.

As both Bishop and Beardsley disclose systems and methods for allocating
data structures in segments within a cache that are stored in hash tables with a
least recently used methodology for replacement of old structures, one of
ordinary skill in the art would understand how to combine the hashed page
table with linked lists taught in Beardsley with Bishop. Moreover, one of
ordinary skill in art would recognize that it would improve similar systems and
methods in the same way. Additionally, one of ordinary skill in the art would
recognize that the result of combining Bishop with Beardsley would be nothing
more than the predictable use of prior art elements according to their
established functions. The result would simply be Bishop’s linker cache being
implemented with a hashing function using linked lists/external chaining.

By way of further example, one of ordinary skill in the art would have
combined linked lists as taught by these references and one of ordinary skill in
the art to the system disclosed in the admitted prior and would have seen the
benefits of doing so. One such benefit, for example, is hash table collision
resolution.

 [7d] inserting, retrieving
or deleting one of the
records from the system
following the step of
removing.

Bishop discloses inserting, retrieving or deleting one of the records from the
system following the step of removing.

For example, Bishop discloses that in an “aspect of the invention, a portion of
the computer’s memory is set aside for a primary linker cache and a secondary
linker image cache. Linker images, generated while loading programs for
execution are stored in the primary and secondary linker caches. Each linker

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

43 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

image in the primary linker cache has strong object references to objects
included in corresponding ones of the loaded programs, and each linker image
in the secondary linker cache has weak object references to objects included in
corresponding ones of the loaded programs.” Bishop, U.S. Patent No.
5,765,174 at 2:9-18.

Furthermore, Bishop discloses that “[t]he linker cache 170 has a limited
capacity, typically sufficient to hold references to about fifty or so linker
images 160. The linker 152 maintains a hash table 171 and a list 172 of the
cached linker images in “least recently used” order (i.e., each time a linker
image is used, it is moved to the head of the list). The hash table 171 is a
conventional hash table used to quickly locate items in the LRU list 172.” Id.
at 5:29-44.

“[I]n the preferred embodiment the linker cache 170 of FIG. 2 is replaced with
a smaller primary linker cache 220 and an expanded secondary linker cache
222. The primary linker cache 220 includes a hash table 224 and an LRU list
226 that stores strong object references to the least recently used linker images
160, while the secondary linker cache 222 includes a hash table 228 and an
LRU list 230 that stores strong object references to the linker images 160 least
recently used after the linker images referenced by the primary linker cache
220.” Id. at 7:61-67 – 8:1-3

“When the linker cache is full, and another linker image needs to be generated
in response to a load program command, the reference in the LRU list 172 to
the least recently used linker image is deleted and the resulting space is used to
store a reference to a linker image for the newly loaded program. Deletion of
an object reference in the LRU list 172 enables deletion of the corresponding

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

44 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

linker image 160 when all user program domains also relinquish their
references to the linker image” Id. at 5:35-44.

Furthermore, Bishop inherently discloses that cached linker images are stored
in a linked list, “the linker maintains a hash table 171 and a list 172 of the
cached linker images in “least recently used” order The hash table 171 is a
conventional hash table used to quickly locate items in the LRU list.” Id. at
5:31-35 (emphasis added). Because conventional hash tables need a system by
which to deal with the key collision problem and the most frequently used
method in dealing with such collisions is with the use of a linked list, such
inherent characteristic necessarily flows from the teachings of the applied prior
art.

To the extent that Bedrock argues that Bishop does not anticipate Claims 1 – 8
because linker images are not inherently stored in a linked list, it would have
been obvious to one of ordinary skill in the art to store the linker images in a
linked list. The admitted prior art in the background of the ‘120 patent
discloses that linked lists/external chaining were already common place to
resolve collisions within hash tables. Nemes, U.S. Patent No. 5,893,120 at
1:34-2:6 . Thus, Bishop and the admitted prior art of the ‘120 patent show that
one of ordinary skill in the art understood how to use linked lists/external
chaining to resolve collisions within hash tables, and would recognize that it
would improve similar systems and methods in the same way.

Moreover, as disclosed in Beardsley – “[h]ashing functions are well known
techniques used to randomly allocate locations in one address space to
addresses of a second address space. Those skilled in the art will realize that
the usual techniques of hashing chains are used to resolve conflicts” Beardsley

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

45 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

et al., “Method and System for Dynamic Cache Allocation Between Record
and Track Entries,” U.S. Patent No. 5,991,775 (issued Nov. 23, 1999) at 6:2-8.
– it was well known in the prior art to have objects distributed by a hash
function, such as those in Bishop, and then store the objects in a hash table
using linked lists or external chaining.

As both Bishop and Beardsley disclose systems and methods for allocating
data structures in segments within a cache that are stored in hash tables with a
least recently used methodology for replacement of old structures, one of
ordinary skill in the art would understand how to combine the hashed page
table with linked lists taught in Beardsley with Bishop. Moreover, one of
ordinary skill in art would recognize that it would improve similar systems and
methods in the same way. Additionally, one of ordinary skill in the art would
recognize that the result of combining Bishop with Beardsley would be nothing
more than the predictable use of prior art elements according to their
established functions. The result would simply be Bishop’s linker cache being
implemented with a hashing function using linked lists/external chaining.

By way of further example, one of ordinary skill in the art would have
combined linked lists as taught by these references and one of ordinary skill in
the art to the system disclosed in the admitted prior and would have seen the
benefits of doing so. One such benefit, for example, is hash table collision
resolution.

4. The method according to
claim 3 further including
the step of dynamically
determining maximum

8. The method according
to claim 7 further including
the step of dynamically
determining maximum

Bishop discloses dynamically determining maximum number of expired ones
of the records to remove when the linked list is accessed.

For example, Bishop discloses that “the 20 or so most recently used linker

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

46 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

number of expired ones of
the records to remove
when the linked list is
accessed.

number of expired ones of
the records to remove
when the linked list is
accessed.

images are referenced by the LRU list 226 stored in the primary linker cache
220, while the next 200 or so most recently used linker images are referenced
by the LRU list 230 stored in the secondary linker cache 232. When a new
linker image is generated by the modified linker procedure 234, that causes all
items in the primary linker cache’s LRU list 226 to be moved down one
position in the list. If the primary linker cache 226 was full before the new
linker image was generated, then the object referenced to least recently used of
the linker images in the primary linker cache will be moved into the secondary
linker cache, and all the strong object references in the moved linker image are
replaced by weak object references. When a linker image is moved into the
secondary cache, the objects referenced by the linker image are not
automatically deleted, because other entities in the computer system may also
be referencing those same objects. For instance, if a user process is still
executing the program corresponding to the moved linker image, all the
objects, referenced by the moved linker image will have strong object
references held by that user process.” Bishop, U.S. Patent No. 5,765,174 at
8:34-51..

The dynamic decision-making process of the system is best understood with
reference to Figure 7B: Id. at Figure 7B.

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

47 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

“Steps 250c through 250f of the modified linker procedure service to create

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

48 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

room in the primary linker cache’s LRU list 226, if such room is needed, for a
reference to the linker image for the user specified program. In particular, if
the primary linker cache is full (step 250c), and the secondary linker cache is
full (step 250d), the last item in the secondary linker cache’s LRU list is
deleted (step 250e). Then the last item in the primary linker cache’s LRU list
226 is inserted at the top of the secondary linker cache’s LRU list 230 and
deleted from the primary linker cache’s LRU list 226 (step 250f).” Id. at 8:60
– 9:3 (emphasis added).

In summary, if there is space available in the primary linker cache or in the
secondary linker cache, then the system does not delete any items from the
cache. If, however, free space is not available in both the primary linker cache
and the secondary linker cache, then the system deletes the last item (i.e., the
least recently used item) in the secondary cache’s LRU list to make room for
the new item. Therefore, the determination of when to delete an item is
dynamically determined by whether a free space exists within either the
primary linker cache or the secondary linker cache.

Additionally, it would have been obvious to one of ordinary skill in the art to
combine Bishop with Dirks, Thatte, the ’663 patent, and/or the Opportunistic
Garbage Collection Articles to disclose dynamically determining maximum
number of expired ones of the records to remove when the linked list is
accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in the

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

49 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

chart of Dirks, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

50 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Bishop and Dirks relate to deletion of aged records upon the allocation
of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as that described Bishop. Moreover, one of ordinary
skill in the art would recognize that it would improve similar systems and

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

51 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

methods in the same way. As the ’120 patent states “[a] person skilled in the
art will appreciate that the technique of removing all expired records while
searching the linked list can be expanded to include techniques whereby not
necessarily all expired records are removed, and that the decision regarding if
and how many records to delete can be a dynamic one.” The ’120 patent at
7:10-15. Additionally, one of ordinary skill in the art would recognize that the
result of combining Dirks’ deletion decision procedure with Bishop would be
nothing more than the predictable use of prior art elements according to their
established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Bishop and would have
seen the benefits of doing so. One possible benefit, for example, is saving the
system from performing sometimes time-consuming sweeps.

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Bishop with the means for
dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. For example,
Thatte, discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

52 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Bishop with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine Bishop
with Thatte and recognized the benefits of doing so. For example, the removal
of expired records described in Bishopcan be burdensome on the system,
adding to the system’s load and slowing down the system’s processing. One of
ordinary skill in the art would recognize that combining Bishop with the
teachings of Thatte would solve this problem by dynamically determining how
many records to delete based on, among other things, the system load.
Moreover, the '120 patent discloses that "[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120
patent provides motivations to combine Bishop with Thatte.

Alternatively, it would also be obvious to combine Bishop with the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

53 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

54 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

55 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Bishop and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as Bishop. Moreover, one of ordinary skill in the art would recognize that
it would improve similar systems and methods in the same way. As the ’120
patent states “[a] person skilled in the art will appreciate that the technique of
removing all expired records while searching the linked list can be expanded to
include techniques whereby not necessarily all expired records are removed,
and that the decision regarding if and how many records to delete can be a
dynamic one.” The ’120 patent at 7:10-15. Additionally, one of ordinary skill
in the art would recognize that the result of combining the ’663 patent’s
deletion decision procedure with Bishop would be nothing more than the
predictable use of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

56 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Bishop and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Bishop with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

57 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Bishop and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Bishop. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

58 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Bishop would be nothing more than the predictable use of prior
art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Bishop and would
have seen the benefits of doing so. One such benefit, for example, is that the
system would only perform deletions when the system was not already too
overloaded, thus preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Bishop to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in
Bishop with the fundamental concept of dynamically determining the
maximum number of expired records to remove in an accessed linked list of
records to solve a number of potential problems. For example, the removal of
expired records described in Bishop can be burdensome on the system, adding
to the system’s load and slowing down the system’s processing. Moreover, the
removal could also force an interruption in real-time processing as the
processing waits for the removal to complete.

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

59 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Bishop in combination with Dirks, Thatte, the ‘663
Patent, or the Opportunistic Garbage Collection References, it is disclosed by
Linux 2.0.1, which describes dynamically determining maximum number of
expired ones of the records to remove when the linked list is accessed. It
would have been obvious to combine Linux 2.0.1 with Bishop. For example,
both Linux 2.0.1 and Bishop describe systems and methods for performing
data storage and retrieval using known programming techniques to yield a
predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

60 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

61 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

62 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,765,174 to Bishop (“Bishop”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

EXHIBIT B-7

Joint Invalidity Contentions & Production of
Documents

63 Case No. 6:09-CV-549-LED

US2008 1661462.4

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, Cox discloses an information storage
and retrieval system.

For example, Cox discloses “[a] non-uniform memory accessing (NUMA)
based multi-processor system that promotes local memory accessing and data
migration to local processor nodes. The system includes mechanisms to re-
map virtual and physical addresses to promote local memory accessing and
implements a least recently used memory allocation mechanism to age non-
local memory accesses out of memory to be re-read into local memory, which
promotes data migration to local memory on processor nodes.” Cox et al,
“Promoting Local Memory Accessing and Data Migration in Non-Uniform
Memory Access System Architectures,” U.S. Patent No. 5,918,249 (issued:
Jun. 29, 1999) at Abstract.

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

Cox in combination with Beardsley discloses a linked list to store and provide
access to records stored in a memory of the system, at least some of the records
automatically expiring. Cox also discloses a hashing means to provide access
to records stored in a memory of the system and using an external chaining
technique to store the records with same hash address, at least some of the
records automatically expiring.

For example, Cox discloses “[a] non-uniform memory accessing (NUMA)
based multi-processor system that promotes local memory accessing and data
migration to local processor nodes. The system includes mechanisms to re-
map virtual and physical addresses to promote local memory accessing and
implements a least recently used memory allocation mechanism to age non-
local memory accesses out of memory to be re-read into local memory, which
promotes data migration to local memory on processor nodes.” Id.

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

For example, Beardsley discloses that “[h]ashing functions are well known
techniques used to randomly allocate locations in one address space to
addresses of a second address space. Those skilled in the art will realize that
the usual techniques of hashing chains are used to resolve conflicts” Beardsley
et al., “Method and System for Dynamic Cache Allocation Between Record
and Track Entries,” U.S. Patent No. 5,991,775 (issued Nov. 23, 1999) at 6:2-8
9 (emphasis added) – it was well known in the prior art to have objects
distributed by a hash function, as demonstrated in Beardsley, and then store the
objects in a hash table using linked lists or external chaining.

For example, Cox discloses that physical memory addresses are re-assigned to
corresponding local memory addresses of the processor node. Cox et al., U.S.
Patent No. 5,918,249 at 2:29-38. Since hashing involves allocating locations
in one address space to addresses of a second address space, as disclosed in
Beardsley Beardsley et al., U.S. Patent No. 5,991,775 at 6:2-8., one of ordinary
skill in the art would understand how to combine the hashed page table with
linked lists taught in Beardsley with Cox to implement the re-mapping Cox
requires in its system.

Furthermore, with respect to the use of linked list to address the key collision
problem, it would have been obvious to one of ordinary skill in the art to store
data in a linked list. The admitted prior art in the background of the ‘120
patent discloses that linked lists/external chaining were already common place
to resolve collisions within hash tables. Nemes, “Methods and Apparatus for
Information Storage and Retrieval Using a Hashing Technique with external
chaining and On-The-Fly Removal of Expired Data,” U.S. Patent No.
5,893,120 (issued Apr. 6, 1999) at 1:34-2:6 (“the ‘120 patent”). Thus, Cox

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

and the admitted prior art of the ‘120 patent show that one of ordinary skill in
the art understood how to use linked lists/external chaining to resolve
collisions within hash tables, and would recognize that it would improve
similar systems and methods in the same way.

As both Cox and Beardsley disclose systems and methods for allocating data
structures in segments within a cache for fast retrieval of data with a least
recently used methodology for replacement of old data, one of ordinary skill in
the art would understand how to combine the hashed page table with linked
lists taught in Beardsley with Cox. Moreover, one of ordinary skill in art
would recognize that it would improve similar systems and methods in the
same way. Additionally, one of ordinary skill in the art would recognize that
the result of combining Cox with Beardsley would be nothing more than the
predictable use of prior art elements according to their established functions.
The result would simply be Cox’s buffer cache memory being implemented
with a hashing function using linked lists/external chaining as to way to re-map
physical addresses to local memory addresses.

By way of further example, one of ordinary skill in the art would have
combined hashing with linked lists as taught by these references and one of
ordinary skill in the art to the system disclosed in the admitted prior and would
have seen the benefits of doing so. Two such benefits, for example, include
hash table collision resolution and the promotion of efficient local memory
accessing.

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of

Cox in combination with Beardsley discloses a record search means utilizing a
search key to access the linked list. Cox also discloses a record search means
utilizing a search key to access a linked list of records having the same hash

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

records having the same
hash address,

address.

For example, Cox discloses “[a] non-uniform memory accessing (NUMA)
based multi-processor system that promotes local memory accessing and data
migration to local processor nodes. The system includes mechanisms to re-
map virtual and physical addresses to promote local memory accessing and
implements a least recently used memory allocation mechanism to age non-
local memory accesses out of memory to be re-read into local memory, which
promotes data migration to local memory on processor nodes.” Cox et al., U.S.
Patent No. 5,918.249 at Abstract.

For example, Beardsley discloses that “[h]ashing functions are well known
techniques used to randomly allocate locations in one address space to
addresses of a second address space. Those skilled in the art will realize that
the usual techniques of hashing chains are used to resolve conflicts” Beardsley
et al., U.S. Patent No. 5,991,775 at 6:2-8 (emphasis added) – it was well
known in the prior art to have objects distributed by a hash function, as
demonstrated in Beardsley, and then store the objects in a hash table using
linked lists or external chaining.

For example, Cox discloses that physical memory addresses are re-assigned to
corresponding local memory addresses of the processor node. Cox et al., U.S.
Patent No. 5,918,249 at 2:29-38. Since hashing involves allocating locations
in one address space to addresses of a second address space, as disclosed in
Beardsley Beardsley et al., U.S. Patent No. 5,991,775 at 6:2-8., one of ordinary
skill in the art would understand how to combine the hashed page table with
linked lists taught in Beardsley with Cox to implement the re-mapping Cox
requires in its system.

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

Furthermore, with respect to the use of linked list to address the key collision
problem, it would have been obvious to one of ordinary skill in the art to store
data in a linked list. The admitted prior art in the background of the ‘120
patent discloses that linked lists/external chaining were already common place
to resolve collisions within hash tables. Nemes, U.S. Patent No. 5,893,120 at
1:34-2:6. Thus, Cox and the admitted prior art of the ‘120 patent show that
one of ordinary skill in the art understood how to use linked lists/external
chaining to resolve collisions within hash tables, and would recognize that it
would improve similar systems and methods in the same way.

As both Cox and Beardsley disclose systems and methods for allocating data
structures in segments within a cache for fast retrieval of data with a least
recently used methodology for replacement of old data, one of ordinary skill in
the art would understand how to combine the hashed page table with linked
lists taught in Beardsley with Cox. Moreover, one of ordinary skill in art
would recognize that it would improve similar systems and methods in the
same way. Additionally, one of ordinary skill in the art would recognize that
the result of combining Cox with Beardsley would be nothing more than the
predictable use of prior art elements according to their established functions.
The result would simply be Cox’s buffer cache memory being implemented
with a hashing function using linked lists/external chaining as to way to re-map
physical addresses to local memory addresses.

By way of further example, one of ordinary skill in the art would have
combined hashing with linked lists as taught by these references and one of
ordinary skill in the art to the system disclosed in the admitted prior and would
have seen the benefits of doing so. Two such benefits, for example, include

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

hash table collision resolution and the promotion of efficient local memory
accessing.

[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the
records from the linked list
when the linked list is
accessed, and

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

Cox in combination with Beardsley discloses the record search means
including a means for identifying and removing at least some of the expired
ones of the records from the linked list when the linked list is accessed. Cox
also discloses the record search means including means for identifying and
removing at least some expired ones of the records from the linked list of
records when the linked list is accessed.

For example, Cox discloses “[a] non-uniform memory accessing (NUMA)
based multi-processor system that promotes local memory accessing and data
migration to local processor nodes. The system includes mechanisms to re-
map virtual and physical addresses to promote local memory accessing and
implements a least recently used memory allocation mechanism to age non-
local memory accesses out of memory to be re-read into local memory, which
promotes data migration to local memory on processor nodes.” Cox et al., U.S.
Patent No. 5,918.249 at Abstract.

For example, Beardsley discloses that “[h]ashing functions are well known
techniques used to randomly allocate locations in one address space to
addresses of a second address space. Those skilled in the art will realize that
the usual techniques of hashing chains are used to resolve conflicts” Beardsley
et al., U.S. Patent No. 5,991,775 at 6:2-8 (emphasis added) – it was well
known in the prior art to have objects distributed by a hash function, as
demonstrated in Beardsley, and then store the objects in a hash table using
linked lists or external chaining.

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

For example, Cox discloses that physical memory addresses are re-assigned to
corresponding local memory addresses of the processor node. Cox et al., U.S.
Patent No. 5,918,249 at 2:29-38. Since hashing involves allocating locations
in one address space to addresses of a second address space, as disclosed in
Beardsley Beardsley et al., U.S. Patent No. 5,991,775 at 6:2-8., one of ordinary
skill in the art would understand how to combine the hashed page table with
linked lists taught in Beardsley with Cox to implement the re-mapping Cox
requires in its system.

Furthermore, with respect to the use of linked list to address the key collision
problem, it would have been obvious to one of ordinary skill in the art to store
data in a linked list. The admitted prior art in the background of the ‘120
patent discloses that linked lists/external chaining were already common place
to resolve collisions within hash tables. Nemes, U.S. Patent No. 5,893,120 at
1:34-2:6. Thus, Cox and the admitted prior art of the ‘120 patent show that
one of ordinary skill in the art understood how to use linked lists/external
chaining to resolve collisions within hash tables, and would recognize that it
would improve similar systems and methods in the same way.

As both Cox and Beardsley disclose systems and methods for allocating data
structures in segments within a cache for fast retrieval of data with a least
recently used methodology for replacement of old data, one of ordinary skill in
the art would understand how to combine the hashed page table with linked
lists taught in Beardsley with Cox. Moreover, one of ordinary skill in art
would recognize that it would improve similar systems and methods in the
same way. Additionally, one of ordinary skill in the art would recognize that
the result of combining Cox with Beardsley would be nothing more than the
predictable use of prior art elements according to their established functions.

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

The result would simply be Cox’s buffer cache memory being implemented
with a hashing function using linked lists/external chaining as to way to re-map
physical addresses to local memory addresses.

By way of further example, one of ordinary skill in the art would have
combined hashing with linked lists as taught by these references and one of
ordinary skill in the art to the system disclosed in the admitted prior and would
have seen the benefits of doing so. Two such benefits, for example, include
hash table collision resolution and the promotion of efficient local memory
accessing.

Furthermore, as summarized in Cox:

In database management and other applications that allocate a
cache in main memory to temporarily store data from external
subsystems, the buffer cache memory 14 typically has a limited
capacity. In operation, when a process running on a processor
node 18 retrieves data into the application cache for the first
time and the cache connected to the processor does not have
sufficient capacity available to store the new data (step 40), then
previously stored data has to be removed from the application
cache in order to free-up memory space (step 42). The
mechanism discussed in the present application determines
what data will be purged (or overwritten) from the local
memory based on a least recently used (LRU) memory
management mechanism. The LRU memory management
mechanism stores the most recently retrieved (or used) data in
the local memory. Typically, when data is stored in the local

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

memory the local processor time stamps the data. Thus, the
data stored in the memory with the oldest time stamp will
typically be overwritten. When space is available in the buffer
cache (step 40) the process assigns the next available virtual
address, to the data (step 44). Cox et al., U.S. Patent No.
5,918,249 at 3:21-42.

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

Cox in combination with Beardsley discloses means, utilizing the record search
means, for accessing the linked list and, at the same time, removing at least
some of the expired ones of the records in the linked list. Cox also discloses
utilizing the record search means, for inserting, retrieving, and deleting records
from the system and, at the same time, removing at least some expired ones of
the records in the accessed linked list of records.

For example, Cox discloses “[a] non-uniform memory accessing (NUMA)
based multi-processor system that promotes local memory accessing and data
migration to local processor nodes. The system includes mechanisms to re-
map virtual and physical addresses to promote local memory accessing and
implements a least recently used memory allocation mechanism to age non-
local memory accesses out of memory to be re-read into local memory, which
promotes data migration to local memory on processor nodes.” Cox et al., U.S.
Patent No. 5,918.249 at Abstract.

For example, Beardsley discloses that “[h]ashing functions are well known
techniques used to randomly allocate locations in one address space to
addresses of a second address space. Those skilled in the art will realize that

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

the usual techniques of hashing chains are used to resolve conflicts” Beardsley
et al., U.S. Patent No. 5,991,775 at 6:2-8 (emphasis added) – it was well
known in the prior art to have objects distributed by a hash function, as
demonstrated in Beardsley, and then store the objects in a hash table using
linked lists or external chaining.

For example, Cox discloses that physical memory addresses are re-assigned to
corresponding local memory addresses of the processor node. Cox et al., U.S.
Patent No. 5,918,249 at 2:29-38. Since hashing involves allocating locations
in one address space to addresses of a second address space, as disclosed in
Beardsley, Beardsley et al., U.S. Patent No. 5,991,775 at 6:2-8. one of ordinary
skill in the art would understand how to combine the hashed page table with
linked lists taught in Beardsley with Cox to implement the re-mapping Cox
requires in its system.

Furthermore, with respect to the use of linked list to address the key collision
problem, it would have been obvious to one of ordinary skill in the art to store
data in a linked list. The admitted prior art in the background of the ‘120
patent discloses that linked lists/external chaining were already common place
to resolve collisions within hash tables. Nemes, U.S. Patent No. 5,893,120 at
1:34-2:6. Thus, Cox and the admitted prior art of the ‘120 patent show that
one of ordinary skill in the art understood how to use linked lists/external
chaining to resolve collisions within hash tables, and would recognize that it
would improve similar systems and methods in the same way.

As both Cox and Beardsley disclose systems and methods for allocating data
structures in segments within a cache for fast retrieval of data with a least
recently used methodology for replacement of old data, one of ordinary skill in

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

the art would understand how to combine the hashed page table with linked
lists taught in Beardsley with Cox. Moreover, one of ordinary skill in art
would recognize that it would improve similar systems and methods in the
same way. Additionally, one of ordinary skill in the art would recognize that
the result of combining Cox with Beardsley would be nothing more than the
predictable use of prior art elements according to their established functions.
The result would simply be Cox’s buffer cache memory being implemented
with a hashing function using linked lists/external chaining as to way to re-map
physical addresses to local memory addresses.

By way of further example, one of ordinary skill in the art would have
combined hashing with linked lists as taught by these references and one of
ordinary skill in the art to the system disclosed in the admitted prior and would
have seen the benefits of doing so. Two such benefits, for example, include
hash table collision resolution and the promotion of efficient local memory
accessing.

Furthermore, as summarized in Cox:

In database management and other applications that allocate a
cache in main memory to temporarily store data from external
subsystems, the buffer cache memory 14 typically has a limited
capacity. In operation, when a process running on a processor
node 18 retrieves data into the application cache for the first
time and the cache connected to the processor does not have
sufficient capacity available to store the new data (step 40), then
previously stored data has to be removed from the application
cache in order to free-up memory space (step 42). The

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

mechanism discussed in the present application determines
what data will be purged (or overwritten) from the local
memory based on a least recently used (LRU) memory
management mechanism. The LRU memory management
mechanism stores the most recently retrieved (or used) data in
the local memory. Typically, when data is stored in the local
memory the local processor time stamps the data. Thus, the
data stored in the memory with the oldest time stamp will
typically be overwritten. When space is available in the buffer
cache (step 40) the process assigns the next available virtual
address, to the data (step 44). Cox et al., U.S. Patent No.
5,918,249 at 3:21-42.

The process of the system is best understood with reference to Fig. 2: Id. at
Figure 2.

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

2. The information storage
and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

6. The information storage
and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

Cox discloses an information storage and retrieval system further including
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records.

For example, as summarized in Cox:

In database management and other applications that allocate a
cache in main memory to temporarily store data from external
subsystems, the buffer cache memory 14 typically has a limited
capacity. In operation, when a process running on a processor
node 18 retrieves data into the application cache for the first
time and the cache connected to the processor does not have
sufficient capacity available to store the new data (step 40), then
previously stored data has to be removed from the application
cache in order to free-up memory space (step 42). The
mechanism discussed in the present application determines
what data will be purged (or overwritten) from the local
memory based on a least recently used (LRU) memory
management mechanism. The LRU memory management
mechanism stores the most recently retrieved (or used) data in
the local memory. Typically, when data is stored in the local
memory the local processor time stamps the data. Thus, the
data stored in the memory with the oldest time stamp will
typically be overwritten. When space is available in the buffer
cache (step 40) the process assigns the next available virtual
address, to the data (step 44). Cox et al., U.S. Patent No.
5,918,249 at 3:21-42.

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

If the physical address is local to the node (step 50), the
application determines if the local memory has sufficient
capacity available to store the data, similar to step 40. If there
is not enough memory space available in the buffer cache LRU
data is purged, similar to step 42. Once the LRU data is purged
or if space is available to store the data, the application process
on node A retrieves, time stamps and stores the data in memory
(step 52). Id. at 3:55-63.

The process of the system is best understood with reference to Fig. 2: Id. at
Figure 2.

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

In summary, if there is space available in the buffer cache, then the system
does not purge any data from the cache. If, however, free space is not

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

available in the buffer cache, then the system purges the last item (i.e., the least
recently used item) from the buffer cache based on the least recently
mechanism used by the system to make room for the new data. Therefore, the
determination of when to delete data is dynamically determined by whether
free space exists within the buffer cache.

Additionally, it would have been obvious to one of ordinary skill in the art to
combine Cox and Beardsley with Dirks, Thatte, the ’663 patent and/or the
Opportunistic Garbage Collection Articles to disclose an information storage
and retrieval system further including means for dynamically determining
maximum number for the record search means to remove in the accessed
linked list of records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Cox and Beardsley and Dirks relate to deletion of aged records upon
the allocation of a new incoming record, one of ordinary skill in the art would
have understood how to use Dirks’ dynamic decision making process of
determining the maximum number of records to sweep/remove in other hash
tables implementations such as Cox and Beardsley. Moreover, one of ordinary
skill in the art would recognize that it would improve similar systems and
methods in the same way. As the ’120 patent states “[a] person skilled in the
art will appreciate that the technique of removing all expired records while
searching the linked list can be expanded to include techniques whereby not
necessarily all expired records are removed, and that the decision regarding if
and how many records to delete can be a dynamic one.” The ’120 patent at
7:10-15. Additionally, one of ordinary skill in the art would recognize that the
result of combining Dirks’ deletion decision procedure with Cox and
Beardsley nothing more than the predictable use of prior art elements
according to their established functions.

By way of further example, one of ordinary skill in the art would have

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Cox and Beardsley and
would have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Cox and Beardsley with
the means for dynamically determining maximum number for the record
search means to remove in the accessed linked list of records disclosed by
Thatte. For example, Thatte discloses a system and method using hash tables
and/or linked lists and further discloses means for dynamically determining the
maximum number for the record search means to remove in the accessed
linked list of records. The disclosure of these claim elements in Thatte is
clearly shown in the chart of Thatte, which is hereby incorporated by reference
in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Cox and Beardsley with Thatte would be nothing more
than the predictable use of prior art elements according to their established
functions. The resulting combination would include the capability to
determine the maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine Cox
and Beardsley with Thatte and recognize the benefits of doing so. For
example, the removal of expired records described in Cox and Beardsley can
be burdensome on the system, adding to the system’s load and slowing down

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

the system’s processing. One of ordinary skill in the art would recognize that
combining Cox and Beardsley with the teachings of Thatte would solve this
problem by dynamically determining how many records to delete based on,
among other things, the system load. Moreover, the '120 patent discloses that
"[a] person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records are removed, and that
the decision regarding if and how many records to delete can be a dynamic
one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine
Cox and Beardsley with Thatte.

Alternatively, it would also be obvious to combine Cox and Beardsley with the
’663 patent. Disclosure of these claim elements in the ’663 patent is clearly
shown in the chart of the ‘663 patent, which is hereby incorporated by
reference in its entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Cox and Beardsley and the ’663 patent relate to deletion of records
from hash tables using external chaining, one of ordinary skill in the art would
have understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in Cox and Beardsley. Moreover, one of ordinary skill
in the art would recognize that it would improve similar systems and methods
in the same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with Cox and
Beardsley would be nothing more than the predictable use of prior art elements
according to their established functions.

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Cox and
Beardsley and would have seen the benefits of doing so. One such benefit, for
example, is that the system would avoid performing deletions when the system
load exceeded a threshold.

Alternatively, it would also be obvious to combine Cox and Beardsley with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Cox and Beardsley and the Opportunistic Garbage Collection Articles
relate to deletion of aged records, one of ordinary skill in the art would have
understood how to use the Opportunistic Garbage Collection Articles’ dynamic
decision on whether to perform a deletion based on a system load in other hash
table implementations such as Cox and Beardsley. Moreover, one of ordinary
skill in the art would recognize that it would improve similar systems and
methods in the same way. As the ’120 patent states “[a] person skilled in the
art will appreciate that the technique of removing all expired records while
searching the linked list can be expanded to include techniques whereby not

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

necessarily all expired records are removed, and that the decision regarding if
and how many records to delete can be a dynamic one.” The ’120 patent at
7:10-15. Additionally, one of ordinary skill in the art would recognize that the
result of combining the Opportunistic Garbage Collection Articles’ deletion
decision procedure with Cox and Beardsley would be nothing more than the
predictable use of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Cox and Beardsley
and would have seen the benefits of doing so. One such benefit, for example,
is preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Cox and Beardsley to dynamically determine
the maximum number of expired records to remove in the accessed linked list
of records. It is a fundamental concept in computer science and the relevant
art that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Cox and Beardsley with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in Cox and Beardsleycan be
burdensome on the system, adding to the system’s load and slowing down the
system’s processing. Moreover, the removal could also force an interruption in
real-time processing as the processing waits for the removal to complete.

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Cox in combination with Dirks, Thatte, the ‘663
Patent, or the Opportunistic Garbage Collection References, it is disclosed by
Linux 2.0.1, which describes dynamically determining maximum number of
expired ones of the records to remove when the linked list is accessed. It
would have been obvious to combine Linux 2.0.1 with Cox. For example,
both Linux 2.0.1 and Cox describe systems and methods for performing data
storage and retrieval using known programming techniques to yield a
predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

To the extent the preamble is a limitation, Cox discloses a method for storing
and retrieving information records using a linked list to store and provide
access to the records, at least some of the records automatically expiring. Cox
also discloses a method for storing and retrieving information records using a
hashing technique to provide access to the records and using an external
chaining technique to store the records with same hash address, at least some
of the records automatically expiring.

For example, Cox discloses “[a] non-uniform memory accessing (NUMA)
based multi-processor system that promotes local memory accessing and data
migration to local processor nodes. The system includes mechanisms to re-
map virtual and physical addresses to promote local memory accessing and
implements a least recently used memory allocation mechanism to age non-
local memory accesses out of memory to be re-read into local memory, which
promotes data migration to local memory on processor nodes.” Cox et al., U.S.
Patent No. 5,918.249 at Abstract.

For example, Beardsley discloses that “[h]ashing functions are well known
techniques used to randomly allocate locations in one address space to
addresses of a second address space. Those skilled in the art will realize that
the usual techniques of hashing chains are used to resolve conflicts” Beardsley
et al., U.S. Patent No. 5,991,775 at 6:2-8 (emphasis added) – it was well
known in the prior art to have objects distributed by a hash function, as
demonstrated in Beardsley, and then store the objects in a hash table using
linked lists or external chaining.

For example, Cox discloses that physical memory addresses are re-assigned to

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

corresponding local memory addresses of the processor node. Cox et al., U.S.
Patent No. 5,918,249 at 2:29-38. Since hashing involves allocating locations in
one address space to addresses of a second address space, as disclosed in
Beardsley Beardsley et al., U.S. Patent No. 5,991,775 at 6:2-8., one of ordinary
skill in the art would understand how to combine the hashed page table with
linked lists taught in Beardsley with Cox to implement the re-mapping Cox
requires in its system.

Furthermore, with respect to the use of linked list to address the key collision
problem, it would have been obvious to one of ordinary skill in the art to store
data in a linked list. The admitted prior art in the background of the ‘120
patent discloses that linked lists/external chaining were already common place
to resolve collisions within hash tables. Nemes, U.S. Patent No. 5,893,120 at
1:34-2:6. Thus, Cox and the admitted prior art of the ‘120 patent show that
one of ordinary skill in the art understood how to use linked lists/external
chaining to resolve collisions within hash tables, and would recognize that it
would improve similar systems and methods in the same way.

As both Cox and Beardsley disclose systems and methods for allocating data
structures in segments within a cache for fast retrieval of data with a least
recently used methodology for replacement of old data, one of ordinary skill in
the art would understand how to combine the hashed page table with linked
lists taught in Beardsley with Cox. Moreover, one of ordinary skill in art
would recognize that it would improve similar systems and methods in the
same way. Additionally, one of ordinary skill in the art would recognize that
the result of combining Cox with Beardsley would be nothing more than the
predictable use of prior art elements according to their established functions.
The result would simply be Cox’s buffer cache memory being implemented

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

with a hashing function using linked lists/external chaining as to way to re-map
physical addresses to local memory addresses.

By way of further example, one of ordinary skill in the art would have
combined hashing with linked lists as taught by these references and one of
ordinary skill in the art to the system disclosed in the admitted prior and would
have seen the benefits of doing so. Two such benefits, for example, include
hash table collision resolution and the promotion of efficient local memory
accessing.

Furthermore, as summarized in Cox:

In database management and other applications that allocate a
cache in main memory to temporarily store data from external
subsystems, the buffer cache memory 14 typically has a limited
capacity. In operation, when a process running on a processor
node 18 retrieves data into the application cache for the first
time and the cache connected to the processor does not have
sufficient capacity available to store the new data (step 40), then
previously stored data has to be removed from the application
cache in order to free-up memory space (step 42). The
mechanism discussed in the present application determines
what data will be purged (or overwritten) from the local
memory based on a least recently used (LRU) memory
management mechanism. The LRU memory management
mechanism stores the most recently retrieved (or used) data in
the local memory. Typically, when data is stored in the local
memory the local processor time stamps the data. Thus, the

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

35 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

data stored in the memory with the oldest time stamp will
typically be overwritten. When space is available in the buffer
cache (step 40) the process assigns the next available virtual
address, to the data (step 44). Cox et al., U.S. Patent No.
5,918,249 at 3:21-42.

The process of the system is best understood with reference to Fig. 2: Id. at
Figure 2.

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

36 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

Cox discloses accessing a linked list of records. Cox also discloses accessing a
linked list of records having same hash address.

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

37 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

For example, Cox discloses “[a] non-uniform memory accessing (NUMA)
based multi-processor system that promotes local memory accessing and data
migration to local processor nodes. The system includes mechanisms to re-
map virtual and physical addresses to promote local memory accessing and
implements a least recently used memory allocation mechanism to age non-
local memory accesses out of memory to be re-read into local memory, which
promotes data migration to local memory on processor nodes.” Cox et al., U.S.
Patent No. 5,918.249 at Abstract.

For example, Beardsley discloses that “[h]ashing functions are well known
techniques used to randomly allocate locations in one address space to
addresses of a second address space. Those skilled in the art will realize that
the usual techniques of hashing chains are used to resolve conflicts” Beardsley
et al., U.S. Patent No. 5,991,775 at 6:2-8 (emphasis added) – it was well
known in the prior art to have objects distributed by a hash function, as
demonstrated in Beardsley, and then store the objects in a hash table using
linked lists or external chaining.

For example, Cox discloses that physical memory addresses are re-assigned to
corresponding local memory addresses of the processor node. Cox et al., U.S.
Patent No. 5,918,249 at 2:29-38. Since hashing involves allocating locations in
one address space to addresses of a second address space, as disclosed in
Beardsley Beardsley et al., U.S. Patent No. 5,991,775 at 6:2-8., one of ordinary
skill in the art would understand how to combine the hashed page table with
linked lists taught in Beardsley with Cox to implement the re-mapping Cox
requires in its system.

Furthermore, with respect to the use of linked list to address the key collision

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

38 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

problem, it would have been obvious to one of ordinary skill in the art to store
data in a linked list. The admitted prior art in the background of the ‘120
patent discloses that linked lists/external chaining were already common place
to resolve collisions within hash tables. Nemes, U.S. Patent No. 5,893,120 at
1:34-2:6. Thus, Cox and the admitted prior art of the ‘120 patent show that
one of ordinary skill in the art understood how to use linked lists/external
chaining to resolve collisions within hash tables, and would recognize that it
would improve similar systems and methods in the same way.

As both Cox and Beardsley disclose systems and methods for allocating data
structures in segments within a cache for fast retrieval of data with a least
recently used methodology for replacement of old data, one of ordinary skill in
the art would understand how to combine the hashed page table with linked
lists taught in Beardsley with Cox. Moreover, one of ordinary skill in art
would recognize that it would improve similar systems and methods in the
same way. Additionally, one of ordinary skill in the art would recognize that
the result of combining Cox with Beardsley would be nothing more than the
predictable use of prior art elements according to their established functions.
The result would simply be Cox’s buffer cache memory being implemented
with a hashing function using linked lists/external chaining as to way to re-map
physical addresses to local memory addresses.

By way of further example, one of ordinary skill in the art would have
combined hashing with linked lists as taught by these references and one of
ordinary skill in the art to the system disclosed in the admitted prior and would
have seen the benefits of doing so. Two such benefits, for example, include
hash table collision resolution and the promotion of efficient local memory
accessing.

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

39 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

Cox discloses identifying at least some of the automatically expired ones of the
records.

For example, Cox discloses “[a] non-uniform memory accessing (NUMA)
based multi-processor system that promotes local memory accessing and data
migration to local processor nodes. The system includes mechanisms to re-
map virtual and physical addresses to promote local memory accessing and
implements a least recently used memory allocation mechanism to age non-
local memory accesses out of memory to be re-read into local memory, which
promotes data migration to local memory on processor nodes.” Cox et al., U.S.
Patent No. 5,918.249 at Abstract.

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

Cox discloses removing at least some of the automatically expired records
from the linked list when the linked list is accessed.

For example, Cox discloses “[a] non-uniform memory accessing (NUMA)
based multi-processor system that promotes local memory accessing and data
migration to local processor nodes. The system includes mechanisms to re-
map virtual and physical addresses to promote local memory accessing and
implements a least recently used memory allocation mechanism to age non-
local memory accesses out of memory to be re-read into local memory, which
promotes data migration to local memory on processor nodes.” Id.

For example, Beardsley discloses that “[h]ashing functions are well known
techniques used to randomly allocate locations in one address space to
addresses of a second address space. Those skilled in the art will realize that
the usual techniques of hashing chains are used to resolve conflicts” Beardsley

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

40 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

et al., U.S. Patent No. 5,991,775 at 6:2-8 (emphasis added) – it was well
known in the prior art to have objects distributed by a hash function, as
demonstrated in Beardsley, and then store the objects in a hash table using
linked lists or external chaining.

For example, Cox discloses that physical memory addresses are re-assigned to
corresponding local memory addresses of the processor node. Cox et al., U.S.
Patent No. 5,918,249 at 2:29-38. Since hashing involves allocating locations
in one address space to addresses of a second address space, as disclosed in
Beardsley Beardsley et al., U.S. Patent No. 5,991,775 at 6:2-8., one of ordinary
skill in the art would understand how to combine the hashed page table with
linked lists taught in Beardsley with Cox to implement the re-mapping Cox
requires in its system.

Furthermore, with respect to the use of linked list to address the key collision
problem, it would have been obvious to one of ordinary skill in the art to store
data in a linked list. The admitted prior art in the background of the ‘120
patent discloses that linked lists/external chaining were already common place
to resolve collisions within hash tables. Nemes, U.S. Patent No. 5,893,120 at
1:34-2:6. Thus, Cox and the admitted prior art of the ‘120 patent show that
one of ordinary skill in the art understood how to use linked lists/external
chaining to resolve collisions within hash tables, and would recognize that it
would improve similar systems and methods in the same way.

As both Cox and Beardsley disclose systems and methods for allocating data
structures in segments within a cache for fast retrieval of data with a least
recently used methodology for replacement of old data, one of ordinary skill in
the art would understand how to combine the hashed page table with linked

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

41 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

lists taught in Beardsley with Cox. Moreover, one of ordinary skill in art
would recognize that it would improve similar systems and methods in the
same way. Additionally, one of ordinary skill in the art would recognize that
the result of combining Cox with Beardsley would be nothing more than the
predictable use of prior art elements according to their established functions.
The result would simply be Cox’s buffer cache memory being implemented
with a hashing function using linked lists/external chaining as to way to re-map
physical addresses to local memory addresses.

By way of further example, one of ordinary skill in the art would have
combined hashing with linked lists as taught by these references and one of
ordinary skill in the art to the system disclosed in the admitted prior and would
have seen the benefits of doing so. Two such benefits, for example, include
hash table collision resolution and the promotion of efficient local memory
accessing.

Furthermore, as summarized in Cox:

In database management and other applications that allocate a
cache in main memory to temporarily store data from external
subsystems, the buffer cache memory 14 typically has a limited
capacity. In operation, when a process running on a processor
node 18 retrieves data into the application cache for the first
time and the cache connected to the processor does not have
sufficient capacity available to store the new data (step 40), then
previously stored data has to be removed from the application
cache in order to free-up memory space (step 42). The
mechanism discussed in the present application determines

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

42 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

what data will be purged (or overwritten) from the local
memory based on a least recently used (LRU) memory
management mechanism. The LRU memory management
mechanism stores the most recently retrieved (or used) data in
the local memory. Typically, when data is stored in the local
memory the local processor time stamps the data. Thus, the
data stored in the memory with the oldest time stamp will
typically be overwritten. When space is available in the buffer
cache (step 40) the process assigns the next available virtual
address, to the data (step 44). Cox et al., U.S. Patent No.
5,918,249 at 3:21-42.

The process of the system is best understood with reference to Fig. 2: Id. at
Figure 2.

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

43 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

 [7d] inserting, retrieving
or deleting one of the

Cox discloses inserting, retrieving or deleting one of the records from the
system following the step of removing.

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

44 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

records from the system
following the step of
removing.

For example, Cox discloses “[a] non-uniform memory accessing (NUMA)
based multi-processor system that promotes local memory accessing and data
migration to local processor nodes. The system includes mechanisms to re-
map virtual and physical addresses to promote local memory accessing and
implements a least recently used memory allocation mechanism to age non-
local memory accesses out of memory to be re-read into local memory, which
promotes data migration to local memory on processor nodes.” Cox et al., U.S.
Patent No. 5,918.249 at Abstract.

For example, Beardsley discloses that “[h]ashing functions are well known
techniques used to randomly allocate locations in one address space to
addresses of a second address space. Those skilled in the art will realize that
the usual techniques of hashing chains are used to resolve conflicts” Beardsley
et al., U.S. Patent No. 5,991,775 at 6:2-8 (emphasis added) – it was well
known in the prior art to have objects distributed by a hash function, as
demonstrated in Beardsley, and then store the objects in a hash table using
linked lists or external chaining.

For example, Cox discloses that physical memory addresses are re-assigned to
corresponding local memory addresses of the processor node. Cox et al., U.S.
Patent No. 5,918,249 at 2:29-38. Since hashing involves allocating locations in
one address space to addresses of a second address space, as disclosed in
Beardsley Beardsley et al., U.S. Patent No. 5,991,775 at 6:2-8., one of ordinary
skill in the art would understand how to combine the hashed page table with
linked lists taught in Beardsley with Cox to implement the re-mapping Cox
requires in its system.

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

45 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

Furthermore, with respect to the use of linked list to address the key collision
problem, it would have been obvious to one of ordinary skill in the art to store
data in a linked list. The admitted prior art in the background of the ‘120
patent discloses that linked lists/external chaining were already common place
to resolve collisions within hash tables. Nemes, U.S. Patent No. 5,893,120 at
1:34-2:6. Thus, Cox and the admitted prior art of the ‘120 patent show that
one of ordinary skill in the art understood how to use linked lists/external
chaining to resolve collisions within hash tables, and would recognize that it
would improve similar systems and methods in the same way.

As both Cox and Beardsley disclose systems and methods for allocating data
structures in segments within a cache for fast retrieval of data with a least
recently used methodology for replacement of old data, one of ordinary skill in
the art would understand how to combine the hashed page table with linked
lists taught in Beardsley with Cox. Moreover, one of ordinary skill in art
would recognize that it would improve similar systems and methods in the
same way. Additionally, one of ordinary skill in the art would recognize that
the result of combining Cox with Beardsley would be nothing more than the
predictable use of prior art elements according to their established functions.
The result would simply be Cox’s buffer cache memory being implemented
with a hashing function using linked lists/external chaining as to way to re-map
physical addresses to local memory addresses.

By way of further example, one of ordinary skill in the art would have
combined hashing with linked lists as taught by these references and one of
ordinary skill in the art to the system disclosed in the admitted prior and would
have seen the benefits of doing so. Two such benefits, for example, include
hash table collision resolution and the promotion of efficient local memory

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

46 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

accessing.

Furthermore, as summarized in Cox:

In database management and other applications that allocate a
cache in main memory to temporarily store data from external
subsystems, the buffer cache memory 14 typically has a limited
capacity. In operation, when a process running on a processor
node 18 retrieves data into the application cache for the first
time and the cache connected to the processor does not have
sufficient capacity available to store the new data (step 40), then
previously stored data has to be removed from the application
cache in order to free-up memory space (step 42). The
mechanism discussed in the present application determines
what data will be purged (or overwritten) from the local
memory based on a least recently used (LRU) memory
management mechanism. The LRU memory management
mechanism stores the most recently retrieved (or used) data in
the local memory. Typically, when data is stored in the local
memory the local processor time stamps the data. Thus, the
data stored in the memory with the oldest time stamp will
typically be overwritten. When space is available in the buffer
cache (step 40) the process assigns the next available virtual
address, to the data (step 44). Cox et al., U.S. Patent No.
5,918,249 at 3:21-42.

The process of the system is best understood with reference to Fig. 2: Id. at
Figure 2.

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

47 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

48 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

4. The method according to
claim 3 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

Cox discloses dynamically determining maximum number of expired ones of
the records to remove when the linked list is accessed.

For example, as summarized in Cox:

In database management and other applications that allocate a
cache in main memory to temporarily store data from external
subsystems, the buffer cache memory 14 typically has a limited
capacity. In operation, when a process running on a processor
node 18 retrieves data into the application cache for the first
time and the cache connected to the processor does not have
sufficient capacity available to store the new data (step 40), then
previously stored data has to be removed from the application
cache in order to free-up memory space (step 42). The
mechanism discussed in the present application determines
what data will be purged (or overwritten) from the local
memory based on a least recently used (LRU) memory
management mechanism. The LRU memory management
mechanism stores the most recently retrieved (or used) data in
the local memory. Typically, when data is stored in the local
memory the local processor time stamps the data. Thus, the
data stored in the memory with the oldest time stamp will
typically be overwritten. When space is available in the buffer
cache (step 40) the process assigns the next available virtual
address, to the data (step 44). Cox et al., U.S. Patent No.
5,918,249 at 3:21-42.

If the physical address is local to the node (step 50), the

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

49 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

application determines if the local memory has sufficient
capacity available to store the data, similar to step 40. If there
is not enough memory space available in the buffer cache LRU
data is purged, similar to step 42. Once the LRU data is purged
or if space is available to store the data, the application process
on node A retrieves, time stamps and stores the data in memory
(step 52). Id. at 3:55-63.

The process of the system is best understood with reference to Fig. 2: Id. at
Figure 2.

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

50 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

51 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

In summary, if there is space available in the buffer cache, then the system
does not purge any data from the cache. If, however, free space is not
available in the buffer cache, then the system purges the last item (i.e., the least
recently used item) from the buffer cache based on the least recently
mechanism used by the system to make room for the new data. Therefore, the
determination of when to delete data is dynamically determined by whether
free space exists within the buffer cache.

Additionally, it would have been obvious to one of ordinary skill in the art to
combine the system taught in Cox and Beardsley with Dirks, Thatte, the ’663
patent, and/or the Opportunistic Garbage Collection Articles to disclose
dynamically determining maximum number of expired ones of the records to
remove when the linked list is accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in the
chart of Dirks, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

52 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

53 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Cox and Beardsley and Dirks relate to deletion of aged records upon
the allocation of a new incoming record, one of ordinary skill in the art would
have understood how to use Dirks’ dynamic decision making process of
determining the maximum number of records to sweep/remove in other hash
tables implementations such as that described Cox and Beardsley. Moreover,
one of ordinary skill in the art would recognize that it would improve similar
systems and methods in the same way. As the ’120 patent states “[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one.” The ’120
patent at 7:10-15. Additionally, one of ordinary skill in the art would
recognize that the result of combining Dirks’ deletion decision procedure with
Cox and Beardsley would be nothing more than the predictable use of prior art
elements according to their established functions.

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

54 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Cox and Beardsley and
would have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Cox and Beardsley with
the means for dynamically determining maximum number for the record
search means to remove in the accessed linked list of records disclosed by
Thatte. For example, Thatte discloses a system and method using hash tables
and/or linked lists and further discloses means for dynamically determining the
maximum number for the record search means to remove in the accessed
linked list of records. The disclosure of these claim elements in Thatte is
clearly shown in the chart of Thatte, which is hereby incorporated by reference
in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Cox and Beardsley with Thatte would be nothing more
than the predictable use of prior art elements according to their established
functions. The resulting combination would include the capability to
determine the maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine Cox
and Beardsley with Thatte and recognized the benefits of doing so. For
example, the removal of expired records described in Cox and Beardsleycan be

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

55 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

burdensome on the system, adding to the system’s load and slowing down the
system’s processing. One of ordinary skill in the art would recognize that
combining Cox and Beardsley with the teachings of Thatte would solve this
problem by dynamically determining how many records to delete based on,
among other things, the system load. Moreover, the '120 patent discloses that
"[a] person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records are removed, and that
the decision regarding if and how many records to delete can be a dynamic
one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine
Cox and Beardsley with Thatte.

Alternatively, it would also be obvious to combine Cox and Beardsley with the
’663 patent. Disclosure of these claim elements in the ’663 patent is clearly
shown in the chart of the ‘663 patent, which is hereby incorporated by
reference in its entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

56 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

57 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

58 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Cox and Beardsley and the ’663 patent relate to deletion of records
from hash tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as Cox and Beardsley. Moreover, one of ordinary skill in the art would
recognize that it would improve similar systems and methods in the same way.
As the ’120 patent states “[a] person skilled in the art will appreciate that the
technique of removing all expired records while searching the linked list can
be expanded to include techniques whereby not necessarily all expired records
are removed, and that the decision regarding if and how many records to delete
can be a dynamic one.” The ’120 patent at 7:10-15. Additionally, one of
ordinary skill in the art would recognize that the result of combining the ’663
patent’s deletion decision procedure with Cox and Beardsley would be nothing
more than the predictable use of prior art elements according to their
established functions.

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

59 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Cox and
Beardsley and would have seen the benefits of doing so. One such benefit, for
example, is that the system would avoid performing deletions when the system
load exceeded a threshold.

Alternatively, it would also be obvious to combine Cox and Beardsley with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

60 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Cox and Beardsley and the Opportunistic Garbage Collection Articles
relate to deletion of aged records, one of ordinary skill in the art would have
understood how to use the Opportunistic Garbage Collection Articles’ dynamic
decision on whether to perform a deletion based on a system load in other hash
table implementations such as Cox and Beardsley. Moreover, one of ordinary
skill in the art would recognize that it would improve similar systems and
methods in the same way. As the ’120 patent states “[a] person skilled in the
art will appreciate that the technique of removing all expired records while
searching the linked list can be expanded to include techniques whereby not

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

61 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

necessarily all expired records are removed, and that the decision regarding if
and how many records to delete can be a dynamic one.” The ’120 patent at
7:10-15. Additionally, one of ordinary skill in the art would recognize that the
result of combining the Opportunistic Garbage Collection Articles’ deletion
decision procedure with Cox and Beardsley would be nothing more than the
predictable use of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Cox and Beardsley
and would have seen the benefits of doing so. One such benefit, for example,
is that the system would only perform deletions when the system was not
already too overloaded, thus preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Cox and Beardsley to dynamically determine
the maximum number of expired records to remove in the accessed linked list
of records. It is a fundamental concept in computer science and the relevant
art that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Cox and Beardsley with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in Cox and Beardsley can be
burdensome on the system, adding to the system’s load and slowing down the
system’s processing. Moreover, the removal could also force an interruption in

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

62 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

real-time processing as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Cox in combination with Dirks, Thatte, the ‘663
Patent, or the Opportunistic Garbage Collection References, it is disclosed by
Linux 2.0.1, which describes dynamically determining maximum number of
expired ones of the records to remove when the linked list is accessed. It
would have been obvious to combine Linux 2.0.1 with Cox. For example,
both Linux 2.0.1 and Cox describe systems and methods for performing data
storage and retrieval using known programming techniques to yield a
predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

63 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

64 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

65 Case No. 6:09-CV-549-LED

US2008 1661463.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,918,249 to Cox et al. (“Cox”) alone and in combination
with U.S. Patent No. 5,991,775 to Beardsley et al. (“Beardsley”)

process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

EXHIBIT B-8

Joint Invalidity Contentions & Production of
Documents

66 Case No. 6:09-CV-549-LED

US2008 1661463.4

EXHIBIT B-9

Joint Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

US2008 1661464.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 6,424,992 Devarakonda (“Devarakonda”) alone and in
combination

1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, Devarakonda discloses an
information storage and retrieval system.

For example, Devarakonda describes a “method for providing an encapsulated
cluster with affinity-based routing of client requests to nodes in the cluster,” a
part of which includes extending “the TCP router to maintain an affinity table
of recent client TCP connections, after the TCP connections have been closed
(by a FIN command).” U.S. Pat. No. ‘992 col. 4:8-9, 4:58-61. The affinity
table stores and retrieves information about where to route packets from
particular clients. Id.

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

Devarakonda discloses a hash table to store and provide access to records
stored in a memory of the system, at least some of the records automatically
expiring.

For example, Devarakonda describes an affinity table that “contains
information about recent connections. . . . Each row in this table is known as an
affinity record 340. The affinity table 300 is searched for an affinity record
with the same address as the client address in the newly arrived packet.”
Devarakonda explains that “[a]lternative implementations [for the affinity
table] include, but are not limited to: arrays; balanced trees; and hash tables.”
Given this suggestion, it would have been obvious to one of ordinary skill in
the art that the affinity table could be created using a linked list or a hash table
with external chaining. There are a limited number of methods to solve the
problem of collisions in a hash table. One of those methods, external chaining,
was commonly known by those skilled in the art, as Nemes admits in the ‘120
patent. See U.S. Pat. No. ‘120 col. 1:53-59 (“Some form of collision
resolution must therefore be provided. For example, the simple strategy called

EXHIBIT B-9

Joint Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

US2008 1661464.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 6,424,992 Devarakonda (“Devarakonda”) alone and in
combination

‘linear probing,’ . . . is often used. Another method for resolving collisions is
called ‘external chaining.’”). This method of collision resolution is described
in the prior art cited by the ‘120 patent. See “The Art of Computer
Programming”, Sorting and Searching, D.E. Knuth, Addison-Wesley Series in
Computer Science and Information Processing, pp. 513, 518, 1973. Indeed,
Knuth recognizes that “[p]erhaps the most obvious way to solve this problem
[of collision resolution] is to maintain M linked Lists, one for each possible
hash code [i.e. external chaining].” See also Mark A. Weiss, Data Structures
and Algorithm Analysis, p. 157, 1993 (“Closed hashing, also known as open
addressing, is an alternative to resolving collisions with linked lists.”). Thus,
one of ordinary skill in the art would have been motivated by Knuth and Weiss
to use external chaining to solve the problem in collision resolution in the hash
table taught by Devarakonda.

The records in the system Devarakonda discloses include records, at least some
of which automatically expire.

For example, the affinity records stored in the affinity table expire when they
pass a certain age. “In decision block 1070, the affinity record is tested to
determine if it is too old. For example, each affinity record could include a
timestamp, which is then compared to the current time. If the difference in
those times exceeds a given threshold (also called the affinity period), for
example 100 seconds, then execution proceeds to function block 1080,
otherwise the affinity record is not too old, so execution proceeds to function
block 1120.” U.S. Pat. No. ‘992 col. 7:7-8, 7:25-32.

[1b] a record search means
utilizing a search key to

[5b] a record search means
utilizing a search key to

Devarakonda discloses a record search means utilizing a search key to access
the affinity table.

EXHIBIT B-9

Joint Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

US2008 1661464.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 6,424,992 Devarakonda (“Devarakonda”) alone and in
combination

access the linked list, access a linked list of
records having the same
hash address,

For example, “[i]n function block 1030, a search is made in a table called the
affinity table 300 shown in FIG. 3. . . . The affinity table 300 is searched for an
affinity record with the same address as the client address in the newly arrived
packet.” U.S. Pat. No. ‘922 col. 7:7-19.

As discussed in [1a/5a], it would have been obvious to one of ordinary skill in
the art that a linked list or a hash table using external chaining with linked lists
could be used for the affinity table.

[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the
records from the linked list
when the linked list is
accessed, and

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

Devarakonda discloses the record search means including a means for
identifying and removing at least some of the expired ones of the records from
the affinity table when the affinity table is accessed.

For example, during the search of the affinity table, a check is made to
determine whether the affinity record found is “too old.” If so, “the affinity
record for which the affinity period has elapsed is removed from the affinity
table 300. Then, in function block 1100, which follows both decision block
1050 and function block 1080, a new affinity record is created.” U.S. Pat. No.
‘992 col. 7:38-42.

As discussed in [1a/5a], it would have been obvious to one of ordinary skill in
the art that a linked list or a hash table using external chaining with linked lists
could be used for the affinity table.

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the

Devarakonda discloses means, utilizing the record search means, for accessing
the affinity table and, at the same time, removing at least some of the expired
ones of the records in the affinity table. Devarakonda also discloses means,
utilizing the record search means, for inserting and retrieving records from the

EXHIBIT B-9

Joint Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

US2008 1661464.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 6,424,992 Devarakonda (“Devarakonda”) alone and in
combination

removing at least some of
the expired ones of the
records in the linked list.

system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

system and, at the same time, removing at least some expired ones of the
records in the accessed affinity table.

For example, during the search of the affinity table, a check is made to
determine whether the affinity record found is “too old.” If so, “the affinity
record for which the affinity period has elapsed is removed from the affinity
table 300.” U.S. Pat. No. ‘992 col. 7:38-40. After this removal, a new affinity
record is created and the information in the record is retrieved to create a
connection record. “[I]n function block 1100, which follows both decision
block 1050 and function block 1080, a new affinity record is created.” U.S.
Pat. No. ‘992 col. 7:40-42. “In function block 1200, a connection record is
created. Such records contain sufficient information to identify this connection
and a field indicating which server was assigned for this connection.” U.S.
Pat. No. ‘992 col. 7:66-8:2.

It would have been obvious to one skilled in the art that a deletion could have
been done at the same time as the removal of records, since insertion, retrieval,
and deletion are all basic functions that can be performed on a hash table. See,
e.g., “The Art of Computer Programming”, Sorting and Searching, D.E. Knuth,
Addison-Wesley Series in Computer Science and Information Processing, pp.
506-549; “Data Structures and Program Design”, R.L. Kruse, Prentice-Hall,
Inc. 1984, pp. 104-148.

As discussed in [1a/5a], it would have been obvious to one of ordinary skill in
the art that a linked list or a hash table using external chaining with linked lists
could be used for the affinity table.

2. The information storage 6. The information storage It would have been obvious to one of ordinary skill in the art to modify the

EXHIBIT B-9

Joint Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

US2008 1661464.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 6,424,992 Devarakonda (“Devarakonda”) alone and in
combination

and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

system disclosed in Devarakonda to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records.
Devarakonda combined with Dirks, Thatte, the ’663 patent and/or the
Opportunistic Garbage Collection Articles discloses an information storage
and retrieval system further including means for dynamically determining
maximum number for the record search means to remove in the accessed
linked list of records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

EXHIBIT B-9

Joint Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

US2008 1661464.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 6,424,992 Devarakonda (“Devarakonda”) alone and in
combination

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in

EXHIBIT B-9

Joint Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

US2008 1661464.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 6,424,992 Devarakonda (“Devarakonda”) alone and in
combination

the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Devarakonda and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as Devarakonda. Moreover, one of ordinary skill in the
art would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Devarakonda nothing more
than the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Devarakonda and
would have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.`

EXHIBIT B-9

Joint Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

US2008 1661464.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 6,424,992 Devarakonda (“Devarakonda”) alone and in
combination

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Devarakonda with the
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records disclosed by Thatte. For
example, Thatte discloses a system and method using hash tables and/or linked
lists and further discloses means for dynamically determining the maximum
number for the record search means to remove in the accessed linked list of
records. The disclosure of these claim elements in Thatte is clearly shown in
the chart of Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Devarakonda with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine
Devarakonda with Thatte and recognize the benefits of doing so. For example,
the removal of expired records described in Devarakonda can be burdensome
on the system, adding to the system’s load and slowing down the system’s
processing. One of ordinary skill in the art would recognize that combining
Devarakonda with the teachings of Thatte would solve this problem by
dynamically determining how many records to delete based on, among other
things, the system load. Moreover, the '120 patent discloses that "[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques

EXHIBIT B-9

Joint Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

US2008 1661464.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 6,424,992 Devarakonda (“Devarakonda”) alone and in
combination

whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one." '120 at
7:10-15. Thus, the '120 patent provides motivations to combine Devarakonda
with Thatte.

Alternatively, it would also be obvious to combine Devarakonda with the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-

EXHIBIT B-9

Joint Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

US2008 1661464.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 6,424,992 Devarakonda (“Devarakonda”) alone and in
combination

secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT B-9

Joint Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

US2008 1661464.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 6,424,992 Devarakonda (“Devarakonda”) alone and in
combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Devarakonda and the ’663 patent relate to deletion of records from
hash tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in Devarakonda. Moreover, one of ordinary skill in the
art would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily

EXHIBIT B-9

Joint Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

US2008 1661464.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 6,424,992 Devarakonda (“Devarakonda”) alone and in
combination

all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with Devarakonda
would be nothing more than the predictable use of prior art elements according
to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Devarakonda
and would have seen the benefits of doing so. One such benefit, for example,
is that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Devarakonda with the
Opportunistic Garbage Collection Articles. For example, the Opportunistic
Garbage Collections Articles disclose in part:

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is

EXHIBIT B-9

Joint Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

US2008 1661464.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 6,424,992 Devarakonda (“Devarakonda”) alone and in
combination

invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Devarakonda and the Opportunistic Garbage Collection Articles relate

EXHIBIT B-9

Joint Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

US2008 1661464.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 6,424,992 Devarakonda (“Devarakonda”) alone and in
combination

to deletion of aged records, one of ordinary skill in the art would have
understood how to use the Opportunistic Garbage Collection Articles’ dynamic
decision on whether to perform a deletion based on a system load in other hash
table implementations such as Devarakonda. Moreover, one of ordinary skill
in the art would recognize that it would improve similar systems and methods
in the same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Devarakonda would be nothing more than the predictable use
of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Devarakonda and
would have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Devarakonda to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of

EXHIBIT B-9

Joint Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

US2008 1661464.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 6,424,992 Devarakonda (“Devarakonda”) alone and in
combination

ordinary skill in the art would have been motivated to combine the system
disclosed in Devarakonda with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in Devarakondacan be burdensome
on the system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Devarakonda in combination with Dirks, Thatte, the
‘663 Patent, or the Opportunistic Garbage Collection References, it is
disclosed by Linux 2.0.1, which describes dynamically determining maximum
number of expired ones of the records to remove when the linked list is
accessed. It would have been obvious to combine Linux 2.0.1
with Devarakonda. For example, both Linux 2.0.1 and Devarakonda describe
systems and methods for performing data storage and retrieval using known
programming techniques to yield a predictable result.

EXHIBIT B-9

Joint Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

US2008 1661464.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 6,424,992 Devarakonda (“Devarakonda”) alone and in
combination

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of

EXHIBIT B-9

Joint Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

US2008 1661464.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 6,424,992 Devarakonda (“Devarakonda”) alone and in
combination

records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number

EXHIBIT B-9

Joint Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

US2008 1661464.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 6,424,992 Devarakonda (“Devarakonda”) alone and in
combination

of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference

EXHIBIT B-9

Joint Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

US2008 1661464.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 6,424,992 Devarakonda (“Devarakonda”) alone and in
combination

counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

To the extent the preamble is a limitation, Devarakonda discloses a method for
storing and retrieving information records using an affinity table to store and
provide access to the records, at least some of the records automatically
expiring. It would have been obvious to one of ordinary skill in the art that a
linked list or hashing with external chaining could be used to implement the
affinity table.

For example, Devarakonda describes a “method for providing an encapsulated
cluster with affinity-based routing of client requests to nodes in the cluster,” a
part of which includes extending “the TCP router to maintain an affinity table
of recent client TCP connections, after the TCP connections have been closed
(by a FIN command).” U.S. Pat. No. ‘992 col. 4:8-9, 4:58-61. The affinity
table stores and retrieves information about where to route packets from
particular clients.

The affinity table “contains information about recent connections. . . . Each
row in this table is known as an affinity record 340. The affinity table 300 is
searched for an affinity record with the same address as the client address in
the newly arrived packet.” Devarakonda states that “[a]lternative
implementations [for the affinity table] include, but are not limited to: arrays;
balanced trees; and hash tables.” As discussed in [1a/5a], one of ordinary skill

EXHIBIT B-9

Joint Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

US2008 1661464.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 6,424,992 Devarakonda (“Devarakonda”) alone and in
combination

in the art would have known that a linked list or a hash table with external
chaining using linked lists could be used for the affinity table.

The records in the system Devarakonda discloses include records, at least some
of which automatically expire.

For example, the affinity records stored in the affinity table expire when they
pass a certain age. “In decision block 1070, the affinity record is tested to
determine if it is too old. For example, each affinity record could include a
timestamp, which is then compared to the current time. If the difference in
those times exceeds a given threshold (also called the affinity period), for
example 100 seconds, then execution proceeds to function block 1080,
otherwise the affinity record is not too old, so execution proceeds to function
block 1120.” U.S. Pat. No. ‘992 col. 7:7-8, 7:25-32.

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

Devarakonda discloses accessing the affinity table of records.

For example, “[i]n function block 1030, a search is made in a table called the
affinity table 300 shown in FIG. 3. . . . The affinity table 300 is searched for an
affinity record with the same address as the client address in the newly arrived
packet.”

As discussed in [1a/5a], it would have been obvious to one of ordinary skill in
the art that a linked list or a hash table using external chaining with linked lists
could be used for the affinity table.

[3b] identifying at least
some of the automatically
expired ones of the records,

[7b] identifying at least
some of the automatically
expired ones of the records,

Devarakonda discloses identifying at least some of the automatically expired
ones of the records.

EXHIBIT B-9

Joint Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

US2008 1661464.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 6,424,992 Devarakonda (“Devarakonda”) alone and in
combination

and For example, during the search of the affinity table, a check is made to
determine whether the affinity record found is “too old.” U.S. Pat. No. ‘992
col. 7:25-32.

As discussed in [1a/5a], it would have been obvious to one of ordinary skill in
the art that a linked list or a hash table using external chaining with linked lists
could be used for the affinity table.

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

Devarakonda discloses removing at least some of the automatically expired
records from the affinity table when the affinity table is accessed.

For example, during the search of the affinity table, a check is made to
determine whether the affinity record found is “too old.” If so, “the affinity
record for which the affinity period has elapsed is removed from the affinity
table 300. Then, in function block 1100, which follows both decision block
1050 and function block 1080, a new affinity record is created.” U.S. Pat. No.
‘992 col. 7:38-42.

As discussed in [1a/5a], it would have been obvious to one of ordinary skill in
the art that a linked list or a hash table using external chaining with linked lists
could be used for the affinity table.

 [7d] inserting, retrieving
or deleting one of the
records from the system
following the step of
removing.

Devarakonda discloses inserting, retrieving or deleting one of the records from
the system following the step of removing.

For example, during the search of the affinity table, a check is made to
determine whether the affinity record found is “too old.” If so, “the affinity
record for which the affinity period has elapsed is removed from the affinity

EXHIBIT B-9

Joint Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

US2008 1661464.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 6,424,992 Devarakonda (“Devarakonda”) alone and in
combination

table 300.” U.S. Pat. No. ‘992 col. 7:38-40. After this removal, a new affinity
record is created and the information in the record is retrieved to create a
connection record. “[I]n function block 1100, which follows both decision
block 1050 and function block 1080, a new affinity record is created.” U.S.
Pat. No. ‘992 col. 7:40-42. “In function block 1200, a connection record is
created. Such records contain sufficient information to identify this connection
and a field indicating which server was assigned for this connection.” U.S.
Pat. No. ‘992 col. 7:66-8:2.

As discussed in [1a/5a], it would have been obvious to one of ordinary skill in
the art that a linked list or a hash table using external chaining with linked lists
could be used for the affinity table.

4. The method according to
claim 3 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

It would have been obvious to one of ordinary skill in the art to modify the
systems and methods disclosed in Devarakonda to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. Devarakonda combined with Dirks, Thatte, the ’663 patent, and/or
the Opportunistic Garbage Collection Articles discloses dynamically
determining maximum number of expired ones of the records to remove when
the linked list is accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in the
chart of Dirks, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

EXHIBIT B-9

Joint Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

US2008 1661464.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 6,424,992 Devarakonda (“Devarakonda”) alone and in
combination

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

EXHIBIT B-9

Joint Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

US2008 1661464.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 6,424,992 Devarakonda (“Devarakonda”) alone and in
combination

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Devarakonda and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as that described Devarakonda. Moreover, one of
ordinary skill in the art would recognize that it would improve similar systems
and methods in the same way. As the ’120 patent states “[a] person skilled in
the art will appreciate that the technique of removing all expired records while

EXHIBIT B-9

Joint Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

US2008 1661464.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 6,424,992 Devarakonda (“Devarakonda”) alone and in
combination

searching the linked list can be expanded to include techniques whereby not
necessarily all expired records are removed, and that the decision regarding if
and how many records to delete can be a dynamic one.” The ’120 patent at
7:10-15. Additionally, one of ordinary skill in the art would recognize that the
result of combining Dirks’ deletion decision procedure with Devarakonda
would be nothing more than the predictable use of prior art elements according
to their established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Devarakonda and
would have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Devarakonda with the
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records disclosed by Thatte. For
example, Thatte discloses a system and method using hash tables and/or linked
lists and further discloses means for dynamically determining the maximum
number for the record search means to remove in the accessed linked list of
records. The disclosure of these claim elements in Thatte is clearly shown in
the chart of Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Devarakonda with Thatte would be nothing more than the

EXHIBIT B-9

Joint Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

US2008 1661464.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 6,424,992 Devarakonda (“Devarakonda”) alone and in
combination

predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine
Devarakonda with Thatte and recognized the benefits of doing so. For
example, the removal of expired records described in Devarakondacan be
burdensome on the system, adding to the system’s load and slowing down the
system’s processing. One of ordinary skill in the art would recognize that
combining Devarakonda with the teachings of Thatte would solve this problem
by dynamically determining how many records to delete based on, among
other things, the system load. Moreover, the '120 patent discloses that "[a]
person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records are removed, and that
the decision regarding if and how many records to delete can be a dynamic
one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine
Devarakonda with Thatte.

Alternatively, it would also be obvious to combine Devarakonda with the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record

EXHIBIT B-9

Joint Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

US2008 1661464.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 6,424,992 Devarakonda (“Devarakonda”) alone and in
combination

from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT B-9

Joint Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

US2008 1661464.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 6,424,992 Devarakonda (“Devarakonda”) alone and in
combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does

EXHIBIT B-9

Joint Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

US2008 1661464.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 6,424,992 Devarakonda (“Devarakonda”) alone and in
combination

not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Devarakonda and the ’663 patent relate to deletion of records from
hash tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as Devarakonda. Moreover, one of ordinary skill in the art would
recognize that it would improve similar systems and methods in the same way.
As the ’120 patent states “[a] person skilled in the art will appreciate that the
technique of removing all expired records while searching the linked list can
be expanded to include techniques whereby not necessarily all expired records
are removed, and that the decision regarding if and how many records to delete
can be a dynamic one.” The ’120 patent at 7:10-15. Additionally, one of
ordinary skill in the art would recognize that the result of combining the ’663
patent’s deletion decision procedure with Devarakonda would be nothing more
than the predictable use of prior art elements according to their established
functions.

EXHIBIT B-9

Joint Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

US2008 1661464.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 6,424,992 Devarakonda (“Devarakonda”) alone and in
combination

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Devarakonda
and would have seen the benefits of doing so. One such benefit, for example,
is that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Devarakonda with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more

EXHIBIT B-9

Joint Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

US2008 1661464.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 6,424,992 Devarakonda (“Devarakonda”) alone and in
combination

than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Devarakonda and the Opportunistic Garbage Collection Articles relate
to deletion of aged records, one of ordinary skill in the art would have
understood how to use the Opportunistic Garbage Collection Articles’ dynamic
decision on whether to perform a deletion based on a system load in other hash
table implementations such as Devarakonda. Moreover, one of ordinary skill
in the art would recognize that it would improve similar systems and methods
in the same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily

EXHIBIT B-9

Joint Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

US2008 1661464.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 6,424,992 Devarakonda (“Devarakonda”) alone and in
combination

all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Devarakonda would be nothing more than the predictable use
of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Devarakonda and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would only perform deletions when the system was not already
too overloaded, thus preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Devarakonda to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Devarakonda with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in Devarakonda can be burdensome
on the system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-

EXHIBIT B-9

Joint Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

US2008 1661464.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 6,424,992 Devarakonda (“Devarakonda”) alone and in
combination

time processing as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Devarakonda in combination with Dirks, Thatte, the
‘663 Patent, or the Opportunistic Garbage Collection References, it is
disclosed by Linux 2.0.1, which describes dynamically determining maximum
number of expired ones of the records to remove when the linked list is
accessed. It would have been obvious to combine Linux 2.0.1
with Devarakonda. For example, both Linux 2.0.1 and Devarakonda describe
systems and methods for performing data storage and retrieval using known
programming techniques to yield a predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the

EXHIBIT B-9

Joint Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

US2008 1661464.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 6,424,992 Devarakonda (“Devarakonda”) alone and in
combination

number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at

EXHIBIT B-9

Joint Invalidity Contentions & Production of
Documents

35 Case No. 6:09-CV-549-LED

US2008 1661464.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 6,424,992 Devarakonda (“Devarakonda”) alone and in
combination

line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this

EXHIBIT B-9

Joint Invalidity Contentions & Production of
Documents

36 Case No. 6:09-CV-549-LED

US2008 1661464.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 6,424,992 Devarakonda (“Devarakonda”) alone and in
combination

process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

EXHIBIT B-9

Joint Invalidity Contentions & Production of
Documents

37 Case No. 6:09-CV-549-LED

US2008 1661464.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 6,424,992 Devarakonda (“Devarakonda”) alone and in
combination

EXHIBIT B-10

Joint Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

US2008 1661499.4

Asserted Claims From
U.S. Pat. No. 5,893,120

 U.S. Pat. No. 6,243,667 Kerr (“Kerr”) alone and in combination

1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, Kerr discloses an information
storage and retrieval system.

For example, Kerr describes a “method and system for switching in networks
responsive to message flow patterns.” Kerr at col. 1:48-49. Part of that system
includes a flow cache “in which routing information to be used for packets 150
in each particular message flow 160 is recorded and from which such routing
information is retrieved for use.” Kerr at col. 3:42-45.

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

Kerr discloses a linked list to store and provide access to records stored in a
memory of the system, at least some of the records automatically expiring.
Kerr also discloses a hashing means to provide access to records stored in a
memory of the system and using an external chaining technique to store the
records with same hash address, at least some of the records automatically
expiring.

For example, Kerr describes a flow cache that “comprises a memory which
associates flow keys 210 with information about message flows 160 identified
by those flow keys 310. The flow cache 300 includes a set of buckets 301.
Each bucket 301 includes a linked list of entries 302. Each entry 302 includes
information about a particular message flow 160 … and a pointer to
information about the treatment of packets 150 to the destination device 130 for
that message flow 160.” Kerr at col. 6:32-41.

The records in the system Kerr discloses includes records, at least some of
which automatically expire.

For example, Kerr explains that “[a]t step 241, the routing device 140

EXHIBIT B-10

Joint Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

US2008 1661499.4

Asserted Claims From
U.S. Pat. No. 5,893,120

 U.S. Pat. No. 6,243,667 Kerr (“Kerr”) alone and in combination

examines each entry in the flow cache and compares a current time with a last
time a packet 150 was routed using that particular entry. If the difference
exceeds a first selected timeout, the message flow 160 represented by that
entry is considered to have expired due to nonuse and thus to no longer be
valid.” Kerr at col. 5:52-57.

Kerr further explains that “[i]n a preferred embodiment, the routing device 140
also examines the entry in the flow cache and compares a current time with a
first time a packet 150 was routed using that particular entry. If the difference
exceeds a second selected timeout, the message flow 160 represented by that
entry is considered to have expired due to age and thus to no longer be valid.
The second selected timeout is preferably about one minute.” Kerr at col.
5:58-65.

Kerr also states that “[i]n a preferred embodiment, the routing device 140 also
examines the entry in the flow cache and determines if the “next hop”
information has changed. If so, the message flow 160 is expired due to
changed conditions. Other changed conditions which might cause a message
flow 160 to be expired include changes in access control lists or other changes
which might affect the proper treatment of packets 150 in the message flow
160. The routing device 140 also expires entries in the flow cache on a least-
recently-used basis if the flow cache becomes too full.” Kerr at col. 6:10-19.

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of
records having the same
hash address,

Kerr discloses a record search means utilizing a search key to access the linked
list. Kerr also discloses a record search means utilizing a search key to access
a linked list of records having the same hash address.

For example, the flow cache “associates flow keys 310 with information about

EXHIBIT B-10

Joint Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

US2008 1661499.4

Asserted Claims From
U.S. Pat. No. 5,893,120

 U.S. Pat. No. 6,243,667 Kerr (“Kerr”) alone and in combination

message flows 160 identified by those flow keys 310.” Kerr at col. 6:32-34.
Those flow keys are used to access records stored in the linked lists in the flow
cache hash table. Kerr at col. 6:32-35. See also Kerr at 3:57-4:12.

[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the
records from the linked list
when the linked list is
accessed, and

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

Kerr discloses the record search means including a means for identifying and
removing at least some of the expired ones of the records from the linked list
when the linked list is accessed.

For example, the routing device described in Kerr identifies expired entries for
message flows and “[i]f the message flow is no longer valid, the routing device
continues with the step 242. At step 242, the routing device 140 collects
historical information about the message flow 160 from the entry in the flow
cache, and deletes the entry.” Kerr at col. 6:22-27. See also Kerr at 3:57:4:12,
6:11-19.

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

Kerr discloses means, utilizing the record search means, for accessing the
linked list and, at the same time, removing at least some of the expired ones of
the records in the linked list. Kerr also discloses means, utilizing the record
search means, for inserting, retrieving, and deleting records from the system
and, at the same time, removing at least some expired ones of the records in the
accessed linked list of records.

For example, the routing device described in Kerr will build a new entry in the
flow cache if one does not already exist for the packet’s message flow. See
Kerr at col. 4:12-13. The device then identifies expired entries for message
flows and “[i]f the message flow is no longer valid, the routing device
continues with the step 242. At step 242, the routing device 140 collects
historical information about the message flow 160 from the entry in the flow

EXHIBIT B-10

Joint Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

US2008 1661499.4

Asserted Claims From
U.S. Pat. No. 5,893,120

 U.S. Pat. No. 6,243,667 Kerr (“Kerr”) alone and in combination

cache, and deletes the entry.” Kerr at col. 6:22-27. The routing device in Kerr
also performs a retrieval and deletion. For example, “[a]t a step 225, the
routing device 140 retrieves routing information from the entry in the flow
cache for the identified message flow 160.” Kerr at col. 4:52-55; see also Kerr
at col. 6:25-27.

To the extent Kerr does not include means for inserting, retrieving, and
deleting records utilizing the record search means, it would have been obvious
to one skilled in the art that insertion, retrieval or deletion could have been
done, since these are all basic functions that can be performed on a hash table
or a linked list in similar ways when the hash table or linked list is accessed.
See, e.g., “The Art of Computer Programming”, Sorting and Searching, D.E.
Knuth, Addison-Wesley Series in Computer Science and Information
Processing, pp. 506-549; “Data Structures and Program Design”, R.L. Kruse,
Prentice-Hall, Inc. 1984, pp. 104-148.

2. The information storage
and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

6. The information storage
and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

Kerr combined with Dirks, Thatte, the ’663 patent and/or the Opportunistic
Garbage Collection Articles discloses an information storage and retrieval
system further including means for dynamically determining maximum
number for the record search means to remove in the accessed linked list of
records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

EXHIBIT B-10

Joint Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

US2008 1661499.4

Asserted Claims From
U.S. Pat. No. 5,893,120

 U.S. Pat. No. 6,243,667 Kerr (“Kerr”) alone and in combination

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

EXHIBIT B-10

Joint Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

US2008 1661499.4

Asserted Claims From
U.S. Pat. No. 5,893,120

 U.S. Pat. No. 6,243,667 Kerr (“Kerr”) alone and in combination

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Kerr and Dirks relate to deletion of aged records upon the allocation of
a new incoming record, one of ordinary skill in the art would have understood
how to use Dirks’ dynamic decision making process of determining the
maximum number of records to sweep/remove in other hash tables
implementations such as Kerr. Moreover, one of ordinary skill in the art would
recognize that it would improve similar systems and methods in the same way.
As the ’120 patent states “[a] person skilled in the art will appreciate that the
technique of removing all expired records while searching the linked list can

EXHIBIT B-10

Joint Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

US2008 1661499.4

Asserted Claims From
U.S. Pat. No. 5,893,120

 U.S. Pat. No. 6,243,667 Kerr (“Kerr”) alone and in combination

be expanded to include techniques whereby not necessarily all expired records
are removed, and that the decision regarding if and how many records to delete
can be a dynamic one.” The ’120 patent at 7:10-15. Additionally, one of
ordinary skill in the art would recognize that the result of combining Dirks’
deletion decision procedure with Kerr nothing more than the predictable use of
prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Kerr and would have
seen the benefits of doing so. One possible benefit, for example, is saving the
system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Kerr with the means for
dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. For example,
Thatte discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Kerr with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.

EXHIBIT B-10

Joint Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

US2008 1661499.4

Asserted Claims From
U.S. Pat. No. 5,893,120

 U.S. Pat. No. 6,243,667 Kerr (“Kerr”) alone and in combination

The resulting combination would include the capability to determine the
maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine Kerr
with Thatte and recognize the benefits of doing so. For example, the removal
of expired records described in Kerr can be burdensome on the system, adding
to the system’s load and slowing down the system’s processing. One of
ordinary skill in the art would recognize that combining Kerr with the
teachings of Thatte would solve this problem by dynamically determining how
many records to delete based on, among other things, the system load.
Moreover, the '120 patent discloses that "[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120
patent provides motivations to combine Kerr with Thatte.

Alternatively, it would also be obvious to combine Kerrwith the ’663 patent.
Disclosure of these claim elements in the ’663 patent is clearly shown in the
chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the

EXHIBIT B-10

Joint Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

US2008 1661499.4

Asserted Claims From
U.S. Pat. No. 5,893,120

 U.S. Pat. No. 6,243,667 Kerr (“Kerr”) alone and in combination

storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT B-10

Joint Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

US2008 1661499.4

Asserted Claims From
U.S. Pat. No. 5,893,120

 U.S. Pat. No. 6,243,667 Kerr (“Kerr”) alone and in combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does

EXHIBIT B-10

Joint Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

US2008 1661499.4

Asserted Claims From
U.S. Pat. No. 5,893,120

 U.S. Pat. No. 6,243,667 Kerr (“Kerr”) alone and in combination

not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.
As both Kerr and the ’663 patent relate to deletion of records from hash tables
using external chaining, one of ordinary skill in the art would understood how
to use the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load in other hash table implementations such as that
described in Kerr. Moreover, one of ordinary skill in the art would recognize
that it would improve similar systems and methods in the same way. As the
’120 patent states “[a] person skilled in the art will appreciate that the
technique of removing all expired records while searching the linked list can
be expanded to include techniques whereby not necessarily all expired records
are removed, and that the decision regarding if and how many records to delete
can be a dynamic one.” The ’120 patent at 7:10-15. Additionally, one of
ordinary skill in the art would recognize that the result of combining the ’663
patent’s deletion decision procedure with Kerr would be nothing more than the
predictable use of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion

EXHIBIT B-10

Joint Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

US2008 1661499.4

Asserted Claims From
U.S. Pat. No. 5,893,120

 U.S. Pat. No. 6,243,667 Kerr (“Kerr”) alone and in combination

based on a systems load as taught by the ’663 patent and with Kerr and would
have seen the benefits of doing so. One such benefit, for example, is that the
system would avoid performing deletions when the system load exceeded a
threshold.

Alternatively, it would also be obvious to combine Kerr with the Opportunistic
Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a

EXHIBIT B-10

Joint Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

US2008 1661499.4

Asserted Claims From
U.S. Pat. No. 5,893,120

 U.S. Pat. No. 6,243,667 Kerr (“Kerr”) alone and in combination

continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Kerr and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Kerr. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.

EXHIBIT B-10

Joint Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

US2008 1661499.4

Asserted Claims From
U.S. Pat. No. 5,893,120

 U.S. Pat. No. 6,243,667 Kerr (“Kerr”) alone and in combination

Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Kerr would be nothing more than the predictable use of prior
art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Kerr and would
have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Kerr to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in Kerr
with the fundamental concept of dynamically determining the maximum
number of expired records to remove in an accessed linked list of records to
solve a number of potential problems. For example, the removal of expired
records described in Kerrcan be burdensome on the system, adding to the
system’s load and slowing down the system’s processing. Moreover, the
removal could also force an interruption in real-time processing as the
processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically

EXHIBIT B-10

Joint Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

US2008 1661499.4

Asserted Claims From
U.S. Pat. No. 5,893,120

 U.S. Pat. No. 6,243,667 Kerr (“Kerr”) alone and in combination

determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15. Further, Kerr
states that “[o]ne problem which has arisen in the art is that processing
demands on routing and switching devices continue to grow with increased
network demand,” thus “[i]t continues to be advantageous to provide
techniques for processing packets more quickly.” Kerr at 1:22-38. Given this
focus on efficiency in Kerr, one of ordinary skill in the art would have been
motivated to try the teachings of Thatte, Dirks, the ‘663 patent, and/or the
Opportunistic Garbage Collection Articles in combination with Kerr to
optimize the performance of the system and method disclosed in Kerr.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Kerr in combination with Dirks, Thatte, the ‘663
Patent, or the Opportunistic Garbage Collection References, it is disclosed by
Linux 2.0.1, which describes dynamically determining maximum number of
expired ones of the records to remove when the linked list is accessed. It
would have been obvious to combine Linux 2.0.1 with Kerr. For example,
both Linux 2.0.1 and Kerr describe systems and methods for performing data
storage and retrieval using known programming techniques to yield a
predictable result.

When invoked, the function rt_cache_add automatically increments an

EXHIBIT B-10

Joint Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

US2008 1661499.4

Asserted Claims From
U.S. Pat. No. 5,893,120

 U.S. Pat. No. 6,243,667 Kerr (“Kerr”) alone and in combination

integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds

EXHIBIT B-10

Joint Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

US2008 1661499.4

Asserted Claims From
U.S. Pat. No. 5,893,120

 U.S. Pat. No. 6,243,667 Kerr (“Kerr”) alone and in combination

the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves

EXHIBIT B-10

Joint Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

US2008 1661499.4

Asserted Claims From
U.S. Pat. No. 5,893,120

 U.S. Pat. No. 6,243,667 Kerr (“Kerr”) alone and in combination

the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

EXHIBIT B-10

Joint Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

US2008 1661499.4

Asserted Claims From
U.S. Pat. No. 5,893,120

 U.S. Pat. No. 6,243,667 Kerr (“Kerr”) alone and in combination

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

To the extent the preamble is a limitation, Kerr discloses a method for storing
and retrieving information records using a linked list to store and provide
access to the records, at least some of the records automatically expiring. Kerr
also discloses a method for storing and retrieving information records using a
hashing technique to provide access to the records and using an external
chaining technique to store the records with same hash address, at least some
of the records automatically expiring.

For example, Kerr describes a “method and system for switching in networks
responsive to message flow patterns.” Kerr at col. 1:48-49. Part of that system
includes a flow cache, which is used to store and retrieve information about
message flows. “At a step 223, the routing device 140 performs a lookup in a
flow cache for the identified message flow 160.” U.S. Pat. No. ’667 col. 4:1-2.
The flow cache “comprises a memory which associates flow keys 210 with
information about message flows 160 identified by those flow keys 310. The
flow cache 300 includes a set of buckets 301. Each bucket 301 includes a
linked list of entries 302. Each entry 302 includes information about a
particular message flow 160 … and a pointer to information about the treatment
of packets 150 to the destination device 130 for that message flow 160.” Kerr
at col. 6:32-41.

The records in the system Kerr discloses includes records, at least some of
which automatically expire.

EXHIBIT B-10

Joint Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

US2008 1661499.4

Asserted Claims From
U.S. Pat. No. 5,893,120

 U.S. Pat. No. 6,243,667 Kerr (“Kerr”) alone and in combination

For example, Kerr explains that “[a]t step 241, the routing device 140
examines each entry in the flow cache and compares a current time with a last
time a packet 150 was routed using that particular entry. If the difference
exceeds a first selected timeout, the message flow 160 represented by that
entry is considered to have expired due to nonuse and thus to no longer be
valid.” Kerr at col. 5:52-57.

Kerr further explains that “[i]n a preferred embodiment, the routing device 140
also examines the entry in the flow cache and compares a current time with a
first time a packet 150 was routed using that particular entry. If the difference
exceeds a second selected timeout, the message flow 160 represented by that
entry is considered to have expired due to age and thus to no longer be valid.
The second selected timeout is preferably about one minute.” Kerr at col.
5:58-65.

Kerr also states that “[i]n a preferred embodiment, the routing device 140 also
examines the entry in the flow cache and determines if the “next hop”
information has changed. If so, the message flow 160 is expired due to
changed conditions. Other changed conditions which might cause a message
flow 160 to be expired include changes in access control lists or other changes
which might affect the proper treatment of packets 150 in the message flow
160. The routing device 140 also expires entries in the flow cache on a least-
recently-used basis if the flow cache becomes too full. Kerr at col. 6:10-19.

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

Kerr discloses accessing the linked list of records. Kerr also discloses
accessing a linked list of records having same hash address

EXHIBIT B-10

Joint Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

US2008 1661499.4

Asserted Claims From
U.S. Pat. No. 5,893,120

 U.S. Pat. No. 6,243,667 Kerr (“Kerr”) alone and in combination

For example, “[a]t a step 223, the routing device 140 performs a lookup in a
flow cache for the identified message flow 160.” Kerr at col. 4:1-2. “At a step
225, the routing device 140 retrieves routing information from the entry in the
flow cache for the identified message flow 160.” Kerr at col. 4:53-55. “At a
step 241, the routing device 140 examines each entry in the flow cache and
compares a current time with a last time a packet 150 was routed using that
particular entry.” Kerr at col. 5:52-54. See also Kerr at 6:32-41.

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

Kerr discloses identifying at least some of the automatically expired ones of
the records.

For example, the routing device described in Kerr identifies expired entries for
message flows and “[i]f the message flow is no longer valid, the routing device
continues with the step 242. At step 242, the routing device 140 collects
historical information about the message flow 160 from the entry in the flow
cache, and deletes the entry.” Kerr at col. 6:22-27. See also Kerr at 5:52-57.

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

Kerr discloses removing at least some of the automatically expired records
from the linked list when the linked list is accessed.

For example, the routing device described in Kerr identifies expired entries for
message flows and “[i]f the message flow is no longer valid, the routing device
continues with the step 242. At step 242, the routing device 140 collects
historical information about the message flow 160 from the entry in the flow
cache, and deletes the entry.” Kerr at col. 6:22-27. See also Kerr at 6:11-19.

 [7d] inserting, retrieving
or deleting one of the

Kerr discloses inserting, retrieving or deleting one of the records from the
system following the step of removing.

EXHIBIT B-10

Joint Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

US2008 1661499.4

Asserted Claims From
U.S. Pat. No. 5,893,120

 U.S. Pat. No. 6,243,667 Kerr (“Kerr”) alone and in combination

records from the system
following the step of
removing.

For example, see Kerr at 5:66-6:10. “Expiring message flows 160 due to age
artificially requires that a new message flow 160 must be created for the next
packet 150 in the same communication session represented by the old message
flow 160 which was expired. Id. at 5:66-6:2.

4. The method according to
claim 3 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

Kerr combined with Dirks, Thatte, the ’663 patent, and/or the Opportunistic
Garbage Collection Articles discloses dynamically determining maximum
number of expired ones of the records to remove when the linked list is
accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in the
chart of Dirks, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list

EXHIBIT B-10

Joint Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

US2008 1661499.4

Asserted Claims From
U.S. Pat. No. 5,893,120

 U.S. Pat. No. 6,243,667 Kerr (“Kerr”) alone and in combination

without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this

EXHIBIT B-10

Joint Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

US2008 1661499.4

Asserted Claims From
U.S. Pat. No. 5,893,120

 U.S. Pat. No. 6,243,667 Kerr (“Kerr”) alone and in combination

regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Kerr and Dirks relate to deletion of aged records upon the allocation of
a new incoming record, one of ordinary skill in the art would have understood
how to use Dirks’ dynamic decision making process of determining the
maximum number of records to sweep/remove in other hash tables
implementations such as that described Kerr. Moreover, one of ordinary skill
in the art would recognize that it would improve similar systems and methods
in the same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Kerr would be nothing
more than the predictable use of prior art elements according to their
established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Kerr and would have

EXHIBIT B-10

Joint Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

US2008 1661499.4

Asserted Claims From
U.S. Pat. No. 5,893,120

 U.S. Pat. No. 6,243,667 Kerr (“Kerr”) alone and in combination

seen the benefits of doing so. One possible benefit, for example, is saving the
system from performing sometimes time-consuming sweeps.

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Kerr with the means for
dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. For example,
Thatte discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Kerr with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine Kerr
with Thatte and recognized the benefits of doing so. For example, the removal
of expired records described in Kerrcan be burdensome on the system, adding
to the system’s load and slowing down the system’s processing. One of
ordinary skill in the art would recognize that combining Kerr with the
teachings of Thatte would solve this problem by dynamically determining how
many records to delete based on, among other things, the system load.

EXHIBIT B-10

Joint Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

US2008 1661499.4

Asserted Claims From
U.S. Pat. No. 5,893,120

 U.S. Pat. No. 6,243,667 Kerr (“Kerr”) alone and in combination

Moreover, the '120 patent discloses that "[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120
patent provides motivations to combine Kerr with Thatte.

Alternatively, it would also be obvious to combine Kerr with the ’663 patent.
Disclosure of these claim elements in the ’663 patent is clearly shown in the
chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

EXHIBIT B-10

Joint Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

US2008 1661499.4

Asserted Claims From
U.S. Pat. No. 5,893,120

 U.S. Pat. No. 6,243,667 Kerr (“Kerr”) alone and in combination

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT B-10

Joint Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

US2008 1661499.4

Asserted Claims From
U.S. Pat. No. 5,893,120

 U.S. Pat. No. 6,243,667 Kerr (“Kerr”) alone and in combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does

EXHIBIT B-10

Joint Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

US2008 1661499.4

Asserted Claims From
U.S. Pat. No. 5,893,120

 U.S. Pat. No. 6,243,667 Kerr (“Kerr”) alone and in combination

not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Kerr and the ’663 patent relate to deletion of records from hash tables
using external chaining, one of ordinary skill in the art would understood how
to use the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load in other hash table implementations such as Kerr.
Moreover, one of ordinary skill in the art would recognize that it would
improve similar systems and methods in the same way. As the ’120 patent
states “[a] person skilled in the art will appreciate that the technique of
removing all expired records while searching the linked list can be expanded to
include techniques whereby not necessarily all expired records are removed,
and that the decision regarding if and how many records to delete can be a
dynamic one.” The ’120 patent at 7:10-15. Additionally, one of ordinary skill
in the art would recognize that the result of combining the ’663 patent’s
deletion decision procedure with Kerr would be nothing more than the
predictable use of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have

EXHIBIT B-10

Joint Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

US2008 1661499.4

Asserted Claims From
U.S. Pat. No. 5,893,120

 U.S. Pat. No. 6,243,667 Kerr (“Kerr”) alone and in combination

combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Kerr and would
have seen the benefits of doing so. One such benefit, for example, is that the
system would avoid performing deletions when the system load exceeded a
threshold.

Alternatively, it would also be obvious to combine Kerr with the Opportunistic
Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with

EXHIBIT B-10

Joint Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

US2008 1661499.4

Asserted Claims From
U.S. Pat. No. 5,893,120

 U.S. Pat. No. 6,243,667 Kerr (“Kerr”) alone and in combination

responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Kerr and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Kerr. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how

EXHIBIT B-10

Joint Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

US2008 1661499.4

Asserted Claims From
U.S. Pat. No. 5,893,120

 U.S. Pat. No. 6,243,667 Kerr (“Kerr”) alone and in combination

many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Kerr would be nothing more than the predictable use of prior
art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Kerr and would
have seen the benefits of doing so. One such benefit, for example, is that the
system would only perform deletions when the system was not already too
overloaded, thus preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Kerr to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in Kerr
with the fundamental concept of dynamically determining the maximum
number of expired records to remove in an accessed linked list of records to
solve a number of potential problems. For example, the removal of expired
records described in Kerr can be burdensome on the system, adding to the
system’s load and slowing down the system’s processing. Moreover, the
removal could also force an interruption in real-time processing as the
processing waits for the removal to complete.

EXHIBIT B-10

Joint Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

US2008 1661499.4

Asserted Claims From
U.S. Pat. No. 5,893,120

 U.S. Pat. No. 6,243,667 Kerr (“Kerr”) alone and in combination

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15. Further, Kerr
states that “[o]ne problem which has arisen in the art is that processing
demands on routing and switching devices continue to grow with increased
network demand,” thus “[i]t continues to be advantageous to provide
techniques for processing packets more quickly.” Kerr at 1:22-38. Given this
focus on efficiency in Kerr, one of ordinary skill in the art would have been
motivated to try the teachings of Thatte, Dirks, the ‘663 patent, and/or the
Opportunistic Garbage Collection Articles in combination with Kerr to
optimize the performance of the system and method disclosed in Kerr.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Kerr in combination with Dirks, Thatte, the ‘663
Patent, or the Opportunistic Garbage Collection References, it is disclosed by
Linux 2.0.1, which describes dynamically determining maximum number of
expired ones of the records to remove when the linked list is accessed. It
would have been obvious to combine Linux 2.0.1 with Kerr. For example,
both Linux 2.0.1 and Kerr describe systems and methods for performing data
storage and retrieval using known programming techniques to yield a
predictable result.

EXHIBIT B-10

Joint Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

US2008 1661499.4

Asserted Claims From
U.S. Pat. No. 5,893,120

 U.S. Pat. No. 6,243,667 Kerr (“Kerr”) alone and in combination

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of

EXHIBIT B-10

Joint Invalidity Contentions & Production of
Documents

35 Case No. 6:09-CV-549-LED

US2008 1661499.4

Asserted Claims From
U.S. Pat. No. 5,893,120

 U.S. Pat. No. 6,243,667 Kerr (“Kerr”) alone and in combination

records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number

EXHIBIT B-10

Joint Invalidity Contentions & Production of
Documents

36 Case No. 6:09-CV-549-LED

US2008 1661499.4

Asserted Claims From
U.S. Pat. No. 5,893,120

 U.S. Pat. No. 6,243,667 Kerr (“Kerr”) alone and in combination

of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference

EXHIBIT B-10

Joint Invalidity Contentions & Production of
Documents

37 Case No. 6:09-CV-549-LED

US2008 1661499.4

Asserted Claims From
U.S. Pat. No. 5,893,120

 U.S. Pat. No. 6,243,667 Kerr (“Kerr”) alone and in combination

counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

EXHIBIT B-11

Joint Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

US2008 1661500.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,881,241 Corbin (“Corbin”) alone and in combination

1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, Corbin discloses an information
storage and retrieval system.

For example, Corbin describes a “method and an apparatus for a new
communication framework,” a part of which includes a “data route table
contain[ing] a list of predetermined pattern of bits which represent a set of pre-
determined or registered routes.” U.S. Pat. No. ‘241 col. 2:21-2, 2:55-57.

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

Corbin inherently discloses a linked list to store and provide access to records
stored in a memory of the system, at least some of the records automatically
expiring. It would have been obvious to one of ordinary skill in the art to use a
hash table with external chaining with the teachings disclosed by Corbin.

For example, though Corbin describes a data route table implemented as a
Patricia Tree, it also notes that “[t]he present invention’s architecture of data
routing is not dependent on Patricia Trees and hence other search algorithms
may be used instead.” U.S. Pat. No. ‘241 col. 10:54-56. A linked list is
simply a special case of a “tree” data structure wherein each node contains a
single “branch,” thus Corbin’s disclosure of the use of Patricia Trees inherently
discloses the use of linked lists as well.

To the extent such a disclosure is not inherent in Corbin, it would have been
obvious to one of ordinary skill in the art that a linked list or a hash table with
external chaining could be used in a search algorithm instead of a Patricia Tree
given Corbin’s suggestion that other search algorithms may be used instead.
Hashing with external chaining using linked lists was a well known search
algorithm familiar to those of ordinary skill in the art with its own particular
advantages. See, e.g., “The Art of Computer Programming”, Sorting and

EXHIBIT B-11

Joint Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

US2008 1661500.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,881,241 Corbin (“Corbin”) alone and in combination

Searching, D.E. Knuth, Addison-Wesley Series in Computer Science and
Information Processing, pp. 506-549.

The records in the system Corbin discloses include records, at least some of
which automatically expire.

For example, “[a] lazy deletion algorithm may be used in which a key is
marked as deleted but left in the tree.” U.S. Pat. No. ‘241 col. 10:46-47.
Those items marked as deleted but left in the tree are expired.

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of
records having the same
hash address,

Corbin discloses a record search means utilizing a search key to access the
Patricia Tree.

For example, “FIGS. 6b-6f illustrate an exemplary Patricia Tree search
implementation of a data route table search as utilized by the present invention.
Data route entries in the Patricia Tree, also referred to herein as data route
keys, are variable with sequences of bytes with some keys as long as 80 bytes.”
U.S. Pat. No. ‘241 col. 9:43-447.

As discussed in [1a/5a], Corbin inherently discloses use of a linked list. Also,
as discussed in [1a/5a], it would have been obvious to one of ordinary skill in
the art that a hash table using external chaining with linked lists for the search
algorithm could be used instead of the Patricia Tree.

[1c] the record search
means including a means
for identifying and
removing at least some of

[5c] the record search
means including means for
identifying and removing
at least some expired ones

Corbin discloses the use of a lazy deletion algorithm on the Patricia Tree. It
would have been obvious to one of ordinary skill in the art that a lazy deletion
algorithm could be used on a linked list as well, which would result in the
removal of expired elements when the linked list is accessed. As noted above,

EXHIBIT B-11

Joint Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

US2008 1661500.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,881,241 Corbin (“Corbin”) alone and in combination

the expired ones of the
records from the linked list
when the linked list is
accessed, and

of the records from the
linked list of records when
the linked list is accessed,
and

a linked list is simply a special case of a “tree” data structure wherein each
node contains a single “branch.”

For example, Corbin explains that “[a] lazy deletion algorithm may be used [on
the data route table] in which a key is marked as deleted but left in the tree.”
U.S. Pat. No. ‘241 col. 10:46-47. Those items marked as deleted but left in the
tree are expired. When the “number of deleted keys become significant, the
tree is rebuilt.” U.S. Pat. No. ‘241 col. 10:47-49. The rebuild of the tree
identifies and removes the expired records from the Patricia Tree.

As discussed in [1a/5a], Corbin inherently discloses use of a linked list. Also,
as discussed in [1a/5a], it would have been obvious to one of ordinary skill in
the art that a hash table using external chaining with linked lists could be used
for the search algorithm instead of the Patricia Tree. One of ordinary skill in
the art would also know that lazy deletion could be used in such structures as
well. See Exhibit C-2, which is incorporated by reference. When performing
lazy deletion on a linked list, the expired elements would be removed on
subsequent accesses to the linked list.

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

Corbin discloses means, utilizing the record search means, for accessing the
Patricia Tree and, at the same time, removing at least some of the expired ones
of the records in the Patricia Tree.

For example, Corbin explains that “[a] lazy deletion algorithm may be used [on
the data route table] in which a key is marked as deleted but left in the tree.”
U.S. Pat. No. ‘241 col. 10:46-47. Those items marked as deleted but left in the
tree would be expired. When the “number of deleted keys become significant,
the tree is rebuilt.” U.S. Pat. No. ‘241 col. 10:47-49. The rebuild of the tree

EXHIBIT B-11

Joint Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

US2008 1661500.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,881,241 Corbin (“Corbin”) alone and in combination

identifies and removes the expired records from the Patricia Tree.

As discussed in [1a/5a], Corbin inherently discloses use of a linked list. Also,
as discussed in [1a/5a], it would have been obvious to one of ordinary skill in
the art that a hash table using external chaining with linked lists could be used
for the search algorithm instead of the Patricia Tree. One of ordinary skill in
the art would also know that lazy deletion could be used in such structures as
well. See Exhibit C-2, which is incorporated by reference. When performing
lazy deletion on a linked list, the expired elements would be removed on
subsequent accesses to the linked list.

Corbin also discloses means, utilizing the record search means, for inserting,
retrieving, and deleting records from the system and, at the same time,
removing at least some expired ones of the records in the accessed Patricia
Tree of records.

Corbin explains that “if a flag is set in the tree head indicating that a rebuild is
taking place, then the insertion and deletion operations should go to sleep
waiting for the rebuild to be complete.” Moreover, as discussed above, Corbin
describes the use of a lazy deletion algorithm, and one of ordinary skill in the
art would know that implementing a lazy deletion algorithm in a linked list
would involve the removal of expired records from the list when the list is
accessed for insertions, retrievals, and deletions. See Exhibit C-2, which is
incorporated by reference.

2. The information storage
and retrieval system
according to claim 1

6. The information storage
and retrieval system
according to claim 5

Corbin combined with Dirks, Thatte, the ’663 patent and/or the Opportunistic
Garbage Collection Articles discloses an information storage and retrieval
system further including means for dynamically determining maximum

EXHIBIT B-11

Joint Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

US2008 1661500.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,881,241 Corbin (“Corbin”) alone and in combination

further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

number for the record search means to remove in the accessed linked list of
records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x

EXHIBIT B-11

Joint Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

US2008 1661500.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,881,241 Corbin (“Corbin”) alone and in combination

entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

EXHIBIT B-11

Joint Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

US2008 1661500.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,881,241 Corbin (“Corbin”) alone and in combination

As both Corbin and Dirks relate to deletion of aged records upon the allocation
of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as Corbin. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Corbin nothing more than
the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Corbin and would have
seen the benefits of doing so. One possible benefit, for example, is saving the
system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Corbin with the means for
dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. For example,
Thatte discloses a system and method using hash tables and/or linked lists and

EXHIBIT B-11

Joint Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

US2008 1661500.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,881,241 Corbin (“Corbin”) alone and in combination

further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Corbin with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine Corbin
with Thatte and recognize the benefits of doing so. For example, the removal
of expired records described in Corbin can be burdensome on the system,
adding to the system’s load and slowing down the system’s processing. One of
ordinary skill in the art would recognize that combining Corbin with the
teachings of Thatte would solve this problem by dynamically determining how
many records to delete based on, among other things, the system load.
Moreover, the '120 patent discloses that "[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120
patent provides motivations to combine Corbin with Thatte.

Alternatively, it would also be obvious to combine Corbin with the ’663

EXHIBIT B-11

Joint Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

US2008 1661500.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,881,241 Corbin (“Corbin”) alone and in combination

patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT B-11

Joint Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

US2008 1661500.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,881,241 Corbin (“Corbin”) alone and in combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does

EXHIBIT B-11

Joint Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

US2008 1661500.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,881,241 Corbin (“Corbin”) alone and in combination

not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Corbin and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in Corbin. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with Corbin would be
nothing more than the predictable use of prior art elements according to their
established functions.

EXHIBIT B-11

Joint Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

US2008 1661500.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,881,241 Corbin (“Corbin”) alone and in combination

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Corbin and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Corbin with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more

EXHIBIT B-11

Joint Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

US2008 1661500.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,881,241 Corbin (“Corbin”) alone and in combination

than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Corbin and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Corbin. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily

EXHIBIT B-11

Joint Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

US2008 1661500.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,881,241 Corbin (“Corbin”) alone and in combination

all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Corbin would be nothing more than the predictable use of prior
art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Corbin and would
have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Corbin to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in
Corbin with the fundamental concept of dynamically determining the
maximum number of expired records to remove in an accessed linked list of
records to solve a number of potential problems. For example, the removal of
expired records described in Corbin can be burdensome on the system, adding
to the system’s load and slowing down the system’s processing. Moreover, the
removal could also force an interruption in real-time processing as the
processing waits for the removal to complete.

EXHIBIT B-11

Joint Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

US2008 1661500.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,881,241 Corbin (“Corbin”) alone and in combination

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.
Further, Corbin describes the importance of performance in its packet routing
system, and hence one of ordinary skill in the art would be looking for ways to
optimize this performance. See, e.g., Corbin col. 1:49-2:18, 10:42-56.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Corbin in combination with Dirks, Thatte, the ‘663
Patent, or the Opportunistic Garbage Collection References, it is disclosed by
Linux 2.0.1, which describes dynamically determining maximum number of
expired ones of the records to remove when the linked list is accessed. It
would have been obvious to combine Linux 2.0.1 with Corbin. For example,
both Linux 2.0.1 and Corbin describe systems and methods for performing data
storage and retrieval using known programming techniques to yield a
predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function

EXHIBIT B-11

Joint Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

US2008 1661500.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,881,241 Corbin (“Corbin”) alone and in combination

rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux

EXHIBIT B-11

Joint Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

US2008 1661500.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,881,241 Corbin (“Corbin”) alone and in combination

2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function

EXHIBIT B-11

Joint Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

US2008 1661500.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,881,241 Corbin (“Corbin”) alone and in combination

rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than

EXHIBIT B-11

Joint Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

US2008 1661500.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,881,241 Corbin (“Corbin”) alone and in combination

the maximum number of records that the function rt_cache_add can
remove from a linked list.

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

To the extent the preamble is a limitation, Corbin inherently discloses a
method for storing and retrieving information records using a linked list to
store and provide access to the records, at least some of the records
automatically expiring. Moreover, it would have been obvious to one of
ordinary skill in the art that hash tables with external chaining using linked lists
could be used instead of the Patricia Tree disclosed in Corbin.

For example, Corbin describes a “method and an apparatus for a new
communication framework,” a part of which includes a “data route table
contain[ing] a list of predetermined pattern of bits which represent a set of pre-
determined or registered routes.” U.S. Pat. No. ‘241 col. 2:21-2, 2:55-57.
Though Corbin describes the data route table implemented as a Patricia Tree, it
also notes that “[t]he present invention’s architecture of data routing is not
dependent on Patricia Trees and hence other search algorithms may be used
instead.” U.S. Pat. No. ‘241 col. 10:54-56. A linked list is simply a special
case of a “tree” data structure wherein each node contains a single “branch,”
thus Corbin’s disclosure of the use of Patricia Trees inherently discloses the
use of linked lists as well.

To the extent such a disclosure is not inherent in Corbin, it would have been
obvious to one of ordinary skill in the art that a linked list or a hash table with
external chaining could be used in a search algorithm instead of a Patricia Tree
given Corbin’s suggestion that other search algorithms may be used instead.
Hashing with external chaining using linked lists was a well known search
algorithm familiar to those of ordinary skill in the art with its own particular

EXHIBIT B-11

Joint Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

US2008 1661500.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,881,241 Corbin (“Corbin”) alone and in combination

advantages. See, e.g., “The Art of Computer Programming”, Sorting and
Searching, D.E. Knuth, Addison-Wesley Series in Computer Science and
Information Processing, pp. 506-549.

The records in the system Corbin discloses include records, at least some of
which automatically expire.

For example, “[a] lazy deletion algorithm may be used in which a key is
marked as deleted but left in the tree.” U.S. Pat. No. ‘241 col. 10:46-47.
Those items marked as deleted but left in the tree are expired. See id.

Corbin further explains that “[i]n a preferred embodiment, the routing device
140 also examines the entry in the flow cache and compares a current time
with a first time a packet 150 was routed using that particular entry. If the
difference exceeds a second selected timeout, the message flow 160
represented by that entry is considered to have expired due to age and thus to
no longer be valid. The second selected timeout is preferably about one
minute.” U.S. Pat. No. ‘667 Col. 5:58-65.

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

Corbin inherently discloses accessing the linked list of records. Additonally, it
would have been obvious to one of ordinary skill in the art that a linked list
could be accessed instead of the Patricia Tree disclosed by Corbin. See above.

For example, “FIGS. 6b-6f illustrate an exemplary Patricia Tree search
implementation of a data route table search as utilized by the present invention.
Data route entries in the Patricia Tree, also referred to herein as data route
keys, are variable with sequences of bytes with some keys as long as 80 bytes.”
U.S. Pat. No. ‘241 col. 9:43-447.

EXHIBIT B-11

Joint Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

US2008 1661500.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,881,241 Corbin (“Corbin”) alone and in combination

As discussed in [3/7], the disclosure of the Patricia Tree inherently discloses
the use of linked lists. Moreover, as discussed in [3/7], it would have been
obvious to one of ordinary skill in the art that a hash table using external
chaining with linked lists for the search algorithm instead of the Patricia Tree.
See id.

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

Corbin discloses identifying at least some of the automatically expired ones of
the records.

For example, Corbin explains that “[a] lazy deletion algorithm may be used [on
the data route table] in which a key is marked as deleted but left in the tree.”
U.S. Pat. No. ‘241 col. 10:46-47. Those items marked as deleted but left in the
tree are expired. When the “number of deleted keys become significant, the
tree is rebuilt.” U.S. Pat. No. ‘241 col. 10:47-49. The rebuild of the tree
identifies and removes the expired records from the Patricia Tree. See id.

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

Corbin inherently discloses removing at least some of the automatically
expired records from the linked list when the linked list is accessed. Moreover,
removing automatically expired records from a linked list would have been
obvious to one of ordinary skill in the art given the teachings in Corbin.

For example, Corbin explains that “[a] lazy deletion algorithm may be used [on
the data route table] in which a key is marked as deleted but left in the tree.”
U.S. Pat. No. ‘241 col. 10:46-47. Those items marked as deleted but left in the
tree are expired. When the “number of deleted keys become significant, the
tree is rebuilt.” U.S. Pat. No. ‘241 col. 10:47-49. The rebuild of the tree
identifies and removes the expired records from the Patricia Tree. See id.

EXHIBIT B-11

Joint Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

US2008 1661500.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,881,241 Corbin (“Corbin”) alone and in combination

As discussed in [3/7], the disclosure of the Patricia Tree inherently discloses
the use of linked lists. Moreover, as discussed in [3/7], it would have been
obvious to one of ordinary skill in the art that a hash table using external
chaining with linked lists for the search algorithm instead of the Patricia Tree.
See id. One of ordinary skill in the art would also know that lazy deletion could
be used in such structures as well. See Exhibit C-2 which is incorporated by
reference. When performing lazy deletion on a linked list, the expired
elements would be removed on subsequent accesses to the linked list.

 [7d] inserting, retrieving
or deleting one of the
records from the system
following the step of
removing.

Corbin discloses inserting, retrieving or deleting one of the records from the
system following the step of removing.

For example, Corbin explains that “if a flag is set in the tree head indicating
that a rebuild is taking place, then the insertion and deletion operations should
go to sleep waiting for the rebuild to be complete.” Because the insert and
deletion processes sleep while the rebuild is occurring, the insert and delete
operations necessarily take place following the removal of the expired records.

4. The method according to
claim 3 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

Corbin combined with Dirks, Thatte, the ’663 patent, and/or the Opportunistic
Garbage Collection Articles discloses dynamically determining maximum
number of expired ones of the records to remove when the linked list is
accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in the

EXHIBIT B-11

Joint Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

US2008 1661500.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,881,241 Corbin (“Corbin”) alone and in combination

chart of Dirks, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their

EXHIBIT B-11

Joint Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

US2008 1661500.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,881,241 Corbin (“Corbin”) alone and in combination

associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Corbin and Dirks relate to deletion of aged records upon the allocation
of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as that described Corbin. Moreover, one of ordinary
skill in the art would recognize that it would improve similar systems and

EXHIBIT B-11

Joint Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

US2008 1661500.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,881,241 Corbin (“Corbin”) alone and in combination

methods in the same way. As the ’120 patent states “[a] person skilled in the
art will appreciate that the technique of removing all expired records while
searching the linked list can be expanded to include techniques whereby not
necessarily all expired records are removed, and that the decision regarding if
and how many records to delete can be a dynamic one.” The ’120 patent at
7:10-15. Additionally, one of ordinary skill in the art would recognize that the
result of combining Dirks’ deletion decision procedure with Corbin would be
nothing more than the predictable use of prior art elements according to their
established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Corbin and would have
seen the benefits of doing so. One possible benefit, for example, is saving the
system from performing sometimes time-consuming sweeps.

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Corbin with the means for
dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. For example,
Thatte discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same

EXHIBIT B-11

Joint Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

US2008 1661500.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,881,241 Corbin (“Corbin”) alone and in combination

way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Corbin with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine Corbin
with Thatte and recognized the benefits of doing so. For example, the removal
of expired records described in Corbincan be burdensome on the system,
adding to the system’s load and slowing down the system’s processing. One of
ordinary skill in the art would recognize that combining Corbin with the
teachings of Thatte would solve this problem by dynamically determining how
many records to delete based on, among other things, the system load.
Moreover, the '120 patent discloses that "[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120
patent provides motivations to combine Corbin with Thatte.

Alternatively, it would also be obvious to combine Corbin with the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing

EXHIBIT B-11

Joint Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

US2008 1661500.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,881,241 Corbin (“Corbin”) alone and in combination

the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT B-11

Joint Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

US2008 1661500.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,881,241 Corbin (“Corbin”) alone and in combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does

EXHIBIT B-11

Joint Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

US2008 1661500.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,881,241 Corbin (“Corbin”) alone and in combination

not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Corbin and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as Corbin. Moreover, one of ordinary skill in the art would recognize that
it would improve similar systems and methods in the same way. As the ’120
patent states “[a] person skilled in the art will appreciate that the technique of
removing all expired records while searching the linked list can be expanded to
include techniques whereby not necessarily all expired records are removed,
and that the decision regarding if and how many records to delete can be a
dynamic one.” The ’120 patent at 7:10-15. Additionally, one of ordinary skill
in the art would recognize that the result of combining the ’663 patent’s
deletion decision procedure with Corbin would be nothing more than the
predictable use of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have

EXHIBIT B-11

Joint Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

US2008 1661500.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,881,241 Corbin (“Corbin”) alone and in combination

combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Corbin and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Corbin with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with

EXHIBIT B-11

Joint Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

US2008 1661500.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,881,241 Corbin (“Corbin”) alone and in combination

responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Corbin and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Corbin. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how

EXHIBIT B-11

Joint Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

US2008 1661500.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,881,241 Corbin (“Corbin”) alone and in combination

many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Corbin would be nothing more than the predictable use of prior
art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Corbin and would
have seen the benefits of doing so. One such benefit, for example, is that the
system would only perform deletions when the system was not already too
overloaded, thus preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Corbin to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in
Corbin with the fundamental concept of dynamically determining the
maximum number of expired records to remove in an accessed linked list of
records to solve a number of potential problems. For example, the removal of
expired records described in Corbin can be burdensome on the system, adding
to the system’s load and slowing down the system’s processing. Moreover, the
removal could also force an interruption in real-time processing as the
processing waits for the removal to complete.

EXHIBIT B-11

Joint Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

US2008 1661500.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,881,241 Corbin (“Corbin”) alone and in combination

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15. Further,
Corbin describes the importance of performance in its packet routing system,
and hence one of ordinary skill in the art would be looking for ways to
optimize this performance. See, e.g., Corbin col. 1:49-2:18, 10:42-56.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Corbin in combination with Dirks, Thatte, the ‘663
Patent, or the Opportunistic Garbage Collection References, it is disclosed by
Linux 2.0.1, which describes dynamically determining maximum number of
expired ones of the records to remove when the linked list is accessed. It
would have been obvious to combine Linux 2.0.1 with Corbin. For example,
both Linux 2.0.1 and Corbin describe systems and methods for performing data
storage and retrieval using known programming techniques to yield a
predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function

EXHIBIT B-11

Joint Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

US2008 1661500.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,881,241 Corbin (“Corbin”) alone and in combination

rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux

EXHIBIT B-11

Joint Invalidity Contentions & Production of
Documents

35 Case No. 6:09-CV-549-LED

US2008 1661500.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,881,241 Corbin (“Corbin”) alone and in combination

2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function

EXHIBIT B-11

Joint Invalidity Contentions & Production of
Documents

36 Case No. 6:09-CV-549-LED

US2008 1661500.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,881,241 Corbin (“Corbin”) alone and in combination

rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than

EXHIBIT B-11

Joint Invalidity Contentions & Production of
Documents

37 Case No. 6:09-CV-549-LED

US2008 1661500.4

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,881,241 Corbin (“Corbin”) alone and in combination

the maximum number of records that the function rt_cache_add can
remove from a linked list.

EXHIBIT B-12

Joint Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

US2008 1661501.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,121,495 to Nemes (“the ‘495 Patent”) alone and in
combination

1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, the ‘495 Patent discloses an
information storage and retrieval system.

For example, the ‘495 Patent claims “[a]n information storage and retrieval
system using hashing techniques to provide rapid access to the records of said
system” U.S. Pat. No. ‘495 col.11:68-12:2. Moreover, the ‘495 Patent
states that “[t]his invention relates to information storage and retrieval systems
and, more particularly, to the use of hashing techniques in such systems.” U.S.
Pat. No. ‘495 col. 1:10-12; see also, Figs. 1-7, Appendix, and Columns 5-8.

In addition, to the extent the preamble is a limitation, the ‘499 Patent discloses
an information storage and retrieval system.

For example, the Abstract of the ‘499 patent discloses “An apparatus for
performing storage and retrieval in an information storage system is disclosed
which uses the hashing technique.” ‘499 patent at Abstract. This storage and
retrieval system is further described in columns 4-5, which recite in part, “The
present invention is concerned with information storage and retrieval systems.
Such a system would form one of the application software packages 23, 24, ...
,25 of FIG. 2. The various processes (26,27,28) which implement the
information storage and retrieval system are herein disclosed as flow charts in
FIGS. 3, 4 and 5, and shown as pseudocode in the APPENDIX to this
specification.” Further detail is given in column 7, which recites in part
“Referring then to FIG. 3, there is shown a flowchart of a retrieve algorithm
for retrieving records from a data storage and retrieval system in accordance
with the present invention and involving dual collision resolution schemes
dynamically selected depending on load factor.”
See also, Figs. 1-5, Appendix, and Col 8-9.

EXHIBIT B-12

Joint Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

US2008 1661501.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,121,495 to Nemes (“the ‘495 Patent”) alone and in
combination

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

The ‘495 Patent discloses a chain of records to store and provide access to
records stored in a memory of the system, at least some of the records
automatically expiring. The ‘495 Patent also discloses a hashing means to
provide access to records stored in a memory of the system and using a linear
probing technique to store the records with same hash address, at least some of
the records automatically expiring.

For example, the ‘495 Patent claims “[a]n information storage and retrieval
system using hashing techniques to provide rapid access to the records of said
system and utilizing a linear probing technique to store records with the same
hash address, at least some of said records automatically expiring.” U.S. Pat.
No. ‘495 col.11:68-12:4. This claim is identical to [5a] except for the
substitution of a linear probing technique instead of an external chaining
technique. See also ‘495 Patent col. 4:33-64; id. at 8:65-9:9 (code defining
hash table), Abstract, Fig. 3, Col. 2:30-48, 5:36-57, 6:53-8:16, claim 1, claim
5.

It would have been obvious to one of ordinary skill in the art that an external
chaining technique could be used instead of a linear probing technique to store
records with the same hash address. Linear probing and external chaining are
two methods to solve the problem of collisions in a hash table. Both were
commonly known by those skilled in the art, as Nemes admits in the ‘120
patent. See U.S. Pat. No. ‘120 col. 1:53-59 (“Some form of collision
resolution must therefore be provided. For example, the simple strategy called
‘linear probing,’ . . . is often used. Another method for resolving collisions is
called ‘external chaining.’”). Both of these methods of collision resolution are
described in the prior art cited by both the ‘495 and ‘120 patents. See “The Art
of Computer Programming”, Sorting and Searching, D.E. Knuth, Addison-

EXHIBIT B-12

Joint Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

US2008 1661501.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,121,495 to Nemes (“the ‘495 Patent”) alone and in
combination

Wesley Series in Computer Science and Information Processing, pp. 513, 518,
1973. Indeed, Knuth recognizes that “[p]erhaps the most obvious way to solve
this problem [of collision resolution] is to maintain M linked Lists, one for
each possible hash code [i.e. external chaining].” See also Mark A. Weiss,
Data Structures and Algorithm Analysis, p. 157, 1993 (“Closed hashing, also
known as open addressing, is an alternative to resolving collisions with linked
lists.”). Further, U.S. Patent No. 5,289,499 (“’499 patent), discloses the use of
external chaining techniques for performing storage and retrieval in an
information system. See ‘499 patent abstract (“In order to provide efficient
and graceful operation under varying load conditions, the system shifts
between collision avoidance by linear probing with open addressing when the
load is below a threshold, and collision avoidance by external chaining when
the load is above a threshold”); ‘499 patent, Figs. 3-5 (use of external chaining
– linked list to perform information storage and retrieval); ‘499 patent, col.
2:60-65, 3:5-9, col. 5:63-65; 8:53-9:20, claims 1-3 (external chaining a
required element). Thus, one of ordinary skill in the art would have been
motivated by Knuth , Weiss, or the ‘499 patent to apply the teachings of the
‘495 patent to hash tables with external chaining using linked lists.

Where an external chaining collision resolution strategy is used instead of
linear probing, the records would be stored in linked lists rather than in chains
of records. Thus, it would also have been obvious to one of ordinary skill in
the art that the records could be stored in a linked list.

The records in the system the ‘495 Patent discloses include records, at least
some of which automatically expire. The ‘495 Patent discloses that “data
records become obsolete merely by the passage of time or by the occurrence of
some event” and that “[i]f such expired, lapsed or obsolete records are not

EXHIBIT B-12

Joint Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

US2008 1661501.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,121,495 to Nemes (“the ‘495 Patent”) alone and in
combination

removed from the storage table, they will, in time, seriously degrade or
contaminate the performance of the retrieval system.” U.S. Pat. No. ‘495 col.
4:23-28. See also ‘495 Patent at Abstract, Fig. 3, Col. 2:30-48, 5:22-57, 6:53-
8:16, claim 1, claim 5.

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of
records having the same
hash address,

The ‘495 Patent discloses a record search means utilizing a search key to
access a chain of records. The ‘495 Patent also discloses a record search
means utilizing a search key to access a chain of records having the same hash
address.

For example, Claim 1 of the ‘495 patent is almost identical to [5b], claiming “a
record search means utilizing a search key to access a chain of records having
the same hash address.” U.S. Pat. No. ‘495 col. 12:6-7. Again, the only
difference between the two patents is the reference to a chain of records instead
of a linked list. See also ‘495 Pat. col. 5:45-56; id. at 10:2511:16 (search table
function code); id. at Figs. 3-4.

It would have been obvious to one of ordinary skill in the art that a linked list
could be used to store records with the same hash value rather than a chain of
records. Linear probing and external chaining are two methods to solve the
problem of collisions in a hash table. Both were commonly known by those
skilled in the art, as Nemes admits in the ‘120 patent. See U.S. Pat. No. ‘120
col. 1:53-59 (“Some form of collision resolution must therefore be provided.
For example, the simple strategy called ‘linear probing,’ . . . is often used.
Another method for resolving collisions is called ‘external chaining.’”). Both
of these methods of collision resolution are described in the prior art cited by
both the ‘495 and ‘120 patents. See “The Art of Computer Programming”,
Sorting and Searching, D.E. Knuth, Addison-Wesley Series in Computer

EXHIBIT B-12

Joint Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

US2008 1661501.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,121,495 to Nemes (“the ‘495 Patent”) alone and in
combination

Science and Information Processing, pp. 513, 518, 1973. Indeed, Knuth
recognizes that “[p]erhaps the most obvious way to solve this problem [of
collision resolution] is to maintain M linked Lists, one for each possible hash
code [i.e. external chaining].” See also Mark A. Weiss, Data Structures and
Algorithm Analysis, p. 157, 1993 (“Closed hashing, also known as open
addressing, is an alternative to resolving collisions with linked lists.”).
Further, U.S. Patent No. 5,289,499 (“’499 patent), discloses the use of external
chaining techniques for performing storage and retrieval in an information
system. See ‘499 patent abstract (“In order to provide efficient and graceful
operation under varying load conditions, the system shifts between collision
avoidance by linear probing with open addressing when the load is below a
threshold, and collision avoidance by external chaining when the load is above
a threshold”); ‘499 patent, Figs. 3-5 (use of external chaining – linked list to
perform information storage and retrieval); ‘499 patent, col. 2:60-65, 3:5-9,
col. 5:63-65; 8:53-9:20, claims 1-3 (external chaining a required element).
Thus, one of ordinary skill in the art would have been motivated by Knuth,
Weiss, or the ‘499 patent to apply the teachings of the ‘495 patent to hash
tables with external chaining using linked lists. See also, the ‘499 patent at Fig.
3-5, Col. 2:9-48, 2:50-3:7, 5:63-6:28, 7:10-10:5, claim 1.

Where an external chaining collision resolution strategy is used instead of
linear probing, the records would be stored in linked lists rather than in chains
of records. Thus, it would also have been obvious to one of ordinary skill in
the art that the records could be stored in a linked list.

[1c] the record search
means including a means

[5c] the record search
means including means for

The ‘495 Patent discloses the record search means including a means for
identifying and removing at least some of the expired ones of the records from

EXHIBIT B-12

Joint Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

US2008 1661501.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,121,495 to Nemes (“the ‘495 Patent”) alone and in
combination

for identifying and
removing at least some of
the expired ones of the
records from the linked list
when the linked list is
accessed, and

identifying and removing
at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

the chain of records when the chain of records is accessed.

For example, Claim 1 of the ‘495 patent is almost identical to [5c], claiming
“said record search means including means for identifying and removing all
expired ones of said records from said chain of records each time said chain is
accessed.” U.S. Pat. No. ‘495 col. 12:8-11. Again, the only differences
between the two patents are (1) the reference to a chain of records instead of a
linked list and (2) the deletion of all of the records in the ‘495 patent instead of
some of the records. See also the ‘495 Patent col. 5:36-57, id. at 10:25-11:16
(search table function code); id. at Figs. 3-4, Abstract, Col. 2:30-48, 6:53-8:16,
claim 1, claim 5.

Though this describes accessing a chain of records rather than a linked list, as
discussed above in sections [1a/5a] and [1b/5b], it would have been obvious to
one of ordinary skill in the art that a linked list could be used to store the
records instead of a chain of records. For example, the use of a linked list to
store records is discussed in detail in the ‘499 patent. For example, the ‘499
patent discloses in part, “Another technique for resolving collisions is called
external chaining. In this technique, each hash table position is able to store all
records hashing to that location. More particularly, a linked list is used to store
the actual records outside of the hash table. The hash table entry, then, is no
more than a pointer to the head of the linked list. The linked list is itself
searched sequentially when retrieving or storing a record. Deletion is
accomplished by adjusting pointers to eliminate the deleted record from the
linked list.” See the ‘499 patent at column 2. See, also, the ‘499 patent at
Abstract, Fig. 3-5, Col. 2:9-48, 2:50-3:7, 5:63-6:28, 7:10-10:5, claim 1

Moreover, the deletion of all of the expired records includes the deletion of at

EXHIBIT B-12

Joint Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

US2008 1661501.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,121,495 to Nemes (“the ‘495 Patent”) alone and in
combination

least some of the expired records and thus satisfies this element of the ‘120
patent.

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

The ‘495 Patent discloses means, utilizing the record search means, for
accessing the linked list and, at the same time, removing at least some of the
expired ones of the records in the linked list. The ‘495 Patent also discloses
means, utilizing the record search means, for inserting, retrieving, and deleting
records from the system and, at the same time, removing at least some expired
ones of the records in the accessed linked list of records.

For example, Claim 1 of the ‘495 patent is almost identical to [5d], claiming
“means, utilizing said record search means, for inserting retrieving and
deleting records from said system and, at the same time, removing all expired
ones of said records in the accessed chains of records.” ‘495 Patent col. 12:12-
16. Again, the only differences between the two patents are (1) the reference
to a chain of records instead of a linked list and (2) the deletion of all of the
records in the ‘495 patent instead of some of the records. See also ‘495 Patent
col. 5:65-8:16; id. at 9:10-10:20 (insert, retrieve, and delete function code); id.
at Figs. 5-7.

Though this describes accessing a chain of records rather than a linked list, as
discussed above in sections [1a/5a] and [1b/5b], it would have been obvious
to one of ordinary skill in the art that a linked list could be used to store the
records instead of a chain of records. For example, the use of a linked list to
store records is discussed in detail in the ‘499 patent. For example, the ‘499
patent discloses in part, “Another technique for resolving collisions is called
external chaining. In this technique, each hash table position is able to store

EXHIBIT B-12

Joint Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

US2008 1661501.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,121,495 to Nemes (“the ‘495 Patent”) alone and in
combination

all records hashing to that location. More particularly, a linked list is used to
store the actual records outside of the hash table. The hash table entry, then,
is no more than a pointer to the head of the linked list. The linked list is itself
searched sequentially when retrieving or storing a record. Deletion is
accomplished by adjusting pointers to eliminate the deleted record from the
linked list.” See the ‘499 patent at column 2. See, also, the ‘499 patent at
Abstract, Fig. 3-5, Col. 2:9-48, 2:50-3:7, 5:63-6:28, 7:10-10:5, claim 1.

Moreover, the deletion of all of the expired records includes the deletion of at
least some of the expired records and thus satisfies this element of the ‘120
patent.

2. The information storage
and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

6. The information storage
and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

The ‘495 Patent combined with Dirks, Thatte, the ’663 patent and/or the
Opportunistic Garbage Collection Articles discloses an information storage
and retrieval system further including means for dynamically determining
maximum number for the record search means to remove in the accessed
linked list of records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or

EXHIBIT B-12

Joint Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

US2008 1661501.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,121,495 to Nemes (“the ‘495 Patent”) alone and in
combination

thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

EXHIBIT B-12

Joint Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

US2008 1661501.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,121,495 to Nemes (“the ‘495 Patent”) alone and in
combination

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both the ‘495 Patent and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as the ‘495 Patent. Moreover, one of ordinary skill in
the art would recognize that it would improve similar systems and methods in
the same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching

EXHIBIT B-12

Joint Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

US2008 1661501.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,121,495 to Nemes (“the ‘495 Patent”) alone and in
combination

the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with the ‘495 Patent nothing
more than the predictable use of prior art elements according to their
established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with the ‘495 Patent and
would have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in the ‘495 Patent with the
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records disclosed by Thatte. For
example, Thatte discloses a system and method using hash tables and/or linked
lists and further discloses means for dynamically determining the maximum
number for the record search means to remove in the accessed linked list of
records. The disclosure of these claim elements in Thatte is clearly shown in
the chart of Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining the ‘495 Patent with Thatte would be nothing more than

EXHIBIT B-12

Joint Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

US2008 1661501.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,121,495 to Nemes (“the ‘495 Patent”) alone and in
combination

the predictable use of prior art elements according to their established
functions. The resulting combination would include the capability to
determine the maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine the
‘495 Patent with Thatte and recognize the benefits of doing so. For example,
the removal of expired records described in the ‘495 Patent can be burdensome
on the system, adding to the system’s load and slowing down the system’s
processing. One of ordinary skill in the art would recognize that combining
the ‘495 Patent with the teachings of Thatte would solve this problem by
dynamically determining how many records to delete based on, among other
things, the system load. Moreover, the '120 patent discloses that "[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one." '120 at
7:10-15. Thus, the '120 patent provides motivations to combine the ‘495
Patent with Thatte.

Alternatively, it would also be obvious to combine the ‘495 Patent with the
’663 patent. Disclosure of these claim elements in the ’663 patent is clearly
shown in the chart of the ‘663 patent, which is hereby incorporated by
reference in its entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record

EXHIBIT B-12

Joint Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

US2008 1661501.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,121,495 to Nemes (“the ‘495 Patent”) alone and in
combination

from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT B-12

Joint Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

US2008 1661501.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,121,495 to Nemes (“the ‘495 Patent”) alone and in
combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does

EXHIBIT B-12

Joint Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

US2008 1661501.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,121,495 to Nemes (“the ‘495 Patent”) alone and in
combination

not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both the ‘495 Patent and the ’663 patent relate to deletion of records from
hash tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in the ‘495 Patent. Moreover, one of ordinary skill in
the art would recognize that it would improve similar systems and methods in
the same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with the ‘495 Patent
would be nothing more than the predictable use of prior art elements according
to their established functions.

EXHIBIT B-12

Joint Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

US2008 1661501.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,121,495 to Nemes (“the ‘495 Patent”) alone and in
combination

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with the ‘495 Patent
and would have seen the benefits of doing so. One such benefit, for example,
is that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine the ‘495 Patent with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more

EXHIBIT B-12

Joint Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

US2008 1661501.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,121,495 to Nemes (“the ‘495 Patent”) alone and in
combination

than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both the ‘495 Patent and the Opportunistic Garbage Collection Articles
relate to deletion of aged records, one of ordinary skill in the art would have
understood how to use the Opportunistic Garbage Collection Articles’ dynamic
decision on whether to perform a deletion based on a system load in other hash
table implementations such as the ‘495 Patent. Moreover, one of ordinary skill
in the art would recognize that it would improve similar systems and methods
in the same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily

EXHIBIT B-12

Joint Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

US2008 1661501.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,121,495 to Nemes (“the ‘495 Patent”) alone and in
combination

all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with the ‘495 Patent would be nothing more than the predictable use
of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with the ‘495 Patent and
would have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in the ‘495 Patent to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in the ‘495 Patent with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in the ‘495 Patent can be burdensome
on the system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.

EXHIBIT B-12

Joint Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

US2008 1661501.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,121,495 to Nemes (“the ‘495 Patent”) alone and in
combination

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

The ‘499 patent discloses an information storage and retrieval system further
including means for dynamically determining maximum number for the record
search means to remove in the accessed linked list of records.

For example, the ‘499 patent describes performing a dynamic determination of
the number of records hashed to the same cell in the hash table. Then
determining if this number exceeds a certain threshold. If the threshold is
exceeded, then the system described by the ‘499 patent reorganizes and
removes the records at this location. See the ‘499 Patent at Col. 6, which
recites in part “In accordance with the present invention, the major advantages
of both techniques, open addressing and external chaining, are achieved in the
same system. More particularly, these two techniques are combined in one
system, and the actual storage strategy is selected dynamically, depending on
the then current local load factor. Initially, all records are stored in the hash
table using the open addressing with linear probing technique. When the local
load factor exceeds a preselected threshold, the system shifts dynamically to
the external chaining technique. That is, while inserting or deleting a record,

EXHIBIT B-12

Joint Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

US2008 1661501.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,121,495 to Nemes (“the ‘495 Patent”) alone and in
combination

the local load factor, as reflected in the number of records hashed to this same
hash table cell, is examined. If this number exceeds a threshold, the records
hashed to this cell address are reorganized, removed from the hash table itself
and organized into an external chain in another part of the store. While such
reorganization involves considerable overhead, the payoff comes in subsequent
searches where the external chaining greatly reduces the search time. It is
assumed, of course, that the frequency of retrievals greatly exceeds the
frequency of insertions and deletions, an assumption which holds true for most
data storage and retrieval systems. When a deletion from a linked list causes
the chain length to fall below a threshold, not necessarily the same threshold
that triggered chain formation, the chain is destroyed and the entries
reabsorbed into the hash table.” The ‘499 Patent at Col. 6. See also, the ‘499
patent at Col. 6:38-65, 8:14-39, 8:62-9:2, and claim 3.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by the ‘495 Patent in combination with Dirks, Thatte,
the ‘663 Patent, the ‘499 Patent, or the Opportunistic Garbage Collection
References,, it is disclosed by Linux 2.0.1, which describes dynamically
determining maximum number of expired ones of the records to remove when
the linked list is accessed. It would have been obvious to combine Linux 2.0.1
with the ‘495 Patent. For example, both Linux 2.0.1 and the ‘495
Patent describe systems and methods for performing data storage and retrieval
using known programming techniques to yield a predictable result.

For example, when invoked, the function rt_cache_add automatically
increments an integer variable rt_cache_size. See Linux 2.0.1, route.c at
line 1359. When the function rt_cache_add removes an expired record, the
function rt_cache_add decrements the variable rt_cache_size. See Linux

EXHIBIT B-12

Joint Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

US2008 1661501.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,121,495 to Nemes (“the ‘495 Patent”) alone and in
combination

2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because the
function rt_cache_add automatically increments and decrements the variable
rt_cache_size, the variable rt_cache_size is determined dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1. The
function rt_garbage_collect_1 loops through each of the linked lists in the
ip_rt_hash_table global variable. See Linux 2.0.1, route.c at lines 1122-
1138. In this way, the function rt_garbage_collect_1 accesses the linked
list. When the function rt_garbage_collect_1 identifies a record that is
expired, the function rt_garbage_collect_1 decrements the variable
rt_cache_size and frees the record. See Linux 2.0.1, route.c at lines 1128-
1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds the
predetermined threshold RT_CACHE_SIZE_MAX, the function rt_cache_add
invokes a function rt_garbage_collect. See Linux 2.0.1, route.c at lines
1341-1342. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293. The function
rt_garbage_collect invokes a function rt_garbage_collect_1. See Linux

EXHIBIT B-12

Joint Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

US2008 1661501.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,121,495 to Nemes (“the ‘495 Patent”) alone and in
combination

2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in the
hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked list in
the hash table, the function rt_garbage_collect_1 looks at each record in
the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each record in
a linked list, the function rt_garbage_collect_1 determines whether the
record’s last use time plus the record’s expiration factor is later than the current
time. See Linux 2.0.1, route.c at line 1122. If the record’s last use time plus
the record’s expiration factor is less than the current time, the function
rt_garbage_collect_1 removes the record from the linked list. See Linux
2.0.1, route.c at lines 1124-1130. The record’s expiration factor is based on a
variable expire and the record’s reference count. See Linux 2.0.1, route.c at
line 1122. The variable expire is initially one half of the fixed timeout value
RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records in
the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX.
See Linux 2.0.1, route.c at line 1133. If the number of items in the hash table
is still greater than the predetermined threshold RT_CACHE_SIZE_MAX, the
function rt_garbage_collect_1 halves the variable expire and loops
through each of the linked lists in the hash table. See Linux 2.0.1, route.c at
line 1135. In this way, the function rt_garbage_collect_1 can remove
additional records from the linked lists in the hash table. The function
rt_garbage_collect_1 repeats this process until the total number of records
in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX.

EXHIBIT B-12

Joint Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

US2008 1661501.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,121,495 to Nemes (“the ‘495 Patent”) alone and in
combination

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the records
removed by the function rt_garbage_collect_1 are data items which after a
limited time or after the occurrence of some event become obsolete, such that
their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when the
record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT is less
than the current time and the record’s reference count is zero. See Linux 2.0.1,
route.c at line 1369. Thus, the maximum number of records that the function
rt_cache_add can remove from a given linked list is limited to those records
whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not limited to
those records whose reference counts are zero. See Linux 2.0.1, route.c at line
1122. Rather, the function rt_garbage_collect_1 can remove records
whose reference counts are zero and records whose reference counts are
greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than the
maximum number of records that the function rt_cache_add can remove from
a linked list.

3. A method for storing 7. A method for storing To the extent the preamble is a limitation, the ‘495 Patent discloses a method

EXHIBIT B-12

Joint Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

US2008 1661501.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,121,495 to Nemes (“the ‘495 Patent”) alone and in
combination

and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

for storing and retrieving information records using a chain of records to store
and provide access to the records, at least some of the records automatically
expiring. The ‘495 Patent also discloses a method for storing and retrieving
information records using a hashing technique to provide access to the records
and using a linear probing technique to store the records with same hash
address, at least some of the records automatically expiring.

For example, the ‘495 Patent claims “[a] method for storing and retrieving
information records using hashing techniques to provide rapid access to said
records and utilizing a linear probing technique to store records with the same
hash address, at least some of said records automatically expiring.” U.S. Pat.
No. ‘495 col.12:37-41. See also ‘495 Patent col. 4:33-64; id. at 8:65-9:9 (code
defining hash table).

As discussed in [1a/5a] and [1b/5b], it would have been obvious to one of
ordinary skill in the art that an external chaining technique could be used
instead of a linear probing technique to store records with the same hash
address. It would have been obvious to one of ordinary skill in the art that a
linked list could be used to store records with the same hash value rather than a
chain of records. Linear probing and external chaining are two methods to
solve the problem of collisions in a hash table. Both were commonly known
by those skilled in the art, as Nemes admits in the ‘120 patent. See U.S. Pat.
No. ‘120 col. 1:53-59 (“Some form of collision resolution must therefore be
provided. For example, the simple strategy called ‘linear probing,’ . . . is often
used. Another method for resolving collisions is called ‘external chaining.’”).
Both of these methods of collision resolution are described in the prior art cited
by both the ‘495 and ‘120 patents. See “The Art of Computer Programming”,
Sorting and Searching, D.E. Knuth, Addison-Wesley Series in Computer

EXHIBIT B-12

Joint Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

US2008 1661501.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,121,495 to Nemes (“the ‘495 Patent”) alone and in
combination

Science and Information Processing, pp. 513, 518, 1973. Indeed, Knuth
recognizes that “[p]erhaps the most obvious way to solve this problem [of
collision resolution] is to maintain M linked Lists, one for each possible hash
code [i.e. external chaining].” See also Mark A. Weiss, Data Structures and
Algorithm Analysis, p. 157, 1993 (“Closed hashing, also known as open
addressing, is an alternative to resolving collisions with linked lists.”).
Further, U.S. Patent No. 5,289,499 (“’499 patent), discloses the use of external
chaining techniques for performing storage and retrieval in an information
system. See ‘499 patent abstract (“In order to provide efficient and graceful
operation under varying load conditions, the system shifts between collision
avoidance by linear probing with open addressing when the load is below a
threshold, and collision avoidance by external chaining when the load is above
a threshold”); ‘499 patent, Figs. 3-5 (use of external chaining – linked list to
perform information storage and retrieval); ‘499 patent, col. 2:60-65, 3:5-9,
col. 5:63-65; 8:53-9:20, claims 1-3 (external chaining a required element).
Thus, one of ordinary skill in the art would have been motivated by Knuth,
Weiss, or the ‘499 patent to apply the teachings of the ‘495 patent to hash
tables with external chaining using linked lists. See also, the ‘499 patent at Fig.
3-5, Col. 2:9-48, 2:50-3:7, 5:63-6:28, 7:10-10:5, claim 1.

The records in the system the ‘495 Patent discloses includes records, at least
some of which automatically expire. The ‘495 Patent discloses that “data
records become obsolete merely by the passage of time or by the occurrence of
some event” and that “[i]f such expired, lapsed or obsolete records are not
removed from the storage table, they will, in time, seriously degrade or
contaminate the performance of the retrieval system.” U.S. Pat. No. ‘495 col.
4:23-28. See also ‘495 Patent col. 5:22-29.

EXHIBIT B-12

Joint Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

US2008 1661501.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,121,495 to Nemes (“the ‘495 Patent”) alone and in
combination

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

The ‘495 Patent discloses accessing a chain of records. The ‘495 Patent also
discloses accessing a chain of records having same hash address.

For example, Claim 5 of the ‘495 patent is almost identical to [7a], claiming
“accessing a chain or [sic] records having the same hash address.” U.S. Pat.
No. ‘495 col. 12:43-44. The only difference between the two patents is the
reference to a chain of records instead of a linked list. See also ‘495 Pat. col.
5:45-56, id. at 10:2511:16 (search table function code); id. at Figs. 3-4.

Though this describes accessing a chain of records rather than a linked list, as
discussed above in sections [1a/5a] and [1b/5b], it would have been obvious to
one of ordinary skill in the art that a linked list could be used to store the
records instead of a chain of records. It would have been obvious to one of
ordinary skill in the art that a linked list could be used to store records with the
same hash value rather than a chain of records. Linear probing and external
chaining are two methods to solve the problem of collisions in a hash table.
Both were commonly known by those skilled in the art, as Nemes admits in the
‘120 patent. See U.S. Pat. No. ‘120 col. 1:53-59 (“Some form of collision
resolution must therefore be provided. For example, the simple strategy called
‘linear probing,’ . . . is often used. Another method for resolving collisions is
called ‘external chaining.’”). Both of these methods of collision resolution are
described in the prior art cited by both the ‘495 and ‘120 patents. See “The Art
of Computer Programming”, Sorting and Searching, D.E. Knuth, Addison-
Wesley Series in Computer Science and Information Processing, pp. 513, 518,
1973. Indeed, Knuth recognizes that “[p]erhaps the most obvious way to solve
this problem [of collision resolution] is to maintain M linked Lists, one for
each possible hash code [i.e. external chaining].” See also Mark A. Weiss,
Data Structures and Algorithm Analysis, p. 157, 1993 (“Closed hashing, also

EXHIBIT B-12

Joint Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

US2008 1661501.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,121,495 to Nemes (“the ‘495 Patent”) alone and in
combination

known as open addressing, is an alternative to resolving collisions with linked
lists.”). Further, U.S. Patent No. 5,289,499 (“’499 patent), discloses the use of
external chaining techniques for performing storage and retrieval in an
information system. See ‘499 patent abstract (“In order to provide efficient
and graceful operation under varying load conditions, the system shifts
between collision avoidance by linear probing with open addressing when the
load is below a threshold, and collision avoidance by external chaining when
the load is above a threshold”); ‘499 patent, Figs. 3-5 (use of external chaining
– linked list to perform information storage and retrieval); ‘499 patent, col.
2:60-65, 3:5-9, col. 5:63-65; 8:53-9:20, claims 1-3 (external chaining a
required element). Thus, one of ordinary skill in the art would have been
motivated by Knuth, Weiss, or the ‘499 patent to apply the teachings of the
‘495 patent to hash tables with external chaining using linked lists. See also,
the ‘499 patent at Fig. 3-5, Col. 2:9-48, 2:50-3:7, 5:63-6:28, 7:10-10:5, claim 1.

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

The ‘495 Patent discloses identifying at least some of the automatically expired
ones of the records.

For example, Claim 5 of the ‘495 patent is substantively identical to [7b],
claiming “identifying the automatically expired ones of said records.” U.S.
Pat. No. ‘495 col. 12:45-46. See also ‘495 Pat. col. 5:36-56, id. at 6:53-8:16,
10:25-11:16 (search table function code); id. at Figs. 3-4, Abstract.

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked

The ‘495 Patent discloses removing at least some of the automatically expired
records from the chain of records when the chain of records is accessed.

For example, Claim 5 of the ‘495 patent is almost identical to [7c], claiming

EXHIBIT B-12

Joint Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

US2008 1661501.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,121,495 to Nemes (“the ‘495 Patent”) alone and in
combination

list is accessed. list is accessed, and “removing all automatically expired records from said chain of records each
time said chain is accessed.” U.S. Pat. No. ‘495 col. 12:47-48. The only
differences between the two patents are (1) the reference to a chain of records
instead of a linked list and (2) the deletion of all of the records in the ‘495
patent instead of some of the records. . See also ‘495 Pat. col. 5:36-57, 6:53-
8:16, id. at 10:25-11:16 (search table function code); id. at Figs. 3-4.

Though this describes accessing a chain of records rather than a linked list, as
discussed above in sections [1a/5a] and [1b/5b], it would have been obvious to
one of ordinary skill in the art that a linked list could be used to store the
records instead of a chain of records. For example, the use of a linked list to
store records is discussed in detail in the ‘499 patent. For example, the ‘499
patent discloses in part, “Another technique for resolving collisions is called
external chaining. In this technique, each hash table position is able to store all
records hashing to that location. More particularly, a linked list is used to store
the actual records outside of the hash table. The hash table entry, then, is no
more than a pointer to the head of the linked list. The linked list is itself
searched sequentially when retrieving or storing a record. Deletion is
accomplished by adjusting pointers to eliminate the deleted record from the
linked list.” See the ‘499 patent at column 2. See, also, the ‘499 patent at
Abstract, Fig. 3-5, Col. 2:9-48, 2:50-3:7, 5:63-6:28, 7:10-10:5, claim 1

Moreover, the deletion of all of the expired records includes the deletion of at
least some of the expired records and thus satisfies this element of the ‘120
patent.

 [7d] inserting, retrieving
or deleting one of the

The ‘495 patent discloses inserting, retrieving, or deleting one of the records
from the system following the step of removing.

EXHIBIT B-12

Joint Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

US2008 1661501.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,121,495 to Nemes (“the ‘495 Patent”) alone and in
combination

records from the system
following the step of
removing.

For example, Claim 5 of the ‘495 patent is substantively identical to [7d],
claiming “inserting, retrieving or deleting one of said records from said system
following said step of removing.” U.S. Pat. No. ‘495 col. 12:50-51. See also
‘495 Patent col. 5:65-8:16; id. at 9:10-10:20 (insert, retrieve, and delete
function code); id. at Figs. 5-7.

Further, the ‘499 patent discloses inserting, retrieving or deleting one of the
records from the system following the step of removing. For example, the
Abstract of the ‘499 Patent discloses in part, “Insertion, deletion and retrieval
operations are arranged to switch dynamically between the two collision
avoidance stratagems as the local loading factor on the system, as measured by
the number of records hashed to the same address, crosses preselected
thresholds.” Further, the ‘499 discloses “In FIG. 5 there is shown a flowchart
of a record deletion process. Starting at start box 60, box 61 is entered where
the search key is hashed to provide a hash table cell location. In box 62, the
cell count field at that cell location is decremented by one. Decision box 63 is
then entered to determine whether or not the contents of that cell is a list
pointer. If it is not, box 68 is entered to use any known table deletion algorithm
to remove the record from the hash table. As previously noted, the record can
merely be marked "deleted" and left in place or can by physically deleted by
some algorithm such as Knuth's algorithm. The process terminates in terminal
box 66.
If it is determined in decision box 63 that the contents of the cell is a list
pointer, box 64 is entered where the record to be deleted is removed from the
linked list. This is easily accomplished by adjusting the pointer in the chain
just before the record to be deleted to point the the record following the record
to deleted. The storage space of the thus "deleted" record can then be returned

EXHIBIT B-12

Joint Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

US2008 1661501.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,121,495 to Nemes (“the ‘495 Patent”) alone and in
combination

to free storage space for future assignment to another record.” See the ‘499
Patent, columns 8-9. See also, the ‘499 patent at Abstract, Fig. 3-5, Col. 1:29-
2:8, 2:9-48, 2:50-3:7, 5:7-6:28, 7:10-10:5, claim 1.

4. The method according to
claim 3 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

the ‘495 Patent combined with Dirks, Thatte, the ’663 patent, and/or the
Opportunistic Garbage Collection Articles discloses dynamically determining
maximum number of expired ones of the records to remove when the linked
list is accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in the
chart of Dirks, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

EXHIBIT B-12

Joint Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

US2008 1661501.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,121,495 to Nemes (“the ‘495 Patent”) alone and in
combination

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion

EXHIBIT B-12

Joint Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

US2008 1661501.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,121,495 to Nemes (“the ‘495 Patent”) alone and in
combination

is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both the ‘495 Patent and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as that described the ‘495 Patent. Moreover, one of
ordinary skill in the art would recognize that it would improve similar systems
and methods in the same way. As the ’120 patent states “[a] person skilled in
the art will appreciate that the technique of removing all expired records while
searching the linked list can be expanded to include techniques whereby not
necessarily all expired records are removed, and that the decision regarding if
and how many records to delete can be a dynamic one.” The ’120 patent at
7:10-15. Additionally, one of ordinary skill in the art would recognize that the
result of combining Dirks’ deletion decision procedure with the ‘495 Patent
would be nothing more than the predictable use of prior art elements according
to their established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with the ‘495 Patent and
would have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.

EXHIBIT B-12

Joint Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

US2008 1661501.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,121,495 to Nemes (“the ‘495 Patent”) alone and in
combination

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in the ‘495 Patent with the
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records disclosed by Thatte. For
example, Thatte discloses a system and method using hash tables and/or linked
lists and further discloses means for dynamically determining the maximum
number for the record search means to remove in the accessed linked list of
records. The disclosure of these claim elements in Thatte is clearly shown in
the chart of Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining the ‘495 Patent with Thatte would be nothing more than
the predictable use of prior art elements according to their established
functions. The resulting combination would include the capability to
determine the maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine the
‘495 Patent with Thatte and recognized the benefits of doing so. For example,
the removal of expired records described in the ‘495 Patent can be burdensome
on the system, adding to the system’s load and slowing down the system’s
processing. One of ordinary skill in the art would recognize that combining
the ‘495 Patent with the teachings of Thatte would solve this problem by
dynamically determining how many records to delete based on, among other
things, the system load. Moreover, the '120 patent discloses that "[a] person
skilled in the art will appreciate that the technique of removing all expired

EXHIBIT B-12

Joint Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

US2008 1661501.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,121,495 to Nemes (“the ‘495 Patent”) alone and in
combination

records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one." '120 at
7:10-15. Thus, the '120 patent provides motivations to combine the ‘495
Patent with Thatte.

Alternatively, it would also be obvious to combine the ‘495 Patent with the
’663 patent. Disclosure of these claim elements in the ’663 patent is clearly
shown in the chart of the ‘663 patent, which is hereby incorporated by
reference in its entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of

EXHIBIT B-12

Joint Invalidity Contentions & Production of
Documents

35 Case No. 6:09-CV-549-LED

US2008 1661501.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,121,495 to Nemes (“the ‘495 Patent”) alone and in
combination

automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT B-12

Joint Invalidity Contentions & Production of
Documents

36 Case No. 6:09-CV-549-LED

US2008 1661501.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,121,495 to Nemes (“the ‘495 Patent”) alone and in
combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both the ‘495 Patent and the ’663 patent relate to deletion of records from
hash tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as the ‘495 Patent. Moreover, one of ordinary skill in the art would
recognize that it would improve similar systems and methods in the same way.
As the ’120 patent states “[a] person skilled in the art will appreciate that the
technique of removing all expired records while searching the linked list can
be expanded to include techniques whereby not necessarily all expired records

EXHIBIT B-12

Joint Invalidity Contentions & Production of
Documents

37 Case No. 6:09-CV-549-LED

US2008 1661501.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,121,495 to Nemes (“the ‘495 Patent”) alone and in
combination

are removed, and that the decision regarding if and how many records to delete
can be a dynamic one.” The ’120 patent at 7:10-15. Additionally, one of
ordinary skill in the art would recognize that the result of combining the ’663
patent’s deletion decision procedure with the ‘495 Patent would be nothing
more than the predictable use of prior art elements according to their
established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with the ‘495 Patent
and would have seen the benefits of doing so. One such benefit, for example,
is that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine the ‘495 Patent with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to

EXHIBIT B-12

Joint Invalidity Contentions & Production of
Documents

38 Case No. 6:09-CV-549-LED

US2008 1661501.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,121,495 to Nemes (“the ‘495 Patent”) alone and in
combination

scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both the ‘495 Patent and the Opportunistic Garbage Collection Articles
relate to deletion of aged records, one of ordinary skill in the art would have

EXHIBIT B-12

Joint Invalidity Contentions & Production of
Documents

39 Case No. 6:09-CV-549-LED

US2008 1661501.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,121,495 to Nemes (“the ‘495 Patent”) alone and in
combination

understood how to use the Opportunistic Garbage Collection Articles’ dynamic
decision on whether to perform a deletion based on a system load in other hash
table implementations such as the ‘495 Patent. Moreover, one of ordinary skill
in the art would recognize that it would improve similar systems and methods
in the same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with the ‘495 Patent would be nothing more than the predictable use
of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with the ‘495 Patent and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would only perform deletions when the system was not already
too overloaded, thus preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in the ‘495 Patent to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of

EXHIBIT B-12

Joint Invalidity Contentions & Production of
Documents

40 Case No. 6:09-CV-549-LED

US2008 1661501.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,121,495 to Nemes (“the ‘495 Patent”) alone and in
combination

ordinary skill in the art would have been motivated to combine the system
disclosed in the ‘495 Patent with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in the ‘495 Patent can be burdensome
on the system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

The ‘499 patent discloses an information storage and retrieval system further
including means for dynamically determining maximum number of expired
ones of the records to remove when the linked list is accessed.

For example, the ‘499 patent describes performing a dynamic determination of
the number of records hashed to the same cell in the hash table. Then
determining if this number exceeds a certain threshold. If the threshold is
exceeded, then the system described by the ‘499 patent reorganizes and
removes the records at this location. See the ‘499 Patent at Col. 6, which

EXHIBIT B-12

Joint Invalidity Contentions & Production of
Documents

41 Case No. 6:09-CV-549-LED

US2008 1661501.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,121,495 to Nemes (“the ‘495 Patent”) alone and in
combination

recites in part “In accordance with the present invention, the major advantages
of both techniques, open addressing and external chaining, are achieved in the
same system. More particularly, these two techniques are combined in one
system, and the actual storage strategy is selected dynamically, depending on
the then current local load factor. Initially, all records are stored in the hash
table using the open addressing with linear probing technique. When the local
load factor exceeds a preselected threshold, the system shifts dynamically to
the external chaining technique. That is, while inserting or deleting a record,
the local load factor, as reflected in the number of records hashed to this same
hash table cell, is examined. If this number exceeds a threshold, the records
hashed to this cell address are reorganized, removed from the hash table itself
and organized into an external chain in another part of the store. While such
reorganization involves considerable overhead, the payoff comes in subsequent
searches where the external chaining greatly reduces the search time. It is
assumed, of course, that the frequency of retrievals greatly exceeds the
frequency of insertions and deletions, an assumption which holds true for most
data storage and retrieval systems. When a deletion from a linked list causes
the chain length to fall below a threshold, not necessarily the same threshold
that triggered chain formation, the chain is destroyed and the entries
reabsorbed into the hash table.” The ‘499 Patent at Col. 6. See also, the ‘499
patent at Col. 6:38-65, 8:14-39, 8:62-9:2, and claim 3.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by the ‘495 Patent in combination with Dirks, Thatte,
the ‘663 Patent, the ‘499 Patent, or the Opportunistic Garbage Collection
References,, it is disclosed by Linux 2.0.1, which describes dynamically
determining maximum number of expired ones of the records to remove when
the linked list is accessed. It would have been obvious to combine Linux 2.0.1

EXHIBIT B-12

Joint Invalidity Contentions & Production of
Documents

42 Case No. 6:09-CV-549-LED

US2008 1661501.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,121,495 to Nemes (“the ‘495 Patent”) alone and in
combination

with the ‘495 Patent. For example, both Linux 2.0.1 and the ‘495
Patent describe systems and methods for performing data storage and retrieval
using known programming techniques to yield a predictable result.

For example, when invoked, the function rt_cache_add automatically
increments an integer variable rt_cache_size. Line 1359. When the
function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. Line 1373. Thus,
the variable rt_cache_size indicates the number of records in the hash table
(i.e., ip_rt_hash_table). Because the function rt_cache_add automatically
increments and decrements the variable rt_cache_size, the variable
rt_cache_size is determined dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1. The
function rt_garbage_collect_1 loops through each of the linked lists in the
ip_rt_hash_table global variable. See lines 1122-1138. In this way, the
function rt_garbage_collect_1 accesses the linked list. When the function
rt_garbage_collect_1 identifies a record that is expired, the function
rt_garbage_collect_1 decrements the variable rt_cache_size and frees
the record. See lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of

EXHIBIT B-12

Joint Invalidity Contentions & Production of
Documents

43 Case No. 6:09-CV-549-LED

US2008 1661501.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,121,495 to Nemes (“the ‘495 Patent”) alone and in
combination

records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds the
predetermined threshold RT_CACHE_SIZE_MAX, the function rt_cache_add
invokes a function rt_garbage_collect. See lines 1341-1342. The function
rt_garbage_collect invokes a function rt_garbage_collect_1. Line
1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. Line 1293.

The function rt_garbage_collect_1 loops through each linked list in the
hash table. See lines 1116-1132. For each linked list in the hash table, the
function rt_garbage_collect_1 looks at each record in the linked list. See
lines 1120-1131. For each record in a linked list, the function
rt_garbage_collect_1 determines whether the record’s last use time plus the
record’s expiration factor is later than the current time. See line 1122. If the
record’s last use time plus the record’s expiration factor is less than the current
time, the function rt_garbage_collect_1 removes the record from the linked
list. See lines 1124-1130. The record’s expiration factor is based on a variable
expire and the record’s reference count. Line 1122. The variable expire is
initially one half of the fixed timeout value RT_CACHE_TIMEOUT. Line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records in
the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX.
Line 1133. If the number of items in the hash table is still greater than the
predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_garbage_collect_1 halves the variable expire and loops through each of
the linked lists in the hash table. See line 1135. In this way, the function

EXHIBIT B-12

Joint Invalidity Contentions & Production of
Documents

44 Case No. 6:09-CV-549-LED

US2008 1661501.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,121,495 to Nemes (“the ‘495 Patent”) alone and in
combination

rt_garbage_collect_1 can remove additional records from the linked lists in
the hash table. The function rt_garbage_collect_1 repeats this process until
the total number of records in the hash table is less than the predetermined
threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the records
removed by the function rt_garbage_collect_1 are data items which after a
limited time or after the occurrence of some event become obsolete, such that
their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when the
record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT is less
than the current time and the record’s reference count is zero. Line 1369.
Thus, the maximum number of records that the function rt_cache_add can
remove from a given linked list is limited to those records whose reference
counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not limited to
those records whose reference counts are zero. Line 1122. Rather, the
function rt_garbage_collect_1 can remove records whose reference counts
are zero and records whose reference counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than the
maximum number of records that the function rt_cache_add can remove from

EXHIBIT B-12

Joint Invalidity Contentions & Production of
Documents

45 Case No. 6:09-CV-549-LED

US2008 1661501.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Pat. No. 5,121,495 to Nemes (“the ‘495 Patent”) alone and in
combination

a linked list.

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, the ’663 Patent discloses an
information storage and retrieval system.

For example, The ’663 Patent discloses “[a] method and apparatus for
performing storage and retrieval in an information storage system [] which
uses the hashing technique.” U.S. Patent No. 4,996,663 to Nemes at Abstract.

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

The ’663 Patent discloses a linked list to store and provide access to records
stored in a memory of the system, at least some of the records automatically
expiring. The ’663 Patent also discloses a hashing means to provide access to
records stored in a memory of the system and using an external chaining
technique to store the records with same hash address, at least some of the
records automatically expiring.

For example, the ’663 Patent discloses “[a] method and apparatus for
performing storage and retrieval in an information storage system [] which
uses the hashing technique.” Id.

Furthermore, the ’663 Patent discloses that:

[a] hash table can be described as a logically contiguous, circular
list of consecutively numbered, fixed-sized storage units, called
cells, each capable of storing a single item called a record. Each
record contains a distinguishing field, called the key, which is
used as the basis for storing and retrieving the associated record.
The keys throughout the hash table data base are distinct and
unique for each record. Hashing functions are usually not one-
to-one in that they map many distinct keys to the same location.

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

Id. at 4:41-50.

When such a hash table data base is stored on a slower external
storage [], the hash table is best organized as a consecutively
numbered circular sequence of larger, multi-cell, fixed-sized
storage units, each of which is termed a bucket. A bucket is the
largest physically efficient input/output unit of the storage
mechanism, such as a disk track in a disk storage unit. Each
bucket consists of a sequence of consecutively numbered cells.
The hashing function operates on the search key to translate or
map the search key into a bucket number or address. Then the
entire bucket is retrieved in a single access or probe, and the
entire bucked may be processed at RAM speed. Id. at 4:55-68.

The hashing technique The ’663 Patent discloses is better understood with
reference to Figure 3, which is a flow chart of a procedure for the retrieval of a
record from the storage system:

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

Id. at Figure 3.

“Starting in box 30 of the retrieve procedure, the search key of the record to be

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

retrieved is hashed in box 31 to provide the address of a bucket.” Id. at 5: 23-
25. “It can be seen that boxes 33, 39 and 44 operate to search for a cell with
matching key by linear probing with open addressing.” Id. at 5:63-65.

The ’663 Patent further qualifies the necessity of linear probing by disclosing
that:

[a] disadvantage of hashing techniques is that more than one key
can translate into the same storage address, causing ‘collisions’
in storage or retrieval operations. Some form of collision-
resolution strategy (sometimes called ‘rehashing’) must therefore
be provided. For example, the simple strategy of searching
forward from the initial storage address to the desired storage
location will resolve the collision. This latter technique is called
linear probing. Id. at 1:40-48.

Furthermore, The ’663 Patent discloses that “[i]n times of heavy use, when
deletions must be done rapidly and no time is available for decontamination,
the record is simply marked as ‘deleted’ and left in place. Later non-
contaminating probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by moving records in
the chain. . . .” Id. at 2:35-41.

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of
records having the same
hash address,

The ’663 Patent discloses a record search means utilizing a search key to
access the linked list. The ’663 Patent also discloses a record search means
utilizing a search key to access a linked list of records having the same hash
address.

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

For example, the ’663 Patent discloses “[a] method and apparatus for
performing storage and retrieval in an information storage system [] which
uses the hashing technique.” Id. at Abstract.

Furthermore, the ’663 Patent discloses that:

[a] hash table can be described as a logically contiguous, circular
list of consecutively numbered, fixed-sized storage units, called
cells, each capable of storing a single item called a record. Each
record contains a distinguishing field, called the key, which is
used as the basis for storing and retrieving the associated record.
The keys throughout the hash table data base are distinct and
unique for each record. Hashing functions are usually not one-
to-one in that they map many distinct keys to the same location.
Id. at 4:41-50.

When such a hash table data base is stored on a slower external
storage [], the hash table is best organized as a consecutively
numbered circular sequence of larger, multi-cell, fixed-sized
storage units, each of which is termed a bucket. A bucket is the
largest physically efficient input/output unit of the storage
mechanism, such as a disk track in a disk storage unit. Each
bucket consists of a sequence of consecutively numbered cells.
The hashing function operates on the search key to translate or
map the search key into a bucket number or address. Then the
entire bucket is retrieved in a single access or probe, and the
entire bucked may be processed at RAM speed. Id. at 4:55-68.

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

The hashing technique the ’663 Patent discloses is better understood with
reference to Figure 3, which is a flow chart of a procedure for the retrieval of a
record from the storage system:

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

Id. at Figure 3.

“Starting in box 30 of the retrieve procedure, the search key of the record to be
retrieved is hashed in box 31 to provide the address of a bucket.” Id. at 5: 23-
25. “It can be seen that boxes 33, 39 and 44 operate to search for a cell with
matching key by linear probing with open addressing.” Id. at 5:63-65.

The ’663 Patent further qualifies the necessity of linear probing by disclosing
that

[a] disadvantage of hashing techniques is that more than one key
can translate into the same storage address, causing ‘collisions’
in storage or retrieval operations. Some form of collision-
resolution strategy (sometimes called ‘rehashing’) must therefore
be provided. For example, the simple strategy of searching
forward from the initial storage address to the desired storage
location will resolve the collision. This latter technique is called
linear probing. Id. at 1:40-48.

[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the
records from the linked list
when the linked list is
accessed, and

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

The ’663 Patent discloses the record search means including a means for
identifying and removing at least some of the expired ones of the records from
the linked list when the linked list is accessed. The ’663 Patent also discloses
the record search means including means for identifying and removing at least
some expired ones of the records from the linked list of records when the
linked list is accessed.

For example, the ’663 Patent discloses that “[i]n times of heavy use, when
deletions must be done rapidly and no time is available for decontamination,

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

the record is simply marked as ‘deleted’ and left in place. Later non-
contaminating probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by moving records in
the chain. . . .” Id. at 2:35-41.

The process disclosed by the ’663 Patent is again better understood with
reference to Figure 3, which is a flow chart of a procedure for the retrieval of a
record from the storage system:

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

 Id. at Figure 3.

Starting in box 30 of the retrieve procedure, the search key of the

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

record to be retrieved is hashed in box 31 to provide the address
of a bucket. In box 32, that bucket is retrieved in its entirety and
stored in internal computer memory. Decision box 33 examines
the first cell of that bucket to determine if the cell is empty or
not. If the cell tested in decision box 42 is empty, the decision
box 35 is entered to determine if a deleted cell was encountered
before the empty cell was encountered. If no deleted cell was
encountered, box 36 is entered to save the location of the empty
cell, since this is the first empty cell in the bucket and hence can
be used to store a new record. If any deleted cells were
encountered prior to the empty cell, the location of the first
deleted cell would have already been saved []. It should be
recalled that a deleted cell can also be used to store a new record.
Id. at 21-40.

[I]n order to insert or store a record, starting at start box 45, it is
assumed that the retrieve procedure of FIG 3 has already been
invoked to see if a record with this key has already been stored in
the data base. If not, the retrieve procedure of FIG. 3 returns a
failure indication along with the location of the first empty or
first deleted cell encountered in its search for the record. In the
insert procedure [], it is therefore only necessary to store the new
record in the location provided by the retrieve procedure in box
46, return the accessed bucket to the data base in box 47 and
terminate the insert procedure in box 48. Id. at 6:8-20, Figures 3
and 4.

Upon an insertion, if a deleted cell is returned in the process described above,

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

the new record replaces the contents in the deleted cell.

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

The ’663 Patent discloses means, utilizing the record search means, for
accessing the linked list and, at the same time, removing at least some of the
expired ones of the records in the linked list. The ’663 Patent also discloses
utilizing the record search means, for inserting, retrieving, and deleting records
from the system and, at the same time, removing at least some expired ones of
the records in the accessed linked list of records.

For example, the ’663 Patent discloses that “[i]n times of heavy use, when
deletions must be done rapidly and no time is available for decontamination,
the record is simply marked as ‘deleted’ and left in place. Later non-
contaminating probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by moving records in
the chain. . . .” Id. at 2:35-41.

The process disclosed by the ’663 Patent is again better understood with
reference to Figure 3, which is a flow chart of a procedure for the retrieval of a
record from the storage system:

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

Id. at Figure 3.

Starting in box 30 of the retrieve procedure, the search key of the

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

record to be retrieved is hashed in box 31 to provide the address
of a bucket. In box 32, that bucket is retrieved in its entirety and
stored in internal computer memory. Decision box 33 examines
the first cell of that bucket to determine if the cell is empty or
not. If the cell tested in decision box 42 is empty, the decision
box 35 is entered to determine if a deleted cell was encountered
before the empty cell was encountered. If no deleted cell was
encountered, box 36 is entered to save the location of the empty
cell, since this is the first empty cell in the bucket and hence can
be used to store a new record. If any deleted cells were
encountered prior to the empty cell, the location of the first
deleted cell would have already been saved []. It should be
recalled that a deleted cell can also be used to store a new record.
Id. at 21-40.

[I]n order to insert or store a record, starting at start box 45, it is
assumed that the retrieve procedure of FIG 3 has already been
invoked to see if a record with this key has already been stored in
the data base. If not, the retrieve procedure of FIG. 3 returns a
failure indication along with the location of the first empty or
first deleted cell encountered in its search for the record. In the
insert procedure [], it is therefore only necessary to store the new
record in the location provided by the retrieve procedure in box
46, return the accessed bucket to the data base in box 47 and
terminate the insert procedure in box 48. Id. at 6:8-20. Figures 3
and 4.

Upon an insertion, if a deleted cell is returned in the process described above,

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

the new record replaces the contents in the deleted cell.

2. The information storage
and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

6. The information storage
and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

The ’663 Patent discloses an information storage and retrieval system further
including means for dynamically determining maximum number for the record
search means to remove in the accessed linked list of records.

For example, the ’663 Patent discloses that:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. Id. at 2:24-34.

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the ’663 Patent discloses a hybrid deletion procedure that dynamically
determines a maximum number of records to remove. See id. at 6:40-64,
Figure 5. If the fast-secure delete 52 is used, then maximum number of records
is zero because records are not deleted they are only marked. Id. at 8:1-33,
Figure 7. If the slow-non-contaminating delete 53 is used, then the maximum
number of records to remove is all of the contaminated records in the bucket.
Id. at 6:65-7:68, Figures 6, 6A, 6B.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in the ’663 Patent to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in the ’663 Patent with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in the ’663 Patent can be burdensome
on the system, adding to the system’s load and slowing down the system’s

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete. Indeed,
part of the motivation for the system disclosed in the ’663 Patent is avoiding
these problems. One of ordinary skill in the art would have known that
dynamically determining the maximum number to remove would limit the
burden on the system and bound the length of any real-time interruption to
prevent delays in processing. Indeed, Nemes concedes that such dynamic
determination was obvious when he states in the ‘120 patent that “[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one.” ‘120 at
7:10-15.

To the extent it is not disclosed in the ‘663 Patent, Dirks, Thatte, the
Opportunistic Garbage Collection References, and/or Linux 2.0.1 disclose a
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both The ‘663 Patent and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as The ‘663 Patent. Moreover, one of ordinary skill in
the art would recognize that it would improve similar systems and methods in
the same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with The ‘663 Patent nothing
more than the predictable use of prior art elements according to their
established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with The ‘663 Patent and
would have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in The ‘663 Patent with the
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records disclosed by Thatte. For
example, Thatte discloses a system and method using hash tables and/or linked
lists and further discloses means for dynamically determining the maximum
number for the record search means to remove in the accessed linked list of
records. The disclosure of these claim elements in Thatte is clearly shown in
the chart of Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining The ‘663 Patent with Thatte would be nothing more than

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

the predictable use of prior art elements according to their established
functions. The resulting combination would include the capability to
determine the maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine The
‘663 Patent with Thatte and recognize the benefits of doing so. For example,
the removal of expired records described in The ‘663 Patent can be
burdensome on the system, adding to the system’s load and slowing down the
system’s processing. One of ordinary skill in the art would recognize that
combining The ‘663 Patent with the teachings of Thatte would solve this
problem by dynamically determining how many records to delete based on,
among other things, the system load. Moreover, the '120 patent discloses that
"[a] person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records are removed, and that
the decision regarding if and how many records to delete can be a dynamic
one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine
The ‘663 Patent with Thatte.

Alternatively, it would also be obvious to combine The ‘663 Patent with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both The ‘663 Patent and the Opportunistic Garbage Collection Articles
relate to deletion of aged records, one of ordinary skill in the art would have
understood how to use the Opportunistic Garbage Collection Articles’ dynamic
decision on whether to perform a deletion based on a system load in other hash
table implementations such as The ‘663 Patent. Moreover, one of ordinary
skill in the art would recognize that it would improve similar systems and
methods in the same way. As the ’120 patent states “[a] person skilled in the
art will appreciate that the technique of removing all expired records while
searching the linked list can be expanded to include techniques whereby not
necessarily all expired records are removed, and that the decision regarding if
and how many records to delete can be a dynamic one.” The ’120 patent at
7:10-15. Additionally, one of ordinary skill in the art would recognize that the
result of combining the Opportunistic Garbage Collection Articles’ deletion
decision procedure with The ‘663 Patent would be nothing more than the
predictable use of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with The ‘663 Patent and
would have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in The ‘663 Patent to dynamically determine the

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in The ‘663 Patent with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in The ‘663 Patent can be
burdensome on the system, adding to the system’s load and slowing down the
system’s processing. Moreover, the removal could also force an interruption in
real-time processing as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

The ‘499 patent discloses an information storage and retrieval system further
including means for dynamically determining maximum number for the record
search means to remove in the accessed linked list of records.

For example, the ‘499 patent describes performing a dynamic determination of

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

the number of records hashed to the same cell in the hash table. Then
determining if this number exceeds a certain threshold. If the threshold is
exceeded, then the system described by the ‘499 patent reorganizes and
removes the records at this location. See the ‘499 Patent at Col. 6, which
recites in part “In accordance with the present invention, the major advantages
of both techniques, open addressing and external chaining, are achieved in the
same system. More particularly, these two techniques are combined in one
system, and the actual storage strategy is selected dynamically, depending on
the then current local load factor. Initially, all records are stored in the hash
table using the open addressing with linear probing technique. When the local
load factor exceeds a preselected threshold, the system shifts dynamically to
the external chaining technique. That is, while inserting or deleting a record,
the local load factor, as reflected in the number of records hashed to this same
hash table cell, is examined. If this number exceeds a threshold, the records
hashed to this cell address are reorganized, removed from the hash table itself
and organized into an external chain in another part of the store. While such
reorganization involves considerable overhead, the payoff comes in subsequent
searches where the external chaining greatly reduces the search time. It is
assumed, of course, that the frequency of retrievals greatly exceeds the
frequency of insertions and deletions, an assumption which holds true for most
data storage and retrieval systems. When a deletion from a linked list causes
the chain length to fall below a threshold, not necessarily the same threshold
that triggered chain formation, the chain is destroyed and the entries
reabsorbed into the hash table.” The ‘499 Patent at Col. 6. See also, the ‘499
patent at Col. 6:38-65, 8:14-39, 8:62-9:2, and claim 3.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by The ‘663 Patent in combination with Dirks, Thatte,

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

or the Opportunistic Garbage Collection References, it is disclosed by Linux
2.0.1, which describes dynamically determining maximum number of expired
ones of the records to remove when the linked list is accessed. It would have
been obvious to combine Linux 2.0.1 with The ‘663 Patent. For example,
both Linux 2.0.1 and The ‘663 Patent describe systems and methods for
performing data storage and retrieval using known programming techniques to
yield a predictable result.

For example, when invoked, the function rt_cache_add automatically
increments an integer variable rt_cache_size. See Linux 2.0.1, route.c at
line 1359. When the function rt_cache_add removes an expired record, the
function rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because the
function rt_cache_add automatically increments and decrements the variable
rt_cache_size, the variable rt_cache_size is determined dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1. The
function rt_garbage_collect_1 loops through each of the linked lists in the
ip_rt_hash_table global variable. See Linux 2.0.1, route.c at lines 1122-
1138. In this way, the function rt_garbage_collect_1 accesses the linked
list. When the function rt_garbage_collect_1 identifies a record that is
expired, the function rt_garbage_collect_1 decrements the variable
rt_cache_size and frees the record. See Linux 2.0.1, route.c at lines 1128-
1135.

Because all records in the linked list can be expired and all records in the hash

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds the
predetermined threshold RT_CACHE_SIZE_MAX, the function rt_cache_add
invokes a function rt_garbage_collect. See Linux 2.0.1, route.c at lines
1341-1342. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293. The function
rt_garbage_collect invokes a function rt_garbage_collect_1. See Linux
2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in the
hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked list in
the hash table, the function rt_garbage_collect_1 looks at each record in
the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each record in
a linked list, the function rt_garbage_collect_1 determines whether the
record’s last use time plus the record’s expiration factor is later than the current
time. See Linux 2.0.1, route.c at line 1122. If the record’s last use time plus
the record’s expiration factor is less than the current time, the function
rt_garbage_collect_1 removes the record from the linked list. See Linux
2.0.1, route.c at lines 1124-1130. The record’s expiration factor is based on a
variable expire and the record’s reference count. See Linux 2.0.1, route.c at
line 1122. The variable expire is initially one half of the fixed timeout value
RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records in
the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX.
See Linux 2.0.1, route.c at line 1133. If the number of items in the hash table
is still greater than the predetermined threshold RT_CACHE_SIZE_MAX, the
function rt_garbage_collect_1 halves the variable expire and loops
through each of the linked lists in the hash table. See Linux 2.0.1, route.c at
line 1135. In this way, the function rt_garbage_collect_1 can remove
additional records from the linked lists in the hash table. The function
rt_garbage_collect_1 repeats this process until the total number of records
in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the records
removed by the function rt_garbage_collect_1 are data items which after a
limited time or after the occurrence of some event become obsolete, such that
their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when the
record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT is less
than the current time and the record’s reference count is zero. See Linux 2.0.1,
route.c at line 1369. Thus, the maximum number of records that the function
rt_cache_add can remove from a given linked list is limited to those records
whose reference counts are zero.

In contrast, the maximum number of records that the function

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

rt_garbage_collect_1 can remove from a given linked list is not limited to
those records whose reference counts are zero. See Linux 2.0.1, route.c at line
1122. Rather, the function rt_garbage_collect_1 can remove records
whose reference counts are zero and records whose reference counts are
greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than the
maximum number of records that the function rt_cache_add can remove from
a linked list.

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

To the extent the preamble is a limitation, the ’663 Patent discloses a method
for storing and retrieving information records using a linked list to store and
provide access to the records, at least some of the records automatically
expiring. the ’663 Patent also discloses a method for storing and retrieving
information records using a hashing technique to provide access to the records
and using an external chaining technique to store the records with same hash
address, at least some of the records automatically expiring.

For example, the ’663 Patent discloses “[a] method and apparatus for
performing storage and retrieval in an information storage system [] which
uses the hashing technique.” U.S. Patent No. 4,996,663 to Nemes at Abstract.

Furthermore, the ’663 Patent discloses that

[a] hash table can be described as a logically contiguous, circular
list of consecutively numbered, fixed-sized storage units, called

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

cells, each capable of storing a single item called a record. Each
record contains a distinguishing field, called the key, which is
used as the basis for storing and retrieving the associated record.
The keys throughout the hash table data base are distinct and
unique for each record. Hashing functions are usually not one-
to-one in that they map many distinct keys to the same location.
Id. at 4:41-50.

When such a hash table data base is stored on a slower external
storage [], the hash table is best organized as a consecutively
numbered circular sequence of larger, multi-cell, fixed-sized
storage units, each of which is termed a bucket. A bucket is the
largest physically efficient input/output unit of the storage
mechanism, such as a disk track in a disk storage unit. Each
bucket consists of a sequence of consecutively numbered cells.
The hashing function operates on the search key to translate or
map the search key into a bucket number or address. Then the
entire bucket is retrieved in a single access or probe, and the
entire bucked may be processed at RAM speed. Id. at 4:55-68.

The hashing technique the ’663 Patent discloses is better understood with
reference to Figure 3, which is a flow chart of a procedure for the retrieval of a
record from the storage system:

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

Id. at Figure 3.

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

“Starting in box 30 of the retrieve procedure, the search key of the record to be
retrieved is hashed in box 31 to provide the address of a bucket.” Id. at 5: 23-
25. “It can be seen that boxes 33, 39 and 44 operate to search for a cell with
matching key by linear probing with open addressing.” Id. at 5:63-65.

The ’663 Patent further qualifies the necessity of linear probing by disclosing
that

[a] disadvantage of hashing techniques is that more than one key
can translate into the same storage address, causing ‘collisions’
in storage or retrieval operations. Some form of collision-
resolution strategy (sometimes called ‘rehashing’) must therefore
be provided. For example, the simple strategy of searching
forward from the initial storage address to the desired storage
location will resolve the collision. This latter technique is called
linear probing. Id. at 1:40-48.

Furthermore, the ’663 Patent discloses that “[i]n times of heavy use, when
deletions must be done rapidly and no time is available for decontamination,
the record is simply marked as ‘deleted’ and left in place. Later non-
contaminating probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by moving records in
the chain. . . .” Id. at 2:35-41.

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

The ’663 Patent discloses accessing a linked list of records. The ’663 Patent
also discloses accessing a linked list of records having same hash address.

For example, the ’663 Patent discloses “[a] method and apparatus for

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

performing storage and retrieval in an information storage system [] which
uses the hashing technique.” U.S. Patent No. 4,996,663 to Nemes at Abstract.

Furthermore, the ’663 Patent discloses that:

[a] hash table can be described as a logically contiguous, circular
list of consecutively numbered, fixed-sized storage units, called
cells, each capable of storing a single item called a record. Each
record contains a distinguishing field, called the key, which is
used as the basis for storing and retrieving the associated record.
The keys throughout the hash table data base are distinct and
unique for each record. Hashing functions are usually not one-
to-one in that they map many distinct keys to the same location.
Id. at 4:41-50.

When such a hash table data base is stored on a slower external
storage [], the hash table is best organized as a consecutively
numbered circular sequence of larger, multi-cell, fixed-sized
storage units, each of which is termed a bucket. A bucket is the
largest physically efficient input/output unit of the storage
mechanism, such as a disk track in a disk storage unit. Each
bucket consists of a sequence of consecutively numbered cells.
The hashing function operates on the search key to translate or
map the search key into a bucket number or address. Then the
entire bucket is retrieved in a single access or probe, and the
entire bucked may be processed at RAM speed. Id. at 4:55-68.

The hashing technique the ’663 Patent discloses is better understood with

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

reference to Figure 3, which is a flow chart of a procedure for the retrieval of a
record from the storage system:

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

35 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

Id. at Figure 3.

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

36 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

“Starting in box 30 of the retrieve procedure, the search key of the record to be
retrieved is hashed in box 31 to provide the address of a bucket.” Id. at 5: 23-
25. “It can be seen that boxes 33, 39 and 44 operate to search for a cell with
matching key by linear probing with open addressing.” Id. at 5:63-65.

The ’663 Patent further qualifies the necessity of linear probing by disclosing
that:

[a] disadvantage of hashing techniques is that more than one key
can translate into the same storage address, causing ‘collisions’
in storage or retrieval operations. Some form of collision-
resolution strategy (sometimes called ‘rehashing’) must therefore
be provided. For example, the simple strategy of searching
forward from the initial storage address to the desired storage
location will resolve the collision. This latter technique is called
linear probing. Id. at 1:40-48.

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

The ’663 Patent discloses identifying at least some of the automatically expired
ones of the records.

For example, the ’663 Patent discloses that “[i]n times of heavy use, when
deletions must be done rapidly and no time is available for decontamination,
the record is simply marked as ‘deleted’ and left in place. Later non-
contaminating probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by moving records in
the chain. . . .” Id. at 2:35-41.

[3c] removing at least [7c] removing at least The ’663 Patent discloses removing at least some of the automatically expired

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

37 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

some of the automatically
expired records from the
linked list when the linked
list is accessed.

some of the automatically
expired records from the
linked list when the linked
list is accessed, and

records from the linked list when the linked list is accessed.

For example, the ’663 Patent discloses that “[i]n times of heavy use, when
deletions must be done rapidly and no time is available for decontamination,
the record is simply marked as ‘deleted’ and left in place. Later non-
contaminating probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by moving records in
the chain. . . .” Id. at 2:35-41.

The process disclosed by the ’663 Patent is again better understood with
reference to Figure 3, which is a flow chart of a procedure for the retrieval of a
record from the storage system:

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

38 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

Id. at Figure 3.

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

39 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

Starting in box 30 of the retrieve procedure, the search key of the
record to be retrieved is hashed in box 31 to provide the address
of a bucket. In box 32, that bucket is retrieved in its entirety and
stored in internal computer memory. Decision box 33 examines
the first cell of that bucket to determine if the cell is empty or
not. If the cell tested in decision box 42 is empty, the decision
box 35 is entered to determine if a deleted cell was encountered
before the empty cell was encountered. If no deleted cell was
encountered, box 36 is entered to save the location of the empty
cell, since this is the first empty cell in the bucket and hence can
be used to store a new record. If any deleted cells were
encountered prior to the empty cell, the location of the first
deleted cell would have already been saved []. It should be
recalled that a deleted cell can also be used to store a new record.
Id. at 21-40.

[I]n order to insert or store a record, starting at start box 45, it is
assumed that the retrieve procedure of FIG 3 has already been
invoked to see if a record with this key has already been stored in
the data base. If not, the retrieve procedure of FIG. 3 returns a
failure indication along with the location of the first empty or
first deleted cell encountered in its search for the record. In the
insert procedure [], it is therefore only necessary to store the new
record in the location provided by the retrieve procedure in box
46, return the accessed bucket to the data base in box 47 and
terminate the insert procedure in box 48. Id. at 6:8-20. Figures 3
and 4.

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

40 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

Upon an insertion, if a deleted cell is returned in the process described above,
the new record replaces the contents in the deleted cell.

 [7d] inserting, retrieving
or deleting one of the
records from the system
following the step of
removing.

The ’663 Patent discloses inserting, retrieving or deleting one of the records
from the system following the step of removing.

For example, the process disclosed in the ’663 Patent is better understood with
reference to Figure 8, which shows a state diagram illustrating the sequence in
which the various procedures – inserting, deleting, and retrieving – can be
called. Id. at 8:35-37, Figures 3-5.

Id. at Figure 8.

The ’663 Patent discloses that:

[s]tarting at box 85, the retrieve procedure of FIG. 3 must be

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

41 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

called first, before any other procedure. Therefore, the insert
procedure of FIG. 4, or the hybrid delete procedure of FIG. 5 can
be called, or the retrieve procedure of FIG. 3 reinvoked. Either
the retrieve procedure of FIG. 3 or the hybrid delete procedure of
FIG. 5 can be called after the insert procedure, but only the
retrieve procedure can be called following the hybrid delete
procedure of FIG. 5. The circular arrows at the retrieve and
insert procedures indicate that these procedures can be called
repetitively without calling any other procedure. Id. at 8:37-47.

4. The method according to
claim 3 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

The ’663 Patent discloses dynamically determining maximum number of
expired ones of the records to remove when the linked list is accessed.

For example, the ’663 Patent discloses that:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. Id. at 2:24-34.

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

42 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

43 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

44 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the ’663 Patent discloses a hybrid deletion procedure that dynamically
determines a maximum number of records to remove. See id. at 6:40-64,
Figure 5. If the fast-secure delete 52 is used, then maximum number of records
is zero because records are not deleted they are only marked. Id. at 8:1-33,
Figure 7. If the slow-non-contaminating delete 53 is used, then the maximum
number of records to remove is all of the contaminated records in the bucket.
Id. at 6:65-7:68, Figures 6, 6A, 6B.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in the ’663 Patent to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in the ’663 Patent with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in the ’663 Patent can be burdensome
on the system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete. Indeed,
part of the motivation for the system disclosed in the ’663 Patent is avoiding
these problems. One of ordinary skill in the art would have known that

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

45 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

dynamically determining the maximum number to remove would limit the
burden on the system and bound the length of any real-time interruption to
prevent delays in processing. Indeed, Nemes concedes that such dynamic
determination was obvious when he states in the ‘120 patent that “[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one.” ‘120 at
7:10-15.

To the extent it is not disclosed in the ‘663 Patent, Dirks, Thatte, the
Opportunistic Garbage Collection References, and/or Linux 2.0.1 disclose
dynamically determining maximum number of expired ones of the records to
remove when the linked list is accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

46 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

47 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both The ‘663 Patent and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as The ‘663 Patent. Moreover, one of ordinary skill in
the art would recognize that it would improve similar systems and methods in
the same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with The ‘663 Patent nothing
more than the predictable use of prior art elements according to their
established functions.

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

48 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with The ‘663 Patent and
would have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in The ‘663 Patent with the
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records disclosed by Thatte. For
example, Thatte discloses a system and method using hash tables and/or linked
lists and further discloses means for dynamically determining the maximum
number for the record search means to remove in the accessed linked list of
records. The disclosure of these claim elements in Thatte is clearly shown in
the chart of Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining The ‘663 Patent with Thatte would be nothing more than
the predictable use of prior art elements according to their established
functions. The resulting combination would include the capability to
determine the maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine The
‘663 Patent with Thatte and recognize the benefits of doing so. For example,
the removal of expired records described in The ‘663 Patent can be

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

49 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

burdensome on the system, adding to the system’s load and slowing down the
system’s processing. One of ordinary skill in the art would recognize that
combining The ‘663 Patent with the teachings of Thatte would solve this
problem by dynamically determining how many records to delete based on,
among other things, the system load. Moreover, the '120 patent discloses that
"[a] person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records are removed, and that
the decision regarding if and how many records to delete can be a dynamic
one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine
The ‘663 Patent with Thatte.

Alternatively, it would also be obvious to combine The ‘663 Patent with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

50 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both The ‘663 Patent and the Opportunistic Garbage Collection Articles
relate to deletion of aged records, one of ordinary skill in the art would have
understood how to use the Opportunistic Garbage Collection Articles’ dynamic
decision on whether to perform a deletion based on a system load in other hash

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

51 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

table implementations such as The ‘663 Patent. Moreover, one of ordinary
skill in the art would recognize that it would improve similar systems and
methods in the same way. As the ’120 patent states “[a] person skilled in the
art will appreciate that the technique of removing all expired records while
searching the linked list can be expanded to include techniques whereby not
necessarily all expired records are removed, and that the decision regarding if
and how many records to delete can be a dynamic one.” The ’120 patent at
7:10-15. Additionally, one of ordinary skill in the art would recognize that the
result of combining the Opportunistic Garbage Collection Articles’ deletion
decision procedure with The ‘663 Patent would be nothing more than the
predictable use of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with The ‘663 Patent and
would have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in The ‘663 Patent to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in The ‘663 Patent with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

52 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

linked list of records to solve a number of potential problems. For example,
the removal of expired records described in The ‘663 Patent can be
burdensome on the system, adding to the system’s load and slowing down the
system’s processing. Moreover, the removal could also force an interruption in
real-time processing as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

The ‘499 patent discloses an information storage and retrieval system further
including means for dynamically determining maximum number for the record
search means to remove in the accessed linked list of records.

For example, the ‘499 patent describes performing a dynamic determination of
the number of records hashed to the same cell in the hash table. Then
determining if this number exceeds a certain threshold. If the threshold is
exceeded, then the system described by the ‘499 patent reorganizes and
removes the records at this location. See the ‘499 Patent at Col. 6, which
recites in part “In accordance with the present invention, the major advantages
of both techniques, open addressing and external chaining, are achieved in the
same system. More particularly, these two techniques are combined in one

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

53 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

system, and the actual storage strategy is selected dynamically, depending on
the then current local load factor. Initially, all records are stored in the hash
table using the open addressing with linear probing technique. When the local
load factor exceeds a preselected threshold, the system shifts dynamically to
the external chaining technique. That is, while inserting or deleting a record,
the local load factor, as reflected in the number of records hashed to this same
hash table cell, is examined. If this number exceeds a threshold, the records
hashed to this cell address are reorganized, removed from the hash table itself
and organized into an external chain in another part of the store. While such
reorganization involves considerable overhead, the payoff comes in subsequent
searches where the external chaining greatly reduces the search time. It is
assumed, of course, that the frequency of retrievals greatly exceeds the
frequency of insertions and deletions, an assumption which holds true for most
data storage and retrieval systems. When a deletion from a linked list causes
the chain length to fall below a threshold, not necessarily the same threshold
that triggered chain formation, the chain is destroyed and the entries
reabsorbed into the hash table.” The ‘499 Patent at Col. 6. See also, the ‘499
patent at Col. 6:38-65, 8:14-39, 8:62-9:2, and claim 3.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by The ‘663 Patent in combination with Dirks, Thatte,
or the Opportunistic Garbage Collection References, it is disclosed by Linux
2.0.1, which describes dynamically determining maximum number of expired
ones of the records to remove when the linked list is accessed. It would have
been obvious to combine Linux 2.0.1 with The ‘663 Patent. For example,
both Linux 2.0.1 and The ‘663 Patent describe systems and methods for
performing data storage and retrieval using known programming techniques to
yield a predictable result.

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

54 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

For example, when invoked, the function rt_cache_add automatically
increments an integer variable rt_cache_size. See Linux 2.0.1, route.c at
line 1359. When the function rt_cache_add removes an expired record, the
function rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because the
function rt_cache_add automatically increments and decrements the variable
rt_cache_size, the variable rt_cache_size is determined dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1. The
function rt_garbage_collect_1 loops through each of the linked lists in the
ip_rt_hash_table global variable. See Linux 2.0.1, route.c at lines 1122-
1138. In this way, the function rt_garbage_collect_1 accesses the linked
list. When the function rt_garbage_collect_1 identifies a record that is
expired, the function rt_garbage_collect_1 decrements the variable
rt_cache_size and frees the record. See Linux 2.0.1, route.c at lines 1128-
1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds the

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

55 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

predetermined threshold RT_CACHE_SIZE_MAX, the function rt_cache_add
invokes a function rt_garbage_collect. See Linux 2.0.1, route.c at lines
1341-1342. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293. The function
rt_garbage_collect invokes a function rt_garbage_collect_1. See Linux
2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in the
hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked list in
the hash table, the function rt_garbage_collect_1 looks at each record in
the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each record in
a linked list, the function rt_garbage_collect_1 determines whether the
record’s last use time plus the record’s expiration factor is later than the current
time. See Linux 2.0.1, route.c at line 1122. If the record’s last use time plus
the record’s expiration factor is less than the current time, the function
rt_garbage_collect_1 removes the record from the linked list. See Linux
2.0.1, route.c at lines 1124-1130. The record’s expiration factor is based on a
variable expire and the record’s reference count. See Linux 2.0.1, route.c at
line 1122. The variable expire is initially one half of the fixed timeout value
RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records in
the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX.
See Linux 2.0.1, route.c at line 1133. If the number of items in the hash table
is still greater than the predetermined threshold RT_CACHE_SIZE_MAX, the
function rt_garbage_collect_1 halves the variable expire and loops

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

56 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

through each of the linked lists in the hash table. See Linux 2.0.1, route.c at
line 1135. In this way, the function rt_garbage_collect_1 can remove
additional records from the linked lists in the hash table. The function
rt_garbage_collect_1 repeats this process until the total number of records
in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the records
removed by the function rt_garbage_collect_1 are data items which after a
limited time or after the occurrence of some event become obsolete, such that
their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when the
record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT is less
than the current time and the record’s reference count is zero. See Linux 2.0.1,
route.c at line 1369. Thus, the maximum number of records that the function
rt_cache_add can remove from a given linked list is limited to those records
whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not limited to
those records whose reference counts are zero. See Linux 2.0.1, route.c at line
1122. Rather, the function rt_garbage_collect_1 can remove records
whose reference counts are zero and records whose reference counts are
greater than zero.

Consequently, the maximum number of records that the function

EXHIBIT B-13

Joint Invalidity Contentions & Production of
Documents

57 Case No. 6:09-CV-549-LED

US2008 1661502.3

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 4,996,663 to Nemes (“the ’663 Patent”)

rt_garbage_collect_1 can remove from a linked list is different than the
maximum number of records that the function rt_cache_add can remove from
a linked list.

EXHIBIT B-14

Joint Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

US2008 1291813.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter “the ’237
patent”)

1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, The ‘237 patent discloses an
information storage and retrieval system.

For example, the ‘237 patent discloses a circular array having linked lists
chained to array entries for storing time storage entries. See the ‘237 patent at
Col. 3:19-4:25 and FIG. 2.

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

The ‘237 patent discloses a linked list to store and provide access to records
stored in a memory of the system, at least some of the records automatically
expiring.
The ‘237 patent also discloses a hashing means to provide access to records
stored in a memory of the system and using an external chaining technique to
store the records with same hash address, at least some of the records
automatically expiring.

For example, the ‘237 patent discloses using linked lists to store and provide
access to records:

“If there are several structures sharing the same time slot (TS), that is, the same
cell of the circular array, such as time storage entries 60, 65 in FIG. 2, then the
time storage entries are joined to one another in a linked list, as in linked list
50, or linked list 55 linking the plurality of TSE's 90, 91, 92 sharing the same
TS of cell 4 in FIG. 4.” See the ‘237 patent, Col. 3:58-3:64, FIG. 2 and FIG. 4.

In addition, the ‘237 patent discloses a hashing means, for example:

“the time slot (TS) associated with the expiration time is computed at step 240,
which corresponds to a particular numbered cell of the circular array, as

EXHIBIT B-14

Joint Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

US2008 1291813.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter “the ’237
patent”)

measured from the reference cell.” See the ‘237 patent at Col. 7:38-7:41.

Furthermore, the ‘237 patent discloses external chaining, for example:

“If there are several structures sharing the same time slot (TS), that is, the same
cell of the circular array, such as time storage entries 60, 65 in FIG. 2, then the
time storage entries are joined to one another in a linked list, as in linked list
50, or linked list 55 linking the plurality of TSE's 90, 91, 92 sharing the same
TS of cell 4 in FIG. 4.” See the ‘237 patent, Col. 3:58-3:64, FIG. 2 and FIG. 4.

Finally, the ‘237 patent discloses automatically expiring, for example:

“If a timer is to be deleted (canceled), such as if the data packet has been
successfully received by a remote node and an acknowledgement signal
associated with this packet is received by a local node, the TSE associated with
the packet (say TSE 60) is looked up along with the cell in the circular array it
is found in (here cell 6) and the TSE is deleted from the linked list it is found
in (such as linked list 50).” See the ‘237 patent at Col. 5:33-5:39.

“Deletion occurs every time a data packet is successfully sent by a local
(sending) node and an acknowledgement is received from a remote (receiving)
node. The timer for that data then is no longer needed and is deleted. By
contrast, popping occurs only every so often when it is desired to see which
timers have expired between the reference time (cell 1) and some other time,
say an elapsed time 10 units from the reference time (indicated as cell 11 in
FIG. 4, marked by reference number 100).” See the ‘237 patent at Col. 5:54-
5:65.

EXHIBIT B-14

Joint Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

US2008 1291813.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter “the ’237
patent”)

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of
records having the same
hash address,

The ‘237 patent discloses a record search means utilizing a search key to
access the linked list. The ‘237 patent also discloses a record search means
utilizing a search key to access a linked list of records having the same hash
address.

For example, the ‘237 patent discloses a computing a slot of the circular array
based on the expiration time of the timer to be stored. As discussed above
linked lists of records are attached to slots in the circular array:

“the time slot (TS) associated with the expiration time is computed at step 240,
which corresponds to a particular numbered cell of the circular array, as
measured from the reference cell.” See the ‘237 patent at Col. 7:38-7:41.

[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the
records from the linked list
when the linked list is
accessed, and

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

The ‘237 patent discloses the record search means including a means for
identifying and removing at least some of the expired ones of the records from
the linked list when the linked list is accessed. The ‘237 patent also discloses
the record search means including means for identifying and removing at least
some expired ones of the records from the linked list of records when the
linked list is accessed.

For example, the ‘237 patent discloses a means for identifying and removing
expired records. Timers expire either when a packet has been received or when
the timer times out:

“If a timer is to be deleted (canceled), such as if the data packet has been
successfully received by a remote node and an acknowledgement signal
associated with this packet is received by a local node, the TSE associated with
the packet (say TSE 60) is looked up along with the cell in the circular array it

EXHIBIT B-14

Joint Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

US2008 1291813.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter “the ’237
patent”)

is found in (here cell 6) and the TSE is deleted from the linked list it is found
in (such as linked list 50).” See the ‘237 patent at Col. 5:33-5:39.

“After traversing and processing an expired time storage entry (popping), the
time storage entry is removed from the linked list of TSEs, and after all such
TSEs are removed from a given non-empty cell, the array entry associated with
the non-empty cell is removed from the doubly linked list, and any memory
associated any data structure is reallocated.” See the ‘237 patent at col. 6:36-
6:41.

The citation above also discloses removing expired timers when accessing the
linked list.

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

The ‘237 patent discloses means, utilizing the record search means, for
accessing the linked list and, at the same time, removing at least some of the
expired ones of the records in the linked list. The ‘237 patent also discloses
utilizing the record search means, for inserting, retrieving, and deleting records
from the system and, at the same time, removing at least some expired ones of
the records in the accessed linked list of records.

For example, the ‘237 patent discloses means for inserting, retrieving and
deleting records:

“FIG. 6 shows a flowchart depicting how a calling function (or more generally,
the protocol program) may call and interact with three functions or subroutines
of the present invention, which would be extern functions in the C language:
the Add function (which adds a time storage entry), the Delete function (which
deletes a time storage entry), and the Pop function (which executes the

EXHIBIT B-14

Joint Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

US2008 1291813.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter “the ’237
patent”)

handler(s) associated with a time storage entry and removes the TSE).” See the
‘237 patent at Col. 7:3-7:10.

In addition, the ‘237 patent discloses using the record search means and at the
same time removing at least some of the expired ones from the linked list of
records:

“The Delete function, an external function, receives passed parameters from
the calling function that identifies which time storage entry (TSE) is to be
deleted, as indicated by step 300. Such passed parameters include, for example,
the data packet ID. The passed parameters are used to identify the particular
TSE referenced by the circular array that needs to be deleted, as indicated by
step 310. The time slot (TS) that the TSE is found in is then computed by the
processor, in step 320. The circular array cell associated with the TS is found
by processor 15, and in step 330 the cell is checked to see if it contains more
than one TSE. If so, the TSE is deleted from the linked list associated with the
cell.” See the ‘237 patent at Col. 7:62-8:7.

As discussed above, entries expire when a packet has been successfully
delivered and are then deleted using the Delete function:

“If a timer is to be deleted (canceled), such as if the data packet has been
successfully received by a remote node and an acknowledgement signal
associated with this packet is received by a local node, the TSE associated with
the packet (say TSE 60) is looked up along with the cell in the circular array it
is found in (here cell 6) and the TSE is deleted from the linked list it is found
in (such as linked list 50).” See the ‘237 patent at Col. 5:33-5:39.

EXHIBIT B-14

Joint Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

US2008 1291813.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter “the ’237
patent”)

2. The information storage
and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

6. The information storage
and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

The ‘237 patent combined with Dirks, Thatte, the ’663 patent and/or the
Opportunistic Garbage Collection Articles discloses an information storage
and retrieval system further including means for dynamically determining
maximum number for the record search means to remove in the accessed
linked list of records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).

EXHIBIT B-14

Joint Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

US2008 1291813.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter “the ’237
patent”)

If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

EXHIBIT B-14

Joint Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

US2008 1291813.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter “the ’237
patent”)

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both the ‘237 patent and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as the ‘237 patent. Moreover, one of ordinary skill in
the art would recognize that it would improve similar systems and methods in
the same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with the ‘237 patent nothing
more than the predictable use of prior art elements according to their
established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with the ‘237 patent and
would have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in the ‘237 patent with the

EXHIBIT B-14

Joint Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

US2008 1291813.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter “the ’237
patent”)

means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records disclosed by Thatte. For
example, Thatte discloses a system and method using hash tables and/or linked
lists and further discloses means for dynamically determining the maximum
number for the record search means to remove in the accessed linked list of
records. The disclosure of these claim elements in Thatte is clearly shown in
the chart of Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining the ‘237 patent with Thatte would be nothing more than
the predictable use of prior art elements according to their established
functions. The resulting combination would include the capability to
determine the maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine the
‘237 patent with Thatte and recognize the benefits of doing so. For example,
the removal of expired records described in the ‘237 patent can be burdensome
on the system, adding to the system’s load and slowing down the system’s
processing. One of ordinary skill in the art would recognize that combining
the ‘237 patent with the teachings of Thatte would solve this problem by
dynamically determining how many records to delete based on, among other
things, the system load. Moreover, the '120 patent discloses that "[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one." '120 at

EXHIBIT B-14

Joint Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

US2008 1291813.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter “the ’237
patent”)

7:10-15. Thus, the '120 patent provides motivations to combine the ‘237
patent with Thatte.

Alternatively, it would also be obvious to combine the ‘237 patentwith the
’663 patent. Disclosure of these claim elements in the ’663 patent is clearly
shown in the chart of the ‘663 patent, which is hereby incorporated by
reference in its entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.

EXHIBIT B-14

Joint Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

US2008 1291813.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter “the ’237
patent”)

Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load

EXHIBIT B-14

Joint Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

US2008 1291813.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter “the ’237
patent”)

to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both the ‘237 patent and the ’663 patent relate to deletion of records from
hash tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in the ‘237 patent. Moreover, one of ordinary skill in
the art would recognize that it would improve similar systems and methods in
the same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of

EXHIBIT B-14

Joint Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

US2008 1291813.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter “the ’237
patent”)

combining the ’663 patent’s deletion decision procedure with the ‘237 patent
would be nothing more than the predictable use of prior art elements according
to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with the ‘237 patent
and would have seen the benefits of doing so. One such benefit, for example,
is that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine the ‘237 patent with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection References disclose in
part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the

EXHIBIT B-14

Joint Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

US2008 1291813.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter “the ’237
patent”)

garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both the ‘237 patent and the Opportunistic Garbage Collection Articles
relate to deletion of aged records, one of ordinary skill in the art would have
understood how to use the Opportunistic Garbage Collection Articles’ dynamic
decision on whether to perform a deletion based on a system load in other hash

EXHIBIT B-14

Joint Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

US2008 1291813.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter “the ’237
patent”)

table implementations such as the ‘237 patent. Moreover, one of ordinary skill
in the art would recognize that it would improve similar systems and methods
in the same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with the ‘237 patent would be nothing more than the predictable use
of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with the ‘237 patent and
would have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in the ‘237 patent to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in the ‘237 patent with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed

EXHIBIT B-14

Joint Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

US2008 1291813.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter “the ’237
patent”)

linked list of records to solve a number of potential problems. For example,
the removal of expired records described in the ‘237 patent can be burdensome
on the system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by the ‘237 patent in combination with Dirks, Thatte,
the ‘663 Patent, or the Opportunistic Garbage Collection References, it is
disclosed by Linux 2.0.1, which describes dynamically determining maximum
number of expired ones of the records to remove when the linked list is
accessed. It would have been obvious to combine Linux 2.0.1 with the ‘237
patent. For example, both Linux 2.0.1 and the ‘237 patent describe
systems and methods for performing data storage and retrieval using known
programming techniques to yield a predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.

EXHIBIT B-14

Joint Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

US2008 1291813.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter “the ’237
patent”)

When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function

EXHIBIT B-14

Joint Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

US2008 1291813.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter “the ’237
patent”)

rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash

EXHIBIT B-14

Joint Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

US2008 1291813.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter “the ’237
patent”)

table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function

EXHIBIT B-14

Joint Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

US2008 1291813.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter “the ’237
patent”)

rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

To the extent the preamble is a limitation, The ‘237 patent discloses a method
for storing and retrieving information records using a linked list to store and
provide access to the records, at least some of the records automatically
expiring. The ‘237 patent also discloses a method for storing and retrieving
information records using a hashing technique to provide access to the records
and using an external chaining technique to store the records with same hash
address, at least some of the records automatically expiring.

For example, the ‘237 patent discloses using linked lists to store and provide
access to records:

“If there are several structures sharing the same time slot (TS), that is, the same
cell of the circular array, such as time storage entries 60, 65 in FIG. 2, then the
time storage entries are joined to one another in a linked list, as in linked list
50, or linked list 55 linking the plurality of TSE's 90, 91, 92 sharing the same
TS of cell 4 in FIG. 4.” See the ‘237 patent, Col. 3:58-3:64, FIG. 2 and FIG. 4.

In addition, the ‘237 patent discloses a hashing technique, for example:

“the time slot (TS) associated with the expiration time is computed at step 240,
which corresponds to a particular numbered cell of the circular array, as
measured from the reference cell.” See the ‘237 patent at Col. 7:38-7:41.

Furthermore, the ‘237 patent discloses external chaining, for example:

EXHIBIT B-14

Joint Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

US2008 1291813.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter “the ’237
patent”)

“If there are several structures sharing the same time slot (TS), that is, the same
cell of the circular array, such as time storage entries 60, 65 in FIG. 2, then the
time storage entries are joined to one another in a linked list, as in linked list
50, or linked list 55 linking the plurality of TSE's 90, 91, 92 sharing the same
TS of cell 4 in FIG. 4.” See the ‘237 patent, Col. 3:58-3:64, FIG. 2 and FIG. 4.

Finally, the ‘237 patent discloses automatically expiring, for example:

“If a timer is to be deleted (canceled), such as if the data packet has been
successfully received by a remote node and an acknowledgement signal
associated with this packet is received by a local node, the TSE associated with
the packet (say TSE 60) is looked up along with the cell in the circular array it
is found in (here cell 6) and the TSE is deleted from the linked list it is found
in (such as linked list 50).” See the ‘237 patent at Col. 5:33-5:39.

“Deletion occurs every time a data packet is successfully sent by a local
(sending) node and an acknowledgement is received from a remote (receiving)
node. The timer for that data then is no longer needed and is deleted. By
contrast, popping occurs only every so often when it is desired to see which
timers have expired between the reference time (cell 1) and some other time,
say an elapsed time 10 units from the reference time (indicated as cell 11 in
FIG. 4, marked by reference number 100).” See the ‘237 patent at Col. 5:54-
5:65.

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

The ‘237 patent discloses accessing a linked list of records. The ‘237 patent
also discloses accessing a linked list of records having same hash address.

EXHIBIT B-14

Joint Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

US2008 1291813.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter “the ’237
patent”)

For example, the ‘237 patent discloses a computing a slot of the circular array
based on the expiration time of the timer to be stored. As discussed above
linked lists of records are attached to slots in the circular array:

“the time slot (TS) associated with the expiration time is computed at step 240,
which corresponds to a particular numbered cell of the circular array, as
measured from the reference cell.” See the ‘237 patent at Col. 7:38-7:41.

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

The ‘237 patent discloses identifying at least some of the automatically expired
ones of the records.

For example, the ‘237 patent discloses a means for identifying and removing
expired records. Timers expire either when a packet has been received or when
the timer times out:

“If a timer is to be deleted (canceled), such as if the data packet has been
successfully received by a remote node and an acknowledgement signal
associated with this packet is received by a local node, the TSE associated with
the packet (say TSE 60) is looked up along with the cell in the circular array it
is found in (here cell 6) and the TSE is deleted from the linked list it is found
in (such as linked list 50).” See the ‘237 patent at Col. 5:33-5:39.

“After traversing and processing an expired time storage entry (popping), the
time storage entry is removed from the linked list of TSEs, and after all such
TSEs are removed from a given non-empty cell, the array entry associated with
the non-empty cell is removed from the doubly linked list, and any memory
associated any data structure is reallocated.” See the ‘237 patent at col. 6:36-
6:41.

EXHIBIT B-14

Joint Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

US2008 1291813.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter “the ’237
patent”)

The citation above also discloses removing expired timers when accessing the
linked list.

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

The ‘237 patent discloses removing at least some of the automatically expired
records from the linked list when the linked list is accessed.

For example, the ‘237 patent discloses a means for identifying and removing
expired records. Timers expire either when a packet has been received or when
the timer times out:

“If a timer is to be deleted (canceled), such as if the data packet has been
successfully received by a remote node and an acknowledgement signal
associated with this packet is received by a local node, the TSE associated with
the packet (say TSE 60) is looked up along with the cell in the circular array it
is found in (here cell 6) and the TSE is deleted from the linked list it is found
in (such as linked list 50).” See the ‘237 patent at Col. 5:33-5:39.

“After traversing and processing an expired time storage entry (popping), the
time storage entry is removed from the linked list of TSEs, and after all such
TSEs are removed from a given non-empty cell, the array entry associated with
the non-empty cell is removed from the doubly linked list, and any memory
associated any data structure is reallocated.” See the ‘237 patent at col. 6:36-
6:41.

The citation above also discloses removing expired timers when accessing the
linked list

 [7d] inserting, retrieving The ‘237 patent discloses inserting, retrieving or deleting one of the records

EXHIBIT B-14

Joint Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

US2008 1291813.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter “the ’237
patent”)

or deleting one of the
records from the system
following the step of
removing.

from the system following the step of removing.

For example, the ‘237 patent discloses removing timers from the linked list
followed by deleting records from the system:

“Turning attention now to FIG. 9, there is shown the Pop function of the
present invention, which receives from a calling function in step 400 the new
time slot (TS.sub.new), which marks the elapsed time for the Pop function as
well as identifies the new reference time, such as represented by cell marker
100 in FIGS. 4 and 5 described above. In step 410 the processor uses the
information in TS.sub.new to compute a new reference cell (such as cell 11 in
FIG. 4) which is greater in time from the old reference cell by an amount equal
to the number of cells between the new minus the old reference cells times the
unit of time represented by each cell (the granularity). The processor, starting
at the old reference cell, TS.sub.0, (such as cell 1 in FIG. 4) traverses the non-
empty cells in the doubly linked list (DLL) between the original reference cell,
TS.sub.0 and the new reference cell, TS.sub.new as indicated by step 420. As
indicated by step 430, the processor finds any TSE's in the non-empty cell and
executes the handlers associated with the TSE. Thereafter, in step 440, the TSE
is freed and any memory deallocated, and for each non-empty cell traversed all
pointers associated with the non-empty cell are deleted, and any ID map is
updated.” See the ‘237 patent at Col. 8:19-8:39, FIG. 9.

EXHIBIT B-14

Joint Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

US2008 1291813.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter “the ’237
patent”)

4. The method according to
claim 3 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

The ‘237 patent combined with Dirks, Thatte, the ’663 patent, and/or the
Opportunistic Garbage Collection Articles discloses dynamically determining
maximum number of expired ones of the records to remove when the linked
list is accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in the
chart of Dirks, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have

EXHIBIT B-14

Joint Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

US2008 1291813.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter “the ’237
patent”)

been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-

EXHIBIT B-14

Joint Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

US2008 1291813.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter “the ’237
patent”)

40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both the ‘237 patent and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as that described the ‘237 patent. Moreover, one of
ordinary skill in the art would recognize that it would improve similar systems
and methods in the same way. As the ’120 patent states “[a] person skilled in
the art will appreciate that the technique of removing all expired records while
searching the linked list can be expanded to include techniques whereby not
necessarily all expired records are removed, and that the decision regarding if
and how many records to delete can be a dynamic one.” The ’120 patent at
7:10-15. Additionally, one of ordinary skill in the art would recognize that the
result of combining Dirks’ deletion decision procedure with the ‘237 patent
would be nothing more than the predictable use of prior art elements according
to their established functions.

EXHIBIT B-14

Joint Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

US2008 1291813.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter “the ’237
patent”)

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with the ‘237 patent and
would have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in the ‘237 patent with the
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records disclosed by Thatte. For
example, Thatte discloses a system and method using hash tables and/or linked
lists and further discloses means for dynamically determining the maximum
number for the record search means to remove in the accessed linked list of
records. The disclosure of these claim elements in Thatte is clearly shown in
the chart of Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining the ‘237 patent with Thatte would be nothing more than
the predictable use of prior art elements according to their established
functions. The resulting combination would include the capability to
determine the maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine the
‘237 patent with Thatte and recognized the benefits of doing so. For example,
the removal of expired records described in the ‘237 patentcan be burdensome

EXHIBIT B-14

Joint Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

US2008 1291813.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter “the ’237
patent”)

on the system, adding to the system’s load and slowing down the system’s
processing. One of ordinary skill in the art would recognize that combining
the ‘237 patent with the teachings of Thatte would solve this problem by
dynamically determining how many records to delete based on, among other
things, the system load. Moreover, the '120 patent discloses that "[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one." '120 at
7:10-15. Thus, the '120 patent provides motivations to combine the ‘237
patent with Thatte.

Alternatively, it would also be obvious to combine the ‘237 patent with the
’663 patent. Disclosure of these claim elements in the ’663 patent is clearly
shown in the chart of the ‘663 patent, which is hereby incorporated by
reference in its entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply

EXHIBIT B-14

Joint Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

US2008 1291813.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter “the ’237
patent”)

marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT B-14

Joint Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

US2008 1291813.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter “the ’237
patent”)

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does

EXHIBIT B-14

Joint Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

US2008 1291813.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter “the ’237
patent”)

not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both the ‘237 patent and the ’663 patent relate to deletion of records from
hash tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as the ‘237 patent. Moreover, one of ordinary skill in the art would
recognize that it would improve similar systems and methods in the same way.
As the ’120 patent states “[a] person skilled in the art will appreciate that the
technique of removing all expired records while searching the linked list can
be expanded to include techniques whereby not necessarily all expired records
are removed, and that the decision regarding if and how many records to delete
can be a dynamic one.” The ’120 patent at 7:10-15. Additionally, one of
ordinary skill in the art would recognize that the result of combining the ’663
patent’s deletion decision procedure with the ‘237 patent would be nothing
more than the predictable use of prior art elements according to their
established functions.

EXHIBIT B-14

Joint Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

US2008 1291813.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter “the ’237
patent”)

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with the ‘237 patent
and would have seen the benefits of doing so. One such benefit, for example,
is that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine the ‘237 patent with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection References disclose in
part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide

EXHIBIT B-14

Joint Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

US2008 1291813.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter “the ’237
patent”)

whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both the ‘237 patent and the Opportunistic Garbage Collection Articles
relate to deletion of aged records, one of ordinary skill in the art would have
understood how to use the Opportunistic Garbage Collection Articles’ dynamic
decision on whether to perform a deletion based on a system load in other hash
table implementations such as the ‘237 patent. Moreover, one of ordinary skill
in the art would recognize that it would improve similar systems and methods
in the same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching

EXHIBIT B-14

Joint Invalidity Contentions & Production of
Documents

35 Case No. 6:09-CV-549-LED

US2008 1291813.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter “the ’237
patent”)

the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with the ‘237 patent would be nothing more than the predictable use
of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with the ‘237 patent and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would only perform deletions when the system was not already
too overloaded, thus preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in the ‘237 patent to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in the ‘237 patent with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in the ‘237 patent can be burdensome
on the system, adding to the system’s load and slowing down the system’s

EXHIBIT B-14

Joint Invalidity Contentions & Production of
Documents

36 Case No. 6:09-CV-549-LED

US2008 1291813.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter “the ’237
patent”)

processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by the ‘237 patent in combination with Dirks, Thatte,
the ‘663 Patent, or the Opportunistic Garbage Collection References, it is
disclosed by Linux 2.0.1, which describes dynamically determining maximum
number of expired ones of the records to remove when the linked list is
accessed. It would have been obvious to combine Linux 2.0.1 with the ‘237
patent. For example, both Linux 2.0.1 and the ‘237 patent describe
systems and methods for performing data storage and retrieval using known
programming techniques to yield a predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux

EXHIBIT B-14

Joint Invalidity Contentions & Production of
Documents

37 Case No. 6:09-CV-549-LED

US2008 1291813.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter “the ’237
patent”)

2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect

EXHIBIT B-14

Joint Invalidity Contentions & Production of
Documents

38 Case No. 6:09-CV-549-LED

US2008 1291813.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter “the ’237
patent”)

invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked

EXHIBIT B-14

Joint Invalidity Contentions & Production of
Documents

39 Case No. 6:09-CV-549-LED

US2008 1291813.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter “the ’237
patent”)

lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can

EXHIBIT B-14

Joint Invalidity Contentions & Production of
Documents

40 Case No. 6:09-CV-549-LED

US2008 1291813.1

Asserted Claims From
U.S. Pat. No. 5,893,120

U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter “the ’237
patent”)

remove from a linked list.

EXHIBIT C-1

Joint Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

US2008 1290272.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of
Hashing with Lazy Deletion, 1 ALGORITHMICA 17 (November, 1986) (“Van

Wyk”) alone and in combination
1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, Van Wyk discloses an information
storage and retrieval system.

For example, Van Wyk discloses “a version of the dynamic dictionary problem
in which stored items have expiration times and can be removed from the
dictionary once they have expired.” Christopher J. Van Wyk and Jeffrey Scott
Vitter, The Complexity of Hashing with Lazy Deletion, 1 Algorithmica 17, 17
(November, 1986).

Moreover, Van Wyk discloses “[h]ashing with lazy deletion is a simple
algorithm for dynamic dictionaries whose occupants expire spontaneously. It
is also compatible with the need to accommodate explicit user requests to
delete elements. Even if the expiration times of active occupants change, one
can use hashing with lazy deletion: if expiration times only increase, they can
be changed by moving items further down hash chains; if they may also
decrease, they may need to move back in their hash chain or even be deleted
immediately. (An alternative would be to forget about keeping the hash chains
in expiration-time order; this would make updating expiration times simpler,
and would not change the asymptotic time complexity.)” Id. at 28-29.

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records

Van Wyk discloses a linked list to store and provide access to records stored in
a memory of the system, at least some of the records automatically expiring.
Van Wyk also discloses a hashing means to provide access to records stored in
a memory of the system and using an external chaining technique to store the
records with same hash address, at least some of the records automatically
expiring.

For example, Van Wyk discloses “a version of the dynamic dictionary problem

EXHIBIT C-1

Joint Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

US2008 1290272.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of
Hashing with Lazy Deletion, 1 ALGORITHMICA 17 (November, 1986) (“Van

Wyk”) alone and in combination
automatically expiring, in which stored items have expiration times and can be removed from the

dictionary once they have expired.” Id. at 17.

Moreover, Van Wyk discloses that “[a] sequence of items arrives to be stored
in a dynamic dictionary. Besides the key used when searching for items, each
item includes two times, a starting time and an expiration time. Items arrive in
order of their starting times. Each time an item arrives, any items in the
dictionary whose expiration times precede the incoming item’s starting time
can be deleted from the dictionary: they no longer represent valid search
results.” Id.

Moreover, Van Wyk discloses that “balanced trees only offer logarithmic time
complexity; besides, they are complicated to implement and require several
pointers per item. So we might decide to replace the search tree [] by a
separate-chaining hash table.” Id. at 18.

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of
records having the same
hash address,

Van Wyk discloses a record search means utilizing a search key to access the
linked list. Van Wyk also discloses a record search means utilizing a search
key to access a linked list of records having the same hash address.

For example, Van Wyk discloses “a version of the dynamic dictionary problem
in which stored items have expiration times and can be removed from the
dictionary once they have expired.” Id. at 17.

Moreover, Van Wyk discloses that “[a] sequence of items arrives to be stored
in a dynamic dictionary. Besides the key used when searching for items, each
item includes two times, a starting time and an expiration time. Items arrive in
order of their starting times. Each time an item arrives, any items in the

EXHIBIT C-1

Joint Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

US2008 1290272.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of
Hashing with Lazy Deletion, 1 ALGORITHMICA 17 (November, 1986) (“Van

Wyk”) alone and in combination
dictionary whose expiration times precede the incoming item’s starting time
can be deleted from the dictionary: they no longer represent valid search
results.” Id.

Moreover, Van Wyk discloses that “balanced trees only offer logarithmic time
complexity; besides, they are complicated to implement and require several
pointers per item. So we might decide to replace the search tree . . . by a
separate-chaining hash table.” Id. at 18.

[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the
records from the linked list
when the linked list is
accessed, and

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

Van Wyk discloses the record search means including a means for identifying
and removing at least some of the expired ones of the records from the linked
list when the linked list is accessed. Van Wyk also discloses the record search
means including means for identifying and removing at least some expired
ones of the records from the linked list of records when the linked list is
accessed.

For example, Van Wyk discloses “a version of the dynamic dictionary problem
in which stored items have expiration times and can be removed from the
dictionary once they have expired.” Id. at 17.

Moreover, Van Wyk discloses that “[a] sequence of items arrives to be stored
in a dynamic dictionary. Besides the key used when searching for items, each
item includes two times, a starting time and an expiration time. Items arrive in
order of their starting times. Each time an item arrives, any items in the
dictionary whose expiration times precede the incoming item’s starting time
can be deleted from the dictionary: they no longer represent valid search
results.” Id.

EXHIBIT C-1

Joint Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

US2008 1290272.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of
Hashing with Lazy Deletion, 1 ALGORITHMICA 17 (November, 1986) (“Van

Wyk”) alone and in combination
Moreover, Van Wyk discloses that “balanced trees only offer logarithmic time
complexity; besides, they are complicated to implement and require several
pointers per item. So we might decide to replace the search tree . . . by a
separate-chaining hash table.” Id. at 18.

Moreover, Van Wyk discloses “a strategy of lazy deletion. That is, we keep
the chains in each hash bucket sorted by expiration time; when inserting an
element, we delete any elements in its hash bucket whose expiration times
precede its starting time.” Id.

“[U]nlike other applications of hashing in which one seeks to minimize the
number of collisions not caused by successful searches, in hashing with lazy
deletion we hope that enough collisions happen so the table is kept mostly free
of expired items.” Id.

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

Van Wyk discloses means, utilizing the record search means, for accessing the
linked list and, at the same time, removing at least some of the expired ones of
the records in the linked list. Van Wyk also discloses utilizing the record
search means, for inserting, retrieving, and deleting records from the system
and, at the same time, removing at least some expired ones of the records in the
accessed linked list of records.

For example, Van Wyk discloses “a version of the dynamic dictionary problem
in which stored items have expiration times and can be removed from the
dictionary once they have expired.” Id. at 17.

Moreover, Van Wyk discloses that “[a] sequence of items arrives to be stored
in a dynamic dictionary. Besides the key used when searching for items, each

EXHIBIT C-1

Joint Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

US2008 1290272.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of
Hashing with Lazy Deletion, 1 ALGORITHMICA 17 (November, 1986) (“Van

Wyk”) alone and in combination
item includes two times, a starting time and an expiration time. Items arrive in
order of their starting times. Each time an item arrives, any items in the
dictionary whose expiration times precede the incoming item’s starting time
can be deleted from the dictionary: they no longer represent valid search
results.” Id

Moreover, Van Wyk discloses that “balanced trees only offer logarithmic time
complexity; besides, they are complicated to implement and require several
pointers per item. So we might decide to replace the search tree . . . by a
separate-chaining hash table.” Id. at 18.

Moreover, Van Wyk discloses “a strategy of lazy deletion. That is, we keep
the chains in each hash bucket sorted by expiration time; when inserting an
element, we delete any elements in its hash bucket whose expiration times
precede its starting time.” Id.

“[U]nlike other applications of hashing in which one seeks to minimize the
number of collisions not caused by successful searches, in hashing with lazy
deletion we hope that enough collisions happen so the table is kept mostly free
of expired items.” Id.

To the extent Bedrock argues that Van Wyk does not anticipate this element,
based on general knowledge and/or in combination with Knuth and/or Kruse,
one of ordinary skill in the art would recognize that the Van Wyk applies to
insertions, retrievals, and/or deletions of automatically expired records because
these are all basic functions that can be performed in the same manner on a
hash table or a liked list. See, e.g., “The Art of Computer Programming”,
Sorting and Searching, D.E. Knuth, Addison-Wesley Series in Computer

EXHIBIT C-1

Joint Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

US2008 1290272.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of
Hashing with Lazy Deletion, 1 ALGORITHMICA 17 (November, 1986) (“Van

Wyk”) alone and in combination
Science and Information Processing, pp. 506-549; “Data Structures and
Program Design”, R.L. Kruse, Prentice-Hall, Inc. 1984, pp. 104-148.”

2. The information storage
and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

6. The information storage
and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

Van Wyk combined with Morrison, Mathieu, Kenyon-Mathieu or Aldous
discloses the information storage and retrieval system further including means
for dynamically determining maximum number for the record search means to
remove in the accessed linked list of records.

Morrison, Mathieu, Kenyon-Mathieu, and Aldous each teach methods for
calculating a bound on the space complexity of the hashing with lazy deletion
algorithm, i.e., the number of expired elements that would remain in the linked
lists forming the external chains of the hash table. See, e.g., Morrison at 1156-
1161, Mathieu at 12-22, Kenyon-Mathieu at 475-486, Aldous 17-21.

It would have been obvious to one of ordinary skill in the art that these
methods of calculating bounds on the number of expired elements stored in the
linked list could also be used to dynamically determine a maximum number for
the record search means disclosed in Van Wyk to remove. One of ordinary
skill would have been motivated to combine the teachings of Morrison,
Mathieu, Kenyon-Mathieu, and Aldous with Van Wyk because Van Wyk
raised the calculation of such bounds as an open question for further research.
See Van Wyk at 29. Moreover, Morrison, Mathieu, and Kenyon-Mathieu all
refer to and build off of the teachings of Van Wyk. See Kenyon-Mathieu at
473, 475, Mathieu at 1-4, Morrison at 1155,1158, Aldous at 3.

Van Wyk combined with Dirks, Thatte, the ’663 patent and/or the
Opportunistic Garbage Collection Articles discloses an information storage
and retrieval system further including means for dynamically determining

EXHIBIT C-1

Joint Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

US2008 1290272.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of
Hashing with Lazy Deletion, 1 ALGORITHMICA 17 (November, 1986) (“Van

Wyk”) alone and in combination
maximum number for the record search means to remove in the accessed
linked list of records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x

EXHIBIT C-1

Joint Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

US2008 1290272.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of
Hashing with Lazy Deletion, 1 ALGORITHMICA 17 (November, 1986) (“Van

Wyk”) alone and in combination
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

EXHIBIT C-1

Joint Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

US2008 1290272.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of
Hashing with Lazy Deletion, 1 ALGORITHMICA 17 (November, 1986) (“Van

Wyk”) alone and in combination

As both Van Wyk and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as Van Wyk. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Van Wyk’s technique of
“lazy deletion” would be nothing more than the predictable use of prior art
elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Van Wyk’s system and
method of “lazy deletion” and would have seen the benefits of doing so. One
possible benefit, for example, is that the system and method of lazy deletion
could perform a specified number of deletions on any given sweep, thus saving
the system from performing sometimes time-consuming sweeps.

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Van Wyk with the means
for dynamically determining maximum number for the record search means to

EXHIBIT C-1

Joint Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

US2008 1290272.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of
Hashing with Lazy Deletion, 1 ALGORITHMICA 17 (November, 1986) (“Van

Wyk”) alone and in combination
remove in the accessed linked list of records disclosed by Thatte. For example,
Thatte, discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in Exhibit B-1,
which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Van Wyk with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine Van
Wyk with Thatte and recognized the benefits of doing so. For example, the
removal of expired records described in Van Wyk can be burdensome on the
system, adding to the system’s load and slowing down the system’s
processing. One of ordinary skill in the art would recognize that combining
Van Wyk with the teachings of Thatte would solve this problem by
dynamically determining how many records to delete based on, among other
things, the system load. Moreover, the '120 patent discloses that "[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one." '120 at
7:10-15. Thus, the '120 patent provides motivations to combine Van Wyk

EXHIBIT C-1

Joint Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

US2008 1290272.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of
Hashing with Lazy Deletion, 1 ALGORITHMICA 17 (November, 1986) (“Van

Wyk”) alone and in combination
with Thatte.

Alternatively, it would also be obvious to combine Van Wyk with the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in Exhibit B-13, which is hereby incorporated by reference in its entirety. For
example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.

EXHIBIT C-1

Joint Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

US2008 1290272.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of
Hashing with Lazy Deletion, 1 ALGORITHMICA 17 (November, 1986) (“Van

Wyk”) alone and in combination
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load

EXHIBIT C-1

Joint Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

US2008 1290272.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of
Hashing with Lazy Deletion, 1 ALGORITHMICA 17 (November, 1986) (“Van

Wyk”) alone and in combination
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Van Wyk and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as Van Wyk. Moreover, one of ordinary skill in the art would recognize
that it would improve similar systems and methods in the same way. As the
’120 patent states “[a] person skilled in the art will appreciate that the
technique of removing all expired records while searching the linked list can
be expanded to include techniques whereby not necessarily all expired records
are removed, and that the decision regarding if and how many records to delete
can be a dynamic one.” The ’120 patent at 7:10-15. Additionally, one of
ordinary skill in the art would recognize that the result of combining the ’663

EXHIBIT C-1

Joint Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

US2008 1290272.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of
Hashing with Lazy Deletion, 1 ALGORITHMICA 17 (November, 1986) (“Van

Wyk”) alone and in combination
patent’s deletion decision procedure with Van Wyk’s technique of “lazy
deletion” would be nothing more than the predictable use of prior art elements
according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Van Wyk’s
system and method of “lazy deletion” and would have seen the benefits of
doing so. One such benefit, for example, is that the system and method of lazy
deletion would avoid performing deletions when the system load exceeded a
threshold.

Alternatively, it would also be obvious to combine Van Wyk with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the

EXHIBIT C-1

Joint Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

US2008 1290272.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of
Hashing with Lazy Deletion, 1 ALGORITHMICA 17 (November, 1986) (“Van

Wyk”) alone and in combination
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Van Wyk and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table

EXHIBIT C-1

Joint Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

US2008 1290272.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of
Hashing with Lazy Deletion, 1 ALGORITHMICA 17 (November, 1986) (“Van

Wyk”) alone and in combination
implementations such as Van Wyk. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Van Wyk’s technique of “lazy deletion” would be nothing
more than the predictable use of prior art elements according to their
established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Van Wyk’s system
and method of “lazy deletion” and would have seen the benefits of doing so.
One such benefit, for example, is that the system and method of lazy deletion
would only perform deletions when the system was not already too overloaded,
thus preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Van Wyk to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of

EXHIBIT C-1

Joint Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

US2008 1290272.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of
Hashing with Lazy Deletion, 1 ALGORITHMICA 17 (November, 1986) (“Van

Wyk”) alone and in combination
ordinary skill in the art would have been motivated to combine the system
disclosed in Van Wyk with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in Van Wyk can be burdensome on
the system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete. Indeed,
part of the motivation for the system disclosed in Van Wyk is avoiding these
problems. One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records

To the extent the preamble is a limitation, Van Wyk discloses a method for
storing and retrieving information records using a linked list to store and
provide access to the records, at least some of the records automatically
expiring. Van Wyk also discloses a method for storing and retrieving
information records using a hashing technique to provide access to the records
and using an external chaining technique to store the records with same hash
address, at least some of the records automatically expiring.

For example, Van Wyk discloses “a version of the dynamic dictionary problem

EXHIBIT C-1

Joint Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

US2008 1290272.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of
Hashing with Lazy Deletion, 1 ALGORITHMICA 17 (November, 1986) (“Van

Wyk”) alone and in combination
automatically expiring, the
method comprising the
steps of:

in which stored items have expiration times and can be removed from the
dictionary once they have expired.” Van Wyk at 17.

Moreover, Van Wyk discloses “[h]ashing with lazy deletion is a simple
algorithm for dynamic dictionaries whose occupants expire spontaneously. It
is also compatible with the need to accommodate explicit user requests to
delete elements. Even if the expiration times of active occupants change, one
can use hashing with lazy deletion: if expiration times only increase, they can
be changed by moving items further down hash chains; if they may also
decrease, they may need to move back in their hash chain or even be deleted
immediately. (An alternative would be to forget about keeping the hash chains
in expiration-time order; this would make updating expiration times simpler,
and would not change the asymptotic time complexity.)” Id. at 29.

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

Van Wyk discloses accessing a linked list of records. Van Wyk also discloses
accessing a linked list of records having same hash address.

For example, Van Wyk discloses “a version of the dynamic dictionary problem
in which stored items have expiration times and can be removed from the
dictionary once they have expired.” Id. at 17.

Moreover, Van Wyk discloses that “[a] sequence of items arrives to be stored
in a dynamic dictionary. Besides the key used when searching for items, each
item includes two times, a starting time and an expiration time. Items arrive in
order of their starting times. Each time an item arrives, any items in the
dictionary whose expiration times precede the incoming item’s starting time
can be deleted from the dictionary: they no longer represent valid search
results.” Id.

EXHIBIT C-1

Joint Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

US2008 1290272.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of
Hashing with Lazy Deletion, 1 ALGORITHMICA 17 (November, 1986) (“Van

Wyk”) alone and in combination

Moreover, Van Wyk discloses that “balanced trees only offer logarithmic time
complexity; besides, they are complicated to implement and require several
pointers per item. So we might decide to replace the search tree . . . by a
separate-chaining hash table.” Id. at 18.

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

Van Wyk discloses identifying at least some of the automatically expired ones
of the records.

For example, Van Wyk discloses “a version of the dynamic dictionary problem
in which stored items have expiration times and can be removed from the
dictionary once they have expired.” Id. at 17.

Moreover, Van Wyk discloses that “[a] sequence of items arrives to be stored
in a dynamic dictionary. Besides the key used when searching for items, each
item includes two times, a starting time and an expiration time. Items arrive in
order of their starting times. Each time an item arrives, any items in the
dictionary whose expiration times precede the incoming item’s starting time
can be deleted from the dictionary: they no longer represent valid search
results.” Id.

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

Van Wyk discloses removing at least some of the automatically expired
records from the linked list when the linked list is accessed.

For example, Van Wyk discloses “a version of the dynamic dictionary problem
in which stored items have expiration times and can be removed from the
dictionary once they have expired.” Id. at 17.

EXHIBIT C-1

Joint Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

US2008 1290272.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of
Hashing with Lazy Deletion, 1 ALGORITHMICA 17 (November, 1986) (“Van

Wyk”) alone and in combination
Moreover, Van Wyk discloses that “[a] sequence of items arrives to be stored
in a dynamic dictionary. Besides the key used when searching for items, each
item includes two times, a starting time and an expiration time. Items arrive in
order of their starting times. Each time an item arrives, any items in the
dictionary whose expiration times precede the incoming item’s starting time
can be deleted from the dictionary: they no longer represent valid search
results.” Id.

Moreover, Van Wyk discloses that “balanced trees only offer logarithmic time
complexity; besides, they are complicated to implement and require several
pointers per item. So we might decide to replace the search tree …by a
separate-chaining hash table.” Id. at 18.

Moreover, Van Wyk discloses “a strategy of lazy deletion. That is, we keep
the chains in each hash bucket sorted by expiration time; when inserting an
element, we delete any elements in its hash bucket whose expiration times
precede its starting time.” Id.

“[U]nlike other applications of hashing in which one seeks to minimize the
number of collisions not caused by successful searches, in hashing with lazy
deletion we hope that enough collisions happen so the table is kept mostly free
of expired items.” Id.

 [7d] inserting, retrieving or
deleting one of the records
from the system following
the step of removing.

Van Wyk discloses inserting, retrieving or deleting one of the records from the
system following the step of removing.

For example, Van Wyk discloses “a version of the dynamic dictionary problem
in which stored items have expiration times and can be removed from the

EXHIBIT C-1

Joint Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

US2008 1290272.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of
Hashing with Lazy Deletion, 1 ALGORITHMICA 17 (November, 1986) (“Van

Wyk”) alone and in combination
dictionary once they have expired.” Id. at 17.

Moreover, Van Wyk discloses that “[a] sequence of items arrives to be stored
in a dynamic dictionary. Besides the key used when searching for items, each
item includes two times, a starting time and an expiration time. Items arrive in
order of their starting times. Each time an item arrives, any items in the
dictionary whose expiration times precede the incoming item’s starting time
can be deleted from the dictionary: they no longer represent valid search
results.” Id.

Moreover, Van Wyk discloses that “balanced trees only offer logarithmic time
complexity; besides, they are complicated to implement and require several
pointers per item. So we might decide to replace the search tree . . . by a
separate-chaining hash table.” Id. at 18.

Moreover, Van Wyk discloses “a strategy of lazy deletion. That is, we keep
the chains in each hash bucket sorted by expiration time; when inserting an
element, we delete any elements in its hash bucket whose expiration times
precede its starting time.” Id.

“[U]nlike other applications of hashing in which one seeks to minimize the
number of collisions not caused by successful searches, in hashing with lazy
deletion we hope that enough collisions happen so the table is kept mostly free
of expired items.” Id.

Moreover, Van Wyk and Vitter explain that “[t]he insertion of element xi
proceeds as follows:

EXHIBIT C-1

Joint Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

US2008 1290272.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of
Hashing with Lazy Deletion, 1 ALGORITHMICA 17 (November, 1986) (“Van

Wyk”) alone and in combination
1) Compute h = n(ki)
2) Remove from the hash chain in bucket h any items xj with tj < sj [i.e. remove
all expired elements]
3) Add xi so the chain in bucket h remains sorted by termination time.” Id. at
19.

This method clearly contemplates the insertion occurring after the removal of
expired elements.

4. The method according to
claim 3 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

Van Wyk combined with Morrison, Mathieu, Kenyon-Mathieu or Aldous
discloses dynamically determining maximum number of expired ones of the
records to remove when the linked list is accessed.

Morrison, Mathieu, Kenyon-Mathieu, and Aldous each teach methods for
calculating a bound on the space complexity of the hashing with lazy deletion
algorithm, i.e., the number of expired elements that would remain in the linked
lists forming the external chains of the hash table. See, e.g., Morrison at 1156-
1161, Mathieu at 12-22, Kenyon-Mathieu at 475-486, Aldous 17-21.

It would have been obvious to one of ordinary skill in the art that these
methods of calculating bounds on the number of expired elements stored in the
linked list could also be used to dynamically determine a maximum number for
the record search means disclosed in Van Wyk to remove. One of ordinary
skill would have been motivated to combine the teachings of Morrison,
Mathieu, Kenyon-Mathieu, and Aldous with Van Wyk because Van Wyk
raised the calculation of such bounds as an open question for further research.
See Van Wyk at 29. Moreover, Morrison, Mathieu, and Kenyon-Mathieu all
refer to and build off of the teachings of Van Wyk. See Kenyon-Mathieu at

EXHIBIT C-1

Joint Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

US2008 1290272.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of
Hashing with Lazy Deletion, 1 ALGORITHMICA 17 (November, 1986) (“Van

Wyk”) alone and in combination
473, 475, Mathieu at 1-4, Morrison at 1155,1158, Aldous at 3.

Van Wyk combined with Dirks, Thatte, the ’663 patent, and/or the
Opportunistic Garbage Collection Articles discloses dynamically determining
maximum number of expired ones of the records to remove when the linked
list is accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG

EXHIBIT C-1

Joint Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

US2008 1290272.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of
Hashing with Lazy Deletion, 1 ALGORITHMICA 17 (November, 1986) (“Van

Wyk”) alone and in combination
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the

EXHIBIT C-1

Joint Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

US2008 1290272.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of
Hashing with Lazy Deletion, 1 ALGORITHMICA 17 (November, 1986) (“Van

Wyk”) alone and in combination
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Van Wyk and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as Van Wyk. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Van Wyk’s technique of
“lazy deletion” would be nothing more than the predictable use of prior art
elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Van Wyk’s system and
method of “lazy deletion” and would have seen the benefits of doing so. One
possible benefit, for example, is that the system and method of lazy deletion
could perform a specified number of deletions on any given sweep, thus saving
the system from performing sometimes time-consuming sweeps.

EXHIBIT C-1

Joint Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

US2008 1290272.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of
Hashing with Lazy Deletion, 1 ALGORITHMICA 17 (November, 1986) (“Van

Wyk”) alone and in combination

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Van Wyk with the means
for dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. For example,
Thatte discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in Exhibit B-1,
which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Van Wyk with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine Van
Wyk with Thatte and recognized the benefits of doing so. For example, the
removal of expired records described in Van Wyk can be burdensome on the
system, adding to the system’s load and slowing down the system’s
processing. One of ordinary skill in the art would recognize that combining
Van Wyk with the teachings of Thatte would solve this problem by
dynamically determining how many records to delete based on, among other
things, the system load. Moreover, the '120 patent discloses that "[a] person
skilled in the art will appreciate that the technique of removing all expired

EXHIBIT C-1

Joint Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

US2008 1290272.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of
Hashing with Lazy Deletion, 1 ALGORITHMICA 17 (November, 1986) (“Van

Wyk”) alone and in combination
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one." '120 at
7:10-15. Thus, the '120 patent provides motivations to combine Van Wyk
with Thatte.

Alternatively, it would also be obvious to combine Van Wyk with the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in Exhibit B-13, which is hereby incorporated by reference in its entirety. For
example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of

EXHIBIT C-1

Joint Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

US2008 1290272.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of
Hashing with Lazy Deletion, 1 ALGORITHMICA 17 (November, 1986) (“Van

Wyk”) alone and in combination
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT C-1

Joint Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

US2008 1290272.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of
Hashing with Lazy Deletion, 1 ALGORITHMICA 17 (November, 1986) (“Van

Wyk”) alone and in combination
Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Van Wyk and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as Van Wyk. Moreover, one of ordinary skill in the art would recognize
that it would improve similar systems and methods in the same way. As the
’120 patent states “[a] person skilled in the art will appreciate that the
technique of removing all expired records while searching the linked list can
be expanded to include techniques whereby not necessarily all expired records

EXHIBIT C-1

Joint Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

US2008 1290272.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of
Hashing with Lazy Deletion, 1 ALGORITHMICA 17 (November, 1986) (“Van

Wyk”) alone and in combination
are removed, and that the decision regarding if and how many records to delete
can be a dynamic one.” The ’120 patent at 7:10-15. Additionally, one of
ordinary skill in the art would recognize that the result of combining the ’663
patent’s deletion decision procedure with Van Wyk’s technique of “lazy
deletion” would be nothing more than the predictable use of prior art elements
according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Van Wyk’s
system and method of “lazy deletion” and would have seen the benefits of
doing so. One such benefit, for example, is that the system and method of lazy
deletion would avoid performing deletions when the system load exceeded a
threshold.

Alternatively, it would also be obvious to combine Van Wyk with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is

EXHIBIT C-1

Joint Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

US2008 1290272.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of
Hashing with Lazy Deletion, 1 ALGORITHMICA 17 (November, 1986) (“Van

Wyk”) alone and in combination
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Van Wyk and the Opportunistic Garbage Collection Articles relate to

EXHIBIT C-1

Joint Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

US2008 1290272.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of
Hashing with Lazy Deletion, 1 ALGORITHMICA 17 (November, 1986) (“Van

Wyk”) alone and in combination
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Van Wyk. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Van Wyk’s technique of “lazy deletion” would be nothing
more than the predictable use of prior art elements according to their
established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Van Wyk’s system
and method of “lazy deletion” and would have seen the benefits of doing so.
One such benefit, for example, is that the system and method of lazy deletion
would only perform deletions when the system was not already too overloaded,
thus preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Van Wyk to dynamically determine the
maximum number of expired records to remove in the accessed linked list of

EXHIBIT C-1

Joint Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

US2008 1290272.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of
Hashing with Lazy Deletion, 1 ALGORITHMICA 17 (November, 1986) (“Van

Wyk”) alone and in combination
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Van Wyk with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in Van Wyk can be burdensome on
the system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete. Indeed,
part of the motivation for the system disclosed in Van Wyk is avoiding these
problems. One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

EXHIBIT C-2

Joint Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,

1155-1164 (December 1987) (“Morrison”) alone and in combination
1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, Morrison discloses an information
storage and retrieval system.

For example, Morrison discloses “a simple method for maintaining a dynamic
dictionary: items are inserted and sought as usual in a separate-chaining hash
table; however, items that no longer need to be in the data structure remain
until a later insertion operation stumbles on them and removes them from the
table.” Morrison, et al., A Queuing Analysis of Hashing with Lazy Deletion,
16:6 SIAM J. Comput., 1155 (December 6, 1987).

On information and belief, the techniques disclosed in Morrison were
implemented and distributed in a Unix utility called IDEAL, prior to the filing
date of the ’120 Patent. On information and belief, the source code for IDEAL
discloses an information storage and retrieval system. Defendants reserve the
right to supplement these contentions once a complete version of the source
code for IDEAL is produced.

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

Morrison discloses a linked list to store and provide access to records stored in
a memory of the system, at least some of the records automatically expiring.
Morrison also discloses a hashing means to provide access to records stored in
a memory of the system and using an external chaining technique to store the
records with same hash address, at least some of the records automatically
expiring.

For example, Morrison discloses “a simple method for maintaining a dynamic
dictionary: items are inserted and sought as usual in a separate-chaining hash
table; however, items that no longer need to be in the data structure remain
until a later insertion operation stumbles on them and removes them from the

EXHIBIT C-2

Joint Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,

1155-1164 (December 1987) (“Morrison”) alone and in combination
table.” Id.

Moreover, Morrison discloses “a sequence of items is given; each item
includes a search key, a starting time, and an expiration time. The items arrive
in the order of their starting times, and each item must be kept in a dynamic
dictionary (available for searching) until the arrival of an item whose starting
time is later than the item’s expiration time.” Id.

“Hashing with lazy deletion means keeping the items hashed by search key in a
table of linked lists (separate chains); each time an item is added to a list, any
items on that list that the new item shows to be expired are deleted from that
list. This deletion procedure is ‘lazy’ because there is no separate operation
associated with clearing expired items out of the table: expired items are only
deleted when they are encountered during an insertion operation” Id.

Moreover, it is inherent to the Morrison disclosure that the hash table described
herein is a separate-chaining hash table to resolve unavoidable key collisions,
where each slot of the bucket array is a pointer to a linked list that contains the
key-value pairs that hash to the same location. Other data structures, such as
balanced trees, only offer logarithmic time complexity and can be complicated
to implement and require several pointers per item. With a suitable number of
buckets, the separate-chaining hash table solution offers constant expected
search times and makes deletion easy.

To the extent is it not inherent, it would be obvious to combine Morrison with
the prior art disclosed in, The Complexity of Hashing with Lazy Deletion,
Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of Hashing
with Lazy Deletion, 1 Algorithmica 17, 18 (November, 1986) (“Van Wyk”),

EXHIBIT C-2

Joint Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,

1155-1164 (December 1987) (“Morrison”) alone and in combination
because Morrison describes and incorporates Van Wyk by reference. Morrison
at 1155. Van Wyk discloses a method of hashing with lazy deletion using a
separate-chaining hash table as a more efficient solution to collisions than the
available alternatives, such as balanced trees. See Exhibit C-1 which is herein
incorporated by reference.

On information and belief, the techniques disclosed in Morrison were
implemented and distributed in a Unix utility called IDEAL, prior to the filing
date of the ’120 Patent. On information and belief, the source code for IDEAL
discloses a linked list to store and provide access to records stored in a memory
of the system, at least some of the records automatically expiring.
On information and belief, the source code for IDEAL also discloses a hashing
means to provide access to records stored in a memory of the system and using
an external chaining technique to store the records with same hash address, at
least some of the records automatically expiring. Defendants reserve the right
to supplement these contentions once a complete version of the source code for
IDEAL is produced.

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of
records having the same
hash address,

Morrison discloses a record search means utilizing a search key to access the
linked list. Morrison also discloses a record search means utilizing a search
key to access a linked list of records having the same hash address.

For example, Morrison discloses “a simple method for maintaining a dynamic
dictionary: items are inserted and sought as usual in a separate-chaining hash
table; however, items that no longer need to be in the data structure remain
until a later insertion operation stumbles on them and removes them from the
table.” Id

EXHIBIT C-2

Joint Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,

1155-1164 (December 1987) (“Morrison”) alone and in combination

Moreover, Morrison discloses “a sequence of items is given; each item
includes a search key, a starting time, and an expiration time. The items arrive
in the order of their starting times, and each item must be kept in a dynamic
dictionary (available for searching) until the arrival of an item whose starting
time is later than the item’s expiration time.” Id.

“Hashing with lazy deletion means keeping the items hashed by search key in a
table of linked lists (separate chains); each time an item is added to a list, any
items on that list that the new item shows to be expired are deleted from that
list. This deletion procedure is ‘lazy’ because there is no separate operation
associated with clearing expired items out of the table: expired items are only
deleted when they are encountered during an insertion operation” Id.

Moreover, it is inherent to the Morrison disclosure that the hash table described
herein is a separate-chaining hash table to resolve unavoidable key collisions,
where each slot of the bucket array is a pointer to a linked list that contains the
key-value pairs that hash to the same location. Other data structures, such as
balanced trees, only offer logarithmic time complexity and can be complicated
to implement and require several pointers per item. With a suitable number of
buckets, the separate-chaining hash table solution offers constant expected
search times and makes deletion easy.

To the extent is it not inherent, it would be obvious to combine Morrison with
the prior art disclosed in, The Complexity of Hashing with Lazy Deletion,
Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of Hashing
with Lazy Deletion, 1 Algorithmica 17, 18 (November, 1986) (“Van Wyk”),
because Morrison describes and incorporates Van Wyk by reference. Morrison

EXHIBIT C-2

Joint Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,

1155-1164 (December 1987) (“Morrison”) alone and in combination
at 1155. Van Wyk discloses a method of hashing with lazy deletion using a
separate-chaining hash table as a more efficient solution to collisions than the
available alternatives, such as balanced trees. See Exhibit C-1 which is herein
incorporated by reference.

On information and belief, the techniques disclosed in Morrison were
implemented and distributed in a Unix utility called IDEAL, prior to the filing
date of the ’120 Patent. On information and belief, the source code for IDEAL
discloses a record search means utilizing a search key to access the linked list.
On information and belief, the source code for IDEAL also discloses a record
search means utilizing a search key to access a linked list of records having the
same hash address. Defendants reserve the right to supplement these
contentions once a complete version of the source code for IDEAL is
produced.

[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the
records from the linked list
when the linked list is
accessed, and

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

Morrison discloses the record search means including a means for identifying
and removing at least some of the expired ones of the records from the linked
list when the linked list is accessed. Morrison also discloses the record search
means including means for identifying and removing at least some expired
ones of the records from the linked list of records when the linked list is
accessed.

For example, Morrison discloses “a simple method for maintaining a dynamic
dictionary: items are inserted and sought as usual in a separate-chaining hash
table; however, items that no longer need to be in the data structure remain
until a later insertion operation stumbles on them and removes them from the
table.” Id.

EXHIBIT C-2

Joint Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,

1155-1164 (December 1987) (“Morrison”) alone and in combination
Moreover, Morrison discloses “a sequence of items is given; each item
includes a search key, a starting time, and an expiration time. The items arrive
in the order of their starting times, and each item must be kept in a dynamic
dictionary (available for searching) until the arrival of an item whose starting
time is later than the item’s expiration time.” Id.

“Hashing with lazy deletion means keeping the items hashed by search key in a
table of linked lists (separate chains); each time an item is added to a list, any
items on that list that the new item shows to be expired are deleted from that
list. This deletion procedure is ‘lazy’ because there is no separate operation
associated with clearing expired items out of the table: expired items are only
deleted when they are encountered during an insertion operation” Id.

Moreover, it is inherent to the Morrison disclosure that the hash table described
herein is a separate-chaining hash table to resolve unavoidable key collisions,
where each slot of the bucket array is a pointer to a linked list that contains the
key-value pairs that hash to the same location. Other data structures, such as
balanced trees, only offer logarithmic time complexity and can be complicated
to implement and require several pointers per item. With a suitable number of
buckets, the separate-chaining hash table solution offers constant expected
search times and makes deletion easy.

To the extent is it not inherent, it would be obvious to combine Morrison with
the prior art disclosed in, The Complexity of Hashing with Lazy Deletion,
Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of Hashing
with Lazy Deletion, 1 Algorithmica 17, 18 (November, 1986) (“Van Wyk”),
because Morrison describes and incorporates Van Wyk by reference. Morrison
at 1155.Van Wyk discloses a method of hashing with lazy deletion using a

EXHIBIT C-2

Joint Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,

1155-1164 (December 1987) (“Morrison”) alone and in combination
separate-chaining hash table as a more efficient solution to collisions than the
available alternatives, such as balanced trees. See Exhibit C-1 which is herein
incorporated by reference.

On information and belief, the techniques disclosed in Morrison were
implemented and distributed in a Unix utility called IDEAL, prior to the filing
date of the ’120 Patent. On information and belief, the source code for IDEAL
discloses the record search means including a means for identifying and
removing at least some of the expired ones of the records from the linked list
when the linked list is accessed. On information and belief, the source code
for IDEAL also discloses the record search means including means for
identifying and removing at least some expired ones of the records from the
linked list of records when the linked list is accessed. Defendants reserve the
right to supplement these contentions once a complete version of the source
code for IDEAL is produced.

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

Morrison discloses means, utilizing the record search means, for accessing the
linked list and, at the same time, removing at least some of the expired ones of
the records in the linked list. Morrison also discloses utilizing the record
search means, for inserting, retrieving, and deleting records from the system
and, at the same time, removing at least some expired ones of the records in the
accessed linked list of records.

For example, Morrison discloses “a simple method for maintaining a dynamic
dictionary: items are inserted and sought as usual in a separate-chaining hash
table; however, items that no longer need to be in the data structure remain
until a later insertion operation stumbles on them and removes them from the
table.” Id

EXHIBIT C-2

Joint Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,

1155-1164 (December 1987) (“Morrison”) alone and in combination

Moreover, Morrison discloses “a sequence of items is given; each item
includes a search key, a starting time, and an expiration time. The items arrive
in the order of their starting times, and each item must be kept in a dynamic
dictionary (available for searching) until the arrival of an item whose starting
time is later than the item’s expiration time.” Id.

“Hashing with lazy deletion means keeping the items hashed by search key in a
table of linked lists (separate chains); each time an item is added to a list, any
items on that list that the new item shows to be expired are deleted from that
list. This deletion procedure is ‘lazy’ because there is no separate operation
associated with clearing expired items out of the table: expired items are only
deleted when they are encountered during an insertion operation” Id.

Moreover, it is inherent to the Morrison disclosure that the hash table described
herein is a separate-chaining hash table to resolve unavoidable key collisions,
where each slot of the bucket array is a pointer to a linked list that contains the
key-value pairs that hash to the same location. Other data structures, such as
balanced trees, only offer logarithmic time complexity and can be complicated
to implement and require several pointers per item. With a suitable number of
buckets, the separate-chaining hash table solution offers constant expected
search times and makes deletion easy.

To the extent is it not inherent, it would be obvious to combine Morrison with
the prior art disclosed in, The Complexity of Hashing with Lazy Deletion,
Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of Hashing
with Lazy Deletion, 1 Algorithmica 17, 18 (November, 1986) (“Van Wyk”),
because Morrison describes and incorporates Van Wyk by reference. Morrison

EXHIBIT C-2

Joint Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,

1155-1164 (December 1987) (“Morrison”) alone and in combination
at 1155. Van Wyk discloses a method of hashing with lazy deletion using a
separate-chaining hash table as a more efficient solution to collisions than the
available alternatives, such as balanced trees. See Exhibit C-1 which is herein
incorporated by reference.

To the extent Bedrock argues that Morrison does not anticipate this element,
based on general knowledge and/or in combination with Knuth and/or Kruse,
one of ordinary skill in the art would recognize that the Morrison applies to
insertions, retrievals, and/or deletions of automatically expired records because
these are all basic functions that can be performed in the same manner on a
hash table or a liked list. See, e.g., “The Art of Computer Programming”,
Sorting and Searching, D.E. Knuth, Addison-Wesley Series in Computer
Science and Information Processing, pp. 506-549; “Data Structures and
Program Design”, R.L. Kruse, Prentice-Hall, Inc. 1984, pp. 104-148.”

On information and belief, the techniques disclosed in Morrison were
implemented and distributed in a Unix utility called IDEAL, prior to the filing
date of the ’120 Patent. On information and belief, the source code for IDEAL
discloses means, utilizing the record search means, for accessing the linked list
and, at the same time, removing at least some of the expired ones of the
records in the linked list. On information and belief, the source code for
IDEAL also discloses utilizing the record search means, for inserting,
retrieving, and deleting records from the system and, at the same time,
removing at least some expired ones of the records in the accessed linked list
of records. Defendants reserve the right to supplement these contentions once
a complete version of the source code for IDEAL is produced.

2. The information storage 6. The information storage Morrison discloses the information storage and retrieval system further

EXHIBIT C-2

Joint Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,

1155-1164 (December 1987) (“Morrison”) alone and in combination
and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

including means for dynamically determining maximum number for the record
search means to remove in the accessed linked list of records. Morrison
teaches a method for calculating a probabilistic bound on the space complexity
of the hashing with lazy deletion algorithm, i.e., the number of expired
elements that would remain in the linked lists forming the external chains of
the hash table. See, e.g., Morrison at 1156-1161. That bound calculation is a
means for dynamically determining the maximum number to remove, since the
maximum number of elements to remove should never exceed the number of
expired elements that would remain in the linked lists.

To the extent Morrison does not disclose this element, Morrison combined
with Mathieu, Kenyon-Mathieu or Aldous discloses this element. Mathieu,
Kenyon-Mathieu, and Aldous also teach methods for calculating a probabilistic
bound on the space complexity of the hashing with lazy deletion algorithm.
See, e.g., Mathieu at 12-22, Kenyon-Mathieu at 475-486, Aldous 17-21.

It would have been obvious to one of ordinary skill in the art that these
methods of calculating bounds on the number of expired elements stored in the
linked list could also be used to dynamically determine a maximum number for
the record search means disclosed in Morrison to remove. One of ordinary
skill would have been motivated to combine the teachings of Mathieu,
Kenyon-Mathieu, and Aldous with Morrison because they all sought to
analyze the complexity of the hashing with lazy deletion algorithm, and each
of the papers refers to and builds upon the work of those papers preceding.
See, e.g., Morrison at 1155, 1158, Mathieu at 1-4, Kenyon-Mathieu at 473-
475, Aldous at 2-3.

Morrison combined with Dirks, Thatte, the ’663 patent and/or the

EXHIBIT C-2

Joint Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,

1155-1164 (December 1987) (“Morrison”) alone and in combination
Opportunistic Garbage Collection Articles discloses an information storage
and retrieval system further including means for dynamically determining
maximum number for the record search means to remove in the accessed
linked list of records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a

EXHIBIT C-2

Joint Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,

1155-1164 (December 1987) (“Morrison”) alone and in combination
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

EXHIBIT C-2

Joint Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,

1155-1164 (December 1987) (“Morrison”) alone and in combination
Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Morrison and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as Morrison. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Morrison nothing more
than the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Morrison and would
have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Morrison with the means
for dynamically determining maximum number for the record search means to

EXHIBIT C-2

Joint Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,

1155-1164 (December 1987) (“Morrison”) alone and in combination
remove in the accessed linked list of records disclosed by Thatte. For example,
Thatte discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, Ass both Morrison and Thatte teach a system of data
storage and retrieval, one of ordinary skill in the art would recognize that the
result of combining Morrison with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove as taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine
Morrison with Thatte and recognize the benefits of doing so. For example, the
removal of expired records described in Morrison can be burdensome on the
system, adding to the system’s load and slowing down the system’s
processing. One of ordinary skill in the art would recognize that combining
Morrison with the teachings of Thatte would solve this problem by
dynamically determining how many records to delete based on, among other
things, the system load. Moreover, the '120 patent discloses that "[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one." '120 at

EXHIBIT C-2

Joint Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,

1155-1164 (December 1987) (“Morrison”) alone and in combination
7:10-15. Thus, the '120 patent provides motivations to combine Morrison with
Thatte.

Alternatively, it would also be obvious to combine Morrison with the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.

EXHIBIT C-2

Joint Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,

1155-1164 (December 1987) (“Morrison”) alone and in combination
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load

EXHIBIT C-2

Joint Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,

1155-1164 (December 1987) (“Morrison”) alone and in combination
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Morrison and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in Morrison. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of

EXHIBIT C-2

Joint Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,

1155-1164 (December 1987) (“Morrison”) alone and in combination
combining the ’663 patent’s deletion decision procedure with Morrison would
be nothing more than the predictable use of prior art elements according to
their established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Morrison and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Morrison with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage

EXHIBIT C-2

Joint Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,

1155-1164 (December 1987) (“Morrison”) alone and in combination
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Morrison and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Morrison. Moreover, one of ordinary skill in the art

EXHIBIT C-2

Joint Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,

1155-1164 (December 1987) (“Morrison”) alone and in combination
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Morrison would be nothing more than the predictable use of
prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Morrison and
would have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Morrison to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Morrison with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,

EXHIBIT C-2

Joint Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,

1155-1164 (December 1987) (“Morrison”) alone and in combination
the removal of expired records described in Morrison can be burdensome on
the system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Morrison in combination with Dirks, Thatte, the
‘663 Patent, or the Opportunistic Garbage Collection References, it is
disclosed by Linux 2.0.1, which describes dynamically determining maximum
number of expired ones of the records to remove when the linked list is
accessed. It would have been obvious to combine Linux 2.0.1 with Morrison.
For example, both Linux 2.0.1 and Morrison describe systems and methods for
performing data storage and retrieval using known programming techniques to
yield a predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function

EXHIBIT C-2

Joint Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,

1155-1164 (December 1987) (“Morrison”) alone and in combination
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux

EXHIBIT C-2

Joint Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,

1155-1164 (December 1987) (“Morrison”) alone and in combination
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function

EXHIBIT C-2

Joint Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,

1155-1164 (December 1987) (“Morrison”) alone and in combination
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than

EXHIBIT C-2

Joint Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,

1155-1164 (December 1987) (“Morrison”) alone and in combination
the maximum number of records that the function rt_cache_add can
remove from a linked list.

On information and belief, the techniques disclosed in Morrison were
implemented and distributed in a Unix utility called IDEAL, prior to the filing
date of the ’120 Patent. On information and belief, a person of ordinary skill in
the art would have been motivated to combine IDEAL with the techniques
taught by Linux 2.0.1, Dirks, Thatte, the ‘663 patent, the Opportunistic
Garbage Collection Articles, Kenyon-Mathieu, and/or Aldous to disclose
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records. Defendants reserve the
right to supplement these contentions once a complete version of the source
code for IDEAL is produced.

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

To the extent the preamble is a limitation, Morrison discloses a method for
storing and retrieving information records using a linked list to store and
provide access to the records, at least some of the records automatically
expiring. Morrison also discloses a method for storing and retrieving
information records using a hashing technique to provide access to the records
and using an external chaining technique to store the records with same hash
address, at least some of the records automatically expiring.

For example, Morrison discloses “a simple method for maintaining a dynamic
dictionary: items are inserted and sought as usual in a separate-chaining hash
table; however, items that no longer need to be in the data structure remain
until a later insertion operation stumbles on them and removes them from the
table.” Morrison at 1155.

EXHIBIT C-2

Joint Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,

1155-1164 (December 1987) (“Morrison”) alone and in combination

On information and belief, the techniques disclosed in Morrison were
implemented and distributed in a Unix utility called IDEAL, prior to the filing
date of the ’120 Patent. On information and belief, the source code for IDEAL
discloses a method for storing and retrieving information records using a
linked list to store and provide access to the records, at least some of the
records automatically expiring. On information and belief, the source code for
IDEAL also discloses a method for storing and retrieving information records
using a hashing technique to provide access to the records and using an
external chaining technique to store the records with same hash address, at
least some of the records automatically expiring. Defendants reserve the right
to supplement these contentions once a complete version of the source code for
IDEAL is produced.

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

Morrison discloses accessing a linked list of records. Morrison also discloses
accessing a linked list of records having same hash address.

For example, Morrison discloses “a simple method for maintaining a dynamic
dictionary: items are inserted and sought as usual in a separate-chaining hash
table; however, items that no longer need to be in the data structure remain
until a later insertion operation stumbles on them and removes them from the
table.” Id.

Moreover, Morrison discloses “a sequence of items is given; each item
includes a search key, a starting time, and an expiration time. The items arrive
in the order of their starting times, and each item must be kept in a dynamic
dictionary (available for searching) until the arrival of an item whose starting

EXHIBIT C-2

Joint Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,

1155-1164 (December 1987) (“Morrison”) alone and in combination
time is later than the item’s expiration time.” Id.

“Hashing with lazy deletion means keeping the items hashed by search key in a
table of linked lists (separate chains); each time an item is added to a list, any
items on that list that the new item shows to be expired are deleted from that
list. This deletion procedure is ‘lazy’ because there is no separate operation
associated with clearing expired items out of the table: expired items are only
deleted when they are encountered during an insertion operation” Id.
Moreover, it is inherent to the Morrison disclosure that the hash table described
herein is a separate-chaining hash table to resolve unavoidable key collisions,
where each slot of the bucket array is a pointer to a linked list that contains the
key-value pairs that hash to the same location. Other data structures, such as
balanced trees, only offer logarithmic time complexity and can be complicated
to implement and require several pointers per item. With a suitable number of
buckets, the separate-chaining hash table solution offers constant expected
search times and makes deletion easy.

To the extent is it not inherent, it would be obvious to combine Morrison with
the prior art disclosed in, The Complexity of Hashing with Lazy Deletion,
Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of Hashing
with Lazy Deletion, 1 Algorithmica 17, 18 (November, 1986) (“Van Wyk”),
because Morrison describes and incorporates Van Wyk by reference. Morrison
at 1155. Van Wyk discloses a method of hashing with lazy deletion using a
separate-chaining hash table as a more efficient solution to collisions than the
available alternatives, such as balanced trees. See Exhibit C-1 which is herein
incorporated by reference.

On information and belief, the techniques disclosed in Morrison were

EXHIBIT C-2

Joint Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,

1155-1164 (December 1987) (“Morrison”) alone and in combination
implemented and distributed in a Unix utility called IDEAL, prior to the filing
date of the ’120 Patent. On information and belief, the source code for IDEAL
discloses accessing a linked list of records. On information and belief, the
source code for IDEAL also discloses accessing a linked list of records having
same hash address. Defendants reserve the right to supplement these
contentions once a complete version of the source code for IDEAL is
produced.

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

Morrison discloses identifying at least some of the automatically expired ones
of the records.

For example, Morrison discloses “a simple method for maintaining a dynamic
dictionary: items are inserted and sought as usual in a separate-chaining hash
table; however, items that no longer need to be in the data structure remain
until a later insertion operation stumbles on them and removes them from the
table.” Id.

Moreover, Morrison discloses “a sequence of items is given; each item
includes a search key, a starting time, and an expiration time. The items arrive
in the order of their starting times, and each item must be kept in a dynamic
dictionary (available for searching) until the arrival of an item whose starting
time is later than the item’s expiration time.” Id.

“Hashing with lazy deletion means keeping the items hashed by search key in a
table of linked lists (separate chains); each time an item is added to a list, any
items on that list that the new item shows to be expired are deleted from that
list. This deletion procedure is ‘lazy’ because there is no separate operation

EXHIBIT C-2

Joint Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,

1155-1164 (December 1987) (“Morrison”) alone and in combination
associated with clearing expired items out of the table: expired items are only
deleted when they are encountered during an insertion operation” Id

Moreover, it is inherent to the Morrison disclosure that the hash table described
herein is a separate-chaining hash table to resolve unavoidable key collisions,
where each slot of the bucket array is a pointer to a linked list that contains the
key-value pairs that hash to the same location. Other data structures, such as
balanced trees, only offer logarithmic time complexity and can be complicated
to implement and require several pointers per item. With a suitable number of
buckets, the separate-chaining hash table solution offers constant expected
search times and makes deletion easy.

To the extent is it not inherent, it would be obvious to combine Morrison with
the prior art disclosed in, The Complexity of Hashing with Lazy Deletion,
Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of Hashing
with Lazy Deletion, 1 Algorithmica 17, 18 (November, 1986) (“Van Wyk”),
because Morrison describes and incorporates Van Wyk by reference. Morrison
at 1155. Van Wyk discloses a method of hashing with lazy deletion using a
separate-chaining hash table as a more efficient solution to collisions than the
available alternatives, such as balanced trees. See Exhibit C-1 which is herein
incorporated by reference.

On information and belief, the techniques disclosed in Morrison were
implemented and distributed in a Unix utility called IDEAL, prior to the filing
date of the ’120 Patent. On information and belief, the source code for IDEAL
discloses identifying at least some of the automatically expired ones of the
records. Defendants reserve the right to supplement these contentions once a
complete version of the source code for IDEAL is produced.

EXHIBIT C-2

Joint Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,

1155-1164 (December 1987) (“Morrison”) alone and in combination

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

Morrison discloses removing at least some of the automatically expired records
from the linked list when the linked list is accessed.

For example, Morrison discloses “a simple method for maintaining a dynamic
dictionary: items are inserted and sought as usual in a separate-chaining hash
table; however, items that no longer need to be in the data structure remain
until a later insertion operation stumbles on them and removes them from the
table.” Id.

Moreover, Morrison discloses “a sequence of items is given; each item
includes a search key, a starting time, and an expiration time. The items arrive
in the order of their starting times, and each item must be kept in a dynamic
dictionary (available for searching) until the arrival of an item whose starting
time is later than the item’s expiration time.” Id.

“Hashing with lazy deletion means keeping the items hashed by search key in a
table of linked lists (separate chains); each time an item is added to a list, any
items on that list that the new item shows to be expired are deleted from that
list. This deletion procedure is ‘lazy’ because there is no separate operation
associated with clearing expired items out of the table: expired items are only
deleted when they are encountered during an insertion operation” Id.

Moreover, it is inherent to the Morrison disclosure that the hash table described
herein is a separate-chaining hash table to resolve unavoidable key collisions,
where each slot of the bucket array is a pointer to a linked list that contains the
key-value pairs that hash to the same location. Other data structures, such as
balanced trees, only offer logarithmic time complexity and can be complicated

EXHIBIT C-2

Joint Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,

1155-1164 (December 1987) (“Morrison”) alone and in combination
to implement and require several pointers per item. With a suitable number of
buckets, the separate-chaining hash table solution offers constant expected
search times and makes deletion easy.

To the extent is it not inherent, it would be obvious to combine Morrison with
the prior art disclosed in, The Complexity of Hashing with Lazy Deletion,
Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of Hashing
with Lazy Deletion, 1 Algorithmica 17, 18 (November, 1986) (“Van Wyk”),
because Morrison describes and incorporates Van Wyk by reference. Morrison
at 1155. Van Wyk discloses a method of hashing with lazy deletion using a
separate-chaining hash table as a more efficient solution to collisions than the
available alternatives, such as balanced trees. See Exhibit C-1 which is herein
incorporated by reference.

On information and belief, the techniques disclosed in Morrison were
implemented and distributed in a Unix utility called IDEAL, prior to the filing
date of the ’120 Patent. On information and belief, the source code for IDEAL
discloses removing at least some of the automatically expired records from the
linked list when the linked list is accessed. Defendants reserve the right to
supplement these contentions once a complete version of the source code for
IDEAL is produced.

 [7d] inserting, retrieving
or deleting one of the
records from the system
following the step of
removing.

Morrison discloses inserting, retrieving or deleting one of the records from the
system following the step of removing.

For example, Morrison discloses “a simple method for maintaining a dynamic
dictionary: items are inserted and sought as usual in a separate-chaining hash

EXHIBIT C-2

Joint Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,

1155-1164 (December 1987) (“Morrison”) alone and in combination
table; however, items that no longer need to be in the data structure remain
until a later insertion operation stumbles on them and removes them from the
table.” Id.

Moreover, Morrison discloses “a sequence of items is given; each item
includes a search key, a starting time, and an expiration time. The items arrive
in the order of their starting times, and each item must be kept in a dynamic
dictionary (available for searching) until the arrival of an item whose starting
time is later than the item’s expiration time.” Id.

“Hashing with lazy deletion means keeping the items hashed by search key in a
table of linked lists (separate chains); each time an item is added to a list, any
items on that list that the new item shows to be expired are deleted from that
list. This deletion procedure is ‘lazy’ because there is no separate operation
associated with clearing expired items out of the table: expired items are only
deleted when they are encountered during an insertion operation” Id.

Moreover, it is inherent to the Morrison disclosure that the hash table described
herein is a separate-chaining hash table to resolve unavoidable key collisions,
where each slot of the bucket array is a pointer to a linked list that contains the
key-value pairs that hash to the same location. Other data structures, such as
balanced trees, only offer logarithmic time complexity and can be complicated
to implement and require several pointers per item. With a suitable number of
buckets, the separate-chaining hash table solution offers constant expected
search times and makes deletion easy.

To the extent is it not inherent, it would be obvious to combine Morrison with
the prior art disclosed in, The Complexity of Hashing with Lazy Deletion,

EXHIBIT C-2

Joint Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,

1155-1164 (December 1987) (“Morrison”) alone and in combination
Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of Hashing
with Lazy Deletion, 1 Algorithmica 17, 18 (November, 1986) (“Van Wyk”),
because Morrison describes and incorporates Van Wyk by reference. Morrison
at 1155. Van Wyk discloses a method of hashing with lazy deletion using a
separate-chaining hash table as a more efficient solution to collisions than the
available alternatives, such as balanced trees. See Exhibit C-1 which is herein
incorporated by reference.

Moreover, Van Wyk and Vitter explain that “[t]he insertion of element xi
proceeds as follows:

1) Compute h = n(ki)
2) Remove from the hash chain in bucket h any items xj with tj < sj [i.e. remove
all expired elements]
3) Add xi so the chain in bucket h remains sorted by termination time.” Van
Wyk at 19.

This method clearly contemplates the insertion occurring after the removal of
expired elements.

On information and belief, the techniques disclosed in Morrison were
implemented and distributed in a Unix utility called IDEAL, prior to the filing
date of the ’120 Patent. On information and belief, the source code for IDEAL
discloses inserting, retrieving or deleting one of the records from the system
following the step of removing. Defendants reserve the right to supplement
these contentions once a complete version of the source code for IDEAL is
produced.

EXHIBIT C-2

Joint Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,

1155-1164 (December 1987) (“Morrison”) alone and in combination
4. The method according to
claim 3 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

Morrison discloses dynamically determining maximum number of expired
ones of the records to remove when the linked list is accessed. Morrison
teaches a method for calculating a probabilistic bound on the space complexity
of the hashing with lazy deletion algorithm, i.e., the number of expired
elements that would remain in the linked lists forming the external chains of
the hash table. See, e.g., Morrison at 1156-1161. That bound calculation is a
means for dynamically determining the maximum number to remove, since the
maximum number of elements to remove should never exceed the number of
expired elements that would remain in the linked lists.

To the extent Morrison does not disclose this element, Morrison combined
with Mathieu, Kenyon-Mathieu or Aldous discloses this element. Mathieu,
Kenyon-Mathieu, and Aldous also teach methods for calculating a probabilistic
bound on the space complexity of the hashing with lazy deletion algorithm.
See, e.g., Mathieu at 12-22, Kenyon-Mathieu at 475-486, Aldous 17-21.

It would have been obvious to one of ordinary skill in the art that these
methods of calculating bounds on the number of expired elements stored in the
linked list could also be used to dynamically determine a maximum number for
the record search means disclosed in Morrison to remove. One of ordinary
skill would have been motivated to combine the teachings of Mathieu,
Kenyon-Mathieu, and Aldous with Morrison because they all sought to
analyze the complexity of the hashing with lazy deletion algorithm, and each
of the papers refers to and builds upon the work of those papers preceding.
See, e.g., Morrison at 1155, 1158, Mathieu at 1-4, Kenyon-Mathieu at 473-
475, Aldous at 2-3.

Morrison combined with Dirks, Thatte, the ’663 patent and/or the

EXHIBIT C-2

Joint Invalidity Contentions & Production of
Documents

35 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,

1155-1164 (December 1987) (“Morrison”) alone and in combination
Opportunistic Garbage Collection Articles discloses dynamically determining
maximum number of expired ones of the records to remove when the linked
list is accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done

EXHIBIT C-2

Joint Invalidity Contentions & Production of
Documents

36 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,

1155-1164 (December 1987) (“Morrison”) alone and in combination
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of

EXHIBIT C-2

Joint Invalidity Contentions & Production of
Documents

37 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,

1155-1164 (December 1987) (“Morrison”) alone and in combination
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Morrison and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as Morrison. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Morrison nothing more
than the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Morrison and would
have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Morrison with the means
for dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. For example,

EXHIBIT C-2

Joint Invalidity Contentions & Production of
Documents

38 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,

1155-1164 (December 1987) (“Morrison”) alone and in combination
Thatte discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, Ass both Morrison and Thatte teach a system of data
storage and retrieval, one of ordinary skill in the art would recognize that the
result of combining Morrison with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove as taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine
Morrison with Thatte and recognize the benefits of doing so. For example, the
removal of expired records described in Morrison can be burdensome on the
system, adding to the system’s load and slowing down the system’s
processing. One of ordinary skill in the art would recognize that combining
Morrison with the teachings of Thatte would solve this problem by
dynamically determining how many records to delete based on, among other
things, the system load. Moreover, the '120 patent discloses that "[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one." '120 at
7:10-15. Thus, the '120 patent provides motivations to combine Morrison with

EXHIBIT C-2

Joint Invalidity Contentions & Production of
Documents

39 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,

1155-1164 (December 1987) (“Morrison”) alone and in combination
Thatte.

Alternatively, it would also be obvious to combine Morrison with the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.

EXHIBIT C-2

Joint Invalidity Contentions & Production of
Documents

40 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,

1155-1164 (December 1987) (“Morrison”) alone and in combination
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load

EXHIBIT C-2

Joint Invalidity Contentions & Production of
Documents

41 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,

1155-1164 (December 1987) (“Morrison”) alone and in combination
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Morrison and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in Morrison. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of

EXHIBIT C-2

Joint Invalidity Contentions & Production of
Documents

42 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,

1155-1164 (December 1987) (“Morrison”) alone and in combination
combining the ’663 patent’s deletion decision procedure with Morrison would
be nothing more than the predictable use of prior art elements according to
their established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Morrison and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Morrison with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage

EXHIBIT C-2

Joint Invalidity Contentions & Production of
Documents

43 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,

1155-1164 (December 1987) (“Morrison”) alone and in combination
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Morrison and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Morrison. Moreover, one of ordinary skill in the art

EXHIBIT C-2

Joint Invalidity Contentions & Production of
Documents

44 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,

1155-1164 (December 1987) (“Morrison”) alone and in combination
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Morrison would be nothing more than the predictable use of
prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Morrison and
would have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Morrison to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Morrison with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,

EXHIBIT C-2

Joint Invalidity Contentions & Production of
Documents

45 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,

1155-1164 (December 1987) (“Morrison”) alone and in combination
the removal of expired records described in Morrison can be burdensome on
the system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Morrison in combination with Dirks, Thatte, the
‘663 Patent, or the Opportunistic Garbage Collection References, it is
disclosed by Linux 2.0.1, which describes dynamically determining maximum
number of expired ones of the records to remove when the linked list is
accessed. It would have been obvious to combine Linux 2.0.1 with Morrison.
For example, both Linux 2.0.1 and Morrison describe systems and methods for
performing data storage and retrieval using known programming techniques to
yield a predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function

EXHIBIT C-2

Joint Invalidity Contentions & Production of
Documents

46 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,

1155-1164 (December 1987) (“Morrison”) alone and in combination
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux

EXHIBIT C-2

Joint Invalidity Contentions & Production of
Documents

47 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,

1155-1164 (December 1987) (“Morrison”) alone and in combination
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function

EXHIBIT C-2

Joint Invalidity Contentions & Production of
Documents

48 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,

1155-1164 (December 1987) (“Morrison”) alone and in combination
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than

EXHIBIT C-2

Joint Invalidity Contentions & Production of
Documents

49 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,

1155-1164 (December 1987) (“Morrison”) alone and in combination
the maximum number of records that the function rt_cache_add can
remove from a linked list.

On information and belief, the techniques disclosed in Morrison were
implemented and distributed in a Unix utility called IDEAL, prior to the filing
date of the ’120 Patent. On information and belief, a person of ordinary skill in
the art would have been motivated to combine IDEAL with the techniques
taught by Linux 2.0.1, Dirks, Thatte, the ‘663 patent, the Opportunistic
Garbage Collection Articles, Kenyon-Mathieu, and/or Aldous to disclose
dynamically determining maximum number of expired ones of the records to
remove when the linked list is accessed. Defendants reserve the right to
supplement these contentions once a complete version of the source code for
IDEAL is produced.

EXHIBIT C-3

Joint Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

US2008 1290275.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)

(“Mathieu”) alone and in combination
1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, Mathieu discloses an information
storage and retrieval system.

For example, Mathieu discloses “a non-Markovian process (data structure) for
processing plane-sweep information in computational geometry, called
‘hashing with lazy deletion’ (HwLD).” Claire M. Mathieu and Jeffrey Scott
Vitter, Maximum Queue Size and Hashing with Lazy Deletion, 851 Rapports
de Recherche 1, 2 (June 1988).

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

Mathieu discloses a linked list to store and provide access to records stored in a
memory of the system, at least some of the records automatically expiring.
Mathieu also discloses a hashing means to provide access to records stored in a
memory of the system and using an external chaining technique to store the
records with same hash address, at least some of the records automatically
expiring.

For example, Mathieu discloses “a non-Markovian process (data structure) for
processing plane-sweep information in computational geometry, called
‘hashing with lazy deletion’ (HwLD).” Id.

Moreover, Mathieu discloses that “[p]lane-sweep algorithms process a
sequence of items over time; at time t the data structure stores the items that
are ‘living’ at time t. Let us think of the ith item as being an interval [si, ti] in
the unit interval, containing a unique key ki of supplementary information. The
ith item is ‘born’ at time si, ‘dies’ at time ti, and is ‘living’ at time t when t ∈
[si, ti]. The data structure must be able to support the dynamic operation of
searching the living items based on key value.” Id. at 2-3.

EXHIBIT C-3

Joint Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

US2008 1290275.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)

(“Mathieu”) alone and in combination
“In HwLD, items are stored in a hash table of H buckets, based on the hash
value of the key. The distinguishing feature of HwLD is that an item is not
deleted as soon as it dies; the ‘lazy deletion’ strategy deletes a dead item only
when a later insertion accesses the same bucket. The number H of buckets is
chosen so that the expected number of items per bucket is small. HwLD is
thus more time-efficient than doing ‘vigilant-deletion,’ at a cost of storing
some dead items.” Id. at 3.

Moreover, it is inherent to the Mathieu disclosure that the hash table described
herein is a separate-chaining hash table to resolve unavoidable key collisions,
where each slot of the bucket array is a pointer to a linked list that contains the
key-value pairs that hash to the same location. Other data structures, such as
balanced trees, only offer logarithmic time complexity and can be complicated
to implement and require several pointers per item. With a suitable number of
buckets, the separate-chaining hash table solution offers constant expected
search times and makes deletion easy.

To the extent is it not inherent, it would be obvious to combine Mathieu with
the prior art disclosed in, The Complexity of Hashing with Lazy Deletion,
Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of Hashing
with Lazy Deletion, 1 Algorithmica 17, 18 (November, 1986) (“Van Wyk”),
because Mathieu describes and incorporates Van Wyk by reference. Mathieu at
2. Van Wyk discloses a method of hashing with lazy deletion using a separate-
chaining hash table as a more efficient solution to collisions than the available
alternatives, such as balanced trees. See Exhibit C-1 which is herein
incorporated by reference.

[1b] a record search means [5b] a record search means Mathieu discloses a record search means utilizing a search key to access the

EXHIBIT C-3

Joint Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

US2008 1290275.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)

(“Mathieu”) alone and in combination
utilizing a search key to
access the linked list,

utilizing a search key to
access a linked list of
records having the same
hash address,

linked list. Mathieu also discloses a record search means utilizing a search key
to access a linked list of records having the same hash address.

For example, Mathieu discloses “a non-Markovian process (data structure) for
processing plane-sweep information in computational geometry, called
‘hashing with lazy deletion’ (HwLD).” Mathieu, supra at 1.

Moreover, Mathieu discloses that “[p]lane-sweep algorithms process a
sequence of items over time; at time t the data structure stores the items that
are ‘living’ at time t. Let us think of the ith item as being an interval [si, ti] in
the unit interval, containing a unique key ki of supplementary information. The
ith item is ‘born’ at time si, ‘dies’ at time ti, and is ‘living’ at time t when t ∈
[si, ti]. The data structure must be able to support the dynamic operation of
searching the living items based on key value.” Id. at 2-3.

Moreover, it is inherent to the Mathieu disclosure that the hash table described
herein is a separate-chaining hash table to resolve unavoidable key collisions,
where each slot of the bucket array is a pointer to a linked list that contains the
key-value pairs that hash to the same location. Other data structures, such as
balanced trees, only offer logarithmic time complexity and can be complicated
to implement and require several pointers per item. With a suitable number of
buckets, the separate-chaining hash table solution offers constant expected
search times and makes deletion easy.

To the extent is it not inherent, it would be obvious to combine Mathieu with
the prior art disclosed in, The Complexity of Hashing with Lazy Deletion,
Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of Hashing
with Lazy Deletion, 1 Algorithmica 17, 18 (November, 1986) (“Van Wyk”),

EXHIBIT C-3

Joint Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

US2008 1290275.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)

(“Mathieu”) alone and in combination
because Mathieu describes and incorporates Van Wyk by reference. Mathieu
at 2. Van Wyk discloses a method of hashing with lazy deletion using a
separate-chaining hash table as a more efficient solution to collisions than the
available alternatives, such as balanced trees. See Exhibit C-1 which is herein
incorporated by reference.

[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the
records from the linked list
when the linked list is
accessed, and

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

Mathieu discloses the record search means including a means for identifying
and removing at least some of the expired ones of the records from the linked
list when the linked list is accessed. Mathieu also discloses the record search
means including means for identifying and removing at least some expired
ones of the records from the linked list of records when the linked list is
accessed.

For example, Mathieu discloses “a non-Markovian process (data structure) for
processing plane-sweep information in computational geometry, called
‘hashing with lazy deletion’ (HwLD).” Mathieu, supra at 1.

Moreover, Mathieu discloses that “[p]lane-sweep algorithms process a
sequence of items over time; at time t the data structure stores the items that
are ‘living’ at time t. Let us think of the ith item as being an interval [si, ti] in
the unit interval, containing a unique key ki of supplementary information. The
ith item is ‘born’ at time si, ‘dies’ at time ti, and is ‘living’ at time t when t ∈
[si, ti]. The data structure must be able to support the dynamic operation of
searching the living items based on key value.” Id. at 2-3.

“In HwLD, items are stored in a hash table of H buckets, based on the hash
value of the key. The distinguishing feature of HwLD is that an item is not
deleted as soon as it dies; the ‘lazy deletion’ strategy deletes a dead item only

EXHIBIT C-3

Joint Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

US2008 1290275.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)

(“Mathieu”) alone and in combination
when a later insertion accesses the same bucket. The number H of buckets is
chosen so that the expected number of items per bucket is small. HwLD is
thus more time-efficient than doing ‘vigilant-deletion,’ at a cost of storing
some dead items.” Id. at 3.

Moreover, it is inherent to the Mathieu disclosure that the hash table described
herein is a separate-chaining hash table to resolve unavoidable key collisions,
where each slot of the bucket array is a pointer to a linked list that contains the
key-value pairs that hash to the same location. Other data structures, such as
balanced trees, only offer logarithmic time complexity and can be complicated
to implement and require several pointers per item. With a suitable number of
buckets, the separate-chaining hash table solution offers constant expected
search times and makes deletion easy.

To the extent is it not inherent, it would be obvious to combine Mathieu with
the prior art disclosed in, The Complexity of Hashing with Lazy Deletion,
Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of Hashing
with Lazy Deletion, 1 Algorithmica 17, 18 (November, 1986) (“Van Wyk”),
because Mathieu describes and incorporates Van Wyk by reference. Mathieu at
2. Van Wyk discloses a method of hashing with lazy deletion using a separate-
chaining hash table as a more efficient solution to collisions than the available
alternatives, such as balanced trees. See Exhibit C-1 which is herein
incorporated by reference.

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the

Mathieu discloses means, utilizing the record search means, for accessing the
linked list and, at the same time, removing at least some of the expired ones of
the records in the linked list. Mathieu also discloses utilizing the record search
means, for inserting, retrieving, and deleting records from the system and, at

EXHIBIT C-3

Joint Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

US2008 1290275.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)

(“Mathieu”) alone and in combination
removing at least some of
the expired ones of the
records in the linked list.

system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

the same time, removing at least some expired ones of the records in the
accessed linked list of records.

For example, Mathieu discloses “a non-Markovian process (data structure) for
processing plane-sweep information in computational geometry, called
‘hashing with lazy deletion’ (HwLD).” Mathieu, supra at 1.

Moreover, Mathieu discloses that “[p]lane-sweep algorithms process a
sequence of items over time; at time t the data structure stores the items that
are ‘living’ at time t. Let us think of the ith item as being an interval [si, ti] in
the unit interval, containing a unique key ki of supplementary information. The
ith item is ‘born’ at time si, ‘dies’ at time ti, and is ‘living’ at time t when t ∈
[si, ti]. The data structure must be able to support the dynamic operation of
searching the living items based on key value.” Id. at 2-3.

“In HwLD, items are stored in a hash table of H buckets, based on the hash
value of the key. The distinguishing feature of HwLD is that an item is not
deleted as soon as it dies; the ‘lazy deletion’ strategy deletes a dead item only
when a later insertion accesses the same bucket. The number H of buckets is
chosen so that the expected number of items per bucket is small. HwLD is
thus more time-efficient than doing ‘vigilant-deletion,’ at a cost of storing
some dead items.” Id. at 3.

Moreover, it is inherent to the Mathieu disclosure that the hash table described
herein is a separate-chaining hash table to resolve unavoidable key collisions,
where each slot of the bucket array is a pointer to a linked list that contains the
key-value pairs that hash to the same location. Other data structures, such as
balanced trees, only offer logarithmic time complexity and can be complicated

EXHIBIT C-3

Joint Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

US2008 1290275.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)

(“Mathieu”) alone and in combination
to implement and require several pointers per item. With a suitable number of
buckets, the separate-chaining hash table solution offers constant expected
search times and makes deletion easy.

To the extent is it not inherent, it would be obvious to combine Mathieu with
the prior art disclosed in, The Complexity of Hashing with Lazy Deletion,
Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of Hashing
with Lazy Deletion, 1 Algorithmica 17, 18 (November, 1986) (“Van Wyk”),
because Mathieu describes and incorporates Van Wyk by reference. Mathieu
at 2. Van Wyk discloses a method of hashing with lazy deletion using a
separate-chaining hash table as a more efficient solution to collisions than the
available alternatives, such as balanced trees. See Exhibit C-1 which is herein
incorporated by reference.

To the extent Bedrock argues that Mathieu does not anticipate this element,
based on general knowledge and/or in combination with Knuth and/or Kruse,
one of ordinary skill in the art would recognize that the Mathieu applies to
insertions, retrievals, and/or deletions of automatically expired records because
these are all basic functions that can be performed in the same manner on a
hash table or a liked list. See, e.g., “The Art of Computer Programming”,
Sorting and Searching, D.E. Knuth, Addison-Wesley Series in Computer
Science and Information Processing, pp. 506-549; “Data Structures and
Program Design”, R.L. Kruse, Prentice-Hall, Inc. 1984, pp. 104-148.”

2. The information storage
and retrieval system
according to claim 1
further including means for

6. The information storage
and retrieval system
according to claim 5
further including means for

Mathieu discloses the information storage and retrieval system further
including means for dynamically determining maximum number for the record
search means to remove in the accessed linked list of records. Mathieu
teaches a method for calculating a bound on the space complexity of the

EXHIBIT C-3

Joint Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

US2008 1290275.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)

(“Mathieu”) alone and in combination
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

hashing with lazy deletion algorithm, i.e., the number of expired elements that
would remain in the linked lists forming the external chains of the hash table.
See, e.g., Mathieu at 12-22. That bound calculation is a means for dynamically
determining the maximum number to remove, since the maximum number of
elements to remove should never exceed the number of expired elements that
would remain in the linked lists.

To the extent Mathieu does not disclose this element, Mathieu combined with
Morrison, Kenyon-Mathieu or Aldous discloses this element. Morrison,
Kenyon-Mathieu, and Aldous also teach methods for calculating a bound on
the space complexity of the hashing with lazy deletion algorithm. See, e.g.,
Morrison at 1156-61, Kenyon-Mathieu at 475-486, Aldous 17-21.

It would have been obvious to one of ordinary skill in the art that these
methods of calculating bounds on the number of expired elements stored in the
linked list could also be used to dynamically determine a maximum number for
the record search means disclosed in Mathieu to remove. One of ordinary
skill would have been motivated to combine the teachings of Morrison,
Kenyon-Mathieu, and Aldous with Mathieu because they all sought to analyze
the complexity of the hashing with lazy deletion algorithm, and each of the
papers refers to and builds upon the work of those papers preceding. See, e.g.,
Morrison at 1155, 1158, Mathieu at 1-4, Kenyon-Mathieu at 473-475, Aldous
at 2-3.

Mathieu combined with Dirks, Thatte, the ’663 patent and/or the Opportunistic
Garbage Collection Articles discloses an information storage and retrieval
system further including means for dynamically determining maximum
number for the record search means to remove in the accessed linked list of

EXHIBIT C-3

Joint Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

US2008 1290275.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)

(“Mathieu”) alone and in combination
records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than

EXHIBIT C-3

Joint Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

US2008 1290275.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)

(“Mathieu”) alone and in combination
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

EXHIBIT C-3

Joint Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

US2008 1290275.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)

(“Mathieu”) alone and in combination
As both Mathieu and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as Mathieu. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Mathieu’s technique of
“lazy deletion” would be nothing more than the predictable use of prior art
elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Mathieu’s system and
method of “lazy deletion” and would have seen the benefits of doing so. One
possible benefit, for example, is that the system and method of lazy deletion
could perform a specified number of deletions on any given sweep, thus saving
the system from performing sometimes time-consuming sweeps.

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Mathieu with the means
for dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. For example,

EXHIBIT C-3

Joint Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

US2008 1290275.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)

(“Mathieu”) alone and in combination
Thatte discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in Exhibit B-1,
which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Mathieu with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to
combine Mathieu with Thatte and recognized the benefits of doing so. For
example, the removal of expired records described in Mathieu can be
burdensome on the system, adding to the system’s load and slowing down the
system’s processing. One of ordinary skill in the art would recognize that
combining Mathieu with the teachings of Thatte would solve this problem by
dynamically determining how many records to delete based on, among other
things, the system load. Moreover, the '120 patent discloses that "[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one." '120 at
7:10-15. Thus, the '120 patent provides motivations to combine Mathieu with
Thatte.

EXHIBIT C-3

Joint Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

US2008 1290275.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)

(“Mathieu”) alone and in combination

Alternatively, it would also be obvious to combine Mathieu with the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in Exhibit B-13, which is hereby incorporated by reference in its entirety. For
example as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

EXHIBIT C-3

Joint Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

US2008 1290275.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)

(“Mathieu”) alone and in combination
This hybrid deletion is shown in Figure 5.

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,

EXHIBIT C-3

Joint Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

US2008 1290275.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)

(“Mathieu”) alone and in combination
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Mathieu and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as Mathieu. Moreover, one of ordinary skill in the art would recognize
that it would improve similar systems and methods in the same way. As the
’120 patent states “[a] person skilled in the art will appreciate that the
technique of removing all expired records while searching the linked list can
be expanded to include techniques whereby not necessarily all expired records
are removed, and that the decision regarding if and how many records to delete
can be a dynamic one.” The ’120 patent at 7:10-15. Additionally, one of
ordinary skill in the art would recognize that the result of combining the ’663
patent’s deletion decision procedure with Mathieu’s technique of “lazy
deletion” would be nothing more than the predictable use of prior art elements

EXHIBIT C-3

Joint Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

US2008 1290275.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)

(“Mathieu”) alone and in combination
according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Mathieu’s
system and method of “lazy deletion” and would have seen the benefits of
doing so. One such benefit, for example, is that the system and method of lazy
deletion would avoid performing deletions when the system load exceeded a
threshold.

Alternatively, it would also be obvious to combine Mathieu with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

EXHIBIT C-3

Joint Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

US2008 1290275.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)

(“Mathieu”) alone and in combination

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Mathieu and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Mathieu. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the

EXHIBIT C-3

Joint Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

US2008 1290275.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)

(“Mathieu”) alone and in combination
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Mathieu’s technique of “lazy deletion” would be nothing more
than the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Mathieu’s system
and method of “lazy deletion” and would have seen the benefits of doing so.
One such benefit, for example, is that the system and method of lazy deletion
would only perform deletions when the system was not already too overloaded,
thus preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Mathieu to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Mathieu with the fundamental concept of dynamically determining

EXHIBIT C-3

Joint Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

US2008 1290275.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)

(“Mathieu”) alone and in combination
the maximum number of expired records to remove in an accessed linked list
of records to solve a number of potential problems. For example, the removal
of expired records described in Mathieu can be burdensome on the system,
adding to the system’s load and slowing down the system’s processing.
Moreover, the removal could also force an interruption in real-time processing
as the processing waits for the removal to complete. Indeed, part of the
motivation for the system disclosed in Mathieu is avoiding these problems.
One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Mathieu in combination with Morrison, Kenyon-
Mathieu, Aldous, Dirks, Thatte, the ‘663 Patent, or the Opportunistic Garbage
Collection References, it is disclosed by Linux 2.0.1, which describes
dynamically determining maximum number of expired ones of the records to
remove when the linked list is accessed. It would have been obvious to
combine Linux 2.0.1 with Mathieu. For example, both Linux 2.0.1 and
Mathieu describe systems and methods for performing data storage and
retrieval using known programming techniques to yield a predictable result.

When invoked, the function rt_cache_add automatically increments an

EXHIBIT C-3

Joint Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

US2008 1290275.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)

(“Mathieu”) alone and in combination
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds

EXHIBIT C-3

Joint Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

US2008 1290275.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)

(“Mathieu”) alone and in combination
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves

EXHIBIT C-3

Joint Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

US2008 1290275.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)

(“Mathieu”) alone and in combination
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

EXHIBIT C-3

Joint Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

US2008 1290275.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)

(“Mathieu”) alone and in combination
Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

To the extent the preamble is a limitation, Mathieu discloses a method for
storing and retrieving information records using a linked list to store and
provide access to the records, at least some of the records automatically
expiring. Mathieu also discloses a method for storing and retrieving
information records using a hashing technique to provide access to the records
and using an external chaining technique to store the records with same hash
address, at least some of the records automatically expiring.

To the extent the preamble is a limitation, Mathieu discloses a method for
storing and retrieving information records using a hashing technique to provide
access to the records and using an external chaining technique to store the
records with same hash address, at least some of the records automatically
expiring.

For example, Mathieu discloses “a non-Markovian process (data structure) for
processing plane-sweep information in computational geometry, called
‘hashing with lazy deletion’ (HwLD).” Mathieu, supra at 1.

Moreover, it is inherent to the Mathieu disclosure that the hash table described
herein is a separate-chaining hash table to resolve unavoidable key collisions,
where each slot of the bucket array is a pointer to a linked list that contains the
key-value pairs that hash to the same location. Other data structures, such as
balanced trees, only offer logarithmic time complexity and can be complicated
to implement and require several pointers per item. With a suitable number of

EXHIBIT C-3

Joint Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

US2008 1290275.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)

(“Mathieu”) alone and in combination
buckets, the separate-chaining hash table solution offers constant expected
search times and makes deletion easy. To the extent is it not inherent, it would
be obvious to combine Mathieu with the prior art disclosed in, The Complexity
of Hashing with Lazy Deletion, Christopher J. Van Wyk and Jeffrey Scott
Vitter, The Complexity of Hashing with Lazy Deletion, 1 Algorithmica 17, 18
(November, 1986) (“Van Wyk”), because Mathieu describes and incorporates
Van Wyk by reference. Mathieu at 2. Van Wyk discloses a method of hashing
with lazy deletion using a separate-chaining hash table as a more efficient
solution to collisions than the available alternatives, such as balanced trees.
See Exhibit C-1 which is herein incorporated by reference.

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

Mathieu discloses accessing a linked list of records. Mathieu also discloses
accessing a linked list of records having same hash address.

For example, Mathieu discloses “a non-Markovian process (data structure) for
processing plane-sweep information in computational geometry, called
‘hashing with lazy deletion’ (HwLD).” Mathieu, supra at 1.

Moreover, Mathieu discloses that “[p]lane-sweep algorithms process a
sequence of items over time; at time t the data structure stores the items that
are ‘living’ at time t. Let us think of the ith item as being an interval [si, ti] in
the unit interval, containing a unique key ki of supplementary information. The
ith item is ‘born’ at time si, ‘dies’ at time ti, and is ‘living’ at time t when t ∈
[si, ti]. The data structure must be able to support the dynamic operation of
searching the living items based on key value.” Id. at 2-3.

Moreover, it is inherent to the Mathieu disclosure that the hash table described
herein is a separate-chaining hash table to resolve unavoidable key collisions,

EXHIBIT C-3

Joint Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

US2008 1290275.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)

(“Mathieu”) alone and in combination
where each slot of the bucket array is a pointer to a linked list that contains the
key-value pairs that hash to the same location. Other data structures, such as
balanced trees, only offer logarithmic time complexity and can be complicated
to implement and require several pointers per item. With a suitable number of
buckets, the separate-chaining hash table solution offers constant expected
search times and makes deletion easy.

To the extent is it not inherent, it would be obvious to combine Mathieu with
the prior art disclosed in, The Complexity of Hashing with Lazy Deletion,
Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of Hashing
with Lazy Deletion, 1 Algorithmica 17, 18 (November, 1986) (“Van Wyk”),
because Mathieu describes and incorporates Van Wyk by reference. Mathieu at
2. Van Wyk discloses a method of hashing with lazy deletion using a separate-
chaining hash table as a more efficient solution to collisions than the available
alternatives, such as balanced trees. See Exhibit C-1 which is herein
incorporated by reference.

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

Mathieu discloses identifying at least some of the automatically expired ones
of the records.

For example, Mathieu discloses “a non-Markovian process (data structure) for
processing plane-sweep information in computational geometry, called
‘hashing with lazy deletion’ (HwLD).” Mathieu, supra at 1.

Moreover, Mathieu discloses that “[p]lane-sweep algorithms process a
sequence of items over time; at time t the data structure stores the items that
are ‘living’ at time t. Let us think of the ith item as being an interval [si, ti] in
the unit interval, containing a unique key ki of supplementary information. The

EXHIBIT C-3

Joint Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

US2008 1290275.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)

(“Mathieu”) alone and in combination
ith item is ‘born’ at time si, ‘dies’ at time ti, and is ‘living’ at time t when t ∈
[si, ti]. The data structure must be able to support the dynamic operation of
searching the living items based on key value.” Id. at 2-3.

“In HwLD, items are stored in a hash table of H buckets, based on the hash
value of the key. The distinguishing feature of HwLD is that an item is not
deleted as soon as it dies; the ‘lazy deletion’ strategy deletes a dead item only
when a later insertion accesses the same bucket. The number H of buckets is
chosen so that the expected number of items per bucket is small. HwLD is
thus more time-efficient than doing ‘vigilant-deletion,’ at a cost of storing
some dead items.” Id. at 3.

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

Mathieu discloses removing at least some of the automatically expired records
from the linked list when the linked list is accessed.

For example, Mathieu discloses “a non-Markovian process (data structure) for
processing plane-sweep information in computational geometry, called
‘hashing with lazy deletion’ (HwLD).” Id. at 1.

Moreover, Mathieu discloses that “[p]lane-sweep algorithms process a
sequence of items over time; at time t the data structure stores the items that
are ‘living’ at time t. Let us think of the ith item as being an interval [si, ti] in
the unit interval, containing a unique key ki of supplementary information. The
ith item is ‘born’ at time si, ‘dies’ at time ti, and is ‘living’ at time t when t ∈
[si, ti]. The data structure must be able to support the dynamic operation of
searching the living items based on key value.” Id. at 2-3.

“In HwLD, items are stored in a hash table of H buckets, based on the hash
value of the key. The distinguishing feature of HwLD is that an item is not

EXHIBIT C-3

Joint Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

US2008 1290275.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)

(“Mathieu”) alone and in combination
deleted as soon as it dies; the ‘lazy deletion’ strategy deletes a dead item only
when a later insertion accesses the same bucket. The number H of buckets is
chosen so that the expected number of items per bucket is small. HwLD is
thus more time-efficient than doing ‘vigilant-deletion,’ at a cost of storing
some dead items.” Id. at 3.

Moreover, it is inherent to the Mathieu disclosure that the hash table described
herein is a separate-chaining hash table to resolve unavoidable key collisions,
where each slot of the bucket array is a pointer to a linked list that contains the
key-value pairs that hash to the same location. Other data structures, such as
balanced trees, only offer logarithmic time complexity and can be complicated
to implement and require several pointers per item. With a suitable number of
buckets, the separate-chaining hash table solution offers constant expected
search times and makes deletion easy.

To the extent is it not inherent, it would be obvious to combine Mathieu with
the prior art disclosed in, The Complexity of Hashing with Lazy Deletion,
Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of Hashing
with Lazy Deletion, 1 Algorithmica 17, 18 (November, 1986) (“Van Wyk”),
because Mathieu describes and incorporates Van Wyk by reference. Mathieu
at 2. Van Wyk discloses a method of hashing with lazy deletion using a
separate-chaining hash table as a more efficient solution to collisions than the
available alternatives, such as balanced trees. See Exhibit C-1 which is herein
incorporated by reference.

 [7d] inserting, retrieving or
deleting one of the records
from the system following

Mathieu discloses inserting, retrieving or deleting one of the records from the
system following the step of removing.

EXHIBIT C-3

Joint Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

US2008 1290275.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)

(“Mathieu”) alone and in combination
the step of removing. Moreover, Mathieu discloses that “[p]lane-sweep algorithms process a

sequence of items over time; at time t the data structure stores the items that
are ‘living’ at time t. Let us think of the ith item as being an interval [si, ti] in
the unit interval, containing a unique key ki of supplementary information. The
ith item is ‘born’ at time si, ‘dies’ at time ti, and is ‘living’ at time t when t ∈
[si, ti]. The data structure must be able to support the dynamic operation of
searching the living items based on key value.” Id. at 2-3.

“In HwLD, items are stored in a hash table of H buckets, based on the hash
value of the key. The distinguishing feature of HwLD is that an item is not
deleted as soon as it dies; the ‘lazy deletion’ strategy deletes a dead item only
when a later insertion accesses the same bucket. The number H of buckets is
chosen so that the expected number of items per bucket is small. HwLD is
thus more time-efficient than doing ‘vigilant-deletion,’ at a cost of storing
some dead items.” Id. at 3.

Moreover, it is inherent to the Mathieu disclosure that the hash table described
herein is a separate-chaining hash table to resolve unavoidable key collisions,
where each slot of the bucket array is a pointer to a linked list that contains the
key-value pairs that hash to the same location. Other data structures, such as
balanced trees, only offer logarithmic time complexity and can be complicated
to implement and require several pointers per item. With a suitable number of
buckets, the separate-chaining hash table solution offers constant expected
search times and makes deletion easy.

To the extent is it not inherent, it would be obvious to combine Mathieu with
the prior art disclosed in, The Complexity of Hashing with Lazy Deletion,
Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of Hashing

EXHIBIT C-3

Joint Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

US2008 1290275.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)

(“Mathieu”) alone and in combination
with Lazy Deletion, 1 Algorithmica 17, 18 (November, 1986) (“Van Wyk”),
because Mathieu describes and incorporates Van Wyk by reference. Mathieu at
2. Van Wyk discloses a method of hashing with lazy deletion using a separate-
chaining hash table as a more efficient solution to collisions than the available
alternatives, such as balanced trees. See Exhibit C-1 which is herein
incorporated by reference.

Moreover, Van Wyk and Vitter explain that “[t]he insertion of element xi
proceeds as follows:

1) Compute h = n(ki)
2) Remove from the hash chain in bucket h any items xj with tj < sj [i.e. remove
all expired elements]
3) Add xi so the chain in bucket h remains sorted by termination time.” Van
Wyk at 19.

This method clearly contemplates the insertion occurring after the removal of
expired elements.

4. The method according to
claim 3 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

Mathieu discloses dynamically determining maximum number of expired ones
of the records to remove when the linked list is accessed. Mathieu teaches a
method for calculating a bound on the space complexity of the hashing with
lazy deletion algorithm, i.e., the number of expired elements that would remain
in the linked lists forming the external chains of the hash table. See, e.g.,
Mathieu at 12-22. That bound calculation is a means for dynamically
determining the maximum number to remove, since the maximum number of
elements to remove should never exceed the number of expired elements that
would remain in the linked lists.

EXHIBIT C-3

Joint Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

US2008 1290275.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)

(“Mathieu”) alone and in combination
To the extent Mathieu does not disclose this element, Mathieu combined with
Morrison, Kenyon-Mathieu or Aldous discloses this element. Morrison,
Kenyon-Mathieu, and Aldous also teach methods for calculating a bound on
the space complexity of the hashing with lazy deletion algorithm. See, e.g.,
Morrison at 1156-61, Kenyon-Mathieu at 475-486, Aldous 17-21.

It would have been obvious to one of ordinary skill in the art that these
methods of calculating bounds on the number of expired elements stored in the
linked list could also be used to dynamically determine a maximum number for
the record search means disclosed in Mathieu to remove. One of ordinary
skill would have been motivated to combine the teachings of Morrison,
Kenyon-Mathieu, and Aldous with Mathieu because they all sought to analyze
the complexity of the hashing with lazy deletion algorithm, and each of the
papers refers to and builds upon the work of those papers preceding. See, e.g.,
Morrison at 1155, 1158, Mathieu at 1-4, Kenyon-Mathieu at 473-475, Aldous
at 2-3.

Mathieu combined with Dirks, Thatte, the ’663 patent and/or the Opportunistic
Garbage Collection Articles discloses dynamically determining maximum
number of expired ones of the records to remove when the linked list is
accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

EXHIBIT C-3

Joint Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

US2008 1290275.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)

(“Mathieu”) alone and in combination
For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

EXHIBIT C-3

Joint Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

US2008 1290275.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)

(“Mathieu”) alone and in combination

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Mathieu and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as Mathieu. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching

EXHIBIT C-3

Joint Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

US2008 1290275.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)

(“Mathieu”) alone and in combination
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Mathieu’s technique of
“lazy deletion” would be nothing more than the predictable use of prior art
elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Mathieu’s system and
method of “lazy deletion” and would have seen the benefits of doing so. One
possible benefit, for example, is that the system and method of lazy deletion
could perform a specified number of deletions on any given sweep, thus saving
the system from performing sometimes time-consuming sweeps.

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Mathieu with the means
for dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. For example,
Thatte discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in Exhibit B-1,
which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same

EXHIBIT C-3

Joint Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

US2008 1290275.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)

(“Mathieu”) alone and in combination
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Mathieu with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to
combine Mathieu with Thatte and recognized the benefits of doing so. For
example, the removal of expired records described in Mathieu can be
burdensome on the system, adding to the system’s load and slowing down the
system’s processing. One of ordinary skill in the art would recognize that
combining Mathieu with the teachings of Thatte would solve this problem by
dynamically determining how many records to delete based on, among other
things, the system load. Moreover, the '120 patent discloses that "[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one." '120 at
7:10-15. Thus, the '120 patent provides motivations to combine Mathieu with
Thatte.

Alternatively, it would also be obvious to combine Mathieu with the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in Exhibit B-13, which is hereby incorporated by reference in its entirety. For
example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is

EXHIBIT C-3

Joint Invalidity Contentions & Production of
Documents

35 Case No. 6:09-CV-549-LED

US2008 1290275.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)

(“Mathieu”) alone and in combination
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT C-3

Joint Invalidity Contentions & Production of
Documents

36 Case No. 6:09-CV-549-LED

US2008 1290275.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)

(“Mathieu”) alone and in combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does

EXHIBIT C-3

Joint Invalidity Contentions & Production of
Documents

37 Case No. 6:09-CV-549-LED

US2008 1290275.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)

(“Mathieu”) alone and in combination
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Mathieu and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as Mathieu. Moreover, one of ordinary skill in the art would recognize
that it would improve similar systems and methods in the same way. As the
’120 patent states “[a] person skilled in the art will appreciate that the
technique of removing all expired records while searching the linked list can
be expanded to include techniques whereby not necessarily all expired records
are removed, and that the decision regarding if and how many records to delete
can be a dynamic one.” The ’120 patent at 7:10-15. Additionally, one of
ordinary skill in the art would recognize that the result of combining the ’663
patent’s deletion decision procedure with Mathieu’s technique of “lazy
deletion” would be nothing more than the predictable use of prior art elements
according to their established functions.

EXHIBIT C-3

Joint Invalidity Contentions & Production of
Documents

38 Case No. 6:09-CV-549-LED

US2008 1290275.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)

(“Mathieu”) alone and in combination
By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Mathieu’s
system and method of “lazy deletion” and would have seen the benefits of
doing so. One such benefit, for example, is that the system and method of lazy
deletion would avoid performing deletions when the system load exceeded a
threshold.

Alternatively, it would also be obvious to combine Mathieu with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide

EXHIBIT C-3

Joint Invalidity Contentions & Production of
Documents

39 Case No. 6:09-CV-549-LED

US2008 1290275.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)

(“Mathieu”) alone and in combination
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Mathieu and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Mathieu. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching

EXHIBIT C-3

Joint Invalidity Contentions & Production of
Documents

40 Case No. 6:09-CV-549-LED

US2008 1290275.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)

(“Mathieu”) alone and in combination
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Mathieu’s technique of “lazy deletion” would be nothing more
than the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Mathieu’s system
and method of “lazy deletion” and would have seen the benefits of doing so.
One such benefit, for example, is that the system and method of lazy deletion
would only perform deletions when the system was not already too overloaded,
thus preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Mathieu to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Mathieu with the fundamental concept of dynamically determining
the maximum number of expired records to remove in an accessed linked list
of records to solve a number of potential problems. For example, the removal

EXHIBIT C-3

Joint Invalidity Contentions & Production of
Documents

41 Case No. 6:09-CV-549-LED

US2008 1290275.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)

(“Mathieu”) alone and in combination
of expired records described in Mathieu can be burdensome on the system,
adding to the system’s load and slowing down the system’s processing.
Moreover, the removal could also force an interruption in real-time processing
as the processing waits for the removal to complete. Indeed, part of the
motivation for the system disclosed in Mathieu is avoiding these problems.
One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Mathieu in combination with Morrison, Kenyon-
Mathieu, Aldous, Dirks, Thatte, the ‘663 Patent, or the Opportunistic Garbage
Collection References, it is disclosed by Linux 2.0.1, which describes
dynamically determining maximum number of expired ones of the records to
remove when the linked list is accessed. It would have been obvious to
combine Linux 2.0.1 with Mathieu. For example, both Linux 2.0.1 and
Mathieu describe systems and methods for performing data storage and
retrieval using known programming techniques to yield a predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function

EXHIBIT C-3

Joint Invalidity Contentions & Production of
Documents

42 Case No. 6:09-CV-549-LED

US2008 1290275.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)

(“Mathieu”) alone and in combination
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux

EXHIBIT C-3

Joint Invalidity Contentions & Production of
Documents

43 Case No. 6:09-CV-549-LED

US2008 1290275.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)

(“Mathieu”) alone and in combination
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function

EXHIBIT C-3

Joint Invalidity Contentions & Production of
Documents

44 Case No. 6:09-CV-549-LED

US2008 1290275.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)

(“Mathieu”) alone and in combination
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than

EXHIBIT C-3

Joint Invalidity Contentions & Production of
Documents

45 Case No. 6:09-CV-549-LED

US2008 1290275.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)

(“Mathieu”) alone and in combination
the maximum number of records that the function rt_cache_add can
remove from a linked list.

EXHIBIT C-4

Joint Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

US2008 1290277.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, General Methods for
the Analysis of the Maximum Size of Dynamic Data Structures, in Proc. 16th

International Colloquium on Automata, Languages, and Programming,
Stresa, Italy, 473 (1989) (“Kenyon-Mathieu”) alone and in combination

1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, Kenyon-Mathieu discloses an
information storage and retrieval system.

For example, Kenyon-Mathieu discloses “a non-Markovian process called
hashing with lazy deletion (HwLD), which corresponds to an efficient way of
processing sweepline information in computational geometry.” Claire M.
Kenyon-Mathieu and Jeffrey Scott Vitter, General Methods for the Analysis of
the Maximum Size of Dynamic Data Structures, in Proc. 16th International
Colloquium on Automata, Languages, and Programming, Stresa, Italy, 473
(1989).

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

Kenyon-Mathieu discloses a linked list to store and provide access to records
stored in a memory of the system, at least some of the records automatically
expiring.
Kenyon-Mathieu also discloses a hashing means to provide access to records
stored in a memory of the system and using an external chaining technique to
store the records with same hash address, at least some of the records
automatically expiring.

For example, Kenyon-Mathieu discloses “a non-Markovian process called
hashing with lazy deletion (HwLD), which corresponds to an efficient way of
processing sweepline information in computational geometry.” Id.

Moreover, Kenyon-Mathieu discloses “[d]ata structures process a sequence of
items over time; at time t the data structure stores the items that are ‘living’ at
time t. Let us think of the ith item as being an interval [si, ti] in the unit
interval, containing a unique key ki of supplementary information. The ith

EXHIBIT C-4

Joint Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

US2008 1290277.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, General Methods for
the Analysis of the Maximum Size of Dynamic Data Structures, in Proc. 16th

International Colloquium on Automata, Languages, and Programming,
Stresa, Italy, 473 (1989) (“Kenyon-Mathieu”) alone and in combination

item is ‘born’ at time si, ‘dies’ at time ti, and is ‘living’ at time t when t ∈ [si,
ti]. The data structure also handles dynamic queries over time.” Id. at 474.

“In HwLD, items are stored in a hash table of H buckets, based upon the hash
value of the key. The distinguishing feature of HwLD is that an item is not
deleted as soon as it dies; the ‘lazy deletion’ strategy deletes a dead item only
when a later insertion accesses the same bucket. The number H of buckets is
chosen so that the expected number of items per bucket is small. HwLD is
thus more time-efficient than doing ‘vigilant-deletion,’ at a cost of storing dead
items.” Id.

Moreover, it is inherent to the Kenyon-Mathieu disclosure that the hash table
described herein is a separate-chaining hash table to resolve unavoidable key
collisions, where each slot of the bucket array is a pointer to a linked list that
contains the key-value pairs that hash to the same location. Other data
structures, such as balanced trees, only offer logarithmic time complexity and
can be complicated to implement and require several pointers per item. With a
suitable number of buckets, the separate-chaining hash table solution offers
constant expected search times and makes deletion easy.

To the extent is it not inherent, it would be obvious to combine Kenyon-
Mathieu with the prior art disclosed in, The Complexity of Hashing with Lazy
Deletion, Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of
Hashing with Lazy Deletion, 1 Algorithmica 17, 18 (November, 1986) (“Van
Wyk”), because Kenyon-Mathieu describes and incorporates Van Wyk by
reference. Kenyon-Mathieu at 473. Van Wyk discloses a method of hashing
with lazy deletion using a separate-chaining hash table as a more efficient

EXHIBIT C-4

Joint Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

US2008 1290277.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, General Methods for
the Analysis of the Maximum Size of Dynamic Data Structures, in Proc. 16th

International Colloquium on Automata, Languages, and Programming,
Stresa, Italy, 473 (1989) (“Kenyon-Mathieu”) alone and in combination

solution to collisions than the available alternatives, such as balanced trees. See
Exhibit C-1 which is herein incorporated by reference.

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of
records having the same
hash address,

Kenyon-Mathieu discloses a record search means utilizing a search key to
access the linked list. Kenyon-Mathieu also discloses a record search means
utilizing a search key to access a linked list of records having the same hash
address.

For example, Kenyon-Mathieu discloses “a non-Markovian process called
hashing with lazy deletion (HwLD), which corresponds to an efficient way of
processing sweepline information in computational geometry.” Kenyon-
Mathieu, supra at 473.

Moreover, Kenyon-Mathieu discloses “[d]ata structures process a sequence of
items over time; at time t the data structure stores the items that are ‘living’ at
time t. Let us think of the ith item as being an interval [si, ti] in the unit
interval, containing a unique key ki of supplementary information. The ith
item is ‘born’ at time si, ‘dies’ at time ti, and is ‘living’ at time t when t ∈ [si,
ti]. The data structure also handles dynamic queries over time.” Id. at 474.

Moreover, it is inherent to the Kenyon-Mathieu disclosure that the hash table
described herein is a separate-chaining hash table to resolve unavoidable key
collisions, where each slot of the bucket array is a pointer to a linked list that
contains the key-value pairs that hash to the same location. Other data
structures, such as balanced trees, only offer logarithmic time complexity and
can be complicated to implement and require several pointers per item. With a
suitable number of buckets, the separate-chaining hash table solution offers

EXHIBIT C-4

Joint Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

US2008 1290277.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, General Methods for
the Analysis of the Maximum Size of Dynamic Data Structures, in Proc. 16th

International Colloquium on Automata, Languages, and Programming,
Stresa, Italy, 473 (1989) (“Kenyon-Mathieu”) alone and in combination

constant expected search times and makes deletion easy.

To the extent is it not inherent, it would be obvious to combine Kenyon-
Mathieu with the prior art disclosed in, The Complexity of Hashing with Lazy
Deletion, Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of
Hashing with Lazy Deletion, 1 Algorithmica 17, 18 (November, 1986) (“Van
Wyk”), because Kenyon-Mathieu describes and incorporates Van Wyk by
reference. Kenyon-Mathieu at 473. Van Wyk discloses a method of hashing
with lazy deletion using a separate-chaining hash table as a more efficient
solution to collisions than the available alternatives, such as balanced trees. See
Exhibit C-1 which is herein incorporated by reference.

[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the
records from the linked list
when the linked list is
accessed, and

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

Kenyon-Mathieu discloses the record search means including a means for
identifying and removing at least some of the expired ones of the records from
the linked list when the linked list is accessed. Kenyon-Mathieu also discloses
the record search means including means for identifying and removing at least
some expired ones of the records from the linked list of records when the
linked list is accessed.

For example, Kenyon-Mathieu discloses “a non-Markovian process called
hashing with lazy deletion (HwLD), which corresponds to an efficient way of
processing sweepline information in computational geometry.” Kenyon-
Mathieu, supra at 473.

Moreover, Kenyon-Mathieu discloses “[d]ata structures process a sequence of
items over time; at time t the data structure stores the items that are ‘living’ at
time t. Let us think of the ith item as being an interval [si, ti] in the unit

EXHIBIT C-4

Joint Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

US2008 1290277.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, General Methods for
the Analysis of the Maximum Size of Dynamic Data Structures, in Proc. 16th

International Colloquium on Automata, Languages, and Programming,
Stresa, Italy, 473 (1989) (“Kenyon-Mathieu”) alone and in combination

interval, containing a unique key ki of supplementary information. The ith
item is ‘born’ at time si, ‘dies’ at time ti, and is ‘living’ at time t when t ∈ [si,
ti]. The data structure also handles dynamic queries over time.” Id. at 474.

“In HwLD, items are stored in a hash table of H buckets, based upon the hash
value of the key. The distinguishing feature of HwLD is that an item is not
deleted as soon as it dies; the ‘lazy deletion’ strategy deletes a dead item only
when a later insertion accesses the same bucket. The number H of buckets is
chosen so that the expected number of items per bucket is small. HwLD is
thus more time-efficient than doing ‘vigilant-deletion,’ at a cost of storing dead
items.” Id.

Moreover, it is inherent to the Kenyon-Mathieu disclosure that the hash table
described herein is a separate-chaining hash table to resolve unavoidable key
collisions, where each slot of the bucket array is a pointer to a linked list that
contains the key-value pairs that hash to the same location. Other data
structures, such as balanced trees, only offer logarithmic time complexity and
can be complicated to implement and require several pointers per item. With a
suitable number of buckets, the separate-chaining hash table solution offers
constant expected search times and makes deletion easy.

To the extent is it not inherent, it would be obvious to combine Kenyon-
Mathieu with the prior art disclosed in, The Complexity of Hashing with Lazy
Deletion, Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of
Hashing with Lazy Deletion, 1 Algorithmica 17, 18 (November, 1986) (“Van
Wyk”), because Kenyon-Mathieu describes and incorporates Van Wyk by
reference. Kenyon-Mathieu at 473. Van Wyk discloses a method of hashing

EXHIBIT C-4

Joint Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

US2008 1290277.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, General Methods for
the Analysis of the Maximum Size of Dynamic Data Structures, in Proc. 16th

International Colloquium on Automata, Languages, and Programming,
Stresa, Italy, 473 (1989) (“Kenyon-Mathieu”) alone and in combination

with lazy deletion using a separate-chaining hash table as a more efficient
solution to collisions than the available alternatives, such as balanced trees. See
Exhibit C-1 which is herein incorporated by reference.

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

Kenyon-Mathieu discloses means, utilizing the record search means, for
accessing the linked list and, at the same time, removing at least some of the
expired ones of the records in the linked list. Kenyon-Mathieu also discloses
utilizing the record search means, for inserting, retrieving, and deleting records
from the system and, at the same time, removing at least some expired ones of
the records in the accessed linked list of records.

For example, Kenyon-Mathieu discloses “a non-Markovian process called
hashing with lazy deletion (HwLD), which corresponds to an efficient way of
processing sweepline information in computational geometry.” Kenyon-
Mathieu, supra at 473.

Moreover, Kenyon-Mathieu discloses “[d]ata structures process a sequence of
items over time; at time t the data structure stores the items that are ‘living’ at
time t. Let us think of the ith item as being an interval [si, ti] in the unit
interval, containing a unique key ki of supplementary information. The ith
item is ‘born’ at time si, ‘dies’ at time ti, and is ‘living’ at time t when t ∈ [si,
ti]. The data structure also handles dynamic queries over time.” Id. at 474.

“In HwLD, items are stored in a hash table of H buckets, based upon the hash
value of the key. The distinguishing feature of HwLD is that an item is not
deleted as soon as it dies; the ‘lazy deletion’ strategy deletes a dead item only
when a later insertion accesses the same bucket. The number H of buckets is

EXHIBIT C-4

Joint Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

US2008 1290277.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, General Methods for
the Analysis of the Maximum Size of Dynamic Data Structures, in Proc. 16th

International Colloquium on Automata, Languages, and Programming,
Stresa, Italy, 473 (1989) (“Kenyon-Mathieu”) alone and in combination

chosen so that the expected number of items per bucket is small. HwLD is
thus more time-efficient than doing ‘vigilant-deletion,’ at a cost of storing dead
items.” Id.

Moreover, it is inherent to the Kenyon-Mathieu disclosure that the hash table
described herein is a separate-chaining hash table to resolve unavoidable key
collisions, where each slot of the bucket array is a pointer to a linked list that
contains the key-value pairs that hash to the same location. Other data
structures, such as balanced trees, only offer logarithmic time complexity and
can be complicated to implement and require several pointers per item. With a
suitable number of buckets, the separate-chaining hash table solution offers
constant expected search times and makes deletion easy.

To the extent is it not inherent, it would be obvious to combine Kenyon-
Mathieu with the prior art disclosed in, The Complexity of Hashing with Lazy
Deletion, Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of
Hashing with Lazy Deletion, 1 Algorithmica 17, 18 (November, 1986) (“Van
Wyk”), because Kenyon-Mathieu describes and incorporates Van Wyk by
reference. Kenyon-Mathieu at 473. Van Wyk discloses a method of hashing
with lazy deletion using a separate-chaining hash table as a more efficient
solution to collisions than the available alternatives, such as balanced trees. See
Exhibit C-1 which is herein incorporated by reference.

To the extent Bedrock argues that Kenyon-Mathieu does not anticipate this
element, based on general knowledge and/or in combination with Knuth and/or
Kruse, one of ordinary skill in the art would recognize that the Kenyon-
Mathieu applies to insertions, retrievals, and/or deletions of automatically

EXHIBIT C-4

Joint Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

US2008 1290277.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, General Methods for
the Analysis of the Maximum Size of Dynamic Data Structures, in Proc. 16th

International Colloquium on Automata, Languages, and Programming,
Stresa, Italy, 473 (1989) (“Kenyon-Mathieu”) alone and in combination

expired records because these are all basic functions that can be performed in
the same manner on a hash table or a liked list. See, e.g., “The Art of
Computer Programming”, Sorting and Searching, D.E. Knuth, Addison-
Wesley Series in Computer Science and Information Processing, pp. 506-549;
“Data Structures and Program Design”, R.L. Kruse, Prentice-Hall, Inc. 1984,
pp. 104-148.”

2. The information storage
and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

6. The information storage
and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

Kenyon-Mathieu discloses the information storage and retrieval system further
including means for dynamically determining maximum number for the record
search means to remove in the accessed linked list of records. Kenyon-
Mathieu teaches a method for calculating a bound on the space complexity of
the hashing with lazy deletion algorithm, i.e., the number of expired elements
that would remain in the linked lists forming the external chains of the hash
table. See, e.g., Kenyon-Mathieu at 475-86. That bound calculation is a
means for dynamically determining the maximum number to remove, since the
maximum number of elements to remove should never exceed the number of
expired elements that would remain in the linked lists.

To the extent Kenyon-Mathieu does not disclose this element, Kenyon-
Mathieu combined with Morrison, Mathieu or Aldous discloses this element.
Morrison, Mathieu, and Aldous also teach methods for calculating a bound on
the space complexity of the hashing with lazy deletion algorithm. See, e.g.,
Morrison at 1156-61, Mathieu at 12-22, Aldous 17-21.

It would have been obvious to one of ordinary skill in the art that these
methods of calculating bounds on the number of expired elements stored in the
linked list could also be used to dynamically determine a maximum number for

EXHIBIT C-4

Joint Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

US2008 1290277.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, General Methods for
the Analysis of the Maximum Size of Dynamic Data Structures, in Proc. 16th

International Colloquium on Automata, Languages, and Programming,
Stresa, Italy, 473 (1989) (“Kenyon-Mathieu”) alone and in combination

the record search means disclosed in Kenyon-Mathieu to remove. One of
ordinary skill would have been motivated to combine the teachings of
Morrison, Mathieu, and Aldous with Kenyon-Mathieu because they all sought
to analyze the complexity of the hashing with lazy deletion algorithm, and
each of the papers refers to and builds upon the work of those papers
preceding. See, e.g., Morrison at 1155, 1158, Mathieu at 1-4, Kenyon-Mathieu
at 473-475, Aldous at 2-3.

Kenyon-Mathieu combined with Dirks, Thatte, the ’663 patent, and/or the
Opportunistic Garbage Collection Articles discloses an information storage
and retrieval system further including means for dynamically determining
maximum number for the record search means to remove in the accessed
linked list of records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have

EXHIBIT C-4

Joint Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

US2008 1290277.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, General Methods for
the Analysis of the Maximum Size of Dynamic Data Structures, in Proc. 16th

International Colloquium on Automata, Languages, and Programming,
Stresa, Italy, 473 (1989) (“Kenyon-Mathieu”) alone and in combination

been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of

EXHIBIT C-4

Joint Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

US2008 1290277.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, General Methods for
the Analysis of the Maximum Size of Dynamic Data Structures, in Proc. 16th

International Colloquium on Automata, Languages, and Programming,
Stresa, Italy, 473 (1989) (“Kenyon-Mathieu”) alone and in combination

entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Kenyon-Mathieu and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as Kenyon-Mathieu. Moreover, one of ordinary skill in
the art would recognize that it would improve similar systems and methods in
the same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Kenyon-Mathieu’s

EXHIBIT C-4

Joint Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

US2008 1290277.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, General Methods for
the Analysis of the Maximum Size of Dynamic Data Structures, in Proc. 16th

International Colloquium on Automata, Languages, and Programming,
Stresa, Italy, 473 (1989) (“Kenyon-Mathieu”) alone and in combination

technique of “lazy deletion” would be nothing more than the predictable use of
prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Kenyon-Mathieu’s
system and method of “lazy deletion” and would have seen the benefits of
doing so. One possible benefit, for example, is that the system and method of
lazy deletion could perform a specified number of deletions on any given
sweep, thus saving the system from performing sometimes time-consuming
sweeps.

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Kenyon-Mathieu with the
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records disclosed by Thatte. For
example, Thatte discloses a system and method using hash tables and/or linked
lists and further discloses means for dynamically determining the maximum
number for the record search means to remove in the accessed linked list of
records. The disclosure of these claim elements in Thatte is clearly shown in
Exhibit B-1, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Kenyon-Mathieu with Thatte would be nothing more than
the predictable use of prior art elements according to their established

EXHIBIT C-4

Joint Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

US2008 1290277.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, General Methods for
the Analysis of the Maximum Size of Dynamic Data Structures, in Proc. 16th

International Colloquium on Automata, Languages, and Programming,
Stresa, Italy, 473 (1989) (“Kenyon-Mathieu”) alone and in combination

functions. The resulting combination would include the capability to
determine the maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to
combine Kenyon-Mathieu with Thatte and recognized the benefits of doing so.
For example, the removal of expired records described in Kenyon-Mathieu can
be burdensome on the system, adding to the system’s load and slowing down
the system’s processing. One of ordinary skill in the art would recognize that
combining Kenyon-Mathieu with the teachings of Thatte would solve this
problem by dynamically determining how many records to delete based on,
among other things, the system load. Moreover, the '120 patent discloses
that "[a] person skilled in the art will appreciate that the technique of removing
all expired records while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records are removed, and that
the decision regarding if and how many records to delete can be a dynamic
one." '120 at 7:10-15. Thus, the '120 patent provides motivations to
combine Kenyon-Mathieu with Thatte.

Alternatively, it would also be obvious to combine Kenyon-Mathieu with the
’663 patent. Disclosure of these claim elements in the ’663 patent is clearly
shown in Exhibit B-13, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record

EXHIBIT C-4

Joint Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

US2008 1290277.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, General Methods for
the Analysis of the Maximum Size of Dynamic Data Structures, in Proc. 16th

International Colloquium on Automata, Languages, and Programming,
Stresa, Italy, 473 (1989) (“Kenyon-Mathieu”) alone and in combination

from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT C-4

Joint Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

US2008 1290277.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, General Methods for
the Analysis of the Maximum Size of Dynamic Data Structures, in Proc. 16th

International Colloquium on Automata, Languages, and Programming,
Stresa, Italy, 473 (1989) (“Kenyon-Mathieu”) alone and in combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a

EXHIBIT C-4

Joint Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

US2008 1290277.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, General Methods for
the Analysis of the Maximum Size of Dynamic Data Structures, in Proc. 16th

International Colloquium on Automata, Languages, and Programming,
Stresa, Italy, 473 (1989) (“Kenyon-Mathieu”) alone and in combination

slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Kenyon-Mathieu and the ’663 patent relate to deletion of records from
hash tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as Kenyon-Mathieu. Moreover, one of ordinary skill in the art would
recognize that it would improve similar systems and methods in the same way.
As the ’120 patent states “[a] person skilled in the art will appreciate that the
technique of removing all expired records while searching the linked list can
be expanded to include techniques whereby not necessarily all expired records
are removed, and that the decision regarding if and how many records to delete
can be a dynamic one.” The ’120 patent at 7:10-15. Additionally, one of
ordinary skill in the art would recognize that the result of combining the ’663
patent’s deletion decision procedure with Kenyon-Mathieu’s technique of
“lazy deletion” would be nothing more than the predictable use of prior art

EXHIBIT C-4

Joint Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

US2008 1290277.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, General Methods for
the Analysis of the Maximum Size of Dynamic Data Structures, in Proc. 16th

International Colloquium on Automata, Languages, and Programming,
Stresa, Italy, 473 (1989) (“Kenyon-Mathieu”) alone and in combination

elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Kenyon-
Mathieu’s system and method of “lazy deletion” and would have seen the
benefits of doing so. One such benefit, for example, is that the system and
method of lazy deletion would avoid performing deletions when the system
load exceeded a threshold.

Alternatively, it would also be obvious to combine Kenyon-Mathieu with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage

EXHIBIT C-4

Joint Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

US2008 1290277.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, General Methods for
the Analysis of the Maximum Size of Dynamic Data Structures, in Proc. 16th

International Colloquium on Automata, Languages, and Programming,
Stresa, Italy, 473 (1989) (“Kenyon-Mathieu”) alone and in combination

Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Kenyon-Mathieu and the Opportunistic Garbage Collection Articles
relate to deletion of aged records, one of ordinary skill in the art would have
understood how to use the Opportunistic Garbage Collection Articles’ dynamic
decision on whether to perform a deletion based on a system load in other hash

EXHIBIT C-4

Joint Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

US2008 1290277.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, General Methods for
the Analysis of the Maximum Size of Dynamic Data Structures, in Proc. 16th

International Colloquium on Automata, Languages, and Programming,
Stresa, Italy, 473 (1989) (“Kenyon-Mathieu”) alone and in combination

table implementations such as Kenyon-Mathieu. Moreover, one of ordinary
skill in the art would recognize that it would improve similar systems and
methods in the same way. As the ’120 patent states “[a] person skilled in the
art will appreciate that the technique of removing all expired records while
searching the linked list can be expanded to include techniques whereby not
necessarily all expired records are removed, and that the decision regarding if
and how many records to delete can be a dynamic one.” The ’120 patent at
7:10-15. Additionally, one of ordinary skill in the art would recognize that the
result of combining the Opportunistic Garbage Collection Articles’ deletion
decision procedure with Kenyon-Mathieu’s technique of “lazy deletion” would
be nothing more than the predictable use of prior art elements according to
their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Kenyon-Mathieu’s
system and method of “lazy deletion” and would have seen the benefits of
doing so. One such benefit, for example, is that the system and method of lazy
deletion would only perform deletions when the system was not already too
overloaded, thus preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Kenyon-Mathieu to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be

EXHIBIT C-4

Joint Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

US2008 1290277.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, General Methods for
the Analysis of the Maximum Size of Dynamic Data Structures, in Proc. 16th

International Colloquium on Automata, Languages, and Programming,
Stresa, Italy, 473 (1989) (“Kenyon-Mathieu”) alone and in combination

dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Kenyon-Mathieu with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in Kenyon-Mathieu can be
burdensome on the system, adding to the system’s load and slowing down the
system’s processing. Moreover, the removal could also force an interruption in
real-time processing as the processing waits for the removal to complete.
Indeed, part of the motivation for the system disclosed in Kenyon-Mathieu is
avoiding these problems. One of ordinary skill in the art would have known
that dynamically determining the maximum number to remove would limit the
burden on the system and bound the length of any real-time interruption to
prevent delays in processing. Indeed, Nemes concedes that such dynamic
determination was obvious when he states in the ‘120 patent that “[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one.” ‘120 at
7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Kenyon-Mathieu in combination with Morrison,
Mathieu, Aldous, Dirks, Thatte, the ‘663 Patent, or the Opportunistic Garbage
Collection References, it is disclosed by Linux 2.0.1, which describes
dynamically determining maximum number of expired ones of the records to
remove when the linked list is accessed. It would have been obvious to

EXHIBIT C-4

Joint Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

US2008 1290277.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, General Methods for
the Analysis of the Maximum Size of Dynamic Data Structures, in Proc. 16th

International Colloquium on Automata, Languages, and Programming,
Stresa, Italy, 473 (1989) (“Kenyon-Mathieu”) alone and in combination

combine Linux 2.0.1 with Kenyon-Mathieu. For example, both Linux 2.0.1
and Kenyon-Mathieu describe systems and methods for performing data
storage and retrieval using known programming techniques to yield a
predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a

EXHIBIT C-4

Joint Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

US2008 1290277.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, General Methods for
the Analysis of the Maximum Size of Dynamic Data Structures, in Proc. 16th

International Colloquium on Automata, Languages, and Programming,
Stresa, Italy, 473 (1989) (“Kenyon-Mathieu”) alone and in combination

dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

EXHIBIT C-4

Joint Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

US2008 1290277.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, General Methods for
the Analysis of the Maximum Size of Dynamic Data Structures, in Proc. 16th

International Colloquium on Automata, Languages, and Programming,
Stresa, Italy, 473 (1989) (“Kenyon-Mathieu”) alone and in combination

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

EXHIBIT C-4

Joint Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

US2008 1290277.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, General Methods for
the Analysis of the Maximum Size of Dynamic Data Structures, in Proc. 16th

International Colloquium on Automata, Languages, and Programming,
Stresa, Italy, 473 (1989) (“Kenyon-Mathieu”) alone and in combination

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

To the extent the preamble is a limitation, Kenyon-Mathieu discloses a method
for storing and retrieving information records using a linked list to store and
provide access to the records, at least some of the records automatically
expiring. Kenyon-Mathieu also discloses a method for storing and retrieving
information records using a hashing technique to provide access to the records
and using an external chaining technique to store the records with same hash
address, at least some of the records automatically expiring.

For example, Kenyon-Mathieu discloses “a non-Markovian process called
hashing with lazy deletion (HwLD), which corresponds to an efficient way of
processing sweepline information in computational geometry.” Kenyon-
Mathieu, supra at 473.

Moreover, it is inherent to the Kenyon-Mathieu disclosure that the hash table

EXHIBIT C-4

Joint Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

US2008 1290277.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, General Methods for
the Analysis of the Maximum Size of Dynamic Data Structures, in Proc. 16th

International Colloquium on Automata, Languages, and Programming,
Stresa, Italy, 473 (1989) (“Kenyon-Mathieu”) alone and in combination

described herein is a separate-chaining hash table to resolve unavoidable key
collisions, where each slot of the bucket array is a pointer to a linked list that
contains the key-value pairs that hash to the same location. Other data
structures, such as balanced trees, only offer logarithmic time complexity and
can be complicated to implement and require several pointers per item. With a
suitable number of buckets, the separate-chaining hash table solution offers
constant expected search times and makes deletion easy.

To the extent is it not inherent, it would be obvious to combine Kenyon-
Mathieu with the prior art disclosed in, The Complexity of Hashing with Lazy
Deletion, Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of
Hashing with Lazy Deletion, 1 Algorithmica 17, 18 (November, 1986) (“Van
Wyk”), because Kenyon-Mathieu describes and incorporates Van Wyk by
reference. Kenyon-Mathieu at 473. Van Wyk discloses a method of hashing
with lazy deletion using a separate-chaining hash table as a more efficient
solution to collisions than the available alternatives, such as balanced trees. See
Exhibit C-1 which is herein incorporated by reference.

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

Kenyon-Mathieu discloses accessing a linked list of records. Kenyon-Mathieu
also discloses accessing a linked list of records having same hash address.

For example, Kenyon-Mathieu discloses “a non-Markovian process called
hashing with lazy deletion (HwLD), which corresponds to an efficient way of
processing sweepline information in computational geometry.” Kenyon-
Mathieu, supra at 473.

Moreover, Kenyon-Mathieu discloses “[d]ata structures process a sequence of

EXHIBIT C-4

Joint Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

US2008 1290277.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, General Methods for
the Analysis of the Maximum Size of Dynamic Data Structures, in Proc. 16th

International Colloquium on Automata, Languages, and Programming,
Stresa, Italy, 473 (1989) (“Kenyon-Mathieu”) alone and in combination

items over time; at time t the data structure stores the items that are ‘living’ at
time t. Let us think of the ith item as being an interval [si, ti] in the unit
interval, containing a unique key ki of supplementary information. The ith
item is ‘born’ at time si, ‘dies’ at time ti, and is ‘living’ at time t when t ∈ [si,
ti]. The data structure also handles dynamic queries over time.” Id. at 474.

Moreover, it is inherent to the Kenyon-Mathieu disclosure that the hash table
described herein is a separate-chaining hash table to resolve unavoidable key
collisions, where each slot of the bucket array is a pointer to a linked list that
contains the key-value pairs that hash to the same location. Other data
structures, such as balanced trees, only offer logarithmic time complexity and
can be complicated to implement and require several pointers per item. With a
suitable number of buckets, the separate-chaining hash table solution offers
constant expected search times and makes deletion easy.

To the extent is it not inherent, it would be obvious to combine Kenyon-
Mathieu with the prior art disclosed in, The Complexity of Hashing with Lazy
Deletion, Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of
Hashing with Lazy Deletion, 1 Algorithmica 17, 18 (November, 1986) (“Van
Wyk”), because Kenyon-Mathieu describes and incorporates Van Wyk by
reference. Kenyon-Mathieu at 473. Van Wyk discloses a method of hashing
with lazy deletion using a separate-chaining hash table as a more efficient
solution to collisions than the available alternatives, such as balanced trees. See
Exhibit C-1 which is herein incorporated by reference.

[3b] identifying at least
some of the automatically

[7b] identifying at least
some of the automatically

Kenyon-Mathieu discloses identifying at least some of the automatically
expired ones of the records.

EXHIBIT C-4

Joint Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

US2008 1290277.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, General Methods for
the Analysis of the Maximum Size of Dynamic Data Structures, in Proc. 16th

International Colloquium on Automata, Languages, and Programming,
Stresa, Italy, 473 (1989) (“Kenyon-Mathieu”) alone and in combination

expired ones of the records,
and

expired ones of the records,
For example, Kenyon-Mathieu discloses “a non-Markovian process called
hashing with lazy deletion (HwLD), which corresponds to an efficient way of
processing sweepline information in computational geometry.” Kenyon-
Mathieu, supra at 473.

Moreover, Kenyon-Mathieu discloses “[d]ata structures process a sequence of
items over time; at time t the data structure stores the items that are ‘living’ at
time t. Let us think of the ith item as being an interval [si, ti] in the unit
interval, containing a unique key ki of supplementary information. The ith
item is ‘born’ at time si, ‘dies’ at time ti, and is ‘living’ at time t when t ∈ [si,
ti]. The data structure also handles dynamic queries over time.” Id. at 474.

“In HwLD, items are stored in a hash table of H buckets, based upon the hash
value of the key. The distinguishing feature of HwLD is that an item is not
deleted as soon as it dies; the ‘lazy deletion’ strategy deletes a dead item only
when a later insertion accesses the same bucket. The number H of buckets is
chosen so that the expected number of items per bucket is small. HwLD is
thus more time-efficient than doing ‘vigilant-deletion,’ at a cost of storing dead
items.” Id.

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

Kenyon-Mathieu discloses removing at least some of the automatically expired
records from the linked list when the linked list is accessed.

For example, Kenyon-Mathieu discloses “a non-Markovian process called
hashing with lazy deletion (HwLD), which corresponds to an efficient way of
processing sweepline information in computational geometry.” Id. at 473.

EXHIBIT C-4

Joint Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

US2008 1290277.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, General Methods for
the Analysis of the Maximum Size of Dynamic Data Structures, in Proc. 16th

International Colloquium on Automata, Languages, and Programming,
Stresa, Italy, 473 (1989) (“Kenyon-Mathieu”) alone and in combination

Moreover, Kenyon-Mathieu discloses “[d]ata structures process a sequence of
items over time; at time t the data structure stores the items that are ‘living’ at
time t. Let us think of the ith item as being an interval [si, ti] in the unit
interval, containing a unique key ki of supplementary information. The ith
item is ‘born’ at time si, ‘dies’ at time ti, and is ‘living’ at time t when t ∈ [si,
ti]. The data structure also handles dynamic queries over time.” Id. at 474.

“In HwLD, items are stored in a hash table of H buckets, based upon the hash
value of the key. The distinguishing feature of HwLD is that an item is not
deleted as soon as it dies; the ‘lazy deletion’ strategy deletes a dead item only
when a later insertion accesses the same bucket. The number H of buckets is
chosen so that the expected number of items per bucket is small. HwLD is
thus more time-efficient than doing ‘vigilant-deletion,’ at a cost of storing dead
items.” Id.

Moreover, it is inherent to the Kenyon-Mathieu disclosure that the hash table
described herein is a separate-chaining hash table to resolve unavoidable key
collisions, where each slot of the bucket array is a pointer to a linked list that
contains the key-value pairs that hash to the same location. Other data
structures, such as balanced trees, only offer logarithmic time complexity and
can be complicated to implement and require several pointers per item. With a
suitable number of buckets, the separate-chaining hash table solution offers
constant expected search times and makes deletion easy.

To the extent is it not inherent, it would be obvious to combine Kenyon-
Mathieu with the prior art disclosed in, The Complexity of Hashing with Lazy

EXHIBIT C-4

Joint Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

US2008 1290277.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, General Methods for
the Analysis of the Maximum Size of Dynamic Data Structures, in Proc. 16th

International Colloquium on Automata, Languages, and Programming,
Stresa, Italy, 473 (1989) (“Kenyon-Mathieu”) alone and in combination

Deletion, Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of
Hashing with Lazy Deletion, 1 Algorithmica 17, 18 (November, 1986) (“Van
Wyk”), because Kenyon-Mathieu describes and incorporates Van Wyk by
reference. Kenyon-Mathieu at 473. Van Wyk discloses a method of hashing
with lazy deletion using a separate-chaining hash table as a more efficient
solution to collisions than the available alternatives, such as balanced trees. See
Exhibit C-1 which is herein incorporated by reference.

 [7d] inserting, retrieving
or deleting one of the
records from the system
following the step of
removing.

Kenyon-Mathieu discloses inserting, retrieving or deleting one of the records
from the system following the step of removing.

For example, Kenyon-Mathieu discloses “a non-Markovian process called
hashing with lazy deletion (HwLD), which corresponds to an efficient way of
processing sweepline information in computational geometry.” Kenyon-
Mathieu, supra at 473.

Moreover, Kenyon-Mathieu discloses “[d]ata structures process a sequence of
items over time; at time t the data structure stores the items that are ‘living’ at
time t. Let us think of the ith item as being an interval [si, ti] in the unit
interval, containing a unique key ki of supplementary information. The ith
item is ‘born’ at time si, ‘dies’ at time ti, and is ‘living’ at time t when t ∈ [si,
ti]. The data structure also handles dynamic queries over time.” Id. at 474.

“In HwLD, items are stored in a hash table of H buckets, based upon the hash
value of the key. The distinguishing feature of HwLD is that an item is not
deleted as soon as it dies; the ‘lazy deletion’ strategy deletes a dead item only
when a later insertion accesses the same bucket. The number H of buckets is

EXHIBIT C-4

Joint Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

US2008 1290277.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, General Methods for
the Analysis of the Maximum Size of Dynamic Data Structures, in Proc. 16th

International Colloquium on Automata, Languages, and Programming,
Stresa, Italy, 473 (1989) (“Kenyon-Mathieu”) alone and in combination

chosen so that the expected number of items per bucket is small. HwLD is
thus more time-efficient than doing ‘vigilant-deletion,’ at a cost of storing dead
items.” Id.

Moreover, it is inherent to the Kenyon-Mathieu disclosure that the hash table
described herein is a separate-chaining hash table to resolve unavoidable key
collisions, where each slot of the bucket array is a pointer to a linked list that
contains the key-value pairs that hash to the same location. Other data
structures, such as balanced trees, only offer logarithmic time complexity and
can be complicated to implement and require several pointers per item. With a
suitable number of buckets, the separate-chaining hash table solution offers
constant expected search times and makes deletion easy.

To the extent is it not inherent, it would be obvious to combine Kenyon-
Mathieu with the prior art disclosed in, The Complexity of Hashing with Lazy
Deletion, Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of
Hashing with Lazy Deletion, 1 Algorithmica 17, 18 (November, 1986) (“Van
Wyk”), because Kenyon-Mathieu describes and incorporates Van Wyk by
reference. Kenyon-Mathieu at 473. Van Wyk discloses a method of hashing
with lazy deletion using a separate-chaining hash table as a more efficient
solution to collisions than the available alternatives, such as balanced trees. See
Exhibit C-1 which is herein incorporated by reference.

Moreover, Van Wyk and Vitter explain that “[t]he insertion of element xi
proceeds as follows:

1) Compute h = n(ki)

EXHIBIT C-4

Joint Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

US2008 1290277.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, General Methods for
the Analysis of the Maximum Size of Dynamic Data Structures, in Proc. 16th

International Colloquium on Automata, Languages, and Programming,
Stresa, Italy, 473 (1989) (“Kenyon-Mathieu”) alone and in combination

2) Remove from the hash chain in bucket h any items xj with tj < sj [i.e. remove
all expired elements]
3) Add xi so the chain in bucket h remains sorted by termination time.” Van
Wyk at 19.

This method clearly contemplates the insertion occurring after the removal of
expired elements.

4. The method according to
claim 3 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

Kenyon-Mathieu discloses dynamically determining maximum number of
expired ones of the records to remove when the linked list is accessed.
Kenyon-Mathieu teaches a method for calculating a bound on the space
complexity of the hashing with lazy deletion algorithm, i.e., the number of
expired elements that would remain in the linked lists forming the external
chains of the hash table. See, e.g., Kenyon-Mathieu at 475-86. That bound
calculation is a means for dynamically determining the maximum number to
remove, since the maximum number of elements to remove should never
exceed the number of expired elements that would remain in the linked lists.

To the extent Kenyon-Mathieu does not disclose this element, Kenyon-
Mathieu combined with Morrison, Mathieu or Aldous discloses this element.
Morrison, Mathieu, and Aldous also teach methods for calculating a bound on
the space complexity of the hashing with lazy deletion algorithm. See, e.g.,
Morrison at 1156-61, Mathieu at 12-22, Aldous 17-21.

It would have been obvious to one of ordinary skill in the art that these
methods of calculating bounds on the number of expired elements stored in the
linked list could also be used to dynamically determine a maximum number for

EXHIBIT C-4

Joint Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

US2008 1290277.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, General Methods for
the Analysis of the Maximum Size of Dynamic Data Structures, in Proc. 16th

International Colloquium on Automata, Languages, and Programming,
Stresa, Italy, 473 (1989) (“Kenyon-Mathieu”) alone and in combination

the record search means disclosed in Kenyon-Mathieu to remove. One of
ordinary skill would have been motivated to combine the teachings of
Morrison, Mathieu, and Aldous with Kenyon-Mathieu because they all sought
to analyze the complexity of the hashing with lazy deletion algorithm, and
each of the papers refers to and builds upon the work of those papers
preceding. See, e.g., Morrison at 1155, 1158, Mathieu at 1-4, Kenyon-Mathieu
at 473-475, Aldous at 2-3.

Kenyon-Mathieu combined with Dirks, Thatte, the ’663 patent and/or the
Opportunistic Garbage Collection Articles discloses dynamically determining
maximum number of expired ones of the records to remove when the linked
list is accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be

EXHIBIT C-4

Joint Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

US2008 1290277.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, General Methods for
the Analysis of the Maximum Size of Dynamic Data Structures, in Proc. 16th

International Colloquium on Automata, Languages, and Programming,
Stresa, Italy, 473 (1989) (“Kenyon-Mathieu”) alone and in combination

transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-

EXHIBIT C-4

Joint Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

US2008 1290277.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, General Methods for
the Analysis of the Maximum Size of Dynamic Data Structures, in Proc. 16th

International Colloquium on Automata, Languages, and Programming,
Stresa, Italy, 473 (1989) (“Kenyon-Mathieu”) alone and in combination

40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Kenyon-Mathieu and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as Kenyon-Mathieu. Moreover, one of ordinary skill in
the art would recognize that it would improve similar systems and methods in
the same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Kenyon-Mathieu’s
technique of “lazy deletion” would be nothing more than the predictable use of

EXHIBIT C-4

Joint Invalidity Contentions & Production of
Documents

35 Case No. 6:09-CV-549-LED

US2008 1290277.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, General Methods for
the Analysis of the Maximum Size of Dynamic Data Structures, in Proc. 16th

International Colloquium on Automata, Languages, and Programming,
Stresa, Italy, 473 (1989) (“Kenyon-Mathieu”) alone and in combination

prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Kenyon-Mathieu’s
system and method of “lazy deletion” and would have seen the benefits of
doing so. One possible benefit, for example, is that the system and method of
lazy deletion could perform a specified number of deletions on any given
sweep, thus saving the system from performing sometimes time-consuming
sweeps.

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Kenyon-Mathieu with the
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records disclosed by Thatte. For
example, Thatte discloses a system and method using hash tables and/or linked
lists and further discloses means for dynamically determining the maximum
number for the record search means to remove in the accessed linked list of
records. The disclosure of these claim elements in Thatte is clearly shown in
Exhibit B-1, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Kenyon-Mathieu with Thatte would be nothing more than
the predictable use of prior art elements according to their established
functions. The resulting combination would include the capability to

EXHIBIT C-4

Joint Invalidity Contentions & Production of
Documents

36 Case No. 6:09-CV-549-LED

US2008 1290277.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, General Methods for
the Analysis of the Maximum Size of Dynamic Data Structures, in Proc. 16th

International Colloquium on Automata, Languages, and Programming,
Stresa, Italy, 473 (1989) (“Kenyon-Mathieu”) alone and in combination

determine the maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to
combine Kenyon-Mathieu with Thatte and recognized the benefits of doing so.
For example, the removal of expired records described in Kenyon-Mathieu can
be burdensome on the system, adding to the system’s load and slowing down
the system’s processing. One of ordinary skill in the art would recognize that
combining Kenyon-Mathieu with the teachings of Thatte would solve this
problem by dynamically determining how many records to delete based on,
among other things, the system load. Moreover, the '120 patent discloses
that "[a] person skilled in the art will appreciate that the technique of removing
all expired records while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records are removed, and that
the decision regarding if and how many records to delete can be a dynamic
one." '120 at 7:10-15. Thus, the '120 patent provides motivations to
combine Kenyon-Mathieu with Thatte.

Alternatively, it would also be obvious to combine Kenyon-Mathieu with the
’663 patent. Disclosure of these claim elements in the ’663 patent is clearly
shown in Exhibit B-13, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record

EXHIBIT C-4

Joint Invalidity Contentions & Production of
Documents

37 Case No. 6:09-CV-549-LED

US2008 1290277.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, General Methods for
the Analysis of the Maximum Size of Dynamic Data Structures, in Proc. 16th

International Colloquium on Automata, Languages, and Programming,
Stresa, Italy, 473 (1989) (“Kenyon-Mathieu”) alone and in combination

to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT C-4

Joint Invalidity Contentions & Production of
Documents

38 Case No. 6:09-CV-549-LED

US2008 1290277.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, General Methods for
the Analysis of the Maximum Size of Dynamic Data Structures, in Proc. 16th

International Colloquium on Automata, Languages, and Programming,
Stresa, Italy, 473 (1989) (“Kenyon-Mathieu”) alone and in combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a

EXHIBIT C-4

Joint Invalidity Contentions & Production of
Documents

39 Case No. 6:09-CV-549-LED

US2008 1290277.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, General Methods for
the Analysis of the Maximum Size of Dynamic Data Structures, in Proc. 16th

International Colloquium on Automata, Languages, and Programming,
Stresa, Italy, 473 (1989) (“Kenyon-Mathieu”) alone and in combination

slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Kenyon-Mathieu and the ’663 patent relate to deletion of records from
hash tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as Kenyon-Mathieu. Moreover, one of ordinary skill in the art would
recognize that it would improve similar systems and methods in the same way.
As the ’120 patent states “[a] person skilled in the art will appreciate that the
technique of removing all expired records while searching the linked list can
be expanded to include techniques whereby not necessarily all expired records
are removed, and that the decision regarding if and how many records to delete
can be a dynamic one.” The ’120 patent at 7:10-15. Additionally, one of
ordinary skill in the art would recognize that the result of combining the ’663
patent’s deletion decision procedure with Kenyon-Mathieu’s technique of
“lazy deletion” would be nothing more than the predictable use of prior art

EXHIBIT C-4

Joint Invalidity Contentions & Production of
Documents

40 Case No. 6:09-CV-549-LED

US2008 1290277.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, General Methods for
the Analysis of the Maximum Size of Dynamic Data Structures, in Proc. 16th

International Colloquium on Automata, Languages, and Programming,
Stresa, Italy, 473 (1989) (“Kenyon-Mathieu”) alone and in combination

elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Kenyon-
Mathieu’s system and method of “lazy deletion” and would have seen the
benefits of doing so. One such benefit, for example, is that the system and
method of lazy deletion would avoid performing deletions when the system
load exceeded a threshold.

Alternatively, it would also be obvious to combine Kenyon-Mathieu with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage

EXHIBIT C-4

Joint Invalidity Contentions & Production of
Documents

41 Case No. 6:09-CV-549-LED

US2008 1290277.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, General Methods for
the Analysis of the Maximum Size of Dynamic Data Structures, in Proc. 16th

International Colloquium on Automata, Languages, and Programming,
Stresa, Italy, 473 (1989) (“Kenyon-Mathieu”) alone and in combination

Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Kenyon-Mathieu and the Opportunistic Garbage Collection Articles
relate to deletion of aged records, one of ordinary skill in the art would have
understood how to use the Opportunistic Garbage Collection Articles’ dynamic
decision on whether to perform a deletion based on a system load in other hash

EXHIBIT C-4

Joint Invalidity Contentions & Production of
Documents

42 Case No. 6:09-CV-549-LED

US2008 1290277.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, General Methods for
the Analysis of the Maximum Size of Dynamic Data Structures, in Proc. 16th

International Colloquium on Automata, Languages, and Programming,
Stresa, Italy, 473 (1989) (“Kenyon-Mathieu”) alone and in combination

table implementations such as Kenyon-Mathieu. Moreover, one of ordinary
skill in the art would recognize that it would improve similar systems and
methods in the same way. As the ’120 patent states “[a] person skilled in the
art will appreciate that the technique of removing all expired records while
searching the linked list can be expanded to include techniques whereby not
necessarily all expired records are removed, and that the decision regarding if
and how many records to delete can be a dynamic one.” The ’120 patent at
7:10-15. Additionally, one of ordinary skill in the art would recognize that the
result of combining the Opportunistic Garbage Collection Articles’ deletion
decision procedure with Kenyon-Mathieu’s technique of “lazy deletion” would
be nothing more than the predictable use of prior art elements according to
their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Kenyon-Mathieu’s
system and method of “lazy deletion” and would have seen the benefits of
doing so. One such benefit, for example, is that the system and method of lazy
deletion would only perform deletions when the system was not already too
overloaded, thus preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Kenyon-Mathieu to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be

EXHIBIT C-4

Joint Invalidity Contentions & Production of
Documents

43 Case No. 6:09-CV-549-LED

US2008 1290277.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, General Methods for
the Analysis of the Maximum Size of Dynamic Data Structures, in Proc. 16th

International Colloquium on Automata, Languages, and Programming,
Stresa, Italy, 473 (1989) (“Kenyon-Mathieu”) alone and in combination

dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Kenyon-Mathieu with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in Kenyon-Mathieu can be
burdensome on the system, adding to the system’s load and slowing down the
system’s processing. Moreover, the removal could also force an interruption in
real-time processing as the processing waits for the removal to complete.
Indeed, part of the motivation for the system disclosed in Kenyon-Mathieu is
avoiding these problems. One of ordinary skill in the art would have known
that dynamically determining the maximum number to remove would limit the
burden on the system and bound the length of any real-time interruption to
prevent delays in processing. Indeed, Nemes concedes that such dynamic
determination was obvious when he states in the ‘120 patent that “[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one.” ‘120 at
7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Kenyon-Mathieu in combination with Morrison,
Mathieu, Aldous, Dirks, Thatte, the ‘663 Patent, or the Opportunistic Garbage
Collection References, it is disclosed by Linux 2.0.1, which describes
dynamically determining maximum number of expired ones of the records to
remove when the linked list is accessed. It would have been obvious to

EXHIBIT C-4

Joint Invalidity Contentions & Production of
Documents

44 Case No. 6:09-CV-549-LED

US2008 1290277.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, General Methods for
the Analysis of the Maximum Size of Dynamic Data Structures, in Proc. 16th

International Colloquium on Automata, Languages, and Programming,
Stresa, Italy, 473 (1989) (“Kenyon-Mathieu”) alone and in combination

combine Linux 2.0.1 with Kenyon-Mathieu. For example, both Linux 2.0.1
and Kenyon-Mathieu describe systems and methods for performing data
storage and retrieval using known programming techniques to yield a
predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a

EXHIBIT C-4

Joint Invalidity Contentions & Production of
Documents

45 Case No. 6:09-CV-549-LED

US2008 1290277.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, General Methods for
the Analysis of the Maximum Size of Dynamic Data Structures, in Proc. 16th

International Colloquium on Automata, Languages, and Programming,
Stresa, Italy, 473 (1989) (“Kenyon-Mathieu”) alone and in combination

dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

EXHIBIT C-4

Joint Invalidity Contentions & Production of
Documents

46 Case No. 6:09-CV-549-LED

US2008 1290277.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, General Methods for
the Analysis of the Maximum Size of Dynamic Data Structures, in Proc. 16th

International Colloquium on Automata, Languages, and Programming,
Stresa, Italy, 473 (1989) (“Kenyon-Mathieu”) alone and in combination

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

EXHIBIT C-4

Joint Invalidity Contentions & Production of
Documents

47 Case No. 6:09-CV-549-LED

US2008 1290277.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, General Methods for
the Analysis of the Maximum Size of Dynamic Data Structures, in Proc. 16th

International Colloquium on Automata, Languages, and Programming,
Stresa, Italy, 473 (1989) (“Kenyon-Mathieu”) alone and in combination

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

EXHIBIT C-5

Joint Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

US2008 1290278.1

Asserted Claims From
U.S. Pat. No. 5,893,120

David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.

COMPUT. 713 (August 1992) (“Aldous”) alone and in combination
1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, Aldous discloses an information
storage and retrieval system.

For example, Aldous discloses “a dynamic data structure management
technique called hashing with lazy deletion (HwLD) . . . A table managed
under HwLD is built by a sequence of insertions and deletions of items.”
David Aldous et al., Maximum Size of a Dynamic Data Structure: Hashing
with Lazy Deletion Revisited, 21 SIAM J. COMPUT. 713 (August 1992) at 713.

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

Aldous discloses a linked list to store and provide access to records stored in a
memory of the system, at least some of the records automatically expiring.
Aldous also discloses a hashing means to provide access to records stored in a
memory of the system and using an external chaining technique to store the
records with same hash address, at least some of the records automatically
expiring.

For example, Aldous discloses “a dynamic data structure management
technique called hashing with lazy deletion (HwLD) . . . A table managed
under HwLD is built by a sequence of insertions and deletions of items.” Id.

“An item arrives at a hashing table and needs to be stored for some period (the
item’s lifetime) . . . We always assume that the assignment of items to the H
buckets of the hashing table is uniform: That is, each item has probability 1/H
to select each bucket, independent for different items and independent of the
arrival and lifetimes.” Id.

“An arriving item selects one out of the H buckets at random (with uniform
probability) and joins the items assigned to this bucket.” Id. at 715.

EXHIBIT C-5

Joint Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

US2008 1290278.1

Asserted Claims From
U.S. Pat. No. 5,893,120

David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.

COMPUT. 713 (August 1992) (“Aldous”) alone and in combination

Moreover, Aldous discloses that “[t]he principle HwLD is very simple: An
item in a bucket is not deleted as soon as possible (i.e., when its lifetime
expires). Instead, the item is removed at the first arrival to the item’s bucket
after the item’s expiration time. The point is that algorithms that delete items
as soon as possible may have unacceptably high overhead, even though they
require less storage space for the items themselves.” Id. at 713.

Moreover, it is inherent to the Aldous disclosure that the hash table described
herein is a separate-chaining hash table to resolve unavoidable key collisions,
where each slot of the bucket array is a pointer to a linked list that contains the
key-value pairs that hash to the same location. Other data structures, such as
balanced trees, only offer logarithmic time complexity and can be complicated
to implement and require several pointers per item. With a suitable number of
buckets, the separate-chaining hash table solution offers constant expected
search times and makes deletion easy.

To the extent is it not inherent, it would be obvious to combine Aldous with
the prior art disclosed in, The Complexity of Hashing with Lazy Deletion,
(Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of Hashing
with Lazy Deletion, 1 Algorithmica 17, 18 (November, 1986)),by Van Wyk
and Vitter because Aldous describes and incorporates Van Wyk by reference.
Aldous at 713. Van Wyk discloses a method of hashing with lazy deletion
using a separate-chaining hash table as a more efficient solution to collisions
than the available alternatives, such as balanced trees. See Exhibit C-1 which is
herein incorporated by reference.

[1b] a record search means [5b] a record search means Aldous discloses a record search means utilizing a search key to access the

EXHIBIT C-5

Joint Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

US2008 1290278.1

Asserted Claims From
U.S. Pat. No. 5,893,120

David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.

COMPUT. 713 (August 1992) (“Aldous”) alone and in combination
utilizing a search key to
access the linked list,

utilizing a search key to
access a linked list of
records having the same
hash address,

linked list. Aldous also discloses a record search means utilizing a search key
to access a linked list of records having the same hash address.

For example, Aldous discloses “a dynamic data structure management
technique called hashing with lazy deletion (HwLD) . . . A table managed
under HwLD is built by a sequence of insertions and deletions of items.”
Aldous, supra at 713.

“An item arrives at a hashing table and needs to be stored for some period (the
item’s lifetime) . . . We always assume that the assignment of items to the H
buckets of the hashing table is uniform: That is, each item has probability 1/H
to select each bucket, independent for different items and independent of the
arrival and lifetimes.” Id.

“An arriving item selects one out of the H buckets at random (with uniform
probability) and joins the items assigned to this bucket.” Id. at 715.

Moreover, it is inherent to the Aldous disclosure that the hash table described
herein is a separate-chaining hash table to resolve unavoidable key collisions,
where each slot of the bucket array is a pointer to a linked list that contains the
key-value pairs that hash to the same location. Other data structures, such as
balanced trees, only offer logarithmic time complexity and can be complicated
to implement and require several pointers per item. With a suitable number of
buckets, the separate-chaining hash table solution offers constant expected
search times and makes deletion easy.

To the extent is it not inherent, it would be obvious to combine Aldous with
the prior art disclosed in, The Complexity of Hashing with Lazy Deletion,

EXHIBIT C-5

Joint Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

US2008 1290278.1

Asserted Claims From
U.S. Pat. No. 5,893,120

David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.

COMPUT. 713 (August 1992) (“Aldous”) alone and in combination
Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of Hashing
with Lazy Deletion, 1 Algorithmica 17, 18 (November, 1986), because Aldous
describes and incorporates Van Wyk by reference. Aldous at 713. Van Wyk
discloses a method of hashing with lazy deletion using a separate-chaining
hash table as a more efficient solution to collisions than the available
alternatives, such as balanced trees. See Exhibit C-1 which is herein
incorporated by reference.

[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the
records from the linked list
when the linked list is
accessed, and

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

Aldous discloses the record search means including a means for identifying
and removing at least some of the expired ones of the records from the linked
list when the linked list is accessed. Aldous also discloses the record search
means including means for identifying and removing at least some expired
ones of the records from the linked list of records when the linked list is
accessed.

For example, Aldous discloses “a dynamic data structure management
technique called hashing with lazy deletion (HwLD) . . . A table managed
under HwLD is built by a sequence of insertions and deletions of items.”
Aldous, supra at 713.

“An item arrives at a hashing table and needs to be stored for some period (the
item’s lifetime) . . . We always assume that the assignment of items to the H
buckets of the hashing table is uniform: That is, each item has probability 1/H
to select each bucket, independent for different items and independent of the
arrival and lifetimes.” Id.

“An arriving item selects one out of the H buckets at random (with uniform
probability) and joins the items assigned to this bucket.” Id. at 715.

EXHIBIT C-5

Joint Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

US2008 1290278.1

Asserted Claims From
U.S. Pat. No. 5,893,120

David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.

COMPUT. 713 (August 1992) (“Aldous”) alone and in combination

Moreover, Aldous discloses that “[t]he principle HwLD is very simple: An
item in a bucket is not deleted as soon as possible (i.e., when its lifetime
expires). Instead, the item is removed at the first arrival to the item’s bucket
after the item’s expiration time. The point is that algorithms that delete items
as soon as possible may have unacceptably high overhead, even though they
require less storage space for the items themselves.” Id. at 713

Moreover, it is inherent to the Aldous disclosure that the hash table described
herein is a separate-chaining hash table to resolve unavoidable key collisions,
where each slot of the bucket array is a pointer to a linked list that contains the
key-value pairs that hash to the same location. Other data structures, such as
balanced trees, only offer logarithmic time complexity and can be complicated
to implement and require several pointers per item. With a suitable number of
buckets, the separate-chaining hash table solution offers constant expected
search times and makes deletion easy.

To the extent is it not inherent, it would be obvious to combine Aldous with
the prior art disclosed in, The Complexity of Hashing with Lazy Deletion,
Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of Hashing
with Lazy Deletion, 1 Algorithmica 17, 18 (November, 1986), because Aldous
describes and incorporates Van Wyk by reference. Aldous at 713. Van Wyk
discloses a method of hashing with lazy deletion using a separate-chaining
hash table as a more efficient solution to collisions than the available
alternatives, such as balanced trees. See Exhibit C-1 which is herein
incorporated by reference.

[1d] means, utilizing the [5d] mea[n]s, utilizing the Aldous discloses means, utilizing the record search means, for accessing the

EXHIBIT C-5

Joint Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

US2008 1290278.1

Asserted Claims From
U.S. Pat. No. 5,893,120

David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.

COMPUT. 713 (August 1992) (“Aldous”) alone and in combination
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

linked list and, at the same time, removing at least some of the expired ones of
the records in the linked list. Aldous also discloses utilizing the record search
means, for inserting, retrieving, and deleting records from the system and, at
the same time, removing at least some expired ones of the records in the
accessed linked list of records.

For example, Aldous discloses “a dynamic data structure management
technique called hashing with lazy deletion (HwLD) . . . A table managed
under HwLD is built by a sequence of insertions and deletions of items.”
Aldous, supra at 713.

“An item arrives at a hashing table and needs to be stored for some period (the
item’s lifetime) . . . We always assume that the assignment of items to the H
buckets of the hashing table is uniform: That is, each item has probability 1/H
to select each bucket, independent for different items and independent of the
arrival and lifetimes.” Id.

“An arriving item selects one out of the H buckets at random (with uniform
probability) and joins the items assigned to this bucket.” Id. at 715.

Moreover, Aldous discloses that “[t]he principle HwLD is very simple: An
item in a bucket is not deleted as soon as possible (i.e., when its lifetime
expires). Instead, the item is removed at the first arrival to the item’s bucket
after the item’s expiration time. The point is that algorithms that delete items
as soon as possible may have unacceptably high overhead, even though they
require less storage space for the items themselves.” Id. at 713.

Moreover, it is inherent to the Aldous disclosure that the hash table described

EXHIBIT C-5

Joint Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

US2008 1290278.1

Asserted Claims From
U.S. Pat. No. 5,893,120

David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.

COMPUT. 713 (August 1992) (“Aldous”) alone and in combination
herein is a separate-chaining hash table to resolve unavoidable key collisions,
where each slot of the bucket array is a pointer to a linked list that contains the
key-value pairs that hash to the same location. Other data structures, such as
balanced trees, only offer logarithmic time complexity and can be complicated
to implement and require several pointers per item. With a suitable number of
buckets, the separate-chaining hash table solution offers constant expected
search times and makes deletion easy.

To the extent is it not inherent, it would be obvious to combine Aldous with
the prior art disclosed in, The Complexity of Hashing with Lazy Deletion,
Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of Hashing
with Lazy Deletion, 1 Algorithmica 17, 18 (November, 1986), because Aldous
describes and incorporates Van Wyk by reference. Aldous at 713. Van Wyk
discloses a method of hashing with lazy deletion using a separate-chaining
hash table as a more efficient solution to collisions than the available
alternatives, such as balanced trees. See Exhibit C-1 which is herein
incorporated by reference.

To the extent Bedrock argues that Aldous does not anticipate this element,
based on general knowledge and/or in combination with Knuth and/or Kruse,
one of ordinary skill in the art would recognize that the Aldous applies to
insertions, retrievals, and/or deletions of automatically expired records because
these are all basic functions that can be performed in the same manner on a
hash table or a liked list. See, e.g., “The Art of Computer Programming”,
Sorting and Searching, D.E. Knuth, Addison-Wesley Series in Computer
Science and Information Processing, pp. 506-549; “Data Structures and
Program Design”, R.L. Kruse, Prentice-Hall, Inc. 1984, pp. 104-148.”

EXHIBIT C-5

Joint Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

US2008 1290278.1

Asserted Claims From
U.S. Pat. No. 5,893,120

David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.

COMPUT. 713 (August 1992) (“Aldous”) alone and in combination
2. The information storage
and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

6. The information storage
and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

Aldous discloses the information storage and retrieval system further including
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records. Aldous teaches a
method for calculating a bound on the space complexity of the hashing with
lazy deletion algorithm, i.e., the number of expired elements that would remain
in the linked lists forming the external chains of the hash table. See, e.g.,
Aldous at 17-21. That bound calculation is a means for dynamically
determining the maximum number to remove, since the maximum number of
elements to remove should never exceed the number of expired elements that
would remain in the linked lists.

To the extent Aldous does not disclose this element, Aldous combined with
Morrison, Mathieu or Kenyon-Mathieu discloses this element. Morrison,
Mathieu, and Kenyon-Mathieu also teach methods for calculating a bound on
the space complexity of the hashing with lazy deletion algorithm. See, e.g.,
Morrison at 1156-61, Mathieu at 12-22, Kenyon-Mathieu 475-86.

It would have been obvious to one of ordinary skill in the art that these
methods of calculating bounds on the number of expired elements stored in the
linked list could also be used to dynamically determine a maximum number for
the record search means disclosed in Aldous to remove. One of ordinary skill
would have been motivated to combine the teachings of Morrison, Mathieu,
and Kenyon-Mathieu with Aldous because they all sought to analyze the
complexity of the hashing with lazy deletion algorithm, and each of the papers
refers to and builds upon the work of those papers preceding. See, e.g.,
Morrison at 1155, 1158, Mathieu at 1-4, Kenyon-Mathieu at 473-475, Aldous
at 2-3.

EXHIBIT C-5

Joint Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

US2008 1290278.1

Asserted Claims From
U.S. Pat. No. 5,893,120

David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.

COMPUT. 713 (August 1992) (“Aldous”) alone and in combination
Aldous combined with Dirks, Thatte, the ’663 patent, and/or the Opportunistic
Garbage Collection Articles discloses an information storage and retrieval
system further including means for dynamically determining maximum
number for the record search means to remove in the accessed linked list of
records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).

EXHIBIT C-5

Joint Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

US2008 1290278.1

Asserted Claims From
U.S. Pat. No. 5,893,120

David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.

COMPUT. 713 (August 1992) (“Aldous”) alone and in combination
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

EXHIBIT C-5

Joint Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

US2008 1290278.1

Asserted Claims From
U.S. Pat. No. 5,893,120

David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.

COMPUT. 713 (August 1992) (“Aldous”) alone and in combination

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.
As both Aldous and Dirks relate to deletion of aged records upon the allocation
of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as Aldous. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Aldous’s technique of
“lazy deletion” would be nothing more than the predictable use of prior art
elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Aldous’s system and
method of “lazy deletion” and would have seen the benefits of doing so. One
possible benefit, for example, is that the system and method of lazy deletion
could perform a specified number of deletions on any given sweep, thus saving
the system from performing sometimes time-consuming sweeps.

Alternatively, one of ordinary skill in the art would be motivated to, and would

EXHIBIT C-5

Joint Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

US2008 1290278.1

Asserted Claims From
U.S. Pat. No. 5,893,120

David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.

COMPUT. 713 (August 1992) (“Aldous”) alone and in combination
understand how to, combine the system disclosed in Aldous with the means for
dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. For example,
Thatte discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in Exhibit B-1,
which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Aldous with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine Aldous
with Thatte and recognized the benefits of doing so. For example, the removal
of expired records described in Aldous can be burdensome on the system,
adding to the system’s load and slowing down the system’s processing. One of
ordinary skill in the art would recognize that combining Aldous with the
teachings of Thatte would solve this problem by dynamically determining how
many records to delete based on, among other things, the system load.
Moreover, the '120 patent discloses that "[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how

EXHIBIT C-5

Joint Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

US2008 1290278.1

Asserted Claims From
U.S. Pat. No. 5,893,120

David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.

COMPUT. 713 (August 1992) (“Aldous”) alone and in combination
many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the
'120 patent provides motivations to combine Aldous with Thatte.

Alternatively, it would also be obvious to combine Aldous with the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in Exhibit B-13, which is hereby incorporated by reference in its entirety. For
example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.

EXHIBIT C-5

Joint Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

US2008 1290278.1

Asserted Claims From
U.S. Pat. No. 5,893,120

David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.

COMPUT. 713 (August 1992) (“Aldous”) alone and in combination
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load

EXHIBIT C-5

Joint Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

US2008 1290278.1

Asserted Claims From
U.S. Pat. No. 5,893,120

David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.

COMPUT. 713 (August 1992) (“Aldous”) alone and in combination
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Aldous and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as Aldous. Moreover, one of ordinary skill in the art would recognize
that it would improve similar systems and methods in the same way. As the
’120 patent states “[a] person skilled in the art will appreciate that the
technique of removing all expired records while searching the linked list can
be expanded to include techniques whereby not necessarily all expired records
are removed, and that the decision regarding if and how many records to delete
can be a dynamic one.” The ’120 patent at 7:10-15. Additionally, one of
ordinary skill in the art would recognize that the result of combining the ’663

EXHIBIT C-5

Joint Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

US2008 1290278.1

Asserted Claims From
U.S. Pat. No. 5,893,120

David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.

COMPUT. 713 (August 1992) (“Aldous”) alone and in combination
patent’s deletion decision procedure with Aldous’s technique of “lazy
deletion” would be nothing more than the predictable use of prior art elements
according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Aldous’s system
and method of “lazy deletion” and would have seen the benefits of doing so.
One such benefit, for example, is that the system and method of lazy deletion
would avoid performing deletions when the system load exceeded a threshold.

Alternatively, it would also be obvious to combine Aldous with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage

EXHIBIT C-5

Joint Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

US2008 1290278.1

Asserted Claims From
U.S. Pat. No. 5,893,120

David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.

COMPUT. 713 (August 1992) (“Aldous”) alone and in combination
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Aldous and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Aldous. Moreover, one of ordinary skill in the art

EXHIBIT C-5

Joint Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

US2008 1290278.1

Asserted Claims From
U.S. Pat. No. 5,893,120

David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.

COMPUT. 713 (August 1992) (“Aldous”) alone and in combination
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Aldous’s technique of “lazy deletion” would be nothing more
than the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Aldous’s system
and method of “lazy deletion” and would have seen the benefits of doing so.
One such benefit, for example, is that the system and method of lazy deletion
would only perform deletions when the system was not already too overloaded,
thus preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Aldous to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in

EXHIBIT C-5

Joint Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

US2008 1290278.1

Asserted Claims From
U.S. Pat. No. 5,893,120

David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.

COMPUT. 713 (August 1992) (“Aldous”) alone and in combination
Aldous with the fundamental concept of dynamically determining the
maximum number of expired records to remove in an accessed linked list of
records to solve a number of potential problems. For example, the removal of
expired records described in Aldous can be burdensome on the system, adding
to the system’s load and slowing down the system’s processing. Moreover, the
removal could also force an interruption in real-time processing as the
processing waits for the removal to complete. Indeed, part of the motivation
for the system disclosed in Aldous is avoiding these problems. One of
ordinary skill in the art would have known that dynamically determining the
maximum number to remove would limit the burden on the system and bound
the length of any real-time interruption to prevent delays in processing.
Indeed, Nemes concedes that such dynamic determination was obvious when
he states in the ‘120 patent that “[a] person skilled in the art will appreciate that
the technique of removing all expired records while searching the linked list
can be expanded to include techniques whereby not necessarily all expired
records are removed, and that the decision regarding if and how many records
to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Aldous in combination with Morrison, Mathieu,
Kenyon-Mathieu, Dirks, Thatte, the ‘663 Patent, or the Opportunistic Garbage
Collection References, it is disclosed by Linux 2.0.1, which describes
dynamically determining maximum number of expired ones of the records to
remove when the linked list is accessed. It would have been obvious to
combine Linux 2.0.1 with Aldous. For example, both Linux 2.0.1 and
Aldous describe systems and methods for performing data storage and retrieval
using known programming techniques to yield a predictable result.

EXHIBIT C-5

Joint Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

US2008 1290278.1

Asserted Claims From
U.S. Pat. No. 5,893,120

David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.

COMPUT. 713 (August 1992) (“Aldous”) alone and in combination
When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold

EXHIBIT C-5

Joint Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

US2008 1290278.1

Asserted Claims From
U.S. Pat. No. 5,893,120

David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.

COMPUT. 713 (August 1992) (“Aldous”) alone and in combination
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold

EXHIBIT C-5

Joint Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

US2008 1290278.1

Asserted Claims From
U.S. Pat. No. 5,893,120

David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.

COMPUT. 713 (August 1992) (“Aldous”) alone and in combination
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

EXHIBIT C-5

Joint Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

US2008 1290278.1

Asserted Claims From
U.S. Pat. No. 5,893,120

David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.

COMPUT. 713 (August 1992) (“Aldous”) alone and in combination

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

To the extent the preamble is a limitation, Aldous discloses a method for
storing and retrieving information records using a linked list to store and
provide access to the records, at least some of the records automatically
expiring. Aldous also discloses a method for storing and retrieving
information records using a hashing technique to provide access to the records
and using an external chaining technique to store the records with same hash
address, at least some of the records automatically expiring.

For example, Aldous discloses “a dynamic data structure management
technique called hashing with lazy deletion (HwLD) . . . A table managed
under HwLD is built by a sequence of insertions and deletions of items.”
Aldous, supra at 713.

Moreover, it is inherent to the Aldous disclosure that the hash table described
herein is a separate-chaining hash table to resolve unavoidable key collisions,
where each slot of the bucket array is a pointer to a linked list that contains the
key-value pairs that hash to the same location. Other data structures, such as
balanced trees, only offer logarithmic time complexity and can be complicated
to implement and require several pointers per item. With a suitable number of
buckets, the separate-chaining hash table solution offers constant expected
search times and makes deletion easy.

To the extent is it not inherent, it would be obvious to combine Aldous with

EXHIBIT C-5

Joint Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

US2008 1290278.1

Asserted Claims From
U.S. Pat. No. 5,893,120

David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.

COMPUT. 713 (August 1992) (“Aldous”) alone and in combination
the prior art disclosed in, The Complexity of Hashing with Lazy Deletion,
Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of Hashing
with Lazy Deletion, 1 Algorithmica 17, 18 (November, 1986), because Aldous
describes and incorporates Van Wyk by reference. Aldous at 713. Van Wyk
discloses a method of hashing with lazy deletion using a separate-chaining
hash table as a more efficient solution to collisions than the available
alternatives, such as balanced trees. See Exhibit C-1 which is herein
incorporated by reference.

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

Aldous discloses accessing a linked list of records. Aldous also discloses
accessing a linked list of records having same hash address.

For example, Aldous discloses “a dynamic data structure management
technique called hashing with lazy deletion (HwLD) . . . A table managed
under HwLD is built by a sequence of insertions and deletions of items.”
Aldous, supra at 713.

“An item arrives at a hashing table and needs to be stored for some period (the
item’s lifetime) . . . We always assume that the assignment of items to the H
buckets of the hashing table is uniform: That is, each item has probability 1/H
to select each bucket, independent for different items and independent of the
arrival and lifetimes.” Id.

“An arriving item selects one out of the H buckets at random (with uniform
probability) and joins the items assigned to this bucket.” Id. at 715.

Moreover, it is inherent to the Aldous disclosure that the hash table described
herein is a separate-chaining hash table to resolve unavoidable key collisions,

EXHIBIT C-5

Joint Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

US2008 1290278.1

Asserted Claims From
U.S. Pat. No. 5,893,120

David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.

COMPUT. 713 (August 1992) (“Aldous”) alone and in combination
where each slot of the bucket array is a pointer to a linked list that contains the
key-value pairs that hash to the same location. Other data structures, such as
balanced trees, only offer logarithmic time complexity and can be complicated
to implement and require several pointers per item. With a suitable number of
buckets, the separate-chaining hash table solution offers constant expected
search times and makes deletion easy.

To the extent is it not inherent, it would be obvious to combine Aldous with
the prior art disclosed in, The Complexity of Hashing with Lazy Deletion,
Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of Hashing
with Lazy Deletion, 1 Algorithmica 17, 18 (November, 1986), because Aldous
describes and incorporates Van Wyk by reference. Aldous at 713. Van Wyk
discloses a method of hashing with lazy deletion using a separate-chaining
hash table as a more efficient solution to collisions than the available
alternatives, such as balanced trees. See Exhibit C-1 which is herein
incorporated by reference.

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

Aldous discloses identifying at least some of the automatically expired ones of
the records.

For example, Aldous discloses “a dynamic data structure management
technique called hashing with lazy deletion (HwLD) . . . A table managed
under HwLD is built by a sequence of insertions and deletions of
items.”Aldous, supra at 713.

“An item arrives at a hashing table and needs to be stored for some period (the
item’s lifetime) . . . We always assume that the assignment of items to the H
buckets of the hashing table is uniform: That is, each item has probability 1/H

EXHIBIT C-5

Joint Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

US2008 1290278.1

Asserted Claims From
U.S. Pat. No. 5,893,120

David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.

COMPUT. 713 (August 1992) (“Aldous”) alone and in combination
to select each bucket, independent for different items and independent of the
arrival and lifetimes.” Id.

“An arriving item selects one out of the H buckets at random (with uniform
probability) and joins the items assigned to this bucket.”1

Moreover, Aldous discloses that “[t]he principle HwLD is very simple: An
item in a bucket is not deleted as soon as possible (i.e., when its lifetime
expires). Instead, the item is removed at the first arrival to the item’s bucket
after the item’s expiration time. The point is that algorithms that delete items
as soon as possible may have unacceptably high overhead, even though they
require less storage space for the items themselves.” Id. at 713.

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

Aldous discloses removing at least some of the automatically expired records
from the linked list when the linked list is accessed.

For example, Aldous discloses “a dynamic data structure management
technique called hashing with lazy deletion (HwLD) . . . A table managed
under HwLD is built by a sequence of insertions and deletions of items.” Id.

“An item arrives at a hashing table and needs to be stored for some period (the
item’s lifetime) . . . We always assume that the assignment of items to the H
buckets of the hashing table is uniform: That is, each item has probability 1/H
to select each bucket, independent for different items and independent of the
arrival and lifetimes.” Id.

1 Id. at 715.

EXHIBIT C-5

Joint Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

US2008 1290278.1

Asserted Claims From
U.S. Pat. No. 5,893,120

David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.

COMPUT. 713 (August 1992) (“Aldous”) alone and in combination
“An arriving item selects one out of the H buckets at random (with uniform
probability) and joins the items assigned to this bucket.” Id. at 715.

Moreover, Aldous discloses that “[t]he principle HwLD is very simple: An
item in a bucket is not deleted as soon as possible (i.e., when its lifetime
expires). Instead, the item is removed at the first arrival to the item’s bucket
after the item’s expiration time. The point is that algorithms that delete items
as soon as possible may have unacceptably high overhead, even though they
require less storage space for the items themselves.” Id. at 713.

Moreover, it is inherent to the Aldous disclosure that the hash table described
herein is a separate-chaining hash table to resolve unavoidable key collisions,
where each slot of the bucket array is a pointer to a linked list that contains the
key-value pairs that hash to the same location. Other data structures, such as
balanced trees, only offer logarithmic time complexity and can be complicated
to implement and require several pointers per item. With a suitable number of
buckets, the separate-chaining hash table solution offers constant expected
search times and makes deletion easy.

To the extent is it not inherent, it would be obvious to combine Aldous with
the prior art disclosed in, The Complexity of Hashing with Lazy Deletion
Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of Hashing
with Lazy Deletion, 1 Algorithmica 17, 18 (November, 1986), because Aldous
describes and incorporates Van Wyk by reference. Aldous at 713. Van Wyk
discloses a method of hashing with lazy deletion using a separate-chaining
hash table as a more efficient solution to collisions than the available
alternatives, such as balanced trees. See Exhibit C-1 which is herein
incorporated by reference.

EXHIBIT C-5

Joint Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

US2008 1290278.1

Asserted Claims From
U.S. Pat. No. 5,893,120

David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.

COMPUT. 713 (August 1992) (“Aldous”) alone and in combination

 [7d] inserting, retrieving
or deleting one of the
records from the system
following the step of
removing.

Aldous discloses inserting, retrieving or deleting one of the records from the
system following the step of removing.

For example, Aldous discloses “a dynamic data structure management
technique called hashing with lazy deletion (HwLD) . . . A table managed
under HwLD is built by a sequence of insertions and deletions of items.”
Aldous, supra at 713.

“An item arrives at a hashing table and needs to be stored for some period (the
item’s lifetime) . . . We always assume that the assignment of items to the H
buckets of the hashing table is uniform: That is, each item has probability 1/H
to select each bucket, independent for different items and independent of the
arrival and lifetimes.” Id.

“An arriving item selects one out of the H buckets at random (with uniform
probability) and joins the items assigned to this bucket.” Id. at 715.

Moreover, Aldous discloses that “[t]he principle HwLD is very simple: An
item in a bucket is not deleted as soon as possible (i.e., when its lifetime
expires). Instead, the item is removed at the first arrival to the item’s bucket
after the item’s expiration time. The point is that algorithms that delete items
as soon as possible may have unacceptably high overhead, even though they
require less storage space for the items themselves.” Id. at 713.

Moreover, it is inherent to the Aldous disclosure that the hash table described
herein is a separate-chaining hash table to resolve unavoidable key collisions,
where each slot of the bucket array is a pointer to a linked list that contains the

EXHIBIT C-5

Joint Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

US2008 1290278.1

Asserted Claims From
U.S. Pat. No. 5,893,120

David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.

COMPUT. 713 (August 1992) (“Aldous”) alone and in combination
key-value pairs that hash to the same location. Other data structures, such as
balanced trees, only offer logarithmic time complexity and can be complicated
to implement and require several pointers per item. With a suitable number of
buckets, the separate-chaining hash table solution offers constant expected
search times and makes deletion easy. To the extent is it not inherent, it would
be obvious to combine Aldous with the prior art disclosed in, The Complexity
of Hashing with Lazy Deletion, Christopher J. Van Wyk and Jeffrey Scott
Vitter, The Complexity of Hashing with Lazy Deletion, 1 Algorithmica 17, 18
(November, 1986), because Aldous describes and incorporates Van Wyk by
reference. Aldous at 713. Van Wyk discloses a method of hashing with lazy
deletion using a separate-chaining hash table as a more efficient solution to
collisions than the available alternatives, such as balanced trees. See Exhibit C-
1 which is herein incorporated by reference.

Moreover, Van Wyk and Vitter explain that “[t]he insertion of element xi
proceeds as follows:

1) Compute h = n(ki)
2) Remove from the hash chain in bucket h any items xj with tj < sj [i.e. remove
all expired elements]
3) Add xi so the chain in bucket h remains sorted by termination time.” Van
Wyk at 19.

This method clearly contemplates the insertion occurring after the removal of
expired elements.

4. The method according to
claim 3 further including

8. The method according
to claim 7 further including

Aldous discloses dynamically determining maximum number of expired ones
of the records to remove when the linked list is accessed. Aldous teaches a

EXHIBIT C-5

Joint Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

US2008 1290278.1

Asserted Claims From
U.S. Pat. No. 5,893,120

David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.

COMPUT. 713 (August 1992) (“Aldous”) alone and in combination
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

method for calculating a bound on the space complexity of the hashing with
lazy deletion algorithm, i.e., the number of expired elements that would remain
in the linked lists forming the external chains of the hash table. See, e.g.,
Aldous at 17-21. That bound calculation is a means for dynamically
determining the maximum number to remove, since the maximum number of
elements to remove should never exceed the number of expired elements that
would remain in the linked lists.

To the extent Aldous does not disclose this element, Aldous combined with
Morrison, Mathieu or Kenyon-Mathieu discloses this element. Morrison,
Mathieu, and Kenyon-Mathieu also teach methods for calculating a bound on
the space complexity of the hashing with lazy deletion algorithm. See, e.g.,
Morrison at 1156-61, Mathieu at 12-22, Kenyon-Mathieu 475-86.

It would have been obvious to one of ordinary skill in the art that these
methods of calculating bounds on the number of expired elements stored in the
linked list could also be used to dynamically determine a maximum number for
the record search means disclosed in Aldous to remove. One of ordinary skill
would have been motivated to combine the teachings of Morrison, Mathieu,
and Kenyon-Mathieu with Aldous because they all sought to analyze the
complexity of the hashing with lazy deletion algorithm, and each of the papers
refers to and builds upon the work of those papers preceding. See, e.g.,
Morrison at 1155, 1158, Mathieu at 1-4, Kenyon-Mathieu at 473-475, Aldous
at 2-3.

Aldous combined with Dirks, Thatte, the ’663 patent, and/or the Opportunistic
Garbage Collection Articles discloses dynamically determining maximum
number of expired ones of the records to remove when the linked list is

EXHIBIT C-5

Joint Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

US2008 1290278.1

Asserted Claims From
U.S. Pat. No. 5,893,120

David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.

COMPUT. 713 (August 1992) (“Aldous”) alone and in combination
accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than

EXHIBIT C-5

Joint Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

US2008 1290278.1

Asserted Claims From
U.S. Pat. No. 5,893,120

David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.

COMPUT. 713 (August 1992) (“Aldous”) alone and in combination
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.
As both Aldous and Dirks relate to deletion of aged records upon the allocation

EXHIBIT C-5

Joint Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

US2008 1290278.1

Asserted Claims From
U.S. Pat. No. 5,893,120

David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.

COMPUT. 713 (August 1992) (“Aldous”) alone and in combination
of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as Aldous. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Aldous’s technique of
“lazy deletion” would be nothing more than the predictable use of prior art
elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Aldous’s system and
method of “lazy deletion” and would have seen the benefits of doing so. One
possible benefit, for example, is that the system and method of lazy deletion
could perform a specified number of deletions on any given sweep, thus saving
the system from performing sometimes time-consuming sweeps.

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Aldous with the means for
dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. For example,
Thatte discloses a system and method using hash tables and/or linked lists and

EXHIBIT C-5

Joint Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

US2008 1290278.1

Asserted Claims From
U.S. Pat. No. 5,893,120

David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.

COMPUT. 713 (August 1992) (“Aldous”) alone and in combination
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in Exhibit B-1,
which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Aldous with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine Aldous
with Thatte and recognized the benefits of doing so. For example, the removal
of expired records described in Aldous can be burdensome on the system,
adding to the system’s load and slowing down the system’s processing. One of
ordinary skill in the art would recognize that combining Aldous with the
teachings of Thatte would solve this problem by dynamically determining how
many records to delete based on, among other things, the system load.
Moreover, the '120 patent discloses that "[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the
'120 patent provides motivations to combine Aldous with Thatte.

Alternatively, it would also be obvious to combine Aldous with the ’663

EXHIBIT C-5

Joint Invalidity Contentions & Production of
Documents

35 Case No. 6:09-CV-549-LED

US2008 1290278.1

Asserted Claims From
U.S. Pat. No. 5,893,120

David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.

COMPUT. 713 (August 1992) (“Aldous”) alone and in combination
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in Exhibit B-13, which is hereby incorporated by reference in its entirety. For
example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT C-5

Joint Invalidity Contentions & Production of
Documents

36 Case No. 6:09-CV-549-LED

US2008 1290278.1

Asserted Claims From
U.S. Pat. No. 5,893,120

David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.

COMPUT. 713 (August 1992) (“Aldous”) alone and in combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does

EXHIBIT C-5

Joint Invalidity Contentions & Production of
Documents

37 Case No. 6:09-CV-549-LED

US2008 1290278.1

Asserted Claims From
U.S. Pat. No. 5,893,120

David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.

COMPUT. 713 (August 1992) (“Aldous”) alone and in combination
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.
Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Aldous and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as Aldous. Moreover, one of ordinary skill in the art would recognize
that it would improve similar systems and methods in the same way. As the
’120 patent states “[a] person skilled in the art will appreciate that the
technique of removing all expired records while searching the linked list can
be expanded to include techniques whereby not necessarily all expired records
are removed, and that the decision regarding if and how many records to delete
can be a dynamic one.” The ’120 patent at 7:10-15. Additionally, one of
ordinary skill in the art would recognize that the result of combining the ’663
patent’s deletion decision procedure with Aldous’s technique of “lazy
deletion” would be nothing more than the predictable use of prior art elements
according to their established functions.

By way of further example, one of ordinary skill in the art would have

EXHIBIT C-5

Joint Invalidity Contentions & Production of
Documents

38 Case No. 6:09-CV-549-LED

US2008 1290278.1

Asserted Claims From
U.S. Pat. No. 5,893,120

David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.

COMPUT. 713 (August 1992) (“Aldous”) alone and in combination
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Aldous’s system
and method of “lazy deletion” and would have seen the benefits of doing so.
One such benefit, for example, is that the system and method of lazy deletion
would avoid performing deletions when the system load exceeded a threshold.

Alternatively, it would also be obvious to combine Aldous with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with

EXHIBIT C-5

Joint Invalidity Contentions & Production of
Documents

39 Case No. 6:09-CV-549-LED

US2008 1290278.1

Asserted Claims From
U.S. Pat. No. 5,893,120

David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.

COMPUT. 713 (August 1992) (“Aldous”) alone and in combination
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Aldous and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Aldous. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how

EXHIBIT C-5

Joint Invalidity Contentions & Production of
Documents

40 Case No. 6:09-CV-549-LED

US2008 1290278.1

Asserted Claims From
U.S. Pat. No. 5,893,120

David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.

COMPUT. 713 (August 1992) (“Aldous”) alone and in combination
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Aldous’s technique of “lazy deletion” would be nothing more
than the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Aldous’s system
and method of “lazy deletion” and would have seen the benefits of doing so.
One such benefit, for example, is that the system and method of lazy deletion
would only perform deletions when the system was not already too overloaded,
thus preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Aldous to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in
Aldous with the fundamental concept of dynamically determining the
maximum number of expired records to remove in an accessed linked list of
records to solve a number of potential problems. For example, the removal of
expired records described in Aldous can be burdensome on the system, adding
to the system’s load and slowing down the system’s processing. Moreover, the

EXHIBIT C-5

Joint Invalidity Contentions & Production of
Documents

41 Case No. 6:09-CV-549-LED

US2008 1290278.1

Asserted Claims From
U.S. Pat. No. 5,893,120

David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.

COMPUT. 713 (August 1992) (“Aldous”) alone and in combination
removal could also force an interruption in real-time processing as the
processing waits for the removal to complete. Indeed, part of the motivation
for the system disclosed in Aldous is avoiding these problems. One of
ordinary skill in the art would have known that dynamically determining the
maximum number to remove would limit the burden on the system and bound
the length of any real-time interruption to prevent delays in processing.
Indeed, Nemes concedes that such dynamic determination was obvious when
he states in the ‘120 patent that “[a] person skilled in the art will appreciate that
the technique of removing all expired records while searching the linked list
can be expanded to include techniques whereby not necessarily all expired
records are removed, and that the decision regarding if and how many records
to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Aldous in combination with Morrison, Mathieu,
Kenyon-Mathieu, Dirks, Thatte, the ‘663 Patent, or the Opportunistic Garbage
Collection References, it is disclosed by Linux 2.0.1, which describes
dynamically determining maximum number of expired ones of the records to
remove when the linked list is accessed. It would have been obvious to
combine Linux 2.0.1 with Aldous. For example, both Linux 2.0.1 and
Aldous describe systems and methods for performing data storage and retrieval
using known programming techniques to yield a predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux

EXHIBIT C-5

Joint Invalidity Contentions & Production of
Documents

42 Case No. 6:09-CV-549-LED

US2008 1290278.1

Asserted Claims From
U.S. Pat. No. 5,893,120

David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.

COMPUT. 713 (August 1992) (“Aldous”) alone and in combination
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect

EXHIBIT C-5

Joint Invalidity Contentions & Production of
Documents

43 Case No. 6:09-CV-549-LED

US2008 1290278.1

Asserted Claims From
U.S. Pat. No. 5,893,120

David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.

COMPUT. 713 (August 1992) (“Aldous”) alone and in combination
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked

EXHIBIT C-5

Joint Invalidity Contentions & Production of
Documents

44 Case No. 6:09-CV-549-LED

US2008 1290278.1

Asserted Claims From
U.S. Pat. No. 5,893,120

David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.

COMPUT. 713 (August 1992) (“Aldous”) alone and in combination
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can

EXHIBIT C-5

Joint Invalidity Contentions & Production of
Documents

45 Case No. 6:09-CV-549-LED

US2008 1290278.1

Asserted Claims From
U.S. Pat. No. 5,893,120

David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.

COMPUT. 713 (August 1992) (“Aldous”) alone and in combination
remove from a linked list.

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, Dietzfelbinger discloses an
information storage and retrieval system.

For example, Dietzfelbinger discloses that “[t]he dynamic dictionary problem
is considered: provide an algorithm for storing a dynamic set, allowing the
operations insert, delete, and lookup. A dynamic perfect hashing strategy is
given: a randomized algorithm for the dynamic dictionary problem that takes
O(1) worst-case time for lookups and O(1) amortized expected time for
insertions and deletions” Martin Dietzfelbinger, Anna Karlin, Kurt
Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan,
Dynamic Perfect Hashing: Upper and Lower Bounds, Revised Version
January 7, 1990, at 1.

“A dictionary over a universe U = {0, 1, . . . , N - 1} is a partial function S
from U to some set I. The operations Lookup(x), Insert(x, i), and Delete(x) are
available on a dictionary S; Lookup(x) returns S(x), Insert (x, i) adds x to the
domain of S and sets S(x) to I, and Delete(x) removes x from the domain of S.”
Id. at 2.

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records

Dietzfelbinger discloses a linked list to store and provide access to records
stored in a memory of the system, at least some of the records automatically
expiring. Dietzfelbinger also discloses a hashing means to provide access to
records stored in a memory of the system and using an external chaining
technique to store the records with same hash address, at least some of the
records automatically expiring.

For example, Dietzfelbinger discloses that “[t]he dynamic dictionary problem

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

automatically expiring, is considered: provide an algorithm for storing a dynamic set, allowing the
operations insert, delete, and lookup. A dynamic perfect hashing strategy is
given: a randomized algorithm for the dynamic dictionary problem that takes
O(1) worst-case time for lookups and O(1) amortized expected time for
insertions and deletions” Id. at 1.

“A dictionary over a universe U = {0, 1, . . . , N - 1} is a partial function S
from U to some set I. The operations Lookup(x), Insert(x, i), and Delete(x) are
available on a dictionary S; Lookup(x) returns S(x), Insert (x, i) adds x to the
domain of S and sets S(x) to I, and Delete(x) removes x from the domain of S.”
Id. at 2.

Furthermore, Dietzfelbinger discloses that “[t]here are two major techniques
for implementing dictionaries: trees and hashing.” Id.

Dietzfelbinger discloses an extension of the Fredman, Kómlos, and Szemerédi
scheme to the dynamic situation, wherein membership queries are processed in
constant worst-case time, insertions and deletions are processed in constant
expected amortized time, and the storage used at any time is proportional to the
number of elements currently stored in the dictionary. “[F]redman, Komlós,
and Szemerédi [FKS84] described a hashing technique that achieves linear
storage (in n) and constant query time for all N and n, where n is the size of S.”
Id.

This FSK Scheme that Dietzfelbinger discloses “has two levels. At the top
level, a hash function partitions the elements being stored into s sets. The
second level consists of a perfect hash function for each of these sets.

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

Specifically, a function h chosen uniformly at random from Hs is used to
partition the set S into s blocks.” Id. at 3-4.

While Dietzfelbinger does not disclose whether or not the FKS scheme uses
hashing with chaining to handle the unavoidable key collisions problem,
Dietzfelbinger discloses other schemes that do use hashing with chaining.
“Carter and Wegman [CW79] proposed universal hashing as a way of
avoiding assumption on the distribution of input values. This approach works
particularly well in combination with the idea of “continuous rehashing”
introduced by Brassard and Kannan [BK88]. In this way an algorithm is
obtained that needs linear space and expected constant time for each single
instruction. However, for n keys being stored in the dictionary in a scheme of
this kind the best upper bound known on the expected worst case time for an
instruction (i.e., the length of the longest chain in the resulting hash table with
chaining) is O(log n / log log n)….” Id. at 2-3. Since Dietzfelbinger does not
specify which collision handling approach FKS uses (the focus of this paper is
not collision handling but a computation of the upper and lower bounds for the
time complexity of a class of deterministic algorithms for the dictionary
problem), it is inherent from the disclosure of other schemes, such as the CW
scheme, that FKS also uses hashing with chaining.

To the extent that Bedrock argues that Dietzefelbinger does not anticipate
Claims 1 – 8 because it is not inherent that the FKS scheme incorporates linked
lists to handling key collisions, it would have been obvious to one of ordinary
skill in the art to store table entries in a linked list. The admitted prior art in
the Introduction discloses that linked lists/external chaining were already
common place to resolve collisions within hash tables. Id. Thus,

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

Dietzefelbinger and the admitted prior art in the Introduction show that one of
ordinary skill in the art understood how to use linked lists/external chaining to
resolve collisions within hash tables, and would recognize that it would
improve similar systems and methods in the same way.

Furthermore, Dietzfelbinger discloses that “[d]eletions are performed by
attaching a tag “deleted” to the table entry to be erased; only when a new level-
1 hash function h or a new hash function hj for the sub table Tj is chosen, do we
drop the elements with a tag “deleted” from Tj.” Id. at 5.

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of
records having the same
hash address,

Dietzfelbinger discloses a record search means utilizing a search key to access
the linked list. Dietzfelbinger also discloses a record search means utilizing a
search key to access a linked list of records having the same hash address.

For example, Dietzfelbinger discloses that “[t]he dynamic dictionary problem
is considered: provide an algorithm for storing a dynamic set, allowing the
operations insert, delete, and lookup. A dynamic perfect hashing strategy is
given: a randomized algorithm for the dynamic dictionary problem that takes
O(1) worst-case time for lookups and O(1) amortized expected time for
insertions and deletions” Id. at 1.

“A dictionary over a universe U = {0, 1, . . . , N - 1} is a partial function S
from U to some set I. The operations Lookup(x), Insert(x, i), and Delete(x) are
available on a dictionary S; Lookup(x) returns S(x), Insert (x, i) adds x to the
domain of S and sets S(x) to I, and Delete(x) removes x from the domain of S.”
Id. at 2.

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

Furthermore, Dietzfelbinger discloses that “[t]here are two major techniques
for implementing dictionaries: trees and hashing.” Id.

Dietzfelbinger discloses an extension of the Fredman, Komlós, and Szemerédi
scheme to the dynamic situation, wherein membership queries are processed in
constant worst-case time, insertions and deletions are processed in constant
expected amortized time, and the storage used at any time is proportional to the
number of elements currently stored in the dictionary. “[F]redman, Komlós,
and Szemerédi [FKS84] describe a hashing technique that achieves linear
storage (in n) and constant query time for all N and n, where n is the size of S.”
Id.

This FSK Scheme that Dietzfelbinger discloses “has two levels. At the top
level, a hash function partitions the elements being stored into s sets. The
second level consists of a perfect hash function for each of these sets.
Specifically, a function h chosen uniformly at random from Hs is used to
partition the set S into s blocks.” Id. at 3-4.

While Dietzfelbinger does not disclose whether or not the FKS scheme uses
hashing with chaining to handle the unavoidable key collisions problem,
Dietzfelbinger discloses other schemes that do use hashing with chaining.
“Carter and Wegman [CW79] proposed universal hashing as a way of
avoiding assumption on the distribution of input values. This approach works
particularly well in combination with the idea of “continuous rehashing”
introduced by Brassard and Kannan [BK88]. In this way an algorithm is
obtained that needs linear space and expected constant time for each single
instruction. However, for n keys being stored in the dictionary in a scheme of

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

this kind the best upper bound known on the expected worst case time for an
instruction (i.e., the length of the longest chain in the resulting hash table with
chaining) is O(log n / log log n)….” Id. at 2-3. Since Dietzfelbinger does not
specify which collision handling approach FKS uses (the focus of this paper is
not collision handling but a computation of the upper and lower bounds for the
time complexity of a class of deterministic algorithms for the dictionary
problem), it is inherent from the disclosure of other schemes, such as the CW
scheme, that FKS also uses hashing with chaining.

To the extent that Bedrock argues that Dietzefelbinger does not anticipate
Claims 1 – 8 because it is not inherent that the FKS scheme incorporates linked
lists to handling key collisions, it would have been obvious to one of ordinary
skill in the art to store table entries in a linked list. The admitted prior art in
the Introduction discloses that linked lists/external chaining were already
common place to resolve collisions within hash tables. Id. Thus,
Dietzefelbinger and the admitted prior art in the Introduction show that one of
ordinary skill in the art understood how to use linked lists/external chaining to
resolve collisions within hash tables, and would recognize that it would
improve similar systems and methods in the same way.

[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the
records from the linked list
when the linked list is

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,

Dietzfelbinger discloses the record search means including a means for
identifying and removing at least some of the expired ones of the records from
the linked list when the linked list is accessed. Dietzfelbinger also discloses
the record search means including means for identifying and removing at least
some expired ones of the records from the linked list of records when the
linked list is accessed.

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

accessed, and and For example, Dietzfelbinger discloses that “[t]he dynamic dictionary problem
is considered: provide an algorithm for storing a dynamic set, allowing the
operations insert, delete, and lookup. A dynamic perfect hashing strategy is
given: a randomized algorithm for the dynamic dictionary problem that takes
O(1) worst-case time for lookups and O(1) amortized expected time for
insertions and deletions” Id. at 1.

“A dictionary over a universe U = {0, 1, . . . , N - 1} is a partial function S
from U to some set I. The operations Lookup(x), Insert(x, i), and Delete(x) are
available on a dictionary S; Lookup(x) returns S(x), Insert (x, i) adds x to the
domain of S and sets S(x) to I, and Delete(x) removes x from the domain of S.”
Id. at 2.

Furthermore, Dietzfelbinger discloses that “[t]here are two major techniques
for implementing dictionaries: trees and hashing.” Id.

Dietzfelbinger discloses an extension of the Fredman, Komlós, and Szemerédi
scheme to the dynamic situation, wherein membership queries are processed in
constant worst-case time, insertions and deletions are processed in constant
expected amortized time, and the storage used at any time is proportional to the
number of elements currently stored in the dictionary. “[F]redman, Komlós,
and Szemerédi [FKS84] describe a hashing technique that achieves linear
storage (in n) and constant query time for all N and n, where n is the size of S.”
Id.

This FSK Scheme that Dietzfelbinger discloses “has two levels. At the top
level, a hash function partitions the elements being stored into s sets. The

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

second level consists of a perfect hash function for each of these sets.
Specifically, a function h chosen uniformly at random from Hs is used to
partition the set S into s blocks.” Id. at 3-4.

While Dietzfelbinger does not disclose whether or not the FKS scheme uses
hashing with chaining to handle the unavoidable key collisions problem,
Dietzfelbinger discloses other schemes that do use hashing with chaining.
“Carter and Wegman [CW79] proposed universal hashing as a way of
avoiding assumption on the distribution of input values. This approach works
particularly well in combination with the idea of “continuous rehashing”
introduced by Brassard and Kannan [BK88]. In this way an algorithm is
obtained that needs linear space and expected constant time for each single
instruction. However, for n keys being stored in the dictionary in a scheme of
this kind the best upper bound known on the expected worst case time for an
instruction (i.e., the length of the longest chain in the resulting hash table with
chaining) is O(log n / log log n)...” Id. at 2-3. Since Dietzfelbinger does not
specify which collision handling approach FKS uses (the focus of this paper is
not collision handling but a computation of the upper and lower bounds for the
time complexity of a class of deterministic algorithms for the dictionary
problem), it is inherent from the disclosure of other schemes, such as the CW
scheme, that FKS also uses hashing with chaining.

To the extent that Bedrock argues that Dietzefelbinger does not anticipate
Claims 1 – 8 because it is not inherent that the FKS scheme incorporates linked
lists to handling key collisions, it would have been obvious to one of ordinary
skill in the art to store table entries in a linked list. The admitted prior art in
the Introduction discloses that linked lists/external chaining were already

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

common place to resolve collisions within hash tables. Id. Thus,
Dietzefelbinger and the admitted prior art in the Introduction show that one of
ordinary skill in the art understood how to use linked lists/external chaining to
resolve collisions within hash tables, and would recognize that it would
improve similar systems and methods in the same way.

Furthermore, Dietzfelbinger discloses that “[d]eletions are performed by
attaching a tag “deleted” to the table entry to be erased; only when a new level-
1 hash function h or a new hash function hj for the sub table Tj is chosen, do we
drop the elements with a tag “deleted” from Tj.” Id. at 5.

A call to the procedure Insert(x) conducts the following steps, as displayed by
the code in the figure below. The procedure hashes x to determine the proper
position for x, hj(x). If the position in which x is to be placed is empty, then x
is stored in the position. However, if the position is not empty, then the
procedure goes through and places all the elements in the sub table that are not
labeled “deleted” into a list Lj, and marks all positions in the sub table as
empty. Then, x is appended to the list Lj. By marking all positions in the sub
table as empty, the procedure effectively deletes all those that are left in the
sub table -- those that were labeled “deleted.” Id. at 6.

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

Id. at Figure 1.

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

Dietzfelbinger discloses the record search means including a means for
identifying and removing at least some of the expired ones of the records from
the linked list when the linked list is accessed. Dietzfelbinger also discloses
the record search means including means for identifying and removing at least
some expired ones of the records from the linked list of records when the
linked list is accessed.

For example, Dietzfelbinger discloses that “[t]he dynamic dictionary problem
is considered: provide an algorithm for storing a dynamic set, allowing the
operations insert, delete, and lookup. A dynamic perfect hashing strategy is

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

given: a randomized algorithm for the dynamic dictionary problem that takes
O(1) worst-case time for lookups and O(1) amortized expected time for
insertions and deletions” Id. at 1.

“A dictionary over a universe U = {0, 1, . . . , N - 1} is a partial function S
from U to some set I. The operations Lookup(x), Insert(x, i), and Delete(x) are
available on a dictionary S; Lookup(x) returns S(x), Insert (x, i) adds x to the
domain of S and sets S(x) to I, and Delete(x) removes x from the domain of S.”
Id. at 2.

Furthermore, Dietzfelbinger discloses that “[t]here are two major techniques
for implementing dictionaries: trees and hashing.” Id.

Dietzfelbinger discloses an extension of the Fredman, Komlós, and Szemerédi
scheme to the dynamic situation, wherein membership queries are processed in
constant worst-case time, insertions and deletions are processed in constant
expected amortized time, and the storage used at any time is proportional to the
number of elements currently stored in the dictionary. “[F]redman, Komlós,
and Szemerédi [FKS84] describe a hashing technique that achieves linear
storage (in n) and constant query time for all N and n, where n is the size of S.”
Id.

This FSK Scheme that Dietzfelbinger discloses “has two levels. At the top
level, a hash function partitions the elements being stored into s sets. The
second level consists of a perfect hash function for each of these sets.
Specifically, a function h chosen uniformly at random from Hs is used to
partition the set S into s blocks.” Id. at 3-4.

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

While Dietzfelbinger does not disclose whether or not the FKS scheme uses
hashing with chaining to handle the unavoidable key collisions problem,
Dietzfelbinger discloses other schemes that do use hashing with chaining.
“Carter and Wegman [CW79] proposed universal hashing as a way of
avoiding assumption on the distribution of input values. This approach works
particularly well in combination with the idea of “continuous rehashing”
introduced by Brassard and Kannan [BK88]. In this way an algorithm is
obtained that needs linear space and expected constant time for each single
instruction. However, for n keys being stored in the dictionary in a scheme of
this kind the best upper bound known on the expected worst case time for an
instruction (i.e., the length of the longest chain in the resulting hash table with
chaining) is O(log n / log log n)...” Id. at 2-3.Since Dietzfelbinger does not
specify which collision handling approach FKS uses (the focus of this paper is
not collision handling but a computation of the upper and lower bounds for the
time complexity of a class of deterministic algorithms for the dictionary
problem), it is inherent from the disclosure of other schemes, such as the CW
scheme, that FKS also uses hashing with chaining.

To the extent that Bedrock argues that Dietzefelbinger does not anticipate
Claims 1 – 8 because it is not inherent that the FKS scheme incorporates linked
lists to handling key collisions, it would have been obvious to one of ordinary
skill in the art to store table entries in a linked list. The admitted prior art in
the Introduction discloses that linked lists/external chaining were already
common place to resolve collisions within hash tables. Id. Thus,
Dietzefelbinger and the admitted prior art in the Introduction show that one of
ordinary skill in the art understood how to use linked lists/external chaining to

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

resolve collisions within hash tables, and would recognize that it would
improve similar systems and methods in the same way.

Furthermore, Dietzfelbinger discloses that “[d]eletions are performed by
attaching a tag “deleted” to the table entry to be erased; only when a new level-
1 hash function h or a new hash function hj for the sub table Tj is chosen, do we
drop the elements with a tag “deleted” from Tj.” Id. at 5.

A call to the procedure Insert(x) conducts the following steps, as displayed by
the code in the figure below. The procedure hashes x to determine the proper
position for x, hj(x). If the position in which x is to be placed is empty, then x
is stored in the position. However, if the position is not empty, then the
procedure goes through and places all the elements in the sub table that are not
labeled “deleted” into a list Lj, and marks all positions in the sub table as
empty. Then, x is appended to the list Lj. By marking all positions in the sub
table as empty, the procedure effectively deletes all those that are left in the
sub table -- those that were labeled “deleted.” Id. at 6.

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

Id. at Figure 1.

2. The information storage
and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

6. The information storage
and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

Dietzfelbinger discloses an information storage and retrieval system further
including means for dynamically determining maximum number for the record
search means to remove in the accessed linked list of records.

For example, a call to the procedure Insert(x) conducts the following steps, as
displayed by the code in the figure below. The procedure hashes x to
determine the proper position for x, hj(x). First, the procedure determines if x
already exists in the sub table. If x does exist, then the only determination to
make is whether x is marked for deletion. If x is marked for deletion, then the
procedure removes this deletion tag. Id. at 6.

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

Second, if the sub table does not contain x and the position in which x is to be
placed is found empty, then x is stored in the position. Id.

Third, if the sub table does not contain x and the position in which x is to be
placed is not empty, then the procedure goes through and places all the
elements in the sub table that are not labeled “deleted” into a list Lj, and marks
all positions in the sub table as empty. Then, x is appended to the list Lj. By
marking all positions in the sub table as empty, the procedure effectively
deletes all those that are left in the sub table -- those that were labeled
“deleted.” Id.

Therefore, the procedure dynamically determines whether or not to delete the
records marked “deleted” if either of the following two conditions occur: (1) x
already exists in the sub table or (2) the position in which x is to be placed is
empty. Deletion takes place during a call to procedure Insert(x) only if the
above two conditions are not met.

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

Id. at Figure 1.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Dietzfelbinger to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Dietzfelbinger with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

linked list of records to solve a number of potential problems. For example,
the removal of expired records described in Dietzfelbinger can be burdensome
on the system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete. Indeed,
part of the motivation for the system disclosed in Dietzfelbinger is avoiding
these problems. One of ordinary skill in the art would have known that
dynamically determining the maximum number to remove would limit the
burden on the system and bound the length of any real-time interruption to
prevent delays in processing. Indeed, Nemes concedes that such dynamic
determination was obvious when he states in the ‘120 patent that “[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one.” ‘120 at
7:10-15.

Dietzfelbinger combined with Dirks, Thatte, the ’663 patent and/or the
Opportunistic Garbage Collection Articles discloses an information storage
and retrieval system further including means for dynamically determining
maximum number for the record search means to remove in the accessed
linked list of records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Dietzfelbinger and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

implementations such as Dietzfelbinger. Moreover, one of ordinary skill in the
art would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Dietzfelbinger nothing
more than the predictable use of prior art elements according to their
established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Dietzfelbinger and
would have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Dietzfelbinger with the
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records disclosed by Thatte. For
example, Thatte discloses a system and method using hash tables and/or linked
lists and further discloses means for dynamically determining the maximum
number for the record search means to remove in the accessed linked list of
records. The disclosure of these claim elements in Thatte is clearly shown in
the chart of Thatte, which is hereby incorporated by reference in its entirety.

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, Ass both Dietzfelbinger and Thatte teach a system of data
storage and retrieval, one of ordinary skill in the art would recognize that the
result of combining Dietzfelbinger with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove as taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine
Dietzfelbinger with Thatte and recognize the benefits of doing so. For
example, the removal of expired records described in Dietzfelbinger can be
burdensome on the system, adding to the system’s load and slowing down the
system’s processing. One of ordinary skill in the art would recognize that
combining Dietzfelbinger with the teachings of Thatte would solve this
problem by dynamically determining how many records to delete based on,
among other things, the system load. Moreover, the '120 patent discloses that
"[a] person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records are removed, and that
the decision regarding if and how many records to delete can be a dynamic
one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine
Dietzfelbinger with Thatte.

Alternatively, it would also be obvious to combine Dietzfelbinger with the
’663 patent. Disclosure of these claim elements in the ’663 patent is clearly

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

shown in the chart of the ‘663 patent, which is hereby incorporated by
reference in its entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Dietzfelbinger and the ’663 patent relate to deletion of records from
hash tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in Dietzfelbinger. Moreover, one of ordinary skill in the
art would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with Dietzfelbinger
would be nothing more than the predictable use of prior art elements according

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Dietzfelbinger
and would have seen the benefits of doing so. One such benefit, for example,
is that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Dietzfelbinger with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Dietzfelbinger and the Opportunistic Garbage Collection Articles
relate to deletion of aged records, one of ordinary skill in the art would have
understood how to use the Opportunistic Garbage Collection Articles’ dynamic
decision on whether to perform a deletion based on a system load in other hash
table implementations such as Dietzfelbinger. Moreover, one of ordinary skill

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

in the art would recognize that it would improve similar systems and methods
in the same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Dietzfelbinger would be nothing more than the predictable use
of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Dietzfelbinger and
would have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Dietzfelbinger to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Dietzfelbinger with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

linked list of records to solve a number of potential problems. For example,
the removal of expired records described in Dietzfelbinger can be burdensome
on the system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Dietzfelbinger in combination with Dirks, Thatte,
the ‘663 Patent, or the Opportunistic Garbage Collection References, it is
disclosed by Linux 2.0.1, which describes dynamically determining maximum
number of expired ones of the records to remove when the linked list is
accessed. It would have been obvious to combine Linux 2.0.1
with Dietzfelbinger. For example, both Linux 2.0.1 and
Dietzfelbinger describe systems and methods for performing data storage and
retrieval using known programming techniques to yield a predictable result.

When invoked, the function rt_cache_add automatically increments an

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

35 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

To the extent the preamble is a limitation, Dietzfelbinger discloses a method
for storing and retrieving information records using a linked list to store and
provide access to the records, at least some of the records automatically
expiring. Dietzfelbinger also discloses a method for storing and retrieving
information records using a hashing technique to provide access to the records
and using an external chaining technique to store the records with same hash
address, at least some of the records automatically expiring.

For example, Dietzfelbinger discloses that “[t]he dynamic dictionary problem
is considered: provide an algorithm for storing a dynamic set, allowing the
operations insert, delete, and lookup. A dynamic perfect hashing strategy is
given: a randomized algorithm for the dynamic dictionary problem that takes
O(1) worst-case time for lookups and O(1) amortized expected time for
insertions and deletions” Deitzfelbinger at 1.

“A dictionary over a universe U = {0, 1, . . . , N - 1} is a partial function S
from U to some set I. The operations Lookup(x), Insert(x, i), and Delete(x) are
available on a dictionary S; Lookup(x) returns S(x), Insert (x, i) adds x to the
domain of S and sets S(x) to I, and Delete(x) removes x from the domain of S.”

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

36 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

Id. at 2.

Furthermore, Dietzfelbinger discloses that “[t]here are two major techniques
for implementing dictionaries: trees and hashing.” Id.

Dietzfelbinger discloses an extension of the Fredman, Komlós, and Szemerédi
scheme to the dynamic situation, wherein membership queries are processed in
constant worst-case time, insertions and deletions are processed in constant
expected amortized time, and the storage used at any time is proportional to the
number of elements currently stored in the dictionary. “[F]redman, Komlós,
and Szemerédi [FKS84] describe a hashing technique that achieves linear
storage (in n) and constant query time for all N and n, where n is the size of S.”
Id.

This FSK Scheme that Dietzfelbinger discloses “has two levels. At the top
level, a hash function partitions the elements being stored into s sets. The
second level consists of a perfect hash function for each of these sets.
Specifically, a function h chosen uniformly at random from Hs is used to
partition the set S into s blocks.” Id. at 3-4.

While Dietzfelbinger does not disclose whether or not the FKS scheme uses
hashing with chaining to handle the unavoidable key collisions problem,
Dietzfelbinger discloses other schemes that do use hashing with chaining.
“Carter and Wegman [CW79] proposed universal hashing as a way of
avoiding assumption on the distribution of input values. This approach works
particularly well in combination with the idea of “continuous rehashing”
introduced by Brassard and Kannan [BK88]. In this way an algorithm is

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

37 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

obtained that needs linear space and expected constant time for each single
instruction. However, for n keys being stored in the dictionary in a scheme of
this kind the best upper bound known on the expected worst case time for an
instruction (i.e., the length of the longest chain in the resulting hash table with
chaining) is O(log n / log log n)...” Id. at 2-3.Since Dietzfelbinger does not
specify which collision handling approach FKS uses (the focus of this paper is
not collision handling but a computation of the upper and lower bounds for the
time complexity of a class of deterministic algorithms for the dictionary
problem), it is inherent from the disclosure of other schemes, such as the CW
scheme, that FKS also uses hashing with chaining.

To the extent that Bedrock argues that Dietzefelbinger does not anticipate
Claims 1 – 8 because it is not inherent that the FKS scheme incorporates linked
lists to handling key collisions, it would have been obvious to one of ordinary
skill in the art to store table entries in a linked list. The admitted prior art in
the Introduction discloses that linked lists/external chaining were already
common place to resolve collisions within hash tables. Id. Thus,
Dietzefelbinger and the admitted prior art in the Introduction show that one of
ordinary skill in the art understood how to use linked lists/external chaining to
resolve collisions within hash tables, and would recognize that it would
improve similar systems and methods in the same way.

Furthermore, Dietzfelbinger discloses that “[d]eletions are performed by
attaching a tag “deleted” to the table entry to be erased; only when a new level-
1 hash function h or a new hash function hj for the sub table Tj is chosen, do we
drop the elements with a tag “deleted” from Tj.” Id. at 5.

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

38 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

Dietzfelbinger discloses accessing a linked list of records. Dietzfelbinger also
discloses accessing a linked list of records having same hash address.

For example, Dietzfelbinger discloses that “[t]he dynamic dictionary problem
is considered: provide an algorithm for storing a dynamic set, allowing the
operations insert, delete, and lookup. A dynamic perfect hashing strategy is
given: a randomized algorithm for the dynamic dictionary problem that takes
O(1) worst-case time for lookups and O(1) amortized expected time for
insertions and deletions” Id. at 1.

“A dictionary over a universe U = {0, 1, . . . , N - 1} is a partial function S
from U to some set I. The operations Lookup(x), Insert(x, i), and Delete(x) are
available on a dictionary S; Lookup(x) returns S(x), Insert (x, i) adds x to the
domain of S and sets S(x) to I, and Delete(x) removes x from the domain of S.”
Id. at 2.

Furthermore, Dietzfelbinger discloses that “[t]here are two major techniques
for implementing dictionaries: trees and hashing.” Id.

Dietzfelbinger discloses an extension of the Fredman, Komlós, and Szemerédi
scheme to the dynamic situation, wherein membership queries are processed in
constant worst-case time, insertions and deletions are processed in constant
expected amortized time, and the storage used at any time is proportional to the
number of elements currently stored in the dictionary. “[F]redman, Komlós,
and Szemerédi [FKS84] describe a hashing technique that achieves linear
storage (in n) and constant query time for all N and n, where n is the size of S.”
Id.

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

39 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

This FSK Scheme that Dietzfelbinger discloses “has two levels. At the top
level, a hash function partitions the elements being stored into s sets. The
second level consists of a perfect hash function for each of these sets.
Specifically, a function h chosen uniformly at random from Hs is used to
partition the set S into s blocks.” Id. at 3-4.

While Dietzfelbinger does not disclose whether or not the FKS scheme uses
hashing with chaining to handle the unavoidable key collisions problem,
Dietzfelbinger discloses other schemes that do use hashing with chaining.
“Carter and Wegman [CW79] proposed universal hashing as a way of
avoiding assumption on the distribution of input values. This approach works
particularly well in combination with the idea of “continuous rehashing”
introduced by Brassard and Kannan [BK88]. In this way an algorithm is
obtained that needs linear space and expected constant time for each single
instruction. However, for n keys being stored in the dictionary in a scheme of
this kind the best upper bound known on the expected worst case time for an
instruction (i.e., the length of the longest chain in the resulting hash table with
chaining) is O(log n / log log n)...” Id. at 2-3. Since Dietzfelbinger does not
specify which collision handling approach FKS uses (the focus of this paper is
not collision handling but a computation of the upper and lower bounds for the
time complexity of a class of deterministic algorithms for the dictionary
problem), it is inherent from the disclosure of other schemes, such as the CW
scheme, that FKS also uses hashing with chaining.

To the extent that Bedrock argues that Dietzefelbinger does not anticipate
Claims 1 – 8 because it is not inherent that the FKS scheme incorporates linked

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

40 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

lists to handling key collisions, it would have been obvious to one of ordinary
skill in the art to store table entries in a linked list. The admitted prior art in
the Introduction discloses that linked lists/external chaining were already
common place to resolve collisions within hash tables. Id. Thus,
Dietzefelbinger and the admitted prior art in the Introduction show that one of
ordinary skill in the art understood how to use linked lists/external chaining to
resolve collisions within hash tables, and would recognize that it would
improve similar systems and methods in the same way.

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

Dietzfelbinger discloses identifying at least some of the automatically expired
ones of the records.

For example, Dietzfelbinger discloses that “[t]he dynamic dictionary problem
is considered: provide an algorithm for storing a dynamic set, allowing the
operations insert, delete, and lookup. A dynamic perfect hashing strategy is
given: a randomized algorithm for the dynamic dictionary problem that takes
O(1) worst-case time for lookups and O(1) amortized expected time for
insertions and deletions” Id. at 1.

“A dictionary over a universe U = {0, 1, . . . , N - 1} is a partial function S
from U to some set I. The operations Lookup(x), Insert(x, i), and Delete(x) are
available on a dictionary S; Lookup(x) returns S(x), Insert (x, i) adds x to the
domain of S and sets S(x) to I, and Delete(x) removes x from the domain of S.”
Id. at 2.

Furthermore, Dietzfelbinger discloses that “[d]eletions are performed by
attaching a tag “deleted” to the table entry to be erased; only when a new level-

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

41 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

1 hash function h or a new hash function hj for the sub table Tj is chosen, do we
drop the elements with a tag “deleted” from Tj.” Id. at 5.

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

Dietzfelbinger discloses removing at least some of the automatically expired
records from the linked list when the linked list is accessed.

For example, Dietzfelbinger discloses that “[t]he dynamic dictionary problem
is considered: provide an algorithm for storing a dynamic set, allowing the
operations insert, delete, and lookup. A dynamic perfect hashing strategy is
given: a randomized algorithm for the dynamic dictionary problem that takes
O(1) worst-case time for lookups and O(1) amortized expected time for
insertions and deletions” Id. at 1.

“A dictionary over a universe U = {0, 1, . . . , N - 1} is a partial function S
from U to some set I. The operations Lookup(x), Insert(x, i), and Delete(x) are
available on a dictionary S; Lookup(x) returns S(x), Insert (x, i) adds x to the
domain of S and sets S(x) to I, and Delete(x) removes x from the domain of S.”
Id. at 2.

Furthermore, Dietzfelbinger discloses that “[t]here are two major techniques
for implementing dictionaries: trees and hashing.” Id.

Dietzfelbinger discloses an extension of the Fredman, Komlós, and Szemerédi
scheme to the dynamic situation, wherein membership queries are processed in
constant worst-case time, insertions and deletions are processed in constant
expected amortized time, and the storage used at any time is proportional to the
number of elements currently stored in the dictionary. “[F]redman, Komlós,

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

42 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

and Szemerédi [FKS84] describe a hashing technique that achieves linear
storage (in n) and constant query time for all N and n, where n is the size of S.”
Id.

This FSK Scheme that Dietzfelbinger discloses “has two levels. At the top
level, a hash function partitions the elements being stored into s sets. The
second level consists of a perfect hash function for each of these sets.
Specifically, a function h chosen uniformly at random from Hs is used to
partition the set S into s blocks.” Id. at 3-4.

While Dietzfelbinger does not disclose whether or not the FKS scheme uses
hashing with chaining to handle the unavoidable key collisions problem,
Dietzfelbinger discloses other schemes that do use hashing with chaining.
“Carter and Wegman [CW79] proposed universal hashing as a way of
avoiding assumption on the distribution of input values. This approach works
particularly well in combination with the idea of “continuous rehashing”
introduced by Brassard and Kannan [BK88]. In this way an algorithm is
obtained that needs linear space and expected constant time for each single
instruction. However, for n keys being stored in the dictionary in a scheme of
this kind the best upper bound known on the expected worst case time for an
instruction (i.e., the length of the longest chain in the resulting hash table with
chaining) is O(log n / log log n)....” Id. at 2-3. Since Dietzfelbinger does not
specify which collision handling approach FKS uses (the focus of this paper is
not collision handling but a computation of the upper and lower bounds for the
time complexity of a class of deterministic algorithms for the dictionary
problem), it is inherent from the disclosure of other schemes, such as the CW
scheme, that FKS also uses hashing with chaining.

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

43 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

To the extent that Bedrock argues that Dietzefelbinger does not anticipate
Claims 1 – 8 because it is not inherent that the FKS scheme incorporates linked
lists to handling key collisions, it would have been obvious to one of ordinary
skill in the art to store table entries in a linked list. The admitted prior art in
the Introduction discloses that linked lists/external chaining were already
common place to resolve collisions within hash tables. Id. Thus,
Dietzefelbinger and the admitted prior art in the Introduction show that one of
ordinary skill in the art understood how to use linked lists/external chaining to
resolve collisions within hash tables, and would recognize that it would
improve similar systems and methods in the same way.

Furthermore, Dietzfelbinger discloses that “[d]eletions are performed by
attaching a tag “deleted” to the table entry to be erased; only when a new level-
1 hash function h or a new hash function hj for the sub table Tj is chosen, do we
drop the elements with a tag “deleted” from Tj.” Id. at 5.

A call to the procedure Insert(x) conducts the following steps, as displayed by
the code in the figure below. The procedure hashes x to determine the proper
position for x, hj(x). If the position in which x is to be placed is empty, then x
is stored in the position. However, if the position is not empty, then the
procedure goes through and places all the elements in the sub table that are not
labeled “deleted” into a list Lj, and marks all positions in the sub table as
empty. Then, x is appended to the list Lj. By marking all positions in the sub
table as empty, the procedure effectively deletes all those that are left in the
sub table -- those that were labeled “deleted.” Id. at 6.

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

44 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

45 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

Id. at Figure 1.

 [7d] inserting, retrieving

or deleting one of the
records from the system
following the step of
removing.

Dietzfelbinger discloses inserting, retrieving or deleting one of the records
from the system following the step of removing.

For example, Dietzfelbinger discloses that “[t]he dynamic dictionary problem
is considered: provide an algorithm for storing a dynamic set, allowing the
operations insert, delete, and lookup. A dynamic perfect hashing strategy is
given: a randomized algorithm for the dynamic dictionary problem that takes
O(1) worst-case time for lookups and O(1) amortized expected time for
insertions and deletions” Id. at 1.

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

46 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

“A dictionary over a universe U = {0, 1, . . . , N - 1} is a partial function S
from U to some set I. The operations Lookup(x), Insert(x, i), and Delete(x) are
available on a dictionary S; Lookup(x) returns S(x), Insert (x, i) adds x to the
domain of S and sets S(x) to I, and Delete(x) removes x from the domain of S.”
Id. at 2.

Furthermore, Dietzfelbinger discloses that “[t]here are two major techniques
for implementing dictionaries: trees and hashing.” Id.

Dietzfelbinger discloses an extension of the Fredman, Komlós, and Szemerédi
scheme to the dynamic situation, wherein membership queries are processed in
constant worst-case time, insertions and deletions are processed in constant
expected amortized time, and the storage used at any time is proportional to the
number of elements currently stored in the dictionary. “[F]redman, Komlós,
and Szemerédi [FKS84] describe a hashing technique that achieves linear
storage (in n) and constant query time for all N and n, where n is the size of S.”
Id.

This FSK Scheme that Dietzfelbinger discloses “has two levels. At the top
level, a hash function partitions the elements being stored into s sets. The
second level consists of a perfect hash function for each of these sets.
Specifically, a function h chosen uniformly at random from Hs is used to
partition the set S into s blocks.” Id. at 3-4.

While Dietzfelbinger does not disclose whether or not the FKS scheme uses
hashing with chaining to handle the unavoidable key collisions problem,

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

47 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

Dietzfelbinger discloses other schemes that do use hashing with chaining.
“Carter and Wegman [CW79] proposed universal hashing as a way of
avoiding assumption on the distribution of input values. This approach works
particularly well in combination with the idea of “continuous rehashing”
introduced by Brassard and Kannan [BK88]. In this way an algorithm is
obtained that needs linear space and expected constant time for each single
instruction. However, for n keys being stored in the dictionary in a scheme of
this kind the best upper bound known on the expected worst case time for an
instruction (i.e., the length of the longest chain in the resulting hash table with
chaining) is O(log n / log log n)...” Id. at 2-3.Since Dietzfelbinger does not
specify which collision handling approach FKS uses (the focus of this paper is
not collision handling but a computation of the upper and lower bounds for the
time complexity of a class of deterministic algorithms for the dictionary
problem), it is inherent from the disclosure of other schemes, such as the CW
scheme, that FKS also uses hashing with chaining.

To the extent that Bedrock argues that Dietzefelbinger does not anticipate
Claims 1 – 8 because it is not inherent that the FKS scheme incorporates linked
lists to handling key collisions, it would have been obvious to one of ordinary
skill in the art to store table entries in a linked list. The admitted prior art in
the Introduction discloses that linked lists/external chaining were already
common place to resolve collisions within hash tables. Id. Thus,
Dietzefelbinger and the admitted prior art in the Introduction show that one of
ordinary skill in the art understood how to use linked lists/external chaining to
resolve collisions within hash tables, and would recognize that it would
improve similar systems and methods in the same way.

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

48 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

Furthermore, Dietzfelbinger discloses that “[d]eletions are performed by
attaching a tag “deleted” to the table entry to be erased; only when a new level-
1 hash function h or a new hash function hj for the sub table Tj is chosen, do we
drop the elements with a tag “deleted” from Tj.” Id. at 5.

A call to the procedure Insert(x) conducts the following steps, as displayed by
the code in the figure below. The procedure hashes x to determine the proper
position for x, hj(x). If the position in which x is to be placed is empty, then x
is stored in the position. However, if the position is not empty, then the
procedure goes through and places all the elements in the sub table that are not
labeled “deleted” into a list Lj, and marks all positions in the sub table as
empty. Then, x is appended to the list Lj. By marking all positions in the sub
table as empty, the procedure effectively deletes all those that are left in the
sub table -- those that were labeled “deleted.” Id. at 6.

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

49 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

50 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

Id. at Figure 1.

4. The method according to
claim 3 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

Dietzfelbinger discloses dynamically determining maximum number of
expired ones of the records to remove when the linked list is accessed.

For example, a call to the procedure Insert(x) conducts the following steps, as
displayed by the code in the figure below. The procedure hashes x to
determine the proper position for x, hj(x). First, the procedure determines if x
already exists in the sub table. If x does exist, then the only determination to
make is whether x is marked for deletion. If x is marked for deletion, then the
procedure removes this deletion tag. Id. at 6.

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

51 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

Second, if the sub table does not contain x and the position in which x is to be
placed is found empty, then x is stored in the position. Id.

Third, if the sub table does not contain x and the position in which x is to be
placed is not empty, then the procedure goes through and places all the
elements in the sub table that are not labeled “deleted” into a list Lj, and marks
all positions in the sub table as empty. Then, x is appended to the list Lj. By
marking all positions in the sub table as empty, the procedure effectively
deletes all those that are left in the sub table -- those that were labeled
“deleted.” Id.

Therefore, the procedure dynamically determines whether or not to delete the
records marked “deleted” if either of the following two conditions occur: (1) x
already exists in the sub table or (2) the position in which x is to be placed is
empty. Deletion takes place during a call to procedure Insert(x) only if the
above two conditions are not met.

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

52 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

53 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

Id. at Figure 1.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Dietzfelbinger to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Dietzfelbinger with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

54 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

linked list of records to solve a number of potential problems. For example,
the removal of expired records described in Dietzfelbinger can be burdensome
on the system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete. Indeed,
part of the motivation for the system disclosed in Dietzfelbinger is avoiding
these problems. One of ordinary skill in the art would have known that
dynamically determining the maximum number to remove would limit the
burden on the system and bound the length of any real-time interruption to
prevent delays in processing. Indeed, Nemes concedes that such dynamic
determination was obvious when he states in the ‘120 patent that “[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one.” ‘120 at
7:10-15.

Dietzfelbinger combined with Dirks, Thatte, the ’663 patent and/or the
Opportunistic Garbage Collection Articles discloses an information storage
and retrieval system further including means for dynamically determining
maximum number for the record search means to remove in the accessed
linked list of records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

55 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

56 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Dietzfelbinger and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

57 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

implementations such as Dietzfelbinger. Moreover, one of ordinary skill in the
art would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Dietzfelbinger nothing
more than the predictable use of prior art elements according to their
established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Dietzfelbinger and
would have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Dietzfelbinger with the
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records disclosed by Thatte. For
example, Thatte discloses a system and method using hash tables and/or linked
lists and further discloses means for dynamically determining the maximum
number for the record search means to remove in the accessed linked list of
records. The disclosure of these claim elements in Thatte is clearly shown in
the chart of Thatte, which is hereby incorporated by reference in its entirety.

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

58 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, Ass both Dietzfelbinger and Thatte teach a system of data
storage and retrieval, one of ordinary skill in the art would recognize that the
result of combining Dietzfelbinger with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove as taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine
Dietzfelbinger with Thatte and recognize the benefits of doing so. For
example, the removal of expired records described in Dietzfelbinger can be
burdensome on the system, adding to the system’s load and slowing down the
system’s processing. One of ordinary skill in the art would recognize that
combining Dietzfelbinger with the teachings of Thatte would solve this
problem by dynamically determining how many records to delete based on,
among other things, the system load. Moreover, the '120 patent discloses that
"[a] person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records are removed, and that
the decision regarding if and how many records to delete can be a dynamic
one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine
Dietzfelbinger with Thatte.

Alternatively, it would also be obvious to combine Dietzfelbinger with the
’663 patent. Disclosure of these claim elements in the ’663 patent is clearly

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

59 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

shown in the chart of the ‘663 patent, which is hereby incorporated by
reference in its entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

60 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

61 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Dietzfelbinger and the ’663 patent relate to deletion of records from
hash tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in Dietzfelbinger. Moreover, one of ordinary skill in the
art would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with Dietzfelbinger
would be nothing more than the predictable use of prior art elements according

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

62 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Dietzfelbinger
and would have seen the benefits of doing so. One such benefit, for example,
is that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Dietzfelbinger with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

63 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Dietzfelbinger and the Opportunistic Garbage Collection Articles
relate to deletion of aged records, one of ordinary skill in the art would have
understood how to use the Opportunistic Garbage Collection Articles’ dynamic
decision on whether to perform a deletion based on a system load in other hash
table implementations such as Dietzfelbinger. Moreover, one of ordinary skill

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

64 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

in the art would recognize that it would improve similar systems and methods
in the same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Dietzfelbinger would be nothing more than the predictable use
of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Dietzfelbinger and
would have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Dietzfelbinger to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Dietzfelbinger with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

65 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

linked list of records to solve a number of potential problems. For example,
the removal of expired records described in Dietzfelbinger can be burdensome
on the system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Dietzfelbinger in combination with Dirks, Thatte,
the ‘663 Patent, or the Opportunistic Garbage Collection References, it is
disclosed by Linux 2.0.1, which describes dynamically determining maximum
number of expired ones of the records to remove when the linked list is
accessed. It would have been obvious to combine Linux 2.0.1
with Dietzfelbinger. For example, both Linux 2.0.1 and
Dietzfelbinger describe systems and methods for performing data storage and
retrieval using known programming techniques to yield a predictable result.

When invoked, the function rt_cache_add automatically increments an

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

66 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

67 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

68 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can

EXHIBIT C-6

Joint Invalidity Contentions & Production of
Documents

69 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

EXHIBIT C-7

Joint Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, Griffioen discloses an information
storage and retrieval system.

For example, the Remote Memory Model described in Griffioen “consists of
multiple client machines, one or more memory server machines, various other
servers (e.g., time servers, name servers, or file servers), and a communication
channel interconnecting all the machines.” Griffioen at 21. The model
“centers around the use of remote memory servers for backing storage.” See
Griffioen at 91.

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

Griffioen describes the use of a hash table with a double hashing algorithm to
locate data. Griffioen at 101.

For example, there are two well-known approaches to solving the problem of
collisions within a hash table, which occur whenever two entries “hash” or are
assigned to the same “bucket” within the hash table. The computer
programmer may store the records external to the hash table—that is, using
memory separate from the memory allocated to the hash table—or he may
store the records internal to the hash table—that is, using memory that is
allocated to other buckets within the hash table. Using external memory is
termed “external chaining,” while using internal memory is termed “open
addressing.” See “The Art of Computer Programming”, Sorting and
Searching, D.E. Knuth, Addison-Wesley Series in Computer Science and
Information Processing, pp. 506-549, 1973. The applicant has conceded that
both forms of collision resolution are known to those of ordinary skill in the
art. See, e.g., ‘120 patent at 1:53-57 (describing linear probing—a type of
open addressing—as being “often used” for “collision resolution”); 1:58-2:6

EXHIBIT C-7

Joint Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

(citing to several prior art resources that describe external chaining as using
linked lists). Indeed, Knuth recognizes that “[p]erhaps the most obvious way
to solve this problem [of collision resolution] is to maintain M linked Lists,
one for each possible hash code [i.e. external chaining].” Knuth at 513. See
also Mark A. Weiss, Data Structures and Algorithm Analysis, p. 157, 1993
(“Closed hashing, also known as open addressing, is an alternative to
resolving collisions with linked lists.”). Double hashing is another form of
open addressing. See Knuth at 519-524.

It would have been obvious to one skilled in the art to apply the teachings in
Griffioen to a hash table which resolves collisions using external chaining with
linked lists. As detailed above, one of ordinary skill has a limited number of
ways of resolving hash collisions: he may either store the entries within the
hash table or outside the hash table, and both were well known to those of
ordinary skill.

The records in the system Griffioen discloses includes records, at least some of
which automatically expire.

For example, Griffioen describes a memory reclamation process through which
the remote memory server maintains a timestamp for each process in the
system in a separate process hash table. “When the memory server receives a
page store request for a process, the server saves the timestamp of the
requesting process in the virtual-page hash table entry. Consequently, all
pages belonging to a VS have the VS’s timestamp. When the memory server
receives a terminate request, it updates the current timestamp in the VS table,
thereby invalidating all the pages in the VS.” Griffioen at 106. “Updating a

EXHIBIT C-7

Joint Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

timestamp invalidates all the data in a VS or LMS in a single operation.”
Griffioen at 108.

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of
records having the same
hash address,

Griffioen discloses a record search means utilizing a search key to access the
chain of records. Griffioen also discloses a record search means utilizing a
search key to access a chain of records beginning at the same hash address.

For example, Griffioen explains that “[c]lient machines uniquely label each
page with an ordered triple containing the LMS ID, VS ID, and page number.
Given a paging request, the server can quickly verify whether a particular hash
table entry contains the requested page.” Griffioen at 100. “The memory
server efficiently locates a hash table entry by applying a double hashing
algorithm to the ordered triple that uniquely identifies the desired page.”
Griffioen at 101.

As discussed in [1a/5a], it would have been obvious to one of ordinary skill in
the art to use a hash table with external chaining instead of a hash table with
open addressing/double hashing. As such, the search means utilizing the
search key would be accessing a linked list of records beginning at the same
hash address.

[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the
records from the linked list

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the
linked list of records when

Griffioen discloses the record search means including means for identifying
and removing at least some expired ones of the records from the chain of
records when the chain is accessed.

For example, the remote memory server “reclaims memory while processing
store and fetch requests. When a client issues a store or fetch request, the

EXHIBIT C-7

Joint Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

when the linked list is
accessed, and

the linked list is accessed,
and

server applies the double hashing algorithm to locate an entry in the virtual-
page hash table. The double hashing algorithm requires the server to check for
a collision on each probe to the table. That is, the server must compare the
requested page’s information against the information found in the hash table
entry to see if the entry contains the desired page. If a collision occurs, the
server checks the timestamp found in the hash table entry against the owner’s
timestamp in the VS and LMS hash tables. If the timestamps differ, the server
reclaims the page. If the timestamps match, the hash table entry is still valid,
and the double hashing algorithm proceeds as normal. This modification to the
double hashing algorithm allows the server to reclaim invalid pages during its
normal processing.” Griffioen at 108. The remote memory server also
performs garbage collection in the background. Id.

As discussed in [1a/5a], it would have been obvious to one of ordinary skill in
the art to use a hash table with external chaining instead of a hash table with
open addressing/double hashing. In such a system, the probe that resulted
from a collision would occur on the linked list used to resolve the collision. As
such, the expired records from the linked list would be removed when the
algorithm processes the linked list in search of the desired record.

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the

Griffioen discloses means, utilizing the record search means, for accessing the
chain of records and, at the same time, removing at least some of the expired
ones of the records in the chain. Griffioen also discloses means, utilizing the
record search means, for inserting, retrieving, and deleting records from the
system and, at the same time, removing at least some expired ones of the
records in the accessed chain of records.

EXHIBIT C-7

Joint Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

records in the accessed
linked list of records.

For example, the remote memory server “reclaims memory while processing
store and fetch requests. When a client issues a store or fetch request, the
server applies the double hashing algorithm to locate an entry in the virtual-
page hash table. The double hashing algorithm requires the server to check for
a collision on each probe to the table. That is, the server must compare the
requested page’s information against the information found in the hash table
entry to see if the entry contains the desired page. If a collision occurs, the
server checks the timestamp found in the hash table entry against the owner’s
timestamp in the VS and LMS hash tables. If the timestamps differ, the server
reclaims the page. If the timestamps match, the hash table entry is still valid,
and the double hashing algorithm proceeds as normal. This modification to the
double hashing algorithm allows the server to reclaim invalid pages during its
normal processing.” Griffioen at 108. The remote memory server also
performs garbage collection in the background. Id. To the extent Griffioen
does not disclose removal of expired records during a deletion of records, it
would have been obvious to one of ordinary skill in the art that a deletion could
occur at such a time, since insertion, retrievals, and deletions are basic
operations that can be performed on all hash tables.

As discussed in [1a/5a], it would have been obvious to one of ordinary skill in
the art to use a hash table with external chaining instead of a hash table with
open addressing/double hashing. In such a system, the probe that resulted
from a collision would occur on the linked list used to resolve the collision. As
such, the expired records from the linked list would be removed when the
algorithm processes the linked list in search of the desired record.

2. The information storage 6. The information storage Griffioen combined with Dirks, Thatte, the ’663 patent and/or the

EXHIBIT C-7

Joint Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

Opportunistic Garbage Collection Articles discloses an information storage
and retrieval system further including means for dynamically determining
maximum number for the record search means to remove in the accessed
linked list of records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).

EXHIBIT C-7

Joint Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the

EXHIBIT C-7

Joint Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Griffioen and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as Griffioen. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Griffioen nothing more
than the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Griffioen and would
have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.`

EXHIBIT C-7

Joint Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Griffioen with the means
for dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. For example,
Thatte discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, Ass both Griffioen and Thatte teach a system of data
storage and retrieval, one of ordinary skill in the art would recognize that the
result of combining Griffioen with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove as taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine
Griffioen with Thatte and recognize the benefits of doing so. For example, the
removal of expired records described in Griffioen can be burdensome on the
system, adding to the system’s load and slowing down the system’s
processing. One of ordinary skill in the art would recognize that combining
Griffioen with the teachings of Thatte would solve this problem by
dynamically determining how many records to delete based on, among other
things, the system load. Moreover, the '120 patent discloses that "[a] person

EXHIBIT C-7

Joint Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one." '120 at
7:10-15. Thus, the '120 patent provides motivations to combine Griffioen with
Thatte.

Alternatively, it would also be obvious to combine Griffioen with the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by

EXHIBIT C-7

Joint Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT C-7

Joint Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a

EXHIBIT C-7

Joint Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Griffioen and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in Griffioen. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with Griffioen would
be nothing more than the predictable use of prior art elements according to

EXHIBIT C-7

Joint Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

their established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Griffioen and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Griffioen with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

EXHIBIT C-7

Joint Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Griffioen and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Griffioen. Moreover, one of ordinary skill in the art

EXHIBIT C-7

Joint Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Griffioen would be nothing more than the predictable use of
prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Griffioen and
would have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Griffioen to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Griffioen with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed

EXHIBIT C-7

Joint Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

linked list of records to solve a number of potential problems. For example,
the removal of expired records described in Griffioen can be burdensome on
the system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.
To the extent that dynamically determining a maximum number of expired
records is not disclosed by Griffioen in combination with Dirks, Thatte, the
‘663 Patent, or the Opportunistic Garbage Collection References, it is
disclosed by Linux 2.0.1, which describes dynamically determining maximum
number of expired ones of the records to remove when the linked list is
accessed. It would have been obvious to combine Linux 2.0.1 with Griffioen.
For example, both Linux 2.0.1 and Griffioen describe systems and methods for
performing data storage and retrieval using known programming techniques to
yield a predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.

EXHIBIT C-7

Joint Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds

EXHIBIT C-7

Joint Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold

EXHIBIT C-7

Joint Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference

EXHIBIT C-7

Joint Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

To the extent the preamble is a limitation, Griffioen also discloses a method for
storing and retrieving information records using a hashing technique, at least
some of the records automatically expiring.

For example, the Remote Memory Model described in Griffioen “consists of
multiple client machines, one or more memory server machines, various other
servers (e.g., time servers, name servers, or file servers), and a communication
channel interconnecting all the machines.” Griffioen at 21. The model
“centers around the use of remote memory servers for backing storage.” See
Griffioen at 91.

Griffioen describes a method of using a hash table with a double hashing
algorithm to locate data. Griffioen at 101. As discussed in [1a/5a], it would
have been obvious to one of ordinary skill in the art that a hash table with
external chaining using linked lists could be used instead of a hash table with
double hashing.

The records in the system Griffioen discloses includes records, at least some of
which automatically expire.

EXHIBIT C-7

Joint Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

For example, Griffioen describes a memory reclamation process through which
the remote memory server maintains a timestamp for each process in the
system in a separate process hash table. “When the memory server receives a
page store request for a process, the server saves the timestamp of the
requesting process in the virtual-page hash table entry. Consequently, all
pages belonging to a VS have the VS’s timestamp. When the memory server
receives a terminate request, it updates the current timestamp in the VS table,
thereby invalidating all the pages in the VS.” Griffioen at 106. “Updating a
timestamp invalidates all the data in a VS or LMS in a single operation.”
Griffioen at 108.

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

Griffioen discloses accessing the chain of records. Griffioen also discloses
accessing a chain of records beginning at the same hash address.

For example, Griffioen describes a method of using a hash table with a double
hashing algorithm to locate data. Griffioen at 101. As discussed in [1a/5a], it
would have been obvious to one of ordinary skill in the art to use a hash table
with external chaining instead of a hash table with open addressing/double
hashing. In such a system, the probe that resulted from a collision would occur
on the linked list used to resolve the collision. As such, the expired records
from the linked list would be removed when the algorithm processes the linked
list in search of the desired record.

EXHIBIT C-7

Joint Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

Griffioen discloses identifying at least some of the automatically expired ones
of the records.

For example, the remote memory server “reclaims memory while processing
store and fetch requests. When a client issues a store or fetch request, the
server applies the double hashing algorithm to locate an entry in the virtual-
page hash table. The double hashing algorithm requires the server to check for
a collision on each probe to the table. That is, the server must compare the
requested page’s information against the information found in the hash table
entry to see if the entry contains the desired page. If a collision occurs, the
server checks the timestamp found in the hash table entry against the owner’s
timestamp in the VS and LMS hash tables. If the timestamps differ, the server
reclaims the page. If the timestamps match, the hash table entry is still valid,
and the double hashing algorithm proceeds as normal. This modification to the
double hashing algorithm allows the server to reclaim invalid pages during its
normal processing.” Griffioen at 108. The remote memory server also
performs garbage collection in the background. Id.

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

Griffioen discloses removing at least some of the automatically expired records
from the chain of records when the chain is accessed.

For example, the remote memory server “reclaims memory while processing
store and fetch requests. When a client issues a store or fetch request, the
server applies the double hashing algorithm to locate an entry in the virtual-
page hash table. The double hashing algorithm requires the server to check for
a collision on each probe to the table. That is, the server must compare the
requested page’s information against the information found in the hash table

EXHIBIT C-7

Joint Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

entry to see if the entry contains the desired page. If a collision occurs, the
server checks the timestamp found in the hash table entry against the owner’s
timestamp in the VS and LMS hash tables. If the timestamps differ, the server
reclaims the page. If the timestamps match, the hash table entry is still valid,
and the double hashing algorithm proceeds as normal. This modification to the
double hashing algorithm allows the server to reclaim invalid pages during its
normal processing.” Griffioen at 108. The remote memory server also
performs garbage collection in the background. Id.

As discussed in [1a/5a], it would have been obvious to one of ordinary skill in
the art to use a hash table with external chaining instead of a hash table with
open addressing/double hashing. In such a system, the probe that resulted
from a collision would occur on the linked list used to resolve the collision. As
such, the expired records from the linked list would be removed when the
algorithm processes the linked list in search of the desired record.

 [7d] inserting, retrieving
or deleting one of the
records from the system
following the step of
removing.

Griffioen discloses inserting, retrieving or deleting one of the records from the
system following the step of removing.

For example, Griffioen states that the memory server “reclaims memory while
processing store and fetch requests.” Griffioen at 108. These store and fetch
requests constitute insertions and retrievals from the hash table.

4. The method according to
claim 3 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove

Griffioen combined with Dirks, Thatte, the ’663 patent and/or the
Opportunistic Garbage Collection Articles discloses dynamically determining
maximum number of expired ones of the records to remove when the linked
list is accessed.

Dirks discloses the management of memory in a computer system and more

EXHIBIT C-7

Joint Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

when the linked list is
accessed.

when the linked list is
accessed.

particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this

EXHIBIT C-7

Joint Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Griffioen and Dirks relate to deletion of aged records upon the

EXHIBIT C-7

Joint Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as Griffioen. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Griffioen nothing more
than the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Griffioen and would
have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Griffioen with the means
for dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. For example,
Thatte discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for

EXHIBIT C-7

Joint Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, Ass both Griffioen and Thatte teach a system of data
storage and retrieval, one of ordinary skill in the art would recognize that the
result of combining Griffioen with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove as taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine
Griffioen with Thatte and recognize the benefits of doing so. For example, the
removal of expired records described in Griffioen can be burdensome on the
system, adding to the system’s load and slowing down the system’s
processing. One of ordinary skill in the art would recognize that combining
Griffioen with the teachings of Thatte would solve this problem by
dynamically determining how many records to delete based on, among other
things, the system load. Moreover, the '120 patent discloses that "[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one." '120 at
7:10-15. Thus, the '120 patent provides motivations to combine Griffioen with
Thatte.

EXHIBIT C-7

Joint Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

Alternatively, it would also be obvious to combine Griffioen with the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.

EXHIBIT C-7

Joint Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

Id. at Figure 5.

EXHIBIT C-7

Joint Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Griffioen and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in Griffioen. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how

EXHIBIT C-7

Joint Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with Griffioen would
be nothing more than the predictable use of prior art elements according to
their established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Griffioen and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Griffioen with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to

EXHIBIT C-7

Joint Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Griffioen and the Opportunistic Garbage Collection Articles relate to

EXHIBIT C-7

Joint Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Griffioen. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Griffioen would be nothing more than the predictable use of
prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Griffioen and
would have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Griffioen to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be

EXHIBIT C-7

Joint Invalidity Contentions & Production of
Documents

35 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Griffioen with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in Griffioen can be burdensome on
the system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.
To the extent that dynamically determining a maximum number of expired
records is not disclosed by Griffioen in combination with Dirks, Thatte, the
‘663 Patent, or the Opportunistic Garbage Collection References, it is
disclosed by Linux 2.0.1, which describes dynamically determining maximum
number of expired ones of the records to remove when the linked list is
accessed. It would have been obvious to combine Linux 2.0.1 with Griffioen.
For example, both Linux 2.0.1 and Griffioen describe systems and methods for
performing data storage and retrieval using known programming techniques to

EXHIBIT C-7

Joint Invalidity Contentions & Production of
Documents

36 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

yield a predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

EXHIBIT C-7

Joint Invalidity Contentions & Production of
Documents

37 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function

EXHIBIT C-7

Joint Invalidity Contentions & Production of
Documents

38 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function

EXHIBIT C-7

Joint Invalidity Contentions & Production of
Documents

39 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

EXHIBIT C-8

Joint Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, Comer discloses an information
storage and retrieval system.

For example, the Remote Memory Model described in Comer “consists of
several client machines, various server machines, one or more dedicated
machines called remote memory servers, and a communication channel
interconnecting all the machines.” See p. 2. “[C]lient machines use the remote
memory server for backing storage.” See p. 3. The “remote memory server
transfers data to and from heterogeneous clients in an architecture-independent
manner.” See Comer at 9; see also Comer at 1.

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

Comer describes the use of a hash table with a double hashing algorithm to
locate data. See, e.g.,. 10.

There are two well-known approaches to solving the problem of collisions
within a hash table, which occur whenever two entries “hash” or are assigned
to the same “bucket” within the hash table. The computer programmer may
store the records external to the hash table—that is, using memory separate
from the memory allocated to the hash table—or he may store the records
internal to the hash table—that is, using memory that is allocated to other
buckets within the hash table. Using external memory is termed “external
chaining,” while using internal memory is termed “open addressing.” See
“The Art of Computer Programming”, Sorting and Searching, D.E. Knuth,
Addison-Wesley Series in Computer Science and Information Processing, pp.
506-549, 1973. The applicant has conceded that both forms of collision
resolution are known to those of ordinary skill in the art. See, e.g., ‘120 patent
at 1:53-57 (describing linear probing—a type of open addressing—as being

EXHIBIT C-8

Joint Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

“often used” for “collision resolution”); 1:58-2:6 (citing to several prior art
resources that describe external chaining as using linked lists). Indeed, Knuth
recognizes that “[p]erhaps the most obvious way to solve this problem [of
collision resolution] is to maintain M linked Lists, one for each possible hash
code [i.e. external chaining].” Knuth at 513. See also Mark A. Weiss, Data
Structures and Algorithm Analysis, p. 157, 1993 (“Closed hashing, also
known as open addressing, is an alternative to resolving collisions with linked
lists.”). Double hashing is another form of open addressing. See Knuth at
519-524.

It would have been obvious to one skilled in the art to apply the teachings in
Comer to a hash table which resolves collisions using external chaining with
linked lists. As detailed above, one of ordinary skill has a limited number of
ways to resolve hash collisions: he may either store the entries within the hash
table or outside the hash table, and both were well known to those of ordinary
skill.

The records in the system Comer discloses includes records, at least some of
which automatically expire.

For example, Comer describes a memory reclamation process through which
the remote memory server maintains a timestamp for each process in the
system in a separate process hash table. “When the server receives a page
store request for a process, the server saves the process’s timestamp with the
page in the data hash table. Each time the server receives a terminate request,
the server updates the timestamp in the process hash table, thereby invalidating
all pages associated with the terminated process.” P. 10.

EXHIBIT C-8

Joint Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of
records having the same
hash address,

Comer discloses a record search means utilizing a search key to access the
chain of records. Comer also discloses a record search means utilizing a
search key to access a chain of records beginning at the same hash address.

For example, Comer explains that “[c]lient machines uniquely identify a page
with an ordered triple consisting of a unique machine identifier, a process
identifier, and a page identifier. The server applies a double hashing algorithm
to the triple to locate the hash table entry that contains pointers to the data.”

As discussed in [1a/5a], it would have been obvious to one of ordinary skill in
the art to use a hash table with external chaining instead of a hash table with
open addressing/double hashing. As such, the search means utilizing the
search key would be accessing a linked list of records beginning at the same
hash address.

[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the
records from the linked list
when the linked list is
accessed, and

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

Comer discloses the record search means including means for identifying and
removing at least some expired ones of the records from the chain of records
when the chain is accessed.

For example, the remote memory server “reclaims obsolete pages during later
probes to the data hash table and with a garbage collection process that
executes in the background.” P. 10-11. “Each time a probe to the data hash
table results in a collision, the server checks the timestamp on the page against
the timestamp of the owner. If the timestamps differ, the server reclaims the
page. Together, the garbage collection process and the lazy reclamation
algorithm amortize the cost of reclaiming memory over time.” P. 11.

EXHIBIT C-8

Joint Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

As discussed in [1a/5a], it would have been obvious to one of ordinary skill in
the art to use a hash table with external chaining instead of a hash table with
open addressing/double hashing. In such a system, the probe that resulted
from a collision would occur on the linked list used to resolve the collision. As
such, the expired records from the linked list would be removed when the
algorithm processes the linked list in search of the desired record.

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

Comer discloses means, utilizing the record search means, for accessing the
chain of records and, at the same time, removing at least some of the expired
ones of the records in the chain. Comer also discloses means, utilizing the
record search means, for inserting, retrieving, and deleting records from the
system and, at the same time, removing at least some expired ones of the
records in the accessed chain of records.

For example, the remote memory server “reclaims obsolete pages during later
probes to the data hash table.” P. 10. “Each time a probe to the data hash table
results in a collision, the server checks the timestamp on the page against the
timestamp of the owner. If the timestamps differ, the server reclaims the
page.” P. 10.

As discussed in [1a/5a], it would have been obvious to one of ordinary skill in
the art to use a hash table with external chaining instead of a hash table with
open addressing/double hashing. In such a system, the probe that resulted
from a collision would occur on the linked list used to resolve the collision. As
such, the expired records from the linked list would be removed when the
algorithm processes the linked list in search of the desired record.

EXHIBIT C-8

Joint Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

2. The information storage
and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

6. The information storage
and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

Comer combined with Dirks, Thatte, the ’663 patent and/or the Opportunistic
Garbage Collection Articles discloses an information storage and retrieval
system further including means for dynamically determining maximum
number for the record search means to remove in the accessed linked list of
records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

EXHIBIT C-8

Joint Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion

EXHIBIT C-8

Joint Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Comer and Dirks relate to deletion of aged records upon the allocation
of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as Comer. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Comer nothing more than
the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Comer and would have
seen the benefits of doing so. One possible benefit, for example, is saving the

EXHIBIT C-8

Joint Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Comer with the means for
dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. For example,
Thatte discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, Ass both Comer and Thatte teach a system of data storage
and retrieval, one of ordinary skill in the art would recognize that the result of
combining Comer with Thatte would be nothing more than the predictable use
of prior art elements according to their established functions. The resulting
combination would include the capability to determine the maximum number
for the record search means to remove as taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine Comer
with Thatte and recognize the benefits of doing so. For example, the removal
of expired records described in Comer can be burdensome on the system,
adding to the system’s load and slowing down the system’s processing. One of
ordinary skill in the art would recognize that combining Comer with the
teachings of Thatte would solve this problem by dynamically determining how

EXHIBIT C-8

Joint Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

many records to delete based on, among other things, the system load.
Moreover, the '120 patent discloses that "[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120
patent provides motivations to combine Comer with Thatte.

Alternatively, it would also be obvious to combine Comer with the ’663 patent.
Disclosure of these claim elements in the ’663 patent is clearly shown in the
chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by

EXHIBIT C-8

Joint Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT C-8

Joint Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a

EXHIBIT C-8

Joint Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Comer and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in Comer. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with Comer would be
nothing more than the predictable use of prior art elements according to their

EXHIBIT C-8

Joint Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Comer and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Comer with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

EXHIBIT C-8

Joint Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Comer and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Comer. Moreover, one of ordinary skill in the art

EXHIBIT C-8

Joint Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Comer would be nothing more than the predictable use of prior
art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Comer and would
have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Comer to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in
Comer with the fundamental concept of dynamically determining the
maximum number of expired records to remove in an accessed linked list of

EXHIBIT C-8

Joint Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

records to solve a number of potential problems. For example, the removal of
expired records described in Comer can be burdensome on the system, adding
to the system’s load and slowing down the system’s processing. Moreover, the
removal could also force an interruption in real-time processing as the
processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.
To the extent that dynamically determining a maximum number of expired
records is not disclosed by Comer in combination with Dirks, Thatte, the ‘663
Patent, or the Opportunistic Garbage Collection References, it is disclosed by
Linux 2.0.1, which describes dynamically determining maximum number of
expired ones of the records to remove when the linked list is accessed. It
would have been obvious to combine Linux 2.0.1 with Comer. For example,
both Linux 2.0.1 and Comer describe systems and methods for performing data
storage and retrieval using known programming techniques to yield a
predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.

EXHIBIT C-8

Joint Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds

EXHIBIT C-8

Joint Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold

EXHIBIT C-8

Joint Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference

EXHIBIT C-8

Joint Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

To the extent the preamble is a limitation, Comer also discloses method for
storing and retrieving information records using a hashing technique, at least
some of the records automatically expiring.

For example, the Remote Memory Model described in Comer “consists of
several client machines, various server machines, one or more dedicated
machines called remote memory servers, and a communication channel
interconnecting all the machines.” See Comer at 2. “[C]lient machines use the
remote memory server for backing storage.” See Comer at 3. The “remote
memory server transfers data to and from heterogeneous clients in an
architecture-independent manner.” See Comer at 9; see also Comer at 1.

Comer describes a method of using of a hash table with a double hashing
algorithm to locate data on the remote memory server. See, e.g., p. 10. There
are two well-known approaches to solving the problem of collisions within a
hash table, which occur whenever two entries “hash” or are assigned to the
same “bucket” within the hash table. The computer programmer may store the
records external to the hash table—that is, using memory separate from the
memory allocated to the hash table—or he may store the records internal to the
hash table—that is, using memory that is allocated to other buckets within the

EXHIBIT C-8

Joint Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

hash table. Using external memory is termed “external chaining,” while using
internal memory is termed “open addressing.” See “The Art of Computer
Programming”, Sorting and Searching, D.E. Knuth, Addison-Wesley Series in
Computer Science and Information Processing, pp. 506-549, 1973. The
applicant has conceded that both forms of collision resolution are known to
those of ordinary skill in the art. See, e.g., ‘120 patent at 1:53-57 (describing
linear probing—a type of open addressing—as being “often used” for
“collision resolution”); 1:58-2:6 (citing to several prior art resources that
describe external chaining as using linked lists). Indeed, Knuth recognizes that
“[p]erhaps the most obvious way to solve this problem [of collision resolution]
is to maintain M linked Lists, one for each possible hash code [i.e. external
chaining].” Knuth at 513. See also Mark A. Weiss, Data Structures and
Algorithm Analysis, p. 157, 1993 (“Closed hashing, also known as open
addressing, is an alternative to resolving collisions with linked lists.”).
Double hashing is another form of open addressing. See Knuth at 519-524.

It would have been obvious to one skilled in the art to apply the teachings in
Comer to a hash table which resolves collisions using external chaining with
linked lists. As detailed above, one of ordinary skill has a limited number of
ways of resolving hash collisions: he may either store the entries within the
hash table or outside the hash table, and both were well known to those of
ordinary skill.

The records in the system Comer discloses includes records, at least some of
which automatically expire.

For example, Comer describes a memory reclamation process through which

EXHIBIT C-8

Joint Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

the remote memory server maintains a timestamp for each process in the
system in a separate process hash table. “When the server receives a page
store request for a process, the server saves the process’s timestamp with the
page in the data hash table. Each time the server receives a terminate request,
the server updates the timestamp in the process hash table, thereby invalidating
all pages associated with the terminated process.” P. 10.

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

Comer discloses accessing the chain of records. Comer also discloses
accessing a chain of records beginning at the same hash address.

For example, Comer describes a method of using of a hash table with a double
hashing algorithm to locate data on the remote memory server. See, e.g., p. 10.

As discussed in [3/7], it would have been obvious to one of ordinary skill in
the art to use a hash table with external chaining instead of a hash table with
open addressing/double hashing. In such a system, the probe that resulted
from a collision would occur on the linked list used to resolve the collision. As
such, the expired records from the linked list would be removed when the
algorithm processes the linked list in search of the desired record.

EXHIBIT C-8

Joint Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

Comer discloses identifying at least some of the automatically expired ones of
the records.

For example, the remote memory server “reclaims obsolete pages during later
probes to the data hash table.” P. 10. “Each time a probe to the data hash table
results in a collision, the server checks the timestamp on the page against the
timestamp of the owner. If the timestamps differ, the server reclaims the
page.” P. 10.

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

Comer discloses the removing at least some of the automatically expired
records from the chain of records when the chain of records is accessed.

For example, the remote memory server “reclaims obsolete pages during later
probes to the data hash table and with a garbage collection process that
executes in the background.” P. 10-11. “Each time a probe to the data hash
table results in a collision, the server checks the timestamp on the page against
the timestamp of the owner. If the timestamps differ, the server reclaims the
page. Together, the garbage collection process and the lazy reclamation
algorithm amortize the cost of reclaiming memory over time.” P. 11.

As discussed in [3/7], it would have been obvious to one of ordinary skill in
the art to use a hash table with external chaining instead of a hash table with
open addressing/double hashing. In such a system, the probe that resulted
from a collision would occur on the linked list used to resolve the collision. As
such, the expired records from the linked list would be removed when the
algorithm processes the linked list in search of the desired record.

EXHIBIT C-8

Joint Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

 [7d] inserting, retrieving

or deleting one of the
records from the system
following the step of
removing.

Comer discloses inserting, retrieving or deleting one of the records from the
system following the step of removing.

For example, Comer states that “[t]he server reclaims obsolete pages during
later probes to the data hash table” P. 10.

4. The method according to
claim 3 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

Comer combined with Dirks, Thatte, the ’663 patent and/or the Opportunistic
Garbage Collection Articles discloses dynamically determining maximum
number of expired ones of the records to remove when the linked list is
accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries

EXHIBIT C-8

Joint Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

EXHIBIT C-8

Joint Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Comer and Dirks relate to deletion of aged records upon the allocation
of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as Comer. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Comer nothing more than
the predictable use of prior art elements according to their established
functions.

EXHIBIT C-8

Joint Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Comer and would have
seen the benefits of doing so. One possible benefit, for example, is saving the
system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Comer with the means for
dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. For example,
Thatte discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, Ass both Comer and Thatte teach a system of data storage
and retrieval, one of ordinary skill in the art would recognize that the result of
combining Comer with Thatte would be nothing more than the predictable use
of prior art elements according to their established functions. The resulting
combination would include the capability to determine the maximum number
for the record search means to remove as taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine Comer

EXHIBIT C-8

Joint Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

with Thatte and recognize the benefits of doing so. For example, the removal
of expired records described in Comer can be burdensome on the system,
adding to the system’s load and slowing down the system’s processing. One of
ordinary skill in the art would recognize that combining Comer with the
teachings of Thatte would solve this problem by dynamically determining how
many records to delete based on, among other things, the system load.
Moreover, the '120 patent discloses that "[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120
patent provides motivations to combine Comer with Thatte.

Alternatively, it would also be obvious to combine Comer with the ’663 patent.
Disclosure of these claim elements in the ’663 patent is clearly shown in the
chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

EXHIBIT C-8

Joint Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT C-8

Joint Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a

EXHIBIT C-8

Joint Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Comer and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in Comer. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with Comer would be
nothing more than the predictable use of prior art elements according to their

EXHIBIT C-8

Joint Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Comer and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Comer with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

EXHIBIT C-8

Joint Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Comer and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Comer. Moreover, one of ordinary skill in the art

EXHIBIT C-8

Joint Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Comer would be nothing more than the predictable use of prior
art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Comer and would
have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Comer to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in
Comer with the fundamental concept of dynamically determining the
maximum number of expired records to remove in an accessed linked list of

EXHIBIT C-8

Joint Invalidity Contentions & Production of
Documents

35 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

records to solve a number of potential problems. For example, the removal of
expired records described in Comer can be burdensome on the system, adding
to the system’s load and slowing down the system’s processing. Moreover, the
removal could also force an interruption in real-time processing as the
processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.
To the extent that dynamically determining a maximum number of expired
records is not disclosed by Comer in combination with Dirks, Thatte, the ‘663
Patent, or the Opportunistic Garbage Collection References, it is disclosed by
Linux 2.0.1, which describes dynamically determining maximum number of
expired ones of the records to remove when the linked list is accessed. It
would have been obvious to combine Linux 2.0.1 with Comer. For example,
both Linux 2.0.1 and Comer describe systems and methods for performing data
storage and retrieval using known programming techniques to yield a
predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.

EXHIBIT C-8

Joint Invalidity Contentions & Production of
Documents

36 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds

EXHIBIT C-8

Joint Invalidity Contentions & Production of
Documents

37 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold

EXHIBIT C-8

Joint Invalidity Contentions & Production of
Documents

38 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference

EXHIBIT C-8

Joint Invalidity Contentions & Production of
Documents

39 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

EXHIBIT C-9

Joint Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, Sessions discloses an information
storage and retrieval system.

For example, Sessions discloses that “[o]ur newly completed linked list
package can now form the basis for a cache.” (Sessions at 29). Thus, Sessions
inherently discloses an information storage and retrieval system. (See id.)

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

Sessions discloses a linked list to store and provide access to records stored in
a memory of the system, at least some of the records automatically expiring.

To the extent that Bedrock argues that Sessions does not anticipate this claim
element, it would have been obvious to one of ordinary skill in the art to
combine Sessions with Lester. For example, Lester discloses hash tables
where “the hash table entries could be pointer-type values, or array indexes, or
some encoding of array indexes.” (Lester at 153). Lester further discloses an
external chaining technique to store the records with same hash address by
stating “[e]ach hash-table element that doesn’t yet correspond to any data
would contain nil, otherwise it would point either

• to a keyed table or to a keyed linked-list of those data-items whose keys
all hash to that place in the table”

(See id.). Lester also states that “I usually use a keyed linked-list: it is simple
to program, and if any of the lists get long it means that I should have made the
hash-array bigger, to get more lists, and therefore shorter lists.” (Lester at
154). Thus, Sessions and Lester show that one of ordinary skill in the art
understood how to utilize a hashing means to provide access to records stored
in a memory of the system and using an external chaining technique to store
the records with same hash address, and would recognize that it would improve

EXHIBIT C-9

Joint Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

similar systems and methods in the same way.

Sessions also discloses that a “function ca_add() assumes that an item is not
in the cache,” and that “this function has three variable states. … 2. The cache
is full and an item must be discarded. As already described, the tail item is
always discarded.” (Sessions at 29).

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of
records having the same
hash address,

Sessions discloses a record search means utilizing a search key to access the
linked list.

For example, Sessions discloses that “[t]he next function, ca_check(),
searches the cache for a particular item, returning a value of true or false
depending on the search results. If the item is found, it becomes the most
recently reference item and is promoted to the head of the list.

EXHIBIT C-9

Joint Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

(Sessions at 30).

To the extent that Bedrock argues that Sessions does not anticipate this claim
element, it would have been obvious to one of ordinary skill in the art to
combine Sessions with Lester. For example, Lester discloses that “[t]he
complier should include “garbage collection” in a program translated from a
Pascal source that uses any pointer-types: when the program runs low on spare

EXHIBIT C-9

Joint Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

memory the garbage collection should search for any nodes that no longer have
pointers to them, and deallocate them, freeing up some spare.” (Lester at 69).
Therefore, Lester inherently discloses “accessing a linked list of records having
the same hash address.” (See id.) Thus, Sessions and Lester show that one of
ordinary skill in the art understood a record search means utilizing a search key
to access a linked list of records having the same hash address, and would
recognize that it would improve similar systems and methods in the same way.

[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the
records from the linked list
when the linked list is
accessed, and

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

Sessions discloses the record search means including a means for identifying
and removing at least some of the expired ones of the records from the linked
list when the linked list is accessed. Sessions also discloses the record search
means including means for identifying and removing at least some expired
ones of the records from the linked list of records when the linked list is
accessed.

For example, Sessions discloses the standard function free(), which “receives
a pointer to one of the blocks in the dynamic memory pool previously allocated
by malloc(). The pool is first scanned to validate the pointer, and then the
block is released for use. (Sessions at 78).

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

Sessions discloses means, utilizing the record search means, for accessing the
linked list and, at the same time, removing at least some of the expired ones of
the records in the linked list. Sessions also discloses utilizing the record search
means, for inserting, retrieving, and deleting records from the system and, at
the same time, removing at least some expired ones of the records in the
accessed linked list of records.

For example, Sessions discloses that the “functions mmget() and mmfree()

EXHIBIT C-9

Joint Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

can solve this problem by dynamically collecting free memory into a single
contiguous chunk. … if a program uses mmget() to set a pointer p1 to a block
of memory, p1 will always point to the same values. Any dynamic memory
collection that results in relocating the memory block also results in an
automatic update of p1.” (Sessions at 78-79).

Also, Sessions discloses that “[t]he static functions setfree() and
consolidate() perform the work of freeing a used memory block. … This
rudimentary garbage collection could be accomplished by the standard C
library function free() as well. (Sessions at 83).

Further, Sessions discloses an exercise where the student must “[m]odify
mmfree() so that a full garbage collection is always performed with each call.
What are the advantages and disadvantages of this change?” (Sessions at 86).

2. The information storage
and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

6. The information storage
and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

Sessions discloses an information storage and retrieval system further
including means for dynamically determining maximum number for the record
search means to remove in the accessed linked list of records.

For example, Sessions discloses that “[h]owever many blocks we decide to
save, we would eventually read one block too many. Then we would have to
reuse the memory space occupied by one of the blocks. Which block should
be thrown away? The best block to discard is the block we would least likely
want again.” (Sessions at 89).

Sessions also discloses a routine ca_check() which “promote(s) any found
items to the head of the linked list, indicating their changed status to ‘Most

EXHIBIT C-9

Joint Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

Recently Referenced.’” (Sessions at 91).

Sessions further discloses an exercise where the student must “[m]odify
mmfree() so that garbage is collected whenever the largest single chunk of
available memory is less than ¾ of the total available pool.” (Sessions at 86).
Thus, Sessions inherently discloses a means for dynamically determining
maximum number for the record search means to remove in the accessed
linked list of records. (See id.)

Sessions combined with Dirks, Thatte, the ’663 patent and/or the Opportunistic
Garbage Collection Articles discloses an information storage and retrieval
system further including means for dynamically determining maximum
number for the record search means to remove in the accessed linked list of
records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is

EXHIBIT C-9

Joint Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

EXHIBIT C-9

Joint Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Sessions and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as Sessions. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of

EXHIBIT C-9

Joint Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

combining Dirks’ deletion decision procedure with Sessions nothing more than
the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Sessions and would
have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Sessions with the means
for dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. For example,
Thatte discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Sessions with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove.

EXHIBIT C-9

Joint Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

Further, one of ordinary skill in the art would be motivated to combine
Sessions with Thatte and recognize the benefits of doing so. For example, the
removal of expired records described in Sessions can be burdensome on the
system, adding to the system’s load and slowing down the system’s
processing. One of ordinary skill in the art would recognize that combining
Sessions with the teachings of Thatte would solve this problem by dynamically
determining how many records to delete based on, among other things, the
system load. Moreover, the '120 patent discloses that "[a] person skilled in the
art will appreciate that the technique of removing all expired records while
searching the linked list can be expanded to include techniques whereby not
necessarily all expired records are removed, and that the decision regarding if
and how many records to delete can be a dynamic one." '120 at 7:10-15. Thus,
the '120 patent provides motivations to combine Sessions with Thatte.

Alternatively, it would also be obvious to combine Sessionswith the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent

EXHIBIT C-9

Joint Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT C-9

Joint Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a

EXHIBIT C-9

Joint Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Sessions and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in Sessions. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with Sessions would
be nothing more than the predictable use of prior art elements according to

EXHIBIT C-9

Joint Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

their established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Sessions and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Sessions with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

EXHIBIT C-9

Joint Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Sessions and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Sessions. Moreover, one of ordinary skill in the art

EXHIBIT C-9

Joint Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Sessions would be nothing more than the predictable use of
prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Sessions and would
have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Sessions to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Sessions with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed

EXHIBIT C-9

Joint Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

linked list of records to solve a number of potential problems. For example,
the removal of expired records described in Sessionscan be burdensome on the
system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Sessions in combination with Dirks, Thatte, the
‘663 Patent, or the Opportunistic Garbage Collection References, it is
disclosed by Linux 2.0.1, which describes dynamically determining maximum
number of expired ones of the records to remove when the linked list is
accessed. It would have been obvious to combine Linux 2.0.1 with Sessions.
For example, both Linux 2.0.1 and Sessions describe systems and methods for
performing data storage and retrieval using known programming techniques to
yield a predictable result.

When invoked, the function rt_cache_add automatically increments an

EXHIBIT C-9

Joint Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold

EXHIBIT C-9

Joint Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number

EXHIBIT C-9

Joint Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can

EXHIBIT C-9

Joint Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

To the extent the preamble is a limitation, Sessions discloses a method for
storing and retrieving information records using a linked list to store and
provide access to the records, at least some of the records automatically
expiring.

To the extent that Bedrock argues that Sessions does not anticipate this claim
element, it would have been obvious to one of ordinary skill in the art to
combine Sessions with Lester. For example, Lester discloses hash tables
where “the hash table entries could be pointer-type values, or array indexes, or
some encoding of array indexes.” (Lester at 153). Lester further discloses an
external chaining technique to store the records with same hash address by
stating “[e]ach hash-table element that doesn’t yet correspond to any data
would contain nil, otherwise it would point either

• to a keyed table or to a keyed linked-list of those data-items whose keys
all hash to that place in the table”

(See id.). Lester also states that “I usually use a keyed linked-list: it is simple
to program, and if any of the lists get long it means that I should have made the
hash-array bigger, to get more lists, and therefore shorter lists.” (Lester at

EXHIBIT C-9

Joint Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

154). Thus, Sessions and Lester show that one of ordinary skill in the art
understood how to utilize a hashing means to provide access to records stored
in a memory of the system and using an external chaining technique to store
the records with same hash address, and would recognize that it would improve
similar systems and methods in the same way.

For example, Sessions discloses that “[o]ur newly completed linked list
package can now form the basis for a cache.” (Sessions at 29). Thus, Sessions
inherently discloses a method for storing and retrieving information records
using a linked list to store and provide access to the records.

Sessions also discloses that a “function ca_add() assumes that an item is not
in the cache,” and that “this function has three variable states. … 2. The cache
is full and an item must be discarded. As already described, the tail item is
always discarded.” (Sessions at 29).

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

Sessions discloses accessing a linked list of records.

For example, Sessions discloses that “[t]he next function, ca_check(),
searches the cache for a particular item, returning a value of true or false
depending on the search results. If the item is found, it becomes the most
recently reference item and is promoted to the head of the list.

EXHIBIT C-9

Joint Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

(Sessions at 30).

To the extent that Bedrock argues that Sessions does not anticipate this claim
element, it would have been obvious to one of ordinary skill in the art to
combine Sessions with Lester. For example, Lester discloses that “[t]he
complier should include “garbage collection” in a program translated from a
Pascal source that uses any pointer-types: when the program runs low on spare

EXHIBIT C-9

Joint Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

memory the garbage collection should search for any nodes that no longer have
pointers to them, and deallocate them, freeing up some spare.” (Lester at 69).
Thus, Lester inherently discloses “accessing a linked list of records having
same hash address.” (See id.) Together, Sessions and Lester show that one of
ordinary skill in the art understood how to access a linked list of records
having same hash address, and would recognize that it would improve similar
systems and methods in the same way.

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

Sessions discloses identifying at least some of the automatically expired ones
of the records. Sessions also discloses identifying at least some of the
automatically expired ones of the records.

For example, Sessions discloses the standard function free(), which “receives
a pointer to one of the blocks in the dynamic memory pool previously allocated
by malloc(). The pool is first scanned to validate the pointer, and then the
block is released for use. (Sessions at 78).

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

Sessions discloses removing at least some of the automatically expired records
from the linked list when the linked list is accessed. Sessions also discloses
removing at least some of the automatically expired records from the linked
list when the linked list is accessed.

Also, Sessions discloses that “[t]he static functions setfree() and
consolidate() perform the work of freeing a used memory block. … This
rudimentary garbage collection could be accomplished by the standard C
library function free() as well. (Sessions at 83).

Further, Sessions discloses an exercise where the student must “[m]odify

EXHIBIT C-9

Joint Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

mmfree() so that a full garbage collection is always performed with each call.
What are the advantages and disadvantages of this change?” (Sessions at 86).

 [7d] inserting, retrieving
or deleting one of the
records from the system
following the step of
removing.

Sessions discloses inserting, retrieving or deleting one of the records from the
system following the step of removing.

For example, Sessions discloses deleting one of the records from the system in
the consolidate() function following the step of removing.

EXHIBIT C-9

Joint Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

(Sessions at 83).

4. The method according to 8. The method according Sessions discloses dynamically determining maximum number of expired ones

EXHIBIT C-9

Joint Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

claim 3 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

of the records to remove when the linked list is accessed.

For example, Sessions discloses that “[h]owever many blocks we decide to
save, we would eventually read one block too many. Then we would have to
reuse the memory space occupied by one of the blocks. Which block should
be thrown away? The best block to discard is the block we would least likely
want again.” (Sessions at 89).

Sessions also discloses a routine ca_check() which “promote(s) any found
items to the head of the linked list, indicating their changed status to ‘Most
Recently Referenced.’” (Sessions at 91).

Sessions further discloses an exercise where the student must “[m]odify
mmfree() so that garbage is collected whenever the largest single chunk of
available memory is less than ¾ of the total available pool.” (Sessions at 86).
Thus, Sessions inherently discloses a step of dynamically determining
maximum number of expired ones of the records to remove when the linked
list is accessed. (See id.)

Sessions combined with Dirks, Thatte, the ’663 patent, and/or the
Opportunistic Garbage Collection Articles discloses dynamically determining
maximum number of expired ones of the records to remove when the linked
list is accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each

EXHIBIT C-9

Joint Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

allocation. Disclosure of these claim elements in Dirks is clearly shown in the
chart of Dirks, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The

EXHIBIT C-9

Joint Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Sessions and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining

EXHIBIT C-9

Joint Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

the maximum number of records to sweep/remove in other hash tables
implementations such as that described Sessions. Moreover, one of ordinary
skill in the art would recognize that it would improve similar systems and
methods in the same way. As the ’120 patent states “[a] person skilled in the
art will appreciate that the technique of removing all expired records while
searching the linked list can be expanded to include techniques whereby not
necessarily all expired records are removed, and that the decision regarding if
and how many records to delete can be a dynamic one.” The ’120 patent at
7:10-15. Additionally, one of ordinary skill in the art would recognize that the
result of combining Dirks’ deletion decision procedure with Sessions would be
nothing more than the predictable use of prior art elements according to their
established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Sessions and would
have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Sessions with the means
for dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. For example,
Thatte discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of

EXHIBIT C-9

Joint Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Sessions with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine
Sessions with Thatte and recognized the benefits of doing so. For example, the
removal of expired records described in Sessions can be burdensome on the
system, adding to the system’s load and slowing down the system’s
processing. One of ordinary skill in the art would recognize that combining
Sessions with the teachings of Thatte would solve this problem by dynamically
determining how many records to delete based on, among other things, the
system load. Moreover, the '120 patent discloses that "[a] person skilled in the
art will appreciate that the technique of removing all expired records while
searching the linked list can be expanded to include techniques whereby not
necessarily all expired records are removed, and that the decision regarding if
and how many records to delete can be a dynamic one." '120 at 7:10-15. Thus,
the '120 patent provides motivations to combine Sessions with Thatte.

Alternatively, it would also be obvious to combine Sessions with the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its

EXHIBIT C-9

Joint Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT C-9

Joint Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a

EXHIBIT C-9

Joint Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Sessions and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as Sessions. Moreover, one of ordinary skill in the art would recognize
that it would improve similar systems and methods in the same way. As the
’120 patent states “[a] person skilled in the art will appreciate that the
technique of removing all expired records while searching the linked list can
be expanded to include techniques whereby not necessarily all expired records
are removed, and that the decision regarding if and how many records to delete
can be a dynamic one.” The ’120 patent at 7:10-15. Additionally, one of
ordinary skill in the art would recognize that the result of combining the ’663
patent’s deletion decision procedure with Sessions would be nothing more than
the predictable use of prior art elements according to their established

EXHIBIT C-9

Joint Invalidity Contentions & Production of
Documents

35 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Sessions and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Sessions with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

EXHIBIT C-9

Joint Invalidity Contentions & Production of
Documents

36 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Sessions and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Sessions. Moreover, one of ordinary skill in the art

EXHIBIT C-9

Joint Invalidity Contentions & Production of
Documents

37 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Sessions would be nothing more than the predictable use of
prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Sessions and would
have seen the benefits of doing so. One such benefit, for example, is that the
system would only perform deletions when the system was not already too
overloaded, thus preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Sessions to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Sessions with the fundamental concept of dynamically

EXHIBIT C-9

Joint Invalidity Contentions & Production of
Documents

38 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in Sessions can be burdensome on the
system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Sessions in combination with Dirks, Thatte, the
‘663 Patent, or the Opportunistic Garbage Collection References, it is
disclosed by Linux 2.0.1, which describes dynamically determining maximum
number of expired ones of the records to remove when the linked list is
accessed. It would have been obvious to combine Linux 2.0.1 with Sessions.
For example, both Linux 2.0.1 and Sessions describe systems and methods for
performing data storage and retrieval using known programming techniques to
yield a predictable result.

EXHIBIT C-9

Joint Invalidity Contentions & Production of
Documents

39 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of

EXHIBIT C-9

Joint Invalidity Contentions & Production of
Documents

40 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold

EXHIBIT C-9

Joint Invalidity Contentions & Production of
Documents

41 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,

EXHIBIT C-9

Joint Invalidity Contentions & Production of
Documents

42 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

EXHIBIT C-10

Joint Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination
1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, Van Wyk 2 discloses an information
storage and retrieval system.

For example, Van Wyk 2 discloses external data structures, explaining that
“File systems are a familiar example of an external data structure.” (Van Wyk
2 at 142).

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

Van Wyk 2 discloses a linked list to store and provide access to records stored
in a memory of the system, at least some of the records automatically expiring.
Van Wyk 2 also discloses a hashing means to provide access to records stored
in a memory of the system and using an external chaining technique to store
the records with same hash address, at least some of the records automatically
expiring.

For example, Van Wyk 2 discloses that “[i]f the header nodes can be linked
together, then no arbitrary limit on file size need be imposed.” (Van Wyk 2 at
142). Therefore, Van Wyk 2 inherently discloses a linked list to store and
provide access to records stored in a memory of the system. (See id.)

Van Wyk 2 further discloses that “[i]n the reference count scheme for garbage
collection, each node contains a value that tells how many pointers point to it.
When a node’s reference count becomes zero, the node is garbage and can be
collected. (Van Wyk 2 at 145). Thus, Van Wyk 2 inherently discloses that at
least some of the records are automatically expiring. (See id.)

Van Wyk 2 further discloses that “[h]ashing with linked lists is an excellent
solution to many searching problems. At the price of some space for pointers,
we obtain a table of potentially unlimited size that readily supports insertions
and deletions.” (Van Wyk 2 at 186).

EXHIBIT C-10

Joint Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination
[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of
records having the same
hash address,

Van Wyk 2 discloses a record search means utilizing a search key to access the
linked list. Van Wyk 2 also discloses a record search means utilizing a search
key to access a linked list of records having the same hash address.

For example, Van Wyk 2 discloses that “a successful search will examine only
slots that contain items with the same hash value as that of the sought item; we
need only examine other items when we seek space in which to store a new
item.” (Van Wyk 2 at 187).

[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the
records from the linked list
when the linked list is
accessed, and

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

Van Wyk 2 discloses the record search means including a means for
identifying and removing at least some of the expired ones of the records from
the linked list when the linked list is accessed. Van Wyk 2 also discloses the
record search means including means for identifying and removing at least
some expired ones of the records from the linked list of records when the
linked list is accessed.

For example, Van Wyk 2 discloses that “[i]n the reference count scheme for
garbage collection, each node contains a value that tells how many pointers
point to it. When a node’s reference count becomes zero, the node is garbage
and can be collected. (Van Wyk 2 at 145).

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

Van Wyk 2 discloses means, utilizing the record search means, for accessing
the linked list and, at the same time, removing at least some of the expired ones
of the records in the linked list. Van Wyk 2 also discloses utilizing the record
search means, for inserting, retrieving, and deleting records from the system
and, at the same time, removing at least some expired ones of the records in the
accessed linked list of records.

For example, Van Wyk 2 discloses “[t]he lazy approach to garbage collection
is to collect only in emergencies. Thus, when an allocation fails, we sweep

EXHIBIT C-10

Joint Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination
through memory hoping to pick up and de-allocate enough garbage to permit
the program to continue.” (Van Wyk 2 at 146).

2. The information storage
and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

6. The information storage
and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

Van Wyk 2 discloses an information storage and retrieval system further
including means for dynamically determining maximum number for the record
search means to remove in the accessed linked list of records.

For example, Van Wyk 2 discloses that “[o]ur programs have never used
free(). … [T]hey can leave dynamically allocated nodes unaccessibly lost in
space. If memory space were scarce, however, we could revise them to free
space explicitly when appropriate.” (Van Wyk 2 at 136).

Van Wyk 2 further states that “[a]ccess to the heap is through a single pointer,
rover, which always points to the last node allocated or de-allocated. … As
soon as rover points to a node with enough room, malloc() chops off a piece of
the appropriate size and marks it occupied, adds the remainder of the node to
the heap as a free node, and finally returns rover as a pointer to the newly
allocated space.” (Van Wyk 2 at 137). Thus, Van Wyk 2 inherently discloses
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records. (See id.)

Van Wyk 2 combined with Dirks, Thatte, the ’663 patent and/or the
Opportunistic Garbage Collection Articles discloses an information storage
and retrieval system further including means for dynamically determining
maximum number for the record search means to remove in the accessed
linked list of records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,

EXHIBIT C-10

Joint Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The

EXHIBIT C-10

Joint Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Van Wyk 2 and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables

EXHIBIT C-10

Joint Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination
implementations such as Van Wyk 2. Moreover, one of ordinary skill in the
art would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Van Wyk 2 nothing more
than the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Van Wyk 2 and would
have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Van Wyk 2 with the
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records disclosed by Thatte. For
example, Thatte discloses a system and method using hash tables and/or linked
lists and further discloses means for dynamically determining the maximum
number for the record search means to remove in the accessed linked list of
records. The disclosure of these claim elements in Thatte is clearly shown in
the chart of Thatte, which is hereby incorporated by reference in its entirety.

EXHIBIT C-10

Joint Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination
Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Van Wyk 2 with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine Van
Wyk 2 with Thatte and recognize the benefits of doing so. For example, the
removal of expired records described in Van Wyk 2 can be burdensome on the
system, adding to the system’s load and slowing down the system’s
processing. One of ordinary skill in the art would recognize that combining
Van Wyk 2 with the teachings of Thatte would solve this problem by
dynamically determining how many records to delete based on, among other
things, the system load. Moreover, the '120 patent discloses that "[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one." '120 at
7:10-15. Thus, the '120 patent provides motivations to combine Van Wyk 2
with Thatte.

Alternatively, it would also be obvious to combine Van Wyk 2with the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

EXHIBIT C-10

Joint Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination
during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT C-10

Joint Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does

EXHIBIT C-10

Joint Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Van Wyk 2 and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in Van Wyk 2. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with Van Wyk 2
would be nothing more than the predictable use of prior art elements according
to their established functions.

EXHIBIT C-10

Joint Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination
By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Van Wyk 2 and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Van Wyk 2 with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more

EXHIBIT C-10

Joint Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Van Wyk 2 and the Opportunistic Garbage Collection Articles relate
to deletion of aged records, one of ordinary skill in the art would have
understood how to use the Opportunistic Garbage Collection Articles’ dynamic
decision on whether to perform a deletion based on a system load in other hash
table implementations such as Van Wyk 2. Moreover, one of ordinary skill in
the art would recognize that it would improve similar systems and methods in
the same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily

EXHIBIT C-10

Joint Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Van Wyk 2 would be nothing more than the predictable use of
prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Van Wyk 2 and
would have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Van Wyk 2 to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Van Wyk 2 with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in Van Wyk 2can be burdensome on
the system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.

EXHIBIT C-10

Joint Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15. Thus, the
’120 patent provides motivations to combine Van Wyk 2 with Thatte, Dirks,
the '663 patent, and/or the Opportunistic Garbage Collection Articles, in
addition to motivations within the text of Van Wyk 2, “[a]ccess to the heap is
through a single pointer, rover, which always points to the last node allocated
or de-allocated. … As soon as rover points to a node with enough room,
malloc() chops off a piece of the appropriate size and marks it occupied, adds
the remainder of the node to the heap as a free node, and finally returns rover
as a pointer to the newly allocated space.” (Van Wyk 2 at 137).

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Van Wyk 2 in combination with Dirks, Thatte, the
‘663 Patent, or the Opportunistic Garbage Collection References, it is
disclosed by Linux 2.0.1, which describes dynamically determining maximum
number of expired ones of the records to remove when the linked list is
accessed. It would have been obvious to combine Linux 2.0.1 with Van Wyk
2. For example, both Linux 2.0.1 and Van Wyk 2 describe systems and
methods for performing data storage and retrieval using known programming
techniques to yield a predictable result.

EXHIBIT C-10

Joint Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of

EXHIBIT C-10

Joint Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number

EXHIBIT C-10

Joint Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference

EXHIBIT C-10

Joint Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

To the extent the preamble is a limitation, Van Wyk 2 discloses a method for
storing and retrieving information records using a linked list to store and
provide access to the records, at least some of the records automatically
expiring. Van Wyk 2 also discloses a method for storing and retrieving
information records using a hashing technique to provide access to the records
and using an external chaining technique to store the records with same hash
address, at least some of the records automatically expiring.

For example, Van Wyk 2 discloses external data structures, explaining that
“File systems are a familiar example of an external data structure.” (Van Wyk
2 at 142).

Van Wyk 2 also discloses that “[i]f the header nodes can be linked together,
then no arbitrary limit on file size need be imposed.” (Van Wyk 2 at 142).
Therefore, Van Wyk 2 inherently discloses a linked list to store and provide
access to records.

Van Wyk 2 further discloses that “[i]n the reference count scheme for garbage
collection, each node contains a value that tells how many pointers point to it.
When a node’s reference count becomes zero, the node is garbage and can be
collected. (Van Wyk 2 at 145). Thus, Van Wyk 2 inherently discloses that at

EXHIBIT C-10

Joint Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination
least some of the records are automatically expiring. (See id.)

Van Wyk 2 further discloses that “[h]ashing with linked lists is an excellent
solution to many searching problems. At the price of some space for pointers,
we obtain a table of potentially unlimited size that readily supports insertions
and deletions.” (Van Wyk 2 at 186).

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

Van Wyk 2 discloses accessing a linked list of records. Van Wyk 2 also
discloses accessing a linked list of records having same hash address.

For example, Van Wyk 2 states that “[a]ccess to the heap is through a single
pointer, rover, which always points to the last node allocated or de-allocated.
… As soon as rover points to a node with enough room, malloc() chops off a
piece of the appropriate size and marks it occupied, adds the remainder of the
node to the heap as a free node, and finally returns rover as a pointer to the
newly allocated space.” (Van Wyk 2 at 137).

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

Van Wyk 2 discloses identifying at least some of the automatically expired
ones of the records. Van Wyk 2 also discloses identifying at least some of the
automatically expired ones of the records.

For example, Van Wyk 2 discloses that “[i]n the reference count scheme for
garbage collection, each node contains a value that tells how many pointers
point to it. When a node’s reference count becomes zero, the node is garbage
and can be collected. (Van Wyk 2 at 145).

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

Van Wyk 2 discloses removing at least some of the automatically expired
records from the linked list when the linked list is accessed. Van Wyk 2 also
discloses removing at least some of the automatically expired records from the
linked list when the linked list is accessed.

EXHIBIT C-10

Joint Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination
For example, Van Wyk 2 discloses “[t]he lazy approach to garbage collection
is to collect only in emergencies. Thus, when an allocation fails, we sweep
through memory hoping to pick up and de-allocate enough garbage to permit
the program to continue.” (Van Wyk 2 at 146).

 [7d] inserting, retrieving
or deleting one of the
records from the system
following the step of
removing.

Van Wyk 2 discloses inserting, retrieving or deleting one of the records from
the system following the step of removing.

For example, Van Wyk 2 discloses that “we can delete an item from the
dictionary using the straightforward algorithm to remove a node from a linked
list.” (Van Wyk 2 at 186).

4. The method according to
claim 3 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

Van Wyk 2 discloses dynamically determining maximum number of expired
ones of the records to remove when the linked list is accessed.

For example, Van Wyk 2 discloses that “[o]ur programs have never used
free(). … [T]hey can leave dynamically allocated nodes unaccessibly lost in
space. If memory space were scarce, however, we could revise them to free
space explicitly when appropriate.” (Van Wyk 2 at 136).

Van Wyk 2 further states that “[a]ccess to the heap is through a single pointer,
rover, which always points to the last node allocated or de-allocated. … As
soon as rover points to a node with enough room, malloc() chops off a piece of
the appropriate size and marks it occupied, adds the remainder of the node to
the heap as a free node, and finally returns rover as a pointer to the newly
allocated space.” (Van Wyk 2 at 137). Thus, Van Wyk 2 inherently discloses
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records.

Van Wyk 2 combined with Dirks, Thatte, the ’663 patent, and/or the

EXHIBIT C-10

Joint Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination
Opportunistic Garbage Collection Articles discloses dynamically determining
maximum number of expired ones of the records to remove when the linked
list is accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in the
chart of Dirks, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done

EXHIBIT C-10

Joint Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of

EXHIBIT C-10

Joint Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Van Wyk 2 and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as that described Van Wyk 2. Moreover, one of
ordinary skill in the art would recognize that it would improve similar systems
and methods in the same way. As the ’120 patent states “[a] person skilled in
the art will appreciate that the technique of removing all expired records while
searching the linked list can be expanded to include techniques whereby not
necessarily all expired records are removed, and that the decision regarding if
and how many records to delete can be a dynamic one.” The ’120 patent at
7:10-15. Additionally, one of ordinary skill in the art would recognize that the
result of combining Dirks’ deletion decision procedure with Van Wyk 2 would
be nothing more than the predictable use of prior art elements according to
their established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Van Wyk 2 and would
have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Van Wyk 2 with the
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records disclosed by Thatte. For

EXHIBIT C-10

Joint Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination
example, Thatte discloses a system and method using hash tables and/or linked
lists and further discloses means for dynamically determining the maximum
number for the record search means to remove in the accessed linked list of
records. The disclosure of these claim elements in Thatte is clearly shown in
the chart of Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Van Wyk 2 with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine Van
Wyk 2 with Thatte and recognized the benefits of doing so. For example, the
removal of expired records described in Van Wyk 2can be burdensome on the
system, adding to the system’s load and slowing down the system’s
processing. One of ordinary skill in the art would recognize that combining
Van Wyk 2 with the teachings of Thatte would solve this problem by
dynamically determining how many records to delete based on, among other
things, the system load. Moreover, the '120 patent discloses that "[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one." '120 at
7:10-15. Thus, the '120 patent provides motivations to combine Van Wyk 2
with Thatte.

EXHIBIT C-10

Joint Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination

Alternatively, it would also be obvious to combine Van Wyk 2 with the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

EXHIBIT C-10

Joint Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination
This hybrid deletion is shown in Figure 5.

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,

EXHIBIT C-10

Joint Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Van Wyk 2 and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as Van Wyk 2. Moreover, one of ordinary skill in the art would recognize
that it would improve similar systems and methods in the same way. As the
’120 patent states “[a] person skilled in the art will appreciate that the
technique of removing all expired records while searching the linked list can
be expanded to include techniques whereby not necessarily all expired records
are removed, and that the decision regarding if and how many records to delete
can be a dynamic one.” The ’120 patent at 7:10-15. Additionally, one of
ordinary skill in the art would recognize that the result of combining the ’663
patent’s deletion decision procedure with Van Wyk 2 would be nothing more
than the predictable use of prior art elements according to their established

EXHIBIT C-10

Joint Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination
functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Van Wyk 2 and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Van Wyk 2 with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

EXHIBIT C-10

Joint Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination
Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Van Wyk 2 and the Opportunistic Garbage Collection Articles relate
to deletion of aged records, one of ordinary skill in the art would have
understood how to use the Opportunistic Garbage Collection Articles’ dynamic
decision on whether to perform a deletion based on a system load in other hash
table implementations such as Van Wyk 2. Moreover, one of ordinary skill in
the art would recognize that it would improve similar systems and methods in
the same way. As the ’120 patent states “[a] person skilled in the art will

EXHIBIT C-10

Joint Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Van Wyk 2 would be nothing more than the predictable use of
prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Van Wyk 2 and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would only perform deletions when the system was not already
too overloaded, thus preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Van Wyk 2 to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Van Wyk 2 with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in Van Wyk 2 can be burdensome on

EXHIBIT C-10

Joint Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination
the system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15. Thus, the
’120 patent provides motivations to combine Van Wyk 2 with Thatte, Dirks,
the '663 patent, and/or the Opportunistic Garbage Collection Articles in
addition to motivations within the text of Van Wyk 2, “[a]ccess to the heap is
through a single pointer, rover, which always points to the last node allocated
or de-allocated. … As soon as rover points to a node with enough room,
malloc() chops off a piece of the appropriate size and marks it occupied, adds
the remainder of the node to the heap as a free node, and finally returns rover
as a pointer to the newly allocated space.” (Van Wyk 2 at 137).

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Van Wyk 2 in combination with Dirks, Thatte, the
‘663 Patent, or the Opportunistic Garbage Collection References, it is
disclosed by Linux 2.0.1, which describes dynamically determining maximum
number of expired ones of the records to remove when the linked list is
accessed. It would have been obvious to combine Linux 2.0.1 with Van Wyk

EXHIBIT C-10

Joint Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination
2. For example, both Linux 2.0.1 and Van Wyk 2 describe systems and
methods for performing data storage and retrieval using known programming
techniques to yield a predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to

EXHIBIT C-10

Joint Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function

EXHIBIT C-10

Joint Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not

EXHIBIT C-10

Joint Invalidity Contentions & Production of
Documents

35 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

EXHIBIT C-11

Joint Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, Weiss discloses an information
storage and retrieval system.

For example, Weiss discloses that a “linked list consists of a series of
structures, which are not necessarily adjacent in memory. Each structure
contains the element and a pointer to a structure containing its successor.”
Weiss at 43. Thus, Weiss inherently discloses an information storage and
retrieval system. See id.

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

Weiss discloses a linked list to store and provide access to records stored in a
memory of the system, at least some of the records automatically expiring.
Weiss also discloses a hashing means to provide access to records stored in a
memory of the system and using an external chaining technique to store the
records with same hash address, at least some of the records automatically
expiring.

For example, Weiss discloses that a “linked list consists of a series of
structures, which are not necessarily adjacent in memory. Each structure
contains the element and a pointer to a structure containing its successor.”
Weiss at 43.

Weiss further discloses that “hashing is a technique used for performing
insertions, deletions and finds in constant average time.” Weiss at 149. Weiss
discloses a method of collision resolution called Open Hashing (Separate
Chaining) which “keeps a list of all elements that hash to the same value.”
Weiss at 152. “The hash table structure contains the actual size and an array of
linked lists, which are dynamically allocated when the table is initialized. The
HASH_TABLE type is just a pointer to this structure.” Weiss at 153-54.

[1b] a record search means
utilizing a search key to

[5b] a record search means
utilizing a search key to

Weiss discloses a record search means utilizing a search key to access the
linked list. Weiss also discloses a record search means utilizing a search key to

EXHIBIT C-11

Joint Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

access the linked list, access a linked list of
records having the same
hash address,

access a linked list of records having the same hash address.

For example, Weiss discloses accessing by way of an insert command, “the
insert command requires obtaining a new cell from the system by using an
malloc call (more on this later) and then executing two pointer maneuvers.
The general idea is shown in Figure 3.4. The dashed line represents the old
pointer.” Weiss at 44.

Further, Weiss discloses, “[d]eciding what to do when two keys hash to the
same value (this is known as a collision).” Weiss at 150. Weiss also discloses
that “when inserting an element, it hashes to the same value as an already
inserted element, then we have a collision and need to resolve it.” Weiss at
152.

[1c] the record search
means including a means
for identifying and

[5c] the record search
means including means for
identifying and removing

Weiss discloses the record search means including a means for identifying and
removing at least some of the expired ones of the records from the linked list
when the linked list is accessed. Weiss also discloses the record search means

EXHIBIT C-11

Joint Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

removing at least some of
the expired ones of the
records from the linked list
when the linked list is
accessed, and

at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

including means for identifying and removing at least some expired ones of the
records from the linked list of records when the linked list is accessed.

For example, Weiss discloses that “[w]hen things are no longer needed, you
can issue a free command to inform the system that it may reclaim the space.
A consequence of the free(p) command is that the address that p is pointing to
is unchanged, but the data that resides at that address is now undefined.”
Weiss at 50.

To the extent that Bedrock argues that Weiss does not anticipate this claim
element, it would have been obvious to one of ordinary skill in the art to
combine Weiss with Kruse. Kruse discloses “[t]he task of the procedure
Vivify is to traverse the list live, determine whether each cell on it satisfies
the conditions to become alive, and vivify it if so, else delete it from the list.
The usual way to facilitate deletion from a linked list is to keep two pointers in
lock step, one position apart, while traversing the list.” … “Let us take
advantage of the indirect linkage of our lists, and when we wish to delete an
entry form the list, let us leave the node in place, but set its entry field to nil.
In this way, the node will be flagged as empty when it is again encountered in
the procedure AddNeighbors.” Kruse at 219. Thus, Weiss and Kruse show
that one of ordinary skill in the art understood how to identify and remove at
least some expired ones of the records from the linked list of records when the
linked list is accessed, and would recognize that it would improve similar
systems and methods in the same way.

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the

Weiss discloses means, utilizing the record search means, for accessing the
linked list and, at the same time, removing at least some of the expired ones of
the records in the linked list. Weiss also discloses utilizing the record search
means, for inserting, retrieving, and deleting records from the system and, at

EXHIBIT C-11

Joint Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

removing at least some of
the expired ones of the
records in the linked list.

system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

the same time, removing at least some expired ones of the records in the
accessed linked list of records.

For example, Weiss discloses method of retrieving records in a find routine as
shown in figure 3.10.

Weiss at 46.

Weiss also discloses a method of inserting a record in an insert routine as
shown in figure 3.12.

EXHIBIT C-11

Joint Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

Weiss at 48.

Weiss further discloses that a “deletion routine is a straightforward
implementation of deletion in a linked list, so we will not bother with it here.”
Weiss at156. Weiss also discloses that “[a]fter a deletion in a linked list, it is
usually a good idea to free the cell, especially if there are lots of insertions and
deletions intermingled and memory might become a problem.”

EXHIBIT C-11

Joint Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

Weiss at 50.

2. The information storage
and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

6. The information storage
and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

Weiss discloses an information storage and retrieval system further including
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records.

For example, Weiss discloses in Figure 5.8, an initialization routine for open
hash table, and in Figure 5.1, an insert routine for open hash table, that can
dynamically determine when there is a fatal error due to a lack of space. This
determination inherently discloses dynamically determining maximum number
of expired ones of the records to remove. Weiss at 154-56.

EXHIBIT C-11

Joint Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

EXHIBIT C-11

Joint Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

It would have been obvious to one of ordinary skill in the art to modify the
system disclosed in Weiss to dynamically determine the maximum number of
expired records to remove in the accessed linked list of records. It is a
fundamental concept in computer science and the relevant art that any variable
or parameter affecting any aspect of a system can be dynamically determined
based on information available to the system. One of ordinary skill in the art

EXHIBIT C-11

Joint Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

would have been motivated to combine the system disclosed in Weiss with the
fundamental concept of dynamically determining the maximum number of
expired records to remove in an accessed linked list of records to solve a
number of potential problems. For example, the removal of expired records
described in Weiss can be burdensome on the system, adding to the system’s
load and slowing down the system’s processing. Moreover, the removal could
also force an interruption in real-time processing as the processing waits for
the removal to complete. Indeed, part of the motivation for the system
disclosed in Weiss is avoiding these problems. One of ordinary skill in the art
would have known that dynamically determining the maximum number to
remove would limit the burden on the system and bound the length of any real-
time interruption to prevent delays in processing. Indeed, Nemes concedes that
such dynamic determination was obvious when he states in the ‘120 patent that
“[a] person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records are removed, and that
the decision regarding if and how many records to delete can be a dynamic
one.” ‘120 at 7:10-15.

Weiss combined with Dirks, Thatte, the ’663 patent and/or the Opportunistic
Garbage Collection Articles discloses an information storage and retrieval
system further including means for dynamically determining maximum
number for the record search means to remove in the accessed linked list of
records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in

EXHIBIT C-11

Joint Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined

EXHIBIT C-11

Joint Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Weiss and Dirks relate to deletion of aged records upon the allocation
of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as Weiss. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching

EXHIBIT C-11

Joint Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Weiss nothing more than
the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Weiss and would have
seen the benefits of doing so. One possible benefit, for example, is saving the
system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Weiss with the means for
dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. For example,
Thatte discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Weiss with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.

EXHIBIT C-11

Joint Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

The resulting combination would include the capability to determine the
maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine Weiss
with Thatte and recognize the benefits of doing so. For example, the removal
of expired records described in Weiss can be burdensome on the system,
adding to the system’s load and slowing down the system’s processing. One of
ordinary skill in the art would recognize that combining Weiss with the
teachings of Thatte would solve this problem by dynamically determining how
many records to delete based on, among other things, the system load.
Moreover, the '120 patent discloses that "[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120
patent provides motivations to combine Weiss with Thatte.

Alternatively, it would also be obvious to combine Weisswith the ’663 patent.
Disclosure of these claim elements in the ’663 patent is clearly shown in the
chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent

EXHIBIT C-11

Joint Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT C-11

Joint Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,

EXHIBIT C-11

Joint Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Weiss and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in Weiss. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with Weiss would be
nothing more than the predictable use of prior art elements according to their
established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion

EXHIBIT C-11

Joint Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

based on a systems load as taught by the ’663 patent and with Weiss and would
have seen the benefits of doing so. One such benefit, for example, is that the
system would avoid performing deletions when the system load exceeded a
threshold.

Alternatively, it would also be obvious to combine Weiss with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

EXHIBIT C-11

Joint Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Weiss and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Weiss. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision

EXHIBIT C-11

Joint Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

procedure with Weiss would be nothing more than the predictable use of prior
art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Weiss and would
have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Weiss to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in Weiss
with the fundamental concept of dynamically determining the maximum
number of expired records to remove in an accessed linked list of records to
solve a number of potential problems. For example, the removal of expired
records described in Weisscan be burdensome on the system, adding to the
system’s load and slowing down the system’s processing. Moreover, the
removal could also force an interruption in real-time processing as the
processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was

EXHIBIT C-11

Joint Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15. Thus, the
’120 patent provides motivations to combine Weiss with Thatte, Dirks, the
'663 patent, and/or the Opportunistic Garbage Collection Articles, in addition
to motivations within the text of Weiss, such as the initialization routine of
Figure 5.8, and the insert routine of Figure 5.1 that can dynamically determine
when there is a fatal error due to a lack of space. Weiss at 154-56.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Weiss in combination with Dirks, Thatte, the ‘663
Patent, or the Opportunistic Garbage Collection References, it is disclosed by
Linux 2.0.1, which describes dynamically determining maximum number of
expired ones of the records to remove when the linked list is accessed. It
would have been obvious to combine Linux 2.0.1 with Weiss. For example,
both Linux 2.0.1 and Weiss describe systems and methods for performing data
storage and retrieval using known programming techniques to yield a
predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the

EXHIBIT C-11

Joint Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

EXHIBIT C-11

Joint Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the

EXHIBIT C-11

Joint Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

3. A method for storing
and retrieving information
records using a linked list
to store and provide access

7. A method for storing
and retrieving information
records using a hashing
technique to provide access

To the extent the preamble is a limitation, Weiss discloses a method for storing
and retrieving information records using a linked list to store and provide
access to the records, at least some of the records automatically expiring.
Weiss also discloses a method for storing and retrieving information records

EXHIBIT C-11

Joint Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

using a hashing technique to provide access to the records and using an
external chaining technique to store the records with same hash address, at
least some of the records automatically expiring.

For example, Weiss discloses that a “linked list consists of a series of
structures, which are not necessarily adjacent in memory. Each structure
contains the element and a pointer to a structure containing its successor.”
Weiss at 43. Thus, Weiss inherently discloses a method for storing and
retrieving information records. See id.

Weiss further discloses that “hashing is a technique used for performing
insertions, deletions and finds in constant average time.” Weiss at 149. Weiss
discloses a method of collision resolution called Open Hashing (Separate
Chaining) which “keeps a list of all elements that hash to the same value.”
Weiss at 152. “The hash table structure contains the actual size and an array of
linked lists, which are dynamically allocated when the table is initialized. The
HASH_TABLE type is just a pointer to this structure.” Weiss at 153-54.

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

Weiss discloses accessing a linked list of records. Weiss also discloses
accessing a linked list of records having same hash address.

For example, Weiss discloses accessing by way of an insert command, “the
insert command requires obtaining a new cell from the system by using an
malloc call (more on this later) and then executing two pointer maneuvers.
The general idea is shown in Figure 3.4. The dashed line represents the old
pointer.” Weiss at 44.

EXHIBIT C-11

Joint Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

Further, Weiss discloses, “[d]eciding what to do when two keys hash to the
same value (this is known as a collision).” Weiss at 150. Weiss also discloses
that “when inserting an element, it hashes to the same value as an already
inserted element, then we have a collision and need to resolve it.” Weiss at
152.

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

Weiss discloses identifying at least some of the automatically expired ones of
the records.

For example, Weiss discloses that “[w]hen things are no longer needed, you
can issue a free command to inform the system that it may reclaim the space.
A consequence of the free(p) command is that the address that p is pointing to
is unchanged, but the data that resides at that address is now undefined.”
Weiss at 50.

To the extent that Bedrock argues that Weiss does not anticipate this claim

EXHIBIT C-11

Joint Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

element, it would have been obvious to one of ordinary skill in the art to
combine Weiss with Kruse. Kruse discloses “[t]he task of the procedure
Vivify is to traverse the list live, determine whether each cell on it satisfies
the conditions to become alive, and vivify it if so, else delete it from the list.
The usual way to facilitate deletion from a linked list is to keep two pointers in
lock step, one position apart, while traversing the list.” … “Let us take
advantage of the indirect linkage of our lists, and when we wish to delete an
entry form the list, let us leave the node in place, but set its entry field to nil.
In this way, the node will be flagged as empty when it is again encountered in
the procedure AddNeighbors.” Kruse at 219. Thus, Weiss and Kruse show
that one of ordinary skill in the art understood how to identify at least some of
the automatically expired ones of the records, and would recognize that it
would improve similar systems and methods in the same way.

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

Weiss discloses removing at least some of the automatically expired records
from the linked list when the linked list is accessed.

For example, Weiss discloses that “[w]hen things are no longer needed, you
can issue a free command to inform the system that it may reclaim the space.
A consequence of the free(p) command is that the address that p is pointing to
is unchanged, but the data that resides at that address is now undefined.”
Weiss at 50.

To the extent that Bedrock argues that Weiss does not anticipate this claim
element, it would have been obvious to one of ordinary skill in the art to
combine Weiss with Kruse. Kruse discloses “[t]he task of the procedure
Vivify is to traverse the list live, determine whether each cell on it satisfies
the conditions to become alive, and vivify it if so, else delete it from the list.
The usual way to facilitate deletion from a linked list is to keep two pointers in

EXHIBIT C-11

Joint Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

lock step, one position apart, while traversing the list.” … “Let us take
advantage of the indirect linkage of our lists, and when we wish to delete an
entry form the list, let us leave the node in place, but set its entry field to nil.
In this way, the node will be flagged as empty when it is again encountered in
the procedure AddNeighbors.” Kruse at 219. Thus, Weiss and Kruse show
that one of ordinary skill in the art understood how to remove at least some of
the automatically expired records from the linked list when the linked list is
accessed, and would recognize that it would improve similar systems and
methods in the same way.

 [7d] inserting, retrieving
or deleting one of the
records from the system
following the step of
removing.

Weiss discloses inserting, retrieving or deleting one of the records from the
system following the step of removing.

For example, Weiss discloses method of retrieving records in a find routine as
shown in figure 3.10.

EXHIBIT C-11

Joint Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

Weiss at 46.

Weiss also discloses a method of inserting a record in an insert routine as
shown in figure 3.12.

Weiss at 48.

Weiss further discloses that a “deletion routine is a straightforward

EXHIBIT C-11

Joint Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

implementation of deletion in a linked list, so we will not bother with it here.”
Weiss at156. Weiss also discloses that “[a]fter a deletion in a linked list, it is
usually a good idea to free the cell, especially if there are lots of insertions and
deletions intermingled and memory might become a problem.”

Weiss at 50.

4. The method according to
claim 3 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

Weiss discloses dynamically determining maximum number of expired ones of
the records to remove when the linked list is accessed.

For example, Weiss discloses in Figure 5.8, an initialization routine for open
hash table, and in Figure 5.1, an insert routine for open hash table, that can
dynamically determine when there is a fatal error due to a lack of space. This
determination inherently discloses dynamically determining maximum number
of expired ones of the records to remove. Weiss at 154-56.

EXHIBIT C-11

Joint Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

EXHIBIT C-11

Joint Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

It would have been obvious to one of ordinary skill in the art to modify the
system disclosed in Weiss to dynamically determine the maximum number of
expired records to remove in the accessed linked list of records. It is a
fundamental concept in computer science and the relevant art that any variable
or parameter affecting any aspect of a system can be dynamically determined
based on information available to the system. One of ordinary skill in the art

EXHIBIT C-11

Joint Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

would have been motivated to combine the system disclosed in Weiss with the
fundamental concept of dynamically determining the maximum number of
expired records to remove in an accessed linked list of records to solve a
number of potential problems. For example, the removal of expired records
described in Weiss can be burdensome on the system, adding to the system’s
load and slowing down the system’s processing. Moreover, the removal could
also force an interruption in real-time processing as the processing waits for
the removal to complete. Indeed, part of the motivation for the system
disclosed in Weiss is avoiding these problems. One of ordinary skill in the art
would have known that dynamically determining the maximum number to
remove would limit the burden on the system and bound the length of any real-
time interruption to prevent delays in processing. Indeed, Nemes concedes that
such dynamic determination was obvious when he states in the ‘120 patent that
“[a] person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records are removed, and that
the decision regarding if and how many records to delete can be a dynamic
one.” ‘120 at 7:10-15.

Weiss combined with Dirks, Thatte, the ’663 patent, and/or the Opportunistic
Garbage Collection Articles discloses dynamically determining maximum
number of expired ones of the records to remove when the linked list is
accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in the
chart of Dirks, which is hereby incorporated by reference in its entirety.

EXHIBIT C-11

Joint Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

EXHIBIT C-11

Joint Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Weiss and Dirks relate to deletion of aged records upon the allocation
of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as that described Weiss. Moreover, one of ordinary skill
in the art would recognize that it would improve similar systems and methods
in the same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily

EXHIBIT C-11

Joint Invalidity Contentions & Production of
Documents

35 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Weiss would be nothing
more than the predictable use of prior art elements according to their
established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Weiss and would have
seen the benefits of doing so. One possible benefit, for example, is saving the
system from performing sometimes time-consuming sweeps.

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Weiss with the means for
dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. For example,
Thatte discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Weiss with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the

EXHIBIT C-11

Joint Invalidity Contentions & Production of
Documents

36 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine Weiss
with Thatte and recognized the benefits of doing so. For example, the removal
of expired records described in Weisscan be burdensome on the system, adding
to the system’s load and slowing down the system’s processing. One of
ordinary skill in the art would recognize that combining Weiss with the
teachings of Thatte would solve this problem by dynamically determining how
many records to delete based on, among other things, the system load.
Moreover, the '120 patent discloses that "[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120
patent provides motivations to combine Weiss with Thatte.

Alternatively, it would also be obvious to combine Weiss with the ’663 patent.
Disclosure of these claim elements in the ’663 patent is clearly shown in the
chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent

EXHIBIT C-11

Joint Invalidity Contentions & Production of
Documents

37 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT C-11

Joint Invalidity Contentions & Production of
Documents

38 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,

EXHIBIT C-11

Joint Invalidity Contentions & Production of
Documents

39 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Weiss and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as Weiss. Moreover, one of ordinary skill in the art would recognize that
it would improve similar systems and methods in the same way. As the ’120
patent states “[a] person skilled in the art will appreciate that the technique of
removing all expired records while searching the linked list can be expanded to
include techniques whereby not necessarily all expired records are removed,
and that the decision regarding if and how many records to delete can be a
dynamic one.” The ’120 patent at 7:10-15. Additionally, one of ordinary skill
in the art would recognize that the result of combining the ’663 patent’s
deletion decision procedure with Weiss would be nothing more than the
predictable use of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Weiss and would

EXHIBIT C-11

Joint Invalidity Contentions & Production of
Documents

40 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

have seen the benefits of doing so. One such benefit, for example, is that the
system would avoid performing deletions when the system load exceeded a
threshold.

Alternatively, it would also be obvious to combine Weiss with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

EXHIBIT C-11

Joint Invalidity Contentions & Production of
Documents

41 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Weiss and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Weiss. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Weiss would be nothing more than the predictable use of prior

EXHIBIT C-11

Joint Invalidity Contentions & Production of
Documents

42 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Weiss and would
have seen the benefits of doing so. One such benefit, for example, is that the
system would only perform deletions when the system was not already too
overloaded, thus preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Weiss to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in Weiss
with the fundamental concept of dynamically determining the maximum
number of expired records to remove in an accessed linked list of records to
solve a number of potential problems. For example, the removal of expired
records described in Weiss can be burdensome on the system, adding to the
system’s load and slowing down the system’s processing. Moreover, the
removal could also force an interruption in real-time processing as the
processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was

EXHIBIT C-11

Joint Invalidity Contentions & Production of
Documents

43 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15. Thus, the
’120 patent provides motivations to combine Weiss with Thatte, Dirks, the
'663 patent, and/or the Opportunistic Garbage Collection Articles in addition to
motivations within the text of Weiss, such as the initialization routine of Figure
5.8, and the insert routine of Figure 5.1 that can dynamically determine when
there is a fatal error due to a lack of space. Weiss at 154-56.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Weiss in combination with Dirks, Thatte, the ‘663
Patent, or the Opportunistic Garbage Collection References, it is disclosed by
Linux 2.0.1, which describes dynamically determining maximum number of
expired ones of the records to remove when the linked list is accessed. It
would have been obvious to combine Linux 2.0.1 with Weiss. For example,
both Linux 2.0.1 and Weiss describe systems and methods for performing data
storage and retrieval using known programming techniques to yield a
predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the

EXHIBIT C-11

Joint Invalidity Contentions & Production of
Documents

44 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

EXHIBIT C-11

Joint Invalidity Contentions & Production of
Documents

45 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the

EXHIBIT C-11

Joint Invalidity Contentions & Production of
Documents

46 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

