Exhibit A (Part 1 of 2)

Dockets.Justia.com

IN THE UNITED STATES DISTRICT COURT FOR THE EASTERN DISTRICT OF TEXAS TYLER DIVISION

Red Hat, Inc.,

Plaintiff,

v.

Case No. 6:09-CV-549-LED

Bedrock Computer Technologies LLC,

JURY TRIAL DEMANDED

Defendant.

JOINT INVALIDITY CONTENTIONS AND PRODUCTION OF DOCUMENTS PURSUANT TO PATENT RULES 3-3 AND 3-4(b)

Pursuant to the Rules of Practice for Patent Cases for the Eastern District of Texas ("Patent Rules" or "P.R."), Plaintiff Red Hat, Inc.¹ and Cross-claim defendants NYSE Euronext, Rackspace Hosting, Inc., ThePlanet.com Internet Services, Inc., Whole Foods Market, Inc., 1&1 Internet, Inc., ConocoPhillips Co., ConAgra Foods, Inc., Facebook, Inc., Go Daddy Group, Inc., Nationwide Mutual Insurance Co., R.L. Polk & Co., SunGard Data Systems, Inc., The Gap Inc., and Virgin America Inc. (collectively, the "Defendants"), hereby disclose their Invalidity Contentions. The Defendants contend that each of the claims asserted by Bedrock Computer Technologies LLC ("Bedrock") is invalid under at least 35 U.S.C. §§ 102, 103, and/or 112.

¹ All of the references in Red Hat, Inc.'s May 14, 2010 Invalidity Contentions are included in this Joint Invalidity Contentions and Production of Documents. Given the July 6, 2010 Docket Control Order (dkt. 170) changing the deadline for serving invalidity contentions, Red Hat, Inc. does not need to seek leave to supplement its May 14, 2010 Invalidity Contentions.

I. <u>GENERAL STATEMENTS AND OBJECTIONS</u>

A. Asserted Claims

Bedrock has served the Defendants with Infringement Contentions alleging infringement of U.S. Patent No. 5,893,120 ("the '120 patent"). Specifically, Bedrock has alleged that the Defendants infringe claims 1 - 8 of the '120 patent (collectively, the "Asserted Claims").

B. Invalidity Contentions

Defendants reserve all rights to modify, amend, and/or supplement their Invalidity Contentions, including in accordance with P.R. 3-6 and 3-7 following the Court's claim construction ruling or upon any alteration/clarification by Bedrock of its asserted claim construction to the extent permitted by this Court.

C. Claim Construction

The Court has not yet construed the Asserted Claims. The Defendants reserve the right to identify other art or to supplement their disclosures or contentions because the Defendants' positions on the invalidity of particular claims will depend on how those claims are construed by the Court. The Defendants' Invalidity Contentions are based, at least in part, on their present understanding of the Asserted Claims and/or their present understanding of the claim constructions Bedrock appears to be asserting—based on Bedrock's Infringement Contentions— whether or not the Defendants agree with such claim constructions.

To the extent that these Invalidity Contentions reflect constructions of claim terms that may be consistent with or implicit in Bedrock's Infringement Contentions, no inference is intended or should be drawn that the Defendants agree with such claim constructions. The Defendants take no position on any matter of claim construction in these invalidity contentions. Any statement herein describing or tending to describe any claim element is provided solely for the purpose of understanding the relevant prior art. The Defendants expressly reserve the right to

2

propose any claim construction they consider appropriate and/or to contest any claim construction they consider inappropriate.

In part because of the uncertainty of claim construction, the Defendants' Invalidity Contentions are sometimes made in the alternative and are not necessarily intended to be consistent with each other, and should be viewed accordingly. Further, by including in this disclosure prior art that would be anticipatory or render a claim obvious based on a particular scope or construction of the claims, including that apparently applied by Bedrock in its Infringement Contentions, the Defendants' Invalidity Contentions herein are not, and should in no way be seen as adoptions or admissions as to the accuracy of such scope or construction.

The Defendants reserve all rights to further supplement or modify the positions and information in these Invalidity Contentions, including without limitation, the prior art and grounds of invalidity set forth herein, after the Court has construed the asserted claims in accordance with the Patent Rules and/or the Court's Orders.

D. Ongoing Discovery and Disclosures

Discovery in this case is in its early stages and the Defendants' investigation, including the Defendants' search for prior art, is ongoing. The Defendants therefore reserve the right to further supplement or alter the positions taken and information disclosed in these Invalidity Contentions including, without limitation, the prior art and grounds of invalidity set forth herein, to take into account information or defenses that may come to light as a result of these continuing efforts. The Defendants hereby incorporate by reference the testimony of any fact witnesses that are deposed, that provide declarations, or that otherwise testify in this lawsuit. The Defendants also hereby incorporate by reference the reports and testimony of the Defendants' expert witnesses regarding invalidity of the patent.

3

The Defendants understand and are relying upon the fact that the date to which Bedrock may be entitled to as the earliest priority date of the '120 patent is its earliest filing date. The Defendants intend to diligently seek discovery to establish conception and reduction to practice dates, as appropriate, to demonstrate earlier invention by other parties under 35 U.S.C. § 102(g). The Defendants further intend to take discovery on the issues of improper inventorship and/or derivation under 35 U.S.C. § 102(f), public use and/or the on-sale bar under 35 U.S.C. § 102(b), and/or applicant's failure to comply with 35 U.S.C. § 112. The Defendants therefore reserve all rights to further supplement or amend these invalidity contentions if and when further information becomes available.

E. Prior Art Identification and Citation

Pursuant to Patent Rule 3-3(a), the Defendants identify specific portions of prior art references that disclose the elements of the Asserted Claims. Although the Defendants have identified at least one citation per element for each reference, each and every disclosure of the same element in said reference is not necessarily identified. The Defendants identify only limited portions of the cited references as examples. It should be recognized that a person of ordinary skill in the art would generally read a prior art reference as a whole and in the context of other publications, literature, and general knowledge in the field. To understand and interpret any specific statement or disclosure in a prior art reference, a person of ordinary skill in the art would rely upon other information including other publications and general scientific or engineering knowledge. The Defendants therefore reserve the right to rely upon other unidentified portions of the prior art references and on other publications and expert testimony to provide context and to aid understanding and interpretation of the identified portions. The Defendants also reserve the right to rely upon other portions of the prior art references, other publications, and the testimony of experts to establish that the alleged inventions would have been obvious to a person of ordinary skill in the art, including on the basis of modifying or combining certain cited references. The Defendants also reserve the right to rely upon any admissions relating to prior art in the Asserted Patent or its respective prosecution history.

Where the Defendants identify a particular figure in a prior art reference, the identification should be understood to encompass the caption and description of the figure as well as any text relating to the figure in addition to the figure itself. Similarly, where an identified portion of text refers to a figure or other material, the identification should be understood to include the referenced figure or other material as well.

F. Reservation of Rights

The Defendants reserve all rights to further supplement or modify these Invalidity Contentions, including the prior art disclosed and stated grounds of invalidity, pursuant to the District's Patent Rules. In addition, the Defendants reserve the right to prove the invalidity of the asserted claims on bases other than those required to be disclosed in these disclosures and contentions pursuant to P.R. 3-3. For example, the Defendants further contend that each of the claims of the '120 patent is drawn to subject matter that is not patentable under 35 U.S.C. § 101. For example, the Asserted Claims are drawn to an "abstract idea" and are not patentable as explained by the Supreme Court in *Bilski v. Kappos*. 130 S.Ct. 3218, 3229-30 (2010).

II. INVALIDITY CONTENTIONS PURSUANT TO P.R. 3-3

A. Contentions Under P.R. 3-3(a)-(c)

Each of the Asserted Claims is anticipated and/or rendered obvious by prior art. Pursuant to P.R. 3-3(a) the Defendants identify the prior art that anticipates or renders an Asserted Claim obvious in Exhibits A - E which are hereby incorporated by reference as if fully set forth herein. On information and belief, each listed document or item became prior art at least as early as the dates given. Each of the foregoing prior art references identified in Exhibit A includes a chart in at least one of Exhibits B - D specifically identifying where each element of each asserted claim is found in the prior art pursuant to P.R. 3-3(c) including, for claims governed by 35 U.S.C. §112(6), the identity of structure(s), act(s), or materials(s) in each item of prior art that performs the claimed function.

To the extent any limitation of any of the Asserted Claims is construed to have a similar meaning, or to encompass similar feature(s) and/or function(s), with any other claim limitation of any of the Asserted Claims, as apparently contended by Bedrock in its Infringement Contentions, or later determined by the Court, and to the extent at least one claim chart in Exhibits B - D identifies any prior art reference, or a portion thereof, as disclosing or teaching such similarly construed claim limitation, such identified prior art reference, or the portion thereof, and the Defendants' contentions with respect to such claim limitation and such prior art reference as found in such claim chart, are incorporated by reference, and are part of, the Defendants' invalidity contentions with respect to each of the Asserted Claims that includes such similarly construed claim limitation.

To the extent that they are prior art, the Defendants reserve the right to rely upon foreign counterparts of the U.S. Patents identified in Defendants' Invalidity Contentions; U.S. counterparts of foreign patents and foreign patent applications identified in the Defendants' Invalidity Contentions; U.S. and foreign patents and patent applications corresponding to articles and publications identified in the Defendants' Invalidity Contentions; and any systems, products, or prior inventions that relate to any references identified in the Defendants' Invalidity Contentions. The claim charts in Exhibits B - D provide example sections within the prior art references that teach or suggest each and every element of the asserted claims. Each reference or combination of references suggested by each chart indicates whether the prior art renders the claim obvious or anticipated pursuant to P.R. 3-3(b). In Exhibits B - D for each Asserted Claim, the Defendants set forth such obviousness combinations, and the motivation to combine such items.

The U.S. Supreme Court's decision in KSR International Co. v. Teleflex Inc., et al., 550 U.S. 398, 415-16 (2007) ("KSR") held that a claimed invention can be obvious even if there is no teaching, suggestion, or motivation for combining the prior art to produce that invention. In summary, KSR holds that patents that are based on new combinations of elements or components already known in a technical field may be found to be obvious. See generally KSR, 550 U.S. 398. Specifically, the Court in KSR rejected a rigid application of the "teaching, suggestion, or motivation [to combine]" test. Id. at 418. "In determining whether the subject matter of a patent claim is obvious, neither the particular motivation nor the avowed purpose of the patentee controls. What matters is the objective reach of the claim." Id. at 419. "Under the correct analysis, any need or problem known in the field of endeavor at the time of invention and addressed by the patent can provide a reason for combining the elements in the manner claimed." Id. at 420. In particular, in KSR, the Supreme Court emphasized the principle that "[t]he combination of familiar elements according to known methods is likely to be obvious when it does no more than yield predictable results." Id. at 416. A key inquiry is whether the "improvement is more than the predictable use of prior art elements according to their established functions." Id. at 417.

The rationale to combine or modify prior art references is significantly stronger when the references seek to solve the same problem, come from the same field, and correspond well. *In re Inland Steel Co.*, 265 F.3d 1354, 1362 (Fed. Cir. 2001). The Federal Circuit allowed two references to be combined as invalidating art under similar circumstances, namely "[the prior art] focus[es] on the same problem that the . . . patent addresses: enhancing [the flexibility of stents]. Moreover, both [prior art references] come from the same field Finally, the solutions to the identified problems found in the two references correspond well." *Id.* at 1364 (concerning patents and prior art relating to improving the magnetic and electrical properties of steel).

In view of the Supreme Court's *KSR* decision, the PTO issued a set of new Examination Guidelines. *See* Examination Guidelines for Determining Obviousness Under 35 U.S.C. §103 in view of the Supreme Court Decision in *KSR International Co. v. Teleflex, Inc.*, 72 Fed. Reg. 57526 (October 10, 2007). These Guidelines summarized the *KSR* decision, and identified various rationales for finding a claim obvious, including those based on other precedents. Those rationales include:

(A) Combining prior art elements according to known methods to yield predictable results;

(B) Simple substitution of one known element for another to obtain predictable results;

(C) Use of known technique to improve similar devices (methods, or products) in the same way;

(D) Applying a known technique to a known device (method, or product) ready for improvement to yield predictable results;

(E) "Obvious to try" – choosing from a finite number of identified, predictable solutions, with a reasonable expectation of success;

(F) Known work in one field of endeavor may prompt variations of it for use in either the same field or a different one based on design incentives or other market forces if the variations would have been predictable to one of ordinary skill in the art; (G) Some teaching, suggestion, or motivation in the prior art that would have led one of ordinary skill to modify the prior art reference or to combine prior art reference teachings to arrive at the claimed invention.

Id. at 57529. The Defendants contend that one or more of these rationales apply in considering the obviousness of the claims of the '120 patent.

A person of ordinary skill at the time of the invention had reason to combine or modify one or more of the references listed and charted in Exhibits A - E in light of the knowledge of a person of ordinary skill in the art at the time of the invention and information in the prior art cited herein. For example, all of the references listed and/or charted in Exhibits A - E deal with the application of known techniques for creating and maintaining data structures. Applying these known techniques to a known system to yield predictable results, the creation and maintenance of data in the manner recited by the asserted claims, would have been obvious. Further, many of the references listed and/or charted in Exhibits A - E are excerpts of source code from one or more derivations of a UNIX operating system kernel. For example, the on-the-fly garbage collection techniques disclosed by the Morrison and Van Wyk references were incorporated into a Unix utility called IDEAL. Thus, since each of these references disclose a known technique to a known system to yield a predictable result, it would have been obvious to combine these references with each other as well as with IDEAL. Further, because IDEAL was a Unix utility, it would have been obvious to incorporate these techniques with other Unix and Linux software such as those listed and charted in Exhibit D. For at least the same reason, it would have been obvious to combine the techniques disclosed in the Unix and Linux software identified in Exhibit D with one another. Combining known data creation and storage techniques that have previously been applied within the kernel of derivations of the same operating system kernel to create and maintain data in the manner recited in the asserted claims would have been obvious to one of skill in the art.

It would have been obvious to combine any or all of Linux 1.3.52 route.c, BSD 4.2 if_ether.c, FreeBSD vfs_cache.c, FreeBSD arp.c, FreeBSD wavelan_cs.c, LISP, FreeBSD 2.0.5 kern_proc.c, Linux 1.2.13 – arp.c, Linux 1.3.51 route.c, Xinu Operating System for Sparc, gcache.c, Naval Research Laboratories IPv6 key.c and key.h, Slackware makepsres.c, Linux 2.0.1 route.c, and GCC 2.7.21 with one another, at least because each uses linked data structures to store expiring data. Further, each system is a data management utility designed to operate in a computer operating system. Additionally each system is associated with an open-source operating system and/or utility. Thus, a person of ordinary skill in the art would recognize that the combination of any of these systems is a predictable use of elements known in the art to solve a known problem,.

Furthermore, it would have been obvious to combine any or all of the above systems with the system described in the Morrison reference (see Exhibit C-2). On information and belief, the system described in the Morrison reference was implemented and distributed in a Unix utility known as IDEAL. Like the above systems, IDEAL used linked data structures to manage expiring data in a Unix environment. Thus, a person of ordinary skill in the art would recognize that the combination of Morrison with the systems listed above is a predictable use of elements known in the art to solve a known problem. Additional contentions regarding the combination and/or modification of and/or motivation to combine references for specific Asserted Claims are set forth in the claim charts of Exhibits B - D.

B. Contentions Under P.R. 3-3(d)

Pursuant to Patent Local Rule 3-3(d), the Defendants contend that certain claims of the Asserted Patent are invalid under 35 U.S.C. § 112 because: (1) the claims are indefinite; (2) the claims are not enabled; (3) the claims lack adequate written description; and/or (4) the specification fails to set forth the best mode contemplated by the inventor for practicing the

invention. The Defendants' contentions that the following claims are invalid under 35 U.S.C. § 112 are made in the alternative, and do not constitute, and should not be interpreted as, admissions regarding the construction or scope of the claims of the '120 patent, or that any of the claims of the '120 patent are not anticipated or rendered obvious by any prior art.

The asserted claims identified below are invalid under 35 U.S.C § 112 paragraph 2, which requires that the specification "conclude with one or more claims particularly pointing out and distinctly claiming the subject matter which the applicant regards as his invention."

Claims 1 and 5 require "a record search means utilizing a search key to access the linked list" and "a means for identifying and removing at least some of the expired ones of the records from the linked list when the linked list is accessed." Claim 1 further requires "a means, utilizing the record search means, for accessing the linked list and, at the same time, removing at least some of the expired ones of the records in the linked list." Claim 5 further requires "a means, utilizing the record search means, for inserting, retrieving, and deleting records from the system and, at the same time, removing at least some expired ones of the records in the accessed linked list of records." These limitations can be construed to cover only the corresponding specific algorithmic structure disclosed in the specification under 35 U.S.C. 112, paragraph 6. *See WMS Gaming, Inc. v. Int'l Game Tech.*, 184 F.3d 1339, 1349 (Fed. Cir. 1999). Because no specific algorithm is disclosed in the specification for these limitations, Claims 1 and 5 (and the claims that depend from them) are invalid as indefinite under 35 U.S.C. §112, paragraph 2.

Claim 2 requires "means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records." Claim 6 requires "means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records." These limitations can be construed to cover only the corresponding specific algorithmic structure disclosed in the specification under 35 U.S.C. 112, paragraph 6. *See WMS Gaming, Inc. v. Int'l Game Tech.*, 184 F.3d 1339, 1349 (Fed. Cir. 1999). Because no specific algorithm is disclosed in the specification for "means for dynamically determining maximum number" Claims 2 and 6 are invalid as indefinite under 35 U.S.C. §112, paragraph 2.

Claim 7 and Claim 8 require "the system." This is indefinite, violating 35 U.S.C. §112, paragraph 2. Thus, Claims 7 and 8 are invalid as indefinite under 35 U.S.C. §112, paragraph 2.

The asserted claims identified below are invalid under 35 U.S.C. § 112 paragraph 1, which requires that the specification "contain a written description of the invention, and of the manner and process of making and using it, in such full, clear, concise, and exact terms as to enable any person skilled in the art to which it pertains, or with which it is most nearly connected, to make and use the same, and shall set forth the best mode contemplated by the inventor of carrying out his invention."

Claims 2, 4, 6, and 8 each require "dynamically determining maximum number." Neither the '120 patent nor its application describe "dynamically determining maximum number." Thus, Claims 2, 4, 6, and 8 are invalid for lack of written description and/or enablement under 35 U.S.C. §112, paragraph 1. Also, the means-plus-function claims noted above as invalid under 35 U.S.C. §112, paragraph 2 are invalid under 35 U.S.C. §112, paragraph 1 for the same reasons.

III. ADDITIONAL PRIOR ART

In addition to the prior art references charted, the Defendants list in Exhibit E, which is incorporated herein in its entirety, additional prior art references that are pertinent to the invalidity of the '120 patent. At this time, the Defendants are not providing claim charts for each of these additional references either because these references:

- have similar disclosure to the prior art references for which invalidity charts have been provided;
- (2) were discovered recently and Defendants have not had a fair opportunity to analyze them;
- (3) may be used to show state of the art; and/or
- (4) may be used as supporting references in an obviousness combination depending on how the claims are ultimately construed by the Court.

The Defendants also incorporate, in full, all prior art references cited in the '120 patent and all prior art references cited in the prosecution histories of the '120 patent and any foreign counterparts.

The Defendants reserve the right to revise these Contentions to rely on any of these references to prove the invalidity of the asserted claims of the '120 patent in a manner consistent with the Federal Rules of Civil Procedure, the Court's Local Rules, and the Local Patent Rules.

IV. ACCOMPANYING DOCUMENT PRODUCTION

Pursuant to Patent Rule 3-4(a), the Defendants will produce, make available for inspection, or identify publicly available information sufficient to show the operation of any specifically identified aspects or elements of an Accused Instrumentality identified by Bedrock in its P. R. 3-1(c) chart to the extent such information is in the Defendants' possession, custody or control. If such information comprises source code, the Defendants will produce publicly available source code or make non-public source code available for inspection after the entry of a suitable protective order in this action.

Pursuant to Patent Rule 3-4 (b), the Defendants are producing or making available for inspection copies of each item of prior art identified pursuant to Patent Rule 3-3(a) which does

not appear in the file history of the Asserted Patent. To the extent that such item is not in English, an English translation is produced where available. The Defendants reserve the right to identify and produce additional documents pursuant to the Patent Rules and the orders of the Court.

Table of Exhibits		
Exhibit	Description	
А.	List of prior art references that have been charted	
В.	Invalidity charts for prior art patent references listed in Exhibit A	
C.	Invalidity charts for prior art literature references listed in Exhibit A	
D.	Invalidity charts for prior art systems listed in Exhibit A	
E.	Additional prior art	

Respectfully submitted, this the 18th day of October 2010.

<u>/s/ E. Danielle T. Williams</u> Steven Gardner E. Danielle T. Williams John C. Alemanni Alton L. Absher III KILPATRICK STOCKTON LLP 1001 West 4th Street Winston-Salem, NC 27101 Telephone: 336-607-7300 Facsimile: 336-607-7500

William H. Boice Russell A. Korn KILPATRICK STOCKTON LLP Suite 2800 1100 Peachtree Street Atlanta, GA 30309-4530 Telephone: 404-815-6500 Facsimile: 404-815-6555

J. Thad Heartfield Texas Bar No. 09346800 thad@jth-law.com M. Dru Montgomery Texas Bar No. 24010800 dru@jth-law.com THE HEARTFIELD LAW FIRM 2195 Dowlen Road Beaumont, TX 77706 Telephone: 409-866-2800 Facsimile: 409-866-5789

Attorneys for Plaintiff RED HAT, INC., and Cross-Claim Defendants NYSE EURONEXT, RACKSPACE HOSTING, INC., THEPLANET.COM INTERNET SERVICES, INC., AND WHOLE FOODS MARKET, INC. /s/ Michael E. Jones Michael E. Jones State Bar No. 10929400 Allen F. Gardner State Bar No. 24043679 POTTER MINTON A Professional Corporation 110 N. College Ave., Suite 500 (75702) P.O. Box 359 Tyler, TX 75710 Telephone: 903-597-8311 Facsimile: 903-593-0846

H. Michael Hartmann Robert T. Wittmann LEYDIG, VOIT & MAYER, LTD. Two Prudential Plaza 180 North Stetson, Suite 4900 Chicago, Illinois 60601-6731 Telephone: 312-616-5600 Facsimile: 312-616-5700

J. Christopher Erb ERB LAW FIRM P.C. 5901 Ridge Ave., Suite 100 Philadelphia, PA 19128 Telephone: 215-508-4419 Facsimile: 215-508-4428

Attorneys for Cross-Claim Defendant 1& 1 INTERNET, INC.. /s/ Neil J. McNabnay Thomas M. Melsheimer Neil J. McNabnay J. Nicholas Bunch FISH & RICHARDSON P.C. 1717 Main Street - Suite 5000 Dallas, TX 75201 Tel: (214) 747-5070 Fax: (214-747-2091

Christopher Hadley FISH & RICHARDSON P.C. One Marina Park Drive Boston, MA 02110 Tel: (617) 542-5070 Fax: (617) 542-8906

Attorneys for Crossclaim Defendant CONOCOPHILLIPS COMPANY

<u>/s/ Jennifer H. Doan</u> Jennifer H. Doan Texas Bar No. 08809050 HALTOM & DOAN Crown Executive Center, Suite 100 6500 Summerhill Road Texarkana, TX 75503 Telephone: (903) 255-1000 Facsimile: (903) 255-0800 Email: jdoan@haltomdoan.com

Andrew M. Grove HONIGMAN MILLER SCHWARTZ AND COHN LLP 38500 Woodward Avenue, Suite 100 Bloomfield Hills, MI 48304 Telephone: (248) 566-8432 Facsimile: (248) 566-8433 Email: jgrove@honigman.com

/s/ Heidi Keefe Heidi Keefe (CA Bar No. 178960) Mark Weinstein. (CA Bar No. 193043) Adam Pivovar (CA Bar No. 246507) (Pro Hac Vice) Lam K. Nguyen (CA Bar No. 265285) COOLEY LLP Five Palo Alto Square 3000 El Camino Real Palo Alto, CA 94306-2155 Telephone: (650) 843-5000 Facsimile: (650) 857-0663 hkeefe@cooley.com mweinstein@cooley.com apivovar@cooley.com lnguyen@cooley.com

Deron R. Dacus State Bar No. 00790553 RAMEY & FLOCK, P.C. 100 E. Ferguson, Suite 500 Tyler, Texas 75702 Phone: (903) 597-3301 Fax: (903) 597-2413 derond@rameyflock.com

Attorneys for Crossclaim Defendant FACEBOOK, INC.

/s/ Brian W. LaCorte Brian W. LaCorte (pro hac vice) GALLAGHER & KENNEDY, P.A. 2575 East Camelback Road Phoenix, Arizona 85016-9225 Telephone: (602) 530-8020 Facsimile: (602) 530-8500 Email: bwl@gknet.com

Harry L. Gillam, Jr. GILLAM & SMITH 303 South Washington Avenue Marshall, Texas 75670 Telephone: (903) 934-8450 Facsimile: (903) 934-9257 Email: gil@gillamsmithlaw.com

Attorneys for Crossclaim Defendant THE GO DADDY GROUP, INC.

Emily J. Zelenock HONIGMAN MILLER SCHWARTZ AND COHN LLP 38500 Woodward Avenue, Suite 100 Bloomfield Hills, MI 48304 Telephone: (248) 566-8508 Facsimile: (248) 566-8509 Email: ezelenock@honigman.com

Attorneys for Crossclaim Defendant R.L. POLK & CO.

<u>/s/ Yar R. Chaikovsky</u> Yar R. Chaikovsky California State Bar No. 175421 McDermott Will & Emery LLP 275 Middlefield Road Suite 100 Menlo Park, California 94025-4004

Attorneys for Crossclaim Defendant THE GAP, INC.

<u>/s/ Lynn H. Pasahow</u> Lynn H. Pasahow, CA Bar No. 054283 (Admitted E.D. Texas) Darren E. Donnelly, CA Bar No. 194335 (Admitted E.D. Texas) Saina S. Shamilov, CA Bar No. 215636 (Admitted E.D. Texas) Leslie Kramer, CA Bar No. 253313 (Admitted E.D. Texas) FENWICK & WEST LLP 801 California Street Mountain View, CA 94041 Telephone: (650) 988-8500 Facsimile: (650) 938-5200

Attorneys for Crossclaim Defendant VIRGIN AMERICA, INC

/s/Rick L. Rambo/ Rick L. Rambo State Bar No. 00791479 MORGAN, LEWIS & BOCKIUS LLP 1000 Louisiana, Suite 4000 Houston, Texas 77002 Telephone No. (713) 890-5000 Telecopier No. (713) 890-5001 rrambo@morganlewis.com

Attorneys for Crossclaim Defendant NATIONWIDE MUTUAL INSURANCE COMPANY /s/ James A. Glenn/ Paul E. Krieger State Bar No. 11726470 James A. Glenn State Bar No. 24032357 MORGAN, LEWIS & BOCKIUS LLP 1000 Louisiana, Suite 4000 Houston, Texas 77002 Telephone No. (713) 890-5000 Telecopier No. (713) 890-5001 pkrieger@morganlewis.com jglenn@morganlewis.com

Attorneys for Crossclaim Defendant SUNGARD DATA SYSTEMS INC.

/s/ Elizabeth L. DeRieux

S. Calvin Capshaw, III State Bar No. 03783900 Elizabeth L. DeRieux State Bar No. 05770585 Capshaw DeRieux, LLP 1127 Judson Road, Suite 220 Longview, Texas 75601 Telephone: (903) 236-9800 Facsimile: (903) 236-8787 E-mail: ccapshaw@capshawlaw.com E-mail: ederieux@capshawlaw.com

Allen W. Hinderaker ahinderaker@merchantgould.com Christopher J. Sorenson (Lead Attorney) csorenson@merchantgould.com MERCHANT & GOULD, PC 3200 IDS Center 80 South Eighth Street Minneapolis, MN 55402 Telephone: 612.332.5300 Facsimile: 612.332.9081

Attorneys for Crossclaim Defendant CONAGRA FOODS INC

IDENTIFICATION OF PRIOR ART

Pursuant to P.R. 3-3(a) and 3-3(b), Defendants identify prior art references and combinations of prior art on which Defendants intend to rely for their contentions that one or more asserted claims of U.S. Patent Number 5,893,120 ("the '120 patent") are invalid. The Defendants provide the following chart to help summarize the Defendants' Invalidity Contentions. To the extent that a claim chart in Exhibit B, C, and/or D identifies that a reference anticipates and/or presents obviousness combinations that are not represented in the following charts, the claim chart satisfies the Defendants' disclosure under P.R. 3-3(b).

I. <u>ANTICIPATING PRIOR ART</u>

At least the following prior art references anticipate one or more of the asserted claims of the '120 patent.

A. <u>Prior Art Patents that Anticipate the '120 Patent under 35 U.S.C. §§ 102(a),</u> (b), (e), and/or (g)

Defendants identify the following United States patents as prior art references that anticipate the Asserted Claims of the '120 patent.

Country of Origin, Patent No., Inventor, Date of Issue	Anticipates at Least Claims:	Exhibit
U.S. Patent No. 4,695,949, Thatte et al., September 22, 1987 ("Thatte").	1 - 8	B-1
U.S. Patent No. 6,119,214, Dirks, September 12, 2000 ("Dirks").	1 - 8	В-2
U.S. Patent No. 4,989,132, Mellender et al., January 29, 1991 ("Mellender").	1 - 8	B-3
U.S. Patent No. 5,043,885, Robinson, August 27, 1991 ("Robinson").	1, 3, 5, 7	B-4

Joint Invalidity Contentions & Production of Documents

1

Country of Origin, Patent No., Inventor, Date of Issue	Anticipates at Least Claims:	Exhibit
U.S. Patent No. 5,778,430, Ish et al., July 7, 1998 ("Ish").	1 - 8	B-5
U.S. Patent No. 5,991,775, Beardsley et al., November 23, 1999 ("Beardsley").	1 - 8	B-6
U.S. Patent No. 5,765,174, Bishop, June 9, 1998 ("Bishop").	1 - 8	B-7
U.S. Patent No. 6,243,667, Kerr et al., June 5, 2001 ("Kerr").	1, 3, 5, 7	B-10
U.S. Patent No. 5,881,241, Corbin, March 9, 1999 ("Corbin").	1, 3	B-11
U.S. Patent No. 4,996,663, Nemes, February 26, 1991 ("the '663 patent").	1 - 8	B-13
U.S. Patent No. 5,577,237, November 19, 1996 ("the '237 patent")	1 - 8	B-14

B. <u>Prior Art Publications that Anticipate the '120 Patent Under 35</u> U.S.C. §§ 102(a) and/or (b)

Defendants identify the following publications as prior art references that anticipate the

Asserted Claims of the '120 patent.

Author, Title, Publisher, Publication Information, Date of Publication	Anticipates at Least Claims:	Exhibit
Christopher J. Van Wyk and Jeffrey Scott Vitter, <i>The</i> <i>Complexity of Hashing with Lazy Deletion</i> , Springer-Verlag New York, Algorithmica 1:17-29, 1986 ("Van Wyk").	1, 3, 5, 7	C-1
John A. Morrison, Larry A. Shepp, and Christopher J. Van Wyk, <i>A Queueing Analysis of Hashing with Lazy Deletion</i> , Society for Industrial and Applied Mathematics, Vol. 16, No. 6:1155-1164, December 1987 ("Morrison"); and on information and belief, the source code for IDEAL.	1, 3, 5, 7	C-2
Claire M. Matheiu and Jeffrey Scott Vitter, <i>Maximum Queue</i> Size and Hashing with Lazy Deletion, Unite de Recherche	1, 3, 5, 7	C-3

Joint Invalidity Contentions & Production of Documents

Author, Title, Publisher, Publication Information, Date of Publication	Anticipates at Least Claims:	Exhibit
Inria-Rocquencort Institut National de recherché en Informatique, June 1988 ("Matheiu").		
Claire M. Kenyon-Matheiu and Jeffrey Scott Vitter, General Methods for the Analysis of the Maximum Size of Dynamic Data Structures, Springer Berlin/Heidelberg, Automata, Languages and Programming, 473-487, Vol. 372, 1989 ("Kenyon-Matheiu").	1, 3, 5, 7	C-4
David Aldous, Micha Hofri, and Wojciech Szpankowski, Maximum Size of a Dynamic Data Structure: Hashing with Lazy Deletion Revisited, Society for Industrial and Applied Mathematics, Vol. 21, No. 4:713-732, August 1992 ("Aldous").	1, 3, 5, 7	C-5
Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Heide, Hans Rohnert, and Robert E. Tarjan, <i>Dynamic Perfect Hashing: Upper and Lower Bounds</i> , Revised Version January 7, 1990 ("Dietzfelbinger").	1 - 8	C-6
Roger Sessions, <i>Reusable Data Structures for C</i> Prentice- Hall, Inc. 1989 ("Sessions").	1 - 4	C-9
Christopher J. Van Wyk, <i>Data Structures and C Programs</i> , Addison-Wesley Publ'g Co. & Bell Telephone Laboratories, Inc. 1988 ("Van Wyk 2").	1 - 8	C-10
Mark Allen Weiss, <i>Data Structures & Algorithm Analysis in C</i> , The Benjamin/Cummings Publ'g Co. 1993 ("Weiss").	1 - 8	C-11
William B. Frakes & Ricardo Baeza-Yates, <i>Information</i> <i>Retrieval: Data Structures & Algorithms</i> , Prentice-Hall, Inc. 1992 ("Frakes").	1, 3, 5, 7	C-12
Eric W. Brown, Execution Performance Issues in Full Text Information Retrieval, University of Massachusetts Amherst, October 1995 ("Brown").	1, 3, 5, 7	C-13
Costello, Adam, et al., <i>Redesigning the BSD - Callout and Time Facilities</i> , WUSC 95-23, November 2, 1995 ("Costello").	1 - 8	C-14

Joint Invalidity Contentions & Production of Documents

Author, Title, Publisher, Publication Information, Date of Publication	Anticipates at Least Claims:	Exhibit
J.M. Foster, <i>List Processing</i> , Macdonald & Co., 1967 ("Foster").	1, 3, 5, 7	C-15
Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing, Journal of Internetworking: Research and Experience, 1991 ("Keshav").	1 – 8	C-16
George Varghese and Tony Lauck, <i>Hashed and Hierarchical</i> <i>Timing Wheels: Data Structures for the Efficient</i> <i>Implementation of a Timer Facility</i> , ACM SIGOPS Operating Systems Review, Vol. 21, Issue 5, p. 25-38 (November 1987) ("Varghese and Lauck").	1 - 8	C-17
Robert L. Kruse, <i>Data Structures and Program Design</i> Prentice-Hall, Inc. 1984 and 1987 ("Kruse").	1, 3, 5, 7	C-18
Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing Efficiency in TCP/IP Network Servers (1996) ("Dixon and Calvert")	1 - 8	C-19

C. <u>Software that Anticipate the '120 Patent Under 35 U.S.C. §§ 102(a), (b),</u> <u>and/or (g)</u>

Defendants identify the following software as prior art references that anticipate the claims of the '120 patents. Each piece of software was at least (1) known or used in this country and/or described in a printed publication in this or a foreign country, before the alleged invention of the claimed subject matter of the patent-in-suit, and/or (2) the invention was described in a printed publication in this or a foreign country and/or in public use and/or on sale in this country, more than one year before the filing date of the application for the patent-in-suit, and/or (3) was invented and not abandoned, suppressed, or concealed prior to the alleged invention of the

4

patent-in-suit. Thus, each piece of software identified here qualifies at least as prior art both as a publication and as a prior art system or apparatus.

Software, Date Invented / Made / Used / Sold by	Anticipates at Least Claims:	Exhibit
Linux 1.3.52 - route.c, released on December 29, 1995 to the public.	1, 3, 5, 7	D-1
BSD 4.2 - if_ether.c, released to the public as part of the BSD 4.2 open source operating system in September 1983.	1 - 8	D-2
FreeBSD - vfs_cache.c, developed as part of the FreeBSD operating system, made public on Dec. 14, 1995 at http://www.freebsd.org/cgi/cvsweb.cgi/src/sys/kern/vfs_cache.c	1 - 8	D-3
FreeBSD - arp.c, 1994.	1, 3, 5, 7	D-4
FreeBSD - wavelan_cs.c, 1995.	1, 3, 5, 7	D-5
LISP, September 1981.	1 - 4	D-6
FreeBSD 2.0.5 – kern_proc.c, released on June 10, 1995 to the public.	1 – 8	D-7
Linux 1.2.13 - arp.c, released on August 2, 1995 to the public.	1 - 8	D-8
Linux 1.3.51 - route.c, released on December 27, 1995 to the public.	1 – 8	D-9
gcache.c from Xinu Operating System for Sparc (1991) (hereinafter "gcache.c") and Douglas Comer and Shawn Ostermann, <i>GCache: A Generalized Caching Mechanism</i> , Purdue University (Revised March 1992) (hereinafter "Comer") (collectively hereinafter "GCache")	1 – 8	D-10
Naval Research Laboratories IPv6 – key.c and key.h, August 1995	1 – 8	D-11
Linux 2.0.1 - route.c, July 1996	1-8	D-12
GCC 2.7.2.1, August 1996	1-8	D-13

5

Joint Invalidity Contentions & Production of Documents

MK84 – net_filter() in net_io.c, 1993	1-8	D-14
MK84 – net_set_filter() in net_io.c, 1993	1-8	D-15
Plug and Play Linux – makepsres.c, 1995	1-8	D-16
Local Area Transport Protocol, prior to January 2, 1997	1-8	D-17

II. OBVIOUSNESS BASED ON COMBINATIONS OF PRIOR ART

The following list identifies combinations of prior art that Defendants presently intend to rely on for their contentions that one or more of the asserted claims of the '120 patent are obvious.

Prior Art Reference	Prior Art Reference	Renders Obvious at Least Claims:	Exhibit
Dirks	U.S. Patent No. 5,724,538, Morris et al., March 3, 1998 ("Morris"); Thatte; the '663 patent; Linux 2.0.1; and/or Opportunistic Garbage Collection	1 - 8	B-2
Robinson	U.S. Patent No. 4,530,054, Hamstra et al., July 16, 1985 ("Hamstra"); Dirks; Thatte; the '663 patent; Linux 2.0.1; and/or Opportunistic Garbage Collection	2, 4, 6, 8	B-4
Ish at al.	Hamstra; Dirks; Thatte; the '663 patent; Linux 2.0.1; and/or Opportunistic Garbage Collection	2, 4, 6, 8	B-5
Beardsley	Dirks; Thatte; the '663 patent; Linux 2.0.1; and/or Opportunistic Garbage Collection	2, 4, 6, 8	B-6
Bishop	U.S. Patent No. 5,991,775, Beardsley et al., November 23, 1999 ("Beardsley"); Dirks; Thatte; the '663 patent; Linux 2.0.1; and/or	1 - 8	B-7

Joint Invalidity Contentions & Production of Documents

6

Prior Art Reference	Prior Art Reference	Renders Obvious at Least Claims:	Exhibit
	Opportunistic Garbage Collection		
U.S. Patent No. 5,918,249, Cox et al., June 29, 1999.	Beardsley; Dirks; Thatte; the '663 patent; Linux 2.0.1; and/or Opportunistic Garbage Collection	1 - 8	B-8
U.S. Patent No. 6,424,992, Devarakonda et al., July 23, 2002.	Dirks; Thatte; the '663 Patent; <i>The Art of</i> <i>Computer Programming</i> , Sorting and Searching, D.E. Knuth, Addison-Wesley Series in Computer Science and Information Processing, pp. 513, 518, 1973 ("Knuth"); Weiss; and/or Robert L. Kruse, <i>Data Structures and Program Design</i> (Prentice-Hall, Inc. 1984) ("Kruse"); Linux 2.0.1; and/or Opportunistic Garbage Collection	1 - 8	B-9
Kerr	Dirks; Thatte; the '663 patent; and/or Linux 2.0.1; Opportunistic Garbage Collection	1 - 8	B-10
Corbin	Dirks; Thatte; the '663 patent; and/or Linux 2.0.1; Opportunistic Garbage Collection	1 - 8	B-11
U.S. Patent No. 5,121,495 Nemes, June 9, 1992 ("the '495 Patent").	Dirks; Thatte; the '663 patent; and/or Linux 2.0.1; Opportunistic Garbage Collection	1 - 8	B-12
U.S. Patent No. 5,577,237, November 19, 1996 ("the '237 patent")	Dirks; Thatte; the '663 patent; Linux 2.0.1; and/or Opportunistic Garbage Collection	2, 4, 6, 8	B-14
Van Wyk	Kruse; Knuth; Dirks; Thatte; U.S. Patent No. 4,996,663, Nemes, February 26, 1991 ("the '663 Patent"); and/or Paul R. Wilson and Thomas G. Moher, <i>Design of the</i> <i>Opportunistic Garbage Collector</i> , OOPSLA '89 Proceedings, October 1-6, 1989, and Paul R. Wilson, <i>Opportunistic Garbage</i>	1 - 8	C-1

Joint Invalidity Contentions & Production of Documents

7

Prior Art Reference	Prior Art Reference	Renders Obvious at Least Claims:	Exhibit
	Collection, ACM SIGPLAN Notices, Vol. 23, No. 12, December 1988 (collectively, "Opportunistic Garbage Collection"); and/or Linux 2.0.1.		
Morrison	Kruse; Knuth; Van Wyk; Dirks; Thatte; Mathieu; Kenyon-Mathieu; Aldous; the '663 Patent; Linux 2.0.1; and/or Opportunistic Garbage Collection.	1 - 8	C-2
Matheiu	Kruse; Knuth; Van Wyk; Dirks; Thatte; Morrison; Kenyon-Mathieu; Aldous; the '663 Patent; Linux 2.0.1; and/or Opportunistic Garbage Collection.	1 - 8	C-3
Kenyon-Matheiu	Kruse; Knuth; Van Wyk; Dirks; Thatte; Morrison; Mathieu; Aldous; the '663 Patent; Linux 2.0.1; and/or Opportunistic Garbage Collection.	1 - 8	C-4
Aldous	Kruse; Knuth; Van Wyk; Dirks; Thatte; Morrison; Mathieu; Kenyon-Mathieu; the '663 Patent; Linux 2.0.1; and/or Opportunistic Garbage Collection.	1 - 8	C-5
James Nelson Griffoen, Remote Memory Backing Storage for Distributed Virtual Memory Operating Systems, Purdue University Thesis, August 1991.	Dirks; Thatte; the '663 patent; Opportunistic Garbage Collection; Linux 2.0.1; and/or Weiss	1 - 8	C-7
Douglas Comer and James Griffioen, A New Design for Distributed Systems: The Remote Memory Model, in Proceedings of	Dirks; Thatte; the '663 patent; Opportunistic Garbage Collection; Linux 2.0.1; and/or Weiss	1 - 8	C-8

Joint Invalidity Contentions & Production of Documents

8

Prior Art Reference	Prior Art Reference	Renders Obvious at Least Claims:	Exhibit
the USENIX Summer Conference, June 1990.			
Sessions	Kit Lester, A Practical Approach to Data Structures: Related Algorithms in Pascal with Applications (Ellis Horwood Ltd. 1990) ("Lester"); Dirks; Thatte; the '663 patent; Linux 2.0.1; and/or Opportunistic Garbage Collection	2, 4, 5 - 8	C-9
Van Wyk 2	Dirks; Thatte; the '663 patent; Linux 2.0.1; and/or Opportunistic Garbage Collection	2, 4, 6, 8	C-10
Weiss	Kruse; Dirks; Thatte; the '663 patent; Linux 2.0.1; and/or Opportunistic Garbage Collection	1 - 8	C-11
Frakes	Dirks; Thatte; the '663 patent; Linux 2.0.1; and/or Opportunistic Garbage Collection	2, 4, 6, 8	C-12
Brown	Dirks; Thatte; the '663 patent; Linux 2.0.1; and/or Opportunistic Garbage Collection	1 - 8	C-13
Foster	Dirks; Thatte; the '663 patent; Linux 2.0.1; and/or Opportunistic Garbage Collection	1 - 8	C-15
Keshav	Dirks; Thatte; the '663 patent; Linux 2.0.1; and/or Opportunistic Garbage Collection	1 - 8	C-16
Kruse	Dirks; Thatte; the '663 patent; Linux 2.0.1; and/or Opportunistic Garbage Collection	2, 4, 6, 8	C-18
Dixon and Calvert	Dirks; Thatte; the '663 patent; Linux 2.0.1; and/or Opportunistic Garbage Collection	2, 4, 6, 8	C-19
Linux 1.3.52 - route.c	Dirks, Thatte, the '663 patent, and/or Opportunistic Garbage Collection; Linux 2.0.1; GCache	1 - 8	D-1

Joint Invalidity Contentions & Production of Documents

Prior Art Reference	Prior Art Reference	Renders Obvious at Least Claims:	Exhibit
BSD 4.2 - if_ether.c	Dirks, Thatte, the '663 patent, and/or Opportunistic Garbage Collection; Knuth; Kruse; and/or Weiss; Linux 2.0.1; GCache	1 - 8	D-2
FreeBSD - vfs_cache.c	Dirks, Thatte, the '663 patent, and/or Opportunistic Garbage Collection; Knuth; and/or Kruse; Linux 2.0.1; GCache	1 - 8	D-3
FreeBSD - arp.c	Dirks, Thatte, the '663 patent, and/or Opportunistic Garbage Collection; Linux 2.0.1; GCache	1 - 8	D-4
FreeBSD -wavelan_cs.c	Dirks, Thatte, the '663 patent, and/or Opportunistic Garbage Collection; Linux 2.0.1; GCache	1 - 8	D-5
Lisp	Dirks, Thatte, the '663 patent, and/or Opportunistic Garbage Collection; Linux 2.0.1; GCache	5 - 8	D-6
FreeBSD – kern_proc.c	Dirks, Thatte, the '663 patent, and/or Opportunistic Garbage Collection; Linux 2.0.1; GCache	2, 4, 6, 8	D-7
Linux 1.2.13 – arp.c	Dirks, Thatte, the '663 patent, and/or Opportunistic Garbage Collection; Linux 2.0.1; GCache	2, 4, 6, 8	D-8
Linux 1.3.51 - route.c	Dirks, Thatte, the '663 patent, and/or Opportunistic Garbage Collection; Linux 2.0.1; GCache	2, 4, 6, 8	D-9
Xinu Operating System for Sparc – gcache.c	Dirks, Thatte, the '663 patent, and/or Opportunistic Garbage Collection; Linux 2.0.1; Naval Research Laboratories IPv6 – key.c and key.h	2, 4, 6, 8	D-10
Naval Research	Dirks, Thatte, the '663 patent, and/or	1 - 8	D-11

Joint Invalidity Contentions & Production of Documents

10

Prior Art Reference	Prior Art Reference	Renders Obvious at Least Claims:	Exhibit
Laboratories IPv6 – key.c and key.h	Opportunistic Garbage Collection; Kruse; Linux 2.0.1; GCache		
Linux 2.0.1 - route.c	Dirks, Thatte, the '663 patent, and/or Opportunistic Garbage Collection; GCache	1-8	D-12
GCC 2.7.21	Dirks, Thatte, the '663 patent, and/or Opportunistic Garbage Collection; Linux 2.0.1; GCache	1-8	D-13
MK84 – net_filter() in net_io.c	Dirks, Thatte, the '663 patent, and/or Opportunistic Garbage Collection; Linux 2.0.1; GCache	1-8	D-14
MK84 – net_set_filter() in net_io.c	Dirks, Thatte, the '663 patent, and/or Opportunistic Garbage Collection; Linux 2.0.1; GCache	1-8	D-15
Plug and Play Linux – makepsres.c	Dirks, Thatte, the '663 patent, and/or Opportunistic Garbage Collection; Kruse; Linux 2.0.1; GCache	1-8	D-16
Local Area Transport Protocol	ort Dirks, Thatte, the '663 patent, and/or Opportunistic Garbage Collection; Linux 2.0.1		D-17

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 4,695,949 to Thatte et al. ("Thatte")
1. An information storage and retrieval system, the	5. An information storage and retrieval system, the	To the extent the preamble is a limitation, Thatte discloses an information storage and retrieval system.
system comprising:	system comprising:	For example, Thatte discloses:
		A method and apparatus for managing a block oriented memory of the type in which each memory block has an associated reference count representing the number of pointers to it from other memory blocks and itself. Efficient and cost-effective implementation of reference counting alleviates the need for frequent garbage collection, which is an expensive operation. The apparatus includes a hash table into which the virtual addresses of blocks of memory which equal zero are maintained. When the reference count of a block increases from zero, its virtual address is removed from the table. When the reference count of a block decreases to zero, its virtual address is inserted into the table. When the table is full, a reconciliation operation is performed to identify those addresses which are contained in a set of binding registers associated with the CPU, and any address not contained in the binding registers are evacuated into a garbage buffer for subsequent garbage collection operations. The apparatus can be implemented by a cache augmented by the hash table, providing a back-up store for the cache. Thatte et al., "Method for Efficient Support For Reference Counting," U.S. Patent No. 4,695,949 (issued Sept, 22, 1987).at Abstract.
		In accordance with a broad aspect of the invention, an apparatus is provided for managing a block oriented memory of the type in which each memory block has an associated reference count representing the number of pointers to it from other memory blocks and itself. The apparatus includes means for implementing a data structure storing

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,695,949 to Thatte et al. ("Thatte")
	virtual addresses, which can be implemented by a hash table or the like. Means are also provided for performing insert and delete operations on the data structure, means for inserting in the data structure the virtual address of each block of memory which has a reference count of zero, and means for deleting from the data structure the virtual address of each block of memory whose reference count changes from zero to one. In one aspect of the invention, the apparatus further includes means for performing a reconciliation operation on the data structure when it is full, the reconciliation means including means for obtaining a dump of pointers in binding registers, means for comparing the pointers of the pointer dump with the virtual addresses contained in the data structure not in the pointer dump. <i>Id.</i> at 5:40-62.
	The method and apparatus for reference count management assistance disclosed in Thatte is referred to as a "reference count filter," which acts conceptually as a filter to control reference count management. <i>Id.</i> at 5:66-68. The reference count filter stores virtual addresses of blocks whose reference counts have dropped to zero, but which may have pointers to them at binding registers. <i>Id.</i> at 6:51-57.
	The method and apparatus also contains a memory management unit (MMU) 40 which provides memory management functions. <i>Id.</i> at 6:4-24. "[T]he MMU 40 is responsible for reference count management; that is, it increments and decrements reference counts of the referent blocks, when pointers to these blocks are created or destroyed in memory cells. The MMU 40 is also responsible for reclaiming inaccessible blocks." <i>Id.</i> at 6:25-31. "The MMU 40 maintains information about blocks which have zero reference counts, but which may have pointers to them originating at the

Asserted Claims From		U.S. Patent No. 4,695,949 to Thatte et al. ("Thatte")
0.5. I at. IN	, 5,075,120	
		binding registers. This information is conveniently recorded and maintained in a data structure, [such as a hash table as shown in Figure 7], in the form of virtual-addresses of such blocks." <i>Id.</i> at 6:36-41

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 4,695,949 to Thatte et al. ("Thatte")
[1a] a linked list to store and provide access to records stored in a memory of the system, at least some of the records automatically expiring,	[5a] a hashing means to provide access to records stored in a memory of the system and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring,	 Thatte discloses a linked list to store and provide access to records stored in a memory of the system, at least some of the records automatically expiring. Thatte also discloses a hashing means to provide access to records stored in a memory of the system and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring. For example, Thatte's reference count filter is preferably implemented in a "hash table that can efficiently support the insert, delete, and reconcile operations. Therefore, the basic search operation on the hash table must be quite fast." <i>Id.</i> at 8:39-43. "The hash table implementation of the reference count filter, in accordance with the invention, is illustrated in FIG. 7." <i>Id.</i> at 8:49-81. Figure 7 displays a virtual address 80 that is applied to a hash function 92. <i>Id.</i> at Figure 7, 8:39-62. The hashed output is then inserted into a hash bucket 83 which comprises a linked list 85, 86. <i>Id.</i>

Asserted Claims From		U.S. Patent No. 4,695,949 to Thatte et al. ("Thatte")	
U.S. Pat. No. 5,893,120			
	1		
		references originating at binding registers. Of course, the size of the	
		dumped-out set cannot exceed the number of binding registers. The	
		reconciliation operation is guaranteed to create a room in the reference	
		count filter, as the size of the reference count filter is greater than the	
		number of binding registers. Therefore, there must be at least one	
		virtual address in the reference count filter which is not in any binding	
		register. <i>1a</i> . at 7:44-00.	
		The MMU reconciles the state of the reference count filter with the set of	
		Dumped-out pointers, by executing the following operations. (1) Each	
		pointer from the dumped-out set is attempted to be located by the MMU	
		within the virtual address contained in the reference count filter, box 67. If	
		the pointer exists in the reference count filter, the MMU marks the pointer in	
		the reference count filter, box 68. The pointers in the reference count filter,	
		thus marked, indicate blocks that are still accessible and hence are not	
		garbage. All unmarked pointers in the reference count filter, therefore,	
		reference count filter and stored in another data structure, called the "garbage	
		huffer" (not shown) box 69 which essentially holds pointers to garbage	
		blocks. A background process not described herein in the MMU operates on	
		the garbage buffer to reclaim the garbage blocks. As soon as the unmarked	
		pointers are evacuated from the reference count filter to the garbage buffer,	
		the reconciliation operation on the reference count filter is over, and the	
		regular operation is resumed. As a result of the reconciliation operation, the	
		state of the reference count filter has been reconciled with the state of	
		binding registers, and pointers to all garbage blocks have been evacuated	
		from the reference count filter. <i>Id.</i> at 7:61-8:18.	
[1b] a record search	[5b] a record search	Thatte discloses a record search means utilizing a search key to access the	
means utilizing a search	means utilizing a search	linked list. Thatte also discloses a record search means utilizing a search key	
key to access the linked	key to access a linked list	to access a linked list of records having the same hash address.	
Asserted Claims From		U.S. Patent No. 4,695,949 to Thatte et al. ("Thatte")	
------------------------------	------------------------------	---	
U.S. Pat. No. 5,893,120			
list,	of records having the same		
	hash address,	For example, Thatte states that "the preferred implementation of the	
		reference count filter is a hash table that can efficiently support the insert,	
		delete, and reconcile operations. Therefore, the basic search operation on the basic search operation on the basic search operation $\frac{1}{2}$	
		nash table must be quite fast. <i>1a.</i> at 8:39-43.	
		As shown in Figure 7:	
		[A] virtual address, shown in block 80, is applied to means for	
		implementing a hash function, shown in block 82. Hash function	
		implementing functions are well known in the art, and are not	
		described in detail herein. The hashed output from the hash function	
		corresponding entry is located. The located entry may be a pointer	
		which may point to a linked list 85, 86, etc. of virtual addresses. If	
		the virtual address searched for (i.e. the virtual address contained in	
		block 80) is in the linked list 85, 86, etc., the "locate" operation is	
		successful. Id. at 8:49-62.	
[1c] the record search	[5c] the record search	Thatte discloses the record search means including a means for identifying	
means including a means	means including means	and removing at least some of the expired ones of the records from the	
removing at least some of	removing at least some	inked list when the linked list is accessed. I halte also discloses the record	
the expired ones of the	expired ones of the	expired ones of the records from the linked list of records when the linked	
records from the linked	records from the linked	list is accessed.	
list when the linked list is	list of records when the		
accessed, and	linked list is accessed, and	For example, Figure 6 displays a block diagram showing the steps of	
	· · · · ·	maintaining the reference count filter. Id. at 5:10-12. Each time a block is	
		allocated or a pointer to a block is destroyed the reference count filter is	

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,695,949 to Thatte et al. ("Thatte")
	checked to see if the reference count filter is full. <i>Id.</i> at 7:1-26, Figure 6. If the reference count filter is full, then a reconciliation operation is performed where expired records are removed. <i>Id.</i> $ \begin{array}{c} & & & & & & & & & & & & & & & & & & &$
	Id. at Figure 6.

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,695,949 to Thatte et al. ("Thatte")
	Beginning from a start position 49, three possible block affecting operations may be performed. The first is the allocation of a block [i.e. insert], the second is the destruction of a pointer to a block. Accordingly, when a new block is allocated by the MMU 40 in response to an "Allocate" command from the CPU 12, box 50, the new block starts its life with a zero reference count. Therefore, in accordance with the invention, the virtual address of a newly allocated block is inserted into the reference count filter 25, box 51, assuming that there is a place in the reference count filter for insertion, i.e., that the reference count filter is not full. Similarly, when the reference count of a block drops to zero, box 52, the virtual address of the block is inserted in the reference count filter for [insertion]. The insert operation on the reference count filter is a block is a place in the reference count filter is a block is inserted in the reference count filter for [insertion]. The insert operation on the underlying hash table, as below described. <i>Id.</i> at 7:1-20.
	If the reference count filter is determined to be full, box 60, the MMU suspends the insertion operation and performs a reconciliation operation, box 62, on the reference count filter, as described below, to create a room in the reference count filter so that the suspended insertion operation can be completed. <i>Id.</i> at 7:21-26.
	When the reference count of a block goes up from zero to one, box 70, the virtual address of the block is deleted from the reference count filter, box 72. The deletion operation is necessary because a block with a non-zero reference count must not stay in the reference count filter. To accomplish the deletion, first the virtual address of the block with non-zero reference count (which is guaranteed to exist in the reference count filter) is searched for in the reference count filter, and then it is deleted.

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,695,949 to Thatte et al. ("Thatte")
	The delete operation on the reference count filter is implemented by the delete operation on the underlying hash table implementing the reference count filter, again as below described. <i>Id.</i> at 7:27-39.
	As mentioned above, after an insert operation is suspended due to a full reference count filter, the MMU needs to make a room in the reference count filter so that the suspended insert operation can be resumed and completed. The MMU 40 makes the necessary room by performing a reconciliation operation, box 62. It sends a special command to the CPU 12 called "Dump-pointers," box 64. In response, the CPU 12 sends the contents of all binding registers that contain pointers (which are virtual addresses) to the MMU. The set of these pointers is called the "Dumped-out" set, which is received by the MMU, box 65. The pointers in the Dumped-out set indicate the block which have references originating at binding registers. Of course, the size of the dumped-out set cannot exceed the number of binding registers. The reconciliation operation is guaranteed to create a room in the reference count filter, as the size of the reference count filter is greater than the number of binding registers. Therefore, there must be at least one virtual address in the reference count filter which is not in any binding register. <i>Id.</i> at 7:40-60.
	The MMU reconciles the state of the reference count filter with the set of Dumped-out pointers, by executing the following operations. (1) Each pointer from the dumped-out set is attempted to be located by the MMU within the virtual address contained in the reference count filter, box 67. If the pointer exists in the reference count filter, the MMU marks the pointer in the reference count filter, box 68. The pointers in the reference count filter, thus marked, indicate blocks that are still accessible and hence are not garbage. All unmarked pointers in the reference count filter, therefore, indicate garbage blocks. (2) The

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 4,695,949 to Thatte et al. ("Thatte")
		unmarked pointers are evacuated from the reference count filter and stored in another data structure, called the "garbage buffer" (not shown), box 69, which essentially holds pointers to garbage blocks. A background process not described herein in the MMU operates on the garbage buffer to reclaim the garbage blocks. As soon as the unmarked pointers are evacuated from the reference count filter to the garbage buffer, the reconciliation operation on the reference count filter is over, and the regular operation is resumed. As a result of the reconciliation operation, the state of the reference count filter has been reconciled with the state of binding registers, and pointers to all garbage blocks have been evacuated from the reference count filter. <i>Id.</i> at 7:61-8:18.
[1d] means, utilizing the record search means, for accessing the linked list and, at the same time, removing at least some of the expired ones of the records in the linked list.	[5d] mea[n]s, utilizing the record search means, for inserting, retrieving, and deleting records from the system and, at the same time, removing at least some expired ones of the records in the accessed linked list of records.	 Thatte discloses means, utilizing the record search means, for accessing the linked list and, at the same time, removing at least some of the expired ones of the records in the linked list. Thatte also discloses utilizing the record search means, for inserting, retrieving, and deleting records from the system and, at the same time, removing at least some expired ones of the records in the accessed linked list of records. For example, Figure 6 displays a block diagram showing the steps of maintaining the reference count filter. <i>Id.</i> at 5:10-12. Each time a block is allocated or a pointer to a block is destroyed the reference count filter is checked to see if the reference count filter is full. <i>Id.</i> at 7:1-26, Figure 6. If the reference count filter is full, then a reconciliation operation is performed where expired records are removed. <i>Id.</i>

Asserted Claims From	U.S. Patent No. 4,695,949 to Thatte et al. ("Thatte")
U.S. Pat. No. 5,893,120	
U.S. Pat. No. 5,893,120	ALLOCATION OF BLOCKS ALLOCATE BLOCK ALLOCATE ALLOCATE ALLOCATE BLOCK ALLOCATE BLOCK ALLOCATE ALLOCATE ALLOCATE A
	RECONCILIATION
	<i>Id.</i> at Figure 6.
	Beginning from a start position 49, three possible block affecting operations may be performed. The first is the allocation of a block [i.e. insert], the second is the destruction of a pointer to a block [i.e. delete],

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,695,949 to Thatte et al. ("Thatte")
	and the third is the creation of a pointer to a block. Accordingly, when a new block is allocated by the MMU 40 in response to an "Allocate" command from the CPU 12, box 50, the new block starts its life with a zero reference count. Therefore, in accordance with the invention, the virtual address of a newly allocated block is inserted into the reference count filter 25, box 51, assuming that there is a place in the reference count filter for insertion, i.e., that the reference count filter is not full. Similarly, when the reference count of a block drops to zero, box 52, the virtual address of the block is inserted in the reference count filter 25, again assuming that there is a place in the reference count filter for [insertion]. The insert operation on the reference count filter is implemented by the insert operation on the underlying hash table, as below described. <i>Id.</i> at 7:1-20. If the reference count filter is determined to be full, box 60, the MMU
	suspends the insertion operation and performs a reconciliation operation, box 62, on the reference count filter, as described below, to create a room in the reference count filter so that the suspended insertion operation can be completed. <i>Id.</i> at 7:21-26.
	When the reference count of a block goes up from zero to one, box 70, the virtual address of the block is deleted from the reference count filter, box 72. The deletion operation is necessary because a block with a non-zero reference count must not stay in the reference count filter. To accomplish the deletion, first the virtual address of the block with non-zero reference count (which is guaranteed to exist in the reference count filter) is searched for in the reference count filter, and then it is deleted. The delete operation on the reference count filter is implemented by the delete operation on the underlying hash table implementing the reference count filter, again as below described. <i>Id.</i> at 7:27-39.

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,695,949 to Thatte et al. ("Thatte")
	As mentioned above, after an insert operation is suspended due to a full reference count filter, the MMU needs to make a room in the reference count filter so that the suspended insert operation can be resumed and completed. The MMU 40 makes the necessary room by performing a reconciliation operation, box 62. It sends a special command to the CPU 12 called "Dump-pointers," box 64. In response, the CPU 12 sends the contents of all binding registers that contain pointers (which are virtual addresses) to the MMU. The set of these pointers is called the "Dumped-out" set, which is received by the MMU, box 65. The pointers in the Dumped-out set indicate the block which have references originating at binding registers. Of course, the size of the dumped-out set cannot exceed the number of binding registers. The reconciliation operation is guaranteed to create a room in the reference count filter, as the size of the reference count filter is greater than the number of binding registers. Therefore, there must be at least one virtual address in the reference count filter which is not in any binding register. <i>Id.</i> at 7:40-60. The MMU reconciles the state of the reference count filter with the set of Dumped-out pointers, by executing the following operations. (1) Each pointer from the dumped-out set is attempted to be located by the MMU within the virtual address contained in the reference count filter, box 67. If the pointer exists in the reference count filter, the MMU marks the pointer in the reference count filter, box 68. The pointers in the reference count filter, thus marked, indicate blocks that are still accessible and hence are not garbage. All unmarked pointers in the reference count filter, therefore, indicate garbage blocks. (2) The unmarked pointers are evacuated from the reference count filter and

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 4,695,949 to Thatte et al. ("Thatte")
		stored in another data structure, called the "garbage buffer" (not shown), box 69, which essentially holds pointers to garbage blocks. A background process not described herein in the MMU operates on the garbage buffer to reclaim the garbage blocks. As soon as the unmarked pointers are evacuated from the reference count filter to the garbage buffer, the reconciliation operation on the reference count filter is over, and the regular operation is resumed. As a result of the reconciliation operation, the state of the reference count filter has been reconciled with the state of binding registers, and pointers to all garbage blocks have been evacuated from the reference count filter. <i>Id.</i> at 7:61-8:18.
2. The information storage and retrieval system according to claim 1 further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records.	6. The information storage and retrieval system according to claim 5 further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records.	 Thatte discloses an information storage and retrieval system further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records. For example, Thatte discloses a reconciliation operation that is only performed if the reference counter is full. <i>Id.</i> at 7:21-26, 7:40-8:18, Figure 7. This dynamic decision is clearly shown at 60 of Figure 6. <i>Id.</i> If the reference counter is not full, then Thatte dynamically determines that the maximum number of records to delete is zero. <i>Id.</i> If the reference counter is full, then Thatte dynamically determines that the maximum number of records to delete is zero. <i>Id.</i>
		Additionally, it would have been obvious to one of ordinary skill in the art to modify the system disclosed in Thatte to dynamically determine the maximum number of expired records to remove in the accessed linked list of records. It is a fundamental concept in computer science and the relevant art that any variable or parameter affecting any aspect of a system can be dynamically determined based on information available to the system. One

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,695,949 to Thatte et al. ("Thatte")
	 of ordinary skill in the art would have been motivated to combine the system disclosed in Thatte with the fundamental concept of dynamically determining the maximum number of expired records to remove in an accessed linked list of records to solve a number of potential problems. For example, the removal of expired records described in Thatte can be burdensome on the system, adding to the system's load and slowing down the system's processing. Moreover, the removal could also force an interruption in real-time processing as the processing waits for the removal to complete. Indeed, part of the motivation for the system disclosed in Thatte is avoiding these problems. One of ordinary skill in the art would have known that dynamically determining the maximum number to remove would limit the burden on the system and bound the length of any real-time interruption to prevent delays in processing. Indeed, Nemes concedes that such dynamic determination was obvious when he states in the '120 patent that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. Alternatively, Thatte combined with Dirks discloses an information storage and retrieval system further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records. For example, Dirks discloses the management of memory in a computer system and more particularly to the allocation of address space in a virtual
	memory system, which dynamically determines how many records to sweep/remove upon each allocation. Disclosure of these claim elements in Dirks is clearly shown in Exhibit B-2, which is hereby incorporated by

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,695,949 to Thatte et al. ("Thatte")
	reference in its entirety.
	As summarized in Dirks,
	each time a VSID is assigned from the free list to a new application or thread, a fixed number of entries in the page table are scanned to determine whether they have become inactive, by checking them against the VSIDs on the recycle list. Each entry which is identified as being inactive is removed from the page table. After all of the entries in the page table have been examined in this manner, the VSIDs in the recycle list can be transferred to the free list, since all of their associated page table entries will have been removed. This approach thereby guarantees that a predetermined number of VSIDs are always available in the free list without requiring a time-consuming scan of the complete page table at once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.
	After [a] new VSID has been allocated, the system checks a flag RFLG to determine whether a recycle sweep is currently in progress (Step 20). If there is no sweep in progress, i.e. RFLG is not equal to one, a determination is made whether a sweep should be initiated. This is done by checking whether the inactive list is full, i.e. whether it contains x entries (Step 22). If the number of entries I on the inactive list is less than x, no further action is taken, and processing control returns to the operating system (Step 24). If, however, the inactive list is full at this time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are transferred to the recycle list, and an index n is reset to 1 (Step 28). The system then sweeps a predetermined number of page table entries PT _i on the page table, to detect whether any of them are inactive, i.e. their associated VSID is on the recycle list (Step 30). The predetermined number of entries that are swent is identified as k

where: $k = \frac{\text{total number of page table entries}}{\text{maximum number of active threads}}$ Id. at 8:12-30.Dirks discloses that any approach can be employed to determine the number of entries to be examined during each step of the sweeping process. Id. at 7:37-40. As stated in Dirks:Any other suitable approach can be employed to determine the number of entries to be examined during each step of the sweeping process. In this regard, it is not necessary that the number of each step. Rather, it might vary from one step to the next. The only criterion is that the number of entries examined on each step be such that all entries in the page table are examined in a determinable amount of time or by the occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.As both Thatte and Dirks relate to memory management systems and	Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,695,949 to Thatte et al. ("Thatte")
deletion of aged records upon the allocation of a new incoming record, one of ordinary skill in the art would have understood how to use Dirks' dynamic decision making process of determining the maximum number of records to sweep/remove in other memory management systems such as Thatte. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "fal person skilled in the art will appreciate that the technique of		where: $k = \frac{\text{total number of page table entries}}{\text{maximum number of active threads}}$ Id. at 8:12-30.Dirks discloses that any approach can be employed to determine the number of entries to be examined during each step of the sweeping process. Id. at 7:37-40. As stated in Dirks:Any other suitable approach can be employed to determine the number of entries to be examined during each step of the sweeping process. In this regard, it is not necessary that the number of examined entries be fixed for each step. Rather, it might vary from one step to the next. The only criterion is that the number of entries examined on each step be such that all entries in the page table are examined in a determinable amount of time or by the occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.As both Thatte and Dirks relate to memory management systems and deletion of aged records upon the allocation of a new incoming record, one of ordinary skill in the art would have understood how to use Dirks' dynamic decision making process of determining the maximum number of records to sweep/remove in other memory management systems such as Thatte. Moreover, one of ordinary skill in the art would neve understood how to use Dirks' dynamic decision making process of determining the maximum number of records to sweep/remove in other memory management systems such as Thatte. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent strue "ind parent" systems and methods in the same way. As the '120 patent of the same way.

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,695,949 to Thatte et al. ("Thatte")
Asserted Claims From U.S. Pat. No. 5,893,120	 U.S. Patent No. 4,695,949 to Thatte et al. ("Thatte") removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining Dirks' deletion decision procedure with Thatte's memory management technique would be nothing more than the predictable use of prior art elements according to their established functions. By way of further example, one of ordinary skill in the art would have combined Dirks' dynamic determination of the suitable number of entries to examine during each step of the sweeping process with Thatte's method of memory management and would have seen the benefits of doing so. For example, Thatte notes that because "the CPU is stopped during the reconciliation operation" there could be "performance degradation" and "it is desirable to reduce the time for reconciliation as much as possible." See Thatte, col. 8:19-22. One of ordinary skill in the art would have recognized that Dirks' method of dynamically determining a maximum number of entries to examine could achieve this goal of limiting the performance
	entries to examine could achieve this goal of limiting the performance degradation in Thatte's method.
	To the extent that dynamically determining a maximum number of expired records is not disclosed by Thatte in combination with Dirks, it is disclosed by Linux 2.0.1, which describes dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed. It would have been obvious to combine Linux 2.0.1 with Thatte. For example, both Linux 2.0.1 and Thatte describe systems and methods for performing data storage and retrieval using known programming techniques to yield a predictable result.

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,695,949 to Thatte et al. ("Thatte")
	When invoked, the function rt_cache_add automatically increments an integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359. When the function rt_cache_add removes an expired record, the function rt_cache_add decrements the variable rt_cache_size. See Linux 2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the number of records in the hash table (i.e., ip_rt_hash_table). Because the function rt_cache_add automatically increments and decrements the variable rt_cache_size, the variable rt_cache_size is determined dynamically.
	Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1. The function rt_garbage_collect_1 loops through each of the linked lists in the ip_rt_hash_table global variable. <i>See</i> Linux 2.0.1, route.c at lines 1122-1138. In this way, the function rt_garbage_collect_1 accesses the linked list. When the function rt_garbage_collect_1 identifies a record that is expired, the function rt_garbage_collect_1 decrements the variable rt_cache_size and frees the record. <i>See</i> Linux 2.0.1, route.c at lines 1128-1135.
	Because all records in the linked list can be expired and all records in the hash table can be in the linked list, the variable rt_cache_size can represent a dynamically determined maximum number of expired ones of the records to remove when function rt_garbage_collect_1 accesses the linked list.
	Furthermore, the function rt_cache_add determines whether the number of records in the hash table exceeds a predetermined threshold RT CACHE SIZE MAX. If the number of records in the hash table exceeds

Asserted Cl U.S. Pat. No	aims From 5. 5,893,120	U.S. Patent No. 4,695,949 to Thatte et al. ("Thatte")
		the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_cache_add invokes a function rt_garbage_collect. See Linux 2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293. The function rt_garbage_collect invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.
		The function rt_garbage_collect_1 hoops through each linked list in the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked list in the hash table, the function rt_garbage_collect_1 looks at each record in a linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each record in a linked list, the function rt_garbage_collect_1 determines whether the record's last use time plus the record's expiration factor is later than the current time. See Linux 2.0.1, route.c at line 1122. If the record's last use time plus the record's expiration factor is less than the current time, the function rt_garbage_collect_1 removes the record from the linked list. See Linux 2.0.1, route.c at lines 1124-1130. The record's expiration factor is based on a variable expire and the record's reference count. See Linux 2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.
		After looping through all of the linked lists in this manner, the function rt_garbage_collect_1 determines again whether the number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX. <i>See</i> Linux 2.0.1, route.c at line 1133. If the number of items in the hash table is still greater than the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves the variable expire and loops

Asserted Claims From U.S. Pat. No. 5.893,120	U.S. Patent No. 4,695,949 to Thatte et al. ("Thatte")
	through each of the linked lists in the hash table. <i>See</i> Linux 2.0.1, route.c at line 1135. In this way, the function rt_garbage_collect_1 can remove additional records from the linked lists in the hash table. The function rt_garbage_collect_1 repeats this process until the total number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX.
	Under Bedrock's proposed claim constructions, the records removed by the function rt_garbage_collect_1 are "expired" records. That is, the records removed by the function rt_garbage_collect_1 are data items which after a limited time or after the occurrence of some event become obsolete, such that their presence in the storage system is no longer needed or desired.
	The function rt_cache_add only removes a record from a linked list when the record's last use time plus the fixed timeout value RT_CACHE_TIMEOUT is less than the current time and the record's reference count is zero. <i>See</i> Linux 2.0.1, route.c at line 1369. Thus, the maximum number of records that the function rt_cache_add can remove from a given linked list is limited to those records whose reference counts are zero.
	In contrast, the maximum number of records that the function rt_garbage_collect_1 can remove from a given linked list is not limited to those records whose reference counts are zero. <i>See</i> Linux 2.0.1, route.c at line 1122. Rather, the function rt_garbage_collect_1 can remove records whose reference counts are zero and records whose reference counts are greater than zero.
	Consequently, the maximum number of records that the function rt garbage collect 1 can remove from a linked list is different than

Asserted C U.S. Pat. N	laims From o. 5,893,120	U.S. Patent No. 4,695,949 to Thatte et al. ("Thatte")
		the maximum number of records that the function rt_cache_add can remove from a linked list.
3. A method for storing and retrieving information records using a linked list to store and provide access to the records, at least some of the records automatically expiring, the method comprising the steps of:	7. A method for storing and retrieving information records using a hashing technique to provide access to the records and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring, the method comprising the steps of:	To the extent the preamble is a limitation, Thatte discloses a method for storing and retrieving information records using a linked list to store and provide access to the records, at least some of the records automatically expiring. Thatte also discloses a method for storing and retrieving information records using a hashing technique to provide access to the records and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring. For example, Thatte discloses: A method and apparatus for managing a block oriented memory of the type in which each memory block has an associated reference count representing the number of pointers to it from other memory blocks and itself. Efficient and cost-effective implementation of reference counting alleviates the need for frequent garbage collection, which is an expensive operation. The apparatus includes a hash table into which the virtual addresses of blocks of memory which equal zero are maintained. When the reference count of a block increases from zero, its virtual address to zero, its virtual address is inserted into the table. When the table is full, a reconciliation operation is performed to identify those addresses which are contained in a set of binding registers associated with the CPU, and any address not contained in the binding registers are evacuated into a garbage buffer for subsequent garbage collection operations. The apparatus can be implemented by a cache augmented by the hash table, providing a

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,695,949 to Thatte et al. ("Thatte")
	 back-up store for the cache. Thatte at Abstract. In accordance with a broad aspect of the invention, an apparatus is provided for managing a block oriented memory of the type in which each memory block has an associated reference count representing the number of pointers to it from other memory blocks and itself. The apparatus includes means for implementing a data structure storing virtual addresses, which can be implemented by a hash table or the like. Means are also provided for performing insert and delete operations on the data structure, means for inserting in the data structure the virtual address of each block of memory which has a reference count of zero, and means for deleting from the data structure the virtual address of each block of memory whose reference count changes from zero to one. In one aspect of the invention, the apparatus further includes means for performing a reconciliation operation on the data structure when it is full, the reconciliation means including means for obtaining a dump of pointers in binding registers, means for comparing the pointers of the pointer dump with the virtual addresses contained in the data structure, and means for deleting any virtual addresses contained in the data structure not in the pointer dump. <i>Id.</i> at 5:40-62. The method and apparatus for reference count management assistance disclosed in Thatte is referred to as a "reference count filter," which acts conceptually as a filter to control reference count management. <i>Id.</i> at 5:66-68. The reference count filter stores virtual addresses of blocks whose reference count shave dropped to zero, but which may have pointers to them at binding registers. <i>Id.</i> at 6:51-57.
	I ne method and apparatus also contains a memory management unit (MMU)

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 4,695,949 to Thatte et al. ("Thatte")
		40 which provides memory management functions. <i>Id.</i> at 6:4-24. "[T]he MMU 40 is responsible for reference count management; that is, it increments and decrements reference counts of the referent blocks, when pointers to these blocks are created or destroyed in memory cells. The MMU 40 is also responsible for reclaiming inaccessible blocks." <i>Id.</i> at 6:25-31. "The MMU 40 maintains information about blocks which have zero reference counts, but which may have pointers to them originating at the binding registers. This information is conveniently recorded and maintained in a data structure, [such as a hash table as shown in Figure 7], in the form of virtual-addresses of such blocks." <i>Id.</i> at 6:36-41
[3a] accessing the linked list of records,	[7a] accessing a linked list of records having same hash address,	Thatte discloses accessing a linked list of records. Thatte also discloses accessing a linked list of records having same hash address. For example, Thatte's reference count filter is preferably implemented in a "hash table that can efficiently support the insert, delete, and reconcile operations. Therefore, the basic search operation on the hash table must be quite fast." <i>Id.</i> at 8:39-43. "The hash table implementation of the reference count filter, in accordance with the invention, is illustrated in FIG. 7." <i>Id.</i> at 8:49-81. Figure 7 displays a virtual address 80 that is applied to a hash function 92. <i>Id.</i> at Figure 7, 8:39-62. The hashed output is then inserted into a hash bucket 83 which comprises a linked list 85, 86. <i>Id.</i>

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 4,695,949 to Thatte et al. ("Thatte")
		$f_{ADDRESS}$ f_{ASHED} $f_{UNCTION}$ f_{ASHED} f_{ASHED} f_{LAGS}
[3b] identifying at least some of the automatically expired ones of the records, and	[7b] identifying at least some of the automatically expired ones of the records,	 Thatte discloses identifying at least some of the automatically expired ones of the records. For example, The records that are contained within the reference count filter automatically expire. <i>Id.</i> at 7:40-8:18. When the reference count filter is full a reconciliation operation 62 is performed. <i>Id.</i> The reconciliation operation removes all of the garbage blocks, i.e. virtual addresses stored in the hash table that are no longer referenced externally. <i>Id.</i> The MMU 40 makes the necessary room by performing a reconciliation operation, box 62. It sends a special command to the CPU 12 called "Dump-pointers," box 64. In response, the CPU 12 sends the contents of all binding registers that contain pointers (which

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,695,949 to Thatte et al. ("Thatte")
	are virtual addresses) to the MMU. The set of these pointers is called the "Dumped-out" set, which is received by the MMU, box 65. The pointers in the Dumped-out set indicate the block which have references originating at binding registers. Of course, the size of the dumped-out set cannot exceed the number of binding registers. The reconciliation operation is guaranteed to create a room in the reference count filter, as the size of the reference count filter is greater than the number of binding registers. Therefore, there must be at least one virtual address in the reference count filter which is not in any binding register. <i>Id.</i> at 7:44-60. The MMU reconciles the state of the reference count filter with the set of Dumped-out pointers, by executing the following operations. (1) Each pointer from the dumped-out set is attempted to be located by the MMU within the virtual address contained in the reference count filter, box 67. If the pointer exists in the reference count filter, the MMU marks the pointer in the reference count filter, box 68. The pointers in the reference count filter, thus marked, indicate blocks that are still accessible and hence are not garbage. All unmarked pointers in the reference count filter, therefore, indicate garbage blocks. (2) The unmarked pointers are evacuated from the reference count filter and stored in another data structure, called the "garbage blocks. A background process not described herein in the MMU operates on the garbage buffer to reclaim the garbage blocks. As soon as the unmarked pointers are evacuated from the reference count filter to the garbage buffer, the reconciliation operation on the reference count filter is over, and the regular operation is resumed. As a result of the reconciliation operation, the state of the reference count filter has been reconciled with the state of binding registers, and pointers to all garbage blocks have been evacuated from the reference count filter has been reconciled with the state of binding registers, and pointers to all garb
	1 nom me reference count inter. Ia . at $1.01-8.18$.

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 4,695,949 to Thatte et al. ("Thatte")
[3c] removing at least some of the automatically	[7c] removing at least some of the automatically	Thatte discloses removing at least some of the automatically expired records from the linked list when the linked list is accessed.
expired records from the linked list when the linked list is accessed.	expired records from the linked list when the linked list is accessed, and	For example, Figure 6 displays a block diagram showing the steps of maintaining the reference count filter. <i>Id.</i> at 5:10-12. Each time a block is allocated or a pointer to a block is destroyed the reference count filter is checked to see if the reference count filter is full. <i>Id.</i> at 7:1-26, Figure 6. If the reference count filter is full, then a reconciliation operation is performed where expired records are removed. <i>Id.</i>

Asserted Claims From	U.S. Patent No. 4,695,949 to Thatte et al. ("Thatte")
U.S. Pat. No. 5,893,120	
	49
	START
	ALLOCATION OF BLOCKS 52 DESTRUCTION CREATION OF POINTER OF POINTER
	ALLOCATE JOD DETECT TO DETECT RC BLOCK RC = Ø CHANGE FROM
	60 2 DELETE VIRTUAL
	62 YES REF. CNT. BLOCK FROM
	FULTER FULL2
	65 INSERT THE VIRTUAL ADDRESS
	RECEIVE DUMPED
	67
	LOCATE POINTERS Fig. 6
	REFERENCE COUNT FILTER
	68
	MARK LOCATED POINTERS
	69
	POINTERSTO GARBAGE BUEEDE
	RECONCILIATION OPERATION
	- $ -$
	10. ut i iguie 0.
	Beginning from a start position 49, three possible block affecting
	operations may be performed. The first is the allocation of a block [i.e.
	insert], the second is the destruction of a pointer to a block [i.e. delete],

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,695,949 to Thatte et al. ("Thatte")
	and the third is the creation of a pointer to a block. Accordingly, when a new block is allocated by the MMU 40 in response to an "Allocate" command from the CPU 12, box 50, the new block starts its life with a zero reference count. Therefore, in accordance with the invention, the virtual address of a newly allocated block is inserted into the reference count filter 25, box 51, assuming that there is a place in the reference count filter for insertion, i.e., that the reference count filter is not full. Similarly, when the reference count of a block drops to zero, box 52, the virtual address of the block is inserted in the reference count filter 25, again assuming that there is a place in the reference count filter for [insertion]. The insert operation on the reference count filter is implemented by the insert operation on the underlying hash table, as below described. <i>Id.</i> at 7:1-20.
	suspends the insertion operation and performs a reconciliation operation, box 62, on the reference count filter, as described below, to create a room in the reference count filter so that the suspended insertion operation can be completed. <i>Id.</i> at 7:21-26.
	When the reference count of a block goes up from zero to one, box 70, the virtual address of the block is deleted from the reference count filter, box 72. The deletion operation is necessary because a block with a non-zero reference count must not stay in the reference count filter. To accomplish the deletion, first the virtual address of the block with non-zero reference count (which is guaranteed to exist in the reference count filter) is searched for in the reference count filter, and then it is deleted. The delete operation on the reference count filter is implemented by the delete operation on the underlying hash table implementing the reference count filter, again as below described. <i>Id.</i> at 7:27-39.

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,695,949 to Thatte et al. ("Thatte")
	As mentioned above, after an insert operation is suspended due to a full reference count filter, the MMU needs to make a room in the reference count filter so that the suspended insert operation can be resumed and completed. The MMU 40 makes the necessary room by performing a reconciliation operation, box 62. It sends a special command to the CPU 12 called "Dump-pointers," box 64. In response, the CPU 12 sends the contents of all binding registers that contain pointers (which are virtual addresses) to the MMU. The set of these pointers is called the "Dumped-out" set, which is received by the MMU, box 65. The pointers in the Dumped-out set indicate the block which have references originating at binding registers. Of course, the size of the dumped-out set cannot exceed the number of binding registers. The reconciliation operation is guaranteed to create a room in the reference count filter, as the size of the reference count filter is greater than the number of binding registers. Therefore, there must be at least one virtual address in the reference count filter which is not in any binding register. <i>Id.</i> at 7:40-60.
	The MMU reconciles the state of the reference count filter with the set of Dumped-out pointers, by executing the following operations. (1) Each pointer from the dumped-out set is attempted to be located by the MMU within the virtual address contained in the reference count filter, box 67. If the pointer exists in the reference count filter, the MMU marks the pointer in the reference count filter, box 68. The pointers in the reference count filter, thus marked, indicate blocks that are still accessible and hence are not garbage. All unmarked pointers in the reference count filter, therefore, indicate garbage blocks. (2) The unmarked pointers are evacuated from the reference count filter and stored in another data structure, called the "garbage buffer" (not shown), box 69, which essentially holds pointers to garbage blocks. A

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 4,695,949 to Thatte et al. ("Thatte")
		background process not described herein in the MMU operates on the garbage buffer to reclaim the garbage blocks. As soon as the unmarked pointers are evacuated from the reference count filter to the garbage buffer, the reconciliation operation on the reference count filter is over, and the regular operation is resumed. As a result of the reconciliation operation, the state of the reference count filter has been reconciled with the state of binding registers, and pointers to all garbage blocks have been evacuated from the reference count filter. <i>Id.</i> at 7:61-8:18.
	[7d] inserting, retrieving or deleting one of the records from the system following the step of removing.	Thatte discloses inserting, retrieving or deleting one of the records from the system following the step of removing.For example, following the reconciliation operation 62 the next step is to insert the virtual address of the block in the reference count filter 51. <i>Id.</i> at 7:21-26, 7:40-8:18, Figure 7.
4. The method according to claim 3 further including the step of	8. The method according to claim 7 further including the step of	Thatte discloses dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed.
dynamically determining maximum number of expired ones of the records to remove when	dynamically determining maximum number of expired ones of the records to remove when	For example, Thatte discloses a reconciliation operation that is only performed if the reference counter is full. <i>Id.</i> This dynamic decision is clearly shown at 60 of Figure 6. <i>Id.</i>
the linked list is accessed.	the linked list is accessed.	If the reference counter is not full, then Thatte dynamically determines that the maximum number of records to delete is zero. <i>Id.</i> If the reference counter is full, then Thatte dynamically determines that the maximum number of records to delete is all of the garbage in reference count filter. <i>Id.</i>
		Additionally, it would have been obvious to one of ordinary skill in the art to modify the system disclosed in Thatte to dynamically determine the maximum number of expired records to remove in the accessed linked list of records. It is a fundamental concept in computer science and the relevant art

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,695,949 to Thatte et al. ("Thatte")
	 that any variable or parameter affecting any aspect of a system can be dynamically determined based on information available to the system. One of ordinary skill in the art would have been motivated to combine the system disclosed in Thatte with the fundamental concept of dynamically determining the maximum number of expired records to remove in an accessed linked list of records to solve a number of potential problems. For example, the removal of expired records described in Thatte can be burdensome on the system, adding to the system's load and slowing down the system's processing. Moreover, the removal could also force an interruption in real-time processing as the processing waits for the removal to complete. Indeed, part of the motivation for the system disclosed in Thatte is avoiding these problems. One of ordinary skill in the art would have known that dynamically determining the maximum number to remove would limit the burden on the system and bound the length of any real-time interruption to prevent delays in processing. Indeed, Nemes concedes that such dynamic determination was obvious when he states in the '120 patent that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records to delete can be a dynamic one." '120 at 7:10-15. Alternatively, Thatte combined with Dirks discloses the step of dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed For example, Dirks discloses the management of memory in a computer system and more particularly to the allocation of address space in a virtual memory system, which dynamically determines how many records to sweep/remove upon each allocation. Disclosure of these claim elements in

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,695,949 to Thatte et al. ("Thatte")
	Dirks is clearly shown in Exhibit B-2, which is hereby incorporated by
	reference in its entirety.
	As summarized in Dirks,
	each time a VSID is assigned from the free list to a new application or thread, a fixed number of entries in the page table are scanned to determine whether they have become inactive, by checking them against the VSIDs on the recycle list. Each entry which is identified as being inactive is removed from the page table. After all of the entries in the page table have been examined in this manner, the VSIDs in the recycle list can be transferred to the free list, since all of their associated page table entries will have been removed. This approach thereby guarantees that a predetermined number of VSIDs are always available in the free list without requiring a time-consuming scan of the complete page table at once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.
	After [a] new VSID has been allocated, the system checks a flag RFLG to determine whether a recycle sweep is currently in progress (Step 20). If there is no sweep in progress, i.e. RFLG is not equal to one, a determination is made whether a sweep should be initiated. This is done by checking whether the inactive list is full, i.e. whether it contains x entries (Step 22). If the number of entries I on the inactive list is less than x, no further action is taken, and processing control returns to the operating system (Step 24). If, however, the inactive list is full at this time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are transferred to the recycle list, and an index n is reset to 1 (Step 28). The system then sweeps a predetermined number of page table entries PT _i on the page table, to detect whether any of them are inactive list is a problem of the system of the table in the table is the system of the table in table in the table in the table in table in table in the table in the table in table in table in the table in the table in the table in ta

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,695,949 to Thatte et al. ("Thatte")
	predetermined number of entries that are swept is identified as k , where: $k = \frac{\text{total number of page table entries}}{\text{maximum number of active threads}}$ $Id.$ at 8:12-30.Dirks discloses that any approach can be employed to determine the number of entries to be examined during each step of the sweeping process. $Id.$ at 7:37-40. As stated in Dirks:Any other suitable approach can be employed to determine the number of
	improve similar systems and methods in the same way. As the '120 patent

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,695,949 to Thatte et al. ("Thatte")
	states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining Dirks' deletion decision procedure with Thatte's memory management technique would be nothing more than the predictable use of prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have combined Dirks' dynamic determination of the suitable number of entries to examine during each step of the sweeping process with Thatte's method of memory management and would have seen the benefits of doing so. For example, Thatte notes that because "the CPU is stopped during the reconciliation operation" there could be "performance degradation" and "it is desirable to reduce the time for reconciliation as much as possible." See Thatte, col. 8:19-22. One of ordinary skill in the art would have recognized that Dirks' method of dynamically determining a maximum number of entries to examine could achieve this goal of limiting the performance degradation in Thatte's method.
	To the extent that dynamically determining a maximum number of expired records is not disclosed by Thatte in combination with Dirks, it is disclosed by Linux 2.0.1, which describes dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed. It would have been obvious to combine Linux 2.0.1 with Thatte. For example, both Linux 2.0.1 and Thatte describe systems and methods for performing data storage and retrieval using known programming techniques to yield a predictable result.

Asserted Claims From U.S. Pat. No. 5,893,12	u U.S. Patent No. 4,695,949 to Thatte et al. ("Thatte")
	<pre>When invoked, the function rt_cache_add automatically increments an integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359. When the function rt_cache_add removes an expired record, the function rt_cache_add decrements the variable rt_cache_size. See Linux 2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the number of records in the hash table (i.e., ip_rt_hash_table). Because the function rt_cache_add automatically increments and decrements the variable rt_cache_size, the variable rt_cache_size is determined dynamically.</pre> Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1. The function rt_garbage_collect_1 loops through each of the linked lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at lines 1122-1138. In this way, the function rt_garbage_collect_1 identifies a record that is expired, the function rt_garbage_collect_1 decrements the variable rt_cache_size and frees the record. See Linux 2.0.1, route.c at lines 1128-1135.
	Because all records in the linked list can be expired and all records in the hash table can be in the linked list, the variable rt_cache_size can represent a dynamically determined maximum number of expired ones of the records to remove when function rt_garbage_collect_1 accesses the linked list.
	Furthermore, the function rt_cache_add determines whether the number of records in the hash table exceeds a predetermined threshold

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,695,949 to Thatte et al. ("Thatte")
	RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_cache_add invokes a function rt_garbage_collect. <i>See</i> Linux 2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect invokes a function rt_garbage_collect_1. <i>See</i> Linux 2.0.1, route.c at line 1293. The function rt_garbage_collect invokes a function rt_garbage_collect_1. <i>See</i> Linux 2.0.1, route.c at line 1293.
	The function rt_garbage_collect_1 loops through each linked list in the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked list in the hash table, the function rt_garbage_collect_1 looks at each record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each record in a linked list, the function rt_garbage_collect_1 determines whether the record's last use time plus the record's expiration factor is later than the current time. See Linux 2.0.1, route.c at line 1122. If the record's last use time plus the record's expiration factor is less than the current time, the function rt_garbage_collect_1 removes the record from the linked list. See Linux 2.0.1, route.c at lines 1124-1130. The record's expiration factor is based on a variable expire and the record's reference count. See Linux 2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.
	After looping through all of the linked lists in this manner, the function rt_garbage_collect_1 determines again whether the number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX. <i>See</i> Linux 2.0.1, route.c at line 1133. If the number of items in the hash table is still greater than the predetermined threshold RT_CACHE_SIZE_MAX, the function

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,695,949 to Thatte et al. ("Thatte")
	rt_garbage_collect_1 halves the variable expire and loops through each of the linked lists in the hash table. <i>See</i> Linux 2.0.1, route.c at line 1135. In this way, the function rt_garbage_collect_1 can remove additional records from the linked lists in the hash table. The function rt_garbage_collect_1 repeats this process until the total number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX.
	Under Bedrock's proposed claim constructions, the records removed by the function rt_garbage_collect_1 are "expired" records. That is, the records removed by the function rt_garbage_collect_1 are data items which after a limited time or after the occurrence of some event become obsolete, such that their presence in the storage system is no longer needed or desired.
	The function rt_cache_add only removes a record from a linked list when the record's last use time plus the fixed timeout value RT_CACHE_TIMEOUT is less than the current time and the record's reference count is zero. <i>See</i> Linux 2.0.1, route.c at line 1369. Thus, the maximum number of records that the function rt_cache_add can remove from a given linked list is limited to those records whose reference counts are zero.
	In contrast, the maximum number of records that the function rt_garbage_collect_1 can remove from a given linked list is not limited to those records whose reference counts are zero. <i>See</i> Linux 2.0.1, route.c at line 1122. Rather, the function rt_garbage_collect_1 can remove records whose reference counts are zero and records whose reference counts are greater than zero.
	Consequently, the maximum number of records that the function

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,695,949 to Thatte et al. ("Thatte")
	rt_garbage_collect_1 can remove from a linked list is different than the maximum number of records that the function rt_cache_add can remove from a linked list.

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 6,119,214 to Dirks ("Dirks") alone and in combination with U.S. Patent No. 5,724,538 to Morris et al. ("Morris")
1. An information storage and retrieval system, the system comprising:	5. An information storage and retrieval system, the system comprising:	To the extent the preamble is a limitation, Dirks discloses an information storage and retrieval system. For example, Dirks discloses "the management of memory in a computer system, and more particularly to the allocation of address space in a virtual memory system for a computer." <i>Dirks</i> , "Method for Allocation of Address Space In A Virtual Memory System." U.S. Patent No. 6,119,214 (issued Sept. 12, 2000) at 1:5-8. In virtual memory technology, the addresses that are assigned for use by individual programs are distinct from the actual physical addresses of the main memory. The addresses which are allocated to the programs are often referred to as "logical" or "virtual" or "effective" addresses, to distinguish them from the "physical" addresses of the main memory. Whenever a program requires access to memory, it makes a call to a logical address within its assigned address space. A memory manager associates this logical address with a physical address in the main memory, where the information called for by the program is actually stored. The identification of each physical address that corresponds to a logical address is commonly stored in a data structure known as a page table. This term is derived from the practice of dividing the memory into individually addressable blocks known as "pages." <i>Id.</i> at 1:33-50.
		address is shown in Figure 3 reproduced below. <i>Id.</i> at Figure 3.

1

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 6,119,214 to Dirks ("Dirks") alone and in combination with U.S. Patent No. 5,724,538 to Morris et al. ("Morris")
		EFFECTIVE ADDRESS (32-BIT)
[1a] a linked list to store and provide access to records stored in a memory of the system, at least some of the records automatically expiring,	[5a] a hashing means to provide access to records stored in a memory of the system and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring,	Dirks discloses a linked list to store and provide access to records stored in a memory of the system, at least some of the records automatically expiring. Dirks also discloses a hashing means to provide access to records stored in a memory of the system and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring. For example, the virtual segment identifiers (VSID) are stored in the page table by use of a hashing function. <i>Id.</i> at 5:10-31. "Through the use of the hashing function, the page table entries are efficiently distributed within the page

2
Asserted C U.S. Pat. N	laims From o. 5,893,120	U.S. Patent No. 6,119,214 to Dirks ("Dirks") alone and in combination with U.S. Patent No. 5,724,538 to Morris et al. ("Morris")
		table." <i>Id.</i> at 5:25-27.
		For example, Dirks inherently discloses that page table entry groups, which are comprised of page table entries, are stored in a linked list. <i>See id.</i> at 9:32-46.
		For example, in some page tables, a suitable number of entries are grouped together, and the addressing of entries is done by groups. In other words, the page table address PTA that results from the operation of the hashing function is the physical address of a page table entry group. Whenever a call is made to a particular virtual address, the individual page table entries within an addressed group are then checked, one by one, to determine whether they correspond to the virtual address that generated a page table search. Thus, it can be seen that it takes longer to locate an entry that resides in the last position in the group, relative to an entry in the first position in the group. <i>Id at 9:36-46.</i>
		Because each page table entry stored in a page table entry group has the same hash address, the page table entries are being stored in a linked list; such an inherent characteristic necessarily flows from the teachings of the applied prior art. <i>See id</i> .
		To the extent that Bedrock argues that Dirks does not anticipate Claims $1 - 8$ because the page table entry groups are not inherently stored in a linked list, it would have been obvious to one of ordinary skill in the art to store the page table entries of a page table group in a linked list. The admitted prior art in the background of the '120 patent discloses that linked lists/external chaining were already common place to resolve collisions within hash tables. The '120 patent

3

Joint Invalidity Contentions & Production of Documents

Case No. 6:09-CV-549-LED

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 6,119,214 to Dirks ("Dirks") alone and in combination with U.S. Patent No. 5,724,538 to Morris et al. ("Morris")
	at 1:34-2:6. Thus, Dirks and the admitted prior art of the '120 patent show that one of ordinary skill in the art understood how to use linked lists/external chaining to resolve collisions within hash tables, and would recognize that it would improve similar systems and methods in the same way.
	Moreover, as shown in Figure 3 of Morris, it was well known in the prior art to have page tables entries distributed by a hash function, such as those in Dirks, and then store the page table entries in a hash table using linked lists or external chaining. U.S. Pat. No. 5,724,538 to Morris et al. ("Morris") at 3:54-4:24, Figure 3.

4

Asserted Cl U.S. Pat. No	aims From 5, 5,893,120	U.S. Patent No. 6,119,214 to Dirks ("Dirks") alone and in combination with U.S. Patent No. 5,724,538 to Morris et al. ("Morris")
		203 VIRTUAL PAGE NUMBER HASH FUNCTION NDEX PAGE TABLE VIRTUAL TAG 303 VIRTUAL TAG 309 PHYSICAL PAGE POINTER POINTER (PROR ART) FIG. 3
		<i>Id.</i> at Figure 3.
		FIG. 3 illustrates the process of retrieving the physical page information given the virtual page number as would be required to update the TLB after a TLB miss. As described above, the virtual to physical mappings are maintained in a page table. For translating a given virtual address to a physical address, one

5

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 6,119,214 to Dirks ("Dirks") alone and in combination with U.S. Patent No. 5,724,538 to Morris et al. ("Morris")
	 approach is to perform a many-to-one function (hash) on the virtual address to form an index into the page table. This gives a pointer to a linked list of entries. These entries are then searched for a match. To determine a match, the virtual page number is compared to an entry in the page table (virtual tag). If the two are equal, that page table entry provides the physical address translation. <i>Id.</i> at 3:54-65. In the example illustrated, a hash function 301 is performed on the virtual page number 203 to form an index. This index is an offset into the page table 303. As shown, the index is 0, that is, the index points to the first entry 305 in the page table. Each
	entry in the page table consists of multiple parts but typically contains at least a virtual tag 307, a physical page 309 and a pointer 311. If the virtual page number 203 equals the virtual tag 307, then physical page 309 gives the physical (real) memory page address desired. If the virtual tag does not match, then the pointer 311 points to a chain of entries in memory which contain virtual to physical translation information. The additional information contained in the chain is needed as more than one virtual page number can hash to the same page table entry. <i>Id.</i> at 3:66-4:12.
	As shown, pointer 311 points to a chain segment 313. This chain segment contains the same type of information as the page table. As before, the virtual page number 203 is compared to the next virtual tag 315 to see if there is a match. If a match occurs then the associated physical page 317 gives the address

6

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 6,119,214 to Dirks ("Dirks") alone and in combination with U.S. Patent No. 5,724,538 to Morris et al. ("Morris")
	of the physical memory page desired. If a match does not occur, then the pointer 319 is examined to locate the next chain segment, if any. If the pointer 319 does not point to another chain segment, as shown, then a page fault has occurred. A page fault software program is then used, as described in association with FIG. 1, to update the page table. <i>Id.</i> at 4:12-24.
	As both Dirks and Morris disclose systems and methods for allocating memory address controls using page table entries that are stored in hash tables, one of ordinary skill in the art would have understood how to combine the hashed page table with linked lists taught in Morris with Dirks. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. Additionally, one of ordinary skill in the art would recognize that the result of combining Dirks with Morris would be nothing more than the predictable use of prior art elements according to their established functions. The result would simply be Dirks' page table being implemented with a hashing function using linked lists/external chaining.
	By way of further example, one of ordinary skill in the art would have combined linked lists as taught by these references and understood by one of ordinary skill in the art to the system disclosed in the admitted prior art, and would have seen the benefits of doing so. One possible benefit, for example, is hash table collision resolution.
	Dirks discloses VSIDs that automatically expire. Dirks at 6:24-30. At some point in time, the VSID becomes inactive. This can occur, for example, when a thread terminates. In the inactive state, pages within the

7

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 6,119,214 to Dirks ("Dirks") alone and in combination with U.S. Patent No. 5,724,538 to Morris et al. ("Morris")
		virtual address range of the VSID are still mapped to the page table. However, the data contained in the associated pages of physical memory is no longer being accessed by the CPU. <i>Id</i> .
		Thus, the VSIDs are expired or obsolete. <i>Id</i> .
[1b] a record search means utilizing a search key to access the linked list,	[5b] a record search means utilizing a search key to access a linked list of records having the same hash address,	 Dirks discloses a record search means utilizing a search key to access the linked list. Dirks also discloses a record search means utilizing a search key to access a linked list of records having the same hash address. For example, Dirks discloses hash table search means such as searching, creation, deletion, and sweeping. <i>Id.</i> at 5:31-47, 5:66-6:15, 5:39-44, 9:39-47. Whenever a call is made to a particular virtual address, the individual page table entries within an addressed group are then checked, one by one, to
		page table search. Thus, it can be seen that it takes longer to locate an entry that resides in the last position in the group, relative to an entry in the first position in the group. <i>Id.</i> at 9:39-47.
		For example, Dirks inherently discloses that page table entry groups, which are comprised of page table entries, are stored in a linked list. <i>See id.</i> at 9:32-46.
		For example, in some page tables, a suitable number of entries are grouped together, and the addressing of entries is done by groups. In other words, the page table address PTA that results from the operation of the hashing function is the physical address of a page table entry group. Whenever a call is made to a particular virtual address, the
Joint Invalidity Contentions & Pro	duction of	8 Case No. 6:09-CV-549-LED

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 6,119,214 to Dirks ("Dirks") alone and in combination with U.S. Patent No. 5,724,538 to Morris et al. ("Morris")
	individual page table entries within an addressed group are then checked, one by one, to determine whether they correspond to the virtual address that generated a page table search. Thus, it can be seen that it takes longer to locate an entry that resides in the last position in the group, relative to an entry in the first position in the group. <i>Id</i> .
	Because each page table entry stored in a page table entry group has the same hash address, the page table entries are being stored in a linked list; such an inherent characteristic necessarily flows from the teachings of the applied prior art. <i>See id.</i>
	To the extent that Bedrock argues that Dirks does not anticipate Claims $1 - 8$ because the page table entry groups are not inherently stored in a linked list, it would have been obvious to one of ordinary skill in the art to store the page table entries of a page table group in a linked list. The admitted prior art in the background of the '120 patent discloses that linked lists/external chaining were already common place to resolve collisions within hash tables. The '120 patent at 1:34-2:6. Thus, Dirks and the admitted prior art of the '120 patent show that one of ordinary skill in the art understood how to use linked lists/external chaining to resolve collisions within hash tables, and would recognize that it would improve similar systems and methods in the same way.
	Moreover, as shown in Figure 3 of Morris, it was well known in the prior art to have page tables entries distributed by a hash function, such as those in Dirks, and then store the page table entries in a hash table using linked lists or external chaining. Morris at 3:54-4:24, Figure 3.

9

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 6,119,214 to Dirks ("Dirks") alone and in combination with U.S. Patent No. 5,724,538 to Morris et al. ("Morris")
	203 VIRTUAL PAGE NUMBER HASH FUNCTION UNDEX VIRTUAL TAG 305 VIRTUAL TAG PHYSICAL PAGE POINTER THYSICAL PAGE POINTER (PROR ART) FIG. 3
	<i>Id.</i> at Figure 3. As described by Morris:
	FIG. 3 illustrates the process of retrieving the physical page information given the virtual page number as would be required to update the TLB after a TLB miss. As described above, the virtual to physical mappings are maintained in a page table. For translating a given virtual address to a physical address, one

Asserted Clair U.S. Pat. No. 5	ms From 5,893,120	U.S. Patent No. 6,119,214 to Dirks ("Dirks") alone and in combination with U.S. Patent No. 5,724,538 to Morris et al. ("Morris")
		approach is to perform a many-to-one function (hash) on the virtual address to form an index into the page table. This gives a pointer to a linked list of entries. These entries are then searched for a match. To determine a match, the virtual page number is compared to an entry in the page table (virtual tag). If the two are equal, that page table entry provides the physical address translation. <i>Id.</i> at 3:54-65. In the example illustrated, a hash function 301 is performed on the virtual page number 203 to form an index. This index is an offset into the page table 303. As shown, the index is 0, that is, the index points to the first entry 305 in the page table. Each entry in the page table consists of multiple parts but typically contains at least a virtual page number 203 equals the virtual tag 307, then physical page 309 gives the physical (real) memory page address desired. If the virtual tag does not match, then the pointer 311 points to a chain of entries in memory which contain virtual to physical translation information. The additional information contained in the chain is needed as more than one virtual page number can hash to the same page table entry. <i>Id.</i> at 3:66-4:12.
		As shown, pointer 311 points to a chain segment 313. This chain segment contains the same type of information as the page table. As before, the virtual page number 203 is compared to the next virtual tag 315 to see if there is a match. If a match occurs then the associated physical page 317 gives the address

11

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 6,119,214 to Dirks ("Dirks") alone and in combination with U.S. Patent No. 5,724,538 to Morris et al. ("Morris")
		 of the physical memory page desired. If a match does not occur, then the pointer 319 is examined to locate the next chain segment, if any. If the pointer 319 does not point to another chain segment, as shown, then a page fault has occurred. A page fault software program is then used, as described in association with FIG. 1, to update the page table. <i>Id.</i> at 4:12-24. As both Dirks and Morris disclose systems and methods for allocating memory address controls using page table entries that are stored in hash tables, one of ordinary skill in the art would have understood how to combine the hashed page table with linked lists taught in Morris with Dirks. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. Additionally, one of ordinary skill in the art would recognize that the result of combining Dirks with Morris would be nothing more than the predictable use of prior art elements according to their established functions. The result would simply be Dirks' page table being implemented with a hashing function using linked lists/external chaining. By way of further example, one of ordinary skill in the art would have combined linked lists as taught by these references and understood by one of provide the direct of the orden of the direct of the d
		ordinary skill in the art to the system disclosed in the admitted prior art, and would have seen the benefits of doing so. One possible benefit, for example, is hash table collision resolution.
[1c] the record search	[5c] the record search	Dirks discloses the record search means including a means for identifying and
means including a means	means including means for	removing at least some of the expired ones of the records from the linked list
for identifying and	identifying and removing	when the linked list is accessed. Dirks also discloses the record search means
removing at least some of	at least some expired ones	including means for identifying and removing at least some expired ones of the
the expired ones of the	of the records from the	records from the linked list of records when the linked list is accessed.

Joint Invalidity Contentions & Production of Documents

Case No. 6:09-CV-549-LED

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 6,119,214 to Dirks ("Dirks") alone and in combination with U.S. Patent No. 5,724,538 to Morris et al. ("Morris")
records from the linked list when the linked list is accessed, and	linked list of records when the linked list is accessed, and	For example, as discussed above at some point VSIDs become inactive. Dirks at 6:24-30. These expired or inactive VSIDs are not removed "in one colossal step, for example after all of the free VSIDs have been allocated. Rather, the sweeping is carried out in an incremental, ongoing manner to avoid significant interruptions in the running of programs." <i>Id.</i> at 6:39-44. "More specifically, each time that a new range of addresses is allocated to a program, a limited number of entries in the page table are examined, to determine whether the addresses associated with those entries are no longer in use and the entries can be removed from the page table." <i>Id.</i> at 3:14-18. Moreover, Dirks similarly teaches that a limited number of entries can be examined each time a thread is deleted. <i>Id.</i> at 10:23-24.
		After the new VSID has been allocated, the system checks a flag RFLG to determine whether a recycle sweep is currently in progress (Step 20). If

13

Joint Invalidity Contentions & Production of Documents

Case No. 6:09-CV-549-LED

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 6,119,214 to Dirks ("Dirks") alone and in combination with U.S. Patent No. 5,724,538 to Morris et al. ("Morris")
	there is no sweep in progress, i.e. RFLG is not equal to one, a determination is made whether a sweep should be initiated. This is done by checking whether the inactive list is full, i.e. whether it contains x entries (Step 22). If the number of entries I on the inactive list is less than x, no further action is taken, and processing control returns to the operating system (Step 24). If, however, the inactive list is full at this time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are transferred to the recycle list, and an index n is reset to 1 (Step 28). The system then sweeps a predetermined number of page table entries PT _i on the page table, to detect whether any of them are inactive, i.e. their associated VSID is on the recycle list (Step 30). The predetermined number of entries that are swept is identified as k , where
	$k = \frac{\text{total number of page table entries}}{\text{maximum number of active threads}}$ "[If for example], $k=10000/500=20$. For a given value of the index n, therefore, the system sweeps table entries $\text{PT}_{k(n-1)}$ to $\text{PT}_{(n)-1}$. Thus, during the first sweep, table entries PT_0 to PT_{19} are examined in the example given above." <i>Id.</i> at 8:34-37.
	Step 20, the index n is incremented (Step 32) and a sweep of the next k entries is carried out. Thus, where n=2, entries $PT_{[20]}$ to PT_{39} will be examined." <i>Id.</i> at 8:38-41.

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 6,119,214 to Dirks ("Dirks") alone and in combination with U.S. Patent No. 5,724,538 to Morris et al. ("Morris")
	being examined each time a free VSID is allocated. Each entry is examined to determine whether it contains a mapping for a VSID on the recycle list. If it does, that entry is removed from the page table. <i>Id.</i> at 8:42-46.
	After each sweep, the system determines whether all entries in the page table have been checked (Step 36). This situation will occur when n=x. Once all of the entries have been examined, the VSIDs in the recycle list are transferred to the free list (Step 38), yielding x new VSIDs that are available to be allocated. In addition, the recycle sweep flag RFLG is reset, and control is then returned to the program. If all of the entries in the page table have not yet been checked, i.e. the response is negative at Step 36, control is directly returned to the application program, at Step 24. <i>Id.</i> at 8:47-56.

15

Asserted C U.S. Pat. N	laims From o. 5,893,120	U.S. Patent No. 6,119,214 to Dirks ("Dirks") alone and in combination with U.S. Patent No. 5,724,538 to Morris et al. ("Morris")
[1d] means, utilizing the record search means, for accessing the linked list and, at the same time, removing at least some of the expired ones of the records in the linked list.	[5d] mea[n]s, utilizing the record search means, for inserting, retrieving, and deleting records from the system and, at the same time, removing at least some expired ones of the	Dirks discloses means, utilizing the record search means, for accessing the linked list and, at the same time, removing at least some of the expired ones of the records in the linked list. Dirks also discloses utilizing the record search means, for inserting, retrieving, and deleting records from the system and, at the same time, removing at least some expired ones of the records in the accessed linked list of records.
	records in the accessed linked list of records.	For example, as discussed above at some point VSIDs become inactive. <i>Id.</i> at 6:24-30. These expired or inactive VSIDs are not removed "in one colossal step, for example after all of the free VSIDs have been allocated. Rather, the sweeping is carried out in an incremental, ongoing manner to avoid significant interruptions in the running of programs." <i>Id.</i> at 6:39-44. "More specifically, each time that a new range of addresses is allocated to a program, a limited number of entries in the page table are examined, to determine whether the addresses associated with those entries are no longer in use and the entries can be removed from the page table." <i>Id.</i> at 3:14-18. Moreover, Dirks similarly teaches that a limited number of entries can be examined each time a thread is deleted. <i>Id.</i> at 10:23-24.
		A flowchart which depicts the operation of the address allocation portion of a memory manager, in accordance with the present invention, is illustrated in FIG. 6. Referring thereto, operation begins when a request for address space is generated (Step 10). This can occur when a thread is created, for example. In response thereto, the operating system checks the free list to determine whether a free VSID is available (Step 12). If so, a free VSID is allocated to the thread that generated the request (Step 14). In the case of an application, two or more VSIDs might be assigned. If no free VSID is available at Step 12, a failure status is returned (Step 18). In

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 6,119,214 to Dirks ("Dirks") alone and in combination with U.S. Patent No. 5,724,538 to Morris et al. ("Morris")
	practice, however, such a situation should not occur, since the process of the present invention ensures that free VSIDs are always available. <i>Id.</i> at 7:66-8:12.
	After the new VSID has been allocated, the system checks a flag RFLG to determine whether a recycle sweep is currently in progress (Step 20). If there is no sweep in progress, i.e. RFLG is not equal to one, a determination is made whether a sweep should be initiated. This is done by checking whether the inactive list is full, i.e. whether it contains x entries (Step 22). If the number of entries I on the inactive list is less than x, no further action is taken, and processing control returns to the operating system (Step 24). If, however, the inactive list is full at this time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are transferred to the recycle list, and an index n is reset to 1 (Step 28). The system then sweeps a predetermined number of page table entries PT _i on the page table, to detect whether any of them are inactive, i.e. their associated VSID is on the recycle list (Step 30). The predetermined number of entries that are swept is identified as k , where
	$k = \frac{\text{total number of page table entries}}{\text{maximum number of active threads}}$ <i>Id.</i> at 8:12-30.
	"[If for example], $k=10000/500=20$. For a given value of the index n, therefore, the system sweeps table entries $PT_{k(n-1)}$ to $PT_{(n)-1}$. Thus, during the first sweep, table entries PT_0 to PT_{19} are examined in the example given above." <i>Id.</i> at 8:34-37.
	"If a recycling sweep is already in progress, i.e. the response is affirmative at

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 6,119,214 to Dirks ("Dirks") alone and in combination with U.S. Patent No. 5,724,538 to Morris et al. ("Morris")
	Step 20, the index n is incremented (Step 32) and a sweep of the next k entries is carried out. Thus, where n=2, entries PT20 to PT_{39} will be examined." <i>Id.</i> at 8:38-41.
	The process continues in this manner, with k entries in the page table being examined each time a free VSID is allocated. Each entry is examined to determine whether it contains a mapping for a VSID on the recycle list. If it does, that entry is removed from the page table. <i>Id.</i> at 8:42-46.
	After each sweep, the system determines whether all entries in the page table have been checked (Step 36). This situation will occur when n=x. Once all of the entries have been examined, the VSIDs in the recycle list are transferred to the free list (Step 38), yielding x new VSIDs that are available to be allocated. In addition, the recycle sweep flag RFLG is reset, and control is then returned to the program. If all of the entries in the page table have not yet been checked, i.e. the response is negative at Step 36, control is directly returned to the application program, at Step 24. <i>Id.</i> at 8:47-56.

19

Asserted C U.S. Pat. N	laims From o. 5,893,120	U.S. Patent No. 6,119,214 to Dirks ("Dirks") alone and in combination with U.S. Patent No. 5,724,538 to Morris et al. ("Morris")
2. The information storage and retrieval system according to claim 1 further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records.	6. The information storage and retrieval system according to claim 5 further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records.	Dirks discloses the information storage and retrieval system according to claim 5 further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records. For example, "each time that a new range of addresses is allocated to a program, a limited number of entries in the page table are examined, to determine whether the addresses associated with those entries are no longer in use and the entries can be removed from the page table." <i>Id.</i> at 3:14-18. "Thus, rather than halting the operation of the computer for a considerable period of time to scan the entire page table when a logical address area is deleted, the memory manager of the present invention carries out a limited, time-bounded
		 examination upon each address anocation. <i>Id.</i> at 3:23-29 Moreover, Dirks similarly teaches that a limited number of entries can be examined each time a thread is deleted. <i>Id.</i> at 10:23-24. In operation, each time a VSID is assigned from the free list to a new application or thread, a fixed number of entries in the page table are scanned to determine whether they have become inactive, by checking them against the VSIDs on the recycle list. Each entry which is identified as being inactive is removed from the page table. After all of the entries in the page table have been examined in this manner, the VSIDs in the recycle list can be transferred to the free list, since all of their associated page table entries will have been removed. This approach thereby guarantees that a predetermined number of VSIDs are always available in the free list without requiring a time-consuming scan of the complete page table at once. <i>Id.</i> at 7:2-14.

Joint Invalidity Contentions & Production of Documents

US2008 1661503.4

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 6,119,214 to Dirks ("Dirks") alone and in combination with U.S. Patent No. 5,724,538 to Morris et al. ("Morris")
	As shown in Figure 6, After the new VSID has been allocated, the system checks a flag RFLG to determine whether a recycle sweep is currently in progress (Step 20). If there is no sweep in progress, i.e. RFLG is not equal to one, a determination is made whether a sweep should be initiated. This is done by checking whether the inactive list is full, i.e. whether it contains x entries (Step 22). If the number of entries I on the inactive list is less than
	x, no further action is taken, and processing control returns to the operating system (Step 24). If, however, the inactive list is full at this time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are transferred to the recycle list, and an index n is reset to 1 (Step 28). The system then sweeps a predetermined number of page table entries PT_i on the page table, to detect whether any of them are inactive, i.e. their associated VSID is on the recycle list (Step 30). The predetermined number of entries that are swept is identified as k , where:
	$k = \frac{\text{total number of page table entries}}{\text{maximum number of active threads}}$ <i>Id.</i> at 8:12-30.
	Dirks discloses that any approach can be employed to determine the number of entries to be examined during each step of the sweeping process. <i>Id.</i> at 7:37-40. As stated in Dirks:
	Any other suitable approach can be employed to determine the number of entries to be examined during each step of the sweeping process. In this

23

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 6,119,214 to Dirks ("Dirks") alone and in combination with U.S. Patent No. 5,724,538 to Morris et al. ("Morris")
	regard, it is not necessary that the number of examined entries be fixed for each step. Rather, it might vary from one step to the next. The only criterion is that the number of entries examined on each step be such that all entries in the page table are examined in a determinable amount of time or by the occurrence of a certain event, e.g. by the time the list of free VSIDs is empty. <i>Id.</i> at 7:38-46. Thus, Dirks dynamically determines the maximum number of records to sweep/remove by calculating a value <i>k. Id.</i> at 7:15-37, 7:66-8:56. Additionally, it would have been obvious to one of ordinary skill in the art to modify the system disclosed in Dirks to dynamically determine the maximum number of expired records to remove in the accessed linked list of records. It is a fundamental concept in computer science and the relevant art that any variable or parameter affecting any aspect of a system can be dynamically determined based on information available to the system. One of ordinary skill in the art would have been motivated to combine the system disclosed in Dirks with the fundamental concept of dynamically determining the maximum number of expired records to remove in an accessed linked list of records to solve a number of potential problems. For example, the removal of expired records described in Dirks can be burdensome on the system, adding to the system's load and slowing down the system's processing. Moreover, the removal could also force an interruption in real-time processing as the processing waits for the removal to complete. Indeed, part of the motivation for the system disclosed in Dirks is avoiding these problems. One of ordinary skill in the art would have known that dynamically determining the maximum number to remove would limit the burden on the system and bound the length of any real-time interruption to prevent delays in processing. Indeed, Nemes
	concedes that such dynamic determination was obvious when he states in the '120 patent that "[a] person skilled in the art will appreciate that the technique

Joint Invalidity Contentions & Production of Documents

Case No. 6:09-CV-549-LED

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 6,119,214 to Dirks ("Dirks") alone and in combination with U.S. Patent No. 5,724,538 to Morris et al. ("Morris")
	of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15.
	To the extent that dynamically determining a maximum number of expired records is not disclosed by Dirks, it is disclosed by Linux 2.0.1, which describes dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed. It would have been obvious to combine Linux 2.0.1 with Dirks. For example, both Linux 2.0.1 and Dirks describe systems and methods for performing data storage and retrieval using known programming techniques to yield a predictable result.
	When invoked, the function rt_cache_add automatically increments an integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359. When the function rt_cache_add removes an expired record, the function rt_cache_add decrements the variable rt_cache_size. See Linux 2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the number of records in the hash table (i.e., ip_rt_hash_table). Because the function rt_cache_size, the variable rt_cache_size is determined dynamically.
	Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1. The function rt_garbage_collect_1 loops through each of the linked lists in the ip_rt_hash_table global variable. <i>See</i> Linux 2.0.1, route.c at lines 1122-1138. In this way, the function rt_garbage_collect_1

25

Asserted Clai U.S. Pat. No. 5	ms From 5,893,120	U.S. Patent No. 6,119,214 to Dirks ("Dirks") alone and in combination with U.S. Patent No. 5,724,538 to Morris et al. ("Morris")
		accesses the linked list. When the function rt_garbage_collect_1 identifies a record that is expired, the function rt_garbage_collect_1 decrements the variable rt_cache_size and frees the record. <i>See</i> Linux 2.0.1, route.c at lines 1128-1135.
		Because all records in the linked list can be expired and all records in the hash table can be in the linked list, the variable rt_cache_size can represent a dynamically determined maximum number of expired ones of the records to remove when function rt_garbage_collect_1 accesses the linked list.
		Furthermore, the function rt_cache_add determines whether the number of records in the hash table exceeds a predetermined threshold RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_cache_add invokes a function rt_garbage_collect. <i>See</i> Linux 2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect invokes a function rt_garbage_collect_1. <i>See</i> Linux 2.0.1, route.c at line 1293. The function rt_garbage_collect invokes a function rt_garbage_collect_lect invokes a function rt_garbage_collect_lect invokes a function rt_garbage_collect_lect invokes a function rt_garbage_collect invo
		The function rt_garbage_collect_1 loops through each linked list in the hash table. <i>See</i> Linux 2.0.1, route.c at lines 1116-1132. For each linked list in the hash table, the function rt_garbage_collect_1 looks at each record in the linked list. <i>See</i> Linux 2.0.1, route.c at lines 1120-1131. For each record in a linked list, the function rt_garbage_collect_1 determines whether the record's last use time plus the record's expiration factor is later than the current time. <i>See</i> Linux 2.0.1, route.c at line 1122. If the record's last

Joint Invalidity Contentions & Production of Documents

Case No. 6:09-CV-549-LED

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 6,119,214 to Dirks ("Dirks") alone and in combination with U.S. Patent No. 5,724,538 to Morris et al. ("Morris")
	use time plus the record's expiration factor is less than the current time, the function rt_garbage_collect_1 removes the record from the linked list. <i>See</i> Linux 2.0.1, route.c at lines 1124-1130. The record's expiration factor is based on a variable expire and the record's reference count. <i>See</i> Linux 2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed timeout value RT_CACHE_TIMEOUT. <i>See</i> Linux 2.0.1, route.c at line 1110.
	After looping through all of the linked lists in this manner, the function rt_garbage_collect_1 determines again whether the number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX. <i>See</i> Linux 2.0.1, route.c at line 1133. If the number of items in the hash table is still greater than the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves the variable expire and loops through each of the linked lists in the hash table. <i>See</i> Linux 2.0.1, route.c at line 1135. In this way, the function rt_garbage_collect_1 can remove additional records from the linked lists in the hash table. The function rt_garbage_collect_1 repeats this process until the total number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX.
	Under Bedrock's proposed claim constructions, the records removed by the function rt_garbage_collect_1 are "expired" records. That is, the records removed by the function rt_garbage_collect_1 are data items which after a limited time or after the occurrence of some event become obsolete, such that their presence in the storage system is no longer needed or desired.

	the record's last use time plus the fixed timeout value RT CACHE TIMEOUT
	is less than the current time and the record's reference count is zero. See Linux 2.0.1, route.c at line 1369. Thus, the maximum number of records that the function rt_cache_add can remove from a given linked list is limited to those records whose reference counts are zero.
	In contrast, the maximum number of records that the function rt_garbage_collect_1 can remove from a given linked list is not limited to those records whose reference counts are zero. <i>See</i> Linux 2.0.1, route.c at line 1122. Rather, the function rt_garbage_collect_1 can remove records whose reference counts are zero and records whose reference counts are greater than zero.
	Consequently, the maximum number of records that the function rt_garbage_collect_1 can remove from a linked list is different than the maximum number of records that the function rt_cache_add can remove from a linked list.
7. A method for storing and retrieving information records using a hashing technique to provide access to the records and using an external chaining technique to store the records with same hash address, at least	To the extent the preamble is a limitation, Dirks discloses a method for storing and retrieving information records using a linked list to store and provide access to the records, at least some of the records automatically expiring. Dirks also discloses a method for storing and retrieving information records using a hashing technique to provide access to the records and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring.
	7. A method for storing and retrieving information records using a hashing technique to provide access to the records and using an external chaining technique to store the records with same hash address, at least some of the records

Joint Invalidity Contentions & Production of Documents

Case No. 6:09-CV-549-LED

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 6,119,214 to Dirks ("Dirks") alone and in combination with U.S. Patent No. 5,724,538 to Morris et al. ("Morris")
automatically expiring, the method comprising the steps of:	system, and more particularly to the allocation of address space in a virtual memory system for a computer." Dirks at 1:5-8. In virtual memory technology, the addresses that are assigned for use by individual programs are distinct from the actual physical addresses of the main memory. The addresses which are allocated to the programs are often referred to as "logical" or "virtual" or "effective" addresses, to distinguish them from the "physical" addresses of the main memory. Whenever a program requires access to memory, it makes a call to a logical address within its assigned address space. A memory manager associates this logical address with a physical address in the main memory, where the information called for by the program is actually stored. The identification of each physical address that corresponds to a logical address is commonly stored in a data structure known as a page table. This term is derived from the practice of dividing the memory into individually addressable blocks known as "pages". <i>Id.</i> at 1:33-50.
	The relationship between the virtual address, page table, and physical address is shown in Figure 3 reproduced below. <i>Id.</i> at Figure 3.

29

30

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 6,119,214 to Dirks ("Dirks") alone and in combination with U.S. Patent No. 5,724,538 to Morris et al. ("Morris")
	of the hashing function is the physical address of a page table entry group. Whenever a call is made to a particular virtual address, the individual page table entries within an addressed group are then checked, one by one, to determine whether they correspond to the virtual address that generated a page table search. Thus, it can be seen that it takes longer to locate an entry that resides in the last position in the group, relative to an entry in the first position in the group. <i>Id. at 9:36-46</i> .
	Because each page table entry stored in a page table entry group has the same hash address, the page table entries are being stored in a linked list; such an inherent characteristic necessarily flows from the teachings of the applied prior art. <i>See id</i> .
	To the extent that Bedrock argues that Dirks does not anticipate Claims $1 - 8$ because the page table entry groups are not inherently stored in a linked list, it would have been obvious to one of ordinary skill in the art to store the page table entries of a page table group in a linked list. The admitted prior art in the background of the '120 patent discloses that linked lists/external chaining were already common place to resolve collisions within hash tables. The '120 patent at 1:34-2:6. Thus, Dirks and the admitted prior art of the '120 patent show that one of ordinary skill in the art understood how to use linked lists/external chaining to resolve collisions within hash tables, and would recognize that it would improve similar systems and methods in the same way.
	Moreover, as shown in Figure 3 of Morris, it was well known in the prior art to have page tables entries distributed by a hash function, such as those in Dirks, and then store the page table entries in a hash table using linked lists or

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 6,119,214 to Dirks ("Dirks") alone and in combination with U.S. Patent No. 5,724,538 to Morris et al. ("Morris")
	external chaining. Morris at 3:54-4:24, Figure 3. 203 203 VIRTUAL PAGE NUMBER HASH FUNCTION HASH FUNCTION HASH FUNCTION HASH FUNCTION PHYSICAL FAGE POINTER 305 PHYSICAL FAGE POINTER 311 (PROR ART) FIG. 3
	 <i>Id.</i> at Figure 3. As described by Morris: FIG. 3 illustrates the process of retrieving the physical page information given the virtual page number as would be required to update the TLB after a TLB miss. As described above, the virtual to physical mappings are maintained in a page table. For translating a given virtual address to a physical address, one

32

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 6,119,214 to Dirks ("Dirks") alone and in combination with U.S. Patent No. 5,724,538 to Morris et al. ("Morris")
	 approach is to perform a many-to-one function (hash) on the virtual address to form an index into the page table. This gives a pointer to a linked list of entries. These entries are then searched for a match. To determine a match, the virtual page number is compared to an entry in the page table (virtual tag). If the two are equal, that page table entry provides the physical address translation. <i>Id.</i> at 3:54-65. In the example illustrated, a hash function 301 is performed on the virtual page number 203 to form an index. This index is an offset into the page table 303. As shown, the index is 0, that is, the index points to the first entry 305 in the page table. Each entry in the page table consists of multiple pages but turiently.
	entry in the page table consists of multiple parts but typically contains at least a virtual tag 307, a physical page 309 and a pointer 311. If the virtual page number 203 equals the virtual tag 307, then physical page 309 gives the physical (real) memory page address desired. If the virtual tag does not match, then the pointer 311 points to a chain of entries in memory which contain virtual to physical translation information. The additional information contained in the chain is needed as more than one virtual page number can hash to the same page table entry. <i>Id.</i> at 3:66-4:12.
	As shown, pointer 311 points to a chain segment 313. This chain segment contains the same type of information as the page table. As before, the virtual page number 203 is compared to the next virtual tag 315 to see if there is a match. If a match occurs then the associated physical page 317 gives the address

33

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 6,119,214 to Dirks ("Dirks") alone and in combination with U.S. Patent No. 5,724,538 to Morris et al. ("Morris")
	of the physical memory page desired. If a match does not occur, then the pointer 319 is examined to locate the next chain segment, if any. If the pointer 319 does not point to another chain segment, as shown, then a page fault has occurred. A page fault software program is then used, as described in association with FIG. 1, to update the page table. <i>Id.</i> at 4:12-24.
	As both Dirks and Morris disclose systems and methods for allocating memory address controls using page table entries that are stored in hash tables, one of ordinary skill in the art would have understood how to combine the hashed page table with linked lists taught in Morris with Dirks. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. Additionally, one of ordinary skill in the art would recognize that the result of combining Dirks with Morris would be nothing more than the predictable use of prior art elements according to their established functions. The result would simply be Dirks' page table being implemented with a hashing function using linked lists/external chaining.
	By way of further example, one of ordinary skill in the art would have combined linked lists as taught by these references and understood by one of ordinary skill in the art to the system disclosed in the admitted prior art, and would have seen the benefits of doing so. One possible benefit, for example, is hash table collision resolution.
	Dirks discloses VSIDs that automatically expire. Dirks at 6:24-30. At some point in time, the VSID becomes inactive. This can occur, for example, when a thread terminates. In the inactive state, pages within the

Asserted C U.S. Pat. N	laims From o. 5,893,120	U.S. Patent No. 6,119,214 to Dirks ("Dirks") alone and in combination with U.S. Patent No. 5,724,538 to Morris et al. ("Morris")
		virtual address range of the VSID are still mapped to the page table. However, the data contained in the associated pages of physical memory is no longer being accessed by the CPU. <i>Id</i> .
		Thus, the VSIDs are expired or obsolete. Id.
[3a] accessing the linked list of records,	[7a] accessing a linked list of records having same hash address.	Dirks discloses accessing a linked list of records. Dirks also discloses accessing a linked list of records having same hash address.
		For example, Dirks inherently discloses that page table entry groups, which are comprised of page table entries, are stored in a linked list. <i>See id.</i> at 9:32-46.
		For example, in some page tables, a suitable number of entries are grouped together, and the addressing of entries is done by groups. In other words, the page table address PTA that results from the operation of the hashing function is the physical address of a page table entry group. Whenever a call is made to a particular virtual address, the individual page table entries within an addressed group are then checked, one by one, to determine whether they correspond to the virtual address that generated a page table search. Thus, it can be seen that it takes longer to locate an entry that resides in the last position in the group, relative to an entry in the first position in the group. <i>Id. at 9:36-46</i> .
		Because each page table entry stored in a page table entry group has the same hash address, the page table entries are being stored in a linked list; such an inherent characteristic necessarily flows from the teachings of the applied prior art. <i>See id.</i>

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 6,119,214 to Dirks ("Dirks") alone and in combination with U.S. Patent No. 5,724,538 to Morris et al. ("Morris")
	To the extent that Bedrock argues that Dirks does not anticipate Claims $1 - 8$ because the page table entry groups are not inherently stored in a linked list, it would have been obvious to one of ordinary skill in the art to store the page table entries of a page table group in a linked list. The admitted prior art in the background of the '120 patent discloses that linked lists/external chaining were already common place to resolve collisions within hash tables. '120 patent at 1:34-2:6. Thus, Dirks and the admitted prior art of the '120 patent show that one of ordinary skill in the art understood how to use linked lists/external chaining to resolve collisions within hash tables, and would recognize that it would improve similar systems and methods in the same way.
	Moreover, as shown in Figure 3 of Morris, it was well known in the prior art to have page tables entries distributed by a hash function, such as those in Dirks,
	and then store the page table entries in a hash table using linked lists or external chaining. Morris at 3:54-4:24, Figure 3.

36

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 6,119,214 to Dirks ("Dirks") alone and in combination with U.S. Patent No. 5,724,538 to Morris et al. ("Morris")
	203 VIRTUAL PAGE NUMBER HASH FUNCTION NDEX PAGE TABLE VIRTUAL TAG 303 VIRTUAL TAG 305 PHYSICAL PAGE POINTER 315 VIRTUAL TAG 309 PHYSICAL PAGE 319 POINTER 311 (PROR ART) FIG. 3
	<i>Id.</i> at Figure 3.As described by Morris:FIG. 3 illustrates the process of retrieving the physical page information given the virtual page number as would be required
	to update the TLB after a TLB miss. As described above, the virtual to physical mappings are maintained in a page table. For translating a given virtual address to a physical address, one

37

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 6,119,214 to Dirks ("Dirks") alone and in combination with U.S. Patent No. 5,724,538 to Morris et al. ("Morris")
	 approach is to perform a many-to-one function (hash) on the virtual address to form an index into the page table. This gives a pointer to a linked list of entries. These entries are then searched for a match. To determine a match, the virtual page number is compared to an entry in the page table (virtual tag). If the two are equal, that page table entry provides the physical address translation. <i>Id.</i> at 3:54-65. In the example illustrated, a hash function 301 is performed on the virtual page number 203 to form an index. This index is an offset into the page table 303. As shown, the index is 0, that is,
	the index points to the first entry 305 in the page table. Each entry in the page table consists of multiple parts but typically contains at least a virtual tag 307, a physical page 309 and a pointer 311. If the virtual page number 203 equals the virtual tag 307, then physical page 309 gives the physical (real) memory page address desired. If the virtual tag does not match, then the pointer 311 points to a chain of entries in memory which contain virtual to physical translation information. The additional information contained in the chain is needed as more than one virtual page number can hash to the same page table entry. <i>Id.</i> at 3:66-4:12.
	As shown, pointer 311 points to a chain segment 313. This chain segment contains the same type of information as the page table. As before, the virtual page number 203 is compared to the next virtual tag 315 to see if there is a match. If a match occurs then the associated physical page 317 gives the address

38
Asserted Cl U.S. Pat. No	laims From o. 5,893,120	U.S. Patent No. 6,119,214 to Dirks ("Dirks") alone and in combination with U.S. Patent No. 5,724,538 to Morris et al. ("Morris")
		 of the physical memory page desired. If a match does not occur, then the pointer 319 is examined to locate the next chain segment, if any. If the pointer 319 does not point to another chain segment, as shown, then a page fault has occurred. A page fault software program is then used, as described in association with FIG. 1, to update the page table. <i>Id.</i> at 4:12-24. As both Dirks and Morris disclose systems and methods for allocating memory address controls using page table entries that are stored in hash tables, one of ordinary skill in the art would have understood how to combine the hashed page table with linked lists taught in Morris with Dirks. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. Additionally, one of ordinary skill in the art would recognize that the result of combining Dirks with Morris would be nothing more than the predictable use of prior art elements according to their established functions. The result would simply be Dirks' page table being implemented with a hashing function using linked lists/external chaining. By way of further example, one of ordinary skill in the art would have combined linked lists as taught by these references and understood by one of ordinary skill in the art to the system disclosed in the admitted prior art, and methods have for a follows.
		would have seen the benefits of doing so. One possible benefit, for example, is hash table collision resolution.
[3b] identifying at least some of the automatically expired ones of the records,	[7b] identifying at least some of the automatically expired ones of the records,	Dirks discloses identifying at least some of the automatically expired ones of the records.
and		For example, Dirks discloses hash table search means such as searching, creation, deletion, and sweeping. Dirks at 5:31-47, 5:66-6:15, 5:39-44, 9:39-

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 6,119,214 to Dirks ("Dirks") alone and in combination with U.S. Patent No. 5,724,538 to Morris et al. ("Morris")
	 47. Whenever a call is made to a particular virtual address, the individual page table entries within an addressed group are then checked, one by one, to determine whether they correspond to the virtual address that generated a page table search. Thus, it can be seen that it takes longer to locate an entry that resides in the last position in the group, relative to an entry in the first position in the group. <i>Id.</i> at 9:39-47. For example, Dirks inherently discloses that page table entry groups, which are comprised of page table entries, are stored in a linked list. <i>See id.</i> at 9:32-46. For example, in some page tables, a suitable number of entries are grouped together, and the addressing of entries is done by groups. In other words, the page table address PTA that results from the operation of the hashing function is the physical address of a page table entry group. Whenever a call is made to a particular virtual address, the individual page table entries within an addressed group are then checked, one by one, to determine whether they correspond to the virtual address that generated a page table search. Thus, it can be seen that it takes longer to locate an entry that resides in the last position in the group, relative to an entry in the first position in the group. <i>Id.</i> Because each page table entry stored in a page table entry group has the same hash address, the page table entries are being stored in a linked list; such an inherent characteristic necessarily flows from the teachings of the applied prior art. <i>See id.</i>

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 6,119,214 to Dirks ("Dirks") alone and in combination with U.S. Patent No. 5,724,538 to Morris et al. ("Morris")
	To the extent that Bedrock argues that Dirks does not anticipate Claims $1 - 8$ because the page table entry groups are not inherently stored in a linked list, it would have been obvious to one of ordinary skill in the art to store the page table entries of a page table group in a linked list. The admitted prior art in the background of the '120 patent discloses that linked lists/external chaining were already common place to resolve collisions within hash tables. The '120 patent at 1:34-2:6. Thus, Dirks and the admitted prior art of the '120 patent show that one of ordinary skill in the art understood how to use linked lists/external chaining to resolve collisions within hash tables, and would recognize that it would improve similar systems and methods in the same way.
	Moreover, as shown in Figure 3 of Morris, it was well known in the prior art to have page tables entries distributed by a hash function, such as those in Dirks, and then store the page table entries in a hash table using linked lists or external chaining. Morris at 3:54-4:24, Figure 3.

U.S. Pat. No. 5,893,120	U.S. Patent No. 6,119,214 to Dirks ("Dirks") alone and in combination with U.S. Patent No. 5,724,538 to Morris et al. ("Morris")
	201 203 VIRTUAL PAGE NUMBER HASH FUNCTION INDEX PAGE TABLE VIRTUAL TAG 303 VIRTUAL TAG 305 VIRTUAL TAG PHYSICAL PAGE POINTER 311 VIRTUAL TAG 309 VIRTUAL TAG 317 VIRTUAL TAG VIRTUAL TAG
	(PRIOR ART) FIG. 3
	<i>Id.</i> at Figure 3.
	As described by Morris:
	FIG. 3 illustrates the process of retrieving the physical page information given the virtual page number as would be required to update the TLB after a TLB miss. As described above, the virtual to physical mappings are maintained in a page table. For translating a given virtual address to a physical address, one approach is to perform a many-to-one function (hash) on the virtual address to form an index into the page table. This gives a

US2008 1661503.4

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 6,119,214 to Dirks ("Dirks") alone and in combination with U.S. Patent No. 5,724,538 to Morris et al. ("Morris")
	pointer to a linked list of entries. These entries are then searched for a match. To determine a match, the virtual page number is compared to an entry in the page table (virtual tag). If the two are equal, that page table entry provides the physical address translation. <i>Id.</i> at 3:54-65.
	In the example illustrated, a hash function 301 is performed on the virtual page number 203 to form an index. This index is an offset into the page table 303. As shown, the index is 0, that is, the index points to the first entry 305 in the page table. Each entry in the page table consists of multiple parts but typically contains at least a virtual tag 307, a physical page 309 and a pointer 311. If the virtual page number 203 equals the virtual tag 307, then physical page 309 gives the physical (real) memory page address desired. If the virtual tag does not match, then the pointer 311 points to a chain of entries in memory which contain virtual to physical translation information. The additional information contained in the chain is needed as more than one virtual page number can hash to the same page table entry. <i>Id.</i> at 3:66-4:12.
	As shown, pointer 311 points to a chain segment 313. This chain segment contains the same type of information as the page table. As before, the virtual page number 203 is compared to the next virtual tag 315 to see if there is a match. If a match occurs then the associated physical page 317 gives the address of the physical memory page desired. If a match does not occur, then the pointer 319 is examined to locate the next chain

43

Asserted C U.S. Pat. No	laims From o. 5,893,120	U.S. Patent No. 6,119,214 to Dirks ("Dirks") alone and in combination with U.S. Patent No. 5,724,538 to Morris et al. ("Morris")
		segment, if any. If the pointer 319 does not point to another chain segment, as shown, then a page fault has occurred. A page fault software program is then used, as described in association with FIG. 1, to update the page table. <i>Id.</i> at 4:12-24.
		As both Dirks and Morris disclose systems and methods for allocating memory address controls using page table entries that are stored in hash tables, one of ordinary skill in the art would have understood how to combine the hashed page table with linked lists taught in Morris with Dirks. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. Additionally, one of ordinary skill in the art would recognize that the result of combining Dirks with Morris would be nothing more than the predictable use of prior art elements according to their established functions. The result would simply be Dirks' page table being implemented with a hashing function using linked lists/external chaining.
		By way of further example, one of ordinary skill in the art would have combined linked lists as taught by these references and understood by one of ordinary skill in the art to the system disclosed in the admitted prior art, and would have seen the benefits of doing so. One possible benefit, for example, is hash table collision resolution.
[3c] removing at least some of the automatically expired records from the	[7c] removing at least some of the automatically expired records from the	Dirks discloses removing at least some of the automatically expired records from the linked list when the linked list is accessed.
linked list when the linked list is accessed.	linked list when the linked list is accessed, and	For example, as discussed above at some point VSIDs become inactive. Dirks at 6:24-30. These expired or inactive VSIDs are not removed "in one colossal step, for example after all of the free VSIDs have been allocated. Rather, the sweeping is carried out in an incremental, ongoing manner to avoid significant

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 6,119,214 to Dirks ("Dirks") alone and in combination with U.S. Patent No. 5,724,538 to Morris et al. ("Morris")
	interruptions in the running of programs." <i>Id.</i> at 6:39-44. "More specifically, each time that a new range of addresses is allocated to a program, a limited number of entries in the page table are examined, to determine whether the addresses associated with those entries are no longer in use and the entries can be removed from the page table." <i>Id.</i> at 3:14-18. Moreover, Dirks similarly teaches that a limited number of entries can be examined each time a thread is deleted. <i>Id.</i> at 10:23-24.
	A flowchart which depicts the operation of the address allocation portion of a memory manager, in accordance with the present invention, is illustrated in FIG. 6. Referring thereto, operation begins when a request for address space is generated (Step 10). This can occur when a thread is created, for example. In response thereto, the operating system checks the free list to determine whether a free VSID is available (Step 12). If so, a free VSID is allocated to the thread that generated the request (Step 14). In the case of an application, two or more VSIDs might be assigned. If no free VSID is available at Step 12, a failure status is returned (Step 18). In practice, however, such a situation should not occur, since the process of the present invention ensures that free VSIDs are always available. <i>Id.</i> at 7:66-8:12.
	After the new VSID has been allocated, the system checks a flag RFLG to determine whether a recycle sweep is currently in progress (Step 20). If there is no sweep in progress, i.e. RFLG is not equal to one, a determination is made whether a sweep should be initiated. This is done by checking whether the inactive list is full, i.e. whether it contains x entries (Step 22). If the number of entries I on the inactive list is less than x, no further action is taken, and processing control returns to the

45

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 6,119,214 to Dirks ("Dirks") alone and in combination with U.S. Patent No. 5,724,538 to Morris et al. ("Morris")
	operating system (Step 24). If, however, the inactive list is full at this time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are transferred to the recycle list, and an index n is reset to 1 (Step 28). The system then sweeps a predetermined number of page table entries PT_i on the page table, to detect whether any of them are inactive, i.e. their associated VSID is on the recycle list (Step 30). The predetermined number of entries that are swept is identified as <i>k</i> , where
	$k = \frac{\text{total number of page table entries}}{\text{maximum number of active threads}}$ <i>Id.</i> at 8:12-30.
	"[If for example], $k=10000/500=20$. For a given value of the index n, therefore, the system sweeps table entries $PT_{k(n-1)}$ to $PT_{(n)-1}$. Thus, during the first sweep, table entries PT_0 to PT_{19} are examined in the example given above." <i>Id.</i> at 8:34-37.
	"If a recycling sweep is already in progress, i.e. the response is affirmative at Step 20, the index n is incremented (Step 32) and a sweep of the next k entries is carried out. Thus, where n=2, entries $PT_{[20]}$ to PT_{39} will be examined." <i>Id.</i> at 8:38-41.
	The process continues in this manner, with k entries in the page table being examined each time a free VSID is allocated. Each entry is examined to determine whether it contains a mapping for a VSID on the recycle list. If it does, that entry is removed from the page table. <i>Id.</i> at 8:42-46.

Asserted Claims From	U.S. Patent No. 6,119,214 to Dirks ("Dirks") alone and in combination
U.S. Pat. No. 5,893,120	with U.S. Patent No. 5,724,538 to Morris et al. ("Morris")
	After each sweep, the system determines whether all entries in the page table have been checked (Step 36). This situation will occur when n=x. Once all of the entries have been examined, the VSIDs in the recycle list are transferred to the free list (Step 38), yielding x new VSIDs that are available to be allocated. In addition, the recycle sweep flag RFLG is reset, and control is then returned to the program. If all of the entries in the page table have not yet been checked, i.e. the response is negative at Step 36, control is directly returned to the application program, at Step 24. <i>Id.</i> at 8:47-56.

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 6,119,214 to Dirks ("Dirks") alone and in combination with U.S. Patent No. 5,724,538 to Morris et al. ("Morris")
[7d] inserting, retrieving or deleting one of the records from the system	Dirks discloses inserting, retrieving or deleting one of the records from the system following the step of removing.
following the step of removing.	For example, as discussed above at some point VSIDs become inactive. <i>Id.</i> at 6:24-30. These expired or inactive VSIDs are not removed "in one colossal step, for example after all of the free VSIDs have been allocated. Rather, the sweeping is carried out in an incremental, ongoing manner to avoid significant interruptions in the running of programs." <i>Id.</i> at 6:39-44 "More specifically, each time that a new range of addresses is allocated to a program, a limited number of entries in the page table are examined, to determine whether the addresses associated with those entries are no longer in use and the entries can be removed from the page table." <i>Id.</i> at 3:14-18. Moreover, Dirks similarly teaches that a limited number of entries can be examined each time a thread is deleted. <i>Id.</i> at 10:23-24
	A flowchart which depicts the operation of the address allocation portion of a memory manager, in accordance with the present invention, is illustrated in FIG. 6. Referring thereto, operation begins when a request for address space is generated (Step 10). This can occur when a thread is created, for example. In response thereto, the operating system checks the free list to determine whether a free VSID is available (Step 12). If so, a free VSID is allocated to the thread that generated the request (Step 14). In the case of an application, two or more VSIDs might be assigned. If no free VSID is available at Step 12, a failure status is returned (Step 18). In practice, however, such a situation should not occur, since the process of the present invention ensures that free VSIDs are always available. <i>Id.</i> at 7:66-8:12.

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 6,119,214 to Dirks ("Dirks") alone and in combination with U.S. Patent No. 5,724,538 to Morris et al. ("Morris")
	After the new VSID has been allocated, the system checks a flag RFLG to determine whether a recycle sweep is currently in progress (Step 20). If there is no sweep in progress, i.e. RFLG is not equal to one, a determination is made whether a sweep should be initiated. This is done by checking whether the inactive list is full, i.e. whether it contains x entries (Step 22). If the number of entries I on the inactive list is less than x, no further action is taken, and processing control returns to the operating system (Step 24). If, however, the inactive list is full at this time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are transferred to the recycle list, and an index n is reset to 1 (Step 28). The system then sweeps a predetermined number of page table entries PT _i on the page table, to detect whether any of them are inactive, i.e. their associated VSID is on the recycle list (Step 30). The predetermined number of entries that are swept is identified as <i>k</i> , where
	$k = \frac{\text{total number of page table entries}}{\text{maximum number of active threads}}$ $Id. \text{ at 8:12-30.}$ "[If for example], $k=10000/500=20$. For a given value of the index n, therefore, the system sweeps table entries $\text{PT}_{k(n-1)}$ to $\text{PT}_{(n)-1}$. Thus, during the first sweep, table entries PT_0 to PT_{19} are examined in the example given above." <i>Id.</i> at 8:34-37. "If a recycling sweep is already in progress, i.e. the response is affirmative at Step 20, the index n is incremented (Step 32) and a sweep of the next <i>k</i> entries is carried out. Thus, where n=2, entries PT20 to PT ₃₉ will be examined." <i>Id.</i> at 8:38-41.

The process continues in this manner with k antries in the page table	Asserted Claims Fr U.S. Pat. No. 5,893,
here process continues in this manner, with k entries in the page table being examined each time a free VSID is allocated. Each entry is examined to determine whether it contains a mapping for a VSID on the recycle list. If it does, that entry is removed from the page table. <i>Id.</i> at 8:42-46. After each sweep, the system determines whether all entries in the page table have been checked (Step 36). This situation will occur when n=x. Once all of the entries have been examined, the VSIDs in the recycle list are transferred to the free list (Step 38), yielding x new VSIDs that are available to be allocated. In addition, the recycle sweep flag RFLG is reset, and control is then returned to the program. If all of the entries in the page table have not yet been checked, i.e. the response is negative at Step 36, control is directly returned to the application program, at Step 24. <i>Id.</i> at 8:47-56.	

51

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 6,119,214 to Dirks ("Dirks") alone and in combination with U.S. Patent No. 5,724,538 to Morris et al. ("Morris")
		As step 24 returns to the application program, a VSID will be inserted, searched for, or deleted following the step of removing. <i>Id.</i> at Figure 6, 8:55-56. For example, after step 24, a VSID will be assigned with the next request for address 10, which would have followed the step of removing. <i>Id.</i>
4. The method according to claim 3 further including the step of dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed.	8. The method according to claim 7 further including the step of dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed.	 Dirks discloses dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed. For example, "each time that a new range of addresses is allocated to a program, a limited number of entries in the page table are examined, to determine whether the addresses associated with those entries are no longer in use and the entries can be removed from the page table." <i>Id.</i> at 3:14-18. "Thus, rather than halting the operation of the computer for a considerable period of time to scan the entire page table when a logical address area is deleted, the memory manager of the present invention carries out a limited, time-bounded examination upon each address allocation." <i>Id.</i> at 3:25-29. Moreover, Dirks similarly teaches that a limited number of entries can be examined each time a thread is deleted. <i>Id.</i> at 10:23-24. In operation, each time a VSID is assigned from the free list to a new application or thread, a fixed number of entries in the page table are scanned to determine whether they have become inactive, by checking them against the VSIDs on the recycle list. Each entry which is identified as being inactive is removed from the page table. After all of the entries in the page table have been examined in this manner, the VSIDs in the recycle list can be transferred to the free list, since all of their associated page table entries will have been removed. This approach thereby guarantees that a

Asserted Claims From	U.S. Patent No. 6,119,214 to Dirks ("Dirks") alone and in combination
U.S. Pat. No. 5,893,120	with U.S. Patent No. 5,724,538 to Morris et al. ("Morris")
	predetermined number of VSIDs are always available in the free list without requiring a time-consuming scan of the complete page table at once. <i>Id.</i> at 7:2-14.

54

Joint Invalidity Contentions & Production of Documents

Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 6,119,214 to Dirks ("Dirks") alone and in combination with U.S. Patent No. 5,724,538 to Morris et al. ("Morris")
	As shown in Figure 6, After the new VSID has been allocated, the system checks a flag RFLG to determine whether a recycle sweep is currently in progress (Step 20). If there is no sweep in progress, i.e. RFLG is not equal to one, a determination is made whether a sweep should be initiated. This is done by checking whether the inactive list is full, i.e. whether it contains x entries (Step 22). If the number of entries I on the inactive list is less than x, no further action is taken, and processing control returns to the operating system (Step 24). If, however, the inactive list is full at this time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are transferred to the recycle list, and an index n is reset to 1 (Step 28). The system then sweeps a predetermined number of page table entries PT _i on the page table, to detect whether any of them are inactive, i.e. their associated VSID is on the recycle list (Step 30). The predetermined number of entries that are swept is identified as k where:
	$k = \frac{\text{total number of page table entries}}{\text{maximum number of active threads}}$ <i>Id.</i> at 8:12-30.
	Dirks discloses that any approach can be employed to determine the number of entries to be examined during each step of the sweeping process. <i>Id.</i> at 7:37-40. As stated in Dirks:
	Any other suitable approach can be employed to determine the number of entries to be examined during each step of the sweeping process. In this regard, it is not necessary that the number of examined entries be fixed for

56

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 6,119,214 to Dirks ("Dirks") alone and in combination with U.S. Patent No. 5,724,538 to Morris et al. ("Morris")
	each step. Rather, it might vary from one step to the next. The only criterion is that the number of entries examined on each step be such that all entries in the page table are examined in a determinable amount of time or by the occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.
	<i>Id.</i> at 7:38-46. Thus, Dirks dynamically determines the maximum number of records to sweep/remove by calculating a value k . <i>Id.</i> at 7:15-46, 7:66-8:56.
	Additionally, it would have been obvious to one of ordinary skill in the art to modify the system disclosed in Dirks to dynamically determine the maximum number of expired records to remove in the accessed linked list of records. It is a fundamental concept in computer science and the relevant art that any variable or parameter affecting any aspect of a system can be dynamically determined based on information available to the system. One of ordinary skill in the art would have been motivated to combine the system disclosed in Dirks with the fundamental concept of dynamically determining the maximum number of expired records to remove in an accessed linked list of records to solve a number of potential problems. For example, the removal of expired records described in Dirks can be burdensome on the system, adding to the system's load and slowing down the system's processing. Moreover, the removal could also force an interruption in real-time processing as the processing waits for the removal to complete. Indeed, part of the motivation for the system disclosed in Dirks is avoiding these problems. One of ordinary skill in the art would have known that dynamically determining the maximum number to remove would limit the burden on the system and bound the length of any real-time interruption to prevent delays in processing. Indeed, Nemes concedes that such dynamic determination was obvious when he states in the '120 patent that "Ial person skilled in the art will appreciate that the technique

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 6,119,214 to Dirks ("Dirks") alone and in combination with U.S. Patent No. 5,724,538 to Morris et al. ("Morris")
	of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15.
	To the extent that dynamically determining a maximum number of expired records is not disclosed by Dirks, it is disclosed by Linux 2.0.1, which describes dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed. It would have been obvious to combine Linux 2.0.1 with Dirks. For example, both Linux 2.0.1 and Dirks describe systems and methods for performing data storage and retrieval using known programming techniques to yield a predictable result.
	When invoked, the function rt_cache_add automatically increments an integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359. When the function rt_cache_add removes an expired record, the function rt_cache_add decrements the variable rt_cache_size. See Linux 2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the number of records in the hash table (i.e., ip_rt_hash_table). Because the function rt_cache_add automatically increments and decrements the variable rt_cache_size is determined dynamically.
	Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1. The function rt_garbage_collect_1 loops through each of the linked lists in the ip_rt_hash_table global variable. <i>See</i> Linux 2.0.1, route.c at lines 1122-1138. In this way, the function rt_garbage_collect_1

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 6,119,214 to Dirks ("Dirks") alone and in combination with U.S. Patent No. 5,724,538 to Morris et al. ("Morris")
		accesses the linked list. When the function rt_garbage_collect_1 identifies a record that is expired, the function rt_garbage_collect_1 decrements the variable rt_cache_size and frees the record. <i>See</i> Linux 2.0.1, route.c at lines 1128-1135.
		Because all records in the linked list can be expired and all records in the hash table can be in the linked list, the variable rt_cache_size can represent a dynamically determined maximum number of expired ones of the records to remove when function rt_garbage_collect_1 accesses the linked list.
		Furthermore, the function rt_cache_add determines whether the number of records in the hash table exceeds a predetermined threshold RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_cache_add invokes a function rt_garbage_collect. <i>See</i> Linux 2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect invokes a function rt_garbage_collect_1. <i>See</i> Linux 2.0.1, route.c at line 1293. The function rt_garbage_collect invokes a function
		The function rt_garbage_collect_1 loops through each linked list in the hash table. <i>See</i> Linux 2.0.1, route.c at lines 1116-1132. For each linked list in the hash table, the function rt_garbage_collect_1 looks at each record in the linked list. <i>See</i> Linux 2.0.1, route.c at lines 1120-1131. For each record in a linked list, the function rt_garbage_collect_1 determines whether the record's last use time plus the record's expiration factor is later than the current time. <i>See</i> Linux 2.0.1, route.c at line 1122. If the record's last

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 6,119,214 to Dirks ("Dirks") alone and in combination with U.S. Patent No. 5,724,538 to Morris et al. ("Morris")
	use time plus the record's expiration factor is less than the current time, the function rt_garbage_collect_1 removes the record from the linked list. <i>See</i> Linux 2.0.1, route.c at lines 1124-1130. The record's expiration factor is based on a variable expire and the record's reference count. <i>See</i> Linux 2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed timeout value RT_CACHE_TIMEOUT. <i>See</i> Linux 2.0.1, route.c at line 1110.
	After looping through all of the linked lists in this manner, the function rt_garbage_collect_1 determines again whether the number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX. <i>See</i> Linux 2.0.1, route.c at line 1133. If the number of items in the hash table is still greater than the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves the variable expire and loops through each of the linked lists in the hash table. <i>See</i> Linux 2.0.1, route.c at line 1135. In this way, the function rt_garbage_collect_1 can remove additional records from the linked lists in the hash table. The function rt_garbage_collect_1 repeats this process until the total number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX.
	Under Bedrock's proposed claim constructions, the records removed by the function rt_garbage_collect_1 are "expired" records. That is, the records removed by the function rt_garbage_collect_1 are data items which after a limited time or after the occurrence of some event become obsolete, such that their presence in the storage system is no longer needed or desired. The function rt_cache_add only removes a record from a linked list when

Joint Invalidity Contentions & Production of Documents

Asserted C	laims From	U.S. Patent No. 6,119,214 to Dirks ("Dirks") alone and in combination
U.S. Pat. No	5. 5,893,120	with U.S. Patent No. 5,724,538 to Morris et al. ("Morris")
		the record's last use time plus the fixed timeout value RT_CACHE_TIMEOUT is less than the current time and the record's reference count is zero. <i>See</i> Linux 2.0.1, route.c at line 1369. Thus, the maximum number of records that the function rt_cache_add can remove from a given linked list is limited to those records whose reference counts are zero. In contrast, the maximum number of records that the function rt_garbage_collect_1 can remove from a given linked list is not limited to those records whose reference counts are zero. <i>See</i> Linux 2.0.1, route.c at line 1122. Rather, the function rt_garbage_collect_1 can remove records whose reference counts are zero and records whose reference counts are greater than zero. Consequently, the maximum number of records that the function rt_garbage_collect_1 can remove from a linked list is different than the maximum number of records that the function rt_cache_add can remove from a linked list.

61

Asserted Claims From U.S. Pat. No. 5,893,120		Mellender et al., "Object-Oriented, Logic, and Database Programming Tool with Garbage Collection," U.S. Patent No. 4,989,132 (issued Jan. 29, 1991) ("Mellender")
1. An information storage and retrieval system, the system comprising:	5. An information storage and retrieval system, the system comprising:	To the extent the preamble is a limitation, Mellender discloses an information storage and retrieval system.
		For example, Mellender discloses that "[a] database residing in the mass memory stores objects and components of logic programs as objects in a common data structure format, applications data, and application stored as compiled interpreter code. The database is managed by an [sic] database manager that represents objects and components of the logic programming language in the common data structure format as objects and is responsive to calls for retrieving and storing objects in the database and for automatically deleting objects from the database when they have become obsolete." U.S. Patent No. 4,989,132 (issued Jan. 29, 1991) at 2:22-33.
[1a] a linked list to store and provide access to records stored in a memory of the system, at least some of the records automatically expiring,	[5a] a hashing means to provide access to records stored in a memory of the system and using an external chaining technique to store the records with same hash address, at least	Mellender discloses a linked list to store and provide access to records stored in a memory of the system, at least some of the records automatically expiring. Mellender also discloses a hashing means to provide access to records stored in a memory of the system and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring.
	some of the records automatically expiring,	For example, Mellender discloses that "[a] database residing in the mass memory stores objects and components of logic programs as objects in a common data structure format, applications data, and application stored as compiled interpreter code. The database is managed by an [sic] database manager that represents objects and components of the logic programming language in the common data structure format as objects and is responsive to calls for retrieving and storing objects in the database and for automatically deleting objects from the database when they have become obsolete." <i>Id</i> .

Joint Invalidity Contentions & Production of Documents

1

Asserted Claims From U.S. Pat. No. 5,893,120		Mellender et al., "Object-Oriented, Logic, and Database Programming Tool with Garbage Collection," U.S. Patent No. 4,989,132 (issued Jan. 29, 1991) ("Mellender")
		Furthermore, Mellender discloses that "[t]he database 40 consists of 2 UNIX files: db.key and db.prime. The key file provides associative access to the prime file: the access manager hashes into the key file (all of whose records are of fixed length), and finds the address (file offset) of the object in the prime file." <i>Id.</i> at 54:50-53.
		Furthermore, Mellender discloses that "[c]ollisions in the key file are handled by chaining the objects in the prime file together. If the object at the address indicated by the key file record does not have an id (oop, or string) that matches the target sought, the access manager 58 follows the 'overflow' chain in the records in the prime file, checking the target against the id until it is found. Fastest access to newest objects is provided by placing them first in the overflow chain." <i>Id.</i> at 55:20-27.
		"If the key entry does exist a collision results. The access manager 58 fetches the record pointed to by the key, updates the new record's overflow pointer to point to the record currently pointed to by the key record, and then updates the key record to point to the new record being added." <i>Id.</i> at 56:14-19.
		Furthermore, Mellender states that "[g]arbage is defined as objects that are no longer reachable, and therefore can be safely discarded. Since there is no explicit delete command available to the programmer in Smalltalk language, removal of objects is entirely up to the system." <i>Id.</i> at 59:41-45.
[1b] a record search means	[5b] a record search means	Mellender discloses a record search means utilizing a search key to access the
utilizing a search key to access the linked list.	utilizing a search key to access a linked list of	linked list. Mellender also discloses a record search means utilizing a search key to access a linked list of records having the same hash address.
Joint Invalidity Contentions & Production of Documents		2 Case No. 6:09-CV-549-LED

Asserted Claims From U.S. Pat. No. 5,893,120		Mellender et al., "Object-Oriented, Logic, and Database Programming Tool with Garbage Collection," U.S. Patent No. 4,989,132 (issued Jan. 29, 1991) ("Mellender")
	records having the same	
	hash address,	For example, Mellender discloses that "[t]he database 40 consists of 2 UNIX files: db.key and db.prime. The key file provides associative access to the prime file: the access manager hashes into the key file (all of whose records are of fixed length), and finds the address (file offset) of the object in the prime file." <i>Id.</i> at 54:50-53
		Furthermore, Mellender discloses that "[c]ollisions in the key file are handled by chaining the objects in the prime file together. If the object at the address indicated by the key file record does not have an id (oop, or string) that matches the target sought, the access manager 58 follows the 'overflow' chain in the records in the prime file, checking the target against the id until it is found. Fastest access to newest objects is provided by placing them first in the overflow chain." <i>Id.</i> at 55:20-27.
		"If the key entry does exist a collision results. The access manager 58 fetches the record pointed to by the key, updates the new record's overflow pointer to point to the record currently pointed to by the key record, and then updates the key record to point to the new record being added." <i>Id.</i> at 56:14-19.
[1c] the record search means including a means for identifying and removing at least some of the expired ones of the records from the linked list when the linked list is	[5c] the record search means including means for identifying and removing at least some expired ones of the records from the linked list of records when the linked list is accessed,	Mellender discloses the record search means including a means for identifying and removing at least some of the expired ones of the records from the linked list when the linked list is accessed. Mellender also discloses the record search means including means for identifying and removing at least some expired ones of the records from the linked list of records when the linked list is accessed.
accessed, and	and	For example, Mellender states that "[t]he forceit function will put a record in
Joint Invalidity Contentions & Production of		3 Case No. 6:09-CV-549-LED

Joint Invalidity Contentions & Production of Documents

Asserted Claims From		Mellender et al., "Object-Oriented, Logic, and Database Programming
U.S. Pat. No. 5,893,120		Tool with Garbage Collection," U.S. Patent No. 4,989,132 (issued Jan. 29,
		1991) ("Mellender")
		the database, but (unlike storeit) checks to see if it is already there. If so, it logically deletes the old copy and adds the new one. This function is called when an object is newly created with an oop that already exists (e.g. a Class), and when an object is lengthened. It uses the storeit function if the new object is not already in the database, or is smaller than the one it is replacing. Else, the access manager gets the old object and logically deletes it (by placing a special mark in the rec_type), and then executes the storeit logic." <i>Id.</i> at 56:22-32
		Furthermore, Mellender discloses that "[m]any (non-reference counting) garbage collectors do little processing at reference creation time, but wait until the collector is called in order to clean out a region by moving objects to other regions. Our collector does most of its work when cross-region instance variable assignments are made, and when processing Smalltalk 'return' statements, which distributes the garbage collection processing evenly throughout the run. This means that the periods when the system is doing garbage collection (and is thus unavailable to the user) is spread evenly throughout the session and there are no long periods of time when the system is unavailable." <i>Id.</i> at $62:68-70 - 63:1-9$.
[1d] means, utilizing the record search means, for accessing the linked list and, at the same time, removing at least some of the expired ones of the records in the linked list.	[5d] mea[n]s, utilizing the record search means, for inserting, retrieving, and deleting records from the system and, at the same time, removing at least some expired ones of the	Mellender discloses means, utilizing the record search means, for accessing the linked list and, at the same time, removing at least some of the expired ones of the records in the linked list. Mellender also discloses utilizing the record search means, for inserting, retrieving, and deleting records from the system and, at the same time, removing at least some expired ones of the records in the accessed linked list of records.
	records in the accessed	For example, Mellender discloses "[t]he fechit function retrieves an object
Joint Invalidity Contentions & Production of		4 Case No. 6:09-CV-549-LED

Asserted Claims From U.S. Pat. No. 5,893,120	Mellender et al., "Object-Oriented, Logic, and Database Programming Tool with Garbage Collection," U.S. Patent No. 4,989,132 (issued Jan. 29, 1991) ("Mellender")
linked list of records.	from the database 40, given a record type and key. The fetched record is placed in the buffersalong with the disk address of the retrieved record. This will be used if/when the record needs to be replaced in the database." <i>Id.</i> at 55:61-66.
	Furthermore, Mellender discloses that "[t]he storeit function is capable of adding a new object (or replacing same) in the database If no key entry exists for the new record, it sets one up and adds the record to the end of the prime file. If the key entry does exist a collision results. The access manager 58 fetches the record pointed to by the key, updates the new record's overflow pointer to point to the record currently pointed to by the key record, and then updates the key record to point to the new record being added." <i>Id.</i> at 55:67-70 – 56:1-19.
	Furthermore, Mellender states that "[t]he forceit function will put a record in the database, but (unlike storeit) checks to see if it is already there. If so, it logically deletes the old copy and adds the new one. This function is called when an object is newly created with an oop that already exists (e.g. a Class), and when an object is lengthened. It uses the storeit function if the new object is not already in the database, or is smaller than the one it is replacing. Else, the access manager gets the old object and logically deletes it (by placing a special mark in the rec_type), and then executes the storeit logic." <i>Id.</i> at 56:22-32.
	Furthermore, Mellender discloses that "[m]any (non-reference counting) garbage collectors do little processing at reference creation time, but wait until the collector is called in order to clean out a region by moving objects to other regions. Our collector does most of its work when cross-region instance

5

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120		Mellender et al., "Object-Oriented, Logic, and Database Programming Tool with Garbage Collection," U.S. Patent No. 4,989,132 (issued Jan. 29, 1991) ("Mellender")
		variable assignments are made, and when processing Smalltalk 'return' statements, which distributes the garbage collection processing evenly throughout the run. This means that the periods when the system is doing garbage collection (and is thus unavailable to the user) is spread evenly throughout the session and there are no long periods of time when the system is unavailable." <i>Id.</i> at $62:68-70 - 63:1-9$.
2. The information storage and retrieval system according to claim 1 further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records.	6. The information storage and retrieval system according to claim 5 further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records.	Mellender discloses an information storage and retrieval system further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records. For example, Mellender states that "[t]he forceit function will put a record in the database, but (unlike storeit) checks to see if it is already there. If so, it logically deletes the old copy and adds the new one. This function is called when an object is newly created with an oop that already exists (e.g. a Class), and when an object is lengthened. It uses the storeit function if the new object is not already in the database, or is smaller than the one it is replacing. Else, the access manager gets the old object and logically deletes it (by placing a special mark in the rec_type), and then executes the storeit logic." <i>Id.</i> at 56:22- 32.
		In summary, if no old copy of the new record exists or the new record is smaller than the one it is replacing, the forceit function calls the storeit function to add the new object and no deletion takes place. If an old copy of the new record does exist, the access manager deletes the old copy and then executes the storeit function to store the new record. Therefore, the determination of when to delete a record is dynamically determined by whether an old copy of the record exists or when the new record is smaller than the one

6

Joint Invalidity Contentions & Production of Documents

Asserted C U.S. Pat. N	laims From o. 5,893,120	Mellender et al., "Object-Oriented, Logic, and Database Programming Tool with Garbage Collection," U.S. Patent No. 4,989,132 (issued Jan. 29, 1991) ("Mellender")
		1991) ("Mellender") it is replacing. <i>Id.</i> Additionally, it would have been obvious to one of ordinary skill in the art to modify the system disclosed in Mellender to dynamically determine the maximum number of expired records to remove in the accessed linked list of records. It is a fundamental concept in computer science and the relevant art that any variable or parameter affecting any aspect of a system can be dynamically determined based on information available to the system. One of ordinary skill in the art would have been motivated to combine the system disclosed in Mellender with the fundamental concept of dynamically determining the maximum number of expired records to remove in an accessed linked list of records to solve a number of potential problems. For example, the removal of expired records described in Mellender can be burdensome on the system, adding to the system's load and slowing down the system's processing. Moreover, the removal could also force an interruption in real-time processing as the processing waits for the removal to complete. Indeed, part of the motivation for the system disclosed in Mellender is avoiding these problems. One of ordinary skill in the art would have known that dynamically determining the maximum number to remove would limit the burden on the system and bound the length of any real-time interruption to prevent delays in processing. Indeed, Nemes concedes that such dynamic determination was obvious when he states in the '120 patent that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15.
		To the extent that dynamically determining a maximum number of expired

Joint Invalidity Contentions & Production of Documents

7

Asserted Claims U.S. Pat. No. 5,8	From 93,120	Mellender et al., "Object-Oriented, Logic, and Database Programming Tool with Garbage Collection," U.S. Patent No. 4,989,132 (issued Jan. 29, 1991) ("Mellender")
		records is not disclosed by Mellender, Mellender combined with Dirks, Thatte, the '663 patent and/or the Opportunistic Garbage Collection Articles discloses an information storage and retrieval system further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records.
		Dirks discloses the management of memory in a computer system and more particularly to the allocation of address space in a virtual memory system, which dynamically determines how many records to sweep/remove upon each allocation. Disclosure of these claim elements in Dirks is clearly shown in Exhibit B-2, which is hereby incorporated by reference in its entirety.
		For example, as summarized in Dirks,
		each time a VSID is assigned from the free list to a new application or thread, a fixed number of entries in the page table are scanned to determine whether they have become inactive, by checking them against the VSIDs on the recycle list. Each entry which is identified as being inactive is removed from the page table. After all of the entries in the page table have been examined in this manner, the VSIDs in the recycle list can be transferred to the free list, since all of their associated page table entries will have been removed. This approach thereby guarantees that a predetermined number of VSIDs are always available in the free list without requiring a time-consuming scan of the complete page table at once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.
		After [a] new VSID has been allocated, the system checks a flag RFLG to determine whether a recycle sweep is currently in progress (Step 20).

8

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	Mellender et al., "Object-Oriented, Logic, and Database Programming Tool with Garbage Collection," U.S. Patent No. 4,989,132 (issued Jan. 29, 1991) ("Mellender")
	If there is no sweep in progress, i.e. RFLG is not equal to one, a determination is made whether a sweep should be initiated. This is done by checking whether the inactive list is full, i.e. whether it contains x entries (Step 22). If the number of entries I on the inactive list is less than x, no further action is taken, and processing control returns to the operating system (Step 24). If, however, the inactive list is full at this time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are transferred to the recycle list, and an index n is reset to 1 (Step 28). The system then sweeps a predetermined number of page table entries PT _i on the page table, to detect whether any of them are inactive, i.e. their associated VSID is on the recycle list (Step 30). The predetermined number of entries that are swept is identified as k, where: $k = \frac{\text{total number of page table entries}}{\text{maximum number of active threads}}$ Id. at 8:12-30.
	Dirks discloses that any approach can be employed to determine the number of entries to be examined during each step of the sweeping process. <i>Id.</i> at 7:37- 40. As stated in Dirks: Any other suitable approach can be employed to determine the number of
	entries to be examined during each step of the sweeping process. In this regard, it is not necessary that the number of examined entries be fixed for each step. Rather, it might vary from one step to the next. The only criterion is that the number of entries examined on each step be such that all entries in the page table are examined in a determinable amount of time or by the occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

9

Joint Invalidity Contentions & Production of Documents

Asserted C U.S. Pat. No	aims From 5. 5,893,120	Mellender et al., "Object-Oriented, Logic, and Database Programming Tool with Garbage Collection," U.S. Patent No. 4,989,132 (issued Jan. 29, 1991) ("Mellender")
		 1991) ("Mellender") Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56. As both Mellender and Dirks relate to deletion of aged records upon the allocation of a new incoming record, one of ordinary skill in the art would have understood how to use Dirks' dynamic decision making process of determining the maximum number of records to sweep/remove in other hash tables implementations such as Mellender. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining Dirks' deletion decision procedure with Mellender nothing more than the predictable use of prior art elements according to their established functions. By way of further example, one of ordinary skill in the art would have combined Dirks' dynamic determination of the suitable number of entries to examine during each step of the sweeping process with Mellender and would have seen the benefits of doing so. One possible benefit, for example, is saving the system from performing sometimes time-consuming sweeps."
		Alternatively, one of ordinary skill in the art would be motivated to, and would understand how to, combine the system disclosed in Mellender with the means

Asserted C U.S. Pat. N	laims From o. 5,893,120	Mellender et al., "Object-Oriented, Logic, and Database Programming Tool with Garbage Collection," U.S. Patent No. 4,989,132 (issued Jan. 29, 1991) ("Mellender")
		for dynamically determining maximum number for the record search means to remove in the accessed linked list of records disclosed by Thatte. For example, Thatte discloses a system and method using hash tables and/or linked lists and further discloses means for dynamically determining the maximum number for the record search means to remove in the accessed linked list of records. The disclosure of these claim elements in Thatte is clearly shown in the chart of Thatte, which is hereby incorporated by reference in its entirety. Moreover, one of ordinary skill in the art would recognize that these combinations would improve the similar systems and methods in the same way. Additionally, as both Mellender and Thatte teach a system of data storage and retrieval, one of ordinary skill in the art would recognize that the result of combining Mellender with Thatte would be nothing more than the predictable use of prior art elements according to their established functions. The resulting combination would include the capability to determine the maximum number for the record search means to remove as taught by Thatte.
		Further, one of ordinary skill in the art would be motivated to combine Mellender with Thatte and recognize the benefits of doing so. For example, the removal of expired records described in Mellender can be burdensome on the system, adding to the system's load and slowing down the system's processing. One of ordinary skill in the art would recognize that combining Mellender with the teachings of Thatte would solve this problem by dynamically determining how many records to delete based on, among other things, the system load. Moreover, the '120 patent discloses that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	Mellender et al., "Object-Oriented, Logic, and Database Programming Tool with Garbage Collection," U.S. Patent No. 4,989,132 (issued Jan. 29, 1991) ("Mellender")
	regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine Mellender with Thatte.
	Alternatively, it would also be obvious to combine Mellender with the '663 patent. Disclosure of these claim elements in the '663 patent is clearly shown in the chart of the '663 patent, which is hereby incorporated by reference in its entirety. For example, as summarized in the '663 patent:
	during normal times when the load on the storage system is not excessive, a non-contaminating but slow deletion of records is used. This slow, non-contaminating deletion involves closing the collision-resolution chain of locations by moving a record from a later position in the chain into the position of the record to be deleted. This leaves no deleted record locations in the storage space to slow down future searches. U.S. Patent 4,996,663 to Nemes at 2:24-34 ("The '663 patent").
	In times of heavy use, when deletions must be done rapidly and no time is available for decontamination, the record is simply marked as "deleted" and left in place. Later non-contaminating probes in the vicinity of such deleted record locations automatically remove the contaminating deleted records by moving records in the chain as described above. <i>Id.</i> at 2:35-41.
	This hybrid hashing technique has the decided advantage of automatically eliminating contamination caused by the fast- secure deletion procedure when the slower, non-contaminating

12

Asserted Cla U.S. Pat. No.	aims From . 5,893,120	Mellender et al., "Object-Oriented, Logic, and Database Programming Tool with Garbage Collection," U.S. Patent No. 4,989,132 (issued Jan. 29, 1991) ("Mellender")
U.S. Pat. No.	. 5,893,120	Tool with Garbage Collection," U.S. Patent No. 4,989,132 (issued Jan. 29, 1991) ("Mellender") deletion is used when the load on the system is at lower levels. <i>Id.</i> at 2:42-46. This hybrid deletion is shown in Figure 5. FIG. 5 HYBRID DELETION YES SYSTEN NO START YES SYSTEN NO SLOW-NON- CONTAMINATING DELETE (FIG. 7) SUDM-NON- CONTAMINATING DELETE (FIG. 7) SUDM-NON- CONTAMINATING DELETE (FIG. 7) SUDM-NON- CONTAMINATING DELETE (FIG. 7) SUDM-NON- CONTAMINATING DELETE (FIG. 7) SUDM-NON- CONTAMINATING DELETE (FIG. 7) SUDM-NON- CONTAMINATING DELETE (FIG. 7) SUDM-NON- CONTAMINATING DELETE (FIG. 5) SUDM-NON- CONTAMINATING DELETE (FIG. 5) SUDM-NON- CONTAMINATING DELETE (FIG. 5) SUMM-NON- CONTAMINATING DELETE (FIG. 5) SUMM-NON- CONTAMINATING DELETE (FIG. 5) SUMM-NON- CONTAMINATING DELETE (FIG. 5) SUMM-NON- CONTAMINATING DELETE (FIG. 5) SUMM-NON- CONTAMINATING DELETE (FIG. 5) SUMM-NON- CONTAMINATING DELETE (FIG. 7) SUMM-NON- CONTAMINATING DELETE (FIG. 7) SUMM-NON- CONTAMINATING DELETE (FIG. 7) SUMM-NON- CONTAMINATING DELETE (FIG. 7) SUMM-NON- CONTAMINATING DELETE (FIG. 7) SUMM-NON- CONTAMINATING DELETE (FIG. 7) SUMM-NON- CONTAMINATING DELETE (FIG. 7) SUMM-NON- CONTAMINATING SUMM-NON- CONTAMINATING SUMM-NON- CONTAMINATING DELETE (FIG. 7) SUMM-NON- CONTAMINATING SUMM-NON- CONT
		<i>Id.</i> at Figure 5.
Asserted C	aims From	Mellender et al., "Object-Oriented, Logic, and Database Programming
--------------	-----------	--
U.S. Pat. No	5,893,120	Tool with Garbage Collection," U.S. Patent No. 4,989,132 (issued Jan. 29, 1991) ("Mellender")
		During the hybrid deletion procedure decision block 51 checks the system load to determine if the system load is greater than a threshold. If the system load is greater than the threshold, then a fast-secure delete 52 is used. <i>Id.</i> at 6:40-64, Figure 5. On the other hand, if the system load is less than the threshold, then a slow-non-contaminating delete 53 is used. <i>Id.</i> The fast-secure delete 52 does not actually delete records, rather it marks records as deleted. <i>Id.</i> at 8:1-33, Figure 7. These records are then actually deleted by a subsequent slow-non-contaminating delete 53. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B. Thus, the hybrid deletion procedure in the '663 patent dynamically determines a maximum number of records to remove. <i>See id.</i> at 6:40-64, Figure 5. If the
		fast-secure delete 52 is used, then maximum number of records is zero because records are not deleted they are only marked. <i>Id.</i> at 8:1-33, Figure 7. If the slow-non-contaminating delete 53 is used, then the maximum number of records to remove is all of the contaminated records in the bucket. <i>Id.</i> at 6:65- 7:68, Figures 6, 6A, 6B. As both Mellender and the '663 patent relate to deletion of records from hash tables using external chaining, one of ordinary skill in the art would understand how to use the '663 patent's dynamic decision on whether to
		perform a deletion based on a systems load in other hash table implementations such as that described in Mellender. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15.

Asserted Clai U.S. Pat. No.	ims From 5,893,120	Mellender et al., "Object-Oriented, Logic, and Database Programming Tool with Garbage Collection," U.S. Patent No. 4,989,132 (issued Jan. 29, 1991) ("Mellender")
		Additionally, one of ordinary skill in the art would recognize that the result of combining the '663 patent's deletion decision procedure with Mellender would be nothing more than the predictable use of prior art elements according to their established functions.
		By way of further example, one of ordinary skill in the art would have combined the '663 patent's dynamic decision on whether to perform a deletion based on a systems load as taught by the '663 patent and with Mellender and would have seen the benefits of doing so. One such benefit, for example, is that the system would avoid performing deletions when the system load exceeded a threshold.
		Alternatively, it would also be obvious to combine Mellender with the Opportunistic Garbage Collection Articles.
		The Opportunistic Garbage Collection Articles disclose a generational based garbage collection which dynamically determines how much garbage to collect. <i>See generally</i> , Paul R. Wilson and Thomas G. Moher, <i>Design of the Opportunistic Garbage Collector</i> , OOPSLA '89 Proceedings, October 1-6, 1989; Paul R. Wilson, <i>Opportunistic Garbage Collection</i> , ACM SIGPLAN Notices, Vol. 23, No. 12, December 1988.
		For example, the Opportunistic Garbage Collection Articles disclose in part:
		When a significant pause has been detected, a decision procedure is invoked to decide whether to garbage collect, and how many generations to scavenge. The fuller a generation is, the more likely it is to be scavenged; also, the longer the pause that has been detected, the larger the scope of the

Asserted Claims U.S. Pat. No. 5,8	From 93,120	Mellender et al., "Object-Oriented, Logic, and Database Programming Tool with Garbage Collection," U.S. Patent No. 4,989,132 (issued Jan. 29, 1991) ("Mellender")
		garbage collection is likely to be. <i>Design of the Opportunistic Garbage Collector</i> at 32.
		Every time a user-input routine is invoked, a decision routine can decide whether to garbage collect. As long as the decision routine takes no more than a few milliseconds to execute, it should not interfere with responsiveness. Since it is only invoked at these times, it does not incur a continual run-time overhead. <i>Opportunistic Garbage Collection</i> at 100.
		This decision routine should take several things into account: 1) the volume of data allocated since the last scavenge, 2) how long it has been since the user has had an opportunity to interact, and 3) the height of the stack relative to its average height at reads since the last scavenge. If the product of the allocation and the compute time is high, and if the stack is low, the scavenge favorability measure is high. If it is especially high, a multi-generation scavenge is in order. <i>Id</i> .
		If these heuristics fail and a scavenge is forced instead by the filling of a generation's space, it is likely to happen during a significant compute- bound pausethe one that has just allocated the data that forced the collection. When the opportunistic mechanism fails to find the end of a pause, it may still succeed by default, embedding a scavenge pause within a larger pause. <i>Design of the Opportunistic Garbage Collector</i> at 32.
		As both Mellender and the Opportunistic Garbage Collection Articles relate to deletion of aged records, one of ordinary skill in the art would have understood how to use the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion based on a system load in other hash table

Asserted Claims From	Mellender et al., "Object-Oriented, Logic, and Database Programming Tool with Corbogo Collection " U.S. Potent No. 4 080 132 (issued Jap. 20
U.S. Pat. No. 5,695,120	1001 with Garbage Conection, "U.S. Patent No. 4,989,152 (Issued Jan. 29, 1991) ("Mellender")
	 1991) ("Mellender") implementations such as Mellender. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the Opportunistic Garbage Collection Articles' deletion decision procedure with Mellender would be nothing more than the predictable use of prior art elements according to their established functions. By way of further example, one of ordinary skill in the art would have combined the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion and how many generations to scavenge as taught by the Opportunistic Garbage Collection Articles and with Mellender and would have seen the benefits of doing so. One such benefit, for example, is preventing slowdown of the system. Additionally, it would have been obvious to one of ordinary skill in the art to modify the system disclosed in Mellender to dynamically determine the maximum number of expired records to remove in the accessed linked list of records. It is a fundamental concept in computer science and the relevant art that any variable or parameter affecting any aspect of a system can be dynamically determined based on information available to the system. One of ordinary skill in the art would have been motivated to combine the system
	disclosed in Mellender with the fundamental concept of dynamically determining the maximum number of expired records to remove in an accessed

Asserted C U.S. Pat. No	laims From 5, 5,893,120	Mellender et al., "Object-Oriented, Logic, and Database Programming Tool with Garbage Collection," U.S. Patent No. 4,989,132 (issued Jan. 29, 1991) ("Mellender")
		linked list of records to solve a number of potential problems. For example, the removal of expired records described in Mellender can be burdensome on the system, adding to the system's load and slowing down the system's processing. Moreover, the removal could also force an interruption in real- time processing as the processing waits for the removal to complete.
		One of ordinary skill in the art would have known that dynamically determining the maximum number to remove would limit the burden on the system and bound the length of any real-time interruption to prevent delays in processing. Indeed, Nemes concedes that such dynamic determination was obvious when he states in the '120 patent that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15.
		To the extent that dynamically determining a maximum number of expired records is not disclosed by Mellender in combination with Dirks, Thatte, the '663 Patent, or the Opportunistic Garbage Collection References, it is disclosed by Linux 2.0.1, which describes dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed. It would have been obvious to combine Linux 2.0.1 with Mellender. For example, both Linux 2.0.1 and Mellender describe systems and methods for performing data storage and retrieval using known programming techniques to yield a predictable result.
		When invoked, the function rt_cache_add automatically increments an integer variable rt_cache_size. <i>See</i> Linux 2.0.1, route.c at line 1359.

Asserted C U.S. Pat. N	laims From 5. 5,893,120	Mellender et al., "Object-Oriented, Logic, and Database Programming Tool with Garbage Collection," U.S. Patent No. 4,989,132 (issued Jan. 29, 1991) ("Mellender")
		When the function rt_cache_add removes an expired record, the function rt_cache_add decrements the variable rt_cache_size. See Linux 2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the number of records in the hash table (i.e., ip_rt_hash_table). Because the function rt_cache_add automatically increments and decrements the variable rt_cache_size is determined dynamically.
		Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1. The function rt_garbage_collect_1 loops through each of the linked lists in the ip_rt_hash_table global variable. <i>See</i> Linux 2.0.1, route.c at lines 1122-1138. In this way, the function rt_garbage_collect_1 accesses the linked list. When the function rt_garbage_collect_1 identifies a record that is expired, the function rt_garbage_collect_1 decrements the variable rt_cache_size and frees the record. <i>See</i> Linux 2.0.1, route.c at lines 1128-1135.
		Because all records in the linked list can be expired and all records in the hash table can be in the linked list, the variable rt_cache_size can represent a dynamically determined maximum number of expired ones of the records to remove when function rt_garbage_collect_1 accesses the linked list.
		Furthermore, the function rt_cache_add determines whether the number of records in the hash table exceeds a predetermined threshold RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds the predetermined threshold RT_CACHE_SIZE_MAX, the function

19

Asserted C U.S. Pat. No	laims From 5. 5,893,120	Mellender et al., "Object-Oriented, Logic, and Database Programming Tool with Garbage Collection," U.S. Patent No. 4,989,132 (issued Jan. 29, 1991) ("Mellender")
		rt_cache_add invokes a function rt_garbage_collect. See Linux 2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293. The function rt_garbage_collect invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.
		The function rt_garbage_collect_l loops through each linked list in the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked list in the hash table, the function rt_garbage_collect_l looks at each record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each record in a linked list, the function rt_garbage_collect_l determines whether the record's last use time plus the record's expiration factor is later than the current time. See Linux 2.0.1, route.c at line 1122. If the record's last use time plus the record's expiration factor is less than the current time, the function rt_garbage_collect_l removes the record from the linked list. See Linux 2.0.1, route.c at lines 1124-1130. The record's expiration factor is based on a variable expire and the record's reference count. See Linux 2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.
		After looping through all of the linked lists in this manner, the function rt_garbage_collect_1 determines again whether the number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX. <i>See</i> Linux 2.0.1, route.c at line 1133. If the number of items in the hash table is still greater than the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves the variable expire and loops through each of the linked lists in the hash

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	Mellender et al., "Object-Oriented, Logic, and Database Programming Tool with Garbage Collection," U.S. Patent No. 4,989,132 (issued Jan. 29, 1991) ("Mellender")
	<pre>table. See Linux 2.0.1, route.c at line 1135. In this way, the function rt_garbage_collect_1 can remove additional records from the linked lists in the hash table. The function rt_garbage_collect_1 repeats this process until the total number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX. Under Bedrock's proposed claim constructions, the records removed by the function rt_garbage_collect_1 are "expired" records. That is, the records removed by the function rt_garbage_collect_1 are data items which after a limited time or after the occurrence of some event become obsolete, such that their presence in the storage system is no longer needed or desired. The function rt_cache_add only removes a record from a linked list when the record's last use time plus the fixed timeout value RT_CACHE_TIMEOUT is less than the current time and the record's reference count is zero. See Linux 2.0.1, route.c at line 1369. Thus, the maximum number of records that the function rt_cache_add can remove from a given linked list is not those records whose reference counts are zero. In contrast, the maximum number of records that the function rt_garbage_collect_1 can remove from a given linked list is not "total". </pre>
	limited to those records whose reference counts are zero. <i>See</i> Linux 2.0.1, route.c at line 1122. Rather, the function rt_garbage_collect_1 can remove records whose reference counts are zero and records whose reference counts are greater than zero.

Asserted Claims From U.S. Pat. No. 5,893,120		Mellender et al., "Object-Oriented, Logic, and Database Programming Tool with Garbage Collection," U.S. Patent No. 4,989,132 (issued Jan. 29, 1991) ("Mellender")
		rt_garbage_collect_1 can remove from a linked list is different than the maximum number of records that the function rt_cache_add can remove from a linked list.
3. A method for storing and retrieving information records using a linked list to store and provide access to the records, at least some of the records automatically expiring, the method comprising the steps of:	7. A method for storing and retrieving information records using a hashing technique to provide access to the records and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring, the method comprising the steps of:	To the extent the preamble is a limitation, Mellender discloses a method for storing and retrieving information records using a linked list to store and provide access to the records, at least some of the records automatically expiring. Mellender also discloses a method for storing and retrieving information records using a hashing technique to provide access to the records and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring. For example, Mellender discloses that "[a] database residing in the mass memory stores objects and components of logic programs as objects in a common data structure format, applications data, and application stored as compiled interpreter code. The database is managed by an [sic] database manager that represents objects and components of the logic programming language in the common data structure format as objects and is responsive to calls for retrieving and storing objects in the database and for automatically deleting objects from the database when they have become obsolete." Mellender at 2:22-33. Furthermore, Mellender discloses that "[t]he database 40 consists of 2 UNIX files: db.key and db.prime. The key file provides associative access to the prime file: the access manager hashes into the key file (all of whose records are of fixed length), and finds the address (file offset) of the object in the prime file." <i>Id.</i> at 54:50-53.

U.S. Pat. No. 5,895,120 Tool with Garbage Collection," U.S. Patent No. 4,999,132 (issued Jan. 29, 1991) ("Mellender") Furthermore, Mellender discloses that "[c]ollisions in the key file are handled by chaining the objects in the prime file together. If the object at the address indicated by the key file record does not have an id (oop, or string) that matches the target sought, the access manager 58 follows the 'overflow' chain in the records in the prime file, checking the target against the id until it is found. Fastest access to newest objects is provided by placing them first in the overflow chain." Id. at 55:20-27. "If the key entry does exist a collision results. The access manager 58 fetches the record pointed to by the key, updates the new record's overflow pointer to point to the record currently pointed to by the key record, and then updates the key record updates the is provided by discarded. Since there is no longer reachable, and therefore can be safely discarded. Since there is no explicit delete command available to the programmer in Smalltalk language, removal of objects is entirely up to the system." Id. at 59:41-45. [3a] accessing the linked list of records having same hash address, hash address, Mellender discloses accessing a linked list of records. Mellender also discloses accessing a linked list of records having same hash address. For example, Mellender discloses that "[1] he database 40 consists of 2 UNIX files: db.key and db.prime. The key file provides associative access to the prime file: the access manager file offeet of the object in the prime file: the access manager file offeet of the object in the rime file.	Asserted Claims From		Mellender et al., "Object-Oriented, Logic, and Database Programming
[3a] accessing the linked [7a] accessing a linked list of records, having same hash address, [3a] accessing the linked [7a] accessing a linked list [3b] the frecords, [7b] the linked list of records having same hash address,	U.S. Pat. No. 5,893,120		Tool with Garbage Collection," U.S. Patent No. 4,989,132 (issued Jan. 29, 1991) ("Mellender")
"If the key entry does exist a collision results. The access manager 58 fetches the record pointed to by the key, updates the new record's overflow pointer to point to the record currently pointed to by the key record, and then updates the key record to point to the new record being added." Id. at 56:14-19.Furthermore, Mellender states that "[g]arbage is defined as objects that are no 			Furthermore, Mellender discloses that "[c]ollisions in the key file are handled by chaining the objects in the prime file together. If the object at the address indicated by the key file record does not have an id (oop, or string) that matches the target sought, the access manager 58 follows the 'overflow' chain in the records in the prime file, checking the target against the id until it is found. Fastest access to newest objects is provided by placing them first in the overflow chain." <i>Id.</i> at 55:20-27.
Furthermore, Mellender states that "[g]arbage is defined as objects that are no longer reachable, and therefore can be safely discarded. Since there is no explicit delete command available to the programmer in Smalltalk language, removal of objects is entirely up to the system." Id. at 59:41-45.[3a] accessing the linked list of records,[7a] accessing a linked list of records having same hash address,Mellender discloses accessing a linked list of records having same hash address,For example, Mellender discloses that "[t]he database 40 consists of 2 UNIX files: db.key and db.prime. The key file provides associative access to the prime file: the access manager hashes into the key file (all of whose records are of fixed length), and finds the address (file offset) of the object in the prime			"If the key entry does exist a collision results. The access manager 58 fetches the record pointed to by the key, updates the new record's overflow pointer to point to the record currently pointed to by the key record, and then updates the key record to point to the new record being added." <i>Id.</i> at 56:14-19.
[3a] accessing the linked list of records,[7a] accessing a linked list of records having same hash address,Mellender discloses accessing a linked list of records. Mellender also discloses accessing a linked list of records having same hash address.For example, Mellender discloses that "[t]he database 40 consists of 2 UNIX files: db.key and db.prime. The key file provides associative access to the prime file: the access manager hashes into the key file (all of whose records are of fixed length), and finds the address (file offset) of the object in the prime			Furthermore, Mellender states that "[g]arbage is defined as objects that are no longer reachable, and therefore can be safely discarded. Since there is no explicit delete command available to the programmer in Smalltalk language, removal of objects is entirely up to the system." <i>Id.</i> at 59:41-45.
For example, Mellender discloses that "[t]he database 40 consists of 2 UNIX files: db.key and db.prime. The key file provides associative access to the prime file: the access manager hashes into the key file (all of whose records are of fixed length), and finds the address (file offset) of the object in the prime	[3a] accessing the linked list of records,	[7a] accessing a linked list of records having same hash address.	Mellender discloses accessing a linked list of records. Mellender also discloses accessing a linked list of records having same hash address.
file." <i>Id.</i> at 54:50-53.			For example, Mellender discloses that "[t]he database 40 consists of 2 UNIX files: db.key and db.prime. The key file provides associative access to the prime file: the access manager hashes into the key file (all of whose records are of fixed length), and finds the address (file offset) of the object in the prime file." <i>Id.</i> at 54:50-53.
Furthermore, Mellender discloses that "[c]ollisions in the key file are handled			Furthermore, Mellender discloses that "[c]ollisions in the key file are handled

Asserted Claims From U.S. Pat. No. 5,893,120		Mellender et al., "Object-Oriented, Logic, and Database Programming Tool with Garbage Collection," U.S. Patent No. 4,989,132 (issued Jan. 29, 1991) ("Mellender")
		by chaining the objects in the prime file together. If the object at the address indicated by the key file record does not have an id (oop, or string) that matches the target sought, the access manager 58 follows the 'overflow' chain in the records in the prime file, checking the target against the id until it is found. Fastest access to newest objects is provided by placing them first in the overflow chain." <i>Id.</i> at 55:20-27. "If the key entry does exist a collision results. The access manager 58 fetches the record pointed to by the key, updates the new record's overflow pointer to point to the record currently pointed to by the key record, and then updates the key record to point to the new record being added." <i>Id.</i> at 56:14-19.
[3b] identifying at least some of the automatically expired ones of the records, and	[7b] identifying at least some of the automatically expired ones of the records,	 Mellender discloses identifying at least some of the automatically expired ones of the records. For example, Mellender discloses that "[a] database residing in the mass memory stores objects and components of logic programs as objects in a common data structure format, applications data, and application stored as compiled interpreter code. The database is managed by an [sic] database manager that represents objects and components of the logic programming language in the common data structure format as objects and is responsive to calls for retrieving and storing objects in the database and for automatically deleting objects from the database when they have become obsolete." <i>Id.</i> at 2:22-33. Furthermore, Mellender states that "[g]arbage is defined as objects that are no longer reachable, and therefore can be safely discarded. Since there is no explicit delete command available to the programmer in Smalltalk language,

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120		Mellender et al., "Object-Oriented, Logic, and Database Programming Tool with Garbage Collection," U.S. Patent No. 4,989,132 (issued Jan. 29, 1991) ("Mellender")
		removal of objects is entirely up to the system." Id. at 59:41-45.
[3c] removing at least some of the automatically expired records from the linked list when the linked list is accessed.	[7c] removing at least some of the automatically expired records from the linked list when the linked list is accessed, and	 Mellender discloses removing at least some of the automatically expired records from the linked list when the linked list is accessed. For example, Mellender states that "[t]he forceit function will put a record in the database, but (unlike storeit) checks to see if it is already there. If so, it logically deletes the old copy and adds the new one. This function is called when an object is newly created with an oop that already exists (e.g. a Class), and when an object is lengthened. It uses the storeit function if the new object is not already in the database, or is smaller than the one it is replacing. Else, the access manager gets the old object and logically deletes it (by placing a special mark in the rec_type), and then executes the storeit logic." <i>Id.</i> at 56:22-32. Furthermore, Mellender discloses that "[m]any (non-reference counting) garbage collectors do little processing at reference creation time, but wait until the collector is called in order to clean out a region by moving objects to other regions. Our collector does most of its work when cross-region instance variable assignments are made, and when processing Smalltalk 'return' statements, which distributes the garbage collection processing evenly throughout the run. This means that the periods when the system is doing garbage collection (and is thus unavailable to the user) is spread evenly throughout the session and there are no long periods of time when the system is unavailable." <i>Id.</i> at 62:68-70 – 63:1-9.
	[7d] inserting, retrieving or deleting one of the	Mellender discloses inserting, retrieving or deleting one of the records from the system following the step of removing.

Asserted Claims From U.S. Pat. No. 5,893,120	Mellender et al., "Object-Oriented, Logic, and Database Programming Tool with Garbage Collection," U.S. Patent No. 4,989,132 (issued Jan. 29, 1991) ("Mellender")
records from the system following the step of removing.	For example, Mellender discloses "[t]he fechit function retrieves an object from the database 40, given a record type and key. The fetched record is placed in the buffers [] along with the disk address of the retrieved record. This will be used if/when the record needs to be replaced in the database." <i>Id.</i> at 55:61-66. Furthermore, Mellender discloses that "[t]he storeit function is capable of adding a new object (or replacing same) in the database If no key entry exists for the new record, it sets one up and adds the record to the end of the prime file. If the key entry does exist a collision results. The access manager 58 fetches the record pointed to by the key, updates the new record's overflow pointer to point to the record currently pointed to by the key record, and then updates the key record to point to the new record being added." <i>Id.</i> at 55:67-70 - 56:1-19.
	Furthermore, Mellender states that "[t]he forceit function will put a record in the database, but (unlike storeit) checks to see if it is already there. If so, it logically deletes the old copy and adds the new one. This function is called when an object is newly created with an oop that already exists (e.g. a Class), and when an object is lengthened. It uses the storeit function if the new object is not already in the database, or is smaller than the one it is replacing. Else, the access manager gets the old object and logically deletes it (by placing a special mark in the rec_type), and then executes the storeit logic." <i>Id.</i> at 56:22- 32.

Asserted Claims From U.S. Pat. No. 5,893,120		Mellender et al., "Object-Oriented, Logic, and Database Programming Tool with Garbage Collection," U.S. Patent No. 4,989,132 (issued Jan. 29, 1991) ("Mellender")
		the collector is called in order to clean out a region by moving objects to other regions. Our collector does most of its work when cross-region instance variable assignments are made, and when processing Smalltalk 'return' statements, which distributes the garbage collection processing evenly throughout the run. This means that the periods when the system is doing garbage collection (and is thus unavailable to the user) is spread evenly throughout the session and there are no long periods of time when the system is unavailable." <i>Id.</i> at $62:68-70 - 63:1-9$.
4. The method according to claim 3 further including the step of dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed.	8. The method according to claim 7 further including the step of dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed.	 Mellender discloses dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed. For example, Mellender states that "[t]he forceit function will put a record in the database, but (unlike storeit) checks to see if it is already there. If so, it logically deletes the old copy and adds the new one. This function is called when an object is newly created with an oop that already exists (e.g. a Class), and when an object is lengthened. It uses the storeit function if the new object is not already in the database, or is smaller than the one it is replacing. Else, the access manager gets the old object and logically deletes it (by placing a special mark in the rec_type), and then executes the storeit logic." <i>Id.</i> at 56:22-32
		In summary, if no old copy of the new record exists or the new record is smaller than the one it is replacing, the forceit function calls the storeit function to add the new object and no deletion takes place. If an old copy of the new record does exist, the access manager deletes the old copy and then executes the storeit function to store the new record. Therefore, the determination of when to delete a record can be dynamically determined by

Joint Invalidity Contentions & Production of Documents

Asserted C U.S. Pat. N	laims From o. 5,893,120	Mellender et al., "Object-Oriented, Logic, and Database Programming Tool with Garbage Collection," U.S. Patent No. 4,989,132 (issued Jan. 29, 1991) ("Mellender")
		whether an old copy of the record exists or when the new record is smaller than the one it is replacing. <i>Id.</i> Additionally, it would have been obvious to one of ordinary skill in the art to modify the system disclosed in Mellender to dynamically determine the maximum number of expired records to remove in the accessed linked list of records. It is a fundamental concept in computer science and the relevant art that any variable or parameter affecting any aspect of a system can be dynamically determined based on information available to the system. One of ordinary skill in the art would have been motivated to combine the system disclosed in Mellender with the fundamental concept of dynamically determining the maximum number of expired records to remove in an accessed linked list of records to solve a number of potential problems. For example, the removal of expired records described in Mellender can be burdensome on the system, adding to the system's load and slowing down the system's processing. Moreover, the removal could also force an interruption in real- time processing as the processing waits for the removal to complete. Indeed, part of the motivation for the system disclosed in Mellender is avoiding these problems. One of ordinary skill in the art would have known that dynamically determining the maximum number to remove would limit the burden on the system and bound the length of any real-time interruption to prevent delays in processing. Indeed, Nemes concedes that such dynamic determination was obvious when he states in the '120 patent that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15.
		10 the extent that dynamically determining a maximum number of expired

Joint Invalidity Contentions & Production of Documents

Asserted Claims Fro U.S. Pat. No. 5,893,1	mMellender et al., "Object-Oriented, Logic, and Database Programming20Tool with Garbage Collection," U.S. Patent No. 4,989,132 (issued Jan. 29, 1001) ("Mellender")
	records is not disclosed by Mellender, Mellender combined with Dirks, Thatte, the '663 patent and/or the Opportunistic Garbage Collection Articles discloses an information storage and retrieval system further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records.
	Dirks discloses the management of memory in a computer system and more particularly to the allocation of address space in a virtual memory system, which dynamically determines how many records to sweep/remove upon each allocation. Disclosure of these claim elements in Dirks is clearly shown in Exhibit B-2, which is hereby incorporated by reference in its entirety.
	For example, as summarized in Dirks,
	each time a VSID is assigned from the free list to a new application or thread, a fixed number of entries in the page table are scanned to determine whether they have become inactive, by checking them against the VSIDs on the recycle list. Each entry which is identified as being inactive is removed from the page table. After all of the entries in the page table have been examined in this manner, the VSIDs in the recycle list can be transferred to the free list, since all of their associated page table entries will have been removed. This approach thereby guarantees that a predetermined number of VSIDs are always available in the free list without requiring a time-consuming scan of the complete page table at once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.
	After [a] new VSID has been allocated, the system checks a flag RFLG to determine whether a recycle sweep is currently in progress (Step 20).

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	Mellender et al., "Object-Oriented, Logic, and Database Programming Tool with Garbage Collection," U.S. Patent No. 4,989,132 (issued Jan. 29, 1991) ("Mollondor")
	If there is no sweep in progress, i.e. RFLG is not equal to one, a determination is made whether a sweep should be initiated. This is done by checking whether the inactive list is full, i.e. whether it contains x entries (Step 22). If the number of entries I on the inactive list is less than x, no further action is taken, and processing control returns to the operating system (Step 24). If, however, the inactive list is full at this time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are transferred to the recycle list, and an index n is reset to 1 (Step 28). The system then sweeps a predetermined number of page table entries PT _i on the page table, to detect whether any of them are inactive, i.e. their associated VSID is on the recycle list (Step 30). The predetermined number of entries that are swept is identified as k, where: $k = \frac{\text{total number of page table entries}}{\text{maximum number of active threads}}$ Id. at 8:12-30.
	Dirks discloses that any approach can be employed to determine the number of entries to be examined during each step of the sweeping process. <i>Id.</i> at 7:37- 40. As stated in Dirks: Any other suitable approach can be employed to determine the number of entries to be examined during each step of the sweeping process. In this regard, it is not necessary that the number of examined entries be fixed for each step. Rather, it might vary from one step to the next. The only criterion is that the number of entries examined on each step be such that all entries in the page table are examined in a determinable amount of time or by the occurrence of a certain event. e.g. by the time the list of free VSIDs is empty

30

Asserted C U.S. Pat. No	aims From 5. 5,893,120	Mellender et al., "Object-Oriented, Logic, and Database Programming Tool with Garbage Collection," U.S. Patent No. 4,989,132 (issued Jan. 29, 1991) ("Mellender")
		 1991) ("Mellender") Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56. As both Mellender and Dirks relate to deletion of aged records upon the allocation of a new incoming record, one of ordinary skill in the art would have understood how to use Dirks' dynamic decision making process of determining the maximum number of records to sweep/remove in other hash tables implementations such as Mellender. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining Dirks' deletion decision procedure with Mellender nothing more than the predictable use of prior art elements according to their established functions. By way of further example, one of ordinary skill in the art would have combined Dirks' dynamic determination of the suitable number of entries to examine during each step of the sweeping process with Mellender and would have seen the benefits of doing so. One possible benefit, for example, is saving the system from performing sometimes time-consuming sweeps.'
		Alternatively, one of ordinary skill in the art would be motivated to, and would understand how to, combine the system disclosed in Mellender with the means

Joint Invalidity Contentions & Production of Documents

Asserted C U.S. Pat. N	laims From o. 5,893,120	Mellender et al., "Object-Oriented, Logic, and Database Programming Tool with Garbage Collection," U.S. Patent No. 4,989,132 (issued Jan. 29, 1991) ("Mellender")
		for dynamically determining maximum number for the record search means to remove in the accessed linked list of records disclosed by Thatte. For example, Thatte discloses a system and method using hash tables and/or linked lists and further discloses means for dynamically determining the maximum number for the record search means to remove in the accessed linked list of records. The disclosure of these claim elements in Thatte is clearly shown in the chart of Thatte, which is hereby incorporated by reference in its entirety. Moreover, one of ordinary skill in the art would recognize that these combinations would improve the similar systems and methods in the same way. Additionally, as both Mellender and Thatte teach a system of data storage and retrieval, one of ordinary skill in the art would recognize that the result of combining Mellender with Thatte would be nothing more than the predictable use of prior art elements according to their established functions. The resulting combination would include the capability to determine the maximum number for the record search means to remove as taught by Thatte.
		Further, one of ordinary skill in the art would be motivated to combine Mellender with Thatte and recognize the benefits of doing so. For example, the removal of expired records described in Mellender can be burdensome on the system, adding to the system's load and slowing down the system's processing. One of ordinary skill in the art would recognize that combining Mellender with the teachings of Thatte would solve this problem by dynamically determining how many records to delete based on, among other things, the system load. Moreover, the '120 patent discloses that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision

Joint Invalidity Contentions & Production of Documents

Asserted Claim U.S. Pat. No. 5,	ns From 893,120	Mellender et al., "Object-Oriented, Logic, and Database Programming Tool with Garbage Collection," U.S. Patent No. 4,989,132 (issued Jan. 29, 1991) ("Mellender")
		regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine Mellender with Thatte.
		Alternatively, it would also be obvious to combine Mellender with the '663 patent. Disclosure of these claim elements in the '663 patent is clearly shown in the chart of the '663 patent, which is hereby incorporated by reference in its entirety. For example, as summarized in the '663 patent:
		during normal times when the load on the storage system is not excessive, a non-contaminating but slow deletion of records is used. This slow, non-contaminating deletion involves closing the collision-resolution chain of locations by moving a record from a later position in the chain into the position of the record to be deleted. This leaves no deleted record locations in the storage space to slow down future searches. U.S. Patent 4,996,663 to Nemes at 2:24-34 ("The '663 patent").
		In times of heavy use, when deletions must be done rapidly and no time is available for decontamination, the record is simply marked as "deleted" and left in place. Later non-contaminating probes in the vicinity of such deleted record locations automatically remove the contaminating deleted records by moving records in the chain as described above. <i>Id.</i> at 2:35-41.
		This hybrid hashing technique has the decided advantage of automatically eliminating contamination caused by the fast- secure deletion procedure when the slower, non-contaminating

33

Asserted Claims From U.S. Pat. No. 5,893,120	Mellender et al., "Object-Oriented, Logic, and Database Programming Tool with Garbage Collection," U.S. Patent No. 4,989,132 (issued Jan. 29, 1991) ("Mellender")
	deletion is used when the load on the system is at lower levels. Id. at 2:42-46. This hybrid deletion is shown in Figure 5. FIG.5 HYBRID DELETION (START)

Asserted Clai U.S. Pat. No.	ims From 5.893.120	Mellender et al., "Object-Oriented, Logic, and Database Programming Tool with Garbage Collection," U.S. Patent No. 4,989,132 (issued Jan, 29,
	0,0,0,1=0	1991) ("Mellender")
		During the hybrid deletion procedure decision block 51 checks the system load to determine if the system load is greater than a threshold. If the system load is greater than the threshold, then a fast-secure delete 52 is used. <i>Id.</i> at 6:40-64, Figure 5. On the other hand, if the system load is less than the threshold, then a slow-non-contaminating delete 53 is used. <i>Id.</i> The fast-secure delete 52 does not actually delete records, rather it marks records as deleted. <i>Id.</i> at 8:1-33, Figure 7. These records are then actually deleted by a subsequent slow-non-contaminating delete 53. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B. Thus, the hybrid deletion procedure in the '663 patent dynamically determines a maximum number of records to remove. <i>See id.</i> at 6:40-64, Figure 5. If the fast-secure delete 52 is used, then maximum number of records is zero because records are not deleted they are only marked. <i>Id.</i> at 8:1-33, Figure 7. If the slow-non-contaminating delete 53 is used, then the maximum number of records to remove is all of the contaminated records in the bucket. <i>Id.</i> at 6:65-7:68. Figures 6, 6A, 6B
		As both Mellender and the '663 patent relate to deletion of records from hash tables using external chaining, one of ordinary skill in the art would understood how to use the '663 patent's dynamic decision on whether to perform a deletion based on a systems load in other hash table implementations such as that described in Mellender. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15.

35

Joint Invalidity Contentions & Production of Documents

Asserted Claims U.S. Pat. No. 5,8	5 From 93,120	Mellender et al., "Object-Oriented, Logic, and Database Programming Tool with Garbage Collection," U.S. Patent No. 4,989,132 (issued Jan. 29,
		1991) ("Mellender")
		Additionally, one of ordinary skill in the art would recognize that the result of combining the '663 patent's deletion decision procedure with Mellender would be nothing more than the predictable use of prior art elements according to their established functions.
		By way of further example, one of ordinary skill in the art would have combined the '663 patent's dynamic decision on whether to perform a deletion based on a systems load as taught by the '663 patent and with Mellender and would have seen the benefits of doing so. One such benefit, for example, is that the system would avoid performing deletions when the system load exceeded a threshold.
		Alternatively, it would also be obvious to combine Mellender with the Opportunistic Garbage Collection Articles.
		The Opportunistic Garbage Collection Articles disclose a generational based garbage collection which dynamically determines how much garbage to collect. <i>See generally</i> , Paul R. Wilson and Thomas G. Moher, <i>Design of the Opportunistic Garbage Collector</i> , OOPSLA '89 Proceedings, October 1-6, 1989; Paul R. Wilson, <i>Opportunistic Garbage Collection</i> , ACM SIGPLAN Notices, Vol. 23, No. 12, December 1988.
		For example, the Opportunistic Garbage Collection Articles disclose in part:
		When a significant pause has been detected, a decision procedure is invoked to decide whether to garbage collect, and how many generations to scavenge. The fuller a generation is, the more likely it is to be scavenged; also, the longer the pause that has been detected, the larger the scope of the

Asserted C U.S. Pat. No	aims From 5. 5,893,120	Mellender et al., "Object-Oriented, Logic, and Database Programming Tool with Garbage Collection," U.S. Patent No. 4,989,132 (issued Jan. 29, 1991) ("Mellender")
		garbage collection is likely to be. <i>Design of the Opportunistic Garbage Collector</i> at 32.
		Every time a user-input routine is invoked, a decision routine can decide whether to garbage collect. As long as the decision routine takes no more than a few milliseconds to execute, it should not interfere with responsiveness. Since it is only invoked at these times, it does not incur a continual run-time overhead. <i>Opportunistic Garbage Collection</i> at 100.
		This decision routine should take several things into account: 1) the volume of data allocated since the last scavenge, 2) how long it has been since the user has had an opportunity to interact, and 3) the height of the stack relative to its average height at reads since the last scavenge. If the product of the allocation and the compute time is high, and if the stack is low, the scavenge favorability measure is high. If it is especially high, a multi-generation scavenge is in order. <i>Id</i> .
		If these heuristics fail and a scavenge is forced instead by the filling of a generation's space, it is likely to happen during a significant compute- bound pausethe one that has just allocated the data that forced the collection. When the opportunistic mechanism fails to find the end of a pause, it may still succeed by default, embedding a scavenge pause within a larger pause. <i>Design of the Opportunistic Garbage Collector</i> at 32.
		As both Mellender and the Opportunistic Garbage Collection Articles relate to deletion of aged records, one of ordinary skill in the art would have understood how to use the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion based on a system load in other hash table

Asserted Clair U.S. Pat. No. 5	ns From 5,893,120	Mellender et al., "Object-Oriented, Logic, and Database Programming Tool with Garbage Collection," U.S. Patent No. 4,989,132 (issued Jan. 29,
		1991) ("Mellender")
		implementations such as Mellender. Moreover, one of ordinary skill in the art
		would recognize that it would improve similar systems and methods in the
		same way. As the '120 patent states "[a] person skilled in the art will
		appreciate that the technique of removing all expired records while searching
		the linked list can be expanded to include techniques whereby not necessarily
		all expired records are removed, and that the decision regarding if and how
		many records to delete can be a dynamic one." The '120 patent at 7:10-15.
		Additionally, one of ordinary skill in the art would recognize that the result of
		combining the Opportunistic Garbage Collection Articles' deletion decision
		procedure with Mellender would be nothing more than the predictable use of
		prior art elements according to their established functions.
		By way of further example, one of ordinary skill in the art would have combined the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion and how many generations to scavenge as taught by the Opportunistic Garbage Collection Articles and with Mellender and would have seen the benefits of doing so. One such benefit, for example, is preventing slowdown of the system.
		Additionally, it would have been obvious to one of ordinary skill in the art to modify the system disclosed in Mellender to dynamically determine the
		maximum number of expired records to remove in the accessed linked list of records. It is a fundamental concept in computer science and the relevant art
		that any variable or parameter affecting any aspect of a system can be
		dynamically determined based on information available to the system. One of
		ordinary skill in the art would have been motivated to combine the system
		disclosed in Mellender with the fundamental concept of dynamically
		determining the maximum number of expired records to remove in an accessed

Asserted Cl U.S. Pat. No	aims From 5. 5,893,120	Mellender et al., "Object-Oriented, Logic, and Database Programming Tool with Garbage Collection," U.S. Patent No. 4,989,132 (issued Jan. 29, 1991) ("Mellender")
		linked list of records to solve a number of potential problems. For example, the removal of expired records described in Mellender can be burdensome on the system, adding to the system's load and slowing down the system's processing. Moreover, the removal could also force an interruption in real- time processing as the processing waits for the removal to complete.
		One of ordinary skill in the art would have known that dynamically determining the maximum number to remove would limit the burden on the system and bound the length of any real-time interruption to prevent delays in processing. Indeed, Nemes concedes that such dynamic determination was obvious when he states in the '120 patent that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15.
		To the extent that dynamically determining a maximum number of expired records is not disclosed by Mellender in combination with Dirks, Thatte, the '663 Patent, or the Opportunistic Garbage Collection References, it is disclosed by Linux 2.0.1, which describes dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed. It would have been obvious to combine Linux 2.0.1 with Mellender. For example, both Linux 2.0.1 and Mellender describe systems and methods for performing data storage and retrieval using known programming techniques to yield a predictable result.
		When invoked, the function rt_cache_add automatically increments an integer variable rt_cache_size. <i>See</i> Linux 2.0.1, route.c at line 1359.

Asserted Claims From U.S. Pat. No. 5,893,120		Mellender et al., "Object-Oriented, Logic, and Database Programming Tool with Garbage Collection," U.S. Patent No. 4,989,132 (issued Jan. 29, 1991) ("Mellender")
		When the function rt_cache_add removes an expired record, the function rt_cache_add decrements the variable rt_cache_size. See Linux 2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the number of records in the hash table (i.e., ip_rt_hash_table). Because the function rt_cache_add automatically increments and decrements the variable rt_cache_size is determined dynamically.
		Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1. The function rt_garbage_collect_1 loops through each of the linked lists in the ip_rt_hash_table global variable. <i>See</i> Linux 2.0.1, route.c at lines 1122-1138. In this way, the function rt_garbage_collect_1 accesses the linked list. When the function rt_garbage_collect_1 identifies a record that is expired, the function rt_garbage_collect_1 decrements the variable rt_cache_size and frees the record. <i>See</i> Linux 2.0.1, route.c at lines 1128-1135.
		Because all records in the linked list can be expired and all records in the hash table can be in the linked list, the variable rt_cache_size can represent a dynamically determined maximum number of expired ones of the records to remove when function rt_garbage_collect_1 accesses the linked list.
		Furthermore, the function rt_cache_add determines whether the number of records in the hash table exceeds a predetermined threshold RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds the predetermined threshold RT_CACHE_SIZE_MAX, the function

40

Asserted Claims F U.S. Pat. No. 5,893	OmMellender et al., "Object-Oriented, Logic, and Database Programming20Tool with Garbage Collection," U.S. Patent No. 4,989,132 (issued Jan. 29, 1991) ("Mellender")
	1991) ("Mellender")rt_cache_add invokes a function rt_garbage_collect. See Linux2.0.1, route.c at lines 1341-1342. The function rt_garbage_collectinvokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c atline 1293. The function rt_garbage_collect_1. See Linux 2.0.1, route.c atrt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.The function rt_garbage_collect_1 loops through each linked list inthe hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linkedlist in the hash table, the function rt_garbage_collect_1 looks at eachrecord in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For eachrecord in a linked list, the function rt_garbage_collect_1 determineswhether the record's last use time plus the record's expiration factor is laterthan the current time. See Linux 2.0.1, route.c at line 1122. If the record's lastuse time plus the record's expiration factor is less than the current time, thefunction rt_garbage_collect_1 removes the record from the linked list.See Linux 2.0.1, route.c at lines 1124-1130. The record's expiration factor isbased on a variable expire and the record's reference count. See Linux2.0.1, route.c at line 1122. The variable expire is initially one half of the fixedtimeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.After looping through all of the linked lists in this manner, the functionrt_garbage_collect_1 determines again whether the number of recordsin the hash table is less than the predetermined thresholdRT CACHE SIZE MAX. See Linux 2.0.1, route.c at line 1133. If the number
	of items in the hash table is still greater than the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves the variable expire and loops through each of the linked lists in the hash

Asserted Claims From U.S. Pat. No. 5,893,120		Mellender et al., "Object-Oriented, Logic, and Database Programming Tool with Garbage Collection," U.S. Patent No. 4,989,132 (issued Jan. 29, 1991) ("Mellender")
		<pre>tool while Gallonge Collection, Co.S. Falent No. 19707,152 (Issued Jahr. 27, 1991) ("Mellender") table. See Linux 2.0.1, route.c at line 1135. In this way, the function rt_garbage_collect_1 can remove additional records from the linked lists in the hash table. The function rt_garbage_collect_1 repeats this process until the total number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX. Under Bedrock's proposed claim constructions, the records removed by the function rt_garbage_collect_1 are "expired" records. That is, the records removed by the function rt_garbage_collect_1 are data items which after a limited time or after the occurrence of some event become obsolete, such that their presence in the storage system is no longer needed or desired. The function rt_cache_add only removes a record from a linked list when the record's last use time plus the fixed timeout value RT_CACHE_TIMEOUT is less than the current time and the record's reference count is zero. See Linux 2.0.1, route.c at line 1369. Thus, the maximum number of records that the function rt_cache_add can remove from a given linked list is limited to those records whose reference counts are zero. In contrast, the maximum number of records that the function rt_cache_adl.can remove from a given linked list is pot.</pre>
		rt_garbage_collect_1 can remove from a given linked list is not limited to those records whose reference counts are zero. <i>See</i> Linux 2.0.1, route.c at line 1122. Rather, the function rt_garbage_collect_1 can remove records whose reference counts are zero and records whose reference counts are greater than zero.
		Consequently, the maximum number of records that the function

Asserted Claims From U.S. Pat. No. 5,893,120	Mellender et al., "Object-Oriented, Logic, and Database Programming Tool with Garbage Collection," U.S. Patent No. 4,989,132 (issued Jan. 29, 1991) ("Mellender")
	rt_garbage_collect_1 can remove from a linked list is different than the maximum number of records that the function rt_cache_add can remove from a linked list.

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
1. An information storage	5. An information storage	To the extent the preamble is a limitation, Robinson discloses an information
and retrieval system, the	and retrieval system, the	storage and retrieval system.
system comprising:	system comprising:	
		For example, Robinson discloses "[a] cache directory keeps track of which blocks are in the cache, the number of times each block in the cache has been referenced after aging at least a predetermined amount (reference count), and the age of each block since the last reference to that block, for use in determining which of the cache blocks is replaced when there is a cache miss." Robinson, "Data Cache Using Dynamic Frequency Based Replacement and Boundary Criteria," U.S. Patent No. 5,043,885 (issued Aug. 27, 1991) at Abstract.
		"Each block in the cache has a corresponding cache directory entry in the cache directory and is found by means of the cache directory. The cache directory consists of an array of cache directory entries, individual pointers and pointer tables used for locating blocks, updating the directory, and making replacement decisions. The location in the cache of a block found in the cache directory is known from the offset (i.e., the position) of the corresponding cache directory entry in the array of cache directory entries." <i>Id.</i> at 5:25-34.
[1a] a linked list to store	[5a] a hashing means to	Robinson discloses a linked list to store and provide access to records stored in
and provide access to	provide access to records	a memory of the system, at least some of the records automatically expiring.
records stored in a memory	stored in a memory of the	Robinson also discloses a hashing means to provide access to records stored in
of the system, at least some	system and using an	a memory of the system and using an external chaining technique to store the
of the records	external chaining technique	records with same hash address, at least some of the records automatically
automatically expiring,	to store the records with	expiring.
	same hash address, at least	
	some of the records	For example, Robinson discloses "[a] cache directory keeps track of which
Joint Invalidity Contentions & Production of		1 Case No. 6:09-CV-549-LED

US2008 1661508.4

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
automatically expiring,	blocks are in the cache, the number of times each block in the cache has been referenced after aging at least a predetermined amount (reference count), and the age of each block since the last reference to that block, for use in determining which of the cache blocks is replaced when there is a cache miss." <i>Id.</i> at Abstract.
	"Each block in the cache has a corresponding cache directory entry in the cache directory and is found by means of the cache directory. The cache directory consists of an array of cache directory entries, individual pointers and pointer tables used for locating blocks, updating the directory, and making replacement decisions. The location in the cache of a block found in the cache directory is known from the offset (i.e., the position) of the corresponding cache directory entry in the array of cache directory entries." <i>Id.</i> at 5:25-34.
	"The preferred embodiment makes use of several known data structures and techniques, including a hash table for locating blocks in the cache, and doubly-linked lists for (1) the overall LRU chain, (2) individual LRU chains for each count value below a threshold, and (3) the chains of cache directory entries having identical hash values." <i>Id.</i> at 5:35-41.
	"Since the preferred embodiment makes use of a hash function to locate [cache directory entries], more than one origin may correspond with the same hash value. Fields 34, 36 contain the pointers PHASH and NHASH which establish the doubly-linked list for the hash value which corresponds with the ID in field." <i>Id.</i> at $5:65-69 - 6:1-2$.
	"A [cache directory entry] for a block is found by first hashing the block ID using a hash function 44 to produce a hash value or offset, which corresponds

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	with a particular element 46 in hash table 48. The hash table is an array of points to CDEs. The hash table element points either to the head or the tail of a doubly liked list of CDE having the same hash value. Starting with the CDE referred to in the hash table, the list of CDEs having the same hash value is searched sequentially (using either the pointer PHASH or NHASH in the CDEs depending upon whether the hash table pointed to the head or the tail) comparing the ID field in each such entry with the ID of the block being searched for. If an identical ID is found, the block is in the cache, and this case is referred to as a HIT. Otherwise either the hash table pointer is null or the ID was not found in the list. In such case the block is not in the cache and must be brought into the cache, which in general means that an existing block must be replaced with this new block. This case is referred to as a MISS." <i>Id.</i> at 6:14- 34.
	 "[T]he cache directory essentially works in LRU fashion, with a cache directory entry being put in the MRU position each time a block is referenced. According to the invention, however, the block associated with the cache directory entry in the LRU position 16 will not necessarily be the one that it replaced when there is a miss. Additionally, according to the invention, there is a preselected boundary (age boundary) 18. Each time a block ages past this boundary, this fact is updated for that block in the cache directory, so that for each block in the cache it is known which side of the age boundary it is on." <i>Id.</i> at 4:34-45. "Various versions of the invention result from the way the reference counts are used to select blocks to replace. One simple version is as follows: when there is a miss, select the least recently used block in the non-local section whose count is below a preselected threshold. If there is no such block below the

3

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
		preselected count threshold, then select the least recently used block. Blocks whose counts are below the threshold can be tracked with a separate LRU chain, leading to an efficient implementation." <i>Id.</i> at 4:53-62.
[1b] a record search means utilizing a search key to access the linked list,	[5b] a record search means utilizing a search key to access a linked list of records having the same hash address,	 Robinson discloses a record search means utilizing a search key to access the linked list. Robinson also discloses a record search means utilizing a search key to access a linked list of records having the same hash address. For example, Robinson discloses "[a] cache directory keeps track of which blocks are in the cache, the number of times each block in the cache has been referenced after aging at least a predetermined amount (reference count), and the age of each block since the last reference to that block, for use in determining which of the cache blocks is replaced when there is a cache miss." <i>Id.</i> at Abstract. "Each block in the cache has a corresponding cache directory. The cache directory consists of an array of cache directory entries, individual pointers and pointer tables used for locating blocks, updating the directory, and making replacement decisions. The location in the cache of a block found in the cache directory entry in the array of cache directory entries." <i>Id.</i> at 5:25-34. "The preferred embodiment makes use of several known data structures and techniques, including a hash table for locating blocks in the cache, and doubly-linked lists for (1) the overall LRU chain, (2) individual LRU chains for each count value below a threshold and (3) the chains of cache directory entries.
	hash address,	For example, Robinson discloses "[a] cache directory keeps track of which blocks are in the cache, the number of times each block in the cache has been referenced after aging at least a predetermined amount (reference count), and the age of each block since the last reference to that block, for use in determining which of the cache blocks is replaced when there is a cache miss <i>Id.</i> at Abstract. "Each block in the cache has a corresponding cache directory entry in the cache directory and is found by means of the cache directory. The cache directory consists of an array of cache directory entries, individual pointers an pointer tables used for locating blocks, updating the directory, and making replacement decisions. The location in the cache of a block found in the cach directory entry in the array of cache directory entries." <i>Id.</i> at 5:25-34. "The preferred embodiment makes use of several known data structures and techniques, including a hash table for locating blocks in the cache, and doubly linked lists for (1) the overall LRU chain, (2) individual LRU chains for each count value below a threshold, and (3) the chains of cache directory entries having identical hash values." <i>Id.</i> at 5:35-41.

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
		"Since the preferred embodiment makes use of a hash function to locate [cache directory entries], more than one origin may correspond with the same hash value. Fields 34, 36 contain the pointers PHASH and NHASH which establish the doubly-linked list for the hash value which corresponds with the ID in field." <i>Id.</i> at 5:65-69 – 6:1-2.
		"A [cache directory entry] for a block is found by first hashing the block ID using a hash function 44 to produce a hash value or offset, which corresponds with a particular element 46 in hash table 48. The hash table is an array of points to CDEs. The hash table element points either to the head or the tail of a doubly liked list of CDE having the same hash value. Starting with the CDE referred to in the hash table, the list of CDEs having the same hash value is searched sequentially (using either the pointer PHASH or NHASH in the CDEs depending upon whether the hash table pointed to the head or the tail) comparing the ID field in each such entry with the ID of the block being searched for." <i>Id.</i> at 6:14-27.
[1c] the record search means including a means for identifying and removing at least some of the expired ones of the records from the linked list when the linked list is	[5c] the record search means including means for identifying and removing at least some expired ones of the records from the linked list of records when the linked list is accessed,	Robinson discloses the record search means including a means for identifying and removing at least some of the expired ones of the records from the linked list when the linked list is accessed. Robinson also discloses the record search means including means for identifying and removing at least some expired ones of the records from the linked list of records when the linked list is accessed.
accessed, and	and	a memory of the system, at least some of the records automatically expiring. Robinson also discloses a hashing means to provide access to records stored in

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	a memory of the system and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring.
	For example, Robinson discloses "[a] cache directory keeps track of which blocks are in the cache, the number of times each block in the cache has been referenced after aging at least a predetermined amount (reference count), and the age of each block since the last reference to that block, for use in determining which of the cache blocks is replaced when there is a cache miss." <i>Id.</i> at Abstract.
	"Each block in the cache has a corresponding cache directory entry in the cache directory and is found by means of the cache directory. The cache directory consists of an array of cache directory entries, individual pointers and pointer tables used for locating blocks, updating the directory, and making replacement decisions. The location in the cache of a block found in the cache directory is known from the offset (i.e., the position) of the corresponding cache directory entry in the array of cache directory entries." <i>Id.</i> at 5:25-34.
	"The preferred embodiment makes use of several known data structures and techniques, including a hash table for locating blocks in the cache, and doubly-linked lists for (1) the overall LRU chain, (2) individual LRU chains for each count value below a threshold, and (3) the chains of cache directory entries having identical hash values." <i>Id.</i> at 5:35-41.
	"Since the preferred embodiment makes use of a hash function to locate [cache directory entries], more than one origin may correspond with the same hash value. Fields 34, 36 contain the pointers PHASH and NHASH which establish

Joint Invalidity Contentions & Production of Documents
Asserted Clai U.S. Pat. No.	ims From 5,893,120	U.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
		the doubly-linked list for the hash value which corresponds with the ID in field." <i>Id.</i> at 5:65-69 – 6:1-2.
		"A [cache directory entry] for a block is found by first hashing the block ID using a hash function 44 to produce a hash value or offset, which corresponds with a particular element 46 in hash table 48. The hash table is an array of points to CDEs. The hash table element points either to the head or the tail of a doubly liked list of CDE having the same hash value. Starting with the CDE referred to in the hash table, the list of CDEs having the same hash value is searched sequentially (using either the pointer PHASH or NHASH in the CDEs depending upon whether the hash table pointed to the head or the tail) comparing the ID field in each such entry with the ID of the block being searched for. If an identical ID is found, the block is in the cache, and this case is referred to as a HIT. Otherwise either the hash table pointer is null or the ID was not found in the list. In such case the block is not in the cache and must be brought into the cache, which in general means that an existing block must be replaced with this new block. This case is referred to as a MISS." <i>Id.</i> at 6:14-34.
		"[T]he cache directory essentially works in LRU fashion, with a cache directory entry being put in the MRU position each time a block is referenced. According to the invention, however, the block associated with the cache directory entry in the LRU position 16 will not necessarily be the one that it replaced when there is a miss. Additionally, according to the invention, there is a preselected boundary (age boundary) 18. Each time a block ages past this boundary, this fact is updated for that block in the cache directory, so that for each block in the cache it is known which side of the age boundary it is on." <i>Id.</i> at 4:34-45.

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
		"Various versions of the invention result from the way the reference counts are used to select blocks to replace. One simple version is as follows: when there is a miss, select the least recently used block in the non-local section whose count is below a preselected threshold. If there is no such block below the preselected count threshold, then select the least recently used block. Blocks whose counts are below the threshold can be tracked with a separate LRU chain, leading to an efficient implementation." <i>Id.</i> at 4:53-62.
[1d] means, utilizing the record search means, for accessing the linked list and, at the same time, removing at least some of the expired ones of the records in the linked list.	[5d] mea[n]s, utilizing the record search means, for inserting, retrieving, and deleting records from the system and, at the same time, removing at least some expired ones of the records in the accessed linked list of records.	Robinson discloses means, utilizing the record search means, for accessing the linked list and, at the same time, removing at least some of the expired ones of the records in the linked list. Robinson also discloses utilizing the record search means, for inserting, retrieving, and deleting records from the system and, at the same time, removing at least some expired ones of the records in the accessed linked list of records. Robinson discloses a linked list to store and provide access to records stored in a memory of the system, at least some of the records automatically expiring. Robinson also discloses a hashing means to provide access to records stored in a memory of the system and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring.
		referenced after aging at least a predetermined amount (reference count), and the age of each block since the last reference to that block, for use in determining which of the cache blocks is replaced when there is a cache miss."

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	Id. at Abstract.
	"Each block in the cache has a corresponding cache directory entry in the cache directory and is found by means of the cache directory. The cache directory consists of an array of cache directory entries, individual pointers and pointer tables used for locating blocks, updating the directory, and making replacement decisions. The location in the cache of a block found in the cache directory is known from the offset (i.e., the position) of the corresponding cache directory entry in the array of cache directory entries." <i>Id.</i> at 5:25-34.
	"The preferred embodiment makes use of several known data structures and techniques, including a hash table for locating blocks in the cache, and doubly-linked lists for (1) the overall LRU chain, (2) individual LRU chains for each count value below a threshold, and (3) the chains of cache directory entries having identical hash values." <i>Id.</i> at 5:35-41.
	"Since the preferred embodiment makes use of a hash function to locate [cache directory entries], more than one origin may correspond with the same hash value. Fields 34, 36 contain the pointers PHASH and NHASH which establish the doubly-linked list for the hash value which corresponds with the ID in field." <i>Id.</i> at $5:65-69 - 6:1-2$.
	"A [cache directory entry] for a block is found by first hashing the block ID using a hash function 44 to produce a hash value or offset, which corresponds with a particular element 46 in hash table 48. The hash table is an array of points to CDEs. The hash table element points either to the head or the tail of a doubly liked list of CDE having the same hash value. Starting with the CDE referred to in the hash table, the list of CDEs having the same hash value is

9

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	searched sequentially (using either the pointer PHASH or NHASH in the CDEs depending upon whether the hash table pointed to the head or the tail) comparing the ID field in each such entry with the ID of the block being searched for. If an identical ID is found, the block is in the cache, and this case is referred to as a HIT. Otherwise either the hash table pointer is null or the ID was not found in the list. In such case the block is not in the cache and must be brought into the cache, which in general means that an existing block must be replaced with this new block. This case is referred to as a MISS." <i>Id.</i> at 6:14-34.
	"[T]he cache directory essentially works in LRU fashion, with a cache directory entry being put in the MRU position each time a block is referenced. According to the invention, however, the block associated with the cache directory entry in the LRU position 16 will not necessarily be the one that it replaced when there is a miss. Additionally, according to the invention, there is a preselected boundary (age boundary) 18. Each time a block ages past this boundary, this fact is updated for that block in the cache directory, so that for each block in the cache it is known which side of the age boundary it is on." <i>Id.</i> at 4:34-45.
	"Various versions of the invention result from the way the reference counts are used to select blocks to replace. One simple version is as follows: when there is a miss, select the least recently used block in the non-local section whose count is below a preselected threshold. If there is no such block below the preselected count threshold, then select the least recently used block. Blocks whose counts are below the threshold can be tracked with a separate LRU chain, leading to an efficient implementation." <i>Id.</i> at 4:53-62.

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
2. The information storage and retrieval system according to claim 1 a further including means for f dynamically determining maximum number for the record search means to remove in the accessed linked list of records.	6. The information storage and retrieval system according to claim 5 further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records.	 Robinson combined with Hamstra discloses an information storage and retrieval system further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records. For example, as summarized in Hamstra: If the data is not resident in the cache memory then it is staged by segments from a disk, placed in the cache memory, and sent to the host. However, this <i>may</i> require that <i>some of the segments</i> in the cache memory be replaced by the segments from the disks. <i>Hamstra et al.</i>, "Processor-Addressable Timestamp for Indicating Oldest Written-to-Cache Entry Not Copied Back to Bulk Memory," U.S. Patent No. 4,530,054 (issued Jul. 16, 1985) at 1:36-41 (emphasis added). [W]hen a new segment or segments has to be brought from a device 104 to the cache memory 106 <i>and</i> there are no empty segments in the cache memory 106 must be deleted or removed therefrom in order to make room for the new segments.<i>Id.</i> at 6:29-34 (emphasis added). [W]hen the SCU 100 has no other work to do it may search the SDT [– the segment descriptor (SDT) contains an entry for each segment of data resident in the cache memory, similar to a hash table (<i>Id.</i> at 5:33-35) –] to locate segments which have been

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	104 thus making space available in cache 106 for additional segments. The trickling of written-to segments takes place on the same basis as segment replacement, that is, the least recently used segments are trickled first <i>Id</i> . at 6:53-60.
	In Hamstra, empty segments are created by either first initialization of the cache before segments in cache memory are filled or by the trickle down functionality of the system. According to Hamstra, <i>if</i> there are no empty segments in the cache memory, <i>then some of the segments</i> in the cache memory are deleted by the system. However, if there <i>are</i> empty segments in the cache, then there is no need to delete any segments and the requested segments are transfered from a disk into those empty segments. Therefore, the system described in Hamstra dynamically determines whether to delete a segment based on the availability of empty segments in the cache memory.
	As both Robinson and Hamstra relate to a system of cache maintenance using a least recently used method for replacement of cache segments organized in linked lists, one of ordinary skill in the art would understand how to use the Hamstra patent's dynamic decision on whether to perform a segment deletion based on the availability of empty segments in a cache memory when implementing a cache maintenance system such as Robinson. Moreover, one of ordinary skill in the art would recongize that it would improve similar systems and methods in the same way.
	The fundamental goal of a cache memory, as described by both Robinson and Hamstra, is to provide users fast access to frequently used data. <i>Robinson</i> , U.S. Patent No. 5,043,885 at 1:9-36; <i>Hamstra et al</i> , U.S. Patent No. 4,530,054 at 1:22-31. This is achieved by insuring that data residing in the cache is the

12

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	most recently and frequently used data. A person skilled in the art would appreciate that the technique of replacing least recently used data segments from cache memory upon an insertion of a new data segment can be expanded to include logic for trickling down least recently used segments to make space available in the cache for additional segments when the system has no other work to do.
	One of ordinary skill in the art would recognize that the result of combining the system disclosed in Robinson with the additional system of trickling down least recently used segments and dynamically determining whether a deletion is necessary upon a call as disclosed in Hamstra would further promote the goals of a cache memory. For example, such benefits would include creating faster access to data for the user – the additional step of a deletion would only take place if there was no empty space in the cache memory, and creating increased efficiency of system performance by utilizing unused time, when there is no work to be done, to trickle down least recently used segments from cache memory back to disk.
	Additionally, it would have been obvious to one of ordinary skill in the art to modify the system disclosed in Robinson to dynamically determine the maximum number of expired records to remove in the accessed linked list of records. It is a fundamental concept in computer science and the relevant art that any variable or parameter affecting any aspect of a system can be dynamically determined based on information available to the system. One of ordinary skill in the art would have been motivated to combine the system disclosed in Robinson with the fundamental concept of dynamically determining the maximum number of expired records to remove in an accessed linked list of records to solve a number of potential problems. For example,

13

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	the removal of expired records described in Robinson can be burdensome on the system, adding to the system's load and slowing down the system's processing. Moreover, the removal could also force an interruption in real- time processing as the processing waits for the removal to complete. Indeed, part of the motivation for the system disclosed in Robinson is avoiding these problems. One of ordinary skill in the art would have known that dynamically determining the maximum number to remove would limit the burden on the system and bound the length of any real-time interruption to prevent delays in processing. Indeed, Nemes concedes that such dynamic determination was obvious when he states in the '120 patent that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15.
	To the extent that dynamically determining a maximum number of expired records is not disclosed by Robinson and Hamstra, Robinson combined with Dirks, Thatte, the '663 patent and/or the Opportunistic Garbage Collection Articles discloses an information storage and retrieval system further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records.
	Dirks discloses the management of memory in a computer system and more particularly to the allocation of address space in a virtual memory system, which dynamically determines how many records to sweep/remove upon each allocation. Disclosure of these claim elements in Dirks is clearly shown in Exhibit B-2, which is hereby incorporated by reference in its entirety.

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
		For example, as summarized in Dirks,each time a VSID is assigned from the free list to a new application or thread, a fixed number of entries in the page table are scanned to determine whether they have become inactive, by checking them against the VSIDs on the recycle list. Each entry which is identified as being inactive is removed from the page table. After all of the entries in the page table have been examined in this manner, the VSIDs in the recycle list can be
		 transferred to the free list, since all of their associated page table entries will have been removed. This approach thereby guarantees that a predetermined number of VSIDs are always available in the free list without requiring a time-consuming scan of the complete page table at once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14. After [a] new VSID has been allocated, the system checks a flag RFLG to determine whether a recycle sweep is currently in progress (Step 20). If there is no sweep in progress i a RFLG is not equal to one a
		determination is made whether a sweep should be initiated. This is done by checking whether the inactive list is full, i.e. whether it contains x entries (Step 22). If the number of entries I on the inactive list is less than x, no further action is taken, and processing control returns to the operating system (Step 24). If, however, the inactive list is full at this time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are transferred to the recycle list, and an index n is reset to 1 (Step 28). The system then sweeps a predetermined number of page table entries PT_i on the page table, to detect whether any of them are inactive, i.e. their
		associated VSID is on the recycle list (Step 30). The predetermined number of entries that are swept is identified as k, where:

15

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	$k = \frac{\text{total number of page table entries}}{\text{maximum number of active threads}}$ <i>Id.</i> at 8:12-30.
	Dirks discloses that any approach can be employed to determine the number of entries to be examined during each step of the sweeping process. <i>Id.</i> at 7:37-40. As stated in Dirks:
	Any other suitable approach can be employed to determine the number of entries to be examined during each step of the sweeping process. In this regard, it is not necessary that the number of examined entries be fixed for each step. Rather, it might vary from one step to the next. The only criterion is that the number of entries examined on each step be such that all entries in the page table are examined in a determinable amount of time or by the occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.
	<i>Id.</i> at 7:38-46. Thus, Dirks dynamically determines the maximum number of records to sweep/remove by calculating a value <i>k</i> . <i>Id</i> . at 7:15-46, 7:66-8:56.
	As both Robinson and Dirks relate to deletion of aged records upon the allocation of a new incoming record, one of ordinary skill in the art would have understood how to use Dirks' dynamic decision making process of determining the maximum number of records to sweep/remove in other hash tables implementations such as Robinson. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching

16

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining Dirks' deletion decision procedure with Robinson nothing more than the predictable use of prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have combined Dirks' dynamic determination of the suitable number of entries to examine during each step of the sweeping process with Robinson and would have seen the benefits of doing so. One possible benefit, for example, is saving the system from performing sometimes time-consuming sweeps.`
	Alternatively, one of ordinary skill in the art would be motivated to, and would understand how to, combine the system disclosed in Robinson with the means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records disclosed by Thatte. For example, Thatte discloses a system and method using hash tables and/or linked lists and further discloses means for dynamically determining the maximum number for the record search means to remove in the accessed linked list of records. The disclosure of these claim elements in Thatte is clearly shown in the chart of Thatte, which is hereby incorporated by reference in its entirety.
	Moreover, one of ordinary skill in the art would recognize that these combinations would improve the similar systems and methods in the same way. Additionally, as both Robinson and Thatte teach a system of data storage and retrieval, one of ordinary skill in the art would recognize that the result of

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
		combining Robinson with Thatte would be nothing more than the predictable use of prior art elements according to their established functions. The resulting combination would include the capability to determine the maximum number for the record search means to remove as taught by Thatte.
		Further, one of ordinary skill in the art would be motivated to combine Robinson with Thatte and recognize the benefits of doing so. For example, the removal of expired records described in Robinson can be burdensome on the system, adding to the system's load and slowing down the system's processing. One of ordinary skill in the art would recognize that combining Robinson with the teachings of Thatte would solve this problem by dynamically determining how many records to delete based on, among other things, the system load. Moreover, the '120 patent discloses that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine Robinson with Thatte.
		Alternatively, it would also be obvious to combine Robinson with the '663 patent. Disclosure of these claim elements in the '663 patent is clearly shown in the chart of the '663 patent, which is hereby incorporated by reference in its entirety. For example, as summarized in the '663 patent:
		during normal times when the load on the storage system is not excessive, a non-contaminating but slow deletion of records is used. This slow, non-contaminating deletion involves closing

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
		 the collision-resolution chain of locations by moving a record from a later position in the chain into the position of the record to be deleted. This leaves no deleted record locations in the storage space to slow down future searches. U.S. Patent 4,996,663 to Nemes at 2:24-34 ("The '663 patent"). In times of heavy use, when deletions must be done rapidly and no time is available for decontamination, the record locations automatically remove the contaminating deleted record locations automatically remove the chain as described above. <i>Id.</i> at 2:35-41. This hybrid hashing technique has the decided advantage of automatically eliminating contamination caused by the fast-secure deletion procedure when the slower, non-contaminating deletion is used when the load on the system is at lower levels. <i>Id.</i> at 2:42-46. This hybrid deletion is shown in Figure 5.

Asserted Claims From	U.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in
U.S. Pat. No. 5,893,120	combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	FIG.5 HYBRID DELETION (fig) = 1 (fig) = 1 (fig

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
		not actually delete records, rather it marks records as deleted. <i>Id.</i> at 8:1-33, Figure 7. These records are then actually deleted by a subsequent slow-non-contaminating delete 53. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
		Thus, the hybrid deletion procedure in the '663 patent dynamically determines a maximum number of records to remove. <i>See id.</i> at 6:40-64, Figure 5. If the fast-secure delete 52 is used, then maximum number of records is zero because records are not deleted they are only marked. <i>Id.</i> at 8:1-33, Figure 7. If the slow-non-contaminating delete 53 is used, then the maximum number of records to remove is all of the contaminated records in the bucket. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
		As both Robinson and the '663 patent relate to deletion of records from hash tables using external chaining, one of ordinary skill in the art would understood how to use the '663 patent's dynamic decision on whether to perform a deletion based on a systems load in other hash table implementations such as that described in Robinson. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the '663 patent's deletion decision procedure with Robinson would be nothing more than the predictable use of prior art elements according to their established functions.

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	By way of further example, one of ordinary skill in the art would have combined the '663 patent's dynamic decision on whether to perform a deletion based on a systems load as taught by the '663 patent and with Robinson and would have seen the benefits of doing so. One such benefit, for example, is that the system would avoid performing deletions when the system load exceeded a threshold.
	Alternatively, it would also be obvious to combine Robinson with the Opportunistic Garbage Collection Articles.
	The Opportunistic Garbage Collection Articles disclose a generational based garbage collection which dynamically determines how much garbage to collect. <i>See generally</i> , Paul R. Wilson and Thomas G. Moher, <i>Design of the Opportunistic Garbage Collector</i> , OOPSLA '89 Proceedings, October 1-6, 1989; Paul R. Wilson, <i>Opportunistic Garbage Collection</i> , ACM SIGPLAN Notices, Vol. 23, No. 12, December 1988.
	For example, the Opportunistic Garbage Collection Articles disclose in part:
	When a significant pause has been detected, a decision procedure is invoked to decide whether to garbage collect, and how many generations to scavenge. The fuller a generation is, the more likely it is to be scavenged; also, the longer the pause that has been detected, the larger the scope of the garbage collection is likely to be. <i>Design of the Opportunistic Garbage</i> <i>Collector</i> at 32.
	Every time a user-input routine is invoked, a decision routine can decide whether to garbage collect. As long as the decision routine takes no more

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	than a few milliseconds to execute, it should not interfere with responsiveness. Since it is only invoked at these times, it does not incur a continual run-time overhead. <i>Opportunistic Garbage Collection</i> at 100.
	This decision routine should take several things into account: 1) the volume of data allocated since the last scavenge, 2) how long it has been since the user has had an opportunity to interact, and 3) the height of the stack relative to its average height at reads since the last scavenge. If the product of the allocation and the compute time is high, and if the stack is low, the scavenge favorability measure is high. If it is especially high, a multi-generation scavenge is in order. <i>Id</i> .
	If these heuristics fail and a scavenge is forced instead by the filling of a generation's space, it is likely to happen during a significant compute- bound pausethe one that has just allocated the data that forced the collection. When the opportunistic mechanism fails to find the end of a pause, it may still succeed by default, embedding a scavenge pause within a larger pause. <i>Design of the Opportunistic Garbage Collector</i> at 32.
	As both Robinson and the Opportunistic Garbage Collection Articles relate to deletion of aged records, one of ordinary skill in the art would have understood how to use the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion based on a system load in other hash table implementations such as Robinson. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily

23

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
		all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the Opportunistic Garbage Collection Articles' deletion decision procedure with Robinson would be nothing more than the predictable use of prior art elements according to their established functions.
		By way of further example, one of ordinary skill in the art would have combined the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion and how many generations to scavenge as taught by the Opportunistic Garbage Collection Articles and with Robinson and would have seen the benefits of doing so. One such benefit, for example, is preventing slowdown of the system.
		Additionally, it would have been obvious to one of ordinary skill in the art to modify the system disclosed in Robinson to dynamically determine the maximum number of expired records to remove in the accessed linked list of records. It is a fundamental concept in computer science and the relevant art that any variable or parameter affecting any aspect of a system can be dynamically determined based on information available to the system. One of ordinary skill in the art would have been motivated to combine the system disclosed in Robinson with the fundamental concept of dynamically determining the maximum number of expired records to remove in an accessed linked list of records to solve a number of potential problems. For example, the removal of expired records described in Robinson can be burdensome on the system, adding to the system's load and slowing down the system's processing. Moreover, the removal could also force an interruption in real- time processing as the processing waits for the removal to complete.

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	One of ordinary skill in the art would have known that dynamically determining the maximum number to remove would limit the burden on the system and bound the length of any real-time interruption to prevent delays in processing. Indeed, Nemes concedes that such dynamic determination was obvious when he states in the '120 patent that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15.
	To the extent that dynamically determining a maximum number of expired records is not disclosed by Robinson in combination with Dirks, Thatte, the '663 Patent, or the Opportunistic Garbage Collection References, it is disclosed by Linux 2.0.1, which describes dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed. It would have been obvious to combine Linux 2.0.1 with Robinson. For example, both Linux 2.0.1 and Robinson describe systems and methods for performing data storage and retrieval using known programming techniques to yield a predictable result.
	When invoked, the function rt_cache_add automatically increments an integer variable rt_cache_size. <i>See</i> Linux 2.0.1, route.c at line 1359. When the function rt_cache_add removes an expired record, the function rt_cache_add decrements the variable rt_cache_size. <i>See</i> Linux 2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the

25

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	number of records in the hash table (i.e., ip_rt_hash_table). Because the function rt_cache_add automatically increments and decrements the variable rt_cache_size, the variable rt_cache_size is determined dynamically.
	Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1. The function rt_garbage_collect_1 loops through each of the linked lists in the ip_rt_hash_table global variable. <i>See</i> Linux 2.0.1, route.c at lines 1122-1138. In this way, the function rt_garbage_collect_1 accesses the linked list. When the function rt_garbage_collect_1 identifies a record that is expired, the function rt_garbage_collect_1 decrements the variable rt_cache_size and frees the record. <i>See</i> Linux 2.0.1, route.c at lines 1128-1135.
	Because all records in the linked list can be expired and all records in the hash table can be in the linked list, the variable rt_cache_size can represent a dynamically determined maximum number of expired ones of the records to remove when function rt_garbage_collect_1 accesses the linked list.
	Furthermore, the function rt_cache_add determines whether the number of records in the hash table exceeds a predetermined threshold RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_cache_add invokes a function rt_garbage_collect. <i>See</i> Linux 2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect invokes a function rt_garbage_collect_1. <i>See</i> Linux 2.0.1, route.c at

26

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
		line 1293. The function rt_garbage_collect invokes a function
		rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.
		The function rt_garbage_collect_1 loops through each linked list in
		the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
		list in the hash table, the function rt_garbage_collect_1 looks at each
		record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
		whether the record's last use time plus the record's expiration factor is later
		than the current time. See Linux 2.0.1 route c at line 1122. If the record's last
		use time plus the record's expiration factor is less than the current time, the
		function rt garbage collect 1 removes the record from the linked list.
		See Linux 2.0.1, route.c at lines 1124-1130. The record's expiration factor is
		based on a variable expire and the record's reference count. See Linux
		2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
		timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.
		After looping through all of the linked lists in this manner, the function
		rt_garbage_collect_1 determines again whether the number of records
		in the hash table is less than the predetermined threshold
		RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
		of items in the hash table is still greater than the predetermined threshold
		RT_CACHE_SIZE_MAX, the function rt_garbage_collect_l halves
		table. See Linux 2.0.1 route e at line 1125. In this way, the function
		rt garbage gollegt 1 can remove additional records from the linked
		lists in the hash table. The function rt garbage collect 1 repeats this

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
		process until the total number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX.
		Under Bedrock's proposed claim constructions, the records removed by the function rt_garbage_collect_1 are "expired" records. That is, the records removed by the function rt_garbage_collect_1 are data items which after a limited time or after the occurrence of some event become obsolete, such that their presence in the storage system is no longer needed or desired.
		The function rt_cache_add only removes a record from a linked list when the record's last use time plus the fixed timeout value RT_CACHE_TIMEOUT is less than the current time and the record's reference count is zero. <i>See</i> Linux 2.0.1, route.c at line 1369. Thus, the maximum number of records that the function rt_cache_add can remove from a given linked list is limited to those records whose reference counts are zero.
		In contrast, the maximum number of records that the function rt_garbage_collect_1 can remove from a given linked list is not limited to those records whose reference counts are zero. <i>See</i> Linux 2.0.1, route.c at line 1122. Rather, the function rt_garbage_collect_1 can remove records whose reference counts are zero and records whose reference counts are greater than zero.
		Consequently, the maximum number of records that the function rt_garbage_collect_1 can remove from a linked list is different than the maximum number of records that the function rt_cache_add can

28

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
		remove from a linked list.
3. A method for storing and retrieving information records using a linked list to store and provide access to the records, at least some of the records automatically expiring, the method comprising the steps of:	7. A method for storing and retrieving information records using a hashing technique to provide access to the records and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring, the method comprising the steps of:	To the extent the preamble is a limitation, Robinson discloses a method for storing and retrieving information records using a linked list to store and provide access to the records, at least some of the records automatically expiring. Robinson also discloses a method for storing and retrieving information records using a hashing technique to provide access to the records and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring. Robinson discloses a linked list to store and provide access to records stored in a memory of the system, at least some of the records automatically expiring. Robinson also discloses a hashing means to provide access to records stored in a memory of the system and using an external chaining technique to store the records automatically expiring. Robinson also discloses a linked list composite access to records stored in a memory of the system and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring. For example, Robinson discloses "[a] cache directory keeps track of which blocks are in the cache, the number of times each block in the cache has been referenced after aging at least a predetermined amount (reference count), and the age of each block since the last reference to that block, for use in determining which of the cache blocks is replaced when there is a cache miss." <i>Robinson</i> , U.S. Patent No. 5,043,885 at Abstract.
		pointer tables used for locating blocks, updating the directory, and making

Asserted Claims F U.S. Pat. No. 5,893	omU.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in120combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	replacement decisions. The location in the cache of a block found in the cache directory is known from the offset (i.e., the position) of the corresponding cache directory entry in the array of cache directory entries." <i>Id.</i> at 5:25-34.
	"The preferred embodiment makes use of several known data structures and techniques, including a hash table for locating blocks in the cache, and doubly-linked lists for (1) the overall LRU chain, (2) individual LRU chains for each count value below a threshold, and (3) the chains of cache directory entries having identical hash values." <i>Id.</i> at 5:35-41
	"Since the preferred embodiment makes use of a hash function to locate [cache directory entries], more than one origin may correspond with the same hash value. Fields 34, 36 contain the pointers PHASH and NHASH which establish the doubly-linked list for the hash value which corresponds with the ID in field." <i>Id.</i> at $5:65-69 - 6:1-2$.
	"A [cache directory entry] for a block is found by first hashing the block ID using a hash function 44 to produce a hash value or offset, which corresponds with a particular element 46 in hash table 48. The hash table is an array of points to CDEs. The hash table element points either to the head or the tail of a doubly liked list of CDE having the same hash value. Starting with the CDE referred to in the hash table, the list of CDEs having the same hash value is searched sequentially (using either the pointer PHASH or NHASH in the CDEs depending upon whether the hash table pointed to the head or the tail) comparing the ID field in each such entry with the ID of the block being searched for. If an identical ID is found, the block is in the cache, and this case is referred to as a HIT. Otherwise either the hash table pointer is null or the ID was not found in the list. In such case the block is not in the cache and must be

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
		brought into the cache, which in general means that an existing block must be replaced with this new block. This case is referred to as a MISS." <i>Id.</i> at 6:14-34.
		"[T]he cache directory essentially works in LRU fashion, with a cache directory entry being put in the MRU position each time a block is referenced. According to the invention, however, the block associated with the cache directory entry in the LRU position 16 will not necessarily be the one that it replaced when there is a miss. Additionally, according to the invention, there is a preselected boundary (age boundary) 18. Each time a block ages past this boundary, this fact is updated for that block in the cache directory, so that for each block in the cache it is known which side of the age boundary it is on." <i>Id.</i> at 4:34-45.
		"Various versions of the invention result from the way the reference counts are used to select blocks to replace. One simple version is as follows: when there is a miss, select the least recently used block in the non-local section whose count is below a preselected threshold. If there is no such block below the preselected count threshold, then select the least recently used block. Blocks whose counts are below the threshold can be tracked with a separate LRU chain, leading to an efficient implementation." <i>Id.</i> at 4:53-62.
[3a] accessing the linked list of records,	[7a] accessing a linked list of records having same hash address,	Robinson discloses accessing a linked list of records. Robinson also discloses accessing a linked list of records having same hash address.
		For example, Robinson discloses "[a] cache directory keeps track of which blocks are in the cache, the number of times each block in the cache has been referenced after aging at least a predetermined amount (reference count), and

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	the age of each block since the last reference to that block, for use in determining which of the cache blocks is replaced when there is a cache miss." <i>Id.</i> at Abstract.
	"Each block in the cache has a corresponding cache directory entry in the cache directory and is found by means of the cache directory. The cache directory consists of an array of cache directory entries, individual pointers and pointer tables used for locating blocks, updating the directory, and making replacement decisions. The location in the cache of a block found in the cache directory is known from the offset (i.e., the position) of the corresponding cache directory entry in the array of cache directory entries." <i>Id.</i> at 5:25-34.
	"The preferred embodiment makes use of several known data structures and techniques, including a hash table for locating blocks in the cache, and doubly-linked lists for (1) the overall LRU chain, (2) individual LRU chains for each count value below a threshold, and (3) the chains of cache directory entries having identical hash values." <i>Id.</i> at 5:35-41
	"Since the preferred embodiment makes use of a hash function to locate [cache directory entries], more than one origin may correspond with the same hash value. Fields 34, 36 contain the pointers PHASH and NHASH which establish the doubly-linked list for the hash value which corresponds with the ID in field." <i>Id.</i> at $5:65-69 - 6:1-2$.
	"A [cache directory entry] for a block is found by first hashing the block ID using a hash function 44 to produce a hash value or offset, which corresponds with a particular element 46 in hash table 48. The hash table is an array of points to CDEs. The hash table element points either to the head or the tail of

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
		a doubly liked list of CDE having the same hash value. Starting with the CDE referred to in the hash table, the list of CDEs having the same hash value is searched sequentially (using either the pointer PHASH or NHASH in the CDEs depending upon whether the hash table pointed to the head or the tail) comparing the ID field in each such entry with the ID of the block being searched for." <i>Id.</i> at 6:14-27.
[3b] identifying at least some of the automatically expired ones of the records	[7b] identifying at least some of the automatically expired ones of the records	Robinson discloses identifying at least some of the automatically expired ones of the records.
and expired ones of the records, expired ones of	expired ones of the records,	For example, Robinson discloses "[a] cache directory keeps track of which blocks are in the cache, the number of times each block in the cache has been referenced after aging at least a predetermined amount (reference count), and the age of each block since the last reference to that block, for use in determining which of the cache blocks is replaced when there is a cache miss." <i>Id.</i> at Abstract.
		"Each block in the cache has a corresponding cache directory entry in the cache directory and is found by means of the cache directory. The cache directory consists of an array of cache directory entries, individual pointers and pointer tables used for locating blocks, updating the directory, and making replacement decisions. The location in the cache of a block found in the cache directory is known from the offset (i.e., the position) of the corresponding cache directory entries." <i>Id.</i> at 5:25-34.
		"A [cache directory entry] for a block is found by first hashing the block ID using a hash function 44 to produce a hash value or offset, which corresponds with a particular element 46 in hash table 48. The hash table is an array of

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	points to CDEs. The hash table element points either to the head or the tail of a doubly liked list of CDE having the same hash value. Starting with the CDE referred to in the hash table, the list of CDEs having the same hash value is searched sequentially (using either the pointer PHASH or NHASH in the CDEs depending upon whether the hash table pointed to the head or the tail) comparing the ID field in each such entry with the ID of the block being searched for. If an identical ID is found, the block is in the cache, and this case is referred to as a HIT. Otherwise either the hash table pointer is null or the ID was not found in the list. In such case the block is not in the cache and must be brought into the cache, which in general means that an existing block must be replaced with this new block. This case is referred to as a MISS." <i>Id.</i> at 6:14- 34.
	"[T]he cache directory essentially works in LRU fashion, with a cache directory entry being put in the MRU position each time a block is referenced. According to the invention, however, the block associated with the cache directory entry in the LRU position 16 will not necessarily be the one that it replaced when there is a miss. Additionally, according to the invention, there is a preselected boundary (age boundary) 18. Each time a block ages past this boundary, this fact is updated for that block in the cache directory, so that for each block in the cache it is known which side of the age boundary it is on." <i>Id.</i> at 4:34-45.
	"Various versions of the invention result from the way the reference counts are used to select blocks to replace. One simple version is as follows: when there is a miss, select the least recently used block in the non-local section whose count is below a preselected threshold. If there is no such block below the preselected count threshold, then select the least recently used block. Blocks

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
		whose counts are below the threshold can be tracked with a separate LRU chain, leading to an efficient implementation." <i>Id.</i> at 4:53-62.
[3c] removing at least some of the automatically expired records from the linked list when the linked list is accessed. [7c] removing at least some of the automatically expired records from the linked list when the linked list is accessed, and	[7c] removing at least some of the automatically expired records from the linked list when the linked list is accessed, and	Robinson discloses removing at least some of the automatically expired records from the linked list when the linked list is accessed. For example, Robinson discloses "[a] cache directory keeps track of which blocks are in the cache, the number of times each block in the cache has been referenced after aging at least a predetermined amount (reference count), and the age of each block since the last reference to that block, for use in
		 determining which of the cache blocks is replaced when there is a cache miss." <i>Id.</i> at Abstract. "Each block in the cache has a corresponding cache directory entry in the cache directory and is found by means of the cache directory. The cache directory consists of an array of cache directory entries, individual pointers and pointer tables used for locating blocks, updating the directory, and making replacement decisions. The location in the cache of a block found in the cache directory is known from the offset (i.e., the position) of the corresponding cache directory entry in the array of cache directory entries." <i>Id.</i> at 5:25-34.
		"The preferred embodiment makes use of several known data structures and techniques, including a hash table for locating blocks in the cache, and doubly- linked lists for (1) the overall LRU chain, (2) individual LRU chains for each count value below a threshold, and (3) the chains of cache directory entries having identical hash values." <i>Id.</i> at 5:35-41. "Since the preferred embodiment makes use of a hash function to locate [cache

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	directory entries], more than one origin may correspond with the same hash value. Fields 34, 36 contain the pointers PHASH and NHASH which establish the doubly-linked list for the hash value which corresponds with the ID in field." <i>Id.</i> at 5:65-69 – 6:1-2.
	"A [cache directory entry] for a block is found by first hashing the block ID using a hash function 44 to produce a hash value or offset, which corresponds with a particular element 46 in hash table 48. The hash table is an array of points to CDEs. The hash table element points either to the head or the tail of a doubly liked list of CDE having the same hash value. Starting with the CDE referred to in the hash table, the list of CDEs having the same hash value is searched sequentially (using either the pointer PHASH or NHASH in the CDEs depending upon whether the hash table pointed to the head or the tail) comparing the ID field in each such entry with the ID of the block being searched for. If an identical ID is found, the block is in the cache, and this case is referred to as a HIT. Otherwise either the hash table pointer is null or the ID was not found in the list. In such case the block is not in the cache and must be brought into the cache, which in general means that an existing block must be replaced with this new block. This case is referred to as a MISS." <i>Id.</i> at 6:14-34.
	"[T]he cache directory essentially works in LRU fashion, with a cache directory entry being put in the MRU position each time a block is referenced. According to the invention, however, the block associated with the cache directory entry in the LRU position 16 will not necessarily be the one that it replaced when there is a miss. Additionally, according to the invention, there is a preselected boundary (age boundary) 18. Each time a block ages past this boundary, this fact is updated for that block in the cache directory, so that for

36

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
		each block in the cache it is known which side of the age boundary it is on." <i>Id.</i> at 4:34-45.
		"Various versions of the invention result from the way the reference counts are used to select blocks to replace. One simple version is as follows: when there is a miss, select the least recently used block in the non-local section whose count is below a preselected threshold. If there is no such block below the preselected count threshold, then select the least recently used block. Blocks whose counts are below the threshold can be tracked with a separate LRU chain, leading to an efficient implementation." <i>Id.</i> at 4:53-62.
	[7d] inserting, retrieving or deleting one of the records from the system	Robinson discloses inserting, retrieving or deleting one of the records from the system following the step of removing.
	following the step of removing.	For example, Robinson discloses "[a] cache directory keeps track of which blocks are in the cache, the number of times each block in the cache has been referenced after aging at least a predetermined amount (reference count), and the age of each block since the last reference to that block, for use in determining which of the cache blocks is replaced when there is a cache miss." <i>Id.</i> at Abstract.
		"Each block in the cache has a corresponding cache directory entry in the cache directory and is found by means of the cache directory. The cache directory consists of an array of cache directory entries, individual pointers and pointer tables used for locating blocks, updating the directory, and making replacement decisions. The location in the cache of a block found in the cache directory is known from the offset (i.e., the position) of the corresponding cache directory entry in the array of cache directory entries." <i>Id.</i> at 5:25-34.

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	"The preferred embodiment makes use of several known data structures and techniques, including a hash table for locating blocks in the cache, and doubly-linked lists for (1) the overall LRU chain, (2) individual LRU chains for each count value below a threshold, and (3) the chains of cache directory entries having identical hash values." <i>Id.</i> at 5:35-41.
	"Since the preferred embodiment makes use of a hash function to locate [cache directory entries], more than one origin may correspond with the same hash value. Fields 34, 36 contain the pointers PHASH and NHASH which establish the doubly-linked list for the hash value which corresponds with the ID in field." <i>Id.</i> at 5:65-69 – 6:1-2.
	"A [cache directory entry] for a block is found by first hashing the block ID using a hash function 44 to produce a hash value or offset, which corresponds with a particular element 46 in hash table 48. The hash table is an array of points to CDEs. The hash table element points either to the head or the tail of a doubly liked list of CDE having the same hash value. Starting with the CDE referred to in the hash table, the list of CDEs having the same hash value is searched sequentially (using either the pointer PHASH or NHASH in the CDEs depending upon whether the hash table pointed to the head or the tail) comparing the ID field in each such entry with the ID of the block being searched for. If an identical ID is found, the block is in the cache, and this case is referred to as a HIT. Otherwise either the hash table pointer is null or the ID was not found in the list. In such case the block is not in the cache and must be brought into the cache, which in general means that an existing block must be replaced with this new block. This case is referred to as a MISS." <i>Id.</i> at 6:14-34.

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
		"[T]he cache directory essentially works in LRU fashion, with a cache directory entry being put in the MRU position each time a block is referenced. According to the invention, however, the block associated with the cache directory entry in the LRU position 16 will not necessarily be the one that it replaced when there is a miss. Additionally, according to the invention, there is a preselected boundary (age boundary) 18. Each time a block ages past this boundary, this fact is updated for that block in the cache directory, so that for each block in the cache it is known which side of the age boundary it is on." <i>Id.</i> at 4:34-45.
		"Various versions of the invention result from the way the reference counts are used to select blocks to replace. One simple version is as follows: when there
		is a miss, select the least recently used block in the non-local section whose
		preselected count threshold, then select the least recently used block. Blocks whose counts are below the threshold can be tracked with a separate LRU chain leading to an efficient implementation " <i>Id</i> at 4:53-62
4. The method according to	8. The method according	Robinson combined with Hamstra discloses dynamically determining
claim 3 further including	to claim 7 further including	maximum number of expired ones of the records to remove when the linked
the step of dynamically	the step of dynamically	list is accessed.
determining maximum	determining maximum	
number of expired ones of	number of expired ones of	For example, as summarized in Hamstra:
the records to remove	the records to remove	
when the linked list is	when the linked list is	If the data is not resident in the cache memory then it is staged
accessed.	accessed.	by segments from a disk, placed in the cache memory, and sent
		to the host. However, this may require that some of the
		segments in the cache memory be replaced by the segments

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	from the disks. Hamstra et al, "Processor-Addressable Timestamp for Indicating Oldest Written-to-Cache Entry Not Copied Back to Bulk Memory," U.S. Patent No. 4,530,054 (issued Jul. 16, 1985) at 1:36-41 (emphasis added). [W]hen a new segment or segments has to be brought from a device 104 to the cache memory 106 <i>and</i> there are no empty
	segments in the cache memory 106 then <i>some of the segments</i> resident in the cache memory 106 must be deleted or removed therefrom in order to make room for the new segments. <i>Id.</i> at 6:29-34 (emphasis added).
	[W]hen the SCU 100 has no other work to do it may search the SDT [– the segment descriptor (SDT) contains an entry for each segment of data resident in the cache memory, similar to a hash table (<i>Id.</i> at 5:33-35) –] to locate segments which have been written to the cache and trickle these segments to the devices 104 thus making space available in cache 106 for additional segments. The trickling of written-to segments takes place on the same basis as segment replacement, that is, the least recently used segments are trickled first <i>Id.</i> at 6:53-60.
	In Hamstra, empty segments are created by either first initialization of the cache before segments in cache memory are filled or by the trickle down functionality of the system. According to Hamstra, <i>if</i> there are no empty segments in the cache memory, <i>then</i> some of the segments in the cache memory are deleted by the system. However, if there <i>are</i> empty segments in the cache, then there is no need to delete any segments and the requested

40

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	segments are transfered from a disk into those empty segments. Therefore, the system described in Hamstra dynamically determines whether to delete a segment based on the availability of empty segments in the cache memory.
	As both Robinson and Hamstra relate to a system of cache maintenance using a least recently used method for replacement of cache segments organized in linked lists, one of ordinary skill in the art would understand how to use the Hamstra patent's dynamic decision on whether to perform a segment deletion based on the availability of empty segments in a cache memory when implementing a cache maintenance system such as Robinson. Moreover, one of ordinary skill in the art would recongize that it would improve similar systems and methods in the same way.
	The fundamental goal of a cache memory, as described by both Robinson and Hamstra, is to provide users fast access to frequently used data. <i>Robinson</i> , U.S. Patent No. 5,043,885 at 1:9-36; <i>Hamstra et al</i> , U.S. Patent No. 4,530,054 at 1:22-31. This is achieved by insuring that data residing in the cache is the most recently and frequently used data. A person skilled in the art would appreciate that the technique of replacing least recently used data segments from cache memory upon an insertion of a new data segment can be expanded to include logic for trickling down least recently used segments to make space available in the cache for additional segments when the system has no other work to do.
	One of ordinary skill in the art would recognize that the result of combining the system disclosed in Robinson with the additional system of trickling down least recently used segments and dynamically determining whether a deletion is necessary upon a call as disclosed in Hamstra would further promote the

41

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
		goals of a cache memory. For example, such benefits would include creating faster access to data for the user – the additional step of a deletion would only take place if there was no empty space in the cache memory, and creating increased efficiency of system performance by utilizing unused time, when there is no work to be done, to trickle down least recently used segments from cache memory back to disk.
		Additionally, it would have been obvious to one of ordinary skill in the art to modify the system disclosed in Robinson to dynamically determine the maximum number of expired records to remove in the accessed linked list of records. It is a fundamental concept in computer science and the relevant art that any variable or parameter affecting any aspect of a system can be dynamically determined based on information available to the system. One of ordinary skill in the art would have been motivated to combine the system disclosed in Robinson with the fundamental concept of dynamically determining the maximum number of expired records to remove in an accessed linked list of records to solve a number of potential problems. For example, the removal of expired records described in Robinson can be burdensome on the system, adding to the system's load and slowing down the system's processing. Moreover, the removal could also force an interruption in real- time processing as the processing waits for the removal to complete. Indeed, part of the motivation for the system disclosed in Robinson is avoiding these problems. One of ordinary skill in the art would have known that dynamically determining the maximum number to remove would limit the burden on the system and bound the length of any real-time interruption to prevent delays in processing. Indeed, Nemes concedes that such dynamic determination was obvious when he states in the '120 patent that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching

Joint Invalidity Contentions & Production of Documents
Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15.
	To the extent that dynamically determining a maximum number of expired records is not disclosed by Robinson and Hamstra, Robinson combined with Dirks, Thatte, the '663 patent and/or the Opportunistic Garbage Collection Articles discloses an information storage and retrieval system further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records. Dirks discloses the management of memory in a computer system and more particularly to the allocation of address space in a virtual memory system, which dynamically determines how many records to sweep/remove upon each allocation. Disclosure of these claim elements in Dirks is clearly shown in
	For example, as summarized in Dirks,
	each time a VSID is assigned from the free list to a new application or thread, a fixed number of entries in the page table are scanned to determine whether they have become inactive, by checking them against the VSIDs on the recycle list. Each entry which is identified as being inactive is removed from the page table. After all of the entries in the page table have been examined in this manner, the VSIDs in the recycle list can be transferred to the free list, since all of their associated page table entries will have been removed. This approach thereby guarantees that a predetermined number of VSIDs are always available in the free list

43

Joint Invalidity Contentions & Production of Documents

Asserted C U.S. Pat. No	laims From o. 5,893,120	U.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
		without requiring a time-consuming scan of the complete page table at once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.
		After [a] new VSID has been allocated, the system checks a flag RFLG to determine whether a recycle sweep is currently in progress (Step 20). If there is no sweep in progress, i.e. RFLG is not equal to one, a determination is made whether a sweep should be initiated. This is done by checking whether the inactive list is full, i.e. whether it contains x entries (Step 22). If the number of entries I on the inactive list is less than x, no further action is taken, and processing control returns to the operating system (Step 24). If, however, the inactive list is full at this time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are transferred to the recycle list, and an index n is reset to 1 (Step 28). The system then sweeps a predetermined number of page table entries PT _i on the page table, to detect whether any of them are inactive, i.e. their associated VSID is on the recycle list (Step 30). The predetermined number of entries that are swept is identified as <i>k</i> , where:
		$k = \frac{\text{total number of page table entries}}{\text{maximum number of active threads}}$ <i>Id.</i> at 8:12-30.
		Dirks discloses that any approach can be employed to determine the number of entries to be examined during each step of the sweeping process. <i>Id.</i> at 7:37-40. As stated in Dirks:
		Any other suitable approach can be employed to determine the number of entries to be examined during each step of the sweeping process. In this

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	regard, it is not necessary that the number of examined entries be fixed for each step. Rather, it might vary from one step to the next. The only criterion is that the number of entries examined on each step be such that all entries in the page table are examined in a determinable amount of time or by the occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.
	<i>Id.</i> at 7:38-46. Thus, Dirks dynamically determines the maximum number of records to sweep/remove by calculating a value <i>k. Id.</i> at 7:15-46, 7:66-8:56.
	As both Robinson and Dirks relate to deletion of aged records upon the allocation of a new incoming record, one of ordinary skill in the art would have understood how to use Dirks' dynamic decision making process of determining the maximum number of records to sweep/remove in other hash tables implementations such as Robinson. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining Dirks' deletion decision procedure with Robinson nothing more than the predictable use of prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have combined Dirks' dynamic determination of the suitable number of entries to examine during each step of the sweeping process with Robinson and would

45

Joint Invalidity Contentions & Production of Documents

Asserted Cla U.S. Pat. No	aims From 5,893,120	U.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
		have seen the benefits of doing so. One possible benefit, for example, is saving the system from performing sometimes time-consuming sweeps.
		Alternatively, one of ordinary skill in the art would be motivated to, and would understand how to, combine the system disclosed in Robinson with the means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records disclosed by Thatte. For example, Thatte discloses a system and method using hash tables and/or linked lists and further discloses means for dynamically determining the maximum number for the record search means to remove in the accessed linked list of records. The disclosure of these claim elements in Thatte is clearly shown in the chart of Thatte, which is hereby incorporated by reference in its entirety.
		Moreover, one of ordinary skill in the art would recognize that these combinations would improve the similar systems and methods in the same way. Additionally, as both Robinson and Thatte teach a system of data storage and retrieval, one of ordinary skill in the art would recognize that the result of combining Robinson with Thatte would be nothing more than the predictable use of prior art elements according to their established functions. The resulting combination would include the capability to determine the maximum number for the record search means to remove as taught by Thatte.
		Further, one of ordinary skill in the art would be motivated to combine Robinson with Thatte and recognize the benefits of doing so. For example, the removal of expired records described in Robinson can be burdensome on the system, adding to the system's load and slowing down the system's processing. One of ordinary skill in the art would recognize that combining Robinson with the teachings of Thatte would solve this problem by

46

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	dynamically determining how many records to delete based on, among other things, the system load. Moreover, the '120 patent discloses that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine Robinson with Thatte.
	Alternatively, it would also be obvious to combine Robinson with the '663 patent. Disclosure of these claim elements in the '663 patent is clearly shown in the chart of the '663 patent, which is hereby incorporated by reference in its entirety. For example, as summarized in the '663 patent:
	during normal times when the load on the storage system is not excessive, a non-contaminating but slow deletion of records is used. This slow, non-contaminating deletion involves closing the collision-resolution chain of locations by moving a record from a later position in the chain into the position of the record to be deleted. This leaves no deleted record locations in the storage space to slow down future searches. U.S. Patent 4,996,663 to Nemes at 2:24-34 ("The '663 patent").
	In times of heavy use, when deletions must be done rapidly and no time is available for decontamination, the record is simply marked as "deleted" and left in place. Later non-contaminating probes in the vicinity of such deleted record locations automatically remove the contaminating deleted records by

47

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	 moving records in the chain as described above. <i>Id.</i> at 2:35-41. This hybrid hashing technique has the decided advantage of automatically eliminating contamination caused by the fast-secure deletion procedure when the slower, non-contaminating deletion is used when the load on the system is at lower levels. <i>Id.</i> at 2:42-46. This hybrid deletion is shown in Figure 5.

48

Asserted Claims From	U.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in
U.S. Pat. No. 5,893,120	combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	FIG.5 HYBRID DELETION (fig) = 1 (fig) = 1 (fig

Asserted C U.S. Pat. No	laims From 5. 5,893,120	U.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
		not actually delete records, rather it marks records as deleted. <i>Id.</i> at 8:1-33, Figure 7. These records are then actually deleted by a subsequent slow-non-contaminating delete 53. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
		Thus, the hybrid deletion procedure in the '663 patent dynamically determines a maximum number of records to remove. <i>See id.</i> at 6:40-64, Figure 5. If the fast-secure delete 52 is used, then maximum number of records is zero because records are not deleted they are only marked. <i>Id.</i> at 8:1-33, Figure 7. If the slow-non-contaminating delete 53 is used, then the maximum number of records to remove is all of the contaminated records in the bucket. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
		As both Robinson and the '663 patent relate to deletion of records from hash tables using external chaining, one of ordinary skill in the art would understood how to use the '663 patent's dynamic decision on whether to perform a deletion based on a systems load in other hash table implementations such as that described in Robinson. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the '663 patent's deletion decision procedure with Robinson would be nothing more than the predictable use of prior art elements according to their established functions.

Asserted Claims U.S. Pat. No. 5,8	s From 893,120	U.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
		By way of further example, one of ordinary skill in the art would have combined the '663 patent's dynamic decision on whether to perform a deletion based on a systems load as taught by the '663 patent and with Robinson and would have seen the benefits of doing so. One such benefit, for example, is that the system would avoid performing deletions when the system load exceeded a threshold.
		Alternatively, it would also be obvious to combine Robinson with the Opportunistic Garbage Collection Articles.
		The Opportunistic Garbage Collection Articles disclose a generational based garbage collection which dynamically determines how much garbage to collect. <i>See generally</i> , Paul R. Wilson and Thomas G. Moher, <i>Design of the Opportunistic Garbage Collector</i> , OOPSLA '89 Proceedings, October 1-6, 1989; Paul R. Wilson, <i>Opportunistic Garbage Collection</i> , ACM SIGPLAN Notices, Vol. 23, No. 12, December 1988.
		For example, the Opportunistic Garbage Collection Articles disclose in part:
		When a significant pause has been detected, a decision procedure is invoked to decide whether to garbage collect, and how many generations to scavenge. The fuller a generation is, the more likely it is to be scavenged; also, the longer the pause that has been detected, the larger the scope of the garbage collection is likely to be. <i>Design of the Opportunistic Garbage</i> <i>Collector</i> at 32.
		Every time a user-input routine is invoked, a decision routine can decide whether to garbage collect. As long as the decision routine takes no more

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	than a few milliseconds to execute, it should not interfere with responsiveness. Since it is only invoked at these times, it does not incur a continual run-time overhead. <i>Opportunistic Garbage Collection</i> at 100.
	This decision routine should take several things into account: 1) the volume of data allocated since the last scavenge, 2) how long it has been since the user has had an opportunity to interact, and 3) the height of the stack relative to its average height at reads since the last scavenge. If the product of the allocation and the compute time is high, and if the stack is low, the scavenge favorability measure is high. If it is especially high, a multi-generation scavenge is in order. <i>Id</i> .
	If these heuristics fail and a scavenge is forced instead by the filling of a generation's space, it is likely to happen during a significant compute- bound pausethe one that has just allocated the data that forced the collection. When the opportunistic mechanism fails to find the end of a pause, it may still succeed by default, embedding a scavenge pause within a larger pause. <i>Design of the Opportunistic Garbage Collector</i> at 32.
	As both Robinson and the Opportunistic Garbage Collection Articles relate to deletion of aged records, one of ordinary skill in the art would have understood how to use the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion based on a system load in other hash table implementations such as Robinson. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily

52

Asserted Cla U.S. Pat. No	iims From . 5,893,120	U.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
		all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the Opportunistic Garbage Collection Articles' deletion decision procedure with Robinson would be nothing more than the predictable use of prior art elements according to their established functions.
		By way of further example, one of ordinary skill in the art would have combined the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion and how many generations to scavenge as taught by the Opportunistic Garbage Collection Articles and with Robinson and would have seen the benefits of doing so. One such benefit, for example, is preventing slowdown of the system.
		Additionally, it would have been obvious to one of ordinary skill in the art to modify the system disclosed in Robinson to dynamically determine the maximum number of expired records to remove in the accessed linked list of records. It is a fundamental concept in computer science and the relevant art that any variable or parameter affecting any aspect of a system can be dynamically determined based on information available to the system. One of ordinary skill in the art would have been motivated to combine the system disclosed in Robinson with the fundamental concept of dynamically determining the maximum number of expired records to remove in an accessed linked list of records to solve a number of potential problems. For example, the removal of expired records described in Robinson can be burdensome on the system, adding to the system's load and slowing down the system's processing. Moreover, the removal could also force an interruption in real- time processing as the processing waits for the removal to complete.

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	One of ordinary skill in the art would have known that dynamically determining the maximum number to remove would limit the burden on the system and bound the length of any real-time interruption to prevent delays in processing. Indeed, Nemes concedes that such dynamic determination was obvious when he states in the '120 patent that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15.
	To the extent that dynamically determining a maximum number of expired records is not disclosed by Robinson in combination with Dirks, Thatte, the '663 Patent, or the Opportunistic Garbage Collection References, it is disclosed by Linux 2.0.1, which describes dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed. It would have been obvious to combine Linux 2.0.1 with Robinson. For example, both Linux 2.0.1 and Robinson describe systems and methods for performing data storage and retrieval using known programming techniques to yield a predictable result.
	When invoked, the function rt_cache_add automatically increments an integer variable rt_cache_size. <i>See</i> Linux 2.0.1, route.c at line 1359. When the function rt_cache_add removes an expired record, the function rt_cache_add decrements the variable rt_cache_size. <i>See</i> Linux 2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the

54

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	number of records in the hash table (i.e., ip_rt_hash_table). Because the function rt_cache_add automatically increments and decrements the variable rt_cache_size, the variable rt_cache_size is determined dynamically.
	Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1. The function rt_garbage_collect_1 loops through each of the linked lists in the ip_rt_hash_table global variable. <i>See</i> Linux 2.0.1, route.c at lines 1122-1138. In this way, the function rt_garbage_collect_1 accesses the linked list. When the function rt_garbage_collect_1 identifies a record that is expired, the function rt_garbage_collect_1 decrements the variable rt_cache_size and frees the record. <i>See</i> Linux 2.0.1, route.c at lines 1128-1135.
	Because all records in the linked list can be expired and all records in the hash table can be in the linked list, the variable rt_cache_size can represent a dynamically determined maximum number of expired ones of the records to remove when function rt_garbage_collect_1 accesses the linked list.
	Furthermore, the function rt_cache_add determines whether the number of records in the hash table exceeds a predetermined threshold RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_cache_add invokes a function rt_garbage_collect. <i>See</i> Linux 2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect invokes a function rt_garbage_collect_1. <i>See</i> Linux 2.0.1, route.c at

55

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	line 1293. The function rt_garbage_collect invokes a function
	rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.
	The function rt_garbage_collect_1 loops through each linked list in the bash table. See Linux 2.0.1 route c at lines 1116-1132. For each linked
	list in the hash table the function rt_garbage_collect_1 looks at each
	record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
	record in a linked list, the function rt_garbage_collect_1 determines
	whether the record s last use time plus the record s expiration factor is later than the current time $Sac I$ invy 2.0.1 route c at line 1122. If the record's last
	use time plus the record's expiration factor is less than the current time, the
	function rt garbage collect 1 removes the record from the linked list.
	See Linux $2.0.1$, route.c at lines $112\overline{4}$ -1130. The record's expiration factor is
	based on a variable expire and the record's reference count. See Linux
	2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
	timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.
	After looping through all of the linked lists in this manner, the function
	rt_garbage_collect_1 determines again whether the number of records
	in the hash table is less than the predetermined threshold
	RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
	of items in the hash table is still greater than the predetermined threshold
	RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
	table See Linux 2.0.1 route a at line 1125. In this way, the function
	rt garbage gollogt 1 can remove additional records from the linked
	lists in the hash table. The function rt_garbage_collect_1 repeats this

Asserted C U.S. Pat. No	laims From 5. 5,893,120	U.S. Patent No. 5,043,885 to Robinson ("Robinson") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
		process until the total number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX.
		Under Bedrock's proposed claim constructions, the records removed by the function rt_garbage_collect_1 are "expired" records. That is, the records removed by the function rt_garbage_collect_1 are data items which after a limited time or after the occurrence of some event become obsolete, such that their presence in the storage system is no longer needed or desired.
		The function rt_cache_add only removes a record from a linked list when the record's last use time plus the fixed timeout value RT_CACHE_TIMEOUT is less than the current time and the record's reference count is zero. <i>See</i> Linux 2.0.1, route.c at line 1369. Thus, the maximum number of records that the function rt_cache_add can remove from a given linked list is limited to those records whose reference counts are zero.
		In contrast, the maximum number of records that the function rt_garbage_collect_1 can remove from a given linked list is not limited to those records whose reference counts are zero. <i>See</i> Linux 2.0.1, route.c at line 1122. Rather, the function rt_garbage_collect_1 can remove records whose reference counts are zero and records whose reference counts are greater than zero.
		Consequently, the maximum number of records that the function rt_garbage_collect_1 can remove from a linked list is different than the maximum number of records that the function rt_cache_add can remove from a linked list.

58

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 5,778,430 to Ish et al. ("Ish") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
1. An information storage	5. An information storage	To the extent the preamble is a limitation, Ish discloses an information storage
and retrieval system, the	and retrieval system, the	and retrieval system.
		For example, Ish discloses an invention that "is implemented in a storage subsystem having, preferably, an array of selectively accessible direct access storage devices (disks), a processor, program memory, cache memory, and non-volatile memory and is responsive to commands received from at least one external source." <i>Ish et al.</i> , "Method and Apparatus for Computer Disk Cache Management" U.S. Patent No. 5,778,430 (issued Jul. 7, 1998) at 3:24-29. "In response to commands received from the external source, i.e., WRITE, READ, the storage system transfer data, preferably organized as blocks, to/from the direct access devices to/from the external source, as indicated. In order to speed access to the data, the blocks are held in an intermediary cache—when possible. Blocks which are the subject of a READ request and present in the cache are transferred directly from the cache to the external source. Conversely, Blocks which are the subject of a READ request and are not present in the cache, are first transferred from the direct access devices to the cache. Finally, blocks which are the subject of a WRITE request are stored in the cache, and subsequently flushed to the direct access devices at a convenient time." <i>Id.</i> at 3:30-43.
[1a] a linked list to store	[5a] a hashing means to	Ish discloses a linked list to store and provide access to records stored in a
and provide access to	provide access to records	memory of the system, at least some of the records automatically expiring.
records stored in a memory	stored in a memory of the	Isn also discloses a hashing means to provide access to records stored in a
of the system, at least some	system and using an	memory of the system and using an external chaining technique to store the
of the records	external chaining technique	records with same hash address, at least some of the records automatically
automatically expiring,	to store the records with	expiring.

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,778,430 to Ish et al. ("Ish") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
same hash address, at least some of the records automatically expiring,	For example, Ish discloses an invention that "is implemented in a storage subsystem having, preferably, an array of selectively accessible direct access storage devices (disks), a processor, program memory, cache memory, and non-volatile memory and is responsive to commands received from at least one external source." <i>Id.</i> at 3:24-29.
	"In response to commands received from the external source, i.e., WRITE, READ, the storage system transfer data, preferably organized as blocks, to/from the direct access devices to/from the external source, as indicated. In order to speed access to the data, the blocks are held in an intermediary cache—when possible. Blocks which are the subject of a READ request and present in the cache are transferred directly from the cache to the external source. Conversely, Blocks which are the subject of a READ request and are not present in the cache, are first transferred from the direct access devices to the cache. Finally, blocks which are the subject of a WRITE request are stored in the cache, and subsequently flushed to the direct access devices at a convenient time." <i>Id.</i> at 3:30-43.
	Furthermore, Ish discloses that "[t]he method employs a hashing function which takes as its input a block number and outputs a hash index into a hash table of pointers. Each pointer in the hash table points to a doubly-linked list of headers, with each header having a bit map wherein the bits contained in the map identify whether a particular block of data is contained within the cache. Upon entry into the hash table, the linked headers are sequentially searched. If no header is found that contains the particular block, a cache "miss" occurs, at which point in time an available space is made within the cache to hold the block and the block is subsequently retrieved from the direct access device and

2

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,778,430 to Ish et al. ("Ish") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	stored within the cache." Id. at 3:47-59.
	Furthermore, Ish discloses that "[e]ach header contains information is particularly relevant to the implementation of the replacement policy. As show in Fig. 4b, the Frequency member 406 indicates how many times the particular cache line has been accessed since it was placed in the cache. The Timestamp member 407 indicates the time of the last access of the cache line. The position within the head of the header point to a cache line is determined by its Frequency member 406 and its Timestamp member 407. In accordance with the present invention, the replacement head is modified to keep the best candidate for replacement at the root of the heap." <i>Id.</i> at 7:16-26.
	Moreover, Ish discloses that "structures have been incorporated within the present invention which further enhance its performance and advances over the prior art the cache header 403 contains a bitmap, DirtyMap 409, which like bitmap, ValidMap 408, has a bit in the bitmap for each block of data contained within the cache line associated by the header. The bits contained in DirtyMap 409 identify those blocks of data which have been modified, i.e., new data has been written into them, and have not yet been written out "flushed" to the direct access storage devices. Such dirty block could pose a performance problem for a cache system because if such a block were part of a cache line identified as a most likely candidate for replacement, the entire cache line would have be written to the direct access device BEFORE the cache line was replaced by new blocks, thereby degrading performance of the overall cache system. The presence of the DirtyMap 409, however, permits a flushing daemon process to continuously operate, flushing direct blocks to the direct access storage devices BEFORE the cache line in the block requires replacement. The daemon sequentially checks the headers identified by the

3

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 5,778,430 to Ish et al. ("Ish") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
		array of points (implicit heap) until a first dirty cache line is found and flushed. In effect, this operation finds the first, direct candidate for replacement and then flushes it." <i>Id.</i> at 9:2-26.
[1b] a record search means utilizing a search key to access the linked list,	[5b] a record search means utilizing a search key to access a linked list of records having the same	Ish discloses a record search means utilizing a search key to access the linked list. Ish also discloses a record search means utilizing a search key to access a linked list of records having the same hash address.
	hash address,	For example, Ish discloses an invention that "is implemented in a storage subsystem having, preferably, an array of selectively accessible direct access storage devices (disks), a processor, program memory, cache memory, and non-volatile memory and is responsive to commands received from at least one external source." <i>Id.</i> at 3:24-29.
		"In response to commands received from the external source, i.e., WRITE, READ, the storage system transfer data, preferably organized as blocks, to/from the direct access devices to/from the external source, as indicated. In order to speed access to the data, the blocks are held in an intermediary cache—when possible. Blocks which are the subject of a READ request and present in the cache are transferred directly from the cache to the external source. Conversely, Blocks which are the subject of a READ request and are not present in the cache, are first transferred from the direct access devices to the cache. Finally, blocks which are the subject of a WRITE request are stored in the cache, and subsequently flushed to the direct access devices at a convenient time." <i>Id.</i> at 3:30-43.
		Furthermore, Ish discloses that "[t]he method employs a hashing function which takes as its input a block number and outputs a hash index into a hash

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 5,778,430 to Ish et al. ("Ish") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
		table of pointers. Each pointer in the hash table points to a doubly-linked list of headers, with each header having a bit map wherein the bits contained in the map identify whether a particular block of data is contained within the cache. Upon entry into the hash table, the linked headers are sequentially searched. If no header is found that contains the particular block, a cache "miss" occurs, at which point in time an available space is made within the cache to hold the block and the block is subsequently retrieved from the direct access device and stored within the cache." <i>Id.</i> at 3:47-59.
[1c] the record search means including a means for identifying and removing at least some of the expired ones of the records from the linked list when the linked list is accessed, and	[5c] the record search means including means for identifying and removing at least some expired ones of the records from the linked list of records when the linked list is accessed, and	Ish discloses the record search means including a means for identifying and removing at least some of the expired ones of the records from the linked list when the linked list is accessed. Ish also discloses the record search means including means for identifying and removing at least some expired ones of the records from the linked list of records when the linked list is accessed. For example, Ish discloses an invention that "is implemented in a storage subsystem having, preferably, an array of selectively accessible direct access storage devices (disks), a processor, program memory, cache memory, and non-volatile memory and is responsive to commands received from at least one external source." <i>Id.</i> at 3:24-29.
		"In response to commands received from the external source, i.e., WRITE, READ, the storage system transfer data, preferably organized as blocks, to/from the direct access devices to/from the external source, as indicated. In order to speed access to the data, the blocks are held in an intermediary cache—when possible. Blocks which are the subject of a READ request and present in the cache are transferred directly from the cache to the external source. Conversely, Blocks which are the subject of a READ request and are

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,778,430 to Ish et al. ("Ish") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	not present in the cache, are first transferred from the direct access devices to the cache. Finally, blocks which are the subject of a WRITE request are stored in the cache, and subsequently flushed to the direct access devices at a convenient time." <i>Id.</i> at 3:30-43.
	Furthermore, Ish discloses that "[t]he method employs a hashing function which takes as its input a block number and outputs a hash index into a hash table of pointers. Each pointer in the hash table points to a doubly-linked list of headers, with each header having a bit map wherein the bits contained in the map identify whether a particular block of data is contained within the cache. Upon entry into the hash table, the linked headers are sequentially searched. If no header is found that contains the particular block, a cache "miss" occurs, at which point in time an available space is made within the cache to hold the block and the block is subsequently retrieved from the direct access device and stored within the cache." <i>Id.</i> at 3:47-59.
	Furthermore, Ish discloses that "[e]ach header contains information is particularly relevant to the implementation of the replacement policy. As show in Fig. 4b, the Frequency member 406 indicates how many times the particular cache line has been accessed since it was placed in the cache. The Timestamp member 407 indicates the time of the last access of the cache line. The position within the head of the header point to a cache line is determined by its Frequency member 406 and its Timestamp member 407. In accordance with the present invention, the replacement head is modified to keep the best candidate for replacement at the root of the heap." <i>Id.</i> at 7:16-26.
	present invention which further enhance its performance and advances over the

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 5,778,430 to Ish et al. ("Ish") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
		prior art the cache header 403 contains a bitmap, DirtyMap 409, which like bitmap, ValidMap 408, has a bit in the bitmap for each block of data contained within the cache line associated by the header. The bits contained in DirtyMap 409 identify those blocks of data which have been modified, i.e., new data has been written into them, and have not yet been written out "flushed" to the direct access storage devices. Such dirty block could pose a performance problem for a cache system because if such a block were part of a cache line identified as a most likely candidate for replacement, the entire cache line would have be written to the direct access device BEFORE the cache line was replaced by new blocks, thereby degrading performance of the overall cache system. The presence of the DirtyMap 409, however, permits a flushing daemon process to continuously operate, flushing direct blocks to the direct access storage devices BEFORE the cache line in the block requires replacement. The daemon sequentially checks the headers identified by the array of points (implicit heap) until a first dirty cache line is found and flushed. In effect, this operation finds the first, direct candidate for replacement and then flushes it." <i>Id.</i> at 9:2-26.
[1d] means, utilizing the record search means, for accessing the linked list and, at the same time, removing at least some of the expired ones of the records in the linked list.	[5d] mea[n]s, utilizing the record search means, for inserting, retrieving, and deleting records from the system and, at the same time, removing at least some expired ones of the records in the accessed	Ish discloses means, utilizing the record search means, for accessing the linked list and, at the same time, removing at least some of the expired ones of the records in the linked list. Ish also discloses utilizing the record search means, for inserting, retrieving, and deleting records from the system and, at the same time, removing at least some expired ones of the records in the accessed linked list of records. For example, Ish discloses an invention that "is implemented in a storage
	linked list of records.	subsystem having, preferably, an array of selectively accessible direct access storage devices (disks), a processor, program memory, cache memory, and
	1	

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,778,430 to Ish et al. ("Ish") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	non-volatile memory and is responsive to commands received from at least one external source." <i>Id.</i> at 3:24-29.
	"In response to commands received from the external source, i.e., WRITE, READ, the storage system transfer data, preferably organized as blocks, to/from the direct access devices to/from the external source, as indicated. In order to speed access to the data, the blocks are held in an intermediary cache—when possible. Blocks which are the subject of a READ request and present in the cache are transferred directly from the cache to the external source. Conversely, Blocks which are the subject of a READ request and are not present in the cache, are first transferred from the direct access devices to the cache. Finally, blocks which are the subject of a WRITE request are stored in the cache, and subsequently flushed to the direct access devices at a convenient time." <i>Id.</i> at 3:30-43.
	Furthermore, Ish discloses that "[t]he method employs a hashing function which takes as its input a block number and outputs a hash index into a hash table of pointers. Each pointer in the hash table points to a doubly-linked list of headers, with each header having a bit map wherein the bits contained in the map identify whether a particular block of data is contained within the cache. Upon entry into the hash table, the linked headers are sequentially searched. If no header is found that contains the particular block, a cache "miss" occurs, at which point in time an available space is made within the cache to hold the block and the block is subsequently retrieved from the direct access device and stored within the cache." <i>Id.</i> at 3:47-59. Furthermore, Ish discloses that "[e]ach header contains information is
	particularly relevant to the implementation of the replacement policy. As show

Joint Invalidity Contentions & Production of Documents

Asserted C	laims From	U.S. Patent No. 5,778,430 to Ish et al. ("Ish") alone and in combination
U.S. Pat. N	o. 5,893,120	with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
		in Fig. 4b, the Frequency member 406 indicates how many times the particular cache line has been accessed since it was placed in the cache. The Timestamp member 407 indicates the time of the last access of the cache line. The position within the head of the header point to a cache line is determined by its Frequency member 406 and its Timestamp member 407. In accordance with the present invention, the replacement head is modified to keep the best candidate for replacement at the root of the heap." <i>Id.</i> at 7:16-26. Moreover, Ish discloses that "structures have been incorporated within the present invention which further enhance its performance and advances over the prior art the cache header 403 contains a bitmap, DirtyMap 409, which like bitmap, ValidMap 408, has a bit in the bitmap for each block of data contained within the cache line associated by the header. The bits contained in DirtyMap 409 identify those blocks of data which have been modified, i.e., new data has been written into them, and have not yet been written out "flushed" to the direct access storage devices. Such dirty block could pose a performance problem for a cache system because if such a block were part of a cache line would have be written to the direct access device BEFORE the cache line would have be written to the direct access device BEFORE the cache line was replaced by new blocks, thereby degrading performance of the overall cache system. The presence of the DirtyMap 409, however, permits a flushing daemon process to continuously operate, flushing direct blocks to the direct access storage devices BEFORE the cache line in the block requires replacement. The daemon sequentially checks the headers identified by the array of points (implicit heap) until a first dirty cache line is found and flushed. In effect, this operation finds the first, direct candidate for replacement and then flushes it." <i>Id.</i> at 9:2-26.

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 5,778,430 to Ish et al. ("Ish") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
2. The information storage and retrieval system according to claim 1 further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records.	6. The information storage and retrieval system according to claim 5 further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records.	 Ish alone or in combination with Hamstra discloses an information storage and retrieval system further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records. It is inherent to the Ish disclosure that upon a call to READ or WRITE, if there is empty space available in the, created by either (1) the initialization of the cache when segments within the cache have not yet been filled or (2) continuous flushing of the cache to remove the best candidates for replacement, blocks are transferred from a direct device to the cache without a deletion. If, however, empty space is not available, then the necessary space is made available within the cache by performing a delete. In order to promote the goals of a cache memory system, an efficient system would not make a deletion unless it was necessary, because the system would like to keep the cache filled to make retrieval for the user as fast as possible. Therefore, Ish inherently incorporates a dynamic decision making process in determining whether to delete a block within the cache upon a call to READ or WRITE. To the extent it is not inherent, it would be obvious to combine Ish with Hamstra. For example, as summarized in Hamstra: If the data is not resident in the cache memory then it is staged by segments from a disk, placed in the cache memory, and sent to the host. However, this <i>may</i> require that <i>some of the</i>
		<i>segments</i> in the cache memory be replaced by the segments from the disks. <i>Hamstra et al.</i> , "Processor-Addressable

Asserted C U.S. Pat. N	laims From o. 5,893,120	U.S. Patent No. 5,778,430 to Ish et al. ("Ish") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
		Timestamp for Indicating Oldest Written-to-Cache Entry Not Copied Back to Bulk Memory," U.S. Patent No.4,530,054 (issued Jul. 16, 1985) at 1:36-41 (emphasis added).
		[W]hen a new segment or segments has to be brought from a device 104 to the cache memory 106 <i>and</i> there are no empty segments in the cache memory 106 then <i>some of the segments</i> resident in the cache memory 106 must be deleted or removed therefrom in order to make room for the new segments. <i>Id.</i> at 6:29-34 (emphasis added).
		[W]hen the SCU 100 has no other work to do it may search the SDT [– the segment descriptor (SDT) contains an entry for each segment of data resident in the cache memory, similar to a hash table (<i>Id.</i> at $5:33-35$) –] to locate segments which have been written to the cache and trickle these segments to the devices 104 thus making space available in cache 106 for additional segments. The trickling of written-to segments takes place on the same basis as segment replacement, that is, the least recently used segments are trickled first <i>Id.</i> at 6:53-60.
		In Hamstra, empty segments are created by either first initialization of the cache before segments in cache memory are filled or by the trickle down functionality of the system. According to Hamstra, <i>if</i> there are no empty segments in the cache memory, <i>then</i> some of the segments in the cache memory are deleted by the system. However, if there <i>are</i> empty segments in the cache, then there is no need to delete any segments and the requested segments are transfered from a disk into those empty segments. Therefore, the

11

Asserted Claim U.S. Pat. No. 5,	is From 893,120	U.S. Patent No. 5,778,430 to Ish et al. ("Ish") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
		system described in Hamstra dynamically determines whether to delete a segment based on the availability of empty segments in the cache memory.
		As both Ish and Hamstra relate (1) to a system of cache maintenance using a least recently used method for replacement of cache segments organized in linked lists and (2) a system to automatically delete the best candidates for replacement prior to a call from a user, one of ordinary skill in the art would understand how to use the Hamstra patent's dynamic decision on whether to perform a segment deletion based on the availability of empty segments in a cache memory when implementing a cache maintenance system such as Ish. Moreover, one of ordinary skill in the art would recongize that it would improve similar systems and methods in the same way.
		The fundamental goal of a cache memory, as described by both Ish and Hamstra, is to provide users fast access to frequently used data. <i>Ish et al.</i> , U.S. Patent No. 5,778,430 at 1:6-30; <i>Hamstra et al</i> , U.S. Patent No. 4,530,054 at 1:22-31. This is achieved by insuring that data residing in the cache is the most recently and frequently used data. A person skilled in the art would appreciate that the technique of replacing least recently used data segments from cache memory upon an insertion of a new data segment can be expanded to include dynamic decision making functionality to delete segments only when no empty segments are available in the cache.
		One of ordinary skill in the art would recognize that the result of combining the system disclosed in Ish with the logic of dynamically determining whether a deletion is necessary upon a user call as disclosed in Hamstra would further promote the goals of a cache memory. For example, one such benefit would include creating faster access to data for the user – the additional step of a

12

Asserted C U.S. Pat. No	laims From 5. 5,893,120	U.S. Patent No. 5,778,430 to Ish et al. ("Ish") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
		deletion would only take place if there was no empty space in the cache memory.
		Additionally, it would have been obvious to one of ordinary skill in the art to modify the system disclosed in Ish to dynamically determine the maximum number of expired records to remove in the accessed linked list of records. It is a fundamental concept in computer science and the relevant art that any variable or parameter affecting any aspect of a system can be dynamically determined based on information available to the system. One of ordinary skill in the art would have been motivated to combine the system disclosed in Ish with the fundamental concept of dynamically determining the maximum number of expired records to remove in an accessed linked list of records to solve a number of potential problems. For example, the removal of expired records described in Ish can be burdensome on the system, adding to the system's load and slowing down the system's processing. Moreover, the removal could also force an interruption in real-time processing as the processing waits for the removal to complete. Indeed, part of the motivation for the system disclosed in Ish is avoiding these problems. One of ordinary skill in the art would have known that dynamically determining the maximum number to remove would limit the burden on the system and bound the length of any real-time interruption to prevent delays in processing. Indeed, Nemes concedes that such dynamic determination was obvious when he states in the '120 patent that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15.

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,778,430 to Ish et al. ("Ish") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	To the extent that dynamically determining a maximum number of expired records is not disclosed by Ish and Hamstra, Ish combined with Dirks, Thatte, the '663 patent and/or the Opportunistic Garbage Collection Articles discloses an information storage and retrieval system further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records.
	Dirks discloses the management of memory in a computer system and more particularly to the allocation of address space in a virtual memory system, which dynamically determines how many records to sweep/remove upon each allocation. Disclosure of these claim elements in Dirks is clearly shown in Exhibit B-2, which is hereby incorporated by reference in its entirety.
	For example, as summarized in Dirks,
	each time a VSID is assigned from the free list to a new application or thread, a fixed number of entries in the page table are scanned to determine whether they have become inactive, by checking them against the VSIDs on the recycle list. Each entry which is identified as being inactive is removed from the page table. After all of the entries in the page table have been examined in this manner, the VSIDs in the recycle list can be transferred to the free list, since all of their associated page table entries will have been removed. This approach thereby guarantees that a predetermined number of VSIDs are always available in the free list without requiring a time-consuming scan of the complete page table at once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.
	After [a] new VSID has been allocated, the system checks a flag RFLG

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,778,430 to Ish et al. ("Ish") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	to determine whether a recycle sweep is currently in progress (Step 20). If there is no sweep in progress, i.e. RFLG is not equal to one, a determination is made whether a sweep should be initiated. This is done by checking whether the inactive list is full, i.e. whether it contains x entries (Step 22). If the number of entries I on the inactive list is less than x, no further action is taken, and processing control returns to the operating system (Step 24). If, however, the inactive list is full at this time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are transferred to the recycle list, and an index n is reset to 1 (Step 28). The system then sweeps a predetermined number of page table entries PT _i on the page table, to detect whether any of them are inactive, i.e. their associated VSID is on the recycle list (Step 30). The predetermined number of entries that are swept is identified as <i>k</i> , where:
	$k = \frac{\text{total number of page table entries}}{\text{maximum number of active threads}}$ <i>Id.</i> at 8:12-30.
	Dirks discloses that any approach can be employed to determine the number of entries to be examined during each step of the sweeping process. <i>Id.</i> at 7:37-40. As stated in Dirks:
	Any other suitable approach can be employed to determine the number of entries to be examined during each step of the sweeping process. In this regard, it is not necessary that the number of examined entries be fixed for each step. Rather, it might vary from one step to the next. The only criterion is that the number of entries examined on each step be such that all entries in the page table are examined in a determinable amount of time or by the

Asserted Cl U.S. Pat. No	laims From o. 5,893,120	U.S. Patent No. 5,778,430 to Ish et al. ("Ish") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
		occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.
		<i>Id.</i> at 7:38-46. Thus, Dirks dynamically determines the maximum number of records to sweep/remove by calculating a value <i>k</i> . <i>Id.</i> at 7:15-46, 7:66-8:56.
		As both Ish and Dirks relate to deletion of aged records upon the allocation of a new incoming record, one of ordinary skill in the art would have understood how to use Dirks' dynamic decision making process of determining the maximum number of records to sweep/remove in other hash tables implementations such as Ish. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining Dirks' deletion decision procedure with Ish nothing more than the predictable use of prior art elements according to their established functions.
		By way of further example, one of ordinary skill in the art would have combined Dirks' dynamic determination of the suitable number of entries to examine during each step of the sweeping process with Ish and would have seen the benefits of doing so. One possible benefit, for example, is saving the sustain from performing compating time consuming susceptibility.
		Alternatively, one of ordinary skill in the art would be motivated to, and would understand how to, combine the system disclosed in Ish with the means for

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,778,430 to Ish et al. ("Ish") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	dynamically determining maximum number for the record search means to remove in the accessed linked list of records disclosed by Thatte. For example, Thatte discloses a system and method using hash tables and/or linked lists and further discloses means for dynamically determining the maximum number for the record search means to remove in the accessed linked list of records. The disclosure of these claim elements in Thatte is clearly shown in the chart of Thatte, which is hereby incorporated by reference in its entirety.
	Moreover, one of ordinary skill in the art would recognize that these combinations would improve the similar systems and methods in the same way. Additionally, as both Ish and Thatte teach a system of data storage and retrieval, one of ordinary skill in the art would recognize that the result of combining Ish with Thatte would be nothing more than the predictable use of prior art elements according to their established functions. The resulting combination would include the capability to determine the maximum number for the record search means to remove as taught by Thatte.
	Further, one of ordinary skill in the art would be motivated to combine Ish with Thatte and recognize the benefits of doing so. For example, the removal of expired records described in Ish can be burdensome on the system, adding to the system's load and slowing down the system's processing. One of ordinary skill in the art would recognize that combining Ish with the teachings of Thatte would solve this problem by dynamically determining how many records to delete based on, among other things, the system load. Moreover, the '120 patent discloses that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,778,430 to Ish et al. ("Ish") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	can be a dynamic one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine Ish with Thatte.
	Alternatively, it would also be obvious to combine Ish with the '663 patent. Disclosure of these claim elements in the '663 patent is clearly shown in the chart of the '663 patent, which is hereby incorporated by reference in its entirety. For example, as summarized in the '663 patent:
	during normal times when the load on the storage system is not excessive, a non-contaminating but slow deletion of records is used. This slow, non-contaminating deletion involves closing the collision-resolution chain of locations by moving a record from a later position in the chain into the position of the record to be deleted. This leaves no deleted record locations in the storage space to slow down future searches. U.S. Patent 4,996,663 to Nemes at 2:24-34 ("The '663 patent").
	In times of heavy use, when deletions must be done rapidly and no time is available for decontamination, the record is simply marked as "deleted" and left in place. Later non-contaminating probes in the vicinity of such deleted record locations automatically remove the contaminating deleted records by moving records in the chain as described above. <i>Id.</i> at 2:35-41.
	This hybrid hashing technique has the decided advantage of automatically eliminating contamination caused by the fast- secure deletion procedure when the slower, non-contaminating deletion is used when the load on the system is at lower levels.

18

Joint Invalidity Contentions & Production of Documents

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,778,430 to Ish et al. ("Ish") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	to determine if the system load is greater than a threshold. If the system load is greater than the threshold, then a fast-secure delete 52 is used. <i>Id.</i> at 6:40-64, Figure 5. On the other hand, if the system load is less than the threshold, then a slow-non-contaminating delete 53 is used. <i>Id.</i> The fast-secure delete 52 does not actually delete records, rather it marks records as deleted. <i>Id.</i> at 8:1-33, Figure 7. These records are then actually deleted by a subsequent slow-non-contaminating delete 53. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
	Thus, the hybrid deletion procedure in the '663 patent dynamically determines a maximum number of records to remove. <i>See id.</i> at 6:40-64, Figure 5. If the fast-secure delete 52 is used, then maximum number of records is zero because records are not deleted they are only marked. <i>Id.</i> at 8:1-33, Figure 7. If the slow-non-contaminating delete 53 is used, then the maximum number of records to remove is all of the contaminated records in the bucket. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
	As both Ish and the '663 patent relate to deletion of records from hash tables using external chaining, one of ordinary skill in the art would understood how to use the '663 patent's dynamic decision on whether to perform a deletion based on a systems load in other hash table implementations such as that described in Ish. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the '663
Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,778,430 to Ish et al. ("Ish") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
---	--
	patent's deletion decision procedure with Ish would be nothing more than the predictable use of prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have combined the '663 patent's dynamic decision on whether to perform a deletion based on a systems load as taught by the '663 patent and with Ish and would have seen the benefits of doing so. One such benefit, for example, is that the system would avoid performing deletions when the system load exceeded a threshold.
	Alternatively, it would also be obvious to combine Ish with the Opportunistic Garbage Collection Articles.
	The Opportunistic Garbage Collection Articles disclose a generational based garbage collection which dynamically determines how much garbage to collect. <i>See generally</i> , Paul R. Wilson and Thomas G. Moher, <i>Design of the Opportunistic Garbage Collector</i> , OOPSLA '89 Proceedings, October 1-6, 1989; Paul R. Wilson, <i>Opportunistic Garbage Collection</i> , ACM SIGPLAN Notices, Vol. 23, No. 12, December 1988.
	For example, the Opportunistic Garbage Collection Articles disclose in part:
	When a significant pause has been detected, a decision procedure is invoked to decide whether to garbage collect, and how many generations to scavenge. The fuller a generation is, the more likely it is to be scavenged; also, the longer the pause that has been detected, the larger the scope of the garbage collection is likely to be. <i>Design of the Opportunistic Garbage</i> <i>Collector</i> at 32.

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,778,430 to Ish et al. ("Ish") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	Every time a user-input routine is invoked, a decision routine can decide whether to garbage collect. As long as the decision routine takes no more than a few milliseconds to execute, it should not interfere with responsiveness. Since it is only invoked at these times, it does not incur a continual run-time overhead. <i>Opportunistic Garbage Collection</i> at 100.
	This decision routine should take several things into account: 1) the volume of data allocated since the last scavenge, 2) how long it has been since the user has had an opportunity to interact, and 3) the height of the stack relative to its average height at reads since the last scavenge. If the product of the allocation and the compute time is high, and if the stack is low, the scavenge favorability measure is high. If it is especially high, a multi-generation scavenge is in order. <i>Id</i> .
	If these heuristics fail and a scavenge is forced instead by the filling of a generation's space, it is likely to happen during a significant compute- bound pausethe one that has just allocated the data that forced the collection. When the opportunistic mechanism fails to find the end of a pause, it may still succeed by default, embedding a scavenge pause within a larger pause. <i>Design of the Opportunistic Garbage Collector</i> at 32.
	As both Ish and the Opportunistic Garbage Collection Articles relate to deletion of aged records, one of ordinary skill in the art would have understood how to use the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion based on a system load in other hash table implementations such as Ish. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way.

Joint Invalidity Contentions & Production of Documents

Asserted Cla U.S. Pat. No.	ims From 5,893,120	U.S. Patent No. 5,778,430 to Ish et al. ("Ish") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
		As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the Opportunistic Garbage Collection Articles' deletion decision procedure with Ish would be nothing more than the predictable use of prior art elements according to their established functions.
		By way of further example, one of ordinary skill in the art would have combined the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion and how many generations to scavenge as taught by the Opportunistic Garbage Collection Articles and with Ish and would have seen the benefits of doing so. One such benefit, for example, is preventing slowdown of the system.
		Additionally, it would have been obvious to one of ordinary skill in the art to modify the system disclosed in Ish to dynamically determine the maximum number of expired records to remove in the accessed linked list of records. It is a fundamental concept in computer science and the relevant art that any variable or parameter affecting any aspect of a system can be dynamically determined based on information available to the system. One of ordinary skill in the art would have been motivated to combine the system disclosed in Ish with the fundamental concept of dynamically determining the maximum number of expired records to remove in an accessed linked list of records to solve a number of potential problems. For example, the removal of expired records described in Ish can be burdensome on the system, adding to the

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,778,430 to Ish et al. ("Ish") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	system's load and slowing down the system's processing. Moreover, the removal could also force an interruption in real-time processing as the processing waits for the removal to complete.
	One of ordinary skill in the art would have known that dynamically determining the maximum number to remove would limit the burden on the system and bound the length of any real-time interruption to prevent delays in processing. Indeed, Nemes concedes that such dynamic determination was obvious when he states in the '120 patent that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15.
	To the extent that dynamically determining a maximum number of expired records is not disclosed by Ish in combination with Dirks, Thatte, the '663 Patent, or the Opportunistic Garbage Collection References, it is disclosed by Linux 2.0.1, which describes dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed. It would have been obvious to combine Linux 2.0.1 with Ish. For example, both Linux 2.0.1 and Ish describe systems and methods for performing data storage and retrieval using known programming techniques to yield a predictable result.
	When invoked, the function rt_cache_add automatically increments an integer variable rt_cache_size. <i>See</i> Linux 2.0.1, route.c at line 1359. When the function rt_cache_add removes an expired record, the function

24

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,778,430 to Ish et al. ("Ish") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	rt_cache_add decrements the variable rt_cache_size. <i>See</i> Linux 2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the number of records in the hash table (i.e., ip_rt_hash_table). Because the function rt_cache_add automatically increments and decrements the variable rt_cache_size, the variable rt_cache_size is determined dynamically.
	Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1. The function rt_garbage_collect_1 loops through each of the linked lists in the ip_rt_hash_table global variable. <i>See</i> Linux 2.0.1, route.c at lines 1122-1138. In this way, the function rt_garbage_collect_1 accesses the linked list. When the function rt_garbage_collect_1 identifies a record that is expired, the function rt_garbage_collect_1 decrements the variable rt_cache_size and frees the record. <i>See</i> Linux 2.0.1, route.c at lines 1128-1135.
	Because all records in the linked list can be expired and all records in the hash table can be in the linked list, the variable rt_cache_size can represent a dynamically determined maximum number of expired ones of the records to remove when function rt_garbage_collect_1 accesses the linked list.
	Furthermore, the function rt_cache_add determines whether the number of records in the hash table exceeds a predetermined threshold RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_cache_add invokes a function rt_garbage_collect. <i>See</i> Linux

25

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,778,430 to Ish et al. ("Ish") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	 2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293. The function rt_garbage_collect invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293. The function rt_garbage_collect_1 loops through each linked list in the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked list in the hash table, the function rt_garbage_collect_1 looks at each record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each record in a linked list, the function rt_garbage_collect_1 determines whether the record's last use time plus the record's expiration factor is later than the current time. See Linux 2.0.1 route.c at line 1122. If the record's last
	than the current time. See Linux 2.0.1, route.c at line 1122. If the record's last use time plus the record's expiration factor is less than the current time, the function rt_garbage_collect_1 removes the record from the linked list. See Linux 2.0.1, route.c at lines 1124-1130. The record's expiration factor is based on a variable expire and the record's reference count. See Linux 2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.
	After looping through all of the linked lists in this manner, the function rt_garbage_collect_1 determines again whether the number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX. <i>See</i> Linux 2.0.1, route.c at line 1133. If the number of items in the hash table is still greater than the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves the variable expire and loops through each of the linked lists in the hash table. <i>See</i> Linux 2.0.1, route.c at line 1135. In this way, the function

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,778,430 to Ish et al. ("Ish") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	rt_garbage_collect_1 can remove additional records from the linked lists in the hash table. The function rt_garbage_collect_1 repeats this process until the total number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX.
	Under Bedrock's proposed claim constructions, the records removed by the function rt_garbage_collect_1 are "expired" records. That is, the records removed by the function rt_garbage_collect_1 are data items which after a limited time or after the occurrence of some event become obsolete, such that their presence in the storage system is no longer needed or desired.
	The function rt_cache_add only removes a record from a linked list when the record's last use time plus the fixed timeout value RT_CACHE_TIMEOUT is less than the current time and the record's reference count is zero. <i>See</i> Linux 2.0.1, route.c at line 1369. Thus, the maximum number of records that the function rt_cache_add can remove from a given linked list is limited to those records whose reference counts are zero.
	In contrast, the maximum number of records that the function rt_garbage_collect_1 can remove from a given linked list is not limited to those records whose reference counts are zero. <i>See</i> Linux 2.0.1, route.c at line 1122. Rather, the function rt_garbage_collect_1 can remove records whose reference counts are zero and records whose reference counts are greater than zero.
	Consequently, the maximum number of records that the function rt_garbage_collect_1 can remove from a linked list is different than

Asserted C U.S. Pat. N	laims From o. 5,893,120	U.S. Patent No. 5,778,430 to Ish et al. ("Ish") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
		the maximum number of records that the function rt_cache_add can remove from a linked list.
3. A method for storing and retrieving information records using a linked list to store and provide access to the records, at least some of the records automatically expiring, the method comprising the steps of:	7. A method for storing and retrieving information records using a hashing technique to provide access to the records and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring, the method comprising the steps of:	To the extent the preamble is a limitation, Ish discloses a method for storing and retrieving information records using a linked list to store and provide access to the records, at least some of the records automatically expiring. Ish also discloses a method for storing and retrieving information records using a hashing technique to provide access to the records and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring. For example, Ish discloses an invention that "is implemented in a storage subsystem having, preferably, an array of selectively accessible direct access storage devices (disks), a processor, program memory, cache memory, and non-volatile memory and is responsive to commands received from at least one external source." <i>Ish et al.</i> , U.S. Patent No. 5,778,430 at 3:24-29. "In response to commands received from the external source, i.e., WRITE, READ, the storage system transfer data, preferably organized as blocks, to/from the direct access devices to/from the external source, as indicated. In order to speed access to the data, the blocks are held in an intermediary cache—when possible. Blocks which are the subject of a READ request and present in the cache are transferred directly from the cache to the external source. Conversely, Blocks which are the subject of a READ request and are not present in the cache, are first transferred from the direct access devices to the cache. Finally, blocks which are the subject of a WRITE request are stored in the cache, and subsequently flushed to the direct access devices at a convenient time." <i>Id.</i> at 3:30-43.

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,778,430 to Ish et al. ("Ish") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	Furthermore, Ish discloses that "[t]he method employs a hashing function which takes as its input a block number and outputs a hash index into a hash table of pointers. Each pointer in the hash table points to a doubly-linked list of headers, with each header having a bit map wherein the bits contained in the map identify whether a particular block of data is contained within the cache. Upon entry into the hash table, the linked headers are sequentially searched. If no header is found that contains the particular block, a cache "miss" occurs, at which point in time an available space is made within the cache to hold the block and the block is subsequently retrieved from the direct access device and stored within the cache." <i>Id.</i> at 3:47-59.
	Furthermore, Ish discloses that "[e]ach header contains information is particularly relevant to the implementation of the replacement policy. As show in Fig. 4b, the Frequency member 406 indicates how many times the particular cache line has been accessed since it was placed in the cache. The Timestamp member 407 indicates the time of the last access of the cache line. The position within the head of the header point to a cache line is determined by its Frequency member 406 and its Timestamp member 407. In accordance with the present invention, the replacement head is modified to keep the best candidate for replacement at the root of the heap." <i>Id.</i> at 7:16-26.
	Moreover, Ish discloses that "structures have been incorporated within the present invention which further enhance its performance and advances over the prior art the cache header 403 contains a bitmap, DirtyMap 409, which like bitmap, ValidMap 408, has a bit in the bitmap for each block of data contained within the cache line associated by the header. The bits contained in DirtyMap 409 identify those blocks of data which have been modified, i.e.,

Joint Invalidity Contentions & Production of Documents

Asserted C U.S. Pat. N	laims From o. 5,893,120	U.S. Patent No. 5,778,430 to Ish et al. ("Ish") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
		new data has been written into them, and have not yet been written out "flushed" to the direct access storage devices. Such dirty block could pose a performance problem for a cache system because if such a block were part of a cache line identified as a most likely candidate for replacement, the entire cache line would have be written to the direct access device BEFORE the cache line was replaced by new blocks, thereby degrading performance of the overall cache system. The presence of the DirtyMap 409, however, permits a flushing daemon process to continuously operate, flushing direct blocks to the direct access storage devices BEFORE the cache line in the block requires replacement. The daemon sequentially checks the headers identified by the array of points (implicit heap) until a first dirty cache line is found and flushed. In effect, this operation finds the first, direct candidate for replacement and then flushes it." <i>Id.</i> at 9:2-26.
[3a] accessing the linked list of records,	[7a] accessing a linked list of records having same hash address,	 Ish discloses accessing a linked list of records. Ish also discloses accessing a linked list of records having same hash address. For example, Ish discloses an invention that "is implemented in a storage subsystem having, preferably, an array of selectively accessible direct access storage devices (disks), a processor, program memory, cache memory, and non-volatile memory and is responsive to commands received from at least one external source." <i>Id.</i> at 3:24-29. "In response to commands received from the external source, i.e., WRITE, READ, the storage system transfer data, preferably organized as blocks, to/from the direct access devices to/from the external source, as indicated. In order to speed access to the data, the blocks are held in an intermediary cache—when possible. Blocks which are the subject of a READ request and

Joint Invalidity Contentions & Production of Documents

Asserted C U.S. Pat. N	laims From o. 5,893,120	U.S. Patent No. 5,778,430 to Ish et al. ("Ish") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
		present in the cache are transferred directly from the cache to the external source. Conversely, Blocks which are the subject of a READ request and are not present in the cache, are first transferred from the direct access devices to the cache. Finally, blocks which are the subject of a WRITE request are stored in the cache, and subsequently flushed to the direct access devices at a convenient time." <i>Id.</i> at 3:30-43.
		which takes as its input a block number and outputs a hash index into a hash table of pointers. Each pointer in the hash table points to a doubly-linked list of headers, with each header having a bit map wherein the bits contained in the map identify whether a particular block of data is contained within the cache. Upon entry into the hash table, the linked headers are sequentially searched. If no header is found that contains the particular block, a cache "miss" occurs, at which point in time an available space is made within the cache to hold the block and the block is subsequently retrieved from the direct access device and stored within the cache." <i>Id.</i> at 3:47-59.
[3b] identifying at least some of the automatically expired ones of the records,	[7b] identifying at least some of the automatically expired ones of the records,	Ish discloses identifying at least some of the automatically expired ones of the records.
and		For example, Ish discloses an invention that "is implemented in a storage subsystem having, preferably, an array of selectively accessible direct access storage devices (disks), a processor, program memory, cache memory, and non-volatile memory and is responsive to commands received from at least one external source." <i>Id.</i> at 3:24-29.
		"In response to commands received from the external source, i.e., WRITE,
Joint Invalidity Contentions & Pro	duction of	31 Case No. 6:09-CV-549-LED

Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,778,430 to Ish et al. ("Ish") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	READ, the storage system transfer data, preferably organized as blocks, to/from the direct access devices to/from the external source, as indicated. In order to speed access to the data, the blocks are held in an intermediary cache—when possible. Blocks which are the subject of a READ request and present in the cache are transferred directly from the cache to the external source. Conversely, Blocks which are the subject of a READ request and are not present in the cache, are first transferred from the direct access devices to the cache. Finally, blocks which are the subject of a WRITE request are stored in the cache, and subsequently flushed to the direct access devices at a convenient time." <i>Id.</i> at 3:30-43.
	Furthermore, Ish discloses that "[t]he method employs a hashing function which takes as its input a block number and outputs a hash index into a hash table of pointers. Each pointer in the hash table points to a doubly-linked list of headers, with each header having a bit map wherein the bits contained in the map identify whether a particular block of data is contained within the cache. Upon entry into the hash table, the linked headers are sequentially searched. If no header is found that contains the particular block, a cache "miss" occurs, at which point in time an available space is made within the cache to hold the block and the block is subsequently retrieved from the direct access device and stored within the cache." <i>Id.</i> at 3:47-59.
	Furthermore, Ish discloses that "[e]ach header contains information is particularly relevant to the implementation of the replacement policy. As show in Fig. 4b, the Frequency member 406 indicates how many times the particular cache line has been accessed since it was placed in the cache. The Timestamp member 407 indicates the time of the last access of the cache line. The position within the head of the header point to a cache line is determined by its

Asserted Cl U.S. Pat. No	aims From 5. 5,893,120	U.S. Patent No. 5,778,430 to Ish et al. ("Ish") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
		Frequency member 406 and its Timestamp member 407. In accordance with the present invention, the replacement head is modified to keep the best candidate for replacement at the root of the heap." <i>Id.</i> at 7:16-26.
		Moreover, Ish discloses that "structures have been incorporated within the present invention which further enhance its performance and advances over the prior art the cache header 403 contains a bitmap, DirtyMap 409, which like bitmap, ValidMap 408, has a bit in the bitmap for each block of data contained within the cache line associated by the header. The bits contained in DirtyMap 409 identify those blocks of data which have been modified, i.e., new data has been written into them, and have not yet been written out "flushed" to the direct access storage devices. Such dirty block could pose a performance problem for a cache system because if such a block were part of a cache line identified as a most likely candidate for replacement, the entire cache line would have be written to the direct access device BEFORE the cache line was replaced by new blocks, thereby degrading performance of the overall cache system. The presence of the DirtyMap 409, however, permits a flushing daemon process to continuously operate, flushing direct blocks to the direct access storage devices BEFORE the cache line in the block requires replacement. The daemon sequentially checks the headers identified by the array of points (implicit heap) until a first dirty cache line is found and flushed. In effect, this operation finds the first, direct candidate for replacement and then flushes it." <i>Id.</i> at 9:2-26.
[3c] removing at least	[7c] removing at least	Ish discloses removing at least some of the automatically expired records from
some of the automatically	some of the automatically expired records from the	the linked list when the linked list is accessed. For example, is discloses an invention that "is implemented in a storage
linked list when the linked	linked list when the linked	subsystem having, preferably, an array of selectively accessible direct access

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 5,778,430 to Ish et al. ("Ish") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
list is accessed.	list is accessed, and	storage devices (disks), a processor, program memory, cache memory, and non-volatile memory and is responsive to commands received from at least one external source." <i>Id.</i> at 3:24-29.
		"In response to commands received from the external source, i.e., WRITE, READ, the storage system transfer data, preferably organized as blocks, to/from the direct access devices to/from the external source, as indicated. In order to speed access to the data, the blocks are held in an intermediary cache—when possible. Blocks which are the subject of a READ request and present in the cache are transferred directly from the cache to the external source. Conversely, Blocks which are the subject of a READ request and are not present in the cache, are first transferred from the direct access devices to the cache. Finally, blocks which are the subject of a WRITE request are stored in the cache, and subsequently flushed to the direct access devices at a convenient time." <i>Id.</i> at 3:30-43
		Furthermore, Ish discloses that "[t]he method employs a hashing function which takes as its input a block number and outputs a hash index into a hash table of pointers. Each pointer in the hash table points to a doubly-linked list of headers, with each header having a bit map wherein the bits contained in the map identify whether a particular block of data is contained within the cache. Upon entry into the hash table, the linked headers are sequentially searched. If no header is found that contains the particular block, a cache "miss" occurs, at which point in time an available space is made within the cache to hold the block and the block is subsequently retrieved from the direct access device and stored within the cache." <i>Id.</i> at 3:47-59.

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,778,430 to Ish et al. ("Ish") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	particularly relevant to the implementation of the replacement policy. As show in Fig. 4b, the Frequency member 406 indicates how many times the particular cache line has been accessed since it was placed in the cache. The Timestamp member 407 indicates the time of the last access of the cache line. The position within the head of the header point to a cache line is determined by its Frequency member 406 and its Timestamp member 407. In accordance with the present invention, the replacement head is modified to keep the best candidate for replacement at the root of the heap." <i>Id.</i> at 7:16-26.
	Moreover, Ish discloses that "structures have been incorporated within the present invention which further enhance its performance and advances over the prior art the cache header 403 contains a bitmap, DirtyMap 409, which like bitmap, ValidMap 408, has a bit in the bitmap for each block of data contained within the cache line associated by the header. The bits contained in DirtyMap 409 identify those blocks of data which have been modified, i.e., new data has been written into them, and have not yet been written out "flushed" to the direct access storage devices. Such dirty block could pose a performance problem for a cache system because if such a block were part of a cache line identified as a most likely candidate for replacement, the entire cache line would have be written to the direct access device BEFORE the cache line was replaced by new blocks, thereby degrading performance of the overall cache system. The presence of the DirtyMap 409, however, permits a flushing daemon process to continuously operate, flushing direct blocks to the direct access storage devices BEFORE the cache line in the block requires replacement. The daemon sequentially checks the headers identified by the array of points (implicit heap) until a first dirty cache line is found and flushed. In effect, this operation finds the first, direct candidate for replacement and then flushes it." <i>Id.</i> at 9:2-26.

Asserted Cl U.S. Pat. No	aims From 5. 5,893,120	U.S. Patent No. 5,778,430 to Ish et al. ("Ish") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	[7d] inserting, retrieving or deleting one of the records from the system	Ish discloses inserting, retrieving or deleting one of the records from the system following the step of removing.
	following the step of removing.	For example, Ish discloses an invention that "is implemented in a storage subsystem having, preferably, an array of selectively accessible direct access storage devices (disks), a processor, program memory, cache memory, and non-volatile memory and is responsive to commands received from at least one external source." <i>Id.</i> at 3:24-29.
		"In response to commands received from the external source, i.e., WRITE, READ, the storage system transfer data, preferably organized as blocks, to/from the direct access devices to/from the external source, as indicated. In order to speed access to the data, the blocks are held in an intermediary cache—when possible. Blocks which are the subject of a READ request and present in the cache are transferred directly from the cache to the external source. Conversely, Blocks which are the subject of a READ request and are not present in the cache, are first transferred from the direct access devices to the cache. Finally, blocks which are the subject of a WRITE request are stored in the cache, and subsequently flushed to the direct access devices at a convenient time." <i>Id.</i> at 3:30-43.
		Furthermore, Ish discloses that "[t]he method employs a hashing function which takes as its input a block number and outputs a hash index into a hash table of pointers. Each pointer in the hash table points to a doubly-linked list of headers, with each header having a bit map wherein the bits contained in the map identify whether a particular block of data is contained within the cache. Upon entry into the hash table, the linked headers are sequentially searched. If

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,778,430 to Ish et al. ("Ish") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	no header is found that contains the particular block, a cache "miss" occurs, at which point in time an available space is made within the cache to hold the block and the block is subsequently retrieved from the direct access device and stored within the cache." <i>Id.</i> at 3:47-59.
	Furthermore, Ish discloses that "[e]ach header contains information is particularly relevant to the implementation of the replacement policy. As show in Fig. 4b, the Frequency member 406 indicates how many times the particular cache line has been accessed since it was placed in the cache. The Timestamp member 407 indicates the time of the last access of the cache line. The position within the head of the header point to a cache line is determined by its Frequency member 406 and its Timestamp member 407. In accordance with the present invention, the replacement head is modified to keep the best candidate for replacement at the root of the heap." <i>Id.</i> at 7:16-26.
	Moreover, Ish discloses that "structures have been incorporated within the present invention which further enhance its performance and advances over the prior art the cache header 403 contains a bitmap, DirtyMap 409, which like bitmap, ValidMap 408, has a bit in the bitmap for each block of data contained within the cache line associated by the header. The bits contained in DirtyMap 409 identify those blocks of data which have been modified, i.e., new data has been written into them, and have not yet been written out "flushed" to the direct access storage devices. Such dirty block could pose a performance problem for a cache system because if such a block were part of a cache line identified as a most likely candidate for replacement, the entire cache line would have be written to the direct access device BEFORE the cache line was replaced by new blocks, thereby degrading performance of the overall cache system. The presence of the DirtyMap 409, however, permits a

Joint Invalidity Contentions & Production of Documents

Asserted C U.S. Pat. N	laims From o. 5,893,120	U.S. Patent No. 5,778,430 to Ish et al. ("Ish") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
		flushing daemon process to continuously operate, flushing direct blocks to the direct access storage devices BEFORE the cache line in the block requires replacement. The daemon sequentially checks the headers identified by the array of points (implicit heap) until a first dirty cache line is found and flushed. In effect, this operation finds the first, direct candidate for replacement and then flushes it." <i>Id.</i> at 9:2-26.
4. The method according to claim 3 further including the step of dynamically determining maximum number of expired ones of the records to remove	8. The method according to claim 7 further including the step of dynamically determining maximum number of expired ones of the records to remove	Ish alone or in combination with Hamstra discloses dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed.It is inherent to the Ish disclosure that upon a call to READ or WRITE, if there is empty space available in the, created by either (1) the initialization of the
when the linked list is accessed.	when the linked list is accessed.	cache when segments within the cache have not yet been filled or (2) continuous flushing of the cache to remove the best candidates for replacement, blocks are transferred from a direct device to the cache without a deletion. If, however, empty space is not available, then the necessary space is made available within the cache by performing a delete. In order to promote the goals of a cache memory system, an efficient system would not make a deletion unless it was necessary, because the system would like to keep the cache filled to make retrieval for the user as fast as possible. Therefore, Ish inherently incorporates a dynamic decision making process in determining whether to delete a block within the cache upon a call to READ or WRITE.
		To the extent it is not inherent, it would be obvious to combine Ish with Hamstra. For example, as summarized in Hamstra:

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,778,430 to Ish et al. ("Ish") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	If the data is not resident in the cache memory then it is staged by segments from a disk, placed in the cache memory, and sent to the host. However, this <i>may</i> require that <i>some of the</i> <i>segments</i> in the cache memory be replaced by the segments from the disks. <i>Hamstra et al.</i> , "Processor-Addressable Timestamp for Indicating Oldest Written-to-Cache Entry Not Copied Back to Bulk Memory," U.S. Patent No. 4,530,054 (issued Jul. 16, 1985) at 1:36-41 (emphasis added). [W]hen a new segment or segments has to be brought from a device 104 to the cache memory 106 <i>and</i> there are no empty segments in the cache memory 106 then <i>some of the segments</i> resident in the cache memory 106 must be deleted or removed therefrom in order to make room for the new segments. <i>Id.</i> at 6:29-34 (emphasis added).
	 [W]hen the SCU 100 has no other work to do it may search the SDT [- the segment descriptor (SDT) contains an entry for each segment of data resident in the cache memory, similar to a hash table (<i>Id.</i> at 5:33-35) –] to locate segments which have been written to the cache and trickle these segments to the devices 104 thus making space available in cache 106 for additional segments. The trickling of written-to segments takes place on the same basis as segment replacement, that is, the least recently used segments are trickled first <i>Id.</i> at 6:53-60.

39

cache before segments in cache memory are filled or by the trickle down functionality of the system. According to Hamstra, <i>if</i> there are no empty segments in the cache memory, <i>then some of the segments</i> in the cache memory are deleted by the system. However, if there <i>are</i> empty segments in the cache, then there is no need to delete any segments and the requested segments are transfered from a disk into those empty segments. Therefore, the system described in Hamstra dynamically determines whether to delete a segment based on the availability of empty segments in the cache memory.As both Ish and Hamstra relate (1) to a system of cache maintenance using a here and the relation of the system.	Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,778,430 to Ish et al. ("Ish") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
 least recently used method for replacement of cache segments organized in linked lists and (2) a system to automatically delete the best candidates for replacement prior to a call from a user, one of ordinary skill in the art would understand how to use the Hamstra patent's dynamic decision on whether to perform a segment deletion based on the availability of empty segments in a cache memory when implementing a cache maintenance system such as Ish. Moreover, one of ordinary skill in the art would recongize that it would improve similar systems and methods in the same way. The fundamental goal of a cache memory, as described by both Ish and Hamstra, is to provide users fast access to frequently used data. <i>Ish et al.</i>, U.S. Patent No. 5,778,430 at 1:6-30; <i>Hamstra et al.</i>, U.S. Patent No. 4,530,054 at 1:22-31. This is achieved by insuring that data residing in the cache is the most recently and frequently used data. A person skilled in the art would appreciate that the technique of replacing least recently used data segments for acache memory upon an insertion of a new data segments only. 		cache before segments in cache memory are filled or by the trickle down functionality of the system. According to Hamstra, <i>if</i> there are no empty segments in the cache memory, <i>then some of the segments</i> in the cache memory are deleted by the system. However, if there <i>are</i> empty segments in the cache, then there is no need to delete any segments and the requested segments are transfered from a disk into those empty segments. Therefore, the system described in Hamstra dynamically determines whether to delete a segment based on the availability of empty segments in the cache memory. As both Ish and Hamstra relate (1) to a system of cache maintenance using a least recently used method for replacement of cache segments organized in linked lists and (2) a system to automatically delete the best candidates for replacement prior to a call from a user, one of ordinary skill in the art would understand how to use the Hamstra patent's dynamic decision on whether to perform a segment deletion based on the availability of empty segments in a cache memory when implementing a cache maintenance system such as Ish. Moreover, one of ordinary skill in the art would recongize that it would improve similar systems and methods in the same way. The fundamental goal of a cache memory, as described by both Ish and Hamstra, is to provide users fast access to frequently used data. <i>Ish et al.</i> , U.S. Patent No. 5,778,430 at 1:6-30; <i>Hamstra et al.</i> , U.S. Patent No. 4,530,054 at 1:22-31. This is achieved by insuring that data residing in the cache is the most recently and frequently used data. A person skilled in the art would appreciate that the technique of replacing least recently used data segments from cache memory upon an insertion of a new data segment can be expanded to include dynamic decision making functionality to deleta segments only

40

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,778,430 to Ish et al. ("Ish") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	when no empty segments are available in the cache. One of ordinary skill in the art would recognize that the result of combining the system disclosed in Ish with the logic of dynamically determining whether a deletion is necessary upon a user call as disclosed in Hamstra would further promote the goals of a cache memory. For example, one such benefit would include creating faster access to data for the user – the additional step of a deletion would only take place if there was no empty space in the cache memory.
	Additionally, it would have been obvious to one of ordinary skill in the art to modify the system disclosed in Ish to dynamically determine the maximum number of expired records to remove in the accessed linked list of records. It is a fundamental concept in computer science and the relevant art that any variable or parameter affecting any aspect of a system can be dynamically determined based on information available to the system. One of ordinary skill in the art would have been motivated to combine the system disclosed in Ish with the fundamental concept of dynamically determining the maximum number of expired records to remove in an accessed linked list of records to solve a number of potential problems. For example, the removal of expired records described in Ish can be burdensome on the system, adding to the system's load and slowing down the system's processing. Moreover, the removal could also force an interruption in real-time processing as the processing waits for the removal to complete. Indeed, part of the motivation for the system disclosed in Ish is avoiding these problems. One of ordinary skill in the art would have known that dynamically determining the maximum number to remove would limit the burden on the system and bound the length of any real-time interruption to prevent delays in processing. Indeed, Nemes

41

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,778,430 to Ish et al. ("Ish") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	concedes that such dynamic determination was obvious when he states in the '120 patent that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15.
	To the extent that dynamically determining a maximum number of expired records is not disclosed by Ish and Hamstra, Ish combined with Dirks, Thatte, the '663 patent and/or the Opportunistic Garbage Collection Articles discloses an information storage and retrieval system further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records.
	Dirks discloses the management of memory in a computer system and more particularly to the allocation of address space in a virtual memory system, which dynamically determines how many records to sweep/remove upon each allocation. Disclosure of these claim elements in Dirks is clearly shown in Exhibit B-2, which is hereby incorporated by reference in its entirety.
	For example, as summarized in Dirks,
	each time a VSID is assigned from the free list to a new application or thread, a fixed number of entries in the page table are scanned to determine whether they have become inactive, by checking them against the VSIDs on the recycle list. Each entry which is identified as being inactive is removed from the page table. After all of the entries in the page table have been examined in this manner, the VSIDs in the recycle list can be

42

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,778,430 to Ish et al. ("Ish") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	transferred to the free list, since all of their associated page table entries will have been removed. This approach thereby guarantees that a predetermined number of VSIDs are always available in the free list without requiring a time-consuming scan of the complete page table at once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.
	After [a] new VSID has been allocated, the system checks a flag RFLG to determine whether a recycle sweep is currently in progress (Step 20). If there is no sweep in progress, i.e. RFLG is not equal to one, a determination is made whether a sweep should be initiated. This is done by checking whether the inactive list is full, i.e. whether it contains x entries (Step 22). If the number of entries I on the inactive list is less than x, no further action is taken, and processing control returns to the operating system (Step 24). If, however, the inactive list is full at this time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are transferred to the recycle list, and an index n is reset to 1 (Step 28). The system then sweeps a predetermined number of page table entries PT _i on the page table, to detect whether any of them are inactive, i.e. their associated VSID is on the recycle list (Step 30). The predetermined number of entries that are swept is identified as k , where:
	k = 4000000000000000000000000000000000000
	Dirks discloses that any approach can be employed to determine the number of entries to be examined during each step of the sweeping process. <i>Id.</i> at 7:37-40. As stated in Dirks:

Asserted Claims From	U.S. Patent No. 5,778,430 to Ish et al. ("Ish") alone and in combination
U.S. Pat. No. 5,893,120	with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	 Any other suitable approach can be employed to determine the number of entries to be examined during each step of the sweeping process. In this regard, it is not necessary that the number of examined entries be fixed for each step. Rather, it might vary from one step to the next. The only criterion is that the number of entries examined on each step be such that all entries in the page table are examined in a determinable amount of time or by the occurrence of a certain event, e.g. by the time the list of free VSIDs is empty. <i>Id.</i> at 7:38-46. Thus, Dirks dynamically determines the maximum number of records to sweep/remove by calculating a value <i>k. Id.</i> at 7:15-46, 7:66-8:56. As both Ish and Dirks relate to deletion of aged records upon the allocation of a new incoming record, one of ordinary skill in the art would have understood how to use Dirks' dynamic decision making process of determining the maximum number of records to sweep/remove in other hash tables implementations such as Ish. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "(a) person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining Dirks' deletion decision procedure with Ish nothing more than the predictable use of prior art elements according to their established functions.

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,778,430 to Ish et al. ("Ish") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	combined Dirks' dynamic determination of the suitable number of entries to examine during each step of the sweeping process with Ish and would have seen the benefits of doing so. One possible benefit, for example, is saving the system from performing sometimes time-consuming sweeps.`
	Alternatively, one of ordinary skill in the art would be motivated to, and would understand how to, combine the system disclosed in Ish with the means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records disclosed by Thatte. For example, Thatte discloses a system and method using hash tables and/or linked lists and further discloses means for dynamically determining the maximum number for the record search means to remove in the accessed linked list of records. The disclosure of these claim elements in Thatte is clearly shown in the chart of Thatte, which is hereby incorporated by reference in its entirety.
	Moreover, one of ordinary skill in the art would recognize that these combinations would improve the similar systems and methods in the same way. Additionally, as both Ish and Thatte teach a system of data storage and retrieval, one of ordinary skill in the art would recognize that the result of combining Ish with Thatte would be nothing more than the predictable use of prior art elements according to their established functions. The resulting combination would include the capability to determine the maximum number for the record search means to remove as taught by Thatte.
	Further, one of ordinary skill in the art would be motivated to combine Ish with Thatte and recognize the benefits of doing so. For example, the removal of expired records described in Ish can be burdensome on the system, adding to the system's load and slowing down the system's processing. One of ordinary

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,778,430 to Ish et al. ("Ish") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	skill in the art would recognize that combining Ish with the teachings of Thatte would solve this problem by dynamically determining how many records to delete based on, among other things, the system load. Moreover, the '120 patent discloses that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine Ish with Thatte.
	Alternatively, it would also be obvious to combine Ish with the '663 patent. Disclosure of these claim elements in the '663 patent is clearly shown in the chart of the '663 patent, which is hereby incorporated by reference in its entirety. For example, as summarized in the '663 patent:
	during normal times when the load on the storage system is not excessive, a non-contaminating but slow deletion of records is used. This slow, non-contaminating deletion involves closing the collision-resolution chain of locations by moving a record from a later position in the chain into the position of the record to be deleted. This leaves no deleted record locations in the storage space to slow down future searches. U.S. Patent 4,996,663 to Nemes at 2:24-34 ("The '663 patent").
	In times of heavy use, when deletions must be done rapidly and no time is available for decontamination, the record is simply marked as "deleted" and left in place. Later non-contaminating probes in the vicinity of such deleted record locations

46

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,778,430 to Ish et al. ("Ish") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	automatically remove the contaminating deleted records by moving records in the chain as described above. <i>Id.</i> at 2:35-41.
	 This hybrid hashing technique has the decided advantage of automatically eliminating contamination caused by the fast-secure deletion procedure when the slower, non-contaminating deletion is used when the load on the system is at lower levels. <i>Id.</i> at 2:42-46. This hybrid deletion is shown in Figure 5.

47

Asserted C	laims From	U.S. Patent No. 5,778,430 to Ish et al. ("Ish") alone and in combination
U.S. Pat. N	o. 5,893,120	with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
		FIG.5 HYBRID DELETION

U.S. Pat. No. 5,893,120	with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	not actually delete records, rather it marks records as deleted. <i>Id.</i> at 8:1-33, Figure 7. These records are then actually deleted by a subsequent slow-non-contaminating delete 53. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
	Thus, the hybrid deletion procedure in the '663 patent dynamically determines a maximum number of records to remove. <i>See id.</i> at 6:40-64, Figure 5. If the fast-secure delete 52 is used, then maximum number of records is zero because records are not deleted they are only marked. <i>Id.</i> at 8:1-33, Figure 7. If the slow-non-contaminating delete 53 is used, then the maximum number of records to remove is all of the contaminated records in the bucket. <i>Id.</i> at 6:65- 7:68, Figures 6, 6A, 6B.
	As both Ish and the '663 patent relate to deletion of records from hash tables using external chaining, one of ordinary skill in the art would understood how to use the '663 patent's dynamic decision on whether to perform a deletion based on a systems load in other hash table implementations such as that described in Ish. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the '663 patent's deletion decision procedure with Ish would be nothing more than the predictable use of prior art elements according to their established functions.

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,778,430 to Ish et al. ("Ish") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	combined the '663 patent's dynamic decision on whether to perform a deletion based on a systems load as taught by the '663 patent and with Ish and would have seen the benefits of doing so. One such benefit, for example, is that the system would avoid performing deletions when the system load exceeded a threshold.
	Alternatively, it would also be obvious to combine Ish with the Opportunistic Garbage Collection Articles.
	The Opportunistic Garbage Collection Articles disclose a generational based garbage collection which dynamically determines how much garbage to collect. <i>See generally</i> , Paul R. Wilson and Thomas G. Moher, <i>Design of the Opportunistic Garbage Collector</i> , OOPSLA '89 Proceedings, October 1-6, 1989; Paul R. Wilson, <i>Opportunistic Garbage Collection</i> , ACM SIGPLAN Notices, Vol. 23, No. 12, December 1988.
	For example, the Opportunistic Garbage Collection Articles disclose in part:
	When a significant pause has been detected, a decision procedure is invoked to decide whether to garbage collect, and how many generations to scavenge. The fuller a generation is, the more likely it is to be scavenged; also, the longer the pause that has been detected, the larger the scope of the garbage collection is likely to be. <i>Design of the Opportunistic Garbage</i> <i>Collector</i> at 32.
	Every time a user-input routine is invoked, a decision routine can decide whether to garbage collect. As long as the decision routine takes no more than a few milliseconds to execute, it should not interfere with

Asserted Claim U.S. Pat. No. 5,	ns From 893,120	U.S. Patent No. 5,778,430 to Ish et al. ("Ish") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
		responsiveness. Since it is only invoked at these times, it does not incur a continual run-time overhead. <i>Opportunistic Garbage Collection</i> at 100.
		This decision routine should take several things into account: 1) the volume of data allocated since the last scavenge, 2) how long it has been since the user has had an opportunity to interact, and 3) the height of the stack relative to its average height at reads since the last scavenge. If the product of the allocation and the compute time is high, and if the stack is low, the scavenge favorability measure is high. If it is especially high, a multi-generation scavenge is in order. <i>Id</i> .
		If these heuristics fail and a scavenge is forced instead by the filling of a generation's space, it is likely to happen during a significant compute- bound pausethe one that has just allocated the data that forced the collection. When the opportunistic mechanism fails to find the end of a pause, it may still succeed by default, embedding a scavenge pause within a larger pause. <i>Design of the Opportunistic Garbage Collector</i> at 32.
		As both Ish and the Opportunistic Garbage Collection Articles relate to deletion of aged records, one of ordinary skill in the art would have understood how to use the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion based on a system load in other hash table implementations such as Ish. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,778,430 to Ish et al. ("Ish") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the Opportunistic Garbage Collection Articles' deletion decision procedure with Ish would be nothing more than the predictable use of prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have combined the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion and how many generations to scavenge as taught by the Opportunistic Garbage Collection Articles and with Ish and would have seen the benefits of doing so. One such benefit, for example, is preventing slowdown of the system.
	Additionally, it would have been obvious to one of ordinary skill in the art to modify the system disclosed in Ish to dynamically determine the maximum number of expired records to remove in the accessed linked list of records. It is a fundamental concept in computer science and the relevant art that any variable or parameter affecting any aspect of a system can be dynamically determined based on information available to the system. One of ordinary skill in the art would have been motivated to combine the system disclosed in Ish with the fundamental concept of dynamically determining the maximum number of expired records to remove in an accessed linked list of records to solve a number of potential problems. For example, the removal of expired records described in Ish can be burdensome on the system, adding to the system's load and slowing down the system's processing. Moreover, the removal could also force an interruption in real-time processing as the processing waits for the removal to complete.

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,778,430 to Ish et al. ("Ish") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	One of ordinary skill in the art would have known that dynamically determining the maximum number to remove would limit the burden on the system and bound the length of any real-time interruption to prevent delays in processing. Indeed, Nemes concedes that such dynamic determination was obvious when he states in the '120 patent that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. To the extent that dynamically determining a maximum number of expired records is not disclosed by Ish in combination with Dirks, Thatte, the '663 Patent, or the Opportunistic Garbage Collection References, it is disclosed by Linux 2.0.1, which describes dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed. It would have been obvious to combine Linux 2.0.1 with Ish. For example, both Linux 2.0.1 and Ish describe systems and methods for performing data storage and retrieval using known programming techniques to yield a predictable result.
	When invoked, the function rt_cache_add automatically increments an integer variable rt_cache_size. <i>See</i> Linux 2.0.1, route.c at line 1359. When the function rt_cache_add removes an expired record, the function rt_cache_add decrements the variable rt_cache_size. <i>See</i> Linux 2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the number of records in the hash table (i.e., ip_rt_hash_table). Because the function rt_cache_add automatically increments and decrements the

53

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,778,430 to Ish et al. ("Ish") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	variable rt_cache_size, the variable rt_cache_size is determined dynamically.
	Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1. The function rt_garbage_collect_1 loops through each of the linked lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at lines 1122-1138. In this way, the function rt_garbage_collect_1 accesses the linked list. When the function rt_garbage_collect_1 identifies a record that is expired, the function rt_garbage_collect_1 decrements the variable rt_cache_size and frees the record. See Linux 2.0.1, route.c at lines 1128-1135.
	Because all records in the linked list can be expired and all records in the hash table can be in the linked list, the variable rt_cache_size can represent a dynamically determined maximum number of expired ones of the records to remove when function rt_garbage_collect_1 accesses the linked list.
	Furthermore, the function rt_cache_add determines whether the number of records in the hash table exceeds a predetermined threshold RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_cache_add invokes a function rt_garbage_collect. <i>See</i> Linux 2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect invokes a function rt_garbage_collect_1. <i>See</i> Linux 2.0.1, route.c at line 1293. The function rt_garbage_collect invokes a function rt_garbage_collect_1. <i>See</i> Linux 2.0.1, route.c at line 1293. The function rt_garbage_collect invokes a function rt_garbage_collect_1. <i>See</i> Linux 2.0.1, route.c at line 1293.

54

Asserted Claims From	U.S. Patent No. 5,778,430 to Ish et al. ("Ish") alone and in combination
U.S. Pat. No. 5,893,120	with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
	The function rt_garbage_collect_1 loops through each linked list in the hash table. <i>See</i> Linux 2.0.1, route.c at lines 1116-1132. For each linked list in the hash table, the function rt_garbage_collect_1 looks at each record in a linked list. <i>See</i> Linux 2.0.1, route.c at lines 1120-1131. For each record in a linked list, the function rt_garbage_collect_1 determines whether the record's last use time plus the record's expiration factor is later than the current time. <i>See</i> Linux 2.0.1, route.c at line 1122. If the record's last use time plus the record's expiration factor is less than the current time, the function rt_garbage_collect_1 removes the record's expiration factor is based on a variable expire and the record's reference count. <i>See</i> Linux 2.0.1, route.c at lines 1124-1130. The record's expiration factor is based on a variable expire and the record's reference count. <i>See</i> Linux 2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed timeout value RT_CACHE_TIMEOUT. <i>See</i> Linux 2.0.1, route.c at line 1110. After looping through all of the linked lists in this manner, the function rt_garbage_collect_1 determines again whether the number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX. <i>See</i> Linux 2.0.1, route.c at line 1133. If the number of items in the hash table is still greater than the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves the variable expire and loops through each of the linked lists in the hash table. <i>See</i> Linux 2.0.1, route.c at line 1135. In this way, the function rt_garbage_collect_1 can remove additional records from the linked lists in the hash table. The function rt_garbage_collect_1 repeats this process until the total number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX.

Asserted C U.S. Pat. No	laims From o. 5,893,120	U.S. Patent No. 5,778,430 to Ish et al. ("Ish") alone and in combination with U.S. Patent No. 4,530,054 to Hamstra et al. ("Hamstra")
		Under Bedrock's proposed claim constructions, the records removed by the function rt_garbage_collect_1 are "expired" records. That is, the records removed by the function rt_garbage_collect_1 are data items which after a limited time or after the occurrence of some event become obsolete, such that their presence in the storage system is no longer needed or desired. The function rt_cache_add only removes a record from a linked list when the record's last use time plus the fixed timeout value RT_CACHE_TIMEOUT is less than the current time and the record's reference count is zero. <i>See</i> Linux 2.0.1, route.c at line 1369. Thus, the maximum number of records that the function rt_cache_add can remove from a given linked list is limited to those records whose reference counts are zero. In contrast, the maximum number of records that the function rt_garbage_collect_1 can remove from a given linked list is not limited to those records whose reference counts are zero. <i>See</i> Linux 2.0.1, route.c at line 1122. Rather, the function rt_garbage_collect_1 can remove records whose reference counts are zero and records whose reference counts are greater than zero.
		remove from a linked list.
Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
--	--	--
1. An information storage	5. An information storage	To the extent the preamble is a limitation, Beardsley discloses an information
and retrieval system, the system comprising:	and retrieval system, the system comprising:	storage and retrieval system.
		For example, Beardsley discloses that "[i]t is one object of the invention to provide an improved data processing system having two or more levels of data storage in a data storage system. It is still another object to provide a method of caching data from a lower level of storage on a higher level of storage both as individual records and in whole tracks." <i>Beardsley et al.</i> , "Method and System for Dynamic Cache Allocation Between Record and Track Entries" U.S. Patent No. 5,991,775 (issued Nov. 23, 1999) at 3:13-18. "Storage controller 12 is internally divided into sections corresponding independent power supplies. Two sections are storage clusters 36 and 38 respectively. A third section includes a memory cache 58 Cache 58 provides storage for frequently accessed data and for the buffering functions in order to provide similar response times for cache writes and cache reads." <i>Id.</i> at 5:1-9.
[1a] a linked list to store and provide access to	[5a] a hashing means to provide access to records	Beardsley discloses a linked list to store and provide access to records stored in a memory of the system, at least some of the records automatically expiring.
records stored in a memory	stored in a memory of the	Beardsley also discloses a hashing means to provide access to records stored in
of the system, at least some	system and using an	a memory of the system and using an external chaining technique to store the
of the records	external chaining technique	records with same hash address, at least some of the records automatically
automatically expiring,	to store the records with	expiring.
	same nash address, at least	For example, Reardeley discloses that "filt is one object of the invention to
	automatically expiring	provide an improved data processing system having two or more levels of data
	automatically explime,	storage in a data storage system. It is still another object to provide a method
Joint Invalidity Contentions & Production of		1 Case No. 6:09-CV-549-LED

Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	of caching data from a lower level of storage on a higher level of storage both as individual records and in whole tracks." <i>Id.</i> at 3:13-18.
	"Storage controller 12 is internally divided into sections corresponding independent power supplies. Two sections are storage clusters 36 and 38 respectively. A third section includes a memory cache 58 Cache 58 provides storage for frequently accessed data and for the buffering functions in order to provide similar response times for cache writes and cache reads." <i>Id.</i> at 5:1-9.
	Furthermore, Beardsley discloses that a "[s]catter index table 80 is used to quickly determine whether data exists in cache or not. A hashing algorithm is processed by a microcomputer to convert a device number and physical address to a scatter index table entry. Hashing functions are well known techniques used to randomly allocate locations in one address space to addresses of a second address space. Those skilled in the art will realize that the usual techniques of hashing chains are used to resolve conflicts. Within the scatter index table are a plurality of indices to track directory entries 82 and record directory entries 86." <i>Id.</i> at $5:65 - 6:8$.
	Interaction of the various data structures is best understood with reference to Figure 5A: <i>Id.</i> at Figure 5A.

2

Asserted Claims From	U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
U.S. Pat. No. 5,893,120	
	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $
Joint Invalidity Contentions & Production of	Case No. 6:09-CV-549-LED

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	 process a hashing algorithm on the direct access storage device and physical address for a track. The hashing algorithm will return an offset into the scatter index table 80 which in turn provides an index to a track directory entry or record directory entry, if present. Return of such an index is taken by step 204 to be a cache hit." <i>Id.</i> at 8:3-10. In the case of a cache miss, the steps of the process responsive to non-occurrence of a cache hit follow the NO branch from step 204. Step 218 is then executed." <i>Id.</i> at 8:44-47. Furthermore, Beardsley discloses that if "at step 230 [] free segments [are] not available for caching the track, the NO branch is followed to step 238 Step
	 238 represents execution of a segment freeing process Upon completion of step 238 segments will be available for allocation to record caching or track caching Execution of the segment freeing process represented by block 238 should rarely be required to make record slots available. A record slot freeing process is executed upon completion of each access to a record. Returning to step 216 and following the YES branch to step 242, the record slot freeing process is initiated. At step 242 the record slot just accessed is stamped as most recently used in the appropriate segment information block on the local most recently use/least recently used list of segment information block. The record slot time stamp is also updated. Next, the segment information block. At step 246, the time stamp of the least recently used record in the segment information block. At step 246, the time stamp 94 [i]f the least recently used record slot time stamp is older than the global time stamp 94 the record slot is freed." <i>Id.</i> at 9:11-39. "IAlt step 314 the segment is deallocated and placed in the free segment list. It
	[A]t step 314 the segment is deallocated and placed in the free segment list. It will be understood by those skilled in the art that the process at block 238 is

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
		laid out for to illustrate freeing of a single segment, but execution can be repeated to free several segments if required." <i>Id.</i> at 10:28-33.
[1b] a record search means utilizing a search key to access the linked list,	[5b] a record search means utilizing a search key to access a linked list of records having the same hash address,	 Beardsley discloses a record search means utilizing a search key to access the linked list. Beardsley also discloses a record search means utilizing a search key to access a linked list of records having the same hash address. For example, Beardsley discloses that "[i]t is one object of the invention to provide an improved data processing system having two or more levels of data storage in a data storage system. It is still another object to provide a method of caching data from a lower level of storage on a higher level of storage both as individual records and in whole tracks." <i>Id.</i> at 3:13-18. "Storage controller 12 is internally divided into sections corresponding independent power supplies. Two sections are storage clusters 36 and 38 respectively. A third section includes a memory cache 58 Cache 58 provides storage for frequently accessed data and for the buffering functions in order to provide similar response times for cache writes and cache reads." <i>Id.</i> at 5:1-9. Furthermore, Beardsley discloses that a "[s]catter index table 80 is used to quickly determine whether data exists in cache or not. A hashing algorithm is processed by a microcomputer to convert a device number and physical address to a scatter index table entry. Hashing functions are well known techniques used to randomly allocate locations in one address space to addresses of a second address space. Those skilled in the art will realize that the usual techniques of hashing chains are used to resolve conflicts. Within the
		the usual techniques of hashing chains are used to resolve conflicts. Within the scatter index table are a plurality of indices to track directory entries 82 and

5

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
		record directory entries 86." <i>Id.</i> at 5:65 – 6:8.
[1c] the record search means including a means for identifying and removing at least some of 	[5c] the record search means including means for identifying and removing at least some expired ones of the records from the linked list of records when the linked list is accessed, and	 Beardsley discloses the record search means including a means for identifying and removing at least some of the expired ones of the records from the linked list when the linked list is accessed. Beardsley also discloses the record search means including means for identifying and removing at least some expired ones of the records from the linked list of records when the linked list is accessed. For example, Beardsley discloses that "[i]t is one object of the invention to provide an improved data processing system having two or more levels of data storage in a data storage system. It is still another object to provide a method of caching data from a lower level of storage on a higher level of storage both as individual records and in whole tracks." <i>Id.</i> at 3:13-18. "Storage controller 12 is internally divided into sections corresponding independent power supplies. Two sections are storage clusters 36 and 38 respectively. A third section includes a memory cache 58,, Cache 58
		 respectively. A third section includes a memory cache 58 Cache 58 provides storage for frequently accessed data and for the buffering functions in order to provide similar response times for cache writes and cache reads." <i>Id.</i> at 5:1-9. Furthermore, Beardsley discloses that a "[s]catter index table 80 is used to quickly determine whether data exists in cache or not. A hashing algorithm is processed by a microcomputer to convert a device number and physical address to a scatter index table entry. Hashing functions are well known techniques used to randomly allocate locations in one address space to addresses of a second address space. Those skilled in the art will realize that

6

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	the usual techniques of hashing chains are used to resolve conflicts. Within the scatter index table are a plurality of indices to track directory entries 82 and record directory entries 86." <i>Id.</i> at $5:65 - 6:8$.
	Interaction of the various data structures is best understood with reference to Figure 5A: <i>Id.</i> at Figure 5A.

7

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	 process a hashing algorithm on the direct access storage device and physical address for a track. The hashing algorithm will return an offset into the scatter index table 80 which in turn provides an index to a track directory entry or record directory entry, if present. Return of such an index is taken by step 204 to be a cache hit." <i>Id.</i> at 8:3-10. In the case of a cache miss, the steps of the process responsive to non-occurrence of a cache hit follow the NO branch from step 204. Step 218 is then executed." <i>Id.</i> at 8:44-47. Furthermore, Beardsley discloses that if "at step 230 [] free segments [are] not available for caching the track, the NO branch is followed to step 238 Step
	 238 represents execution of a segment freeing process Upon completion of step 238 segments will be available for allocation to record caching or track caching Execution of the segment freeing process represented by block 238 should rarely be required to make record slots available. A record slot freeing process is executed upon completion of each access to a record. Returning to step 216 and following the YES branch to step 242, the record slot freeing process is initiated. At step 242 the record slot just accessed is stamped as most recently used in the appropriate segment information block on the local most recently use/least recently used list of segment information block. The record slot time stamp is also updated. Next, the segment information block. At step 246, the time stamp of the least recently used record in the segment information block. At step 246, the time stamp 94 [i]f the least recently used record slot time stamp is older than the global time stamp 94 the record slot is freed." <i>Id.</i> at 9:11-39. "IAlt step 314 the segment is deallocated and placed in the free segment list. It
	[A]t step 314 the segment is deallocated and placed in the free segment list. It will be understood by those skilled in the art that the process at block 238 is

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
		laid out for to illustrate freeing of a single segment, but execution can be repeated to free several segments if required." <i>Id.</i> at 10:28-33.
[1d] means, utilizing the record search means, for accessing the linked list and, at the same time, removing at least some of the expired ones of the records in the linked list.	[5d] mea[n]s, utilizing the record search means, for inserting, retrieving, and deleting records from the system and, at the same time, removing at least some expired ones of the records in the accessed linked list of records.	 Beardsley discloses means, utilizing the record search means, for accessing the linked list and, at the same time, removing at least some of the expired ones of the records in the linked list. Beardsley also discloses utilizing the record search means, for inserting, retrieving, and deleting records from the system and, at the same time, removing at least some expired ones of the records in the accessed linked list of records. For example, Beardsley discloses that "[i]t is one object of the invention to provide an improved data processing system having two or more levels of data storage in a data storage system. It is still another object to provide a method of caching data from a lower level of storage on a higher level of storage both as individual records and in whole tracks." <i>Id.</i> at 3:13-18. "Storage controller 12 is internally divided into sections corresponding independent power supplies. Two sections are storage clusters 36 and 38 respectively. A third section includes a memory cache 58 Cache 58 provides storage for frequently accessed data and for the buffering functions in order to provide similar response times for cache writes and cache reads." <i>Id.</i> at 5:1-9. Furthermore, Beardsley discloses that a "[s]catter index table 80 is used to quickly determine whether data exists in cache or not. A hashing algorithm is
		address to a scatter index table entry. Hashing functions are well known techniques used to randomly allocate locations in one address space to

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	addresses of a second address space. Those skilled in the art will realize that the usual techniques of hashing chains are used to resolve conflicts. Within the scatter index table are a plurality of indices to track directory entries 82 and record directory entries 86." <i>Id.</i> at $5:65 - 6:8$. Interaction of the various data structures is best understood with reference to Figure 5A: <i>Id.</i> at Figure 5A.

Asserted Claims From U.S. Pat. No. 5,893,12	mU.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")0
	process a hashing algorithm on the direct access storage device and physical address for a track. The hashing algorithm will return an offset into the scatter index table 80 which in turn provides an index to a track directory entry or record directory entry, if present. Return of such an index is taken by step 204 to be a cache hit." <i>Id.</i> at 8:3-10. In the case of a cache miss, the steps of the process responsive to non-occurrence of a cache hit follow the NO branch from step 204. Step 218 is then executed." <i>Id.</i> at 8:44-47.
	Furthermore, Beardsley discloses that if "at step 230 [] free segments [are] not available for caching the track, the NO branch is followed to step 238 Step 238 represents execution of a segment freeing process Upon completion of step 238 segments will be available for allocation to record caching or track caching Execution of the segment freeing process represented by block 238 should rarely be required to make record slots available. A record slot freeing process is executed upon completion of each access to a record. Returning to step 216 and following the YES branch to step 242, the record slot freeing process is initiated. At step 242 the record slot just accessed is stamped as most recently used in the appropriate segment information block on the local most recently use/least recently used list of segment information block. The record slot time stamp is also updated. Next, the segment information block is accessed to determine the least recently used record in the segment information block. At step 246, the time stamp of the least recently used record slot time stamp is older than the global time stamp 94 [i]f the least recently used record slot time stamp is older than the global time stamp 94 the record slot is freed." <i>Id.</i> at 9:11-39.
	"[A]t step 314 the segment is deallocated and placed in the free segment list. It will be understood by those skilled in the art that the process at block 238 is

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
		laid out for to illustrate freeing of a single segment, but execution can be repeated to free several segments if required." <i>Id.</i> at 10:28-33.
2. The information storage	6. The information storage	Beardsley discloses an information storage and retrieval system further
and retrieval system	and retrieval system	including means for dynamically determining maximum number for the record
according to claim 1	according to claim 5	search means to remove in the accessed linked list of records.
further including means for	further including means for	
dynamically determining	dynamically determining	The dynamic decision-making process of the system is best understood with
maximum number for the	maximum number for the	reference to Figure 5A: <i>Id</i> . at Figure 5A.
record search means to	record search means to	
remove in the accessed	remove in the accessed	
linked list of records.	linked list of records.	

14

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	ALLOCATE STATE ON CVTCHAN ALLOCATE STATE ALLOCATE STATE ALLOCATE STATE ALLOCATE STATE ALLOCATE STATE ALLOCAT

15

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	For example, When the system confronts a cache "miss," the system follows "the NO branch from step 204, [and] step 218 is executed." <i>Id.</i> at 8:44-47. "The NO branch [from step 218] is followed when track caching has been requested in the define extent. Step 230 is then executed to determine if free segments are available for creation of a track slot. If YES, step 232 is executed to allocate segments from the track slot and to allocate a track slot directory entry and supplementary track directories entries as required If, however, at step 230, free segments were not available for caching the track, the NO branch is followed to step 238 Step 238 represents execution of a segment freeing process as described below in relation to FIG. 6. Upon completion of step 238 segments will be available for allocation to record caching or track caching Execution of the segment freeing process represented by block 238 should rarely be required to make record slots available. A record slot freeing process is initiated. At step 242 the record slot just accessed is stamped as most recently used in the appropriate segment information block on the local most recently used in the appropriate segment information block on the local most record slot time stamp is also updated. Next, the segment information block. At step 246, the time stamp of the least recently used record slot time stamp is older than the global time stamp 94 the record slot is freed." <i>Id.</i> at 9:1-39.
	will be understood by those skilled in the art that the process at block 238 is

Asserted C U.S. Pat. No	laims From 5, 5,893,120	U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
		laid out for to illustrate freeing of a single segment, but execution can be repeated to free several segments if required." <i>Id.</i> at 10:28-33.
		In summary, if free segments are available, the system does not delete or free any allocated segments. If, however, free segments are not available, then the system executes the segment freeing process, which deallocates segments and places them in the free segment list for use in the call. Therefore, the determination of when to delete a segment is dynamically determined by whether a free segment exists.
		Additionally, it would have been obvious to combine Beardsley with Dirks, Thatte, the '663 patent and/or the Opportunistic Garbage Collection Articles to disclose an information storage and retrieval system further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records.
		Dirks discloses the management of memory in a computer system and more particularly to the allocation of address space in a virtual memory system, which dynamically determines how many records to sweep/remove upon each allocation. Disclosure of these claim elements in Dirks is clearly shown in Exhibit B-2, which is hereby incorporated by reference in its entirety.
		As summarized in Dirks,
		each time a VSID is assigned from the free list to a new application or thread, a fixed number of entries in the page table are scanned to determine whether they have become inactive, by checking them against the VSIDs on the recycle list. Each entry which is identified as being inactive is

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	removed from the page table. After all of the entries in the page table have been examined in this manner, the VSIDs in the recycle list can be transferred to the free list, since all of their associated page table entries will have been removed. This approach thereby guarantees that a predetermined number of VSIDs are always available in the free list without requiring a time-consuming scan of the complete page table at once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.
	After [a] new VSID has been allocated, the system checks a flag RFLG to determine whether a recycle sweep is currently in progress (Step 20). If there is no sweep in progress, i.e. RFLG is not equal to one, a determination is made whether a sweep should be initiated. This is done by checking whether the inactive list is full, i.e. whether it contains x entries (Step 22). If the number of entries I on the inactive list is less than x, no further action is taken, and processing control returns to the operating system (Step 24). If, however, the inactive list is full at this time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are transferred to the recycle list, and an index n is reset to 1 (Step 28). The system then sweeps a predetermined number of page table entries PT _i on the page table, to detect whether any of them are inactive, i.e. their associated VSID is on the recycle list (Step 30). The predetermined number of entries that are swept is identified as k , where:
	$k = \frac{\text{total number of page table entries}}{\text{maximum number of active threads}}$ <i>Id.</i> at 8:12-30.
	Dirks discloses that any approach can be employed to determine the number of

Asserted Cl U.S. Pat. No	aims From 5,893,120	U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
		entries to be examined during each step of the sweeping process. <i>Id.</i> at 7:37-40. As stated in Dirks:
		Any other suitable approach can be employed to determine the number of entries to be examined during each step of the sweeping process. In this regard, it is not necessary that the number of examined entries be fixed for each step. Rather, it might vary from one step to the next. The only criterion is that the number of entries examined on each step be such that all entries in the page table are examined in a determinable amount of time or by the occurrence of a certain event, e.g. by the time the list of free VSIDs is empty. <i>Id.</i> at 7:38-46. Thus, Dirks dynamically determines the maximum number of records to sweep/remove by calculating a value <i>k. Id.</i> at 7:15-46, 7:66-8:56.
		As both Beardsley and Dirks relate to deletion of aged records upon the allocation of a new incoming record, one of ordinary skill in the art would have understood how to use Dirks' dynamic decision making process of determining the maximum number of records to sweep/remove in other hash tables implementations such as Beardsley. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining Dirks' deletion decision procedure with Beardsley nothing more than the predictable use of prior art elements according to their established

Joint Invalidity Contentions & Production of Documents

Asserted Claims F U.S. Pat. No. 5,893	romU.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")120
U.S. Pat. No. 5,893	120 functions. By way of further example, one of ordinary skill in the art would have combined Dirks' dynamic determination of the suitable number of entries to examine during each step of the sweeping process with Beardsley and would have seen the benefits of doing so. One possible benefit, for example, is saving the system from performing sometimes time-consuming sweeps.` Alternatively, one of ordinary skill in the art would be motivated to, and would understand how to, combine the system disclosed in Beardsley with the means for dynamically determining maximum number for the record search means to
	remove in the accessed linked list of records disclosed by Thatte. Thatte, discloses a system and method using hash tables and/or linked lists and further discloses means for dynamically determining the maximum number for the record search means to remove in the accessed linked list of records. The disclosure of these claim elements in Thatte is clearly shown in the chart of Thatte, which is hereby incorporated by reference in its entirety.
	Moreover, one of ordinary skill in the art would recognize that these combinations would improve the similar systems and methods in the same way. Additionally, one of ordinary skill in the art would recognize that the result of combining Beardsley with Thatte would be nothing more than the predictable use of prior art elements according to their established functions. The resulting combination would include the capability to determine the maximum number for the record search means to remove.
	Further, one of ordinary skill in the art would be motivated to combine Beardsley with Thatte and recognize the benefits of doing so. For example, the

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	removal of expired records described in Beardsley can be burdensome on the system, adding to the system's load and slowing down the system's processing. One of ordinary skill in the art would recognize that combining Beardsley with the teachings of Thatte would solve this problem by dynamically determining how many records to delete based on, among other things, the system load. Moreover, the '120 patent discloses that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine Beardsley with Thatte. Alternatively, it would also be obvious to combine Beardsleywith the '663 patent. Disclosure of these claim elements in the '663 patent is clearly shown in the chart of the '663 patent, which is hereby incorporated by reference in its entirety. As summarized in the '663 patent: during normal times when the load on the storage system is not excessive, a non-contaminating but slow deletion of records is used. This slow, non-contaminating deletion involves closing the collision-resolution chain of locations by moving a record from a later position in the chain into the position of the record to be deleted. This leaves no deleted record locations in the storage space to slow down future searches. U.S. Patent 4,996,663 to Nemes at 2:24-34 ("The '663 patent").
	In times of neavy use, when deletions must be done rapidly and

Asserted Cla U.S. Pat. No.	ims From 5,893,120	U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
		 no time is available for decontamination, the record is simply marked as "deleted" and left in place. Later non-contaminating probes in the vicinity of such deleted record locations automatically remove the contaminating deleted records by moving records in the chain as described above. <i>Id.</i> at 2:35-41. This hybrid hashing technique has the decided advantage of automatically eliminating contamination caused by the fast-secure deletion procedure when the slower, non-contaminating deletion is used when the load on the system is at lower levels. <i>Id.</i> at 2:42-46. This hybrid deletion is shown in Figure 5.

22

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	FIG.5 HYBRID DELETION

not actually delete records, rather it marks records as deleted. <i>Id.</i> at 8:1-33, Figure 7. These records are then actually deleted by a subsequent slow-non- contaminating delete 53. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B. Thus, the hybrid deletion procedure in the '663 patent dynamically determines a maximum number of records to remove. <i>See id.</i> at 6:40-64, Figure 5. If the fast-secure delete 52 is used, then maximum number of records is zero because records are not deleted they are only marked. <i>Id.</i> at 8:1-33, Figure 7. If the slow-non-contaminating delete 53 is used, then the maximum number of records to remove is all of the contaminated records in the bucket. <i>Id.</i> at 6:65- 7:68, Figures 6, 6A, 6B. As both Beardsley and the '663 patent relate to deletion of records from hash tables using external chaining, one of ordinary skill in the art would understood how to use the '663 patent's dynamic decision on whether to perform a deletion based on a systems load in other hash table implementations such as that described in Beardsley. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states ''[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one.'' The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the '663 patent's deletion decision procedure with Beardsley would be nothing more than the predictable use of prior art elements according to their established functions.	Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
Thus, the hybrid deletion procedure in the '663 patent dynamically determines a maximum number of records to remove. <i>See id.</i> at 6:40-64, Figure 5. If the fast-secure delete 52 is used, then maximum number of records is zero because records are not deleted they are only marked. <i>Id.</i> at 8:1-33, Figure 7. If the slow-non-contaminating delete 53 is used, then the maximum number of records to remove is all of the contaminated records in the bucket. <i>Id.</i> at 6:65- 7:68, Figures 6, 6A, 6B. As both Beardsley and the '663 patent relate to deletion of records from hash tables using external chaining, one of ordinary skill in the art would understood how to use the '663 patent's dynamic decision on whether to perform a deletion based on a systems load in other hash table implementations such as that described in Beardsley. Moreover, one of ordinary skill in the art would reconjze that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recongize that the result of combining the '663 patent's deletion decision procedure with Beardsley would be nothing more than the predictable use of prior art elements according to their established functions.		not actually delete records, rather it marks records as deleted. <i>Id.</i> at 8:1-33, Figure 7. These records are then actually deleted by a subsequent slow-non-contaminating delete 53. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
Drumon of further energies are of ordinary shill in the ort mould have		Thus, the hybrid deletion procedure in the '663 patent dynamically determines a maximum number of records to remove. <i>See id.</i> at 6:40-64, Figure 5. If the fast-secure delete 52 is used, then maximum number of records is zero because records are not deleted they are only marked. <i>Id.</i> at 8:1-33, Figure 7. If the slow-non-contaminating delete 53 is used, then the maximum number of records to remove is all of the contaminated records in the bucket. <i>Id.</i> at 6:65- 7:68, Figures 6, 6A, 6B. As both Beardsley and the '663 patent relate to deletion of records from hash tables using external chaining, one of ordinary skill in the art would understood how to use the '663 patent's dynamic decision on whether to perform a deletion based on a systems load in other hash table implementations such as that described in Beardsley. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the '663 patent's deletion decision procedure with Beardsley would be nothing more than the predictable use of prior art elements according to their established functions.

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	combined the '663 patent's dynamic decision on whether to perform a deletion based on a systems load as taught by the '663 patent and with Beardsley and would have seen the benefits of doing so. One such benefit, for example, is that the system would avoid performing deletions when the system load exceeded a threshold.
	Alternatively, it would also be obvious to combine Beardsley with the Opportunistic Garbage Collection Articles.
	The Opportunistic Garbage Collection Articles disclose a generational based garbage collection which dynamically determines how much garbage to collect. <i>See generally</i> , Paul R. Wilson and Thomas G. Moher, <i>Design of the Opportunistic Garbage Collector</i> , OOPSLA '89 Proceedings, October 1-6, 1989; Paul R. Wilson, <i>Opportunistic Garbage Collection</i> , ACM SIGPLAN Notices, Vol. 23, No. 12, December 1988.
	When a significant pause has been detected, a decision procedure is invoked to decide whether to garbage collect, and how many generations to scavenge. The fuller a generation is, the more likely it is to be scavenged; also, the longer the pause that has been detected, the larger the scope of the garbage collection is likely to be. <i>Design of the Opportunistic Garbage</i> <i>Collector</i> at 32.
	Every time a user-input routine is invoked, a decision routine can decide whether to garbage collect. As long as the decision routine takes no more than a few milliseconds to execute, it should not interfere with responsiveness. Since it is only invoked at these times, it does not incur a continual run-time overhead. <i>Opportunistic Garbage Collection</i> at 100.

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	This decision routine should take several things into account: 1) the volume of data allocated since the last scavenge, 2) how long it has been since the user has had an opportunity to interact, and 3) the height of the stack relative to its average height at reads since the last scavenge. If the product of the allocation and the compute time is high, and if the stack is low, the scavenge favorability measure is high. If it is especially high, a multi-generation scavenge is in order. <i>Id</i> .
	If these heuristics fail and a scavenge is forced instead by the filling of a generation's space, it is likely to happen during a significant compute- bound pausethe one that has just allocated the data that forced the collection. When the opportunistic mechanism fails to find the end of a pause, it may still succeed by default, embedding a scavenge pause within a larger pause. <i>Design of the Opportunistic Garbage Collector</i> at 32.
	As both Beardsley and the Opportunistic Garbage Collection Articles relate to deletion of aged records, one of ordinary skill in the art would have understood how to use the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion based on a system load in other hash table implementations such as Beardsley. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	 combining the Opportunistic Garbage Collection Articles' deletion decision procedure with Beardsley would be nothing more than the predictable use of prior art elements according to their established functions. By way of further example, one of ordinary skill in the art would have combined the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion and how many generations to scavenge as taught by the Opportunistic Garbage Collection Articles and with Beardsley and would have seen the benefits of doing so. One such benefit, for example, is preventing slowdown of the system.
	Additionally, it would have been obvious to one of ordinary skill in the art to modify the system disclosed in Beardsley to dynamically determine the maximum number of expired records to remove in the accessed linked list of records. It is a fundamental concept in computer science and the relevant art that any variable or parameter affecting any aspect of a system can be dynamically determined based on information available to the system. One of ordinary skill in the art would have been motivated to combine the system disclosed in Beardsley with the fundamental concept of dynamically determining the maximum number of expired records to remove in an accessed linked list of records to solve a number of potential problems. For example, the removal of expired records described in Beardsleycan be burdensome on the system, adding to the system's load and slowing down the system's processing. Moreover, the removal could also force an interruption in real- time processing as the processing waits for the removal to complete.

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	system and bound the length of any real-time interruption to prevent delays in processing. Indeed, Nemes concedes that such dynamic determination was obvious when he states in the '120 patent that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15.
	To the extent that dynamically determining a maximum number of expired records is not disclosed by Beardsley in combination with Dirks, Thatte, the '663 Patent, or the Opportunistic Garbage Collection References, it is disclosed by Linux 2.0.1, which describes dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed. It would have been obvious to combine Linux 2.0.1 with Beardsley. For example, both Linux 2.0.1 and Beardsley describe systems and methods for performing data storage and retrieval using known programming techniques to yield a predictable result.
	When invoked, the function rt_cache_add automatically increments an integer variable rt_cache_size. <i>See</i> Linux 2.0.1, route.c at line 1359. When the function rt_cache_add removes an expired record, the function rt_cache_add decrements the variable rt_cache_size. <i>See</i> Linux 2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the number of records in the hash table (i.e., ip_rt_hash_table). Because the function rt_cache_add automatically increments and decrements the variable rt_cache_size is determined dynamically.

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	<pre>Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1. The function rt_garbage_collect_1 loops through each of the linked lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at lines 1122-1138. In this way, the function rt_garbage_collect_1 accesses the linked list. When the function rt_garbage_collect_1 identifies a record that is expired, the function rt_garbage_collect_1 decrements the variable rt_cache_size and frees the record. See Linux 2.0.1, route.c at lines 1128-1135.</pre> Because all records in the linked list can be expired and all records in the hash table can be in the linked list, the variable rt_cache_size can represent a dynamically determined maximum number of expired ones of the records to remove when function rt_garbage_collect_1 accesses the linked list.Furthermore, the function rt_cache_add determines whether the number of records in the hash table exceeds a predetermined threshold RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_cache_add invokes a function rt_garbage_collect. See Linux 2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293. The function rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293. The function rt_garbage_collect invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.
	The function rt_garbage_collect_1 loops through each linked list in

29

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
the h	hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in	in the hash table, the function rt_garbage_collect_1 looks at each
recon-	ord in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
recon-	ord in a linked list, the function rt_garbage_collect_1 determines
whet	other the record's last use time plus the record's expiration factor is later
than	in the current time. See Linux 2.0.1, route.c at line 1122. If the record's last
use t	time plus the record's expiration factor is less than the current time, the
func	ction rt_garbage_collect_1 removes the record from the linked list.
<i>See</i> I	Linux 2.0.1, route.c at lines 1124-1130. The record's expiration factor is
base	ed on a variable expire and the record's reference count. See Linux
2.0.1	1, route.c at line 1122. The variable expire is initially one half of the fixed
time	cout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.
After	er looping through all of the linked lists in this manner, the function
rt	_garbage_collect_1 determines again whether the number of records
in th	the hash table is less than the predetermined threshold
RT_	_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of ite	terms in the hash table is still greater than the predetermined threshold
RT_	_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the v	variable expire and loops through each of the linked lists in the hash
table	e. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_	_garbage_collect_1 can remove additional records from the linked
lists	in the hash table. The function rt_garbage_collect_1 repeats this
proc	pess until the total number of records in the hash table is less than the
pred	letermined threshold RT_CACHE_SIZE_MAX.

Joint Invalidity Contentions & Production of Documents

Asserted C U.S. Pat. No	laims From 5, 5,893,120	U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
		function rt_garbage_collect_1 are "expired" records. That is, the records removed by the function rt_garbage_collect_1 are data items which after a limited time or after the occurrence of some event become obsolete, such that their presence in the storage system is no longer needed or desired. The function rt_cache_add only removes a record from a linked list when the record's last use time plus the fixed timeout value RT_CACHE_TIMEOUT is less than the current time and the record's reference count is zero. <i>See</i> Linux 2.0.1, route.c at line 1369. Thus, the maximum number of records that the
		function rt_cache_add can remove from a given linked list is limited to those records whose reference counts are zero.
		In contrast, the maximum number of records that the function rt_garbage_collect_1 can remove from a given linked list is not limited to those records whose reference counts are zero. <i>See</i> Linux 2.0.1, route.c at line 1122. Rather, the function rt_garbage_collect_1 can remove records whose reference counts are zero and records whose reference counts are greater than zero.
		Consequently, the maximum number of records that the function rt_garbage_collect_1 can remove from a linked list is different than the maximum number of records that the function rt_cache_add can remove from a linked list.
3. A method for storing and retrieving information	7. A method for storing and retrieving information	To the extent the preamble is a limitation, Beardsley discloses a method for storing and retrieving information records using a linked list to store and
records using a linked list	records using a hashing	provide access to the records, at least some of the records automatically

Joint Invalidity Contentions & Production of Documents

Asserted C U.S. Pat. N	Claims From o. 5,893,120	U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
to store and provide access to the records, at least some of the records automatically expiring, the method comprising the steps of:	technique to provide access to the records and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring, the method comprising the steps of:	 expiring. Beardsley also discloses a method for storing and retrieving information records using a hashing technique to provide access to the records and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring. For example, Beardsley discloses that "[i]t is one object of the invention to provide an improved data processing system having two or more levels of data storage in a data storage system. It is still another object to provide a method of caching data from a lower level of storage on a higher level of storage both as individual records and in whole tracks." Beardsley at 3:13-18. "Storage controller 12 is internally divided into sections corresponding independent power supplies. Two sections are storage clusters 36 and 38 respectively. A third section includes a memory cache 58 Cache 58 provides storage for frequently accessed data and for the buffering functions in order to provide similar response times for cache writes and cache reads." <i>Id.</i> at 5:1-9. Furthermore, Beardsley discloses that a "[s]catter index table 80 is used to quickly determine whether data exists in cache or not. A hashing algorithm is processed by a microcomputer to convert a device number and physical address to a scatter index table entry. Hashing functions are well known techniques used to randomly allocate locations in one address space to addresses of a second address space. Those skilled in the art will realize that the usual techniques of hashing chains are used to resolve conflicts. Within the scatter index table are a plurality of indices to track directory entries 82 and record directory entries 86." <i>Id.</i> at 5:65 – 6:8.

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	Interaction of the various data structures is best understood with reference to Figure 5A: <i>Id.</i> at Figure 5A.

33

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	 process a hashing algorithm on the direct access storage device and physical address for a track. The hashing algorithm will return an offset into the scatter index table 80 which in turn provides an index to a track directory entry or record directory entry, if present. Return of such an index is taken by step 204 to be a cache hit." <i>Id.</i> at 8:3-10. In the case of a cache miss, the steps of the process responsive to non-occurrence of a cache hit follow the NO branch from step 204. Step 218 is then executed." <i>Id.</i> at 8:44-47. Furthermore, Beardsley discloses that if "at step 230 [] free segments [are] not available for caching the track, the NO branch is followed to step 238 Step 238 represents execution of a segment freeing process Upon completion of step 238 segments will be available for allocation to record caching or track caching Execution of the segment freeing process represented by block 238 should rarely be required to make record slots available. A record slot freeing process is executed upon completion of each access to a record. Returning to step 216 and following the YES branch to step 242, the record slot freeing process is initiated. At step 242 the record slot just accessed is stamped as most recently used in the appropriate segment information block on the local most recently used in the appropriate segment information block on the local most recently used to determine the least recently used record in the regreative.
	used record slot is compared with the global time stamp 94 [i]f the least recently used record slot time stamp is older than the global time stamp 94 the record slot is freed." <i>Id.</i> at 9:11-39.
	"[A]t step 314 the segment is deallocated and placed in the free segment list. It will be understood by those skilled in the art that the process at block 238 is

Joint Invalidity Contentions & Production of Documents

Asserted C U.S. Pat. N	Claims From 0. 5,893,120	U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
		laid out for to illustrate freeing of a single segment, but execution can be repeated to free several segments if required." <i>Id.</i> at 10:28-33.
[3a] accessing the linked list of records,	[7a] accessing a linked list of records having same hash address,	 Beardsley discloses accessing a linked list of records. Beardsley also discloses accessing a linked list of records having same hash address. For example, Beardsley discloses that "[i]t is one object of the invention to provide an improved data processing system having two or more levels of data storage in a data storage system. It is still another object to provide a method of caching data from a lower level of storage on a higher level of storage both as individual records and in whole tracks." <i>Id.</i> at 3:13-18. "Storage controller 12 is internally divided into sections corresponding independent power supplies. Two sections are storage clusters 36 and 38 respectively. A third section includes a memory cache 58 Cache 58 provides storage for frequently accessed data and for the buffering functions in order to provide similar response times for cache writes and cache reads." <i>Id.</i> at 5:1-9. Furthermore, Beardsley discloses that a "[s]catter index table 80 is used to quickly determine whether data exists in cache or not. A hashing algorithm is processed by a microcomputer to convert a device number and physical address to a scatter index table entry. Hashing functions are well known techniques used to randomly allocate locations in one address space to addresses of a second address space. Those skilled in the art will realize that the usual techniques of hashing chains are used to resolve conflicts. Within the scatter index table are a plurality of indices to track directory entries 82 and
		at 5:1-9. Furthermore, Beardsley discloses that a "[s]catter index table 80 is used to quickly determine whether data exists in cache or not. A hashing algorithm is processed by a microcomputer to convert a device number and physical address to a scatter index table entry. Hashing functions are well known techniques used to randomly allocate locations in one address space to addresses of a second address space. Those skilled in the art will realize that the usual techniques of hashing chains are used to resolve conflicts. Within the scatter index table are a plurality of indices to track directory entries 82 and record directory entries 86." <i>Id.</i> at 5:65 – 6:8.

Joint Invalidity Contentions & Production of Documents
Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
[3b] identifying at least some of the automatically expired ones of the records,	[7b] identifying at least some of the automatically expired ones of the records,	Beardsley discloses identifying at least some of the automatically expired ones of the records.
and		For example, Beardsley discloses that "[i]t is one object of the invention to
		provide an improved data processing system having two or more levels of data storage in a data storage system. It is still another object to provide a method of caching data from a lower level of storage on a higher level of storage both as individual records and in whole tracks." <i>Id.</i> at 3:13-18.
		"Storage controller 12 is internally divided into sections corresponding independent power supplies. Two sections are storage clusters 36 and 38 respectively. A third section includes a memory cache 58 Cache 58 provides storage for frequently accessed data and for the buffering functions in order to provide similar response times for cache writes and cache reads." <i>Id.</i> at 5:1-9.
		Furthermore, Beardsley discloses that a "[s]catter index table 80 is used to quickly determine whether data exists in cache or not. A hashing algorithm is processed by a microcomputer to convert a device number and physical address to a scatter index table entry. Hashing functions are well known techniques used to randomly allocate locations in one address space to addresses of a second address space. Those skilled in the art will realize that the usual techniques of hashing chains are used to resolve conflicts. Within the scatter index table are a plurality of indices to track directory entries 82 and record directory entries 86." <i>Id.</i> at $5:65 - 6:8$.
		Interaction of the various data structures is best understood with reference to

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	Figure SA: <i>Id.</i> at Figure SA.

38

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
		"To determine presence of a record or track in cache, step 202 is executed to process a hashing algorithm on the direct access storage device and physical address for a track. The hashing algorithm will return an offset into the scatter index table 80 which in turn provides an index to a track directory entry or record directory entry, if present. Return of such an index is taken by step 204 to be a cache hit." <i>Id.</i> at 8:3-10. In the case of a cache miss, the steps of the process responsive to non-occurrence of a cache hit follow the NO branch from step 204. Step 218 is then executed." <i>Id.</i> at 8:44-47.
		Furthermore, Beardsley discloses that if "at step 230 [] free segments [are] not available for caching the track, the NO branch is followed to step 238 Step 238 represents execution of a segment freeing process Upon completion of step 238 segments will be available for allocation to record caching or track caching Execution of the segment freeing process represented by block 238 should rarely be required to make record slots available. A record slot freeing process is executed upon completion of each access to a record. Returning to step 216 and following the YES branch to step 242, the record slot freeing process is initiated. At step 242 the record slot just accessed is stamped as most recently used in the appropriate segment information block on the local most recently use/least recently used list of segment information block. The record slot time stamp is also updated. Next, the segment information block is accessed to determine the least recently used record in the segment information block. At step 246, the time stamp of the least recently used record slot is compared with the global time stamp 94 [i]f the least recently used record slot time stamp is older than the global time stamp 94 the record slot is freed." <i>Id.</i> at 9:11-39.

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
		will be understood by those skilled in the art that the process at block 238 is laid out for to illustrate freeing of a single segment, but execution can be repeated to free several segments if required." <i>Id.</i> at 10:28-33.
[3c] removing at least some of the automatically expired records from the linked list when the linked list is accessed.	[7c] removing at least some of the automatically expired records from the linked list when the linked list is accessed, and	 Beardsley discloses removing at least some of the automatically expired records from the linked list when the linked list is accessed. For example, Beardsley discloses that "[i]t is one object of the invention to provide an improved data processing system having two or more levels of data storage in a data storage system. It is still another object to provide a method of caching data from a lower level of storage on a higher level of storage both as individual records and in whole tracks." <i>Id.</i> at 3:13-18. "Storage controller 12 is internally divided into sections corresponding independent power supplies. Two sections are storage clusters 36 and 38 respectively. A third section includes a memory cache 58 Cache 58 provides storage for frequently accessed data and for the buffering functions in order to provide similar response times for cache writes and cache reads." <i>Id.</i> at 5:1-9. Furthermore, Beardsley discloses that a "[s]catter index table 80 is used to quickly determine whether data exists in cache or not. A hashing algorithm is processed by a microcomputer to convert a device number and physical address to a scatter index table entry. Hashing functions are well known techniques used to randomly allocate locations in one address space to address space. Those skilled in the art will realize that the usual techniques of hashing chains are used to resolve conflicts. Within the scatter index table are a plurality of indices to track directory entries 82 and

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	record directory entries 86." <i>Id.</i> at 5:65 – 6:8. Interaction of the various data structures is best understood with reference to Figure 5A: <i>Id.</i> at Figure 5A.

41

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	²⁰⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰
	To determine presence of a record of track in cache, step 202 is executed to

Joint Invalidity Contentions & Production of Documents

42

Asserted Claims U.S. Pat. No. 5,89	U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley") 20
	 process a hashing algorithm on the direct access storage device and physical address for a track. The hashing algorithm will return an offset into the scatter index table 80 which in turn provides an index to a track directory entry or record directory entry, if present. Return of such an index is taken by step 204 to be a cache hit." <i>Id.</i> at 8:3-10. In the case of a cache miss, the steps of the process responsive to non-occurrence of a cache hit follow the NO branch from step 204. Step 218 is then executed." <i>Id.</i> at 8:44-47. Furthermore, Beardsley discloses that if "at step 230 [] free segments [are] not
	available for caching the track, the NO branch is followed to step 238 Step 238 represents execution of a segment freeing process Upon completion of step 238 segments will be available for allocation to record caching or track caching Execution of the segment freeing process represented by block 238 should rarely be required to make record slots available. A record slot freeing process is executed upon completion of each access to a record. Returning to step 216 and following the YES branch to step 242, the record slot freeing process is initiated. At step 242 the record slot just accessed is stamped as most recently used in the appropriate segment information block on the local most recently use/least recently used list of segment information block. The record slot time stamp is also updated. Next, the segment information block. At step 246, the time stamp of the least recently used record slot is compared with the global time stamp 94 [i]f the least recently used record slot time stamp is older than the global time stamp 94 the record slot is free." <i>Id.</i> at 9:11-39.
	"[A]t step 314 the segment is deallocated and placed in the free segment list. It will be understood by those skilled in the art that the process at block 238 is

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	laid out for to illustrate freeing of a single segment, but execution can be repeated to free several segments if required " <i>Id</i> at 10:28-33
[7d] inserting, retrieving or deleting one of the records from the system following the step of	Beardsley discloses inserting, retrieving or deleting one of the records from the system following the step of removing.
removing.	provide an improved data processing system having two or more levels of data storage in a data storage system. It is still another object to provide a method of caching data from a lower level of storage on a higher level of storage both as individual records and in whole tracks." <i>Id.</i> at 3:13-18.
	"Storage controller 12 is internally divided into sections corresponding independent power supplies. Two sections are storage clusters 36 and 38 respectively. A third section includes a memory cache 58 Cache 58 provides storage for frequently accessed data and for the buffering functions in order to provide similar response times for cache writes and cache reads." <i>Id.</i> at 5:1-9.
	Furthermore, Beardsley discloses that a "[s]catter index table 80 is used to quickly determine whether data exists in cache or not. A hashing algorithm is processed by a microcomputer to convert a device number and physical address to a scatter index table entry. Hashing functions are well known techniques used to randomly allocate locations in one address space to addresses of a second address space. Those skilled in the art will realize that the usual techniques of hashing chains are used to resolve conflicts. Within the scatter index table are a plurality of indices to track directory entries 82 and record directory entries 86." <i>Id.</i> at $5:65 - 6:8$.

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	Interaction of the various data structures is best understood with reference to
	Figure 5A: <i>Id.</i> at Figure 5A.
	ENTER ON CCW CHAIN 2027 2027 2307 2307 2307 2307 2307 2307
	EXECUTE HASHING ALGORITHN ON TRACK I.D. INTO SIT
	204 218 WARK TDE AS WOST RECENTLY USED (WRU) CACHE HIT? CACHE HIT? CACHE HIT? DEFINE EXTENT ASKS RECORD CACHING? DONE
	206 YES 220 YES 238
	208 208 208 208 208 208 208 208
	READ POINTER IN (V) ISH TO (V) TIB AND ACCESS ADDRESS OF RECORD 222 IS RECORD SLOT AVAILABLE FROM FREE LIST? 210 RECORD SLOT REQUESTED?
	ADDRESS VALID?
	YES ALLOCATE RECORD SLOT AND UPDATE VIIB AND SIB IS FREE SEG WENT AVAILABLE ?
	Fig. 5A

45

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
		"To determine presence of a record or track in cache, step 202 is executed to process a hashing algorithm on the direct access storage device and physical address for a track. The hashing algorithm will return an offset into the scatter index table 80 which in turn provides an index to a track directory entry or record directory entry, if present. Return of such an index is taken by step 204 to be a cache hit." <i>Id.</i> at 8:3-10. In the case of a cache miss, the steps of the process responsive to non-occurrence of a cache hit follow the NO branch from step 204. Step 218 is then executed." <i>Id.</i> at 8:44-47. Furthermore, Beardsley discloses that if "at step 230 [] free segments [are] not available for caching the track, the NO branch is followed to step 238 Step 238 represents execution of a segment freeing process Upon completion of step 238 segments will be available for allocation to record caching or track caching Execution of the segment freeing process to a record. Returning to step 216 and following the YES branch to step 242, the record slot freeing process is initiated. At step 242 the record slot just accessed is stamped as most recently used in the appropriate segment information block on the local most recently use/least recently used list of segment information block is accessed to determine the least recently used record slot is compared with the global time stamp of the least recently used record slot is compared with the global time stamp 94 [i]f the least recently used record slot is freed." <i>Id.</i> at 9:11-39.

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
		"[A]t step 314 the segment is deallocated and placed in the free segment list. It will be understood by those skilled in the art that the process at block 238 is laid out for to illustrate freeing of a single segment, but execution can be repeated to free several segments if required." <i>Id.</i> at 10:28-33.
4. The method according to	8. The method according	Beardsley discloses dynamically determining maximum number of expired
claim 3 further including	to claim 7 further including	ones of the records to remove when the linked list is accessed.
the step of dynamically	the step of dynamically	
determining maximum	determining maximum	The dynamic decision-making process of the system is best understood with
number of expired ones of	number of expired ones of	reference to Figure 5A: <i>Id.</i> at Figure 5A.
the records to remove	the records to remove	
when the linked list is	when the linked list is	
accessed.	accessed.	

47

Asserted Claims From U.S. Pat. No. 5,893,120	u.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	Fig. 5A

Joint Invalidity Contentions & Production of Documents

48

Asserted Claims U.S. Pat. No. 5,89	From 3,120	U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
		"the NO branch from step 204, [and] step 218 is executed the NO branch [from step 218] is followed when track caching has been requested in the define extent. Step 230 is then executed to determine if free segments are available for creation of a track slot. If YES, step 232 is executed to allocate segments from the track slot and to allocate a track slot directory entry and supplementary track directories entries as required If, however, at step 230, free segments were not available for caching the track, the NO branch is followed to step 238 Step 238 represents execution of a segment freeing process as described below in relation to FIG. 6. Upon completion of step 238 segments will be available for allocation to record caching or track caching . Execution of the segment freeing process represented by block 238 should rarely be required to make record slots available. A record slot freeing process is executed upon completion of each access to a record. Returning to step 216 and following the YES branch to step 242, the record slot freeing process is initiated. At step 242 the record slot just accessed is stamped as most recently used in the appropriate segment information block. The record slot time stamp is also updated. Next, the segment information block is accessed to determine the least recently used record in the segment information block. At step 246, the time stamp of the least recently used record slot is compared with the global time stamp 94 [i]f the least recently used record slot time stamp is older than the global time stamp 94 the record slot is freed." <i>Id.</i> at 9:1-39. "[A]t step 314 the segment is deallocated and placed in the free segment list. It will be understood by those skilled in the art that the process at block 238 is laid out for to illustrate freeing of a single segment, but execution can be repeated to free several segments if required." <i>Id.</i> at 10:28-33.

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	In summary, if free segments are available, the system does not delete or free any allocated segments. If, however, free segments are not available, then the system executes the segment freeing process, which deallocates segments and places them in the free segment list for use in the call. Therefore, the determination of when to delete a segment is dynamically determined by whether a free segment exists.
	Additionally, it would have been obvious to combine Beardsley with Dirks, Thatte, the '663 patent, and/or the Opportunistic Garbage Collection Articles to disclose dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed.
	Dirks discloses the management of memory in a computer system and more particularly to the allocation of address space in a virtual memory system, which dynamically determines how many records to sweep/remove upon each allocation. Disclosure of these claim elements in Dirks is clearly shown in the chart of Dirks, which is hereby incorporated by reference in its entirety.
	As summarized in Dirks,
	each time a VSID is assigned from the free list to a new application or thread, a fixed number of entries in the page table are scanned to determine whether they have become inactive, by checking them against the VSIDs on the recycle list. Each entry which is identified as being inactive is removed from the page table. After all of the entries in the page table have been examined in this manner, the VSIDs in the recycle list can be transferred to the free list, since all of their associated page table entries will have been removed. This approach thereby guarantees that a

50

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	predetermined number of VSIDs are always available in the free list without requiring a time-consuming scan of the complete page table at once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.
	After [a] new VSID has been allocated, the system checks a flag RFLG to determine whether a recycle sweep is currently in progress (Step 20). If there is no sweep in progress, i.e. RFLG is not equal to one, a determination is made whether a sweep should be initiated. This is done by checking whether the inactive list is full, i.e. whether it contains x entries (Step 22). If the number of entries I on the inactive list is less than x, no further action is taken, and processing control returns to the operating system (Step 24). If, however, the inactive list is full at this time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are transferred to the recycle list, and an index n is reset to 1 (Step 28). The system then sweeps a predetermined number of page table entries PT _i on the page table, to detect whether any of them are inactive, i.e. their associated VSID is on the recycle list (Step 30). The predetermined number of entries that are swept is identified as k, where: $k = \frac{\text{total number of page table entries}}{\text{maximum number of active threads}}$
	Dirks discloses that any approach can be employed to determine the number of entries to be examined during each step of the sweeping process. <i>Id.</i> at 7:37-40. As stated in Dirks:
	Any other suitable approach can be employed to determine the number of

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	 entries to be examined during each step of the sweeping process. In this regard, it is not necessary that the number of examined entries be fixed for each step. Rather, it might vary from one step to the next. The only criterion is that the number of entries examined on each step be such that all entries in the page table are examined in a determinable amount of time or by the occurrence of a certain event, e.g. by the time the list of free VSIDs is empty. <i>Id.</i> at 7:38-46. Thus, Dirks dynamically determines the maximum number of records to sweep/remove by calculating a value <i>k. Id.</i> at 7:15-46, 7:66-8:56. As both Beardsley and Dirks relate to deletion of aged records upon the allocation of a new incoming record, one of ordinary skill in the art would have understood how to use Dirks' dynamic decision making process of determining the maximum number of records to sweep/remove in other hash tables implementations such as that described Beardsley. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining Dirks' deletion decision procedure with Beardsley would be nothing more than the predictable use of prior art elements according to their established functions. By way of further example, one of ordinary skill in the art would have combined Dirks' dynamic determination of the suitable number of antries to their established functions.
	combined Dirks' dynamic determination of the suitable number of entries to

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	examine during each step of the sweeping process with Beardsley and would have seen the benefits of doing so. One possible benefit, for example, is saving the system from performing sometimes time-consuming sweeps.
	Alternatively, one of ordinary skill in the art would be motivated to, and would understand how to, combine the system disclosed in Beardsley with the means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records disclosed by Thatte. Thatte, discloses a system and method using hash tables and/or linked lists and further discloses means for dynamically determining the maximum number for the record search means to remove in the accessed linked list of records. The disclosure of these claim elements in Thatte is clearly shown in the chart of Thatte, which is hereby incorporated by reference in its entirety.
	Moreover, one of ordinary skill in the art would recognize that these combinations would improve the similar systems and methods in the same way. Additionally, one of ordinary skill in the art would recognize that the result of combining Beardsley with Thatte would be nothing more than the predictable use of prior art elements according to their established functions. The resulting combination would include the capability to determine the maximum number for the record search means to remove.
	Further, one of ordinary skill in the art would be motivated to combine Beardsley with Thatte and recognized the benefits of doing so. For example, the removal of expired records described in Beardsleycan be burdensome on the system, adding to the system's load and slowing down the system's processing. One of ordinary skill in the art would recognize that combining Beardsley with the teachings of Thatte would solve this problem by

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	dynamically determining how many records to delete based on, among other things, the system load. Moreover, the '120 patent discloses that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine Beardsley with Thatte.
	Alternatively, it would also be obvious to combine Beardsley with the '663 patent. Disclosure of these claim elements in the '663 patent is clearly shown in the chart of the '663 patent, which is hereby incorporated by reference in its entirety. As summarized in the '663 patent:
	during normal times when the load on the storage system is not excessive, a non-contaminating but slow deletion of records is used. This slow, non-contaminating deletion involves closing the collision-resolution chain of locations by moving a record from a later position in the chain into the position of the record to be deleted. This leaves no deleted record locations in the storage space to slow down future searches. U.S. Patent 4,996,663 to Nemes at 2:24-34 ("The '663 patent").
	In times of heavy use, when deletions must be done rapidly and no time is available for decontamination, the record is simply marked as "deleted" and left in place. Later non-contaminating probes in the vicinity of such deleted record locations automatically remove the contaminating deleted records by

54

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	 moving records in the chain as described above. <i>Id.</i> at 2:35-41. This hybrid hashing technique has the decided advantage of automatically eliminating contamination caused by the fast-secure deletion procedure when the slower, non-contaminating deletion is used when the load on the system is at lower levels. <i>Id.</i> at 2:42-46. This hybrid deletion is shown in Figure 5.

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	FIG.5 HYBRID DELETION

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	not actually delete records, rather it marks records as deleted. <i>Id.</i> at 8:1-33, Figure 7. These records are then actually deleted by a subsequent slow-non-contaminating delete 53. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
	Thus, the hybrid deletion procedure in the '663 patent dynamically determines a maximum number of records to remove. <i>See id.</i> at 6:40-64, Figure 5. If the fast-secure delete 52 is used, then maximum number of records is zero because records are not deleted they are only marked. <i>Id.</i> at 8:1-33, Figure 7. If the slow-non-contaminating delete 53 is used, then the maximum number of records to remove is all of the contaminated records in the bucket. <i>Id.</i> at 6:65- 7:68, Figures 6, 6A, 6B.
	As both Beardsley and the '663 patent relate to deletion of records from hash tables using external chaining, one of ordinary skill in the art would understood how to use the '663 patent's dynamic decision on whether to perform a deletion based on a systems load in other hash table implementations such as Beardsley. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the '663 patent's deletion decision procedure with Beardsley would be nothing more than the predictable use of prior art elements according to their established functions.

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	By way of further example, one of ordinary skill in the art would have combined the '663 patent's dynamic decision on whether to perform a deletion based on a systems load as taught by the '663 patent and with Beardsley and would have seen the benefits of doing so. One such benefit, for example, is that the system would avoid performing deletions when the system load exceeded a threshold.
	Alternatively, it would also be obvious to combine Beardsley with the Opportunistic Garbage Collection Articles.
	The Opportunistic Garbage Collection Articles disclose a generational based garbage collection which dynamically determines how much garbage to collect. <i>See generally</i> , Paul R. Wilson and Thomas G. Moher, <i>Design of the Opportunistic Garbage Collector</i> , OOPSLA '89 Proceedings, October 1-6, 1989; Paul R. Wilson, <i>Opportunistic Garbage Collection</i> , ACM SIGPLAN Notices, Vol. 23, No. 12, December 1988.
	When a significant pause has been detected, a decision procedure is invoked to decide whether to garbage collect, and how many generations to scavenge. The fuller a generation is, the more likely it is to be scavenged; also, the longer the pause that has been detected, the larger the scope of the garbage collection is likely to be. <i>Design of the Opportunistic Garbage</i> <i>Collector</i> at 32.
	Every time a user-input routine is invoked, a decision routine can decide whether to garbage collect. As long as the decision routine takes no more than a few milliseconds to execute, it should not interfere with responsiveness. Since it is only invoked at these times, it does not incur a

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	continual run-time overhead. <i>Opportunistic Garbage Collection</i> at 100. This decision routine should take several things into account: 1) the volume of data allocated since the last scavenge, 2) how long it has been since the user has had an opportunity to interact, and 3) the height of the stack relative to its average height at reads since the last scavenge. If the product of the allocation and the compute time is high, and if the stack is low, the scavenge favorability measure is high. If it is especially high, a multi-generation scavenge is in order. <i>Id.</i>
	If these heuristics fail and a scavenge is forced instead by the filling of a generation's space, it is likely to happen during a significant compute- bound pausethe one that has just allocated the data that forced the collection. When the opportunistic mechanism fails to find the end of a pause, it may still succeed by default, embedding a scavenge pause within a larger pause. <i>Design of the Opportunistic Garbage Collector</i> at 32.
	As both Beardsley and the Opportunistic Garbage Collection Articles relate to deletion of aged records, one of ordinary skill in the art would have understood how to use the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion based on a system load in other hash table implementations such as Beardsley. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15.

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	Additionally, one of ordinary skill in the art would recognize that the result of combining the Opportunistic Garbage Collection Articles' deletion decision procedure with Beardsley would be nothing more than the predictable use of prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have combined the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion and how many generations to scavenge as taught by the Opportunistic Garbage Collection Articles and with Beardsley and would have seen the benefits of doing so. One such benefit, for example, is that the system would only perform deletions when the system was not already too overloaded, thus preventing slowdown of the system.
	Additionally, it would have been obvious to one of ordinary skill in the art to modify the system disclosed in Beardsley to dynamically determine the maximum number of expired records to remove in the accessed linked list of records. It is a fundamental concept in computer science and the relevant art that any variable or parameter affecting any aspect of a system can be dynamically determined based on information available to the system. One of ordinary skill in the art would have been motivated to combine the system disclosed in Beardsley with the fundamental concept of dynamically determining the maximum number of expired records to remove in an accessed linked list of records to solve a number of potential problems. For example, the removal of expired records described in Beardsley can be burdensome on the system, adding to the system's load and slowing down the system's processing. Moreover, the removal could also force an interruption in real- time processing as the processing waits for the removal to complete.

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	One of ordinary skill in the art would have known that dynamically determining the maximum number to remove would limit the burden on the system and bound the length of any real-time interruption to prevent delays in processing. Indeed, Nemes concedes that such dynamic determination was obvious when he states in the '120 patent that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. To the extent that dynamically determining a maximum number of expired records is not disclosed by Beardsley in combination with Dirks, Thatte, the '663 Patent, or the Opportunistic Garbage Collection References, it is disclosed by Linux 2.0.1, which describes dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed. It would have been obvious to combine Linux 2.0.1 with Beardsley. For example, both Linux 2.0.1 and Beardsley describe systems and methods for performing data storage and retrieval using known programming techniques to yield a predictable result.
	When invoked, the function rt_cache_add automatically increments an integer variable rt_cache_size. <i>See</i> Linux 2.0.1, route.c at line 1359. When the function rt_cache_add removes an expired record, the function rt_cache_add decrements the variable rt_cache_size. <i>See</i> Linux 2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the number of records in the hash table (i.e., ip_rt_hash_table). Because the function rt_cache_add automatically increments and decrements the

61

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	variable rt_cache_size, the variable rt_cache_size is determined dynamically.
	Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1. The function rt_garbage_collect_1 loops through each of the linked lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at lines 1122-1138. In this way, the function rt_garbage_collect_1 accesses the linked list. When the function rt_garbage_collect_1 identifies a record that is expired, the function rt_garbage_collect_1 decrements the variable rt_cache_size and frees the record. See Linux 2.0.1, route.c at lines 1128-1135.
	Because all records in the linked list can be expired and all records in the hash table can be in the linked list, the variable rt_cache_size can represent a dynamically determined maximum number of expired ones of the records to remove when function rt_garbage_collect_1 accesses the linked list.
	Furthermore, the function rt_cache_add determines whether the number of records in the hash table exceeds a predetermined threshold RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_cache_add invokes a function rt_garbage_collect. <i>See</i> Linux 2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect invokes a function rt_garbage_collect_1. <i>See</i> Linux 2.0.1, route.c at line 1293. The function rt_garbage_collect invokes a function rt_garbage_collect_1. <i>See</i> Linux 2.0.1, route.c at line 1293. The function rt_garbage_collect invokes a function rt_garbage_collect_1. <i>See</i> Linux 2.0.1, route.c at line 1293.

62

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	The function rt_garbage_collect_1 loops through each linked list in the hash table. <i>See</i> Linux 2.0.1, route.c at lines 1116-1132. For each linked list in the hash table, the function rt_garbage_collect_1 looks at each record in the linked list. <i>See</i> Linux 2.0.1, route.c at lines 1120-1131. For each record in a linked list, the function rt_garbage_collect_1 determines whether the record's last use time plus the record's expiration factor is later than the current time. <i>See</i> Linux 2.0.1, route.c at line 1122. If the record's last use time plus the record's expiration factor is less than the current time, the function rt_garbage_collect_1 removes the record's expiration factor is based on a variable expire and the record's reference count. <i>See</i> Linux 2.0.1, route.c at lines 1124-1130. The record's expiration factor is based on a variable expire and the record's reference count. <i>See</i> Linux 2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed timeout value RT_CACHE_TIMEOUT. <i>See</i> Linux 2.0.1, route.c at line 1110. After looping through all of the linked lists in this manner, the function rt_garbage_collect_1 determines again whether the number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX. <i>See</i> Linux 2.0.1, route.c at line 1133. If the number of items in the hash table is still greater than the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves the variable expire and loops through each of the linked lists in the hash table. <i>See</i> Linux 2.0.1, route.c at line 1135. In this way, the function rt_garbage_collect_1 can remove additional records from the linked lists in the hash table. The function rt_garbage_collect_1 repeats this process until the total number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX.

Joint Invalidity Contentions & Production of Documents

63

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	Under Bedrock's proposed claim constructions, the records removed by the function rt_garbage_collect_1 are "expired" records. That is, the records removed by the function rt_garbage_collect_1 are data items which after a limited time or after the occurrence of some event become obsolete, such that their presence in the storage system is no longer needed or desired. The function rt_cache_add only removes a record from a linked list when the record's last use time plus the fixed timeout value RT_CACHE_TIMEOUT is less than the current time and the record's reference count is zero. <i>See</i> Linux 2.0.1, route.c at line 1369. Thus, the maximum number of records that the function rt_cache_add can remove from a given linked list is limited to those records whose reference counts are zero. In contrast, the maximum number of records that the function rt_garbage_collect_1 can remove from a given linked list is not limited to those records whose reference counts are zero. <i>See</i> Linux 2.0.1, route.c at line 1122. Rather, the function rt_garbage_collect_1 can remove from a given linked list is not limited to those reference counts are zero and records whose reference counts are zero. <i>See</i> Linux 2.0.1, route.c at line 1122. Rather, the function rt_garbage_collect_1 can remove from a given linked list is not limited to those reference counts are zero and records whose reference counts are zero. See Linux 2.0.1, route.c at line 1122. Rather, the function rt_garbage_collect_1 can remove from a linked list is different than the maximum number of records that the function rt_garbage_collect_1 can remove from a linked list is different than the maximum number of records that the function rt_cache_add can remove from a linked list.

64

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
1. An information storage and retrieval system, the system comprising:	5. An information storage and retrieval system, the system comprising:	To the extent the preamble is a limitation, Bishop discloses an information storage and retrieval system.
		For example, Bishop discloses that in an "aspect of the invention, a portion of the computer's memory is set aside for a primary linker cache and a secondary linker image cache. Linker images, generated while loading programs for execution are stored in the primary and secondary linker caches. Each linker image in the primary linker cache has strong object references to objects included in corresponding ones of the loaded programs, and each linker image in the secondary linker cache has weak object references to objects included in corresponding ones of the loaded programs." <i>Bishop</i> , "System and Method for Distributed Object Resource Management" U.S. Patent No. 5,765,174 (issued Jun. 9, 1998) at 2:9-18.
[1a] a linked list to store and provide access to records stored in a memory of the system, at least some of the records automatically expiring, [5a] a hashing means to provide access to records stored in a memory of the system and using an external chaining technique to store the records with same hash address, at least	Bishop discloses a linked list to store and provide access to records stored in a memory of the system, at least some of the records automatically expiring. Bishop also discloses a hashing means to provide access to records stored in a memory of the system and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring.	
	some of the records automatically expiring,	For example, Bishop discloses that in an "aspect of the invention, a portion of the computer's memory is set aside for a primary linker cache and a secondary linker image cache. Linker images, generated while loading programs for execution are stored in the primary and secondary linker caches. Each linker image in the primary linker cache has strong object references to objects included in corresponding ones of the loaded programs, and each linker image in the secondary linker cache has weak object references to objects included in

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	 corresponding ones of the loaded programs." <i>Id.</i> Furthermore, Bishop discloses that "[t]he linker cache 170 has a limited capacity, typically sufficient to hold references to about fifty or so linker images 160. The linker 152 maintains a hash table 171 and a list 172 of the cached linker images in "least recently used" order (i.e., each time a linker image is used, it is moved to the head of the list). The hash table 171 is a conventional hash table used to quickly locate items in the LRU list 172." <i>Id.</i> at 5:29-44. "[I]n the preferred embodiment the linker cache 170 of FIG. 2 is replaced with a smaller primary linker cache 220 and an expanded secondary linker cache 222. The primary linker cache 220 includes a hash table 224 and an LRU list 226 that stores strong object references to the least recently used linker images 160, while the secondary linker cache 222 includes a hash table 228 and an LRU list 230 that stores strong object references to the linker images 160 least recently used after the linker images referenced by the primary linker cache 220." <i>Id.</i> at 7:61-67 – 8:1-3. "When the linker cache is full, and another linker image needs to be generated in response to a load program command, the reference in the LRU list 172 to the least recently used linker image is deleted and the resulting space is used to store a reference to a linker image for the newly loaded program. Deletion of an object reference in the LRU list 172 enables deletion of the corresponding linker image 160 when all user program domains also relinquish their
	Furthermore, Bishop inherently discloses that cached linker images are stored

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	in a linked list, "the linker 152 maintains a hash table 171 and a list 172 of the cached linker images in "least recently used" order The hash table 171 is a <i>conventional hash table</i> used to quickly locate items in the LRU list." <i>Id.</i> at 5:31-35 (emphasis added). Because conventional hash tables need a system by which to deal with the key collision problem and the most frequently used method in dealing with such collisions is with the use of a linked list, such inherent characteristic necessarily flows from the teachings of the applied prior art.
	To the extent that Bedrock argues that Bishop does not anticipate Claims $1 - 8$ because linker images are not inherently stored in a linked list, it would have been obvious to one of ordinary skill in the art to store the linker images in a linked list. The admitted prior art in the background of the '120 patent discloses that linked lists/external chaining were already common place to resolve collisions within hash tables. <i>Nemes</i> , "Methods and Apparatus for Information Storage and Retrieval Using a Hashing Technique with external chaining and On-The-Fly Removal of Expired Data," U.S. Patent No. 5,893,120 (issued Apr. 6, 1999) at 1:34-2:6 ("the '120 patent"). Thus, Bishop and the admitted prior art of the '120 patent show that one of ordinary skill in the art understood how to use linked lists/external chaining to resolve collisions within hash tables, and would recognize that it would improve similar systems and methods in the same way.
	Moreover, as disclosed in Beardsley – "[h]ashing functions are well known techniques used to randomly allocate locations in one address space to addresses of a second address space. Those skilled in the art will realize that the usual techniques of hashing chains are used to resolve conflicts" <i>Beardsley et al.</i> , "Method and System for Dynamic Cache Allocation Between Record

3

Joint Invalidity Contentions & Production of Documents

Asserted Cl U.S. Pat. No	aims From 5. 5,893,120	U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
		and Track Entries," U.S. Patent No. 5,991,775 (issued Nov. 23, 1999) at 6:2-8. – it was well known in the prior art to have objects distributed by a hash function, such as those in Bishop, and then store the objects in a hash table using linked lists or external chaining.
		As both Bishop and Beardsley disclose systems and methods for allocating data structures in segments within a cache that are stored in hash tables with a least recently used methodology for replacement of old structures, one of ordinary skill in the art would understand how to combine the hashed page table with linked lists taught in Beardsley with Bishop. Moreover, one of ordinary skill in art would recognize that it would improve similar systems and methods in the same way. Additionally, one of ordinary skill in the art would recognize that the result of combining Bishop with Beardsley would be nothing more than the predictable use of prior art elements according to their established functions. The result would simply be Bishop's linker cache being implemented with a hashing function using linked lists/external chaining. By way of further example, one of ordinary skill in the art would have combined linked lists as taught by these references and one of ordinary skill in the art to the system disclosed in the admitted prior and would have seen the benefits of doing so. One such benefit, for example, is hash table collision resolution
[1b] a record search means	[5h] a record search means	Richon discloses a record search means utilizing a search key to access the
utilizing a search key to	utilizing a search key to	linked list Bishop also discloses a record search means utilizing a search key
access the linked list	access a linked list of	to access a linked list of records having the same hash address
	records having the same	to access a mixed list of fecolds having the same hash address.
	hash address	For example Rishop discloses that in an "aspect of the invention a portion of
Laint Invalidity Contentions ⁹ Dec	hash address,	Tor example, Dishop discloses that in an aspect of the invention, a polution of

Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	the computer's memory is set aside for a primary linker cache and a secondary linker image cache. Linker images, generated while loading programs for execution are stored in the primary and secondary linker caches. Each linker image in the primary linker cache has strong object references to objects included in corresponding ones of the loaded programs, and each linker image in the secondary linker cache has weak object references to objects included in corresponding ones of the loaded programs." <i>Bishop</i> , U.S. Patent No. 5,765,174 at 2:9-18.
	Furthermore, Bishop discloses that "[t]he linker cache 170 has a limited capacity, typically sufficient to hold references to about fifty or so linker images 160. The linker 152 maintains a hash table 171 and a list 172 of the cached linker images in "least recently used" order (i.e., each time a linker image is used, it is moved to the head of the list). The hash table 171 is a conventional hash table used to quickly locate items in the LRU list 172." <i>Id.</i> at 5:29-44.
	"[I]n the preferred embodiment the linker cache 170 of FIG. 2 is replaced with a smaller primary linker cache 220 and an expanded secondary linker cache 222. The primary linker cache 220 includes a hash table 224 and an LRU list 226 that stores strong object references to the least recently used linker images 160, while the secondary linker cache 222 includes a hash table 228 and an LRU list 230 that stores strong object references to the linker images 160 least recently used after the linker images referenced by the primary linker cache 220. <i>Id.</i> at 7:61-67 – 8:1-3.
	"When the linker cache is full, and another linker image needs to be generated in response to a load program command, the reference in the LRU list 172 to

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	the least recently used linker image is deleted and the resulting space is used to store a reference to a linker image for the newly loaded program. Deletion of an object reference in the LRU list 172 enables deletion of the corresponding linker image 160 when all user program domains also relinquish their references to the linker image" <i>Id.</i> at 5:35-44
	Furthermore, Bishop inherently discloses that cached linker images are stored in a linked list, "the linker 152 maintains a hash table 171 and a list 172 of the cached linker images in "least recently used" order The hash table 171 is a <i>conventional hash table</i> used to quickly locate items in the LRU list." <i>Id</i> . at 5:31-35 (emphasis added). Because conventional hash tables need a system by which to deal with the key collision problem and the most frequently used method in dealing with such collisions is with the use of a linked list, such inherent characteristic necessarily flows from the teachings of the applied prior art.
	To the extent that Bedrock argues that Bishop does not anticipate Claims $1 - 8$ because linker images are not inherently stored in a linked list, it would have been obvious to one of ordinary skill in the art to store the linker images in a linked list. The admitted prior art in the background of the '120 patent discloses that linked lists/external chaining were already common place to resolve collisions within hash tables. <i>Nemes</i> , U.S. Patent No. 5,893,120at 1:34-2:6. Thus, Bishop and the admitted prior art of the '120 patent show that one of ordinary skill in the art understood how to use linked lists/external chaining to resolve collisions within hash tables, and would recognize that it would improve similar systems and methods in the same way.
	Moreover, as disclosed in Beardsley – "[h]ashing functions are well known

6

Joint Invalidity Contentions & Production of Documents

Asserted C U.S. Pat. N	laims From o. 5,893,120	U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
		 techniques used to randomly allocate locations in one address space to addresses of a second address space. Those skilled in the art will realize that the usual techniques of hashing chains are used to resolve conflicts" <i>Beardsley</i> U.S. Patent No. 5,991,775 at 6:2-8. – it was well known in the prior art to have objects distributed by a hash function, such as those in Bishop, and then store the objects in a hash table using linked lists or external chaining. As both Bishop and Beardsley disclose systems and methods for allocating data structures in segments within a cache that are stored in hash tables with a least recently used methodology for replacement of old structures, one of ordinary skill in the art would understand how to combine the hashed page table with linked lists taught in Beardsley with Bishop. Moreover, one of ordinary skill in art would recognize that it would improve similar systems and methods in the same way. Additionally, one of ordinary skill in the art would be nothing more than the predictable use of prior art elements according to their established functions. The result would simply be Bishop's linker cache being implemented with a hashing function using linked lists/external chaining. By way of further example, one of ordinary skill in the art would have combined linked lists as taught by these references and one of ordinary skill in the art to the system disclosed in the admitted prior and would have seen the benefit of doing so. One such benefit for example, is hash table collision
		benefits of doing so. One such benefit, for example, is hash table collision resolution.
[1c] the record search means including a means for identifying and	[5c] the record search means including means for identifying and removing	Bishop discloses the record search means including a means for identifying and removing at least some of the expired ones of the records from the linked list when the linked list is accessed. Bishop also discloses the record search
Joint Invalidity Contentions & Pro	duction of	7 Case No. 6:09-CV-549-LED

US2008 1661462.4

Asserted C U.S. Pat. N	laims From o. 5,893,120	U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
removing at least some of the expired ones of the records from the linked list when the linked list is	at least some expired ones of the records from the linked list of records when the linked list is accessed,	means including means for identifying and removing at least some expired ones of the records from the linked list of records when the linked list is accessed.
accessed, and and	For example, Bishop discloses that in an "aspect of the invention, a portion of the computer's memory is set aside for a primary linker cache and a secondary linker image cache. Linker images, generated while loading programs for execution are stored in the primary and secondary linker caches. Each linker image in the primary linker cache has strong object references to objects included in corresponding ones of the loaded programs, and each linker image in the secondary linker cache has weak object references to objects included in corresponding ones of the loaded programs." <i>Bishop</i> , U.S. Patent No. 5,765,174 at 2:9-18.	
		Furthermore, Bishop discloses that "[t]he linker cache 170 has a limited capacity, typically sufficient to hold references to about fifty or so linker images 160. The linker 152 maintains a hash table 171 and a list 172 of the cached linker images in "least recently used" order (i.e., each time a linker image is used, it is moved to the head of the list). The hash table 171 is a conventional hash table used to quickly locate items in the LRU list 172." <i>Id.</i> at 5:29-44
		"[I]n the preferred embodiment the linker cache 170 of FIG. 2 is replaced with a smaller primary linker cache 220 and an expanded secondary linker cache 222. The primary linker cache 220 includes a hash table 224 and an LRU list 226 that stores strong object references to the least recently used linker images 160, while the secondary linker cache 222 includes a hash table 228 and an LRU list 230 that stores strong object references to the linker images 160 least
Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")	
---	---	
	recently used after the linker images referenced by the primary linker cache 220. <i>Id.</i> at 7:61-67 – 8:1-3.	
	"When the linker cache is full, and another linker image needs to be generated in response to a load program command, the reference in the LRU list 172 to the least recently used linker image is deleted and the resulting space is used to store a reference to a linker image for the newly loaded program. Deletion of an object reference in the LRU list 172 enables deletion of the corresponding linker image 160 when all user program domains also relinquish their references to the linker image" <i>Id.</i> at 5:35-44.	
	Furthermore, Bishop inherently discloses that cached linker images are stored in a linked list, "the linker 152 maintains a hash table 171 and a list 172 of the cached linker images in "least recently used" order The hash table 171 is a <i>conventional hash table</i> used to quickly locate items in the LRU list." <i>Id.</i> at 5:31-35 (emphasis added). Because conventional hash tables need a system by which to deal with the key collision problem and the most frequently used method in dealing with such collisions is with the use of a linked list, such inherent characteristic necessarily flows from the teachings of the applied prior art.	
	To the extent that Bedrock argues that Bishop does not anticipate Claims $1-8$ because linker images are not inherently stored in a linked list, it would have been obvious to one of ordinary skill in the art to store the linker images in a linked list. The admitted prior art in the background of the '120 patent discloses that linked lists/external chaining were already common place to resolve collisions within hash tables. <i>Nemes</i> , U.S. Patent No. 5,893,120 at 1:34-2:6. Thus, Bishop and the admitted prior art of the '120 patent show that	

9

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	one of ordinary skill in the art understood how to use linked lists/external chaining to resolve collisions within hash tables, and would recognize that it would improve similar systems and methods in the same way.
	Moreover, as disclosed in Beardsley – "[h]ashing functions are well known techniques used to randomly allocate locations in one address space to addresses of a second address space. Those skilled in the art will realize that the usual techniques of hashing chains are used to resolve conflicts" <i>Beardsley</i> U.S. Patent No. 5,991,775 at 6:2-8. – it was well known in the prior art to have objects distributed by a hash function, such as those in Bishop, and then store the objects in a hash table using linked lists or external chaining.
	As both Bishop and Beardsley disclose systems and methods for allocating data structures in segments within a cache that are stored in hash tables with a least recently used methodology for replacement of old structures, one of ordinary skill in the art would understand how to combine the hashed page table with linked lists taught in Beardsley with Bishop. Moreover, one of ordinary skill in art would recognize that it would improve similar systems and methods in the same way. Additionally, one of ordinary skill in the art would recognize that the result of combining Bishop with Beardsley would be nothing more than the predictable use of prior art elements according to their established functions. The result would simply be Bishop's linker cache being implemented with a hashing function using linked lists/external chaining.
	By way of further example, one of ordinary skill in the art would have combined linked lists as taught by these references and one of ordinary skill in the art to the system disclosed in the admitted prior and would have seen the benefits of doing so. One such benefit, for example, is hash table collision

Asserted C U.S. Pat. N	laims From o. 5,893,120	U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
		resolution.
[1d] means, utilizing the record search means, for accessing the linked list and, at the same time, removing at least some of the expired ones of the records in the linked list.	[5d] mea[n]s, utilizing the record search means, for inserting, retrieving, and deleting records from the system and, at the same time, removing at least some expired ones of the records in the accessed linked list of records.	 Bishop discloses means, utilizing the record search means, for accessing the linked list and, at the same time, removing at least some of the expired ones of the records in the linked list. Bishop also discloses utilizing the record search means, for inserting, retrieving, and deleting records from the system and, at the same time, removing at least some expired ones of the records in the accessed linked list of records. For example, Bishop discloses that in an "aspect of the invention, a portion of the computer's memory is set aside for a primary linker cache and a secondary linker image cache. Linker images, generated while loading programs for execution are stored in the primary and secondary linker caches. Each linker image in the primary linker cache has strong object references to objects included in corresponding ones of the loaded programs, and each linker image in the secondary linker cache has weak object references to objects included in corresponding ones of the loaded programs." <i>Bishop</i>, U.S. Patent No. 5,765,174 at 2:9-18. Furthermore, Bishop discloses that "[t]he linker cache 170 has a limited capacity, typically sufficient to hold references to about fifty or so linker images 160. The linker 152 maintains a hash table 171 and a list 172 of the cached linker images in "least recently used" order (i.e., each time a linker image is used, it is moved to the head of the list). The hash table 171 is a conventional hash table used to quickly locate items in the LRU list 172." <i>Id.</i> at 5:29-44.
		"[I]n the preferred embodiment the linker cache 170 of FIG. 2 is replaced with

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	a smaller primary linker cache 220 and an expanded secondary linker cache 222. The primary linker cache 220 includes a hash table 224 and an LRU list 226 that stores strong object references to the least recently used linker images 160, while the secondary linker cache 222 includes a hash table 228 and an LRU list 230 that stores strong object references to the linker images 160 least recently used after the linker images referenced by the primary linker cache 220. <i>Id.</i> at 7:61-67 – 8:1-3.
	"When the linker cache is full, and another linker image needs to be generated in response to a load program command, the reference in the LRU list 172 to the least recently used linker image is deleted and the resulting space is used to store a reference to a linker image for the newly load program. Deletion of an object reference in the LRU list 172 enables deletion of the corresponding linker image 160 when all user program domains also relinquish their references to the linker image" <i>Id.</i> at 5:35-44.
	Furthermore, Bishop inherently discloses that cached linker images are stored in a linked list, "the linker 152 maintains a hash table 171 and a list 172 of the cached linker images in "least recently used" order The hash table 171 is a <i>conventional hash table</i> used to quickly locate items in the LRU list." <i>Id.</i> at 5:31-35 (emphasis added). Because conventional hash tables need a system by which to deal with the key collision problem and the most frequently used method in dealing with such collisions is with the use of a linked list, such inherent characteristic necessarily flows from the teachings of the applied prior art.
	To the extent that Bedrock argues that Bishop does not anticipate Claims $1-8$ because linker images are not inherently stored in a linked list, it would have

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	 been obvious to one of ordinary skill in the art to store the linker images in a linked list. The admitted prior art in the background of the '120 patent discloses that linked lists/external chaining were already common place to resolve collisions within hash tables. <i>Nemes</i>, U.S. Patent No. 5,893,120 at 1:34-2:6. Thus, Bishop and the admitted prior art of the '120 patent show that one of ordinary skill in the art understood how to use linked lists/external chaining to resolve collisions within hash tables, and would recognize that it would improve similar systems and methods in the same way. Moreover, as disclosed in Beardsley – "[h]ashing functions are well known techniques used to randomly allocate locations in one address space to addresses of a second address space. Those skilled in the art will realize that the usual techniques of hashing chains are used to resolve conflicts" <i>Beardsley</i> U.S. Patent No. 5,991,775 at 6:2-8. – it was well known in the prior art to have objects distributed by a hash function, such as those in Bishop, and then store the objects in a hash table using linked lists or external chaining.
	As both Bishop and Beardsley disclose systems and methods for allocating data structures in segments within a cache that are stored in hash tables with a least recently used methodology for replacement of old structures, one of ordinary skill in the art would understand how to combine the hashed page table with linked lists taught in Beardsley with Bishop. Moreover, one of ordinary skill in art would recognize that it would improve similar systems and methods in the same way. Additionally, one of ordinary skill in the art would recognize that the result of combining Bishop with Beardsley would be nothing more than the predictable use of prior art elements according to their established functions. The result would simply be Bishop's linker cache being implemented with a hashing function using linked lists/external chaining.

13

Joint Invalidity Contentions & Production of Documents

Asserted C U.S. Pat. N	laims From o. 5,893,120	U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
		By way of further example, one of ordinary skill in the art would have combined linked lists as taught by these references and one of ordinary skill in the art to the system disclosed in the admitted prior and would have seen the benefits of doing so. One such benefit, for example, is hash table collision resolution.
2. The information storage and retrieval system according to claim 1 further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records.	6. The information storage and retrieval system according to claim 5 further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records.	Bishop discloses an information storage and retrieval system further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records. For example, Bishop discloses that "the 20 or so most recently used linker images are referenced by the LRU list 226 stored in the primary linker cache 220, while the next 200 or so most recently used linker images are referenced by the LRU list 230 stored in the secondary linker cache 232. When a new linker image is generated by the modified linker procedure 234, that causes all items in the primary linker cache's LRU list 226 to be moved down one position in the list. <i>If the primary linker cache 226 was full</i> before the new linker images in the primary linker cache will be moved into the secondary linker cache, and all the strong object references in the moved linker image are replaced by weak object referenced. When a linker image are not automatically deleted, because other entities in the computer system may also
		be referencing those same objects. For instance, if a user process is still executing the program corresponding to the moved linker image, all the objects, referenced by the moved linker image will have strong object references held by that user process." <i>Bishop</i> , U.S. Patent No. 5,765,174 at

Joint Invalidity Contentions & Production of Documents

Asserted Claims From	U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination
U.S. Pat. No. 5,893,120	with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	8:34-51 (emphasis added). The dynamic decision-making process of the system is best understood with reference to Figure 7B: <i>Id.</i> at Figure 7B.

15

Asserted Claims From	U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination
U.S. Pat. No. 5,893,120	with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	Figure 7A Primary Linker Cache full? 250c V 250c Delete last item (i.e., the least recently used item) in the secondary cache's LRU list. Cache full? 250f P1 = pointer to LRU item from primary cache. Insert P1 pointer at top of LRU list in secondary linker cache. Delete P1 pointer from primary linker cache's LRU list. Call MakeWeak on all strong object references in the referenced linker image. Delete all strong object references in the referenced linker image. Delete all strong object references in the referenced linker image. The pointer at top of LRU list in primary linker cache. 250g Insert PTR pointer at top of LRU list in primary linker cache. Enclosed and the primary linker cache. 250h Return Linker Image corresponding to PTR pointer FIGURE 7B "Steps 250c through 250f of the modified linker procedure service to create room in the primary linker cache's LRU list 226, <i>if such room is needed</i> , for a

16

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	reference to the linker image for the user specified program. In particular, if the primary linker cache is full (step $250c$), and the secondary linker cache is full (step $250d$), the last item in the secondary linker cache's LRU list is deleted (step $250e$). Then the last item in the primary linker cache's LRU list 226 is inserted at the top of the secondary linker cache's LRU list 230 and deleted from the primary linker cache's LRU list 226 (step $250f$)." <i>Id.</i> at 8:60 – 9:3 (emphasis added).
	In summary, if there is space available in the primary linker cache or in the secondary linker cache, then the system does not delete any items from the cache. If, however, free space is not available in both the primary linker cache and the secondary linker cache, then the system deletes the last item (i.e., the least recently used item) in the secondary cache's LRU list to make room for the new item. Therefore, the determination of when to delete an item is dynamically determined by whether a free space exists within either the primary linker cache or the secondary linker cache.
	Additionally it would have been obvious to one of skill in the art to combine Bishop with Dirks, Thatte, the '663 patent and/or the Opportunistic Garbage Collection Articles to disclose an information storage and retrieval system further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records.
	For example, Dirks discloses the management of memory in a computer system and more particularly to the allocation of address space in a virtual memory system, which dynamically determines how many records to sweep/remove upon each allocation. Disclosure of these claim elements in Dirks is clearly shown in Exhibit B-2, which is hereby incorporated by

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	reference in its entirety.
	For example, as summarized in Dirks,
	each time a VSID is assigned from the free list to a new application or thread, a fixed number of entries in the page table are scanned to determine whether they have become inactive, by checking them against the VSIDs on the recycle list. Each entry which is identified as being inactive is removed from the page table. After all of the entries in the page table have been examined in this manner, the VSIDs in the recycle list can be transferred to the free list, since all of their associated page table entries will have been removed. This approach thereby guarantees that a predetermined number of VSIDs are always available in the free list without requiring a time-consuming scan of the complete page table at once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.
	After [a] new VSID has been allocated, the system checks a flag RFLG to determine whether a recycle sweep is currently in progress (Step 20). If there is no sweep in progress, i.e. RFLG is not equal to one, a determination is made whether a sweep should be initiated. This is done by checking whether the inactive list is full, i.e. whether it contains x entries (Step 22). If the number of entries I on the inactive list is less than x, no further action is taken, and processing control returns to the operating system (Step 24). If, however, the inactive list is full at this time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are transferred to the recycle list, and an index n is reset to 1 (Step 28). The system then sweeps a predetermined number of page table entries PT _i on the page table, to detect whether any of them are inactive, i.e. their

18

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
U.S. Pat. No. 5,893,120	with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley") associated VSID is on the recycle list (Step 30). The predetermined number of entries that are swept is identified as k , where: $k = \frac{\text{total number of page table entries}}{\text{maximum number of active threads}}$ Id. at 8:12-30. Dirks discloses that any approach can be employed to determine the number of entries to be examined during each step of the sweeping process. Id. at 7:37- 40. As stated in Dirks: Any other suitable approach can be employed to determine the number of entries to be examined during each step of the sweeping process. In this regard, it is not necessary that the number of examined entries be fixed for each step. Rather, it might vary from one step to the next. The only criterion is that the number of entries examined on each step be such that all entries in the page table are examined in a determinable amount of time or by the occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.
	<i>Id.</i> at 7:38-46. Thus, Dirks dynamically determines the maximum number of records to sweep/remove by calculating a value <i>k. Id.</i> at 7:15-46, 7:66-8:56.As both Bishop and Dirks relate to deletion of aged records upon the allocation of a new incoming record, one of ordinary skill in the art would have understood how to use Dirks' dynamic decision making process of determining the maximum number of records to sweep/remove in other hash tables implementations such as Bishop. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the

Asserted Claim U.S. Pat. No. 5,	s From 893,120	U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
		same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining Dirks' deletion decision procedure with Bishop nothing more than the predictable use of prior art elements according to their established functions.
		By way of further example, one of ordinary skill in the art would have combined Dirks' dynamic determination of the suitable number of entries to examine during each step of the sweeping process with Bishop and would have seen the benefits of doing so. One possible benefit, for example, is saving the system from performing sometimes time-consuming sweeps.`
		Alternatively, one of ordinary skill in the art would be motivated to, and would understand how to, combine the system disclosed in Bishop with the means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records disclosed by Thatte. Thatte, discloses a system and method using hash tables and/or linked lists and further discloses means for dynamically determining the maximum number for the record search means to remove in the accessed linked list of records. The disclosure of these claim elements in Thatte is clearly shown in the chart of Thatte, which is hereby incorporated by reference in its entirety.
		Moreover, one of ordinary skill in the art would recognize that these combinations would improve the similar systems and methods in the same

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	way. Additionally, one of ordinary skill in the art would recognize that the result of combining Bishop with Thatte would be nothing more than the predictable use of prior art elements according to their established functions. The resulting combination would include the capability to determine the maximum number for the record search means to remove.
	Further, one of ordinary skill in the art would be motivated to combine Bishop with Thatte and recognize the benefits of doing so. For example, the removal of expired records described in Bishop can be burdensome on the system, adding to the system's load and slowing down the system's processing. One of ordinary skill in the art would recognize that combining Bishop with the teachings of Thatte would solve this problem by dynamically determining how many records to delete based on, among other things, the system load. Moreover, the '120 patent discloses that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine Bishop with Thatte.
	Alternatively, it would also be obvious to combine Bishop with the '663 patent. Disclosure of these claim elements in the '663 patent is clearly shown in the chart of the '663 patent, which is hereby incorporated by reference in its entirety. For example, as summarized in the '663 patent:
	during normal times when the load on the storage system is not excessive, a non-contaminating but slow deletion of records is used. This slow, non-contaminating deletion involves closing

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	the collision-resolution chain of locations by moving a record from a later position in the chain into the position of the record to be deleted. This leaves no deleted record locations in the storage space to slow down future searches. U.S. Patent 4,996,663 to Nemes at 2:24-34 ("The '663 patent").In times of heavy use, when deletions must be done rapidly and no time is available for decontamination, the record is simply marked as "deleted" and left in place. Later non-contaminating
	This hybrid deletion is shown in Figure 5.

22

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	FIG. 5 HYBRID DELETION (J) (START (J) (SLOW-NON- (J) (
	Figure 5. On the other hand, if the system load is less than the threshold, then a slow-non-contaminating delete 53 is used. <i>Id.</i> The fast-secure delete 52 does

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	not actually delete records, rather it marks records as deleted. <i>Id.</i> at 8:1-33, Figure 7. These records are then actually deleted by a subsequent slow-non-contaminating delete 53. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
	Thus, the hybrid deletion procedure in the '663 patent dynamically determines a maximum number of records to remove. <i>See id.</i> at 6:40-64, Figure 5. If the fast-secure delete 52 is used, then maximum number of records is zero because records are not deleted they are only marked. <i>Id.</i> at 8:1-33, Figure 7. If the slow-non-contaminating delete 53 is used, then the maximum number of records to remove is all of the contaminated records in the bucket. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
	As both Bishop and the '663 patent relate to deletion of records from hash tables using external chaining, one of ordinary skill in the art would understood how to use the '663 patent's dynamic decision on whether to perform a deletion based on a systems load in other hash table implementations such as that described in Bishop. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the '663 patent's deletion decision procedure with Bishop would be nothing more than the predictable use of prior art elements according to their established functions.

Asserted Claims U.S. Pat. No. 5,8	s From 93,120	U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
		By way of further example, one of ordinary skill in the art would have combined the '663 patent's dynamic decision on whether to perform a deletion based on a systems load as taught by the '663 patent and with Bishop and would have seen the benefits of doing so. One such benefit, for example, is that the system would avoid performing deletions when the system load exceeded a threshold.
		Alternatively, it would also be obvious to combine Bishop with the Opportunistic Garbage Collection Articles.
		The Opportunistic Garbage Collection Articles disclose a generational based garbage collection which dynamically determines how much garbage to collect. <i>See generally</i> , Paul R. Wilson and Thomas G. Moher, <i>Design of the Opportunistic Garbage Collector</i> , OOPSLA '89 Proceedings, October 1-6, 1989; Paul R. Wilson, <i>Opportunistic Garbage Collection</i> , ACM SIGPLAN Notices, Vol. 23, No. 12, December 1988.
		For example, the Opportunistic Garbage Collection Articles recite in part:
		When a significant pause has been detected, a decision procedure is invoked to decide whether to garbage collect, and how many generations to scavenge. The fuller a generation is, the more likely it is to be scavenged; also, the longer the pause that has been detected, the larger the scope of the garbage collection is likely to be. <i>Design of the Opportunistic Garbage</i> <i>Collector</i> at 32.
		Every time a user-input routine is invoked, a decision routine can decide whether to garbage collect. As long as the decision routine takes no more

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	than a few milliseconds to execute, it should not interfere with responsiveness. Since it is only invoked at these times, it does not incur a continual run-time overhead. <i>Opportunistic Garbage Collection</i> at 100.
	This decision routine should take several things into account: 1) the volume of data allocated since the last scavenge, 2) how long it has been since the user has had an opportunity to interact, and 3) the height of the stack relative to its average height at reads since the last scavenge. If the product of the allocation and the compute time is high, and if the stack is low, the scavenge favorability measure is high. If it is especially high, a multi-generation scavenge is in order. <i>Id</i> .
	If these heuristics fail and a scavenge is forced instead by the filling of a generation's space, it is likely to happen during a significant compute- bound pausethe one that has just allocated the data that forced the collection. When the opportunistic mechanism fails to find the end of a pause, it may still succeed by default, embedding a scavenge pause within a larger pause. <i>Design of the Opportunistic Garbage Collector</i> at 32.
	As both Bishop and the Opportunistic Garbage Collection Articles relate to deletion of aged records, one of ordinary skill in the art would have understood how to use the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion based on a system load in other hash table implementations such as Bishop. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily

26

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the Opportunistic Garbage Collection Articles' deletion decision procedure with Bishop would be nothing more than the predictable use of prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have combined the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion and how many generations to scavenge as taught by the Opportunistic Garbage Collection Articles and with Bishop and would have seen the benefits of doing so. One such benefit, for example, is preventing slowdown of the system.
	Additionally, it would have been obvious to one of ordinary skill in the art to modify the system disclosed in Bishop to dynamically determine the maximum number of expired records to remove in the accessed linked list of records. It is a fundamental concept in computer science and the relevant art that any variable or parameter affecting any aspect of a system can be dynamically determined based on information available to the system. One of ordinary skill in the art would have been motivated to combine the system disclosed in Bishop with the fundamental concept of dynamically determining the maximum number of expired records to remove in an accessed linked list of records to solve a number of potential problems. For example, the removal of expired records described in Bishopcan be burdensome on the system, adding to the system's load and slowing down the system's processing. Moreover, the removal could also force an interruption in real-time processing as the processing waits for the removal to complete.

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	One of ordinary skill in the art would have known that dynamically determining the maximum number to remove would limit the burden on the system and bound the length of any real-time interruption to prevent delays in processing. Indeed, Nemes concedes that such dynamic determination was obvious when he states in the '120 patent that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. To the extent that dynamically determining a maximum number of expired records is not disclosed by Bishop in combination with Dirks, Thatte, the '663 Patent, or the Opportunistic Garbage Collection References, it is disclosed by Linux 2.0.1, which describes dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed. It would have been obvious to combine Linux 2.0.1 with Bishop. For example, both Linux 2.0.1 and Bishop describe systems and methods for performing data storage and retrieval using known programming techniques to yield a predictable result.
	When invoked, the function rt_cache_add automatically increments an integer variable rt_cache_size. <i>See</i> Linux 2.0.1, route.c at line 1359. When the function rt_cache_add removes an expired record, the function rt_cache_add decrements the variable rt_cache_size. <i>See</i> Linux 2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the number of records in the hash table (i.e., ip_rt_hash_table). Because

28

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	the function rt_cache_add automatically increments and decrements the variable rt_cache_size, the variable rt_cache_size is determined dynamically.
	Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1. The function rt_garbage_collect_1 loops through each of the linked lists in the ip_rt_hash_table global variable. <i>See</i> Linux 2.0.1, route.c at lines 1122-1138. In this way, the function rt_garbage_collect_1 accesses the linked list. When the function rt_garbage_collect_1 identifies a record that is expired, the function rt_garbage_collect_1 decrements the variable rt_cache_size and frees the record. <i>See</i> Linux 2.0.1, route.c at lines 1128-1135.
	Because all records in the linked list can be expired and all records in the hash table can be in the linked list, the variable rt_cache_size can represent a dynamically determined maximum number of expired ones of the records to remove when function rt_garbage_collect_1 accesses the linked list.
	Furthermore, the function rt_cache_add determines whether the number of records in the hash table exceeds a predetermined threshold RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_cache_add invokes a function rt_garbage_collect. <i>See</i> Linux 2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect invokes a function rt_garbage_collect_1. <i>See</i> Linux 2.0.1, route.c at line 1293. The function rt_garbage_collect invokes a function

29

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	rt_garbage_collect_1. <i>See</i> Linux 2.0.1, route.c at line 1293.
	The function rt_garbage_collect_1 loops through each linked list in the hash table. <i>See</i> Linux 2.0.1, route.c at lines 1116-1132. For each linked list in the hash table, the function rt_garbage_collect_1 looks at each record in the linked list. <i>See</i> Linux 2.0.1, route.c at lines 1120-1131. For each record in a linked list, the function rt_garbage_collect_1 determines whether the record's last use time plus the record's expiration factor is later than the current time. <i>See</i> Linux 2.0.1, route.c at line 1122. If the record's last use time plus the record from the linked list. <i>See</i> Linux 2.0.1, route.c at line 1122. If the record's last use time plus the record's expiration factor is less than the current time, the function rt_garbage_collect_1 removes the record's expiration factor is based on a variable expire and the record's reference count. <i>See</i> Linux 2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed timeout value RT_CACHE_TIMEOUT. <i>See</i> Linux 2.0.1, route.c at line 1110.
	After looping through all of the linked lists in this manner, the function rt_garbage_collect_1 determines again whether the number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number of items in the hash table is still greater than the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves the variable expire and loops through each of the linked lists in the hash table. See Linux 2.0.1, route.c at line 1135. In this way, the function rt_garbage_collect_1 can remove additional records from the linked lists in the hash table. The function rt_garbage_collect_1 repeats this process until the total number of records in the hash table is less than the

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
U.S. Pat. No. 5,893,120	<pre>with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley") predetermined threshold RT_CACHE_SIZE_MAX. Under Bedrock's proposed claim constructions, the records removed by the function rt_garbage_collect_1 are "expired" records. That is, the records removed by the function rt_garbage_collect_1 are data items which after a limited time or after the occurrence of some event become obsolete, such that their presence in the storage system is no longer needed or desired. The function rt_cache_add only removes a record from a linked list when the record's last use time plus the fixed timeout value RT_CACHE_TIMEOUT is less than the current time and the record's reference count is zero. See Linux 2.0.1, route.c at line 1369. Thus, the maximum number of records that the function rt_cache_add can remove from a given linked list is limited to those records whose reference counts are zero. In contrast, the maximum number of records that the function</pre>
	<pre>rt_garbage_collect_1 can remove from a given linked list is not limited to those records whose reference counts are zero. See Linux 2.0.1, route.c at line 1122. Rather, the function rt_garbage_collect_1 can remove records whose reference counts are zero and records whose reference counts are greater than zero.</pre> Consequently, the maximum number of records that the function rt_garbage_collect_1 can remove from a linked list is different than the maximum number of records that the function rt_cache_add can remove from a linked list.

Asserted C U.S. Pat. N	laims From o. 5,893,120	U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
3. A method for storing and retrieving information records using a linked list to store and provide access to the records, at least some of the records automatically expiring, the method comprising the	7. A method for storing and retrieving information records using a hashing technique to provide access to the records and using an external chaining technique to store the records with same hash address, at least	To the extent the preamble is a limitation, Bishop discloses a method for storing and retrieving information records using a linked list to store and provide access to the records, at least some of the records automatically expiring. Bishop also discloses a method for storing and retrieving information records using a hashing technique to provide access to the records and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring.
steps of:	some of the records automatically expiring, the method comprising the steps of:	For example, Bishop discloses that in an "aspect of the invention, a portion of the computer's memory is set aside for a primary linker cache and a secondary linker image cache. Linker images, generated while loading programs for execution are stored in the primary and secondary linker caches. Each linker image in the primary linker cache has strong object references to objects included in corresponding ones of the loaded programs, and each linker image in the secondary linker cache has weak object references to objects included in corresponding ones of the loaded programs." <i>Bishop</i> , U.S. Patent No. 5,765,174 at 2:9-18.
		Furthermore, Bishop discloses that "[t]he linker cache 170 has a limited capacity, typically sufficient to hold references to about fifty or so linker images 160. The linker 152 maintains a hash table 171 and a list 172 of the cached linker images in "least recently used" order (i.e., each time a linker image is used, it is moved to the head of the list). The hash table 171 is a conventional hash table used to quickly locate items in the LRU list 172." <i>Id.</i> at 5:29-44.
		a smaller primary linker cache 220 and an expanded secondary linker cache

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	222. The primary linker cache 220 includes a hash table 224 and an LRU list 226 that stores strong object references to the least recently used linker images 160, while the secondary linker cache 222 includes a hash table 228 and an LRU list 230 that stores strong object references to the linker images 160 least recently used after the linker images referenced by the primary linker cache 220. <i>Id.</i> at 7:61-67 – 8:1-3.
	"When the linker cache is full, and another linker image needs to be generated in response to a load program command, the reference in the LRU list 172 to the least recently used linker image is deleted and the resulting space is used to store a reference to a linker image for the newly loaded program. Deletion of an object reference in the LRU list 172 enables deletion of the corresponding linker image 160 when all user program domains also relinquish their references to the linker image" <i>Id.</i> at 5:35-44.
	Furthermore, Bishop inherently discloses that cached linker images are stored in a linked list, "the linker 152 maintains a hash table 171 and a list 172 of the cached linker images in "least recently used" order The hash table 171 is a <i>conventional hash table</i> used to quickly locate items in the LRU list." <i>Id.</i> at 5:31-35 (emphasis added). Because conventional hash tables need a system by which to deal with the key collision problem and the most frequently used method in dealing with such collisions is with the use of a linked list, such inherent characteristic necessarily flows from the teachings of the applied prior art.
	To the extent that Bedrock argues that Bishop does not anticipate Claims $1 - 8$ because linker images are not inherently stored in a linked list, it would have been obvious to one of ordinary skill in the art to store the linker images in a

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	linked list. The admitted prior art in the background of the '120 patent discloses that linked lists/external chaining were already common place to resolve collisions within hash tables. <i>Nemes</i> , U.S. Patent No. 5,893,120 at 1:34-2:6 Thus, Bishop and the admitted prior art of the '120 patent show that one of ordinary skill in the art understood how to use linked lists/external chaining to resolve collisions within hash tables, and would recognize that it would improve similar systems and methods in the same way.
	Moreover, as disclosed in Beardsley – "[h]ashing functions are well known techniques used to randomly allocate locations in one address space to addresses of a second address space. Those skilled in the art will realize that the usual techniques of hashing chains are used to resolve conflicts" <i>Beardsley</i> U.S. Patent No. 5,991,775 at 6:2-8. – it was well known in the prior art to have objects distributed by a hash function, such as those in Bishop, and then store the objects in a hash table using linked lists or external chaining.
	As both Bishop and Beardsley disclose systems and methods for allocating data structures in segments within a cache that are stored in hash tables with a least recently used methodology for replacement of old structures, one of ordinary skill in the art would understand how to combine the hashed page table with linked lists taught in Beardsley with Bishop. Moreover, one of ordinary skill in art would recognize that it would improve similar systems and methods in the same way. Additionally, one of ordinary skill in the art would recognize that the result of combining Bishop with Beardsley would be nothing more than the predictable use of prior art elements according to their established functions. The result would simply be Bishop's linker cache being implemented with a hashing function using linked lists/external chaining.

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
		By way of further example, one of ordinary skill in the art would have combined linked lists as taught by these references and one of ordinary skill in the art to the system disclosed in the admitted prior and would have seen the benefits of doing so. One such benefit, for example, is hash table collision resolution.
[3a] accessing the linked list of records,	[7a] accessing a linked list of records having same hash address,	 Bishop discloses accessing a linked list of records. Bishop also discloses accessing a linked list of records having same hash address. For example, Bishop discloses that in an "aspect of the invention, a portion of the computer's memory is set aside for a primary linker cache and a secondary linker image cache. Linker images, generated while loading programs for execution are stored in the primary and secondary linker caches. Each linker image in the primary linker cache has strong object references to objects included in corresponding ones of the loaded programs, and each linker image in the secondary linker cache has weak object references to objects included in corresponding ones of the loaded programs." <i>Bishop</i>, U.S. Patent No. 5,765,174 at 2:9-18. Furthermore, Bishop discloses that "[t]he linker cache 170 has a limited capacity, typically sufficient to hold references to about fifty or so linker images 160. The linker 152 maintains a hash table 171 and a list 172 of the cached linker images in "least recently used" order (i.e., each time a linker image is used, it is moved to the head of the list). The hash table 171 is a conventional hash table used to quickly locate items in the LRU list 172." <i>Id.</i> at 5:29-44. "[I]n the preferred embodiment the linker cache 170 of FIG. 2 is replaced with

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	a smaller primary linker cache 220 and an expanded secondary linker cache 222. The primary linker cache 220 includes a hash table 224 and an LRU list 226 that stores strong object references to the least recently used linker images 160, while the secondary linker cache 222 includes a hash table 228 and an LRU list 230 that stores strong object references to the linker images 160 least recently used after the linker images referenced by the primary linker cache 220." <i>Id.</i> at 7:61-67 – 8:1-3.
	"When the linker cache is full, and another linker image needs to be generated in response to a load program command, the reference in the LRU list 172 to the least recently used linker image is deleted and the resulting space is used to store a reference to a linker image for the newly loaded program. Deletion of an object reference in the LRU list 172 enables deletion of the corresponding linker image 160 when all user program domains also relinquish their references to the linker image" <i>Id.</i> at 5:35-44.
	Furthermore, Bishop inherently discloses that cached linker images are stored in a linked list, "the linker 152 maintains a hash table 171 and a list 172 of the cached linker images in "least recently used" order The hash table 171 is a <i>conventional hash table</i> used to quickly locate items in the LRU list." <i>Id.</i> at 5:31-35 (emphasis added). Because conventional hash tables need a system by which to deal with the key collision problem and the most frequently used method in dealing with such collisions is with the use of a linked list, such inherent characteristic necessarily flows from the teachings of the applied prior art.
	To the extent that Bedrock argues that Bishop does not anticipate Claims $1 - 8$ because linker images are not inherently stored in a linked list, it would have

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	 been obvious to one of ordinary skill in the art to store the linker images in a linked list. The admitted prior art in the background of the '120 patent discloses that linked lists/external chaining were already common place to resolve collisions within hash tables. <i>Nemes</i>, U.S. Patent No. 5,893,120 at 1:34-2:6. Thus, Bishop and the admitted prior art of the '120 patent show that one of ordinary skill in the art understood how to use linked lists/external chaining to resolve collisions within hash tables, and would recognize that it would improve similar systems and methods in the same way. Moreover, as disclosed in Beardsley – "[h]ashing functions are well known techniques used to randomly allocate locations in one address space to addresses of a second address space. Those skilled in the art will realize that the usual techniques of hashing chains are used to resolve conflicts" <i>Beardsley</i> U.S. Patent No. 5,991,775 at 6:2-8. – it was well known in the prior art to have objects distributed by a hash function, such as those in Bishop, and then store the objects in a hash table using linked lists or external chaining.
	As both Bishop and Beardsley disclose systems and methods for allocating data structures in segments within a cache that are stored in hash tables with a least recently used methodology for replacement of old structures, one of ordinary skill in the art would understand how to combine the hashed page table with linked lists taught in Beardsley with Bishop. Moreover, one of ordinary skill in art would recognize that it would improve similar systems and methods in the same way. Additionally, one of ordinary skill in the art would recognize that the result of combining Bishop with Beardsley would be nothing more than the predictable use of prior art elements according to their established functions. The result would simply be Bishop's linker cache being implemented with a hashing function using linked lists/external chaining.

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
		By way of further example, one of ordinary skill in the art would have combined linked lists as taught by these references and one of ordinary skill in the art to the system disclosed in the admitted prior and would have seen the benefits of doing so. One such benefit, for example, is hash table collision resolution.
[3b] identifying at least some of the automatically expired ones of the records, and	[7b] identifying at least some of the automatically expired ones of the records,	Bishop discloses identifying at least some of the automatically expired ones of the records. Bishop also discloses identifying at least some of the automatically expired ones of the records.For example, Bishop discloses that in an "aspect of the invention, a portion of the computer's memory is set aside for a primary linker cache and a secondary linker image cache. Linker images, generated while loading programs for
		execution are stored in the primary and secondary linker caches. Each linker image in the primary linker cache has strong object references to objects included in corresponding ones of the loaded programs, and each linker image in the secondary linker cache has weak object references to objects included in corresponding ones of the loaded programs." <i>Bishop</i> , U.S. Patent No. 5,765,174 at 2:9-18.
		Furthermore, Bishop discloses that "[t]he linker cache 170 has a limited capacity, typically sufficient to hold references to about fifty or so linker images 160. The linker 152 maintains a hash table 171 and a list 172 of the cached linker images in "least recently used" order (i.e., each time a linker image is used, it is moved to the head of the list). The hash table 171 is a conventional hash table used to quickly locate items in the LRU list 172." <i>Id.</i> at 5:29-44

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
		"[I]n the preferred embodiment the linker cache 170 of FIG. 2 is replaced with a smaller primary linker cache 220 and an expanded secondary linker cache 222. The primary linker cache 220 includes a hash table 224 and an LRU list 226 that stores strong object references to the least recently used linker images 160, while the secondary linker cache 222 includes a hash table 228 and an LRU list 230 that stores strong object references to the linker images 160 least recently used after the linker images referenced by the primary linker cache 220." <i>Id.</i> at 7:61-67 – 8:1-3.
		"When the linker cache is full, and another linker image needs to be generated in response to a load program command, the reference in the LRU list 172 to the least recently used linker image is deleted and the resulting space is used to store a reference to a linker image for the newly loaded program. Deletion of an object reference in the LRU list 172 enables deletion of the corresponding linker image 160 when all user program domains also relinquish their references to the linker image" <i>Id.</i> at 5:35-44.
[3c] removing at least some of the automatically expired records from the linked list when the linked list is accessed.	[7c] removing at least some of the automatically expired records from the linked list when the linked list is accessed, and	Bishop discloses removing at least some of the automatically expired records from the linked list when the linked list is accessed. Bishop also discloses removing at least some of the automatically expired records from the linked list when the linked list is accessed.
		For example, Bishop discloses that in an "aspect of the invention, a portion of the computer's memory is set aside for a primary linker cache and a secondary linker image cache. Linker images, generated while loading programs for execution are stored in the primary and secondary linker caches. Each linker image in the primary linker cache has strong object references to objects

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	included in corresponding ones of the loaded programs, and each linker image in the secondary linker cache has weak object references to objects included in corresponding ones of the loaded programs." <i>Bishop</i> , U.S. Patent No. 5,765,174 at 2:9-18.
	Furthermore, Bishop discloses that "[t]he linker cache 170 has a limited capacity, typically sufficient to hold references to about fifty or so linker images 160. The linker 152 maintains a hash table 171 and a list 172 of the cached linker images in "least recently used" order (i.e., each time a linker image is used, it is moved to the head of the list). The hash table 171 is a conventional hash table used to quickly locate items in the LRU list 172." <i>Id.</i> at 5:29-44.
	"[I]n the preferred embodiment the linker cache 170 of FIG. 2 is replaced with a smaller primary linker cache 220 and an expanded secondary linker cache 222. The primary linker cache 220 includes a hash table 224 and an LRU list 226 that stores strong object references to the least recently used linker images 160, while the secondary linker cache 222 includes a hash table 228 and an LRU list 230 that stores strong object references to the linker images 160 least recently used after the linker images referenced by the primary linker cache 220." <i>Id.</i> at 7:61-67 – 8:1-3.
	"When the linker cache is full, and another linker image needs to be generated in response to a load program command, the reference in the LRU list 172 to the least recently used linker image is deleted and the resulting space is used to store a reference to a linker image for the newly loaded program. Deletion of an object reference in the LRU list 172 enables deletion of the corresponding linker image 160 when all user program domains also relinquish their

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	references to the linker image" <i>Id.</i> at 5:35-44. Furthermore, Bishop inherently discloses that cached linker images are stored in a linked list, "the linker 152 maintains a hash table 171 and a list 172 of the cached linker images in "least recently used" order The hash table 171 is a <i>conventional hash table</i> used to quickly locate items in the LRU list." <i>Id.</i> at 5:31-35 (emphasis added). Because conventional hash tables need a system by which to deal with the key collision problem and the most frequently used method in dealing with such collisions is with the use of a linked list, such inherent characteristic necessarily flows from the teachings of the applied prior art.
	To the extent that Bedrock argues that Bishop does not anticipate Claims 1 – 8 because linker images are not inherently stored in a linked list, it would have been obvious to one of ordinary skill in the art to store the linker images in a linked list. The admitted prior art in the background of the '120 patent discloses that linked lists/external chaining were already common place to resolve collisions within hash tables. <i>Nemes</i> , U.S. Patent No. 5,893,120 at 1:34-2:6. Thus, Bishop and the admitted prior art of the '120 patent show that one of ordinary skill in the art understood how to use linked lists/external chaining to resolve collisions within hash tables, and would recognize that it would improve similar systems and methods in the same way.

41

Asserted C U.S. Pat. N	laims From o. 5,893,120	U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
		objects distributed by a hash function, such as those in Bishop, and then store the objects in a hash table using linked lists or external chaining.
		As both Bishop and Beardsley disclose systems and methods for allocating data structures in segments within a cache that are stored in hash tables with a least recently used methodology for replacement of old structures, one of ordinary skill in the art would understand how to combine the hashed page table with linked lists taught in Beardsley with Bishop. Moreover, one of ordinary skill in art would recognize that it would improve similar systems and methods in the same way. Additionally, one of ordinary skill in the art would recognize that the result of combining Bishop with Beardsley would be nothing more than the predictable use of prior art elements according to their established functions. The result would simply be Bishop's linker cache being implemented with a hashing function using linked lists/external chaining. By way of further example, one of ordinary skill in the art would have combined linked lists as taught by these references and one of ordinary skill in the art to the system disclosed in the admitted prior and would have seen the
		benefits of doing so. One such benefit, for example, is hash table collision resolution.
	[7d] inserting, retrieving or deleting one of the records from the system	Bishop discloses inserting, retrieving or deleting one of the records from the system following the step of removing.
	following the step of removing.	For example, Bishop discloses that in an "aspect of the invention, a portion of the computer's memory is set aside for a primary linker cache and a secondary linker image cache. Linker images, generated while loading programs for execution are stored in the primary and secondary linker caches. Each linker

Joint Invalidity Contentions & Production of Documents

Asserted Cla U.S. Pat. No.	ims From 5,893,120	U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
		image in the primary linker cache has strong object references to objects included in corresponding ones of the loaded programs, and each linker image in the secondary linker cache has weak object references to objects included in corresponding ones of the loaded programs." <i>Bishop</i> , U.S. Patent No. 5,765,174 at 2:9-18.
		Furthermore, Bishop discloses that "[t]he linker cache 170 has a limited capacity, typically sufficient to hold references to about fifty or so linker images 160. The linker 152 maintains a hash table 171 and a list 172 of the cached linker images in "least recently used" order (i.e., each time a linker image is used, it is moved to the head of the list). The hash table 171 is a conventional hash table used to quickly locate items in the LRU list 172." <i>Id.</i> at 5:29-44.
		"[I]n the preferred embodiment the linker cache 170 of FIG. 2 is replaced with a smaller primary linker cache 220 and an expanded secondary linker cache 222. The primary linker cache 220 includes a hash table 224 and an LRU list 226 that stores strong object references to the least recently used linker images 160, while the secondary linker cache 222 includes a hash table 228 and an LRU list 230 that stores strong object references to the linker images 160 least recently used after the linker images referenced by the primary linker cache 220." <i>Id.</i> at 7:61-67 – 8:1-3
		"When the linker cache is full, and another linker image needs to be generated in response to a load program command, the reference in the LRU list 172 to the least recently used linker image is deleted and the resulting space is used to store a reference to a linker image for the newly loaded program. Deletion of an object reference in the LRU list 172 enables deletion of the corresponding

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	linker image 160 when all user program domains also relinquish their references to the linker image" <i>Id.</i> at 5:35-44.
	Furthermore, Bishop inherently discloses that cached linker images are stored in a linked list, "the linker maintains a hash table 171 and a list 172 of the cached linker images in "least recently used" order The hash table 171 is a <i>conventional hash table</i> used to quickly locate items in the LRU list." <i>Id.</i> at 5:31-35 (emphasis added). Because conventional hash tables need a system by which to deal with the key collision problem and the most frequently used method in dealing with such collisions is with the use of a linked list, such inherent characteristic necessarily flows from the teachings of the applied prior art.
	To the extent that Bedrock argues that Bishop does not anticipate Claims $1 - 8$ because linker images are not inherently stored in a linked list, it would have been obvious to one of ordinary skill in the art to store the linker images in a linked list. The admitted prior art in the background of the '120 patent discloses that linked lists/external chaining were already common place to resolve collisions within hash tables. <i>Nemes</i> , U.S. Patent No. 5,893,120 at 1:34-2:6. Thus, Bishop and the admitted prior art of the '120 patent show that one of ordinary skill in the art understood how to use linked lists/external chaining to resolve collisions within hash tables, and would recognize that it would improve similar systems and methods in the same way.
	Moreover, as disclosed in Beardsley – "[h]ashing functions are well known techniques used to randomly allocate locations in one address space to addresses of a second address space. Those skilled in the art will realize that the usual techniques of hashing chains are used to resolve conflicts" <i>Beardsley</i>

44
Asserted C U.S. Pat. No	laims From o. 5,893,120	U.S. Patent No. 5,76 with U.S. Paten	5,174 to Bishop ("Bishop") alone and in combination t No. 5,991,775 to Beardsley et al. ("Beardsley")
		<i>et al.</i> , "Method and Sy and Track Entries," U. – it was well known in function, such as those using linked lists or ex	stem for Dynamic Cache Allocation Between Record S. Patent No. 5,991,775 (issued Nov. 23, 1999) at 6:2-8. the prior art to have objects distributed by a hash in Bishop, and then store the objects in a hash table ternal chaining.
		As both Bishop and Be data structures in segm least recently used met ordinary skill in the art table with linked lists to ordinary skill in art wo methods in the same w recognize that the resu more than the predicta established functions. implemented with a ha By way of further exam combined linked lists a the art to the system di benefits of doing so. O resolution.	eardsley disclose systems and methods for allocating nents within a cache that are stored in hash tables with a chodology for replacement of old structures, one of a would understand how to combine the hashed page aught in Beardsley with Bishop. Moreover, one of buld recognize that it would improve similar systems and ray. Additionally, one of ordinary skill in the art would lt of combining Bishop with Beardsley would be nothing ble use of prior art elements according to their The result would simply be Bishop's linker cache being sching function using linked lists/external chaining. nple, one of ordinary skill in the art would have as taught by these references and one of ordinary skill in sclosed in the admitted prior and would have seen the One such benefit, for example, is hash table collision
4. The method according to	8. The method according	Bishop discloses dyna	mically determining maximum number of expired ones
claim 3 further including	to claim 7 further including	of the records to remov	we when the linked list is accessed.
determining maximum	determining maximum	For example. Bishop d	iscloses that "the 20 or so most recently used linker
Joint Invalidity Contentions & Pro	duction of	45	Case No. 6:09-CV-549-LED

Documents

Asserted Claims From		U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination
U.S. Pat. No. 5,893,120		with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
number of expired ones of the records to remove when the linked list is accessed.	number of expired ones of the records to remove when the linked list is accessed.	 images are referenced by the LRU list 226 stored in the primary linker cache 220, while the next 200 or so most recently used linker images are referenced by the LRU list 230 stored in the secondary linker cache 232. When a new linker image is generated by the modified linker procedure 234, that causes all items in the primary linker cache's LRU list 226 to be moved down one position in the list. <i>If the primary linker cache 226 was full</i> before the new linker image was generated, then the object referenced to least recently used of the linker images in the primary linker cache will be moved into the secondary linker cache, and all the strong object references in the moved linker image are replaced by weak object referenced by the linker image are not automatically deleted, because other entities in the computer system may also be referencing those same objects. For instance, if a user process is still executing the program corresponding to the moved linker image, all the objects, referenced by the moved linker image will have strong object references held by that user process." <i>Bishop</i>, U.S. Patent No. 5,765,174 at 8:34-51 The dynamic decision-making process of the system is best understood with reference to Figure 7B: <i>Id.</i> at Figure 7B.

46

Asserted Claims From	U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination
U.S. Pat. No. 5,893,120	with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	Figure 7A Primary Linker Cache full? 250d Secondary Linker Cache full? 250e Delete last item (i.e., the least recently used item) in the secondary cache's LRU list. P1 = pointer to LRU item from primary cache. Insert P1 pointer at top of LRU list in secondary linker cache. Delete all strong object references in the referenced linker image. Delete all strong object references in the referenced linker image. Delete all strong object references in the referenced linker Timage. Delete all strong object references in the referenced linker Timage. Delete all strong object references in the referenced linker Terferenced linker image. Delete all strong object references in the referenced linker Timage. Delete all strong object references in the referenced linker TEGURE 7B "Steps 250c through 250f of the modified linker procedure service to create

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	room in the primary linker cache's LRU list 226, <i>if such room is needed</i> , for a reference to the linker image for the user specified program. In particular, if the primary linker cache is full (step 250 <i>c</i>), and the secondary linker cache is full (step 250 <i>d</i>), the last item in the secondary linker cache's LRU list is deleted (step 250 <i>e</i>). Then the last item in the primary linker cache's LRU list 226 is inserted at the top of the secondary linker cache's LRU list 230 and deleted from the primary linker cache's LRU list 226 (step 250 <i>f</i>)." <i>Id.</i> at 8:60 – 9:3 (emphasis added).
	In summary, if there is space available in the primary linker cache or in the secondary linker cache, then the system does not delete any items from the cache. If, however, free space is not available in both the primary linker cache and the secondary linker cache, then the system deletes the last item (i.e., the least recently used item) in the secondary cache's LRU list to make room for the new item. Therefore, the determination of when to delete an item is dynamically determined by whether a free space exists within either the primary linker cache or the secondary linker cache.
	Additionally, it would have been obvious to one of ordinary skill in the art to combine Bishop with Dirks, Thatte, the '663 patent, and/or the Opportunistic Garbage Collection Articles to disclose dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed.
	Dirks discloses the management of memory in a computer system and more particularly to the allocation of address space in a virtual memory system, which dynamically determines how many records to sweep/remove upon each allocation. Disclosure of these claim elements in Dirks is clearly shown in the

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
		chart of Dirks, which is hereby incorporated by reference in its entirety.
		For example, as summarized in Dirks,
		each time a VSID is assigned from the free list to a new application or thread, a fixed number of entries in the page table are scanned to determine whether they have become inactive, by checking them against the VSIDs on the recycle list. Each entry which is identified as being inactive is removed from the page table. After all of the entries in the page table have been examined in this manner, the VSIDs in the recycle list can be transferred to the free list, since all of their associated page table entries will have been removed. This approach thereby guarantees that a predetermined number of VSIDs are always available in the free list without requiring a time-consuming scan of the complete page table at once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.
		After [a] new VSID has been allocated, the system checks a flag RFLG to determine whether a recycle sweep is currently in progress (Step 20). If there is no sweep in progress, i.e. RFLG is not equal to one, a determination is made whether a sweep should be initiated. This is done by checking whether the inactive list is full, i.e. whether it contains x entries (Step 22). If the number of entries I on the inactive list is less than x, no further action is taken, and processing control returns to the operating system (Step 24). If, however, the inactive list is full at this time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are transferred to the recycle list, and an index n is reset to 1 (Step 28). The system then sweeps a predetermined number of page table entries PT _i on the page table, to detect whether any of them are inactive, i.e. their

49

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	while C.S. Fatcher 140: 5,991,775 to Dear disky et al. ("Dear disky")associated VSID is on the recycle list (Step 30). The predetermined number of entries that are swept is identified as k , where: $k = \frac{\text{total number of page table entries}}{\text{maximum number of active threads}}$ Id. at 8:12-30.Dirks discloses that any approach can be employed to determine the number of entries to be examined during each step of the sweeping process. Id. at 7:37- 40. As stated in Dirks:Any other suitable approach can be employed to determine the number of entries to be examined during each step of the sweeping process. Id. at 7:37- 40. As stated in Dirks:
	 entries to be examined during each step of the sweeping process. In this regard, it is not necessary that the number of examined entries be fixed for each step. Rather, it might vary from one step to the next. The only criterion is that the number of entries examined on each step be such that all entries in the page table are examined in a determinable amount of time or by the occurrence of a certain event, e.g. by the time the list of free VSIDs is empty. <i>Id.</i> at 7:38-46. Thus, Dirks dynamically determines the maximum number of records to sweep/remove by calculating a value <i>k. Id.</i> at 7:15-46, 7:66-8:56. As both Bishop and Dirks relate to deletion of aged records upon the allocation of a new incoming record, one of ordinary skill in the art would have
	understood how to use Dirks' dynamic decision making process of determining the maximum number of records to sweep/remove in other hash tables implementations such as that described Bishop. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining Dirks' deletion decision procedure with Bishop would be nothing more than the predictable use of prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have combined Dirks' dynamic determination of the suitable number of entries to examine during each step of the sweeping process with Bishop and would have seen the benefits of doing so. One possible benefit, for example, is saving the system from performing sometimes time-consuming sweeps.
	Alternatively, one of ordinary skill in the art would be motivated to, and would understand how to, combine the system disclosed in Bishop with the means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records disclosed by Thatte. For example, Thatte, discloses a system and method using hash tables and/or linked lists and further discloses means for dynamically determining the maximum number for the record search means to remove in the accessed linked list of records. The disclosure of these claim elements in Thatte is clearly shown in the chart of Thatte, which is hereby incorporated by reference in its entirety.
	Moreover, one of ordinary skill in the art would recognize that these combinations would improve the similar systems and methods in the same

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	way. Additionally, one of ordinary skill in the art would recognize that the result of combining Bishop with Thatte would be nothing more than the predictable use of prior art elements according to their established functions. The resulting combination would include the capability to determine the maximum number for the record search means to remove.
	Further, one of ordinary skill in the art would be motivated to combine Bishop with Thatte and recognized the benefits of doing so. For example, the removal of expired records described in Bishopcan be burdensome on the system, adding to the system's load and slowing down the system's processing. One of ordinary skill in the art would recognize that combining Bishop with the teachings of Thatte would solve this problem by dynamically determining how many records to delete based on, among other things, the system load. Moreover, the '120 patent discloses that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine Bishop with Thatte.
	Alternatively, it would also be obvious to combine Bishop with the '663 patent. Disclosure of these claim elements in the '663 patent is clearly shown in the chart of the '663 patent, which is hereby incorporated by reference in its entirety. For example, as summarized in the '663 patent:
	during normal times when the load on the storage system is not excessive, a non-contaminating but slow deletion of records is used. This slow, non-contaminating deletion involves closing

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	the collision-resolution chain of locations by moving a record from a later position in the chain into the position of the record to be deleted. This leaves no deleted record locations in the storage space to slow down future searches. U.S. Patent 4,996,663 to Nemes at 2:24-34 ("The '663 patent").In times of heavy use, when deletions must be done rapidly and no time is available for decontamination, the record is simply marked as "deleted" and left in place. Later non-contaminating
	This hybrid deletion is shown in Figure 5.

53

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	FIG.5 HYBRID DELETION HYES LOAD > THRESHOLD FAST-SECURE FIG.7] Id. at Figure 5.
	During the hybrid deletion procedure decision block 51 checks the system load to determine if the system load is greater than a threshold. If the system load is greater than the threshold, then a fast-secure delete 52 is used. <i>Id.</i> at 6:40-64, Figure 5. On the other hand, if the system load is less than the threshold, then a slow-non-contaminating delete 53 is used. <i>Id.</i> The fast-secure delete 52 does

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	not actually delete records, rather it marks records as deleted. <i>Id.</i> at 8:1-33, Figure 7. These records are then actually deleted by a subsequent slow-non-contaminating delete 53. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
	Thus, the hybrid deletion procedure in the '663 patent dynamically determines a maximum number of records to remove. <i>See id.</i> at 6:40-64, Figure 5. If the fast-secure delete 52 is used, then maximum number of records is zero because records are not deleted they are only marked. <i>Id.</i> at 8:1-33, Figure 7. If the slow-non-contaminating delete 53 is used, then the maximum number of records to remove is all of the contaminated records in the bucket. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
	As both Bishop and the '663 patent relate to deletion of records from hash tables using external chaining, one of ordinary skill in the art would understood how to use the '663 patent's dynamic decision on whether to perform a deletion based on a systems load in other hash table implementations such as Bishop. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the '663 patent's deletion decision procedure with Bishop would be nothing more than the predictable use of prior art elements according to their established functions.

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	combined the '663 patent's dynamic decision on whether to perform a deletion based on a systems load as taught by the '663 patent and with Bishop and would have seen the benefits of doing so. One such benefit, for example, is that the system would avoid performing deletions when the system load exceeded a threshold.
	Alternatively, it would also be obvious to combine Bishop with the Opportunistic Garbage Collection Articles.
	The Opportunistic Garbage Collection Articles disclose a generational based garbage collection which dynamically determines how much garbage to collect. <i>See generally</i> , Paul R. Wilson and Thomas G. Moher, <i>Design of the Opportunistic Garbage Collector</i> , OOPSLA '89 Proceedings, October 1-6, 1989; Paul R. Wilson, <i>Opportunistic Garbage Collection</i> , ACM SIGPLAN Notices, Vol. 23, No. 12, December 1988.
	For example, the Opportunistic Garbage Collection Articles disclose in part:
	When a significant pause has been detected, a decision procedure is invoked to decide whether to garbage collect, and how many generations to scavenge. The fuller a generation is, the more likely it is to be scavenged; also, the longer the pause that has been detected, the larger the scope of the garbage collection is likely to be. <i>Design of the Opportunistic Garbage</i> <i>Collector</i> at 32.
	Every time a user-input routine is invoked, a decision routine can decide whether to garbage collect. As long as the decision routine takes no more than a few milliseconds to execute, it should not interfere with

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	responsiveness. Since it is only invoked at these times, it does not incur a continual run-time overhead. <i>Opportunistic Garbage Collection</i> at 100.
	This decision routine should take several things into account: 1) the volume of data allocated since the last scavenge, 2) how long it has been since the user has had an opportunity to interact, and 3) the height of the stack relative to its average height at reads since the last scavenge. If the product of the allocation and the compute time is high, and if the stack is low, the scavenge favorability measure is high. If it is especially high, a multi-generation scavenge is in order. <i>Id</i> .
	If these heuristics fail and a scavenge is forced instead by the filling of a generation's space, it is likely to happen during a significant compute- bound pausethe one that has just allocated the data that forced the collection. When the opportunistic mechanism fails to find the end of a pause, it may still succeed by default, embedding a scavenge pause within a larger pause. <i>Design of the Opportunistic Garbage Collector</i> at 32.
	As both Bishop and the Opportunistic Garbage Collection Articles relate to deletion of aged records, one of ordinary skill in the art would have understood how to use the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion based on a system load in other hash table implementations such as Bishop. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the Opportunistic Garbage Collection Articles' deletion decision procedure with Bishop would be nothing more than the predictable use of prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have combined the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion and how many generations to scavenge as taught by the Opportunistic Garbage Collection Articles and with Bishop and would have seen the benefits of doing so. One such benefit, for example, is that the system would only perform deletions when the system was not already too overloaded, thus preventing slowdown of the system.
	Additionally, it would have been obvious to one of ordinary skill in the art to modify the system disclosed in Bishop to dynamically determine the maximum number of expired records to remove in the accessed linked list of records. It is a fundamental concept in computer science and the relevant art that any variable or parameter affecting any aspect of a system can be dynamically determined based on information available to the system. One of ordinary skill in the art would have been motivated to combine the system disclosed in Bishop with the fundamental concept of dynamically determining the maximum number of expired records to remove in an accessed linked list of records to solve a number of potential problems. For example, the removal of expired records described in Bishop can be burdensome on the system, adding to the system's load and slowing down the system's processing. Moreover, the removal could also force an interruption in real-time processing as the processing waits for the removal to complete.

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	One of ordinary skill in the art would have known that dynamically determining the maximum number to remove would limit the burden on the system and bound the length of any real-time interruption to prevent delays in processing. Indeed, Nemes concedes that such dynamic determination was obvious when he states in the '120 patent that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. To the extent that dynamically determining a maximum number of expired records is not disclosed by Bishop in combination with Dirks, Thatte, the '663 Patent, or the Opportunistic Garbage Collection References, it is disclosed by Linux 2.0.1, which describes dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed. It would have been obvious to combine Linux 2.0.1 with Bishop. For example, both Linux 2.0.1 and Bishop describe systems and methods for performing data storage and retrieval using known programming techniques to yield a predictable result.
	When invoked, the function rt_cache_add automatically increments an integer variable rt_cache_size. <i>See</i> Linux 2.0.1, route.c at line 1359. When the function rt_cache_add removes an expired record, the function rt_cache_add decrements the variable rt_cache_size. <i>See</i> Linux 2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the number of records in the hash table (i.e., ip_rt_hash_table). Because

59

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	the function rt_cache_add automatically increments and decrements the variable rt_cache_size, the variable rt_cache_size is determined dynamically.
	Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1. The function rt_garbage_collect_1 loops through each of the linked lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at lines 1122-1138. In this way, the function rt_garbage_collect_1 accesses the linked list. When the function rt_garbage_collect_1 identifies a record that is expired, the function rt_garbage_collect_1 decrements the variable rt_cache_size and frees the record. See Linux 2.0.1, route.c at lines 1128-1135.
	Because all records in the linked list can be expired and all records in the hash table can be in the linked list, the variable rt_cache_size can represent a dynamically determined maximum number of expired ones of the records to remove when function rt_garbage_collect_1 accesses the linked list.
	Furthermore, the function rt_cache_add determines whether the number of records in the hash table exceeds a predetermined threshold RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_cache_add invokes a function rt_garbage_collect. <i>See</i> Linux 2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect invokes a function rt_garbage_collect_1. <i>See</i> Linux 2.0.1, route.c at line 1293. The function rt_garbage_collect invokes a function

60

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	rt_garbage_collect_1. <i>See</i> Linux 2.0.1, route.c at line 1293.
	The function rt_garbage_collect_1 loops through each linked list in the hash table. <i>See</i> Linux 2.0.1, route.c at lines 1116-1132. For each linked list in the hash table, the function rt_garbage_collect_1 looks at each record in the linked list. <i>See</i> Linux 2.0.1, route.c at lines 1120-1131. For each record in a linked list, the function rt_garbage_collect_1 determines whether the record's last use time plus the record's expiration factor is later than the current time. <i>See</i> Linux 2.0.1, route.c at line 1122. If the record's last use time plus the record's expiration factor is less than the current time, the function rt_garbage_collect_1 removes the record from the linked list. <i>See</i> Linux 2.0.1, route.c at lines 1124-1130. The record's expiration factor is based on a variable expire and the record's reference count. <i>See</i> Linux 2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed timeout value RT_CACHE_TIMEOUT. <i>See</i> Linux 2.0.1, route.c at line 1110.
	After looping through all of the linked lists in this manner, the function rt_garbage_collect_1 determines again whether the number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number of items in the hash table is still greater than the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves the variable expire and loops through each of the linked lists in the hash table. See Linux 2.0.1, route.c at line 1135. In this way, the function rt_garbage_collect_1 can remove additional records from the linked lists in the hash table. The function rt_garbage_collect_1 repeats this process until the total number of records in the hash table is less than the

61

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,765,174 to Bishop ("Bishop") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
U.S. Pat. No. 5,893,120	<pre>with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley") predetermined threshold RT_CACHE_SIZE_MAX. Under Bedrock's proposed claim constructions, the records removed by the function rt_garbage_collect_1 are "expired" records. That is, the records removed by the function rt_garbage_collect_1 are data items which after a limited time or after the occurrence of some event become obsolete, such that their presence in the storage system is no longer needed or desired. The function rt_cache_add only removes a record from a linked list when the record's last use time plus the fixed timeout value RT_CACHE_TIMEOUT is less than the current time and the record's reference count is zero. See Linux 2.0.1, route.c at line 1369. Thus, the maximum number of records that the function rt_cache_add can remove from a given linked list is limited to those records whose reference counts are zero. In contrast, the maximum number of records that the function</pre>
	<pre>rt_garbage_collect_1 can remove from a given linked list is not limited to those records whose reference counts are zero. See Linux 2.0.1, route.c at line 1122. Rather, the function rt_garbage_collect_1 can remove records whose reference counts are zero and records whose reference counts are greater than zero.</pre> Consequently, the maximum number of records that the function rt_garbage_collect_1 can remove from a linked list is different than the maximum number of records that the function rt_cache_add can remove from a linked list.

63

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
1. An information storage and retrieval system, the system comprising:	5. An information storage and retrieval system, the system comprising:	To the extent the preamble is a limitation, Cox discloses an information storage and retrieval system.
		For example, Cox discloses "[a] non-uniform memory accessing (NUMA) based multi-processor system that promotes local memory accessing and data migration to local processor nodes. The system includes mechanisms to remap virtual and physical addresses to promote local memory accessing and implements a least recently used memory allocation mechanism to age non-local memory accesses out of memory to be re-read into local memory, which promotes data migration to local memory on processor nodes." <i>Cox et al</i> , "Promoting Local Memory Accessing and Data Migration in Non-Uniform Memory Access System Architectures," U.S. Patent No. 5,918,249 (issued: Jun. 29, 1999) at Abstract.
[1a] a linked list to store and provide access to records stored in a memory of the system, at least some of the records automatically expiring, [5a] a hashing means to provide access to records stored in a memory of the system and using an external chaining technique to store the records with same hash address, at least	Cox in combination with Beardsley discloses a linked list to store and provide access to records stored in a memory of the system, at least some of the records automatically expiring. Cox also discloses a hashing means to provide access to records stored in a memory of the system and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring.	
	some of the records automatically expiring,	For example, Cox discloses "[a] non-uniform memory accessing (NUMA) based multi-processor system that promotes local memory accessing and data migration to local processor nodes. The system includes mechanisms to remap virtual and physical addresses to promote local memory accessing and implements a least recently used memory allocation mechanism to age non-local memory accesses out of memory to be re-read into local memory, which promotes data migration to local memory on processor nodes." <i>Id</i> .

Joint Invalidity Contentions & Production of Documents

1

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	For example, Beardsley discloses that "[h]ashing functions are well known techniques used to randomly allocate locations in one address space to addresses of a second address space. Those skilled in the art will realize that the usual techniques of hashing chains are used to resolve conflicts" Beardsley et al., "Method and System for Dynamic Cache Allocation Between Record and Track Entries," U.S. Patent No. 5,991,775 (issued Nov. 23, 1999) at 6:2-8 9 (emphasis added) – it was well known in the prior art to have objects distributed by a hash function, as demonstrated in Beardsley, and then store the objects in a hash table using linked lists or external chaining.
	For example, Cox discloses that physical memory addresses are re-assigned to corresponding local memory addresses of the processor node. <i>Cox et al.</i> , U.S. Patent No. 5,918,249 at 2:29-38. Since hashing involves allocating locations in one address space to addresses of a second address space, as disclosed in Beardsley <i>Beardsley et al.</i> , U.S. Patent No. 5,991,775 at 6:2-8., one of ordinary skill in the art would understand how to combine the hashed page table with linked lists taught in Beardsley with Cox to implement the re-mapping Cox requires in its system.
	Furthermore, with respect to the use of linked list to address the key collision problem, it would have been obvious to one of ordinary skill in the art to store data in a linked list. The admitted prior art in the background of the '120 patent discloses that linked lists/external chaining were already common place to resolve collisions within hash tables. <i>Nemes</i> , "Methods and Apparatus for Information Storage and Retrieval Using a Hashing Technique with external chaining and On-The-Fly Removal of Expired Data," U.S. Patent No. 5,893,120 (issued Apr. 6, 1999) at 1:34-2:6 ("the '120 patent"). Thus, Cox

2

Asserted C U.S. Pat. No	laims From o. 5,893,120	U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
		and the admitted prior art of the '120 patent show that one of ordinary skill in the art understood how to use linked lists/external chaining to resolve collisions within hash tables, and would recognize that it would improve similar systems and methods in the same way.
		As both Cox and Beardsley disclose systems and methods for allocating data structures in segments within a cache for fast retrieval of data with a least recently used methodology for replacement of old data, one of ordinary skill in the art would understand how to combine the hashed page table with linked lists taught in Beardsley with Cox. Moreover, one of ordinary skill in art would recognize that it would improve similar systems and methods in the same way. Additionally, one of ordinary skill in the art would recognize that the result of combining Cox with Beardsley would be nothing more than the predictable use of prior art elements according to their established functions. The result would simply be Cox's buffer cache memory being implemented with a hashing function using linked lists/external chaining as to way to re-map physical addresses to local memory addresses.
		By way of further example, one of ordinary skill in the art would have combined hashing with linked lists as taught by these references and one of ordinary skill in the art to the system disclosed in the admitted prior and would have seen the benefits of doing so. Two such benefits, for example, include hash table collision resolution and the promotion of efficient local memory accessing.
[1b] a record search means utilizing a search key to access the linked list.	[5b] a record search means utilizing a search key to access a linked list of	Cox in combination with Beardsley discloses a record search means utilizing a search key to access the linked list. Cox also discloses a record search means utilizing a search key to access a linked list of records having the same hash
Joint Invalidity Contentions & Pro Documents	duction of	3 Case No. 6:09-CV-549-LED

Asserted Claims From	U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination
U.S. Pat. No. 5,893,120	with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
records having the same hash address,	address. For example, Cox discloses "[a] non-uniform memory accessing (NUMA) based multi-processor system that promotes local memory accessing and data migration to local processor nodes. The system includes mechanisms to re- map virtual and physical addresses to promote local memory accessing and implements a least recently used memory allocation mechanism to age non- local memory accesses out of memory to be re-read into local memory, which promotes data migration to local memory on processor nodes." <i>Cox et al.</i> , U.S. Patent No. 5,918.249 at Abstract. For example, Beardsley discloses that " <i>[h]ashing functions are well known</i> <i>techniques</i> used to randomly allocate locations in one address space to addresses of a second address space. Those skilled in the art will realize that the usual techniques of hashing chains are used to resolve conflicts" <i>Beardsley</i> <i>et al.</i> , U.S. Patent No. 5,991,775 at 6:2-8 (emphasis added) – it was well known in the prior art to have objects distributed by a hash function, as demonstrated in Beardsley, and then store the objects in a hash table using linked lists or external chaining. For example, Cox discloses that physical memory addresses are re-assigned to corresponding local memory addresses of the processor node. <i>Cox et al.</i> , U.S. Patent No. 5,918,249 at 2:29-38. Since hashing involves allocating locations in one address space to addresses of a second address space, as disclosed in Beardsley <i>Beardsley et al.</i> , U.S. Patent No. 5,991,775 at 6:2-8, one of ordinary skill in the art would understand how to combine the hashed page table with linked lists taught in Beardsley with Cox to implement the re-mapping Cox

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	Furthermore, with respect to the use of linked list to address the key collision problem, it would have been obvious to one of ordinary skill in the art to store data in a linked list. The admitted prior art in the background of the '120 patent discloses that linked lists/external chaining were already common place to resolve collisions within hash tables. <i>Nemes</i> , U.S. Patent No. 5,893,120 at 1:34-2:6. Thus, Cox and the admitted prior art of the '120 patent show that one of ordinary skill in the art understood how to use linked lists/external chaining to resolve collisions within hash tables, and would recognize that it would improve similar systems and methods in the same way.
	As both Cox and Beardsley disclose systems and methods for allocating data structures in segments within a cache for fast retrieval of data with a least recently used methodology for replacement of old data, one of ordinary skill in the art would understand how to combine the hashed page table with linked lists taught in Beardsley with Cox. Moreover, one of ordinary skill in art would recognize that it would improve similar systems and methods in the same way. Additionally, one of ordinary skill in the art would recognize that the result of combining Cox with Beardsley would be nothing more than the predictable use of prior art elements according to their established functions. The result would simply be Cox's buffer cache memory being implemented with a hashing function using linked lists/external chaining as to way to re-map physical addresses to local memory addresses.
	By way of further example, one of ordinary skill in the art would have combined hashing with linked lists as taught by these references and one of ordinary skill in the art to the system disclosed in the admitted prior and would have seen the benefits of doing so. Two such benefits, for example, include

5

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
		hash table collision resolution and the promotion of efficient local memory accessing.
[1c] the record search means including a means for identifying and removing at least some of the expired ones of the records from the linked list when the linked list is accessed, and	[5c] the record search means including means for identifying and removing at least some expired ones of the records from the linked list of records when the linked list is accessed, and	Cox in combination with Beardsley discloses the record search means including a means for identifying and removing at least some of the expired ones of the records from the linked list when the linked list is accessed. Cox also discloses the record search means including means for identifying and removing at least some expired ones of the records from the linked list of records when the linked list is accessed. For example, Cox discloses "[a] non-uniform memory accessing (NUMA) based multi-processor system that promotes local memory accessing and data migration to local processor nodes. The system includes mechanisms to remap virtual and physical addresses to promote local memory accessing and implements a least recently used memory allocation mechanism to age non-local memory accesses out of memory to be re-read into local memory, which promotes data migration to local memory on processor nodes." <i>Cox et al.</i> , U.S. Patent No. 5,918.249 at Abstract.

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	For example, Cox discloses that physical memory addresses are re-assigned to corresponding local memory addresses of the processor node. <i>Cox et al.</i> , U.S. Patent No. 5,918,249 at 2:29-38. Since hashing involves allocating locations in one address space to addresses of a second address space, as disclosed in Beardsley <i>Beardsley et al.</i> , U.S. Patent No. 5,991,775 at 6:2-8., one of ordinary skill in the art would understand how to combine the hashed page table with linked lists taught in Beardsley with Cox to implement the re-mapping Cox requires in its system.
	Furthermore, with respect to the use of linked list to address the key collision problem, it would have been obvious to one of ordinary skill in the art to store data in a linked list. The admitted prior art in the background of the '120 patent discloses that linked lists/external chaining were already common place to resolve collisions within hash tables. <i>Nemes</i> , U.S. Patent No. 5,893,120 at 1:34-2:6. Thus, Cox and the admitted prior art of the '120 patent show that one of ordinary skill in the art understood how to use linked lists/external chaining to resolve collisions within hash tables, and would recognize that it would improve similar systems and methods in the same way.
	As both Cox and Beardsley disclose systems and methods for allocating data structures in segments within a cache for fast retrieval of data with a least recently used methodology for replacement of old data, one of ordinary skill in the art would understand how to combine the hashed page table with linked lists taught in Beardsley with Cox. Moreover, one of ordinary skill in art would recognize that it would improve similar systems and methods in the same way. Additionally, one of ordinary skill in the art would recognize that the result of combining Cox with Beardsley would be nothing more than the predictable use of prior art elements according to their established functions.

7

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	The result would simply be Cox's buffer cache memory being implemented with a hashing function using linked lists/external chaining as to way to re-map physical addresses to local memory addresses.
	By way of further example, one of ordinary skill in the art would have combined hashing with linked lists as taught by these references and one of ordinary skill in the art to the system disclosed in the admitted prior and would have seen the benefits of doing so. Two such benefits, for example, include hash table collision resolution and the promotion of efficient local memory accessing.
	Furthermore, as summarized in Cox:
	In database management and other applications that allocate a cache in main memory to temporarily store data from external subsystems, the buffer cache memory 14 typically has a limited capacity. In operation, when a process running on a processor node 18 retrieves data into the application cache for the first time and the cache connected to the processor does not have sufficient capacity available to store the new data (step 40), then previously stored data has to be removed from the application cache in order to free-up memory space (step 42). The mechanism discussed in the present application determines what data will be purged (or overwritten) from the local memory based on a least recently used (LRU) memory management mechanism. The LRU memory management mechanism stores the most recently retrieved (or used) data in the local memory. Typically, when data is stored in the local

8

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
		memory the local processor time stamps the data. Thus, the data stored in the memory with the oldest time stamp will typically be overwritten. When space is available in the buffer cache (step 40) the process assigns the next available virtual address, to the data (step 44). <i>Cox et al.</i> , U.S. Patent No. 5,918,249 at 3:21-42.
[1d] means, utilizing the record search means, for accessing the linked list and, at the same time, removing at least some of the expired ones of the records in the linked list.	[5d] mea[n]s, utilizing the record search means, for inserting, retrieving, and deleting records from the system and, at the same time, removing at least some expired ones of the records in the accessed linked list of records.	Cox in combination with Beardsley discloses means, utilizing the record search means, for accessing the linked list and, at the same time, removing at least some of the expired ones of the records in the linked list. Cox also discloses utilizing the record search means, for inserting, retrieving, and deleting records from the system and, at the same time, removing at least some expired ones of the records in the accessed linked list of records. For example, Cox discloses "[a] non-uniform memory accessing (NUMA) based multi-processor system that promotes local memory accessing and data migration to local processor nodes. The system includes mechanisms to remap virtual and physical addresses to promote local memory accessing and implements a least recently used memory allocation mechanism to age non-local memory accesses out of memory to be re-read into local memory, which promotes data migration to local memory on processor nodes." <i>Cox et al.</i> , U.S. Patent No. 5,918.249 at Abstract.

9

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	the usual techniques of hashing chains are used to resolve conflicts" <i>Beardsley</i> <i>et al.</i> , U.S. Patent No. 5,991,775 at 6:2-8 (emphasis added) – it was well known in the prior art to have objects distributed by a hash function, as demonstrated in Beardsley, and then store the objects in a hash table using linked lists or external chaining.
	For example, Cox discloses that physical memory addresses are re-assigned to corresponding local memory addresses of the processor node. <i>Cox et al.</i> , U.S. Patent No. 5,918,249 at 2:29-38. Since hashing involves allocating locations in one address space to addresses of a second address space, as disclosed in Beardsley, <i>Beardsley et al.</i> , U.S. Patent No. 5,991,775 at 6:2-8. one of ordinary skill in the art would understand how to combine the hashed page table with linked lists taught in Beardsley with Cox to implement the re-mapping Cox requires in its system.
	Furthermore, with respect to the use of linked list to address the key collision problem, it would have been obvious to one of ordinary skill in the art to store data in a linked list. The admitted prior art in the background of the '120 patent discloses that linked lists/external chaining were already common place to resolve collisions within hash tables. <i>Nemes</i> , U.S. Patent No. 5,893,120 at 1:34-2:6. Thus, Cox and the admitted prior art of the '120 patent show that one of ordinary skill in the art understood how to use linked lists/external chaining to resolve collisions within hash tables, and would recognize that it would improve similar systems and methods in the same way.
	As both Cox and Beardsley disclose systems and methods for allocating data structures in segments within a cache for fast retrieval of data with a least recently used methodology for replacement of old data, one of ordinary skill in

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	the art would understand how to combine the hashed page table with linked lists taught in Beardsley with Cox. Moreover, one of ordinary skill in art would recognize that it would improve similar systems and methods in the same way. Additionally, one of ordinary skill in the art would recognize that the result of combining Cox with Beardsley would be nothing more than the predictable use of prior art elements according to their established functions. The result would simply be Cox's buffer cache memory being implemented with a hashing function using linked lists/external chaining as to way to re-map physical addresses to local memory addresses.
	By way of further example, one of ordinary skill in the art would have combined hashing with linked lists as taught by these references and one of ordinary skill in the art to the system disclosed in the admitted prior and would have seen the benefits of doing so. Two such benefits, for example, include hash table collision resolution and the promotion of efficient local memory accessing.
	Furthermore, as summarized in Cox: In database management and other applications that allocate a cache in main memory to temporarily store data from external subsystems, the buffer cache memory 14 typically has a limited capacity. In operation, when a process running on a processor node 18 retrieves data into the application cache for the first time and the cache connected to the processor does not have sufficient capacity available to store the new data (step 40), then previously stored data has to be removed from the application cache in order to free-up memory space (step 42). The

Asserted C	laims From	U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination
U.S. Pat. No	5. 5,893,120	with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
		 mechanism discussed in the present application determines what data will be purged (or overwritten) from the local memory based on a least recently used (LRU) memory management mechanism. The LRU memory management mechanism stores the most recently retrieved (or used) data in the local memory. Typically, when data is stored in the local memory the local processor time stamps the data. Thus, the data stored in the memory with the oldest time stamp will typically be overwritten. When space is available in the buffer cache (step 40) the process assigns the next available virtual address, to the data (step 44). <i>Cox et al.</i>, U.S. Patent No. 5,918,249 at 3:21-42. The process of the system is best understood with reference to Fig. 2: <i>Id.</i> at Figure 2.

12

13

Joint Invalidity Contentions & Production of Documents

Asserted C	laims From	U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination
U.S. Pat. N	o. 5,893,120	with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
2. The information storage and retrieval system according to claim 1 further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records.	6. The information storage and retrieval system according to claim 5 further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records.	Cox discloses an information storage and retrieval system further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records. For example, as summarized in Cox: In database management and other applications that allocate a cache in main memory to temporarily store data from external subsystems, the buffer cache memory 14 typically has a limited capacity. In operation, when a process running on a processor node 18 retrieves data into the application cache for the first time and the cache connected to the processor does not have sufficient capacity available to store the new data (step 40), then previously stored data has to be removed from the application cache in order to free-up memory space (step 42). The mechanism discussed in the present application determines what data will be purged (or overwritten) from the local memory based on a least recently used (LRU) memory management mechanism. The LRU memory management mechanism stores the most recently retrieved (or used) data in the local memory. Typically, when data is stored in the local memory the local processor time stamps the data. Thus, the data stored in the memory with the oldest time stamp will typically be overwritten. When space is available in the buffer cache (step 40) the process assigns the next available virtual address, to the data (step 44). <i>Cox et al.</i> , U.S. Patent No. 5,918,249 at 3:21-42.

14

Asserted Cl	laims From	U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination
U.S. Pat. No	o. 5,893,120	with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
		If the physical address is local to the node (step 50), the application determines if the local memory has sufficient capacity available to store the data, similar to step 40. If there is not enough memory space available in the buffer cache LRU data is purged, similar to step 42. Once the LRU data is purged or if space is available to store the data, the application process on node A retrieves, time stamps and stores the data in memory (step 52). <i>Id.</i> at 3:55-63. The process of the system is best understood with reference to Fig. 2: <i>Id.</i> at Figure 2.

Joint Invalidity Contentions & Production of Documents

Asserted C U.S. Pat. N	laims From o. 5,893,120	U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
		available in the buffer cache, then the system purges the last item (i.e., the least recently used item) from the buffer cache based on the least recently mechanism used by the system to make room for the new data. Therefore, the determination of when to delete data is dynamically determined by whether free space exists within the buffer cache.
		Additionally, it would have been obvious to one of ordinary skill in the art to combine Cox and Beardsley with Dirks, Thatte, the '663 patent and/or the Opportunistic Garbage Collection Articles to disclose an information storage and retrieval system further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records.
		Dirks discloses the management of memory in a computer system and more particularly to the allocation of address space in a virtual memory system, which dynamically determines how many records to sweep/remove upon each allocation. Disclosure of these claim elements in Dirks is clearly shown in Exhibit B-2, which is hereby incorporated by reference in its entirety.
		For example, as summarized in Dirks,
		each time a VSID is assigned from the free list to a new application or thread, a fixed number of entries in the page table are scanned to determine whether they have become inactive, by checking them against the VSIDs on the recycle list. Each entry which is identified as being inactive is removed from the page table. After all of the entries in the page table have been examined in this manner, the VSIDs in the recycle list can be transferred to the free list, since all of their associated page table entries
Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")	
---	--	
	will have been removed. This approach thereby guarantees that a predetermined number of VSIDs are always available in the free list without requiring a time-consuming scan of the complete page table at once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.	
	After [a] new VSID has been allocated, the system checks a flag RFLG to determine whether a recycle sweep is currently in progress (Step 20). If there is no sweep in progress, i.e. RFLG is not equal to one, a determination is made whether a sweep should be initiated. This is done by checking whether the inactive list is full, i.e. whether it contains x entries (Step 22). If the number of entries I on the inactive list is less than x, no further action is taken, and processing control returns to the operating system (Step 24). If, however, the inactive list is full at this time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are transferred to the recycle list, and an index n is reset to 1 (Step 28). The system then sweeps a predetermined number of page table entries PT _i on the page table, to detect whether any of them are inactive, i.e. their associated VSID is on the recycle list (Step 30). The predetermined number of entries that are swept is identified as <i>k</i> , where:	
	$k = \frac{\text{total number of page table entries}}{\text{maximum number of active threads}}$ <i>Id.</i> at 8:12-30.	
	Dirks discloses that any approach can be employed to determine the number of entries to be examined during each step of the sweeping process. <i>Id.</i> at 7:37-40. As stated in Dirks:	

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	Any other suitable approach can be employed to determine the number of entries to be examined during each step of the sweeping process. In this regard, it is not necessary that the number of examined entries be fixed for each step. Rather, it might vary from one step to the next. The only criterion is that the number of entries examined on each step be such that all entries in the page table are examined in a determinable amount of time or by the occurrence of a certain event, e.g. by the time the list of free VSIDs is empty. <i>Id.</i> at 7:38-46. Thus, Dirks dynamically determines the maximum number of records to sweep/remove by calculating a value <i>k. Id.</i> at 7:15-46, 7:66-8:56. As both Cox and Beardsley and Dirks relate to deletion of aged records upon the allocation of a new incoming record, one of ordinary skill in the art would have understood how to use Dirks' dynamic decision making process of determining the maximum number of records to sweep/remove in other hash tables implementations such as Cox and Beardsley. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining Dirks' deletion decision procedure with Cox and Beardsley nothing more than the predictable use of prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	combined Dirks' dynamic determination of the suitable number of entries to examine during each step of the sweeping process with Cox and Beardsley and would have seen the benefits of doing so. One possible benefit, for example, is saving the system from performing sometimes time-consuming sweeps.`
	Alternatively, one of ordinary skill in the art would be motivated to, and would understand how to, combine the system disclosed in Cox and Beardsley with the means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records disclosed by Thatte. For example, Thatte discloses a system and method using hash tables and/or linked lists and further discloses means for dynamically determining the maximum number for the record search means to remove in the accessed linked list of records. The disclosure of these claim elements in Thatte is clearly shown in the chart of Thatte, which is hereby incorporated by reference in its entirety.
	Moreover, one of ordinary skill in the art would recognize that these combinations would improve the similar systems and methods in the same way. Additionally, one of ordinary skill in the art would recognize that the result of combining Cox and Beardsley with Thatte would be nothing more than the predictable use of prior art elements according to their established functions. The resulting combination would include the capability to determine the maximum number for the record search means to remove.
	Further, one of ordinary skill in the art would be motivated to combine Cox and Beardsley with Thatte and recognize the benefits of doing so. For example, the removal of expired records described in Cox and Beardsley can be burdensome on the system, adding to the system's load and slowing down

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	the system's processing. One of ordinary skill in the art would recognize that combining Cox and Beardsley with the teachings of Thatte would solve this problem by dynamically determining how many records to delete based on, among other things, the system load. Moreover, the '120 patent discloses that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine Cox and Beardsley with Thatte.
	Alternatively, it would also be obvious to combine Cox and Beardsley with the '663 patent. Disclosure of these claim elements in the '663 patent is clearly shown in the chart of the '663 patent, which is hereby incorporated by reference in its entirety. For example, as summarized in the '663 patent:
	during normal times when the load on the storage system is not excessive, a non-contaminating but slow deletion of records is used. This slow, non-contaminating deletion involves closing the collision-resolution chain of locations by moving a record from a later position in the chain into the position of the record to be deleted. This leaves no deleted record locations in the storage space to slow down future searches. U.S. Patent 4,996,663 to Nemes at 2:24-34 ("The '663 patent").
	In times of heavy use, when deletions must be done rapidly and no time is available for decontamination, the record is simply marked as "deleted" and left in place. Later non-contaminating

21

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	probes in the vicinity of such deleted record locations automatically remove the contaminating deleted records by moving records in the chain as described above. <i>Id.</i> at 2:35-41.
	 This hybrid hashing technique has the decided advantage of automatically eliminating contamination caused by the fast-secure deletion procedure when the slower, non-contaminating deletion is used when the load on the system is at lower levels. <i>Id.</i> at 2:42-46. This hybrid deletion is shown in Figure 5.

Asserted C	laims From	U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination
U.S. Pat. N	o. 5,893,120	with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
		FIG.5 HYBRID DELETION (YES) (JUAD) (JUAD) (YES) (JUAD) (JUAD) (THRESHOLD (THRESHOLD) (FAST-SECURE) (FIG.7)

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	not actually delete records, rather it marks records as deleted. <i>Id.</i> at 8:1-33, Figure 7. These records are then actually deleted by a subsequent slow-non-contaminating delete 53. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
	Thus, the hybrid deletion procedure in the '663 patent dynamically determines a maximum number of records to remove. <i>See id.</i> at 6:40-64, Figure 5. If the fast-secure delete 52 is used, then maximum number of records is zero because records are not deleted they are only marked. <i>Id.</i> at 8:1-33, Figure 7. If the slow-non-contaminating delete 53 is used, then the maximum number of records to remove is all of the contaminated records in the bucket. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
	As both Cox and Beardsley and the '663 patent relate to deletion of records from hash tables using external chaining, one of ordinary skill in the art would have understood how to use the '663 patent's dynamic decision on whether to perform a deletion based on a systems load in other hash table implementations such as that described in Cox and Beardsley. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the '663 patent's deletion decision procedure with Cox and Beardsley would be nothing more than the predictable use of prior art elements according to their established functions.

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	By way of further example, one of ordinary skill in the art would have combined the '663 patent's dynamic decision on whether to perform a deletion based on a systems load as taught by the '663 patent and with Cox and Beardsley and would have seen the benefits of doing so. One such benefit, for example, is that the system would avoid performing deletions when the system load exceeded a threshold.
	Alternatively, it would also be obvious to combine Cox and Beardsley with the Opportunistic Garbage Collection Articles.
	The Opportunistic Garbage Collection Articles disclose a generational based garbage collection which dynamically determines how much garbage to collect. <i>See generally</i> , Paul R. Wilson and Thomas G. Moher, <i>Design of the Opportunistic Garbage Collector</i> , OOPSLA '89 Proceedings, October 1-6, 1989; Paul R. Wilson, <i>Opportunistic Garbage Collection</i> , ACM SIGPLAN Notices, Vol. 23, No. 12, December 1988.
	For example, the Opportunistic Garbage Collection Articles disclose in part:
	When a significant pause has been detected, a decision procedure is invoked to decide whether to garbage collect, and how many generations to scavenge. The fuller a generation is, the more likely it is to be scavenged; also, the longer the pause that has been detected, the larger the scope of the garbage collection is likely to be. <i>Design of the Opportunistic Garbage</i> <i>Collector</i> at 32.
	Every time a user-input routine is invoked, a decision routine can decide whether to garbage collect. As long as the decision routine takes no more

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	than a few milliseconds to execute, it should not interfere with responsiveness. Since it is only invoked at these times, it does not incur a continual run-time overhead. <i>Opportunistic Garbage Collection</i> at 100.
	This decision routine should take several things into account: 1) the volume of data allocated since the last scavenge, 2) how long it has been since the user has had an opportunity to interact, and 3) the height of the stack relative to its average height at reads since the last scavenge. If the product of the allocation and the compute time is high, and if the stack is low, the scavenge favorability measure is high. If it is especially high, a multi-generation scavenge is in order. <i>Id</i> .
	If these heuristics fail and a scavenge is forced instead by the filling of a generation's space, it is likely to happen during a significant compute- bound pausethe one that has just allocated the data that forced the collection. When the opportunistic mechanism fails to find the end of a pause, it may still succeed by default, embedding a scavenge pause within a larger pause. <i>Design of the Opportunistic Garbage Collector</i> at 32.
	As both Cox and Beardsley and the Opportunistic Garbage Collection Articles relate to deletion of aged records, one of ordinary skill in the art would have understood how to use the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion based on a system load in other hash table implementations such as Cox and Beardsley. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not

26

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the Opportunistic Garbage Collection Articles' deletion decision procedure with Cox and Beardsley would be nothing more than the predictable use of prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have combined the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion and how many generations to scavenge as taught by the Opportunistic Garbage Collection Articles and with Cox and Beardsley and would have seen the benefits of doing so. One such benefit, for example, is preventing slowdown of the system.
	Additionally, it would have been obvious to one of ordinary skill in the art to modify the system disclosed in Cox and Beardsley to dynamically determine the maximum number of expired records to remove in the accessed linked list of records. It is a fundamental concept in computer science and the relevant art that any variable or parameter affecting any aspect of a system can be dynamically determined based on information available to the system. One of ordinary skill in the art would have been motivated to combine the system disclosed in Cox and Beardsley with the fundamental concept of dynamically determining the maximum number of expired records to remove in an accessed linked list of records to solve a number of potential problems. For example, the removal of expired records described in Cox and Beardsleycan be burdensome on the system, adding to the system's load and slowing down the system's processing. Moreover, the removal could also force an interruption in real-time processing as the processing waits for the removal to complete.

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	One of ordinary skill in the art would have known that dynamically determining the maximum number to remove would limit the burden on the system and bound the length of any real-time interruption to prevent delays in processing. Indeed, Nemes concedes that such dynamic determination was obvious when he states in the '120 patent that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. To the extent that dynamically determining a maximum number of expired records is not disclosed by Cox in combination with Dirks, Thatte, the '663 Patent, or the Opportunistic Garbage Collection References, it is disclosed by Linux 2.0.1, which describes dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed. It would have been obvious to combine Linux 2.0.1 with Cox. For example, both Linux 2.0.1 and Cox describe systems and methods for performing data storage and retrieval using known programming techniques to yield a predictable result.
	When invoked, the function rt_cache_add automatically increments an integer variable rt_cache_size. <i>See</i> Linux 2.0.1, route.c at line 1359. When the function rt_cache_add removes an expired record, the function rt_cache_add decrements the variable rt_cache_size. <i>See</i> Linux 2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the number of records in the hash table (i.e., ip_rt_hash_table). Because

28

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	the function rt_cache_add automatically increments and decrements the variable rt_cache_size, the variable rt_cache_size is determined dynamically.
	Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1. The function rt_garbage_collect_1 loops through each of the linked lists in the ip_rt_hash_table global variable. <i>See</i> Linux 2.0.1, route.c at lines 1122-1138. In this way, the function rt_garbage_collect_1 accesses the linked list. When the function rt_garbage_collect_1 identifies a record that is expired, the function rt_garbage_collect_1 decrements the variable rt_cache_size and frees the record. <i>See</i> Linux 2.0.1, route.c at lines 1128-1135.
	Because all records in the linked list can be expired and all records in the hash table can be in the linked list, the variable rt_cache_size can represent a dynamically determined maximum number of expired ones of the records to remove when function rt_garbage_collect_1 accesses the linked list.
	Furthermore, the function rt_cache_add determines whether the number of records in the hash table exceeds a predetermined threshold RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_cache_add invokes a function rt_garbage_collect. <i>See</i> Linux 2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect invokes a function rt_garbage_collect_1. <i>See</i> Linux 2.0.1, route.c at line 1293. The function rt_garbage_collect invokes a function

29

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	rt_garbage_collect_1. <i>See</i> Linux 2.0.1, route.c at line 1293.
	The function rt_garbage_collect_1 loops through each linked list in the hash table. <i>See</i> Linux 2.0.1, route.c at lines 1116-1132. For each linked list in the hash table, the function rt_garbage_collect_1 looks at each record in the linked list. <i>See</i> Linux 2.0.1, route.c at lines 1120-1131. For each record in a linked list, the function rt_garbage_collect_1 determines whether the record's last use time plus the record's expiration factor is later than the current time. <i>See</i> Linux 2.0.1, route.c at line 1122. If the record's last use time plus the record's expiration factor is less than the current time, the function rt_garbage_collect_1 removes the record from the linked list. <i>See</i> Linux 2.0.1, route.c at lines 1124-1130. The record's expiration factor is based on a variable expire and the record's reference count. <i>See</i> Linux 2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed timeout value RT_CACHE_TIMEOUT. <i>See</i> Linux 2.0.1, route.c at line 1110.
	After looping through all of the linked lists in this manner, the function rt_garbage_collect_1 determines again whether the number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number of items in the hash table is still greater than the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves the variable expire and loops through each of the linked lists in the hash table. See Linux 2.0.1, route.c at line 1135. In this way, the function rt_garbage_collect_1 can remove additional records from the linked lists in the hash table. The function rt_garbage_collect_1 repeats this process until the total number of records in the hash table is less than the

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
U.S. Pat. No. 5,893,120	<pre>with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley") predetermined threshold RT_CACHE_SIZE_MAX. Under Bedrock's proposed claim constructions, the records removed by the function rt_garbage_collect_1 are "expired" records. That is, the records removed by the function rt_garbage_collect_1 are data items which after a limited time or after the occurrence of some event become obsolete, such that their presence in the storage system is no longer needed or desired. The function rt_cache_add only removes a record from a linked list when the record's last use time plus the fixed timeout value RT_CACHE_TIMEOUT is less than the current time and the record's reference count is zero. See Linux 2.0.1, route.c at line 1369. Thus, the maximum number of records that the function rt_cache_add can remove from a given linked list is limited to those records whose reference counts are zero. In contrast, the maximum number of records that the function rt_garbage_collect_1 can remove from a given linked list is not limited to those records whose reference counts are zero. See Linux 2.0.1, route.c at line 1122. Rather, the function rt_garbage_collect_1 can remove records whose reference counts are zero and records whose reference counts are greater than zero.</pre>
	Consequently, the maximum number of records that the function rt_garbage_collect_1 can remove from a linked list is different than the maximum number of records that the function rt_cache_add can remove from a linked list.

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
3. A method for storing and retrieving information records using a linked list to store and provide access to the records, at least some of the records automatically expiring, the method comprising the steps of:	7. A method for storing and retrieving information records using a hashing technique to provide access to the records and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring, the method comprising the steps of:	To the extent the preamble is a limitation, Cox discloses a method for storing and retrieving information records using a linked list to store and provide access to the records, at least some of the records automatically expiring. Cox also discloses a method for storing and retrieving information records using a hashing technique to provide access to the records and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring. For example, Cox discloses "[a] non-uniform memory accessing (NUMA) based multi-processor system that promotes local memory accessing and data migration to local processor nodes. The system includes mechanisms to re- map virtual and physical addresses to promote local memory accessing and implements a least recently used memory allocation mechanism to age non- local memory accesses out of memory to be re-read into local memory, which promotes data migration to local memory on processor nodes." <i>Cox et al.</i> , U.S. Patent No. 5,918.249 at Abstract. For example, Beardsley discloses that "[h]ashing functions are well known techniques used to randomly allocate locations in one address space to addresses of a second address space. Those skilled in the art will realize that the usual techniques of hashing chains are used to resolve conflicts" <i>Beardsley</i> <i>et al.</i> , U.S. Patent No. 5,991,775 at 6:2-8 (emphasis added) – it was well known in the prior art to have objects distributed by a hash function, as demonstrated in Beardsley, and then store the objects in a hash table using linked lists or external chaining. For example, Cox discloses that physical memory addresses are re-assigned to

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	corresponding local memory addresses of the processor node. <i>Cox et al.</i> , U.S. Patent No. 5,918,249 at 2:29-38. Since hashing involves allocating locations in one address space to addresses of a second address space, as disclosed in Beardsley <i>Beardsley et al.</i> , U.S. Patent No. 5,991,775 at 6:2-8., one of ordinary skill in the art would understand how to combine the hashed page table with linked lists taught in Beardsley with Cox to implement the re-mapping Cox requires in its system.
	Furthermore, with respect to the use of linked list to address the key collision problem, it would have been obvious to one of ordinary skill in the art to store data in a linked list. The admitted prior art in the background of the '120 patent discloses that linked lists/external chaining were already common place to resolve collisions within hash tables. <i>Nemes</i> , U.S. Patent No. 5,893,120 at 1:34-2:6. Thus, Cox and the admitted prior art of the '120 patent show that one of ordinary skill in the art understood how to use linked lists/external chaining to resolve collisions within hash tables, and would recognize that it would improve similar systems and methods in the same way.
	As both Cox and Beardsley disclose systems and methods for allocating data structures in segments within a cache for fast retrieval of data with a least recently used methodology for replacement of old data, one of ordinary skill in the art would understand how to combine the hashed page table with linked lists taught in Beardsley with Cox. Moreover, one of ordinary skill in art would recognize that it would improve similar systems and methods in the same way. Additionally, one of ordinary skill in the art would recognize that the result of combining Cox with Beardsley would be nothing more than the predictable use of prior art elements according to their established functions. The result would simply be Cox's buffer cache memory being implemented

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	with a hashing function using linked lists/external chaining as to way to re-map physical addresses to local memory addresses.
	By way of further example, one of ordinary skill in the art would have combined hashing with linked lists as taught by these references and one of ordinary skill in the art to the system disclosed in the admitted prior and would have seen the benefits of doing so. Two such benefits, for example, include hash table collision resolution and the promotion of efficient local memory accessing.
	Furthermore, as summarized in Cox:
	In database management and other applications that allocate a cache in main memory to temporarily store data from external subsystems, the buffer cache memory 14 typically has a limited capacity. In operation, when a process running on a processor node 18 retrieves data into the application cache for the first time and the cache connected to the processor does not have sufficient capacity available to store the new data (step 40), then previously stored data has to be removed from the application cache in order to free-up memory space (step 42). The mechanism discussed in the present application determines what data will be purged (or overwritten) from the local memory based on a least recently used (LRU) memory management mechanism. The LRU memory management mechanism stores the most recently retrieved (or used) data in the local memory. Typically, when data is stored in the local memory the local processor time stamps the data. Thus, the

Asserted Claims From	U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination
U.S. Pat. No. 5,893,120	with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	 data stored in the memory with the oldest time stamp will typically be overwritten. When space is available in the buffer cache (step 40) the process assigns the next available virtual address, to the data (step 44). <i>Cox et al.</i>, U.S. Patent No. 5,918,249 at 3:21-42. The process of the system is best understood with reference to Fig. 2: <i>Id.</i> at Figure 2.

35

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
		FOR EACH DATA ACCESS TO EXTERNAL STORAGE DO IS SPACE AVAILABLE IN APPLICATION BUFFER CACHE VIRTUAL ADDRESSES 40 NO PURGE LEAST RECENTLY USED DATA TO EDET 42
		46 46 DETERMINE IF PHYSICAL ADDRESS IS MAPPED TO GIVEN VIRTUAL ADDRESS YES 00 00 00 00 00 00 00 00 00 0
		56 IS ACCESS NO DO NOT UPDATE LRU TIME STAMP VES 58 UPDATE LRU TIME STAMP 52 UPDATE LRU TIME STAMP
[3a] accessing the linked list of records,	[7a] accessing a linked list of records having same hash address,	54 <u>ADDRESS THAT IS LOCAL</u> Cox discloses accessing a linked list of records. Cox also discloses accessing a linked list of records having same hash address.

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	For example, Cox discloses "[a] non-uniform memory accessing (NUMA) based multi-processor system that promotes local memory accessing and data migration to local processor nodes. The system includes mechanisms to remap virtual and physical addresses to promote local memory accessing and implements a least recently used memory allocation mechanism to age non-local memory accesses out of memory to be re-read into local memory, which promotes data migration to local memory on processor nodes." <i>Cox et al.</i> , U.S. Patent No. 5,918.249 at Abstract.
	For example, Beardsley discloses that "[h]ashing functions are well known techniques used to randomly allocate locations in one address space to addresses of a second address space. Those skilled in the art will realize that the usual techniques of hashing chains are used to resolve conflicts" Beardsley et al., U.S. Patent No. 5,991,775 at 6:2-8 (emphasis added) – it was well known in the prior art to have objects distributed by a hash function, as demonstrated in Beardsley, and then store the objects in a hash table using linked lists or external chaining.
	For example, Cox discloses that physical memory addresses are re-assigned to corresponding local memory addresses of the processor node. <i>Cox et al.</i> , U.S. Patent No. 5,918,249 at 2:29-38. Since hashing involves allocating locations in one address space to addresses of a second address space, as disclosed in Beardsley <i>Beardsley et al.</i> , U.S. Patent No. 5,991,775 at 6:2-8., one of ordinary skill in the art would understand how to combine the hashed page table with linked lists taught in Beardsley with Cox to implement the re-mapping Cox requires in its system.
	Furthermore, with respect to the use of linked list to address the key collision

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	problem, it would have been obvious to one of ordinary skill in the art to store data in a linked list. The admitted prior art in the background of the '120 patent discloses that linked lists/external chaining were already common place to resolve collisions within hash tables. <i>Nemes</i> , U.S. Patent No. 5,893,120 at 1:34-2:6. Thus, Cox and the admitted prior art of the '120 patent show that one of ordinary skill in the art understood how to use linked lists/external chaining to resolve collisions within hash tables, and would recognize that it would improve similar systems and methods in the same way.
	As both Cox and Beardsley disclose systems and methods for allocating data structures in segments within a cache for fast retrieval of data with a least recently used methodology for replacement of old data, one of ordinary skill in the art would understand how to combine the hashed page table with linked lists taught in Beardsley with Cox. Moreover, one of ordinary skill in art would recognize that it would improve similar systems and methods in the same way. Additionally, one of ordinary skill in the art would recognize that the result of combining Cox with Beardsley would be nothing more than the predictable use of prior art elements according to their established functions. The result would simply be Cox's buffer cache memory being implemented with a hashing function using linked lists/external chaining as to way to re-map physical addresses to local memory addresses.
	By way of further example, one of ordinary skill in the art would have combined hashing with linked lists as taught by these references and one of ordinary skill in the art to the system disclosed in the admitted prior and would have seen the benefits of doing so. Two such benefits, for example, include hash table collision resolution and the promotion of efficient local memory accessing.

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
[3b] identifying at least some of the automatically expired ones of the records, and	[7b] identifying at least some of the automatically expired ones of the records,	Cox discloses identifying at least some of the automatically expired ones of the records. For example, Cox discloses "[a] non-uniform memory accessing (NUMA) based multi-processor system that promotes local memory accessing and data migration to local processor nodes. The system includes mechanisms to re-
		map virtual and physical addresses to promote local memory accessing and implements a least recently used memory allocation mechanism to age non- local memory accesses out of memory to be re-read into local memory, which promotes data migration to local memory on processor nodes." <i>Cox et al.</i> , U.S. Patent No. 5,918.249 at Abstract.
[3c] removing at least some of the automatically expired records from the linked list when the linked list is accessed.	[7c] removing at least some of the automatically expired records from the linked list when the linked list is accessed, and	Cox discloses removing at least some of the automatically expired records from the linked list when the linked list is accessed. For example, Cox discloses "[a] non-uniform memory accessing (NUMA) based multi-processor system that promotes local memory accessing and data migration to local processor nodes. The system includes mechanisms to re- map virtual and physical addresses to promote local memory accessing and implements a least recently used memory allocation mechanism to age non- local memory accesses out of memory to be re-read into local memory, which promotes data migration to local memory on processor nodes." <i>Id</i> .
		For example, Beardsley discloses that "[h]ashing functions are well known techniques used to randomly allocate locations in one address space to addresses of a second address space. Those skilled in the art will realize that the usual techniques of hashing chains are used to resolve conflicts" Beardsley

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	<i>et al.</i> , U.S. Patent No. 5,991,775 at 6:2-8 (emphasis added) – it was well known in the prior art to have objects distributed by a hash function, as demonstrated in Beardsley, and then store the objects in a hash table using linked lists or external chaining.
	For example, Cox discloses that physical memory addresses are re-assigned to corresponding local memory addresses of the processor node. <i>Cox et al.</i> , U.S. Patent No. 5,918,249 at 2:29-38. Since hashing involves allocating locations in one address space to addresses of a second address space, as disclosed in Beardsley <i>Beardsley et al.</i> , U.S. Patent No. 5,991,775 at 6:2-8., one of ordinary skill in the art would understand how to combine the hashed page table with linked lists taught in Beardsley with Cox to implement the re-mapping Cox requires in its system.
	Furthermore, with respect to the use of linked list to address the key collision problem, it would have been obvious to one of ordinary skill in the art to store data in a linked list. The admitted prior art in the background of the '120 patent discloses that linked lists/external chaining were already common place to resolve collisions within hash tables. <i>Nemes</i> , U.S. Patent No. 5,893,120 at 1:34-2:6. Thus, Cox and the admitted prior art of the '120 patent show that one of ordinary skill in the art understood how to use linked lists/external chaining to resolve collisions within hash tables, and would recognize that it would improve similar systems and methods in the same way.
	As both Cox and Beardsley disclose systems and methods for allocating data structures in segments within a cache for fast retrieval of data with a least recently used methodology for replacement of old data, one of ordinary skill in the art would understand how to combine the hashed page table with linked

Joint Invalidity Contentions & Production of Documents

Asserted Claims U.S. Pat. No. 5,89	rom U.S 3,120	5. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	lists woul same the re predi The r with phys	taught in Beardsley with Cox. Moreover, one of ordinary skill in art ld recognize that it would improve similar systems and methods in the e way. Additionally, one of ordinary skill in the art would recognize that esult of combining Cox with Beardsley would be nothing more than the ictable use of prior art elements according to their established functions. result would simply be Cox's buffer cache memory being implemented a hashing function using linked lists/external chaining as to way to re-map ical addresses to local memory addresses.
	By w comb ordir have hash acces	way of further example, one of ordinary skill in the art would have bined hashing with linked lists as taught by these references and one of hary skill in the art to the system disclosed in the admitted prior and would seen the benefits of doing so. Two such benefits, for example, include table collision resolution and the promotion of efficient local memory ssing.
	Furth	hermore, as summarized in Cox:
		In database management and other applications that allocate a cache in main memory to temporarily store data from external subsystems, the buffer cache memory 14 typically has a limited capacity. In operation, when a process running on a processor node 18 retrieves data into the application cache for the first time and the cache connected to the processor does not have sufficient capacity available to store the new data (step 40), then previously stored data has to be removed from the application cache in order to free-up memory space (step 42). The mechanism discussed in the present application determines

Asserted Claims From	U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination
U.S. Pat. No. 5,893,120	with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	 what data will be purged (or overwritten) from the local memory based on a least recently used (LRU) memory management mechanism. The LRU memory management mechanism stores the most recently retrieved (or used) data in the local memory. Typically, when data is stored in the local memory the local processor time stamps the data. Thus, the data stored in the memory with the oldest time stamp will typically be overwritten. When space is available in the buffer cache (step 40) the process assigns the next available virtual address, to the data (step 44). <i>Cox et al.</i>, U.S. Patent No. 5,918,249 at 3:21-42. The process of the system is best understood with reference to Fig. 2: <i>Id.</i> at Figure 2.

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	FOR EACH DATA ACCESS TO EXTERNAL STORAGE DO IS SPACE AVAILABLE IN APPLICATION BUFFER CACHE 9 NO FIG. 2 GET NEXT AVAILABLE VIRTUAL ADDRESSES 40 NO
	PURGE LEAST RECENTLY USED DATA TO FREE MEMORY FOR NEW DATA 46 UETERMINE IF PHYSICAL ADDRESS IS MAPPED TO GIVEN VIRTUAL ADDRESS ? YES
	56 IS ACCESS IN LOCAL MEMORY YES 58 UPDATE LRU TIME STAMP 52 UPDATE LRU TIME STAMP 52 UPDATE LRU TIME STAMP 52 UPDATE LRU TIME STAMP 52 UPDATE LRU TIME STAMP 52 UPDATE LRU TIME STAMP 52 TO A NEW PHYSICAL ADDRESS THAT IS LOCAL
[7d] inserting, retrieving or deleting one of the	Cox discloses inserting, retrieving or deleting one of the records from the system following the step of removing.

Joint Invalidity Contentions & Production of Documents

Asserted C	Claims From	U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination
U.S. Pat. N	[0. 5,893,120	with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	records from the system following the step of removing.	 For example, Cox discloses "[a] non-uniform memory accessing (NUMA) based multi-processor system that promotes local memory accessing and data migration to local processor nodes. The system includes mechanisms to remap virtual and physical addresses to promote local memory accessing and implements a least recently used memory allocation mechanism to age non-local memory accesses out of memory to be re-read into local memory, which promotes data migration to local memory on processor nodes." <i>Cox et al.</i>, U.S. Patent No. 5,918.249 at Abstract. For example, Beardsley discloses that "<i>[h]ashing functions are well known techniques</i> used to randomly allocate locations in one address space to addresses of a second address space. Those skilled in the art will realize that the usual techniques of hashing chains are used to resolve conflicts" <i>Beardsley et al.</i>, U.S. Patent No. 5,991,775 at 6:2-8 (emphasis added) – it was well known in the prior art to have objects distributed by a hash function, as demonstrated in Beardsley, and then store the objects in a hash table using linked lists or external chaining. For example, Cox discloses that physical memory addresses are re-assigned to corresponding local memory addresses of a second address space, as disclosed in Beardsley <i>et al.</i>, U.S. Patent No. 5,918,249 at 2:29-38. Since hashing involves allocating locations in one address space to addresses of a second address space, as disclosed in Beardsley <i>et al.</i>, U.S. Patent No. 5,991,775 at 6:2-8, one of ordinary skill in the art would understand how to combine the hashed page table with linked lists taught in Beardsley with Cox to implement the re-mapping Cox requires in its system.

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	Furthermore, with respect to the use of linked list to address the key collision problem, it would have been obvious to one of ordinary skill in the art to store data in a linked list. The admitted prior art in the background of the '120 patent discloses that linked lists/external chaining were already common place to resolve collisions within hash tables. <i>Nemes</i> , U.S. Patent No. 5,893,120 at 1:34-2:6. Thus, Cox and the admitted prior art of the '120 patent show that one of ordinary skill in the art understood how to use linked lists/external chaining to resolve collisions within hash tables, and would recognize that it would improve similar systems and methods in the same way.
	As both Cox and Beardsley disclose systems and methods for allocating data structures in segments within a cache for fast retrieval of data with a least recently used methodology for replacement of old data, one of ordinary skill in the art would understand how to combine the hashed page table with linked lists taught in Beardsley with Cox. Moreover, one of ordinary skill in art would recognize that it would improve similar systems and methods in the same way. Additionally, one of ordinary skill in the art would recognize that the result of combining Cox with Beardsley would be nothing more than the predictable use of prior art elements according to their established functions. The result would simply be Cox's buffer cache memory being implemented with a hashing function using linked lists/external chaining as to way to re-map physical addresses to local memory addresses.
	By way of further example, one of ordinary skill in the art would have combined hashing with linked lists as taught by these references and one of ordinary skill in the art to the system disclosed in the admitted prior and would have seen the benefits of doing so. Two such benefits, for example, include hash table collision resolution and the promotion of efficient local memory

45

Asserted Cl U.S. Pat. No	aims From 5. 5,893,120	U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
		accessing.
		Furthermore, as summarized in Cox:
		In database management and other applications that allocate a cache in main memory to temporarily store data from external subsystems, the buffer cache memory 14 typically has a limited capacity. In operation, when a process running on a processor node 18 retrieves data into the application cache for the first time and the cache connected to the processor does not have sufficient capacity available to store the new data (step 40), then previously stored data has to be removed from the application cache in order to free-up memory space (step 42). The mechanism discussed in the present application determines what data will be purged (or overwritten) from the local memory based on a least recently used (LRU) memory management mechanism. The LRU memory management mechanism stores the most recently retrieved (or used) data in the local processor time stamps the data. Thus, the data stored in the memory with the oldest time stamp will typically be overwritten. When space is available in the buffer cache (step 40) the process assigns the next available virtual address, to the data (step 44). <i>Cox et al.</i> , U.S. Patent No. 5,918,249 at 3:21-42.
		Figure 2.

47

Joint Invalidity Contentions & Production of Documents

Asserted Claims From		U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination
U.S. Pat. No. 5,893,120		with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
4. The method according to claim 3 further including the step of dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed.	8. The method according to claim 7 further including the step of dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed.	Cox discloses dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed. For example, as summarized in Cox: In database management and other applications that allocate a cache in main memory to temporarily store data from external subsystems, the buffer cache memory 14 typically has a limited capacity. In operation, when a process running on a processor node 18 retrieves data into the application cache for the first time and the cache connected to the processor does not have sufficient capacity available to store the new data (step 40), then previously stored data has to be removed from the application cache in order to free-up memory space (step 42). The mechanism discussed in the present application determines what data will be purged (or overwritten) from the local memory based on a least recently used (LRU) memory management mechanism. The LRU memory management mechanism stores the most recently retrieved (or used) data in the local memory. Typically, when data is stored in the local memory the local processor time stamps the data. Thus, the data stored in the memory with the oldest time stamp will typically be overwritten. When space is available in the buffer cache (step 40) the process assigns the next available virtual address, to the data (step 44). <i>Cox et al.</i> , U.S. Patent No. 5,918,249 at 3:21-42. If the physical address is local to the node (step 50), the

48

Asserted Claims From	U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination
U.S. Pat. No. 5,893,120	with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	 application determines if the local memory has sufficient capacity available to store the data, similar to step 40. If there is not enough memory space available in the buffer cache LRU data is purged, similar to step 42. Once the LRU data is purged or if space is available to store the data, the application process on node A retrieves, time stamps and stores the data in memory (step 52). <i>Id.</i> at 3:55-63. The process of the system is best understood with reference to Fig. 2: <i>Id.</i> at Figure 2.

50

Joint Invalidity Contentions & Production of Documents

Asserted C U.S. Pat. No	laims From 5. 5,893,120	U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
		In summary, if there is space available in the buffer cache, then the system does not purge any data from the cache. If, however, free space is not available in the buffer cache, then the system purges the last item (i.e., the least recently used item) from the buffer cache based on the least recently mechanism used by the system to make room for the new data. Therefore, the determination of when to delete data is dynamically determined by whether free space exists within the buffer cache.
		Additionally, it would have been obvious to one of ordinary skill in the art to combine the system taught in Cox and Beardsley with Dirks, Thatte, the '663 patent, and/or the Opportunistic Garbage Collection Articles to disclose dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed.
		Dirks discloses the management of memory in a computer system and more particularly to the allocation of address space in a virtual memory system, which dynamically determines how many records to sweep/remove upon each allocation. Disclosure of these claim elements in Dirks is clearly shown in the chart of Dirks, which is hereby incorporated by reference in its entirety.
		For example, as summarized in Dirks,
		each time a VSID is assigned from the free list to a new application or thread, a fixed number of entries in the page table are scanned to determine whether they have become inactive, by checking them against the VSIDs on the recycle list. Each entry which is identified as being inactive is removed from the page table. After all of the entries in the page table have been examined in this manner, the VSIDs in the recycle list can be

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	transferred to the free list, since all of their associated page table entries will have been removed. This approach thereby guarantees that a predetermined number of VSIDs are always available in the free list without requiring a time-consuming scan of the complete page table at once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.
	After [a] new VSID has been allocated, the system checks a flag RFLG to determine whether a recycle sweep is currently in progress (Step 20). If there is no sweep in progress, i.e. RFLG is not equal to one, a determination is made whether a sweep should be initiated. This is done by checking whether the inactive list is full, i.e. whether it contains x entries (Step 22). If the number of entries I on the inactive list is less than x, no further action is taken, and processing control returns to the operating system (Step 24). If, however, the inactive list is full at this time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are transferred to the recycle list, and an index n is reset to 1 (Step 28). The system then sweeps a predetermined number of page table entries PT _i on the page table, to detect whether any of them are inactive, i.e. their associated VSID is on the recycle list (Step 30). The predetermined number of entries that are swept is identified as k , where:
	$k = \frac{\text{total number of page table entries}}{\text{maximum number of active threads}}$ <i>Id.</i> at 8:12-30.
	Dirks discloses that any approach can be employed to determine the number of entries to be examined during each step of the sweeping process. <i>Id.</i> at 7:37-40. As stated in Dirks:

Asserted Cl	aims From	U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination
U.S. Pat. No	5,893,120	with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
		Any other suitable approach can be employed to determine the number of entries to be examined during each step of the sweeping process. In this regard, it is not necessary that the number of examined entries be fixed for each step. Rather, it might vary from one step to the next. The only criterion is that the number of entries examined on each step be such that all entries in the page table are examined in a determinable amount of time or by the occurrence of a certain event, e.g. by the time the list of free VSIDs is empty. <i>Id.</i> at 7:38-46. Thus, Dirks dynamically determines the maximum number of records to sweep/remove by calculating a value <i>k. Id.</i> at 7:15-46, 7:66-8:56. As both Cox and Beardsley and Dirks relate to deletion of aged records upon the allocation of a new incoming record, one of ordinary skill in the art would have understood how to use Dirks' dynamic decision making process of determining the maximum number of records to sweep/remove in other hash tables implementations such as that described Cox and Beardsley. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining Dirks' deletion decision procedure with Cox and Beardsley would be nothing more than the predictable use of prior art elements according to their established functions.
Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")	
---	--	
	By way of further example, one of ordinary skill in the art would have combined Dirks' dynamic determination of the suitable number of entries to examine during each step of the sweeping process with Cox and Beardsley and would have seen the benefits of doing so. One possible benefit, for example, is saving the system from performing sometimes time-consuming sweeps.	
	Alternatively, one of ordinary skill in the art would be motivated to, and would understand how to, combine the system disclosed in Cox and Beardsley with the means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records disclosed by Thatte. For example, Thatte discloses a system and method using hash tables and/or linked lists and further discloses means for dynamically determining the maximum number for the record search means to remove in the accessed linked list of records. The disclosure of these claim elements in Thatte is clearly shown in the chart of Thatte, which is hereby incorporated by reference in its entirety.	
	Moreover, one of ordinary skill in the art would recognize that these combinations would improve the similar systems and methods in the same way. Additionally, one of ordinary skill in the art would recognize that the result of combining Cox and Beardsley with Thatte would be nothing more than the predictable use of prior art elements according to their established functions. The resulting combination would include the capability to determine the maximum number for the record search means to remove.	
	Further, one of ordinary skill in the art would be motivated to combine Cox and Beardsley with Thatte and recognized the benefits of doing so. For example, the removal of expired records described in Cox and Beardsleycan be	

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	burdensome on the system, adding to the system's load and slowing down the system's processing. One of ordinary skill in the art would recognize that combining Cox and Beardsley with the teachings of Thatte would solve this problem by dynamically determining how many records to delete based on, among other things, the system load. Moreover, the '120 patent discloses that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine Cox and Beardsley with Thatte.
	'663 patent. Disclosure of these claim elements in the '663 patent is clearly shown in the chart of the '663 patent, which is hereby incorporated by reference in its entirety. For example, as summarized in the '663 patent:
	during normal times when the load on the storage system is not excessive, a non-contaminating but slow deletion of records is used. This slow, non-contaminating deletion involves closing the collision-resolution chain of locations by moving a record from a later position in the chain into the position of the record to be deleted. This leaves no deleted record locations in the storage space to slow down future searches. U.S. Patent 4,996,663 to Nemes at 2:24-34 ("The '663 patent").
	In times of heavy use, when deletions must be done rapidly and no time is available for decontamination, the record is simply

55

Joint Invalidity Contentions & Production of Documents

Asserted Cla U.S. Pat. No	aims From 5,893,120	U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
		marked as "deleted" and left in place. Later non-contaminating probes in the vicinity of such deleted record locations automatically remove the contaminating deleted records by moving records in the chain as described above. <i>Id.</i> at 2:35-41.
		This hybrid hashing technique has the decided advantage of automatically eliminating contamination caused by the fast- secure deletion procedure when the slower, non-contaminating deletion is used when the load on the system is at lower levels. <i>Id.</i> at 2:42-46.
		This hybrid deletion is shown in Figure 5.

Asserted C	laims From	U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination
U.S. Pat. N	o. 5,893,120	with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
		FIG. 5 HYBRID DELETION (FAST-SECURE (FIG. 7) HESHOLD (FIG. 7) HESHOLD

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	not actually delete records, rather it marks records as deleted. <i>Id.</i> at 8:1-33, Figure 7. These records are then actually deleted by a subsequent slow-non-contaminating delete 53. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
	Thus, the hybrid deletion procedure in the '663 patent dynamically determines a maximum number of records to remove. <i>See id.</i> at 6:40-64, Figure 5. If the fast-secure delete 52 is used, then maximum number of records is zero because records are not deleted they are only marked. <i>Id.</i> at 8:1-33, Figure 7. If the slow-non-contaminating delete 53 is used, then the maximum number of records to remove is all of the contaminated records in the bucket. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
	As both Cox and Beardsley and the '663 patent relate to deletion of records from hash tables using external chaining, one of ordinary skill in the art would understood how to use the '663 patent's dynamic decision on whether to perform a deletion based on a systems load in other hash table implementations such as Cox and Beardsley. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the '663 patent's deletion decision procedure with Cox and Beardsley would be nothing more than the predictable use of prior art elements according to their established functions.

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	By way of further example, one of ordinary skill in the art would have combined the '663 patent's dynamic decision on whether to perform a deletion based on a systems load as taught by the '663 patent and with Cox and Beardsley and would have seen the benefits of doing so. One such benefit, for example, is that the system would avoid performing deletions when the system load exceeded a threshold.
	Alternatively, it would also be obvious to combine Cox and Beardsley with the Opportunistic Garbage Collection Articles.
	The Opportunistic Garbage Collection Articles disclose a generational based garbage collection which dynamically determines how much garbage to collect. <i>See generally</i> , Paul R. Wilson and Thomas G. Moher, <i>Design of the Opportunistic Garbage Collector</i> , OOPSLA '89 Proceedings, October 1-6, 1989; Paul R. Wilson, <i>Opportunistic Garbage Collection</i> , ACM SIGPLAN Notices, Vol. 23, No. 12, December 1988.
	For example, the Opportunistic Garbage Collection Articles disclose in part:
	When a significant pause has been detected, a decision procedure is invoked to decide whether to garbage collect, and how many generations to scavenge. The fuller a generation is, the more likely it is to be scavenged; also, the longer the pause that has been detected, the larger the scope of the garbage collection is likely to be. <i>Design of the Opportunistic Garbage</i> <i>Collector</i> at 32.
	Every time a user-input routine is invoked, a decision routine can decide whether to garbage collect. As long as the decision routine takes no more

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	than a few milliseconds to execute, it should not interfere with responsiveness. Since it is only invoked at these times, it does not incur a continual run-time overhead. <i>Opportunistic Garbage Collection</i> at 100.
	This decision routine should take several things into account: 1) the volume of data allocated since the last scavenge, 2) how long it has been since the user has had an opportunity to interact, and 3) the height of the stack relative to its average height at reads since the last scavenge. If the product of the allocation and the compute time is high, and if the stack is low, the scavenge favorability measure is high. If it is especially high, a multi-generation scavenge is in order. <i>Id</i> .
	If these heuristics fail and a scavenge is forced instead by the filling of a generation's space, it is likely to happen during a significant compute- bound pausethe one that has just allocated the data that forced the collection. When the opportunistic mechanism fails to find the end of a pause, it may still succeed by default, embedding a scavenge pause within a larger pause. <i>Design of the Opportunistic Garbage Collector</i> at 32.
	As both Cox and Beardsley and the Opportunistic Garbage Collection Articles relate to deletion of aged records, one of ordinary skill in the art would have understood how to use the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion based on a system load in other hash table implementations such as Cox and Beardsley. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not

60

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the Opportunistic Garbage Collection Articles' deletion decision procedure with Cox and Beardsley would be nothing more than the predictable use of prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have combined the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion and how many generations to scavenge as taught by the Opportunistic Garbage Collection Articles and with Cox and Beardsley and would have seen the benefits of doing so. One such benefit, for example, is that the system would only perform deletions when the system was not already too overloaded, thus preventing slowdown of the system.
	Additionally, it would have been obvious to one of ordinary skill in the art to modify the system disclosed in Cox and Beardsley to dynamically determine the maximum number of expired records to remove in the accessed linked list of records. It is a fundamental concept in computer science and the relevant art that any variable or parameter affecting any aspect of a system can be dynamically determined based on information available to the system. One of ordinary skill in the art would have been motivated to combine the system disclosed in Cox and Beardsley with the fundamental concept of dynamically determining the maximum number of expired records to remove in an accessed linked list of records to solve a number of potential problems. For example, the removal of expired records described in Cox and Beardsley can be burdensome on the system, adding to the system's load and slowing down the system's processing. Moreover, the removal could also force an interruption in

Joint Invalidity Contentions & Production of Documents

Asserted Cl U.S. Pat. No	aims From 5,893,120	U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
		real-time processing as the processing waits for the removal to complete. One of ordinary skill in the art would have known that dynamically determining the maximum number to remove would limit the burden on the system and bound the length of any real-time interruption to prevent delays in processing. Indeed, Nemes concedes that such dynamic determination was obvious when he states in the '120 patent that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how
		To the extent that dynamically determining a maximum number of expired records is not disclosed by Cox in combination with Dirks, Thatte, the '663 Patent, or the Opportunistic Garbage Collection References, it is disclosed by Linux 2.0.1, which describes dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed. It would have been obvious to combine Linux 2.0.1 with Cox. For example, both Linux 2.0.1 and Cox describe systems and methods for performing data storage and retrieval using known programming techniques to yield a predictable result.
		When invoked, the function rt_cache_add automatically increments an integer variable rt_cache_size. <i>See</i> Linux 2.0.1, route.c at line 1359. When the function rt_cache_add removes an expired record, the function rt_cache_add decrements the variable rt_cache_size. <i>See</i> Linux 2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the

62

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	number of records in the hash table (i.e., ip_rt_hash_table). Because the function rt_cache_add automatically increments and decrements the variable rt_cache_size, the variable rt_cache_size is determined dynamically.
	Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1. The function rt_garbage_collect_1 loops through each of the linked lists in the ip_rt_hash_table global variable. <i>See</i> Linux 2.0.1, route.c at lines 1122-1138. In this way, the function rt_garbage_collect_1 accesses the linked list. When the function rt_garbage_collect_1 identifies a record that is expired, the function rt_garbage_collect_1 decrements the variable rt_cache_size and frees the record. <i>See</i> Linux 2.0.1, route.c at lines 1128-1135.
	Because all records in the linked list can be expired and all records in the hash table can be in the linked list, the variable rt_cache_size can represent a dynamically determined maximum number of expired ones of the records to remove when function rt_garbage_collect_1 accesses the linked list.
	Furthermore, the function rt_cache_add determines whether the number of records in the hash table exceeds a predetermined threshold RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_cache_add invokes a function rt_garbage_collect. <i>See</i> Linux 2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect invokes a function rt_garbage_collect_1. <i>See</i> Linux 2.0.1, route.c at

63

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
	line 1293. The function rt_garbage_collect invokes a function
	rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.
	The function rt_garbage_collect_1 loops through each linked list in
	the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
	list in the hash table, the function rt_garbage_collect_1 looks at each record in the linked list Saa Linux 2.0.1 route c at lines 1120-1131. For each
	record in a linked list, the function rt garbage collect 1 determines
	whether the record's last use time plus the record's expiration factor is later
	than the current time. <i>See</i> Linux 2.0.1, route.c at line 1122. If the record's last
	function rt garbage collect 1 removes the record from the linked list
	See Linux 2.0.1, route.c at lines 1124-1130. The record's expiration factor is
	based on a variable expire and the record's reference count. See Linux
	2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
	timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.
	After looping through all of the linked lists in this manner, the function
	rt_garbage_collect_1 determines again whether the number of records
	in the hash table is less than the predetermined threshold
	RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number of items in the bash table is still greater than the predetermined threshold
	RT CACHE SIZE MAX, the function rt garbage collect 1 halves
	the variable expire and loops through each of the linked lists in the hash
	table. See Linux 2.0.1, route.c at line 1135. In this way, the function
	rt_garbage_collect_1 can remove additional records from the linked
	lists in the hash table. The function rt_garbage_collect_1 repeats this

Joint Invalidity Contentions & Production of Documents

Asserted Clai U.S. Pat. No.	ims From 5,893,120	U.S. Patent No. 5,918,249 to Cox et al. ("Cox") alone and in combination with U.S. Patent No. 5,991,775 to Beardsley et al. ("Beardsley")
		process until the total number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX.
		Under Bedrock's proposed claim constructions, the records removed by the function rt_garbage_collect_1 are "expired" records. That is, the records removed by the function rt_garbage_collect_1 are data items which after a limited time or after the occurrence of some event become obsolete, such that their presence in the storage system is no longer needed or desired.
		The function rt_cache_add only removes a record from a linked list when the record's last use time plus the fixed timeout value RT_CACHE_TIMEOUT is less than the current time and the record's reference count is zero. <i>See</i> Linux 2.0.1, route.c at line 1369. Thus, the maximum number of records that the function rt_cache_add can remove from a given linked list is limited to those records whose reference counts are zero.
		In contrast, the maximum number of records that the function rt_garbage_collect_1 can remove from a given linked list is not limited to those records whose reference counts are zero. <i>See</i> Linux 2.0.1, route.c at line 1122. Rather, the function rt_garbage_collect_1 can remove records whose reference counts are zero and records whose reference counts are greater than zero.
		Consequently, the maximum number of records that the function rt_garbage_collect_1 can remove from a linked list is different than the maximum number of records that the function rt_cache_add can remove from a linked list.

66

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Pat. No. 6,424,992 Devarakonda ("Devarakonda") alone and in combination
1. An information storage and retrieval system, the system comprising:	5. An information storage and retrieval system, the system comprising:	To the extent the preamble is a limitation, Devarakonda discloses an information storage and retrieval system.
		For example, Devarakonda describes a "method for providing an encapsulated cluster with affinity-based routing of client requests to nodes in the cluster," a part of which includes extending "the TCP router to maintain an affinity table of recent client TCP connections, after the TCP connections have been closed (by a FIN command)." U.S. Pat. No. '992 col. 4:8-9, 4:58-61. The affinity table stores and retrieves information about where to route packets from particular clients. <i>Id.</i>
[1a] a linked list to store and provide access to records stored in a memory of the system, at least some	[5a] a hashing means to provide access to records stored in a memory of the system and using an	Devarakonda discloses a hash table to store and provide access to records stored in a memory of the system, at least some of the records automatically expiring.
of the records automatically expiring,	external chaining technique to store the records with same hash address, at least some of the records automatically expiring,	For example, Devarakonda describes an affinity table that "contains information about recent connections Each row in this table is known as an affinity record 340. The affinity table 300 is searched for an affinity record with the same address as the client address in the newly arrived packet." Devarakonda explains that "[a]lternative implementations [for the affinity table] include, but are not limited to: arrays; balanced trees; and hash tables." Given this suggestion, it would have been obvious to one of ordinary skill in the art that the affinity table could be created using a linked list or a hash table with external chaining. There are a limited number of methods to solve the problem of collisions in a hash table. One of those methods, external chaining,
		patent. See U.S. Pat. No. '120 col. 1:53-59 ("Some form of collision resolution must therefore be provided. For example, the simple strategy called

Joint Invalidity Contentions & Production of Documents

1

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Pat. No. 6,424,992 Devarakonda ("Devarakonda") alone and in combination
		 'linear probing,' is often used. Another method for resolving collisions is called 'external chaining.'"). This method of collision resolution is described in the prior art cited by the '120 patent. See "The Art of Computer Programming", Sorting and Searching, D.E. Knuth, Addison-Wesley Series in Computer Science and Information Processing, pp. 513, 518, 1973. Indeed, Knuth recognizes that "[p]erhaps the most obvious way to solve this problem [of collision resolution] is to maintain M linked Lists, one for each possible hash code [i.e. external chaining]." See also Mark A. Weiss, Data Structures and Algorithm Analysis, p. 157, 1993 ("<i>Closed hashing</i>, also known as <i>open addressing</i>, is an alternative to resolving collisions with linked lists."). Thus, one of ordinary skill in the art would have been motivated by Knuth and Weiss to use external chaining to solve the problem in collision resolution in the hash table taught by Devarakonda. The records in the system Devarakonda discloses include records, at least some of which automatically expire. For example, the affinity records stored in the affinity record is tested to determine if it is too old. For example, each affinity record could include a timestamp, which is then compared to the current time. If the difference in those times exceeds a given threshold (also called the affinity period), for example 100 seconds, then execution proceeds to function block 1080, otherwise the affinity record is not too old, so execution proceeds to function block 1120." U.S. Pat. No. '992 col. 7:7-8, 7:25-32.
[1b] a record search means utilizing a search key to	[5b] a record search means utilizing a search key to	Devarakonda discloses a record search means utilizing a search key to access the affinity table.

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Pat. No. 6,424,992 Devarakonda ("Devarakonda") alone and in combination
access the linked list,	access a linked list of records having the same hash address,	For example, "[i]n function block 1030, a search is made in a table called the affinity table 300 shown in FIG. 3 The affinity table 300 is searched for an affinity record with the same address as the client address in the newly arrived packet." U.S. Pat. No. '922 col. 7:7-19. As discussed in [1a/5a], it would have been obvious to one of ordinary skill in the art that a linked list or a hash table using external chaining with linked lists
		could be used for the affinity table.
[1c] the record search means including a means for identifying and removing at least some of the expired ones of the records from the linked list when the linked list is accessed, and	[5c] the record search means including means for identifying and removing at least some expired ones of the records from the linked list of records when the linked list is accessed, and	 Devarakonda discloses the record search means including a means for identifying and removing at least some of the expired ones of the records from the affinity table when the affinity table is accessed. For example, during the search of the affinity table, a check is made to determine whether the affinity record found is "too old." If so, "the affinity record for which the affinity period has elapsed is removed from the affinity table 300. Then, in function block 1100, which follows both decision block 1050 and function block 1080, a new affinity record is created." U.S. Pat. No. '992 col. 7:38-42. As discussed in [1a/5a], it would have been obvious to one of ordinary skill in the art that a linked list or a hash table using external chaining with linked lists could be used for the affinity table.
[1d] means, utilizing the	[5d] mea[n]s, utilizing the	Devarakonda discloses means, utilizing the record search means, for accessing
record search means, for	record search means, for	the affinity table and, at the same time, removing at least some of the expired
accessing the linked list	inserting, retrieving, and	ones of the records in the affinity table. Devarakonda also discloses means,
and, at the same time, deleting records from the		unizing the record search means, for inserting and retrieving records from the
Joint Invalidity Contentions & Pro	oduction of	3 Case No. 6:09-CV-549-LED

Documents

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Pat. No. 6,424,992 Devarakonda ("Devarakonda") alone and in combination
removing at least some of the expired ones of the records in the linked list.	system and, at the same time, removing at least some expired ones of the records in the accessed	system and, at the same time, removing at least some expired ones of the records in the accessed affinity table. For example, during the search of the affinity table, a check is made to
linked list of records.	determine whether the affinity record found is "too old." If so, "the affinity record for which the affinity period has elapsed is removed from the affinity table 300." U.S. Pat. No. '992 col. 7:38-40. After this removal, a new affinity record is created and the information in the record is retrieved to create a connection record. "[I]n function block 1100, which follows both decision block 1050 and function block 1080, a new affinity record is created." U.S. Pat. No. '992 col. 7:40-42. "In function block 1200, a connection record is created. Such records contain sufficient information to identify this connection and a field indicating which server was assigned for this connection." U.S. Pat. No. '992 col. 7:66-8:2.	
		It would have been obvious to one skilled in the art that a deletion could have been done at the same time as the removal of records, since insertion, retrieval, and deletion are all basic functions that can be performed on a hash table. <i>See,</i> <i>e.g.</i> , "The Art of Computer Programming", Sorting and Searching, D.E. Knuth, Addison-Wesley Series in Computer Science and Information Processing, pp. 506-549; "Data Structures and Program Design", R.L. Kruse, Prentice-Hall, Inc. 1984, pp. 104-148. As discussed in [1a/5a], it would have been obvious to one of ordinary skill in the art that a linked list or a hash table using external chaining with linked lists
2. The information storage	6. The information storage	could be used for the affinity table. It would have been obvious to one of ordinary skill in the art to modify the

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Pat. No. 6,424,992 Devarakonda ("Devarakonda") alone and in combination
and retrieval system according to claim 1 further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records.	and retrieval system according to claim 5 further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records.	system disclosed in Devarakonda to dynamically determine the maximum number of expired records to remove in the accessed linked list of records. Devarakonda combined with Dirks, Thatte, the '663 patent and/or the Opportunistic Garbage Collection Articles discloses an information storage and retrieval system further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records.
		Dirks discloses the management of memory in a computer system and more particularly to the allocation of address space in a virtual memory system, which dynamically determines how many records to sweep/remove upon each allocation. Disclosure of these claim elements in Dirks is clearly shown in Exhibit B-2, which is hereby incorporated by reference in its entirety.
		 For example, as summarized in Dirks, each time a VSID is assigned from the free list to a new application or thread, a fixed number of entries in the page table are scanned to determine whether they have become inactive, by checking them against the VSIDs on the recycle list. Each entry which is identified as being inactive is removed from the page table. After all of the entries in the page table have been examined in this manner, the VSIDs in the recycle list can be transferred to the free list, since all of their associated page table entries will have been removed. This approach thereby guarantees that a predetermined number of VSIDs are always available in the free list without requiring a time-consuming scan of the complete page table at once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

Asserted Cl U.S. Pat. No	laims From o. 5,893,120	U.S. Pat. No. 6,424,992 Devarakonda ("Devarakonda") alone and in combination
		After [a] new VSID has been allocated, the system checks a flag RFLG to determine whether a recycle sweep is currently in progress (Step 20). If there is no sweep in progress, i.e. RFLG is not equal to one, a determination is made whether a sweep should be initiated. This is done by checking whether the inactive list is full, i.e. whether it contains x entries (Step 22). If the number of entries I on the inactive list is less than x, no further action is taken, and processing control returns to the operating system (Step 24). If, however, the inactive list is full at this time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are transferred to the recycle list, and an index n is reset to 1 (Step 28). The system then sweeps a predetermined number of page table entries PT ₁ on the page table, to detect whether any of them are inactive, i.e. their associated VSID is on the recycle list (Step 30). The predetermined number of entries that are swept is identified as k, where: $k = \frac{\text{total number of page table entries}}{\text{maximum number of active threads}}$ Dirks discloses that any approach can be employed to determine the number of entries to be examined during each step of the sweeping process. Id. at 7:37-40. As stated in Dirks: Any other suitable approach can be employed to determine the number of entries to be examined during each step of the sweeping process. In this regard, it is not necessary that the number of examined entries be fixed for each step. Rather, it might vary from one step to the next. The only criterion is that the number of entries examined on each step be such that all entries in the step be such that all entr

6

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 6,424,992 Devarakonda ("Devarakonda") alone and in combination
	the page table are examined in a determinable amount of time or by the occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.
	<i>Id.</i> at 7:38-46. Thus, Dirks dynamically determines the maximum number of records to sweep/remove by calculating a value <i>k</i> . <i>Id</i> . at 7:15-46, 7:66-8:56.
	As both Devarakonda and Dirks relate to deletion of aged records upon the allocation of a new incoming record, one of ordinary skill in the art would have understood how to use Dirks' dynamic decision making process of determining the maximum number of records to sweep/remove in other hash tables implementations such as Devarakonda. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining Dirks' deletion decision procedure with Devarakonda nothing more than the predictable use of prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have combined Dirks' dynamic determination of the suitable number of entries to examine during each step of the sweeping process with Devarakonda and would have seen the benefits of doing so. One possible benefit, for example, is saving the system from performing sometimes time-consuming sweeps.`

Asserted Cl U.S. Pat. No	aims From 5,893,120	U.S. Pat. No. 6,424,992 Devarakonda ("Devarakonda") alone and in combination
		Alternatively, one of ordinary skill in the art would be motivated to, and would understand how to, combine the system disclosed in Devarakonda with the means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records disclosed by Thatte. For example, Thatte discloses a system and method using hash tables and/or linked lists and further discloses means for dynamically determining the maximum number for the record search means to remove in the accessed linked list of records. The disclosure of these claim elements in Thatte is clearly shown in the chart of Thatte, which is hereby incorporated by reference in its entirety. Moreover, one of ordinary skill in the art would recognize that these combinations would improve the similar systems and methods in the same way. Additionally, one of ordinary skill in the art would recognize that the result of combining Devarakonda with Thatte would be nothing more than the predictable use of prior art elements according to their established functions. The resulting combination would include the capability to determine the maximum number for the record search means to remove.
		Further, one of ordinary skill in the art would be motivated to combine Devarakonda with Thatte and recognize the benefits of doing so. For example, the removal of expired records described in Devarakonda can be burdensome on the system, adding to the system's load and slowing down the system's processing. One of ordinary skill in the art would recognize that combining Devarakonda with the teachings of Thatte would solve this problem by dynamically determining how many records to delete based on, among other things, the system load. Moreover, the '120 patent discloses that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques

8

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 6,424,992 Devarakonda ("Devarakonda") alone and in combination
	whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine Devarakonda with Thatte.
	Alternatively, it would also be obvious to combine Devarakonda with the '663 patent. Disclosure of these claim elements in the '663 patent is clearly shown in the chart of the '663 patent, which is hereby incorporated by reference in its entirety. For example, as summarized in the '663 patent:
	during normal times when the load on the storage system is not excessive, a non-contaminating but slow deletion of records is used. This slow, non-contaminating deletion involves closing the collision-resolution chain of locations by moving a record from a later position in the chain into the position of the record to be deleted. This leaves no deleted record locations in the storage space to slow down future searches. U.S. Patent 4,996,663 to Nemes at 2:24-34 ("The '663 patent").
	In times of heavy use, when deletions must be done rapidly and no time is available for decontamination, the record is simply marked as "deleted" and left in place. Later non-contaminating probes in the vicinity of such deleted record locations automatically remove the contaminating deleted records by moving records in the chain as described above. <i>Id.</i> at 2:35-41.
	This hybrid hashing technique has the decided advantage of automatically eliminating contamination caused by the fast-

9

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 6,424,992 Devarakonda ("Devarakonda") alone and in combination
	secure deletion procedure when the slower, non-contaminating deletion is used when the load on the system is at lower levels. <i>Id.</i> at 2:42-46. This hybrid deletion is shown in Figure 5. FIG.5 HYBRID DELETION
	FAST-SECURE (FIG. 7) (FIG. 6) (FIG. 7) (FIG. 7) (FI

10

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 6,424,992 Devarakonda ("Devarakonda") alone and in combination
	<i>Id.</i> at Figure 5. During the hybrid deletion procedure decision block 51 checks the system load to determine if the system load is greater than a threshold. If the system load is greater than the threshold, then a fast-secure delete 52 is used. <i>Id.</i> at 6:40-64, Figure 5. On the other hand, if the system load is less than the threshold, then a slow-non-contaminating delete 53 is used. <i>Id.</i> The fast-secure delete 52 does not actually delete records, rather it marks records as deleted. <i>Id.</i> at 8:1-33, Figure 7. These records are then actually deleted by a subsequent slow-non-contaminating delete 53. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B. Thus, the hybrid deletion procedure in the '663 patent dynamically determines a maximum number of records to remove. <i>See id.</i> at 6:40-64, Figure 5. If the fast-secure delete 52 is used then maximum number of maximum number of records to remove.
	 fast-secure delete 52 is used, then maximum number of records is zero because records are not deleted they are only marked. <i>Id.</i> at 8:1-33, Figure 7. If the slow-non-contaminating delete 53 is used, then the maximum number of records to remove is all of the contaminated records in the bucket. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B. As both Devarakonda and the '663 patent relate to deletion of records from hash tables using external chaining, one of ordinary skill in the art would understood how to use the '663 patent's dynamic decision on whether to perform a deletion based on a systems load in other hash table implementations such as that described in Devarakonda. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 6,424,992 Devarakonda ("Devarakonda") alone and in combination
	all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the '663 patent's deletion decision procedure with Devarakonda would be nothing more than the predictable use of prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have combined the '663 patent's dynamic decision on whether to perform a deletion based on a systems load as taught by the '663 patent and with Devarakonda and would have seen the benefits of doing so. One such benefit, for example, is that the system would avoid performing deletions when the system load exceeded a threshold.
	Alternatively, it would also be obvious to combine Devarakonda with the Opportunistic Garbage Collection Articles. For example, the Opportunistic Garbage Collections Articles disclose in part:
	The Opportunistic Garbage Collection Articles disclose a generational based garbage collection which dynamically determines how much garbage to collect. <i>See generally</i> , Paul R. Wilson and Thomas G. Moher, <i>Design of the Opportunistic Garbage Collector</i> , OOPSLA '89 Proceedings, October 1-6, 1989; Paul R. Wilson, <i>Opportunistic Garbage Collection</i> , ACM SIGPLAN Notices, Vol. 23, No. 12, December 1988.
	For example, the Opportunistic Garbage Collection Articles disclose in part:
	When a significant pause has been detected, a decision procedure is

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 6,424,992 Devarakonda ("Devarakonda") alone and in combination
	invoked to decide whether to garbage collect, and how many generations to scavenge. The fuller a generation is, the more likely it is to be scavenged; also, the longer the pause that has been detected, the larger the scope of the garbage collection is likely to be. <i>Design of the Opportunistic Garbage</i> <i>Collector</i> at 32.
	Every time a user-input routine is invoked, a decision routine can decide whether to garbage collect. As long as the decision routine takes no more than a few milliseconds to execute, it should not interfere with responsiveness. Since it is only invoked at these times, it does not incur a continual run-time overhead. <i>Opportunistic Garbage Collection</i> at 100.
	This decision routine should take several things into account: 1) the volume of data allocated since the last scavenge, 2) how long it has been since the user has had an opportunity to interact, and 3) the height of the stack relative to its average height at reads since the last scavenge. If the product of the allocation and the compute time is high, and if the stack is low, the scavenge favorability measure is high. If it is especially high, a multi-generation scavenge is in order. <i>Id</i> .
	If these heuristics fail and a scavenge is forced instead by the filling of a generation's space, it is likely to happen during a significant compute- bound pausethe one that has just allocated the data that forced the collection. When the opportunistic mechanism fails to find the end of a pause, it may still succeed by default, embedding a scavenge pause within a larger pause. <i>Design of the Opportunistic Garbage Collector</i> at 32.
	As both Devarakonda and the Opportunistic Garbage Collection Articles relate

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 6,424,992 Devarakonda ("Devarakonda") alone and in combination
	to deletion of aged records, one of ordinary skill in the art would have understood how to use the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion based on a system load in other hash table implementations such as Devarakonda. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the Opportunistic Garbage Collection Articles' deletion decision procedure with Devarakonda would be nothing more than the predictable use of prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have combined the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion and how many generations to scavenge as taught by the Opportunistic Garbage Collection Articles and with Devarakonda and would have seen the benefits of doing so. One such benefit, for example, is preventing slowdown of the system.
	Additionally, it would have been obvious to one of ordinary skill in the art to modify the system disclosed in Devarakonda to dynamically determine the maximum number of expired records to remove in the accessed linked list of records. It is a fundamental concept in computer science and the relevant art that any variable or parameter affecting any aspect of a system can be dynamically determined based on information available to the system. One of

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 6,424,992 Devarakonda ("Devarakonda") alone and in combination
	ordinary skill in the art would have been motivated to combine the system disclosed in Devarakonda with the fundamental concept of dynamically determining the maximum number of expired records to remove in an accessed linked list of records to solve a number of potential problems. For example, the removal of expired records described in Devarakondacan be burdensome on the system, adding to the system's load and slowing down the system's processing. Moreover, the removal could also force an interruption in real- time processing as the processing waits for the removal to complete.
	One of ordinary skill in the art would have known that dynamically determining the maximum number to remove would limit the burden on the system and bound the length of any real-time interruption to prevent delays in processing. Indeed, Nemes concedes that such dynamic determination was obvious when he states in the '120 patent that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15.
	To the extent that dynamically determining a maximum number of expired records is not disclosed by Devarakonda in combination with Dirks, Thatte, the '663 Patent, or the Opportunistic Garbage Collection References, it is disclosed by Linux 2.0.1, which describes dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed. It would have been obvious to combine Linux 2.0.1 with Devarakonda. For example, both Linux 2.0.1 and Devarakonda describe systems and methods for performing data storage and retrieval using known programming techniques to yield a predictable result.

Joint Invalidity Contentions & Production of Documents

Asserted Claims F U.S. Pat. No. 5,893	rom ,120	U.S. Pat. No. 6,424,992 Devarakonda ("Devarakonda") alone and in combination
	Wint Wint Wint Vint 2.0 nu the var dy Fu Th liss lin acc ide der 2.0 Be tab dy	When invoked, the function rt_cache_add automatically increments an integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359. When the function rt_cache_add removes an expired record, the function tt_cache_add decrements the variable rt_cache_size. See Linux .0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the umber of records in the hash table (i.e., ip_rt_hash_table). Because the function rt_cache_add automatically increments and decrements the ariable rt_cache_size is determined and automatically increments and decrements the ariable rt_cache_size, the variable rt_cache_size is determined ynamically.
	Fu	urthermore, the function rt_cache_add determines whether the number of

Asserted Claims U.S. Pat. No. 5,8	93,120	U.S. Pat. No. 6,424,992 Devarakonda ("Devarakonda") alone and in combination
		records in the hash table exceeds a predetermined threshold RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_cache_add invokes a function rt_garbage_collect. <i>See</i> Linux 2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect invokes a function rt_garbage_collect_1. <i>See</i> Linux 2.0.1, route.c at line 1293. The function rt_garbage_collect invokes a function rt_garbage_collect_1. <i>See</i> Linux 2.0.1, route.c at line 1293. The function rt_garbage_collect_1 loops through each linked list in the hash table. <i>See</i> Linux 2.0.1, route.c at lines 1116-1132. For each linked list in the hash table, the function rt_garbage_collect_1 looks at each record in the linked list. <i>See</i> Linux 2.0.1, route.c at lines 1120-1131. For each record in a linked list, the function rt_garbage_collect_1 determines whether the record's last use time plus the record's expiration factor is later than the current time. <i>See</i> Linux 2.0.1, route.c at line 1122. If the record's last use time plus the record's expiration factor is less than the current time, the function rt_garbage_collect_1 removes the record from the linked list. <i>See</i> Linux 2.0.1, route.c at lines 1124-1130. The record's expiration factor is based on a variable expire and the record's reference count. <i>See</i> Linux 2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed timeout value RT_CACHE_TIMEOUT. <i>See</i> Linux 2.0.1, route.c at line 1110.
		After looping through all of the linked lists in this manner, the function rt_garbage_collect_1 determines again whether the number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX. <i>See</i> Linux 2.0.1, route.c at line 1133. If the number

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 6,424,992 Devarakonda ("Devarakonda") alone and in combination
	<pre>of items in the hash table is still greater than the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves the variable expire and loops through each of the linked lists in the hash table. See Linux 2.0.1, route.c at line 1135. In this way, the function rt_garbage_collect_1 can remove additional records from the linked lists in the hash table. The function rt_garbage_collect_1 repeats this process until the total number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX.</pre> Under Bedrock's proposed claim constructions, the records removed by the function rt_garbage_collect_1 are "expired" records. That is, the records removed by the function rt_garbage_collect_1 are data items which after a limited time or after the occurrence of some event become obsolete, such that their presence in the storage system is no longer needed or desired. The function rt_cache_add only removes a record from a linked list when the record's last use time plus the fixed timeout value RT_CACHE_TIMEOUT is less than the current time and the record's reference count is zero. See Linux 2.0.1, route.c at line 1369. Thus, the maximum number of records that the function rt_cache_add can remove from a given linked list is limited to those records whose reference counts are zero.
	In contrast, the maximum number of records that the function rt_garbage_collect_1 can remove from a given linked list is not limited to those records whose reference counts are zero. <i>See</i> Linux 2.0.1, route.c at line 1122. Rather, the function rt_garbage_collect_1 can remove records whose reference counts are zero and records whose reference

Joint Invalidity Contentions & Production of Documents

18

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Pat. No. 6,424,992 Devarakonda ("Devarakonda") alone and in combination
		counts are greater than zero. Consequently, the maximum number of records that the function rt_garbage_collect_1 can remove from a linked list is different than the maximum number of records that the function rt_cache_add can remove from a linked list.
3. A method for storing and retrieving information records using a linked list to store and provide access to the records, at least some of the records automatically expiring, the method comprising the steps of:	7. A method for storing and retrieving information records using a hashing technique to provide access to the records and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring, the method comprising the steps of:	To the extent the preamble is a limitation, Devarakonda discloses a method for storing and retrieving information records using an affinity table to store and provide access to the records, at least some of the records automatically expiring. It would have been obvious to one of ordinary skill in the art that a linked list or hashing with external chaining could be used to implement the affinity table. For example, Devarakonda describes a "method for providing an encapsulated cluster with affinity-based routing of client requests to nodes in the cluster," a part of which includes extending "the TCP router to maintain an affinity table of recent client TCP connections, after the TCP connections have been closed (by a FIN command)." U.S. Pat. No. '992 col. 4:8-9, 4:58-61. The affinity table stores and retrieves information about where to route packets from particular clients.
		searched for an affinity record with the same address as the client address in the newly arrived packet." Devarakonda states that "[a]lternative implementations [for the affinity table] include, but are not limited to: arrays; balanced trees; and hash tables." As discussed in [1a/5a], one of ordinary skill

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Pat. No. 6,424,992 I	Devarakonda ("Devarakonda") alone and in combination
		in the art would have known chaining using linked lists co	that a linked list or a hash table with external uld be used for the affinity table.
		The records in the system De of which automatically expire	varakonda discloses include records, at least some
		For example, the affinity recorpass a certain age. "In decisid determine if it is too old. For timestamp, which is then com those times exceeds a given the example 100 seconds, then ex- otherwise the affinity record if block 1120." U.S. Pat. No. "Second	ords stored in the affinity table expire when they on block 1070, the affinity record is tested to example, each affinity record could include a spared to the current time. If the difference in hreshold (also called the affinity period), for eccution proceeds to function block 1080, is not too old, so execution proceeds to function 092 col. 7:7-8, 7:25-32.
[3a] accessing the linked	[7a] accessing a linked list	Devarakonda discloses access	sing the affinity table of records.
	hash address,	For example, "[i]n function b affinity table 300 shown in F affinity record with the same packet."	lock 1030, a search is made in a table called the IG. 3 The affinity table 300 is searched for an address as the client address in the newly arrived
		As discussed in [1a/5a], it wo the art that a linked list or a h could be used for the affinity	uld have been obvious to one of ordinary skill in ash table using external chaining with linked lists table.
[3b] identifying at least	[7b] identifying at least	Devarakonda discloses identi	fying at least some of the automatically expired
some of the automatically	some of the automatically	ones of the records.	
Joint Invalidity Contentions & Pro	duction of	20	Case No. 6:09-CV-549-LED

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Pat. No. 6,424,992 Devarakonda ("Devarakonda") alone and in combination
and		For example, during the search of the affinity table, a check is made to determine whether the affinity record found is "too old." U.S. Pat. No. '992 col. 7:25-32.As discussed in [1a/5a], it would have been obvious to one of ordinary skill in the art that a linked list or a hash table using external chaining with linked lists could be used for the affinity table.
[3c] removing at least some of the automatically expired records from the linked list when the linked list is accessed.	[7c] removing at least some of the automatically expired records from the linked list when the linked list is accessed, and	 Devarakonda discloses removing at least some of the automatically expired records from the affinity table when the affinity table is accessed. For example, during the search of the affinity table, a check is made to determine whether the affinity record found is "too old." If so, "the affinity record for which the affinity period has elapsed is removed from the affinity table 300. Then, in function block 1100, which follows both decision block 1050 and function block 1080, a new affinity record is created." U.S. Pat. No. '992 col. 7:38-42. As discussed in [1a/5a], it would have been obvious to one of ordinary skill in the art that a linked list or a hash table using external chaining with linked lists could be used for the affinity table.
	[7d] inserting, retrieving or deleting one of the records from the system	Devarakonda discloses inserting, retrieving or deleting one of the records from the system following the step of removing.
	following the step of removing.	For example, during the search of the affinity table, a check is made to determine whether the affinity record found is "too old." If so, "the affinity record for which the affinity period has elapsed is removed from the affinity
Joint Invalidity Contentions & Pro	oduction of	21 Case No. 6:09-CV-549-LED

Documents

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Pat. No. 6,424,992 Devarakonda ("Devarakonda") alone and in combination
		 table 300." U.S. Pat. No. '992 col. 7:38-40. After this removal, a new affinity record is created and the information in the record is retrieved to create a connection record. "[I]n function block 1100, which follows both decision block 1050 and function block 1080, a new affinity record is created." U.S. Pat. No. '992 col. 7:40-42. "In function block 1200, a connection record is created. Such records contain sufficient information to identify this connection and a field indicating which server was assigned for this connection." U.S. Pat. No. '992 col. 7:66-8:2. As discussed in [1a/5a], it would have been obvious to one of ordinary skill in the art that a linked list or a hash table using external chaining with linked lists could be used for the affinity table.
4. The method according to claim 3 further including the step of dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed.	8. The method according to claim 7 further including the step of dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed.	It would have been obvious to one of ordinary skill in the art to modify the systems and methods disclosed in Devarakonda to dynamically determine the maximum number of expired records to remove in the accessed linked list of records. Devarakonda combined with Dirks, Thatte, the '663 patent, and/or the Opportunistic Garbage Collection Articles discloses dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed. Dirks discloses the management of memory in a computer system and more particularly to the allocation of address space in a virtual memory system, which dynamically determines how many records to sweep/remove upon each allocation. Disclosure of these claim elements in Dirks is clearly shown in the chart of Dirks, which is hereby incorporated by reference in its entirety.

Asserted Claims I U.S. Pat. No. 5,89	From 3,120	U.S. Pat. No. 6,424,992 Devarakonda ("Devarakonda") alone and in combination
		each time a VSID is assigned from the free list to a new application or thread, a fixed number of entries in the page table are scanned to determine whether they have become inactive, by checking them against the VSIDs on the recycle list. Each entry which is identified as being inactive is removed from the page table. After all of the entries in the page table have been examined in this manner, the VSIDs in the recycle list can be transferred to the free list, since all of their associated page table entries will have been removed. This approach thereby guarantees that a predetermined number of VSIDs are always available in the free list without requiring a time-consuming scan of the complete page table at once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.
		After [a] new VSID has been allocated, the system checks a flag RFLG to determine whether a recycle sweep is currently in progress (Step 20). If there is no sweep in progress, i.e. RFLG is not equal to one, a determination is made whether a sweep should be initiated. This is done by checking whether the inactive list is full, i.e. whether it contains x entries (Step 22). If the number of entries I on the inactive list is less than x, no further action is taken, and processing control returns to the operating system (Step 24). If, however, the inactive list is full at this time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are transferred to the recycle list, and an index n is reset to 1 (Step 28). The system then sweeps a predetermined number of page table entries PT _i on the page table, to detect whether any of them are inactive, i.e. their associated VSID is on the recycle list (Step 30). The predetermined number of entries that are swept is identified as <i>k</i> , where:

23
Asserted Cla U.S. Pat. No.	ims From 5,893,120	U.S. Pat. No. 6,424,992 Devarakonda ("Devarakonda") alone and in combination
		$k = \frac{\text{total number of page table entries}}{\text{maximum number of active threads}}$ <i>Id.</i> at 8:12-30.
		Dirks discloses that any approach can be employed to determine the number of entries to be examined during each step of the sweeping process. <i>Id.</i> at 7:37-40. As stated in Dirks:
		Any other suitable approach can be employed to determine the number of entries to be examined during each step of the sweeping process. In this regard, it is not necessary that the number of examined entries be fixed for each step. Rather, it might vary from one step to the next. The only criterion is that the number of entries examined on each step be such that all entries in the page table are examined in a determinable amount of time or by the occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.
		<i>Id.</i> at 7:38-46. Thus, Dirks dynamically determines the maximum number of records to sweep/remove by calculating a value <i>k</i> . <i>Id</i> . at 7:15-46, 7:66-8:56.
		As both Devarakonda and Dirks relate to deletion of aged records upon the allocation of a new incoming record, one of ordinary skill in the art would have understood how to use Dirks' dynamic decision making process of determining the maximum number of records to sweep/remove in other hash tables implementations such as that described Devarakonda. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while

24

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 6,424,992 Devarakonda ("Devarakonda") alone and in combination
	searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining Dirks' deletion decision procedure with Devarakonda would be nothing more than the predictable use of prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have combined Dirks' dynamic determination of the suitable number of entries to examine during each step of the sweeping process with Devarakonda and would have seen the benefits of doing so. One possible benefit, for example, is saving the system from performing sometimes time-consuming sweeps.
	Alternatively, one of ordinary skill in the art would be motivated to, and would understand how to, combine the system disclosed in Devarakonda with the means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records disclosed by Thatte. For example, Thatte discloses a system and method using hash tables and/or linked lists and further discloses means for dynamically determining the maximum number for the record search means to remove in the accessed linked list of records. The disclosure of these claim elements in Thatte is clearly shown in the chart of Thatte, which is hereby incorporated by reference in its entirety.
	Moreover, one of ordinary skill in the art would recognize that these combinations would improve the similar systems and methods in the same way. Additionally, one of ordinary skill in the art would recognize that the result of combining Devarakonda with Thatte would be nothing more than the

Joint Invalidity Contentions & Production of Documents

25

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 6,424,992 Devarakonda ("Devarakonda") alone and in combination
	predictable use of prior art elements according to their established functions. The resulting combination would include the capability to determine the maximum number for the record search means to remove.
	Further, one of ordinary skill in the art would be motivated to combine Devarakonda with Thatte and recognized the benefits of doing so. For example, the removal of expired records described in Devarakondacan be burdensome on the system, adding to the system's load and slowing down the system's processing. One of ordinary skill in the art would recognize that combining Devarakonda with the teachings of Thatte would solve this problem by dynamically determining how many records to delete based on, among other things, the system load. Moreover, the '120 patent discloses that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine Devarakonda with Thatte.
	Alternatively, it would also be obvious to combine Devarakonda with the '663 patent. Disclosure of these claim elements in the '663 patent is clearly shown in the chart of the '663 patent, which is hereby incorporated by reference in its entirety. For example, as summarized in the '663 patent:
	during normal times when the load on the storage system is not excessive, a non-contaminating but slow deletion of records is used. This slow, non-contaminating deletion involves closing the collision-resolution chain of locations by moving a record
Joint Invalidity Contentions & Production of	26 Case No. 6:09-CV-549-LED

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 6,424,992 Devarakonda ("Devarakonda") alone and in combination
	from a later position in the chain into the position of the record to be deleted. This leaves no deleted record locations in the storage space to slow down future searches. U.S. Patent 4,996,663 to Nemes at 2:24-34 ("The '663 patent").
	In times of heavy use, when deletions must be done rapidly and no time is available for decontamination, the record is simply marked as "deleted" and left in place. Later non-contaminating probes in the vicinity of such deleted record locations automatically remove the contaminating deleted records by moving records in the chain as described above. <i>Id.</i> at 2:35-41.
	 This hybrid hashing technique has the decided advantage of automatically eliminating contamination caused by the fast-secure deletion procedure when the slower, non-contaminating deletion is used when the load on the system is at lower levels. <i>Id.</i> at 2:42-46. This hybrid deletion is shown in Figure 5.

27

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 6,424,992 Devarakonda ("Devarakonda") alone and in combination
	FIG.5 HYBRID DELETION FIG.5 FIG
	to determine if the system load is greater than a threshold. If the system load is greater than the threshold, then a fast-secure delete 52 is used. <i>Id.</i> at 6:40-64, Figure 5. On the other hand, if the system load is less than the threshold, then a slow-non-contaminating delete 53 is used. <i>Id.</i> The fast-secure delete 52 does

28

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 6,424,992 Devarakonda ("Devarakonda") alone and in combination
	not actually delete records, rather it marks records as deleted. <i>Id.</i> at 8:1-33, Figure 7. These records are then actually deleted by a subsequent slow-non-contaminating delete 53. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
	Thus, the hybrid deletion procedure in the '663 patent dynamically determines a maximum number of records to remove. <i>See id.</i> at 6:40-64, Figure 5. If the fast-secure delete 52 is used, then maximum number of records is zero because records are not deleted they are only marked. <i>Id.</i> at 8:1-33, Figure 7. If the slow-non-contaminating delete 53 is used, then the maximum number of records to remove is all of the contaminated records in the bucket. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
	As both Devarakonda and the '663 patent relate to deletion of records from hash tables using external chaining, one of ordinary skill in the art would understood how to use the '663 patent's dynamic decision on whether to perform a deletion based on a systems load in other hash table implementations such as Devarakonda. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the '663 patent's deletion decision procedure with Devarakonda would be nothing more than the predictable use of prior art elements according to their established functions.

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 6,424,992 Devarakonda ("Devarakonda") alone and in combination
	By way of further example, one of ordinary skill in the art would have combined the '663 patent's dynamic decision on whether to perform a deletion based on a systems load as taught by the '663 patent and with Devarakonda and would have seen the benefits of doing so. One such benefit, for example, is that the system would avoid performing deletions when the system load exceeded a threshold.
	Alternatively, it would also be obvious to combine Devarakonda with the Opportunistic Garbage Collection Articles.
	The Opportunistic Garbage Collection Articles disclose a generational based garbage collection which dynamically determines how much garbage to collect. <i>See generally</i> , Paul R. Wilson and Thomas G. Moher, <i>Design of the Opportunistic Garbage Collector</i> , OOPSLA '89 Proceedings, October 1-6, 1989; Paul R. Wilson, <i>Opportunistic Garbage Collection</i> , ACM SIGPLAN Notices, Vol. 23, No. 12, December 1988.
	For example, the Opportunistic Garbage Collection Articles disclose in part:
	When a significant pause has been detected, a decision procedure is invoked to decide whether to garbage collect, and how many generations to scavenge. The fuller a generation is, the more likely it is to be scavenged; also, the longer the pause that has been detected, the larger the scope of the garbage collection is likely to be. <i>Design of the Opportunistic Garbage</i> <i>Collector</i> at 32.
	Every time a user-input routine is invoked, a decision routine can decide whether to garbage collect. As long as the decision routine takes no more

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 6,424,992 Devarakonda ("Devarakonda") alone and in combination
	than a few milliseconds to execute, it should not interfere with responsiveness. Since it is only invoked at these times, it does not incur a
	continual run-time overhead. <i>Opportunistic Garbage Collection</i> at 100.
	This decision routine should take several things into account: 1) the volume of data allocated since the last scavenge, 2) how long it has been since the
	user has had an opportunity to interact, and 3) the height of the stack
	relative to its average height at reads since the last scavenge. If the product
	scavenge favorability measure is high. If it is especially high, a multi-
	generation scavenge is in order. <i>Id</i> .
	If these heuristics fail and a scavenge is forced instead by the filling of a generation's space, it is likely to happen during a significant compute
	bound pausethe one that has just allocated the data that forced the
	collection. When the opportunistic mechanism fails to find the end of a
	a larger pause. <i>Design of the Opportunistic Garbage Collector</i> at 32.
	As both Devarakonda and the Opportunistic Garbage Collection Articles relate
	to deletion of aged records, one of ordinary skill in the art would have understood how to use the Opportunistic Carbage Collection Articles' dynamic
	decision on whether to perform a deletion based on a system load in other hash
	table implementations such as Devarakonda. Moreover, one of ordinary skill
	in the art would recognize that it would improve similar systems and methods
	in the same way. As the '120 patent states "[a] person skilled in the art will
	the linked list can be expanded to include techniques whereby not necessarily

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 6,424,992 Devarakonda ("Devarakonda") alone and in combination
	all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the Opportunistic Garbage Collection Articles' deletion decision procedure with Devarakonda would be nothing more than the predictable use of prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have combined the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion and how many generations to scavenge as taught by the Opportunistic Garbage Collection Articles and with Devarakonda and would have seen the benefits of doing so. One such benefit, for example, is that the system would only perform deletions when the system was not already too overloaded, thus preventing slowdown of the system.
	Additionally, it would have been obvious to one of ordinary skill in the art to modify the system disclosed in Devarakonda to dynamically determine the maximum number of expired records to remove in the accessed linked list of records. It is a fundamental concept in computer science and the relevant art that any variable or parameter affecting any aspect of a system can be dynamically determined based on information available to the system. One of ordinary skill in the art would have been motivated to combine the system disclosed in Devarakonda with the fundamental concept of dynamically determining the maximum number of expired records to remove in an accessed linked list of records to solve a number of potential problems. For example, the removal of expired records described in Devarakonda can be burdensome on the system, adding to the system's load and slowing down the system's processing. Moreover, the removal could also force an interruption in real-

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 6,424,992 Devarakonda ("Devarakonda") alone and in combination
	time processing as the processing waits for the removal to complete.
	One of ordinary skill in the art would have known that dynamically determining the maximum number to remove would limit the burden on the system and bound the length of any real-time interruption to prevent delays in processing. Indeed, Nemes concedes that such dynamic determination was obvious when he states in the '120 patent that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15.
	To the extent that dynamically determining a maximum number of expired records is not disclosed by Devarakonda in combination with Dirks, Thatte, the '663 Patent, or the Opportunistic Garbage Collection References, it is disclosed by Linux 2.0.1, which describes dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed. It would have been obvious to combine Linux 2.0.1 with Devarakonda. For example, both Linux 2.0.1 and Devarakonda describe systems and methods for performing data storage and retrieval using known programming techniques to yield a predictable result.
	When invoked, the function rt_cache_add automatically increments an integer variable rt_cache_size. <i>See</i> Linux 2.0.1, route.c at line 1359. When the function rt_cache_add removes an expired record, the function rt_cache_add decrements the variable rt_cache_size. <i>See</i> Linux 2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the

33

Asserted Clair U.S. Pat. No. 5	ns From 5,893,120	U.S. Pat. No. 6,424,992 Devarakonda ("Devarakonda") alone and in combination
		number of records in the hash table (i.e., ip_rt_hash_table). Because the function rt_cache_add automatically increments and decrements the variable rt_cache_size, the variable rt_cache_size is determined dynamically.
		Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1. The function rt_garbage_collect_1 loops through each of the linked lists in the ip_rt_hash_table global variable. <i>See</i> Linux 2.0.1, route.c at lines 1122-1138. In this way, the function rt_garbage_collect_1 accesses the linked list. When the function rt_garbage_collect_1 identifies a record that is expired, the function rt_garbage_collect_1 decrements the variable rt_cache_size and frees the record. <i>See</i> Linux 2.0.1, route.c at lines 1128-1135.
		Because all records in the linked list can be expired and all records in the hash table can be in the linked list, the variable rt_cache_size can represent a dynamically determined maximum number of expired ones of the records to remove when function rt_garbage_collect_1 accesses the linked list.
		Furthermore, the function rt_cache_add determines whether the number of records in the hash table exceeds a predetermined threshold RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_cache_add invokes a function rt_garbage_collect. <i>See</i> Linux 2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect invokes a function rt_garbage_collect_1. <i>See</i> Linux 2.0.1, route.c at

34

line 1293. The function rt_garbage_collect invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.The function rt_garbage_collect_1 loops through each linked list in the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked list in the hash table, the function rt_garbage_collect_1 looks at each record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each record in a linked list, the function rt_garbage_collect_1 determines	Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 6,424,992 Devarakonda ("Devarakonda") alone and in combination
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.The function rt_garbage_collect_1 loops through each linked list in the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked list in the hash table, the function rt_garbage_collect_1 looks at each record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each 		line 1293. The function rt_garbage_collect invokes a function
The function rt_garbage_collect_1 loops through each linked list in the hash table. <i>See</i> Linux 2.0.1, route.c at lines 1116-1132. For each linked list in the hash table, the function rt_garbage_collect_1 looks at each record in the linked list. <i>See</i> Linux 2.0.1, route.c at lines 1120-1131. For each record in a linked list, the function rt_garbage_collect_1 determines		rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.
the hash table. <i>See</i> Linux 2.0.1, route.c at lines 1116-1132. For each linked list in the hash table, the function rt_garbage_collect_1 looks at each record in the linked list. <i>See</i> Linux 2.0.1, route.c at lines 1120-1131. For each record in a linked list, the function rt_garbage_collect_1 determines		The function rt_garbage_collect_1 loops through each linked list in
list in the hash table, the function rt_garbage_collect_1 looks at each record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each record in a linked list, the function rt_garbage_collect_1 determines		the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each record in a linked list, the function rt. garbage_collect_1 determines		list in the hash table, the function rt_garbage_collect_1 looks at each
l record in a linked list, the function rt. garbage collect - I determines		record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
whether the record's last use time plus the record's expiration factor is later		record in a linked list, the function rt_garbage_collect_l determines
than the current time See Linux 2.0.1 route c at line 1122. If the record's last		than the current time See Linux 2.0.1 route c at line 1122. If the record's last
use time plus the record's expiration factor is less than the current time, the		use time plus the record's expiration factor is less than the current time, the
function rt garbage collect 1 removes the record from the linked list.		function rt garbage collect 1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record's expiration factor is		See Linux 2.0.1, route.c at lines 1124-1130. The record's expiration factor is
based on a variable expire and the record's reference count. See Linux		based on a variable expire and the record's reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed		2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.		timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.
After looping through all of the linked lists in this manner, the function		After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records		rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold		in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number		RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold		of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_l halves		RT_CACHE_SIZE_MAX, the function rt_garbage_collect_l halves
the variable expire and loops through each of the linked lists in the hash		the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1155. In this way, the function		table. See Linux 2.0.1, route.c at line 1155. In this way, the function
rt_garbage_correct_r can remove additional records from the linked		it_garbage_correct_r can remove additional records from the linked

Asserted Claims F U.S. Pat. No. 5,893	U.S. Pat. No. 6,424,992 Devarakonda ("Devarakonda") alone and in combination
	process until the total number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX.
	Under Bedrock's proposed claim constructions, the records removed by the function rt_garbage_collect_1 are "expired" records. That is, the records removed by the function rt_garbage_collect_1 are data items which after a limited time or after the occurrence of some event become obsolete, such that their presence in the storage system is no longer needed or desired.
	The function rt_cache_add only removes a record from a linked list when the record's last use time plus the fixed timeout value RT_CACHE_TIMEOUT is less than the current time and the record's reference count is zero. <i>See</i> Linux 2.0.1, route.c at line 1369. Thus, the maximum number of records that the function rt_cache_add can remove from a given linked list is limited to those records whose reference counts are zero.
	In contrast, the maximum number of records that the function rt_garbage_collect_1 can remove from a given linked list is not limited to those records whose reference counts are zero. <i>See</i> Linux 2.0.1, route.c at line 1122. Rather, the function rt_garbage_collect_1 can remove records whose reference counts are zero and records whose reference counts are greater than zero.
	Consequently, the maximum number of records that the function rt_garbage_collect_1 can remove from a linked list is different than the maximum number of records that the function rt_cache_add can remove from a linked list.

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 6,424,992 Devarakonda ("Devarakonda") alone and in combination

37

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Pat. No. 6,243,667 Kerr ("Kerr") alone and in combination
1. An information storage	5. An information storage	To the extent the preamble is a limitation, Kerr discloses an information
and retrieval system, the system comprising:	and retrieval system, the system comprising:	storage and retrieval system.
		For example, Kerr describes a "method and system for switching in networks responsive to message flow patterns." Kerr at col. 1:48-49. Part of that system includes a flow cache "in which routing information to be used for packets 150 in each particular message flow 160 is recorded and from which such routing information is retrieved for use." Kerr at col. 3:42-45.
[1a] a linked list to store and provide access to records stored in a memory of the system, at least some of the records automatically expiring,	[5a] a hashing means to provide access to records stored in a memory of the system and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring,	 Kerr discloses a linked list to store and provide access to records stored in a memory of the system, at least some of the records automatically expiring. Kerr also discloses a hashing means to provide access to records stored in a memory of the system and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring. For example, Kerr describes a flow cache that "comprises a memory which associates flow keys 210 with information about message flows 160 identified by those flow keys 310. The flow cache 300 includes a set of buckets 301. Each bucket 301 includes a linked list of entries 302. Each entry 302 includes information about the treatment of packets 150 to the destination device 130 for that message flow 160." Kerr at col. 6:32-41. The records in the system Kerr discloses includes records, at least some of which automatically expire.
		For example, Kerr explains that "[a]t step 241, the routing device 140

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Pat. No. 6,24	3,667 Kerr ("Kerr") alone and in combination
		examines each entry in t time a packet 150 was ro exceeds a first selected t entry is considered to ha valid." Kerr at col. 5:52	he flow cache and compares a current time with a last buted using that particular entry. If the difference imeout, the message flow 160 represented by that we expired due to nonuse and thus to no longer be -57.
		Kerr further explains that also examines the entry if first time a packet 150 we exceeds a second selected entry is considered to hat The second selected time 5:58-65.	t "[i]n a preferred embodiment, the routing device 140 in the flow cache and compares a current time with a ras routed using that particular entry. If the difference d timeout, the message flow 160 represented by that ve expired due to age and thus to no longer be valid. eout is preferably about one minute." Kerr at col.
		Kerr also states that "[i]r examines the entry in the information has changed changed conditions. Oth flow 160 to be expired in which might affect the p 160. The routing device recently-used basis if the	a preferred embodiment, the routing device 140 also e flow cache and determines if the "next hop" d. If so, the message flow 160 is expired due to her changed conditions which might cause a message holude changes in access control lists or other changes roper treatment of packets 150 in the message flow 140 also expires entries in the flow cache on a least- e flow cache becomes too full." Kerr at col. 6:10-19.
[1b] a record search means	[5b] a record search means	Kerr discloses a record s	earch means utilizing a search key to access the linked
utilizing a search key to	utilizing a search key to	list. Kerr also discloses	a record search means utilizing a search key to access
access the linked list,	access a linked list of	a linked list of records ha	aving the same hash address.
	hash address.	For example, the flow ca	che "associates flow keys 310 with information about
Joint Invalidity Contentions & Pro	duction of	2	Case No. 6:09-CV-549-LED

Documents

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Pat. No. 6,243,667 Kerr ("Kerr") alone and in combination
		message flows 160 identified by those flow keys 310." Kerr at col. 6:32-34. Those flow keys are used to access records stored in the linked lists in the flow cache hash table. Kerr at col. 6:32-35. <i>See also</i> Kerr at 3:57-4:12.
[1c] the record search means including a means for identifying and removing at least some of	[5c] the record search means including means for identifying and removing at least some expired ones	Kerr discloses the record search means including a means for identifying and removing at least some of the expired ones of the records from the linked list when the linked list is accessed.
the expired ones of the records from the linked list when the linked list is accessed, and	of the records from the linked list of records when the linked list is accessed, and	For example, the routing device described in Kerr identifies expired entries for message flows and "[i]f the message flow is no longer valid, the routing device continues with the step 242. At step 242, the routing device 140 collects historical information about the message flow 160 from the entry in the flow cache, and deletes the entry." Kerr at col. 6:22-27. <i>See also</i> Kerr at 3:57:4:12, 6:11-19.
[1d] means, utilizing the record search means, for accessing the linked list and, at the same time, removing at least some of the expired ones of the records in the linked list.	[5d] mea[n]s, utilizing the record search means, for inserting, retrieving, and deleting records from the system and, at the same time, removing at least some expired ones of the records in the accessed linked list of records.	Kerr discloses means, utilizing the record search means, for accessing the linked list and, at the same time, removing at least some of the expired ones of the records in the linked list. Kerr also discloses means, utilizing the record search means, for inserting, retrieving, and deleting records from the system and, at the same time, removing at least some expired ones of the records in the accessed linked list of records. For example, the routing device described in Kerr will build a new entry in the flow cache if one does not already exist for the packet's message flow. See Kerr at col. 4:12-13. The device then identifies expired entries for message flows and "[i]f the message flow is no longer valid, the routing device continues with the step 242. At step 242, the routing device 140 collects

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Pat. No. 6,243,667 Kerr ("Kerr") alone and in combination
		cache, and deletes the entry." Kerr at col. 6:22-27. The routing device in Kerr also performs a retrieval and deletion. For example, "[a]t a step 225, the routing device 140 retrieves routing information from the entry in the flow cache for the identified message flow 160." Kerr at col. 4:52-55; <i>see also</i> Kerr at col. 6:25-27.
		To the extent Kerr does not include means for inserting, retrieving, and deleting records utilizing the record search means, it would have been obvious to one skilled in the art that insertion, retrieval or deletion could have been done, since these are all basic functions that can be performed on a hash table or a linked list in similar ways when the hash table or linked list is accessed. <i>See, e.g.,</i> "The Art of Computer Programming", Sorting and Searching, D.E. Knuth, Addison-Wesley Series in Computer Science and Information Processing, pp. 506-549; "Data Structures and Program Design", R.L. Kruse, Prentice-Hall, Inc. 1984, pp. 104-148.
2. The information storage and retrieval system according to claim 1 further including means for dynamically determining maximum number for the record search means to	6. The information storage and retrieval system according to claim 5 further including means for dynamically determining maximum number for the record search means to	Kerr combined with Dirks, Thatte, the '663 patent and/or the Opportunistic Garbage Collection Articles discloses an information storage and retrieval system further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records. Dirks discloses the management of memory in a computer system and more
remove in the accessed linked list of records.	remove in the accessed linked list of records.	particularly to the allocation of address space in a virtual memory system, which dynamically determines how many records to sweep/remove upon each allocation. Disclosure of these claim elements in Dirks is clearly shown in Exhibit B-2, which is hereby incorporated by reference in its entirety.

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 6,243,667 Kerr ("Kerr") alone and in combination
U.S. Pat. No. 5,893,120	 For example, as summarized in Dirks, each time a VSID is assigned from the free list to a new application or thread, a fixed number of entries in the page table are scanned to determine whether they have become inactive, by checking them against the VSIDs on the recycle list. Each entry which is identified as being inactive is removed from the page table. After all of the entries in the page table have been examined in this manner, the VSIDs in the recycle list can be transferred to the free list, since all of their associated page table entries will have been removed. This approach thereby guarantees that a predetermined number of VSIDs are always available in the free list without requiring a time-consuming scan of the complete page table at once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14. After [a] new VSID has been allocated, the system checks a flag RFLG to determine whether a recycle sweep is currently in progress (Step 20). If there is no sweep in progress, i.e. RFLG is not equal to one, a determination is made whether a sweep should be initiated. This is done by checking whether the inactive list is full, i.e. whether it contains x entries (Step 22). If the number of entries I on the inactive list is less than x, no further action is taken, and processing control returns to the operating system (Step 24). If, however, the inactive list is full at this time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are transferred to the recycle list, and an index n is reset to 1 (Step 28). The system then sweeps a predetermined number of page table entries PT_i on the page table entries to a new application.
	associated VSID is on the recycle list (Step 30). The predetermined number of entries that are swept is identified as <i>k</i> , where:

5

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 6,243,667 Kerr ("Kerr") alone and in combination
	$k = \frac{\text{total number of page table entries}}{\text{maximum number of active threads}}$ <i>Id.</i> at 8:12-30.
	Dirks discloses that any approach can be employed to determine the number of entries to be examined during each step of the sweeping process. <i>Id.</i> at 7:37-40. As stated in Dirks:
	Any other suitable approach can be employed to determine the number of entries to be examined during each step of the sweeping process. In this regard, it is not necessary that the number of examined entries be fixed for each step. Rather, it might vary from one step to the next. The only criterion is that the number of entries examined on each step be such that all entries in the page table are examined in a determinable amount of time or by the occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.
	<i>Id.</i> at 7:38-46. Thus, Dirks dynamically determines the maximum number of records to sweep/remove by calculating a value k . <i>Id.</i> at 7:15-46, 7:66-8:56.
	As both Kerr and Dirks relate to deletion of aged records upon the allocation of a new incoming record, one of ordinary skill in the art would have understood how to use Dirks' dynamic decision making process of determining the maximum number of records to sweep/remove in other hash tables implementations such as Kerr. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can

6

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 6,243,667 Kerr ("Kerr") alone and in combination
	be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining Dirks' deletion decision procedure with Kerr nothing more than the predictable use of prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have combined Dirks' dynamic determination of the suitable number of entries to examine during each step of the sweeping process with Kerr and would have seen the benefits of doing so. One possible benefit, for example, is saving the system from performing sometimes time-consuming sweeps.`
	Alternatively, one of ordinary skill in the art would be motivated to, and would understand how to, combine the system disclosed in Kerr with the means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records disclosed by Thatte. For example, Thatte discloses a system and method using hash tables and/or linked lists and further discloses means for dynamically determining the maximum number for the record search means to remove in the accessed linked list of records. The disclosure of these claim elements in Thatte is clearly shown in the chart of Thatte, which is hereby incorporated by reference in its entirety.
	Moreover, one of ordinary skill in the art would recognize that these combinations would improve the similar systems and methods in the same way. Additionally, one of ordinary skill in the art would recognize that the result of combining Kerr with Thatte would be nothing more than the predictable use of prior art elements according to their established functions.

7

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 6,243,667 Kerr ("Kerr") alone and in combination
	The resulting combination would include the capability to determine the maximum number for the record search means to remove.
	Further, one of ordinary skill in the art would be motivated to combine Kerr with Thatte and recognize the benefits of doing so. For example, the removal of expired records described in Kerr can be burdensome on the system, adding to the system's load and slowing down the system's processing. One of ordinary skill in the art would recognize that combining Kerr with the teachings of Thatte would solve this problem by dynamically determining how many records to delete based on, among other things, the system load. Moreover, the '120 patent discloses that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine Kerr with Thatte.
	Alternatively, it would also be obvious to combine Kerrwith the '663 patent. Disclosure of these claim elements in the '663 patent is clearly shown in the chart of the '663 patent, which is hereby incorporated by reference in its entirety. For example, as summarized in the '663 patent:
	during normal times when the load on the storage system is not excessive, a non-contaminating but slow deletion of records is used. This slow, non-contaminating deletion involves closing the collision-resolution chain of locations by moving a record from a later position in the chain into the position of the record to be deleted. This leaves no deleted record locations in the

8

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 6,243,667 Kerr ("Kerr") alone and in combination
	storage space to slow down future searches. U.S. Patent 4,996,663 to Nemes at 2:24-34 ("The '663 patent").In times of heavy use, when deletions must be done rapidly and no time is available for decontamination, the record is simply marked as "deleted" and left in place. Later non-contaminating

9

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 6,243,667 Kerr ("Kerr") alone and in combination
	FIG.5 HYBRID DELETION FAST-SECURE 52 FAST-SECURE 52 FAST-SECURE 52 FIG.7] FIG.6] FIG.6] FIG.6] FIG.7] FIG.7] FIG.7] FIG.7] FIG.7] FIG.7] FIG.6] FIG.6] FIG.6] FIG.7
	During the hybrid deletion procedure decision block 51 checks the system load to determine if the system load is greater than a threshold. If the system load is greater than the threshold, then a fast-secure delete 52 is used. <i>Id.</i> at 6:40-64, Figure 5. On the other hand, if the system load is less than the threshold, then a slow-non-contaminating delete 53 is used. <i>Id.</i> The fast-secure delete 52 does

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 6,243,667 Kerr ("Kerr") alone and in combination
	not actually delete records, rather it marks records as deleted. <i>Id.</i> at 8:1-33, Figure 7. These records are then actually deleted by a subsequent slow-non-contaminating delete 53. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
	Thus, the hybrid deletion procedure in the '663 patent dynamically determines a maximum number of records to remove. <i>See id.</i> at 6:40-64, Figure 5. If the fast-secure delete 52 is used, then maximum number of records is zero because records are not deleted they are only marked. <i>Id.</i> at 8:1-33, Figure 7. If the slow-non-contaminating delete 53 is used, then the maximum number of records to remove is all of the contaminated records in the bucket. <i>Id.</i> at 6:65- 7:68, Figures 6, 6A, 6B. As both Kerr and the '663 patent relate to deletion of records from hash tables using external chaining, one of ordinary skill in the art would understood how to use the '663 patent's dynamic decision on whether to perform a deletion based on a systems load in other hash table implementations such as that described in Kerr. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would be nothing more than the predictable use of prior art elements according to their established functions.
	combined the '663 patent's dynamic decision on whether to perform a deletion

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 6,243,667 Kerr ("Kerr") alone and in combination
	based on a systems load as taught by the '663 patent and with Kerr and would have seen the benefits of doing so. One such benefit, for example, is that the system would avoid performing deletions when the system load exceeded a threshold.
	Alternatively, it would also be obvious to combine Kerr with the Opportunistic Garbage Collection Articles.
	The Opportunistic Garbage Collection Articles disclose a generational based garbage collection which dynamically determines how much garbage to collect. <i>See generally</i> , Paul R. Wilson and Thomas G. Moher, <i>Design of the Opportunistic Garbage Collector</i> , OOPSLA '89 Proceedings, October 1-6, 1989; Paul R. Wilson, <i>Opportunistic Garbage Collection</i> , ACM SIGPLAN Notices, Vol. 23, No. 12, December 1988.
	For example, the Opportunistic Garbage Collection Articles disclose in part:
	When a significant pause has been detected, a decision procedure is invoked to decide whether to garbage collect, and how many generations to scavenge. The fuller a generation is, the more likely it is to be scavenged; also, the longer the pause that has been detected, the larger the scope of the garbage collection is likely to be. <i>Design of the Opportunistic Garbage</i> <i>Collector</i> at 32.
	Every time a user-input routine is invoked, a decision routine can decide whether to garbage collect. As long as the decision routine takes no more than a few milliseconds to execute, it should not interfere with responsiveness. Since it is only invoked at these times, it does not incur a

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 6,243,667 Kerr ("Kerr") alone and in combination
	 continual run-time overhead. <i>Opportunistic Garbage Collection</i> at 100. This decision routine should take several things into account: 1) the volume of data allocated since the last scavenge, 2) how long it has been since the user has had an opportunity to interact, and 3) the height of the stack relative to its average height at reads since the last scavenge. If the product of the allocation and the compute time is high, and if the stack is low, the scavenge favorability measure is high. If it is especially high, a multigeneration scavenge is in order. <i>Id</i>.
	If these heuristics fail and a scavenge is forced instead by the filling of a generation's space, it is likely to happen during a significant compute- bound pausethe one that has just allocated the data that forced the collection. When the opportunistic mechanism fails to find the end of a pause, it may still succeed by default, embedding a scavenge pause within a larger pause. <i>Design of the Opportunistic Garbage Collector</i> at 32.
	As both Kerr and the Opportunistic Garbage Collection Articles relate to deletion of aged records, one of ordinary skill in the art would have understood how to use the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion based on a system load in other hash table implementations such as Kerr. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15.

13

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 6,243,667 Kerr ("Kerr") alone and in combination
	Additionally, one of ordinary skill in the art would recognize that the result of combining the Opportunistic Garbage Collection Articles' deletion decision procedure with Kerr would be nothing more than the predictable use of prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have combined the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion and how many generations to scavenge as taught by the Opportunistic Garbage Collection Articles and with Kerr and would have seen the benefits of doing so. One such benefit, for example, is preventing slowdown of the system.
	Additionally, it would have been obvious to one of ordinary skill in the art to modify the system disclosed in Kerr to dynamically determine the maximum number of expired records to remove in the accessed linked list of records. It is a fundamental concept in computer science and the relevant art that any variable or parameter affecting any aspect of a system can be dynamically determined based on information available to the system. One of ordinary skill in the art would have been motivated to combine the system disclosed in Kerr with the fundamental concept of dynamically determining the maximum number of expired records to remove in an accessed linked list of records to solve a number of potential problems. For example, the removal of expired records described in Kerrcan be burdensome on the system, adding to the system's load and slowing down the system's processing. Moreover, the removal could also force an interruption in real-time processing as the processing waits for the removal to complete.
	One of ordinary skill in the art would have known that dynamically

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 6,243,667 Kerr ("Kerr") alone and in combination
	determining the maximum number to remove would limit the burden on the system and bound the length of any real-time interruption to prevent delays in processing. Indeed, Nemes concedes that such dynamic determination was obvious when he states in the '120 patent that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. Further, Kerr states that "[o]ne problem which has arisen in the art is that processing demands on routing and switching devices continue to grow with increased network demand," thus "[i]t continues to be advantageous to provide techniques for processing packets more quickly." Kerr at 1:22-38. Given this focus on efficiency in Kerr, one of ordinary skill in the art would have been motivated to try the teachings of Thatte, Dirks, the '663 patent, and/or the Opportunistic Garbage Collection Articles in combination with Kerr.
	To the extent that dynamically determining a maximum number of expired records is not disclosed by Kerr in combination with Dirks, Thatte, the '663 Patent, or the Opportunistic Garbage Collection References, it is disclosed by Linux 2.0.1, which describes dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed. It would have been obvious to combine Linux 2.0.1 with Kerr. For example, both Linux 2.0.1 and Kerr describe systems and methods for performing data storage and retrieval using known programming techniques to yield a predictable result.
	When invoked, the function rt_cache_add automatically increments an

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 6,243,667 Kerr ("Kerr") alone and in combination
	integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359. When the function rt_cache_add removes an expired record, the function rt_cache_add decrements the variable rt_cache_size. See Linux 2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the number of records in the hash table (i.e., ip_rt_hash_table). Because the function rt_cache_add automatically increments and decrements the variable rt_cache_size is determined dynamically.
	Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1. The function rt_garbage_collect_1 loops through each of the linked lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at lines 1122-1138. In this way, the function rt_garbage_collect_1 accesses the linked list. When the function rt_garbage_collect_1 identifies a record that is expired, the function rt_garbage_collect_1 decrements the variable rt_cache_size and frees the record. See Linux 2.0.1, route.c at lines 1128-1135.
	Because all records in the linked list can be expired and all records in the hash table can be in the linked list, the variable rt_cache_size can represent a dynamically determined maximum number of expired ones of the records to remove when function rt_garbage_collect_1 accesses the linked list.
	Furthermore, the function rt_cache_add determines whether the number of records in the hash table exceeds a predetermined threshold RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 6,243,667 Kerr ("Kerr") alone and in combination
	the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_cache_add invokes a function rt_garbage_collect. See Linux 2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293. The function rt_garbage_collect invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293. The function rt_garbage_collect_1 loops through each linked list in the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked list in the hash table, the function rt_garbage_collect_1 looks at each record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each record in the linked list, the function rt_garbage_collect_1 determines whether the record's last use time plus the record's expiration factor is later than the current time. See Linux 2.0.1, route.c at line 1122. If the record's last use time plus the record's expiration factor is less than the current time, the function rt_garbage_collect_1 removes the record from the linked list. See Linux 2.0.1, route.c at lines 1124-1130. The record's expiration factor is based on a variable expire and the record's reference count. See Linux 2.0.1, route.c at lines 1124-1130. The record's expiration factor is based on a variable expire and the record's reference count. See Linux 2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110. After looping through all of the linked lists in this manner, the function
	rt_garbage_collect_1 determines again whether the number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number of items in the hash table is still greater than the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves

Joint Invalidity Contentions & Production of Documents

Asserted Cla U.S. Pat. No.	aims From . 5,893,120	U.S. Pat. No. 6,243,667 Kerr ("Kerr") alone and in combination
		the variable expire and loops through each of the linked lists in the hash table. See Linux 2.0.1, route.c at line 1135. In this way, the function rt_garbage_collect_1 can remove additional records from the linked lists in the hash table. The function rt_garbage_collect_1 repeats this process until the total number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX. Under Bedrock's proposed claim constructions, the records removed by the function rt_garbage_collect_1 are "expired" records. That is, the records removed by the function rt_garbage_collect_1 are data items which after a limited time or after the occurrence of some event become obsolete, such that their presence in the storage system is no longer needed or desired. The function rt_cache_add only removes a record from a linked list when the record's last use time plus the fixed timeout value RT_CACHE_TIMEOUT is less than the current time and the record's reference count is zero. See Linux 2.0.1, route.c at line 1369. Thus, the maximum number of records that the function rt_cache_add can remove from a given linked list is limited to those records whose reference counts are zero.
		route.c at line 1122. Rather, the function rt_garbage_collect_1 can remove records whose reference counts are zero and records whose reference counts are greater than zero.

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Pat. No. 6,243,667 Kerr ("Kerr") alone and in combination
		Consequently, the maximum number of records that the function rt_garbage_collect_1 can remove from a linked list is different than the maximum number of records that the function rt_cache_add can remove from a linked list.
3. A method for storing and retrieving information records using a linked list to store and provide access to the records, at least some of the records automatically expiring, the method comprising the steps of:	7. A method for storing and retrieving information records using a hashing technique to provide access to the records and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring, the method comprising the steps of:	To the extent the preamble is a limitation, Kerr discloses a method for storing and retrieving information records using a linked list to store and provide access to the records, at least some of the records automatically expiring. Kerr also discloses a method for storing and retrieving information records using a hashing technique to provide access to the records and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring. For example, Kerr describes a "method and system for switching in networks responsive to message flow patterns." Kerr at col. 1:48-49. Part of that system includes a flow cache, which is used to store and retrieve information about message flows. "At a step 223, the routing device 140 performs a lookup in a flow cache for the identified message flow 160." U.S. Pat. No. '667 col. 4:1-2. The flow cache "comprises a memory which associates flow keys 210 with information about message flows 160 identified by those flow keys 310. The flow cache 300 includes a set of buckets 301. Each bucket 301 includes a linked list of entries 302. Each entry 302 includes information about a particular message flow 160 and a pointer to information about the treatment of packets 150 to the destination device 130 for that message flow 160." Kerr at col. 6:32-41. The records in the system Kerr discloses includes records, at least some of which automatically expire

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Pat. No. 6,243,667 Kerr ("Kerr") alone and in combination	
		For example, Kerr explains that "[a]t step 241, the routing device 140 examines each entry in the flow cache and compares a current time with a time a packet 150 was routed using that particular entry. If the difference exceeds a first selected timeout, the message flow 160 represented by that entry is considered to have expired due to nonuse and thus to no longer be valid." Kerr at col. 5:52-57.	last
		Kerr further explains that "[i]n a preferred embodiment, the routing device also examines the entry in the flow cache and compares a current time with first time a packet 150 was routed using that particular entry. If the differe exceeds a second selected timeout, the message flow 160 represented by th entry is considered to have expired due to age and thus to no longer be vali The second selected timeout is preferably about one minute." Kerr at col. 5:58-65.	140 n a ence nat id.
		Kerr also states that "[i]n a preferred embodiment, the routing device 140 a examines the entry in the flow cache and determines if the "next hop" information has changed. If so, the message flow 160 is expired due to changed conditions. Other changed conditions which might cause a messa flow 160 to be expired include changes in access control lists or other change have here the proper treatment of packets 150 in the message flow 160. The routing device 140 also expires entries in the flow cache on a lear recently-used basis if the flow cache becomes too full. Kerr at col. 6:10-19	also ige iges v ist- e.
[3a] accessing the linked list of records,	[7a] accessing a linked list of records having same hash address,	Kerr discloses accessing the linked list of records. Kerr also discloses accessing a linked list of records having same hash address	
Joint Invalidity Contentions & Pro	oduction of	20 Case No. 6:09-CV-5/9-LED	<u> </u>

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Pat. No. 6,243,667 Kerr ("Kerr") alone and in combination
		For example, "[a]t a step 223, the routing device 140 performs a lookup in a flow cache for the identified message flow 160." Kerr at col. 4:1-2. "At a step 225, the routing device 140 retrieves routing information from the entry in the flow cache for the identified message flow 160." Kerr at col. 4:53-55. "At a step 241, the routing device 140 examines each entry in the flow cache and compares a current time with a last time a packet 150 was routed using that particular entry." Kerr at col. 5:52-54. <i>See also</i> Kerr at 6:32-41.
[3b] identifying at least some of the automatically expired ones of the records.	[7b] identifying at least some of the automatically expired ones of the records.	Kerr discloses identifying at least some of the automatically expired ones of the records.
and		For example, the routing device described in Kerr identifies expired entries for message flows and "[i]f the message flow is no longer valid, the routing device continues with the step 242. At step 242, the routing device 140 collects historical information about the message flow 160 from the entry in the flow cache, and deletes the entry." Kerr at col. 6:22-27. <i>See also</i> Kerr at 5:52-57.
[3c] removing at least some of the automatically expired records from the	[7c] removing at least some of the automatically expired records from the	Kerr discloses removing at least some of the automatically expired records from the linked list when the linked list is accessed.
linked list when the linked list is accessed.	linked list when the linked list is accessed, and	For example, the routing device described in Kerr identifies expired entries for message flows and "[i]f the message flow is no longer valid, the routing device continues with the step 242. At step 242, the routing device 140 collects historical information about the message flow 160 from the entry in the flow cache, and deletes the entry." Kerr at col. 6:22-27. <i>See also</i> Kerr at 6:11-19.
	[7d] inserting, retrieving or deleting one of the	Kerr discloses inserting, retrieving or deleting one of the records from the system following the step of removing.
Joint Invalidity Contentions & Pro	duction of	21 Case No. 6:09-CV-549-LED

Documents

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Pat. No. 6,243,667 Kerr ("Kerr") alone and in combination
	records from the system following the step of removing.	For example, <i>see</i> Kerr at 5:66-6:10. "Expiring message flows 160 due to age artificially requires that a new message flow 160 must be created for the next packet 150 in the same communication session represented by the old message flow 160 which was expired. <i>Id.</i> at 5:66-6:2.
4. The method according to claim 3 further including the step of dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed.	8. The method according to claim 7 further including the step of dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed.	 Kerr combined with Dirks, Thatte, the '663 patent, and/or the Opportunistic Garbage Collection Articles discloses dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed. Dirks discloses the management of memory in a computer system and more particularly to the allocation of address space in a virtual memory system, which dynamically determines how many records to sweep/remove upon each allocation. Disclosure of these claim elements in Dirks is clearly shown in the chart of Dirks, which is hereby incorporated by reference in its entirety. For example, as summarized in Dirks, each time a VSID is assigned from the free list to a new application or thread, a fixed number of entries in the page table are scanned to determine whether they have become inactive, by checking them against the VSIDs on the recycle list. Each entry which is identified as being inactive is removed from the page table. After all of the entries in the page table have been examined in this manner, the VSIDs in the recycle list can be transferred to the free list, since all of their associated page table entries will have been removed. This approach thereby guarantees that a predetermined number of VSIDs are always available in the free list
Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 6,243,667 Kerr ("Kerr") alone and in combination	
---	--	
	without requiring a time-consuming scan of the complete page table at once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.	
	After [a] new VSID has been allocated, the system checks a flag RFLG to determine whether a recycle sweep is currently in progress (Step 20). If there is no sweep in progress, i.e. RFLG is not equal to one, a determination is made whether a sweep should be initiated. This is done by checking whether the inactive list is full, i.e. whether it contains x entries (Step 22). If the number of entries I on the inactive list is less than x, no further action is taken, and processing control returns to the operating system (Step 24). If, however, the inactive list is full at this time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are transferred to the recycle list, and an index n is reset to 1 (Step 28). The system then sweeps a predetermined number of page table entries PT _i on the page table, to detect whether any of them are inactive, i.e. their associated VSID is on the recycle list (Step 30). The predetermined number of entries that are swept is identified as <i>k</i> , where:	
	$k = \frac{\text{total number of page table entries}}{\text{maximum number of active threads}}$ <i>Id.</i> at 8:12-30.	
	Dirks discloses that any approach can be employed to determine the number of entries to be examined during each step of the sweeping process. <i>Id.</i> at 7:37-40. As stated in Dirks:	
	Any other suitable approach can be employed to determine the number of entries to be examined during each step of the sweeping process. In this	

23

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 6,243,667 Kerr ("Kerr") alone and in combination
	 regard, it is not necessary that the number of examined entries be fixed for each step. Rather, it might vary from one step to the next. The only criterion is that the number of entries examined on each step be such that all entries in the page table are examined in a determinable amount of time or by the occurrence of a certain event, e.g. by the time the list of free VSIDs is empty. <i>Id.</i> at 7:38-46. Thus, Dirks dynamically determines the maximum number of records to sweep/remove by calculating a value <i>k. Id.</i> at 7:15-46, 7:66-8:56.
	As both Kerr and Dirks relate to deletion of aged records upon the allocation of a new incoming record, one of ordinary skill in the art would have understood how to use Dirks' dynamic decision making process of determining the maximum number of records to sweep/remove in other hash tables implementations such as that described Kerr. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining Dirks' deletion decision procedure with Kerr would be nothing more than the predictable use of prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have combined Dirks' dynamic determination of the suitable number of entries to examine during each step of the sweeping process with Kerr and would have

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 6,243,667 Kerr ("Kerr") alone and in combination
	seen the benefits of doing so. One possible benefit, for example, is saving the system from performing sometimes time-consuming sweeps.
	Alternatively, one of ordinary skill in the art would be motivated to, and would understand how to, combine the system disclosed in Kerr with the means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records disclosed by Thatte. For example, Thatte discloses a system and method using hash tables and/or linked lists and further discloses means for dynamically determining the maximum number for the record search means to remove in the accessed linked list of records. The disclosure of these claim elements in Thatte is clearly shown in the chart of Thatte, which is hereby incorporated by reference in its entirety.
	Moreover, one of ordinary skill in the art would recognize that these combinations would improve the similar systems and methods in the same way. Additionally, one of ordinary skill in the art would recognize that the result of combining Kerr with Thatte would be nothing more than the predictable use of prior art elements according to their established functions. The resulting combination would include the capability to determine the maximum number for the record search means to remove.
	Further, one of ordinary skill in the art would be motivated to combine Kerr with Thatte and recognized the benefits of doing so. For example, the removal of expired records described in Kerrcan be burdensome on the system, adding to the system's load and slowing down the system's processing. One of ordinary skill in the art would recognize that combining Kerr with the teachings of Thatte would solve this problem by dynamically determining how many records to delete based on, among other things, the system load.

25

Joint Invalidity Contentions & Production of Documents

Asserted Claim U.S. Pat. No. 5,	is From 893,120	U.S. Pat. No. 6,243,667 Kerr ("Kerr") alone and in combination
		Moreover, the '120 patent discloses that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine Kerr with Thatte.
		Disclosure of these claim elements in the '663 patent is clearly shown in the chart of the '663 patent, which is hereby incorporated by reference in its entirety. For example, as summarized in the '663 patent:
		during normal times when the load on the storage system is not excessive, a non-contaminating but slow deletion of records is used. This slow, non-contaminating deletion involves closing the collision-resolution chain of locations by moving a record from a later position in the chain into the position of the record to be deleted. This leaves no deleted record locations in the storage space to slow down future searches. U.S. Patent 4,996,663 to Nemes at 2:24-34 ("The '663 patent").
		In times of heavy use, when deletions must be done rapidly and no time is available for decontamination, the record is simply marked as "deleted" and left in place. Later non-contaminating probes in the vicinity of such deleted record locations automatically remove the contaminating deleted records by moving records in the chain as described above. <i>Id.</i> at 2:35-41.

26

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 6,243,667 Kerr ("Kerr") alone and in combination
	 This hybrid hashing technique has the decided advantage of automatically eliminating contamination caused by the fast-secure deletion procedure when the slower, non-contaminating deletion is used when the load on the system is at lower levels. <i>Id.</i> at 2:42-46. This hybrid deletion is shown in Figure 5.

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 6,243,667 Kerr ("Kerr") alone and in combination
	FIG.5 HYBRID DELETION
	FAST-SECURE (FIG. 7) FAST-SECURE STOP 50 51 50 51 50 51 50 51 50 50 50 51 50 50 50 51 50 50 50 50 50 50 50 50 50 50
	<i>Id.</i> at Figure 5. During the hybrid deletion procedure decision block 51 checks the system load to determine if the system load is greater than a threshold. If the system load is
	greater than the threshold, then a fast-secure delete 52 is used. <i>Id.</i> at 6:40-64, Figure 5. On the other hand, if the system load is less than the threshold, then a slow-non-contaminating delete 53 is used. <i>Id.</i> The fast-secure delete 52 does

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 6,243,667 Kerr ("Kerr") alone and in combination
	not actually delete records, rather it marks records as deleted. <i>Id.</i> at 8:1-33, Figure 7. These records are then actually deleted by a subsequent slow-non-contaminating delete 53. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
	Thus, the hybrid deletion procedure in the '663 patent dynamically determines a maximum number of records to remove. <i>See id.</i> at 6:40-64, Figure 5. If the fast-secure delete 52 is used, then maximum number of records is zero because records are not deleted they are only marked. <i>Id.</i> at 8:1-33, Figure 7. If the slow-non-contaminating delete 53 is used, then the maximum number of records to remove is all of the contaminated records in the bucket. <i>Id.</i> at 6:65- 7:68, Figures 6, 6A, 6B.
	As both Kerr and the '663 patent relate to deletion of records from hash tables using external chaining, one of ordinary skill in the art would understood how to use the '663 patent's dynamic decision on whether to perform a deletion based on a systems load in other hash table implementations such as Kerr. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the '663 patent's deletion decision procedure with Kerr would be nothing more than the predictable use of prior art elements according to their established functions.

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 6,243,667 Kerr ("Kerr") alone and in combination
	combined the '663 patent's dynamic decision on whether to perform a deletion based on a systems load as taught by the '663 patent and with Kerr and would have seen the benefits of doing so. One such benefit, for example, is that the system would avoid performing deletions when the system load exceeded a threshold.
	Alternatively, it would also be obvious to combine Kerr with the Opportunistic Garbage Collection Articles.
	The Opportunistic Garbage Collection Articles disclose a generational based garbage collection which dynamically determines how much garbage to collect. <i>See generally</i> , Paul R. Wilson and Thomas G. Moher, <i>Design of the Opportunistic Garbage Collector</i> , OOPSLA '89 Proceedings, October 1-6, 1989; Paul R. Wilson, <i>Opportunistic Garbage Collection</i> , ACM SIGPLAN Notices, Vol. 23, No. 12, December 1988.
	For example, the Opportunistic Garbage Collection Articles disclose in part:
	When a significant pause has been detected, a decision procedure is invoked to decide whether to garbage collect, and how many generations to scavenge. The fuller a generation is, the more likely it is to be scavenged; also, the longer the pause that has been detected, the larger the scope of the garbage collection is likely to be. <i>Design of the Opportunistic Garbage</i> <i>Collector</i> at 32.
	Every time a user-input routine is invoked, a decision routine can decide whether to garbage collect. As long as the decision routine takes no more than a few milliseconds to execute, it should not interfere with

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 6,243,667 Kerr ("Kerr") alone and in combination
	responsiveness. Since it is only invoked at these times, it does not incur a continual run-time overhead. <i>Opportunistic Garbage Collection</i> at 100.
	This decision routine should take several things into account: 1) the volume of data allocated since the last scavenge, 2) how long it has been since the user has had an opportunity to interact, and 3) the height of the stack relative to its average height at reads since the last scavenge. If the product of the allocation and the compute time is high, and if the stack is low, the scavenge favorability measure is high. If it is especially high, a multi-generation scavenge is in order. <i>Id</i> .
	If these heuristics fail and a scavenge is forced instead by the filling of a generation's space, it is likely to happen during a significant compute- bound pausethe one that has just allocated the data that forced the collection. When the opportunistic mechanism fails to find the end of a pause, it may still succeed by default, embedding a scavenge pause within a larger pause. <i>Design of the Opportunistic Garbage Collector</i> at 32.
	As both Kerr and the Opportunistic Garbage Collection Articles relate to deletion of aged records, one of ordinary skill in the art would have understood how to use the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion based on a system load in other hash table implementations such as Kerr. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how

Joint Invalidity Contentions & Production of Documents

Asserted Claims H U.S. Pat. No. 5,893	vomU.S. Pat. No. 6,243,667 Kerr ("Kerr") alone and in combination120
	many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the Opportunistic Garbage Collection Articles' deletion decision procedure with Kerr would be nothing more than the predictable use of prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have combined the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion and how many generations to scavenge as taught by the Opportunistic Garbage Collection Articles and with Kerr and would have seen the benefits of doing so. One such benefit, for example, is that the system would only perform deletions when the system was not already too overloaded, thus preventing slowdown of the system.
	Additionally, it would have been obvious to one of ordinary skill in the art to modify the system disclosed in Kerr to dynamically determine the maximum number of expired records to remove in the accessed linked list of records. It is a fundamental concept in computer science and the relevant art that any variable or parameter affecting any aspect of a system can be dynamically determined based on information available to the system. One of ordinary skill in the art would have been motivated to combine the system disclosed in Kerr with the fundamental concept of dynamically determining the maximum number of expired records to remove in an accessed linked list of records to solve a number of potential problems. For example, the removal of expired records described in Kerr can be burdensome on the system, adding to the system's load and slowing down the system's processing. Moreover, the removal could also force an interruption in real-time processing as the processing waits for the removal to complete.

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 6,243,667 Kerr ("Kerr") alone and in combination
	One of ordinary skill in the art would have known that dynamically determining the maximum number to remove would limit the burden on the system and bound the length of any real-time interruption to prevent delays in processing. Indeed, Nemes concedes that such dynamic determination was obvious when he states in the '120 patent that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. Further, Kerr states that "[o]ne problem which has arisen in the art is that processing demands on routing and switching devices continue to grow with increased network demand," thus "[i]t continues to be advantageous to provide techniques for processing packets more quickly." Kerr at 1:22-38. Given this focus on efficiency in Kerr, one of ordinary skill in the art would have been motivated to try the teachings of Thatte, Dirks, the '663 patent, and/or the Opportunistic Garbage Collection Articles in combination with Kerr to optimize the performance of the system and method disclosed in Kerr. To the extent that dynamically determining a maximum number of expired records is not disclosed by Kerr in combination with Dirks, Thatte, the '663 Patent, or the Opportunistic Garbage Collection References, it is disclosed by Linux 2.0.1, which describes dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed. It would have been obvious to combine Linux 2.0.1 with Kerr. For example, both Linux 2.0.1 and Kerr describe systems and methods for performing data storage and retrieval using known programming techniques to yield a predictable result.

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 6,243,667 Kerr ("Kerr") alone and in combination
	 When invoked, the function rt_cache_add automatically increments an integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359. When the function rt_cache_add removes an expired record, the function rt_cache_add decrements the variable rt_cache_size. See Linux 2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the number of records in the hash table (i.e., ip_rt_hash_table). Because the function rt_cache_add automatically increments and decrements the variable rt_cache_size is determined dynamically. Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1. The function rt_garbage_collect_1 loops through each of the linked lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at lines 1122-1138. In this way, the function rt_garbage_collect_1 identifies a record that is expired, the function rt_garbage_collect_1 decrements the variable rt_cache_size and frees the record. See Linux 2.0.1, route.c at lines 1128-1135. Because all records in the linked list can be expired and all records in the hash table can be in the linked list, the variable rt_cache_size can represent a dynamically determined maximum number of avoired ones of the records to dynamically.
	remove when function rt_garbage_collect_1 accesses the linked list. Furthermore, the function rt_cache_add determines whether the number of

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 6,243,667 Kerr ("Kerr") alone and in combination
	records in the hash table exceeds a predetermined threshold RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_cache_add invokes a function rt_garbage_collect. See Linux 2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293. The function rt_garbage_collect invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293. The function rt_garbage_collect_1 loops through each linked list in the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked list in the hash table, the function rt_garbage_collect_1 looks at each record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each record in a linked list, the function rt_garbage_collect_1 determines whether the record's last use time plus the record's expiration factor is later than the current time. See Linux 2.0.1, route.c at line 1122. If the record's last use time plus the record's expiration factor is less than the current time, the function rt_garbage_collect_1 removes the record from the linked list. See Linux 2.0.1, route.c at lines 1124-1130. The record's expiration factor is based on a variable expire and the record's reference count. See Linux 2.0.1, route.c at lines 1124-1130. The record's expiration factor is based on a variable expire and the record's reference count. See Linux 2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110. After looping through all of the linked lists in this manner, the function rt_garbage_collect_1 determines again whether the number of records in the hash table is less than the predetermined threshold
	RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number

Asserted Claims From U.S. Pat. No. 5,893,12	u U.S. Pat. No. 6,243,667 Kerr ("Kerr") alone and in combination
	<pre>of items in the hash table is still greater than the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves the variable expire and loops through each of the linked lists in the hash table. See Linux 2.0.1, route.c at line 1135. In this way, the function rt_garbage_collect_1 can remove additional records from the linked lists in the hash table. The function rt_garbage_collect_1 repeats this process until the total number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX.</pre> Under Bedrock's proposed claim constructions, the records removed by the function rt_garbage_collect_1 are "expired" records. That is, the records removed by the function rt_garbage_collect_1 are data items which after a limited time or after the occurrence of some event become obsolete, such that their presence in the storage system is no longer needed or desired. The function rt_cache_add only removes a record from a linked list when the record's last use time plus the fixed timeout value RT_CACHE_TIMEOUT is less than the current time and the record's reference count is zero. See Linux 2.0.1, route.c at line 1369. Thus, the maximum number of records that the function rt_cache_add can remove from a given linked list is limited to those records whose reference counts are zero.
	In contrast, the maximum number of records that the function rt_garbage_collect_1 can remove from a given linked list is not limited to those records whose reference counts are zero. <i>See</i> Linux 2.0.1, route.c at line 1122. Rather, the function rt_garbage_collect_1 can remove records whose reference counts are zero and records whose reference

36

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 6,243,667 Kerr ("Kerr") alone and in combination
	counts are greater than zero. Consequently, the maximum number of records that the function rt_garbage_collect_1 can remove from a linked list is different than the maximum number of records that the function rt_cache_add can remove from a linked list.

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Pat. No. 5,881,241 Corbin ("Corbin") alone and in combination
1. An information storage and retrieval system, the system comprising:	5. An information storage and retrieval system, the system comprising:	To the extent the preamble is a limitation, Corbin discloses an information storage and retrieval system.For example, Corbin describes a "method and an apparatus for a new communication framework," a part of which includes a "data route table contain[ing] a list of predetermined pattern of bits which represent a set of predetermined or registered routes." U.S. Pat. No. '241 col. 2:21-2, 2:55-57.
[1a] a linked list to store and provide access to records stored in a memory of the system, at least some of the records automatically expiring,	[5a] a hashing means to provide access to records stored in a memory of the system and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring,	Corbin inherently discloses a linked list to store and provide access to records stored in a memory of the system, at least some of the records automatically expiring. It would have been obvious to one of ordinary skill in the art to use a hash table with external chaining with the teachings disclosed by Corbin. For example, though Corbin describes a data route table implemented as a Patricia Tree, it also notes that "[t]he present invention's architecture of data routing is not dependent on Patricia Trees and hence other search algorithms may be used instead." U.S. Pat. No. '241 col. 10:54-56. A linked list is simply a special case of a "tree" data structure wherein each node contains a single "branch," thus Corbin's disclosure of the use of Patricia Trees inherently discloses the use of linked lists as well. To the extent such a disclosure is not inherent in Corbin, it would have been obvious to one of ordinary skill in the art that a linked list or a hash table with external chaining could be used in a search algorithm smay be used instead. Hashing with external chaining using linked lists was a well known search algorithm familiar to those of ordinary skill in the art with its own particular advantages. <i>See, e.g.,</i> "The Art of Computer Programming", Sorting and

Joint Invalidity Contentions & Production of Documents

1

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Pat. No. 5,881,241 Corbin ("Corbin") alone and in combination
		Searching, D.E. Knuth, Addison-Wesley Series in Computer Science and Information Processing, pp. 506-549.
		The records in the system Corbin discloses include records, at least some of which automatically expire.
		For example, "[a] lazy deletion algorithm may be used in which a key is marked as deleted but left in the tree." U.S. Pat. No. '241 col. 10:46-47. Those items marked as deleted but left in the tree are expired.
[1b] a record search means utilizing a search key to access the linked list	[5b] a record search means utilizing a search key to access a linked list of	Corbin discloses a record search means utilizing a search key to access the Patricia Tree.
access the mixed list,	records having the same hash address,	For example, "FIGS. 6b-6f illustrate an exemplary Patricia Tree search implementation of a data route table search as utilized by the present invention. Data route entries in the Patricia Tree, also referred to herein as data route keys, are variable with sequences of bytes with some keys as long as 80 bytes." U.S. Pat. No. '241 col. 9:43-447.
		As discussed in $[1a/5a]$, Corbin inherently discloses use of a linked list. Also, as discussed in $[1a/5a]$, it would have been obvious to one of ordinary skill in the art that a hash table using external chaining with linked lists for the search algorithm could be used instead of the Patricia Tree.
[1c] the record search	[5c] the record search	Corbin discloses the use of a lazy deletion algorithm on the Patricia Tree. It
means including a means	means including means for	would have been obvious to one of ordinary skill in the art that a lazy deletion
removing at least some of	at least some expired ones	removal of expired elements when the linked list is accessed. As noted above
Joint Invalidity Contentions & Pro	duction of	2 Case No. 6:09-CV-549-LED

Documents

Asserted C U.S. Pat. N	laims From o. 5,893,120	U.S. Pat. No. 5,881,241 Corbin ("Corbin") alone and in combination
the expired ones of the records from the linked list	of the records from the linked list of records when the linked list is accessed	a linked list is simply a special case of a "tree" data structure wherein each node contains a single "branch."
accessed, and	and	For example, Corbin explains that "[a] lazy deletion algorithm may be used [on the data route table] in which a key is marked as deleted but left in the tree." U.S. Pat. No. '241 col. 10:46-47. Those items marked as deleted but left in the tree are expired. When the "number of deleted keys become significant, the tree is rebuilt." U.S. Pat. No. '241 col. 10:47-49. The rebuild of the tree identifies and removes the expired records from the Patricia Tree. As discussed in [1a/5a], Corbin inherently discloses use of a linked list. Also, as discussed in [1a/5a], it would have been obvious to one of ordinary skill in the art that a hash table using external chaining with linked lists could be used for the search algorithm instead of the Patricia Tree. One of ordinary skill in the art would also know that lazy deletion could be used in such structures as well. <i>See</i> Exhibit C-2, which is incorporated by reference. When performing lazy deletion on a linked list, the expired elements would be removed on
		subsequent accesses to the linked list.
[1d] means, utilizing the record search means, for accessing the linked list and, at the same time,	[5d] mea[n]s, utilizing the record search means, for inserting, retrieving, and deleting records from the	Corbin discloses means, utilizing the record search means, for accessing the Patricia Tree and, at the same time, removing at least some of the expired ones of the records in the Patricia Tree.
removing at least some of	system and, at the same	For example, Corbin explains that "[a] lazy deletion algorithm may be used [on
the expired ones of the	time, removing at least	the data route table] in which a key is marked as deleted but left in the tree."
records in the linked list.	some expired ones of the	U.S. Pat. No. '241 col. 10:46-47. Those items marked as deleted but left in the
	linked list of records.	the tree is rebuilt." U.S. Pat. No. '241 col. 10:47-49. The rebuild of the tree
Joint Invalidity Contentions & Pro	duction of	3 Case No. 6:09-CV-549-LED

Documents

Asserted Cl U.S. Pat. No	laims From o. 5,893,120	U.S. Pat. No. 5,881,241 Corbin ("Corbin") alone and in combination
		 identifies and removes the expired records from the Patricia Tree. As discussed in [1a/5a], Corbin inherently discloses use of a linked list. Also, as discussed in [1a/5a], it would have been obvious to one of ordinary skill in the art that a hash table using external chaining with linked lists could be used for the search algorithm instead of the Patricia Tree. One of ordinary skill in the art would also know that lazy deletion could be used in such structures as well. <i>See</i> Exhibit C-2, which is incorporated by reference. When performing lazy deletion on a linked list, the expired elements would be removed on subsequent accesses to the linked list. Corbin also discloses means, utilizing the record search means, for inserting, retrieving, and deleting records from the system and, at the same time, removing at least some expired ones of the records in the accessed Patricia Tree of records. Corbin explains that "if a flag is set in the tree head indicating that a rebuild is taking place, then the insertion and deletion operations should go to sleep waiting for the rebuild to be complete." Moreover, as discussed above, Corbin describes the use of a lazy deletion algorithm, and one of ordinary skill in the art would know that implementing a lazy deletion algorithm in a linked list is accessed for insertions, retrievals, and deletions. <i>See</i> Exhibit C-2, which is incorporated by reference.
2. The information storage	6. The information storage	Corbin combined with Dirks, Thatte, the '663 patent and/or the Opportunistic
and retrieval system	and retrieval system	Garbage Collection Articles discloses an information storage and retrieval
according to claim 1	according to claim 5	system further including means for dynamically determining maximum
Joint Invalidity Contentions & Pro	duction of	4 Case No. 6:09-CV-549-LED

Documents

Asserted C U.S. Pat. No	laims From o. 5,893,120	U.S. Pat. No. 5,881,241 Corbin ("Corbin") alone and in combination
further including means for dynamically determining maximum number for the	further including means for dynamically determining maximum number for the	number for the record search means to remove in the accessed linked list of records.
record search means to remove in the accessed linked list of records.	record search means to remove in the accessed linked list of records.	Dirks discloses the management of memory in a computer system and more particularly to the allocation of address space in a virtual memory system, which dynamically determines how many records to sweep/remove upon each allocation. Disclosure of these claim elements in Dirks is clearly shown in Exhibit B-2, which is hereby incorporated by reference in its entirety.
		For example, as summarized in Dirks,
		each time a VSID is assigned from the free list to a new application or thread, a fixed number of entries in the page table are scanned to determine whether they have become inactive, by checking them against the VSIDs on the recycle list. Each entry which is identified as being inactive is removed from the page table. After all of the entries in the page table have been examined in this manner, the VSIDs in the recycle list can be transferred to the free list, since all of their associated page table entries will have been removed. This approach thereby guarantees that a predetermined number of VSIDs are always available in the free list without requiring a time-consuming scan of the complete page table at once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.
		After [a] new VSID has been allocated, the system checks a flag RFLG to determine whether a recycle sweep is currently in progress (Step 20). If there is no sweep in progress, i.e. RFLG is not equal to one, a determination is made whether a sweep should be initiated. This is done by checking whether the inactive list is full, i.e. whether it contains x

5

Joint Invalidity Contentions & Production of Documents

Asserted Cla U.S. Pat. No	aims From . 5,893,120	U.S. Pat. No. 5,881,241 Corbin ("Corbin") alone and in combination
		entries (Step 22). If the number of entries I on the inactive list is less than x, no further action is taken, and processing control returns to the operating system (Step 24). If, however, the inactive list is full at this time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are transferred to the recycle list, and an index n is reset to 1 (Step 28). The system then sweeps a predetermined number of page table entries PT _i on the page table, to detect whether any of them are inactive, i.e. their associated VSID is on the recycle list (Step 30). The predetermined number of entries that are swept is identified as <i>k</i> , where: $k = \frac{\text{total number of page table entries}}{\text{maximum number of active threads}}$ Id. at 8:12-30.
		Any other suitable approach can be employed to determine the number of entries to be examined during each step of the sweeping process. <i>Id.</i> at 7:37-40. As stated in Dirks:Any other suitable approach can be employed to determine the number of entries to be examined during each step of the sweeping process. In this regard, it is not necessary that the number of examined entries be fixed for each step. Rather, it might vary from one step to the next. The only criterion is that the number of entries examined on each step be such that all entries in the page table are examined in a determinable amount of time or by the occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.
		<i>Id.</i> at 7:38-46. Thus, Dirks dynamically determines the maximum number of records to sweep/remove by calculating a value <i>k</i> . <i>Id</i> . at 7:15-46, 7:66-8:56.

6

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 5,881,241 Corbin ("Corbin") alone and in combination
	As both Corbin and Dirks relate to deletion of aged records upon the allocation of a new incoming record, one of ordinary skill in the art would have understood how to use Dirks' dynamic decision making process of determining the maximum number of records to sweep/remove in other hash tables implementations such as Corbin. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining Dirks' deletion decision procedure with Corbin nothing more than the predictable use of prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have combined Dirks' dynamic determination of the suitable number of entries to examine during each step of the sweeping process with Corbin and would have seen the benefits of doing so. One possible benefit, for example, is saving the system from performing sometimes time-consuming sweeps.`
	Alternatively, one of ordinary skill in the art would be motivated to, and would understand how to, combine the system disclosed in Corbin with the means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records disclosed by Thatte. For example, Thatte discloses a system and method using hash tables and/or linked lists and

Joint Invalidity Contentions & Production of Documents

7

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 5,881,241 Corbin ("Corbin") alone and in combination
	further discloses means for dynamically determining the maximum number for the record search means to remove in the accessed linked list of records. The disclosure of these claim elements in Thatte is clearly shown in the chart of Thatte, which is hereby incorporated by reference in its entirety.
	Moreover, one of ordinary skill in the art would recognize that these combinations would improve the similar systems and methods in the same way. Additionally, one of ordinary skill in the art would recognize that the result of combining Corbin with Thatte would be nothing more than the predictable use of prior art elements according to their established functions. The resulting combination would include the capability to determine the maximum number for the record search means to remove.
	Further, one of ordinary skill in the art would be motivated to combine Corbin with Thatte and recognize the benefits of doing so. For example, the removal of expired records described in Corbin can be burdensome on the system, adding to the system's load and slowing down the system's processing. One of ordinary skill in the art would recognize that combining Corbin with the teachings of Thatte would solve this problem by dynamically determining how many records to delete based on, among other things, the system load. Moreover, the '120 patent discloses that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine Corbin with Thatte.
	all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine Corbin with Thatte. Alternatively, it would also be obvious to combine Corbin with the '663

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 5,881,241 Corbin ("Corbin") alone and in combination
	 patent. Disclosure of these claim elements in the '663 patent is clearly shown in the chart of the '663 patent, which is hereby incorporated by reference in its entirety. For example, as summarized in the '663 patent: during normal times when the load on the storage system is not excessive, a non-contaminating but slow deletion of records is used. This slow, non-contaminating deletion involves closing the collision-resolution chain of locations by moving a record from a later position in the chain into the position of the record to be deleted. This leaves no deleted record locations in the storage space to slow down future searches. U.S. Patent 4,996,663 to Nemes at 2:24-34 ("The '663 patent"). In times of heavy use, when deletions must be done rapidly and no time is available for decontaminating deleted record locations automatically remove the contaminating deleted records by moving records in the vicinity of such deleted records by moving records in the chain as described above. <i>Id.</i> at 2:35-41. This hybrid hashing technique has the decided advantage of automatically eliminating contamination caused by the fast-recurs delation procedure when the clouer, non-contaminating protex
	deletion is used when the load on the system is at lower levels.<i>Id.</i> at 2:42-46.This hybrid deletion is shown in Figure 5.

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 5,881,241 Corbin ("Corbin") alone and in combination
	FIG.5 HYBRID DELETION VES START VES STSTEM I.OAD > THRESHOLD FAST-SECURE JELETE (FIG.7) STOP 51 SLOW-NON- CONTAMINATING DELETE (FIG.6) 54
	<i>Id.</i> at Figure 5. During the hybrid deletion procedure decision block 51 checks the system load to determine if the system load is greater than a threshold. If the system load is greater than the threshold, then a fast-secure delete 52 is used. <i>Id.</i> at 6:40-64, Figure 5. On the other hand, if the system load is less than the threshold, then a slow-non-contaminating delete 53 is used. <i>Id.</i> The fast-secure delete 52 does

Asserted Clair U.S. Pat. No. 5	ms From 5,893,120	U.S. Pat. No. 5,881,241 Corbin ("Corbin") alone and in combination
		not actually delete records, rather it marks records as deleted. <i>Id.</i> at 8:1-33, Figure 7. These records are then actually deleted by a subsequent slow-non-contaminating delete 53. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
		Thus, the hybrid deletion procedure in the '663 patent dynamically determines a maximum number of records to remove. <i>See id.</i> at 6:40-64, Figure 5. If the fast-secure delete 52 is used, then maximum number of records is zero because records are not deleted they are only marked. <i>Id.</i> at 8:1-33, Figure 7. If the slow-non-contaminating delete 53 is used, then the maximum number of records to remove is all of the contaminated records in the bucket. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
		As both Corbin and the '663 patent relate to deletion of records from hash tables using external chaining, one of ordinary skill in the art would understood how to use the '663 patent's dynamic decision on whether to perform a deletion based on a systems load in other hash table implementations such as that described in Corbin. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the '663 patent's deletion decision procedure with Corbin would be nothing more than the predictable use of prior art elements according to their established functions.

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 5,881,241 Corbin ("Corbin") alone and in combination
	By way of further example, one of ordinary skill in the art would have combined the '663 patent's dynamic decision on whether to perform a deletion based on a systems load as taught by the '663 patent and with Corbin and would have seen the benefits of doing so. One such benefit, for example, is that the system would avoid performing deletions when the system load exceeded a threshold.
	Alternatively, it would also be obvious to combine Corbin with the Opportunistic Garbage Collection Articles.
	The Opportunistic Garbage Collection Articles disclose a generational based garbage collection which dynamically determines how much garbage to collect. <i>See generally</i> , Paul R. Wilson and Thomas G. Moher, <i>Design of the Opportunistic Garbage Collector</i> , OOPSLA '89 Proceedings, October 1-6, 1989; Paul R. Wilson, <i>Opportunistic Garbage Collection</i> , ACM SIGPLAN Notices, Vol. 23, No. 12, December 1988.
	For example, the Opportunistic Garbage Collection Articles disclose in part:
	When a significant pause has been detected, a decision procedure is invoked to decide whether to garbage collect, and how many generations to scavenge. The fuller a generation is, the more likely it is to be scavenged; also, the longer the pause that has been detected, the larger the scope of the garbage collection is likely to be. <i>Design of the Opportunistic Garbage</i> <i>Collector</i> at 32.
	Every time a user-input routine is invoked, a decision routine can decide whether to garbage collect. As long as the decision routine takes no more

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 5,881,241 Corbin ("Corbin") alone and in combination
	than a few milliseconds to execute, it should not interfere with
	responsiveness. Since it is only invoked at these times, it does not incur a continual run-time overhead. <i>Opportunistic Garbage Collection</i> at 100.
	This decision routine should take several things into account: 1) the volume of data allocated since the last scavenge, 2) how long it has been since the user has had an opportunity to interact, and 3) the height of the stack relative to its average height at reads since the last scavenge. If the product of the allocation and the compute time is high, and if the stack is low, the scavenge favorability measure is high. If it is especially high, a multi-generation scavenge is in order. <i>Id</i> .
	If these heuristics fail and a scavenge is forced instead by the filling of a generation's space, it is likely to happen during a significant compute- bound pausethe one that has just allocated the data that forced the collection. When the opportunistic mechanism fails to find the end of a pause, it may still succeed by default, embedding a scavenge pause within a larger pause. <i>Design of the Opportunistic Garbage Collector</i> at 32.
	As both Corbin and the Opportunistic Garbage Collection Articles relate to deletion of aged records, one of ordinary skill in the art would have understood how to use the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion based on a system load in other hash table implementations such as Corbin. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily

13

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 5,881,241 Corbin ("Corbin") alone and in combination
	all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the Opportunistic Garbage Collection Articles' deletion decision procedure with Corbin would be nothing more than the predictable use of prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have combined the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion and how many generations to scavenge as taught by the Opportunistic Garbage Collection Articles and with Corbin and would have seen the benefits of doing so. One such benefit, for example, is preventing slowdown of the system.
	Additionally, it would have been obvious to one of ordinary skill in the art to modify the system disclosed in Corbin to dynamically determine the maximum number of expired records to remove in the accessed linked list of records. It is a fundamental concept in computer science and the relevant art that any variable or parameter affecting any aspect of a system can be dynamically determined based on information available to the system. One of ordinary skill in the art would have been motivated to combine the system disclosed in Corbin with the fundamental concept of dynamically determining the maximum number of expired records to remove in an accessed linked list of records to solve a number of potential problems. For example, the removal of expired records described in Corbin can be burdensome on the system, adding to the system's load and slowing down the system's processing. Moreover, the removal could also force an interruption in real-time processing as the processing waits for the removal to complete.

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 5,881,241 Corbin ("Corbin") alone and in combination
	One of ordinary skill in the art would have known that dynamically determining the maximum number to remove would limit the burden on the system and bound the length of any real-time interruption to prevent delays in processing. Indeed, Nemes concedes that such dynamic determination was obvious when he states in the '120 patent that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. Further, Corbin describes the importance of performance in its packet routing system, and hence one of ordinary skill in the art would be looking for ways to optimize this performance. <i>See, e.g.</i> , Corbin col. 1:49-2:18, 10:42-56. To the extent that dynamically determining a maximum number of expired records is not disclosed by Corbin in combination with Dirks, Thatte, the '663 Patent, or the Opportunistic Garbage Collection References, it is disclosed by Linux 2.0.1, which describes dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed. It would have been obvious to combine Linux 2.0.1 with Corbin. For example, both Linux 2.0.1 and Corbin describe systems and methods for performing data storage and retrieval using known programming techniques to yield a predictable result.
	When invoked, the function rt_cache_add automatically increments an integer variable rt_cache_size. <i>See</i> Linux 2.0.1, route.c at line 1359. When the function rt_cache_add removes an expired record, the function

15

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 5,881,241 Corbin ("Corbin") alone and in combination
	rt_cache_add decrements the variable rt_cache_size. <i>See</i> Linux 2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the number of records in the hash table (i.e., ip_rt_hash_table). Because the function rt_cache_add automatically increments and decrements the variable rt_cache_size, the variable rt_cache_size is determined dynamically.
	Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1. The function rt_garbage_collect_1 loops through each of the linked lists in the ip_rt_hash_table global variable. <i>See</i> Linux 2.0.1, route.c at lines 1122-1138. In this way, the function rt_garbage_collect_1 accesses the linked list. When the function rt_garbage_collect_1 identifies a record that is expired, the function rt_garbage_collect_1 decrements the variable rt_cache_size and frees the record. <i>See</i> Linux 2.0.1, route.c at lines 1128-1135.
	Because all records in the linked list can be expired and all records in the hash table can be in the linked list, the variable rt_cache_size can represent a dynamically determined maximum number of expired ones of the records to remove when function rt_garbage_collect_1 accesses the linked list.
	Furthermore, the function rt_cache_add determines whether the number of records in the hash table exceeds a predetermined threshold RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_cache_add invokes a function rt_garbage_collect. <i>See</i> Linux

16

Asserted Clai U.S. Pat. No.	ims From 5,893,120	U.S. Pat. No. 5,881,241 Corbin ("Corbin") alone and in combination
		2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293. The function rt_garbage_collect invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293. The function rt_garbage_collect_1 loops through each linked list in the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked list in the hash table, the function rt_garbage_collect_1 looks at each record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each record in a linked list, the function rt_garbage_collect_1 determines whether the record's last use time plus the record's expiration factor is later than the current time. See Linux 2.0.1, route.c at line 1122. If the record's last use time plus the record's expiration factor is less than the current time, the function rt_garbage_collect_1 removes the record from the linked list. See Linux 2.0.1, route.c at lines 1124-1130. The record's expiration factor is based on a variable expire and the record's reference count. See Linux 2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110. After looping through all of the linked lists in this manner, the function rt_garbage_collect_1 determines again whether the number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number of items in the hash table is still greater than the predetermined threshold
		RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves the variable expire and loops through each of the linked lists in the hash table. <i>See</i> Linux 2.0.1, route.c at line 1135. In this way, the function

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 5,881,241 Corbin ("Corbin") alone and in combination
	rt_garbage_collect_1 can remove additional records from the linked lists in the hash table. The function rt_garbage_collect_1 repeats this process until the total number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX.
	Under Bedrock's proposed claim constructions, the records removed by the function rt_garbage_collect_1 are "expired" records. That is, the records removed by the function rt_garbage_collect_1 are data items which after a limited time or after the occurrence of some event become obsolete, such that their presence in the storage system is no longer needed or desired.
	The function rt_cache_add only removes a record from a linked list when the record's last use time plus the fixed timeout value RT_CACHE_TIMEOUT is less than the current time and the record's reference count is zero. <i>See</i> Linux 2.0.1, route.c at line 1369. Thus, the maximum number of records that the function rt_cache_add can remove from a given linked list is limited to those records whose reference counts are zero.
	In contrast, the maximum number of records that the function rt_garbage_collect_1 can remove from a given linked list is not limited to those records whose reference counts are zero. <i>See</i> Linux 2.0.1, route.c at line 1122. Rather, the function rt_garbage_collect_1 can remove records whose reference counts are zero and records whose reference counts are greater than zero.
	Consequently, the maximum number of records that the function rt_garbage_collect_1 can remove from a linked list is different than

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Pat. No. 5,881,241 Corbin ("Corbin") alone and in combination
		the maximum number of records that the function rt_cache_add can remove from a linked list.
3. A method for storing and retrieving information records using a linked list to store and provide access to the records, at least some of the records automatically expiring, the method comprising the steps of:	7. A method for storing and retrieving information records using a hashing technique to provide access to the records and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring, the method comprising the steps of:	To the extent the preamble is a limitation, Corbin inherently discloses a method for storing and retrieving information records using a linked list to store and provide access to the records, at least some of the records automatically expiring. Moreover, it would have been obvious to one of ordinary skill in the art that hash tables with external chaining using linked lists could be used instead of the Patricia Tree disclosed in Corbin. For example, Corbin describes a "method and an apparatus for a new communication framework," a part of which includes a "data route table contain[ing] a list of predetermined pattern of bits which represent a set of predetermined or registered routes." U.S. Pat. No. '241 col. 2:21-2, 2:55-57. Though Corbin describes the data route table implemented as a Patricia Tree, it also notes that "[t]he present invention's architecture of data routing is not dependent on Patricia Trees and hence other search algorithms may be used instead." U.S. Pat. No. '241 col. 10:54-56. A linked list is simply a special case of a "tree" data structure wherein each node contains a single "branch," thus Corbin's disclosure of the use of Patricia Trees inherently discloses the use of linked lists as well.

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Pat. No. 5,881,241 Corbin ("Corbin") alone and in combination
		advantages. <i>See, e.g.,</i> "The Art of Computer Programming", Sorting and Searching, D.E. Knuth, Addison-Wesley Series in Computer Science and Information Processing, pp. 506-549.
		The records in the system Corbin discloses include records, at least some of which automatically expire.
		For example, "[a] lazy deletion algorithm may be used in which a key is marked as deleted but left in the tree." U.S. Pat. No. '241 col. 10:46-47. Those items marked as deleted but left in the tree are expired. <i>See id.</i>
		Corbin further explains that "[i]n a preferred embodiment, the routing device 140 also examines the entry in the flow cache and compares a current time with a first time a packet 150 was routed using that particular entry. If the difference exceeds a second selected timeout, the message flow 160 represented by that entry is considered to have expired due to age and thus to no longer be valid. The second selected timeout is preferably about one minute." U.S. Pat. No. '667 Col. 5:58-65.
[3a] accessing the linked list of records,	[7a] accessing a linked list of records having same hash address,	Corbin inherently discloses accessing the linked list of records. Additionally, it would have been obvious to one of ordinary skill in the art that a linked list could be accessed instead of the Patricia Tree disclosed by Corbin. See above.
		For example, "FIGS. 6b-6f illustrate an exemplary Patricia Tree search implementation of a data route table search as utilized by the present invention. Data route entries in the Patricia Tree, also referred to herein as data route keys, are variable with sequences of bytes with some keys as long as 80 bytes." U.S. Pat. No. '241 col. 9:43-447.

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Pat. No. 5,881,241 Corbin ("Corbin") alone and in combination
		As discussed in [3/7], the disclosure of the Patricia Tree inherently discloses the use of linked lists. Moreover, as discussed in [3/7], it would have been obvious to one of ordinary skill in the art that a hash table using external chaining with linked lists for the search algorithm instead of the Patricia Tree. <i>See id.</i>
[3b] identifying at least some of the automatically expired ones of the records.	[7b] identifying at least some of the automatically expired ones of the records.	Corbin discloses identifying at least some of the automatically expired ones of the records.
and	expired ones of the records,	For example, Corbin explains that "[a] lazy deletion algorithm may be used [on the data route table] in which a key is marked as deleted but left in the tree." U.S. Pat. No. '241 col. 10:46-47. Those items marked as deleted but left in the tree are expired. When the "number of deleted keys become significant, the tree is rebuilt." U.S. Pat. No. '241 col. 10:47-49. The rebuild of the tree identifies and removes the expired records from the Patricia Tree. <i>See id</i> .
[3c] removing at least some of the automatically expired records from the linked list when the linked list is accessed.	[7c] removing at least some of the automatically expired records from the linked list when the linked list is accessed, and	Corbin inherently discloses removing at least some of the automatically expired records from the linked list when the linked list is accessed. Moreover, removing automatically expired records from a linked list would have been obvious to one of ordinary skill in the art given the teachings in Corbin.
		For example, Corbin explains that "[a] lazy deletion algorithm may be used [on the data route table] in which a key is marked as deleted but left in the tree." U.S. Pat. No. '241 col. 10:46-47. Those items marked as deleted but left in the tree are expired. When the "number of deleted keys become significant, the tree is rebuilt." U.S. Pat. No. '241 col. 10:47-49. The rebuild of the tree identifies and removes the expired records from the Patricia Tree. <i>See id.</i>
Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Pat. No. 5,881,241 Corbin ("Corbin") alone and in combination
--	--	---
		As discussed in [3/7], the disclosure of the Patricia Tree inherently discloses the use of linked lists. Moreover, as discussed in [3/7], it would have been obvious to one of ordinary skill in the art that a hash table using external chaining with linked lists for the search algorithm instead of the Patricia Tree. <i>See id.</i> One of ordinary skill in the art would also know that lazy deletion could be used in such structures as well. <i>See</i> Exhibit C-2 which is incorporated by reference. When performing lazy deletion on a linked list, the expired elements would be removed on subsequent accesses to the linked list.
	[7d] inserting, retrieving or deleting one of the records from the system following the step of removing.	Corbin discloses inserting, retrieving or deleting one of the records from the system following the step of removing. For example, Corbin explains that "if a flag is set in the tree head indicating that a rebuild is taking place, then the insertion and deletion operations should go to sleep waiting for the rebuild to be complete." Because the insert and deletion processes sleep while the rebuild is occurring, the insert and delete operations necessarily take place following the removal of the expired records.
4. The method according to claim 3 further including the step of dynamically determining maximum number of expired ones of	8. The method according to claim 7 further including the step of dynamically determining maximum number of expired ones of	Corbin combined with Dirks, Thatte, the '663 patent, and/or the Opportunistic Garbage Collection Articles discloses dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed.
the records to remove when the linked list is accessed.	the records to remove when the linked list is accessed.	Dirks discloses the management of memory in a computer system and more particularly to the allocation of address space in a virtual memory system, which dynamically determines how many records to sweep/remove upon each
Loint Involidity Contentions 9 Day	duction of	allocation. Disclosure of these claim elements in Dirks is clearly shown in the

ιy Documents

US2008 1661500.4

Asserted Cl U.S. Pat. No	aims From 5, 5,893,120	U.S. Pat. No. 5,881,241 Corbin ("Corbin") alone and in combination
		chart of Dirks, which is hereby incorporated by reference in its entirety.
		For example, as summarized in Dirks,
		each time a VSID is assigned from the free list to a new application or thread, a fixed number of entries in the page table are scanned to determine whether they have become inactive, by checking them against the VSIDs on the recycle list. Each entry which is identified as being inactive is removed from the page table. After all of the entries in the page table have been examined in this manner, the VSIDs in the recycle list can be transferred to the free list, since all of their associated page table entries will have been removed. This approach thereby guarantees that a predetermined number of VSIDs are always available in the free list without requiring a time-consuming scan of the complete page table at once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.
		After [a] new VSID has been allocated, the system checks a flag RFLG to determine whether a recycle sweep is currently in progress (Step 20). If there is no sweep in progress, i.e. RFLG is not equal to one, a determination is made whether a sweep should be initiated. This is done by checking whether the inactive list is full, i.e. whether it contains x entries (Step 22). If the number of entries I on the inactive list is less than x, no further action is taken, and processing control returns to the operating system (Step 24). If, however, the inactive list is full at this time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are transferred to the recycle list, and an index n is reset to 1 (Step 28). The system then sweeps a predetermined number of page table entries PT _i on the page table, to detect whether any of them are inactive, i.e. their

23

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 5,881,241 Corbin ("Corbin") alone and in combination
	associated VSID is on the recycle list (Step 30). The predetermined number of entries that are swept is identified as k, where:
	$k = \frac{\text{total number of page table entries}}{\text{maximum number of active threads}}$ <i>Id.</i> at 8:12-30.
	Dirks discloses that any approach can be employed to determine the number of entries to be examined during each step of the sweeping process. <i>Id.</i> at 7:37-40. As stated in Dirks:
	Any other suitable approach can be employed to determine the number of entries to be examined during each step of the sweeping process. In this regard, it is not necessary that the number of examined entries be fixed for each step. Rather, it might vary from one step to the next. The only criterion is that the number of entries examined on each step be such that all entries in the page table are examined in a determinable amount of time or by the occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.
	<i>Id.</i> at 7:38-46. Thus, Dirks dynamically determines the maximum number of records to sweep/remove by calculating a value <i>k</i> . <i>Id</i> . at 7:15-46, 7:66-8:56.
	As both Corbin and Dirks relate to deletion of aged records upon the allocation of a new incoming record, one of ordinary skill in the art would have understood how to use Dirks' dynamic decision making process of determining the maximum number of records to sweep/remove in other hash tables implementations such as that described Corbin. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and

24

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 5,881,241 Corbin ("Corbin") alone and in combination
	methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining Dirks' deletion decision procedure with Corbin would be nothing more than the predictable use of prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have combined Dirks' dynamic determination of the suitable number of entries to examine during each step of the sweeping process with Corbin and would have seen the benefits of doing so. One possible benefit, for example, is saving the system from performing sometimes time-consuming sweeps.
	Alternatively, one of ordinary skill in the art would be motivated to, and would understand how to, combine the system disclosed in Corbin with the means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records disclosed by Thatte. For example, Thatte discloses a system and method using hash tables and/or linked lists and further discloses means for dynamically determining the maximum number for the record search means to remove in the accessed linked list of records. The disclosure of these claim elements in Thatte is clearly shown in the chart of Thatte, which is hereby incorporated by reference in its entirety.
	Moreover, one of ordinary skill in the art would recognize that these combinations would improve the similar systems and methods in the same

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 5,881,241 Corbin ("Corbin") alone and in combination
	way. Additionally, one of ordinary skill in the art would recognize that the result of combining Corbin with Thatte would be nothing more than the predictable use of prior art elements according to their established functions. The resulting combination would include the capability to determine the maximum number for the record search means to remove.
	Further, one of ordinary skill in the art would be motivated to combine Corbin with Thatte and recognized the benefits of doing so. For example, the removal of expired records described in Corbincan be burdensome on the system, adding to the system's load and slowing down the system's processing. One of ordinary skill in the art would recognize that combining Corbin with the teachings of Thatte would solve this problem by dynamically determining how many records to delete based on, among other things, the system load. Moreover, the '120 patent discloses that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine Corbin with Thatte.
	Alternatively, it would also be obvious to combine Corbin with the '663 patent. Disclosure of these claim elements in the '663 patent is clearly shown in the chart of the '663 patent, which is hereby incorporated by reference in its entirety. For example, as summarized in the '663 patent:
	during normal times when the load on the storage system is not excessive, a non-contaminating but slow deletion of records is used. This slow, non-contaminating deletion involves closing

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 5,881,241 Corbin ("Corbin") alone and in combination
	the collision-resolution chain of locations by moving a record from a later position in the chain into the position of the record to be deleted. This leaves no deleted record locations in the storage space to slow down future searches. U.S. Patent 4,996,663 to Nemes at 2:24-34 ("The '663 patent").
	In times of heavy use, when deletions must be done rapidly and no time is available for decontamination, the record is simply marked as "deleted" and left in place. Later non-contaminating probes in the vicinity of such deleted record locations automatically remove the contaminating deleted records by moving records in the chain as described above. <i>Id.</i> at 2:35-41.
	This hybrid hashing technique has the decided advantage of automatically eliminating contamination caused by the fast-secure deletion procedure when the slower, non-contaminating deletion is used when the load on the system is at lower levels. <i>Id.</i> at 2:42-46.
	This hybrid deletion is shown in Figure 5.

27

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 5,881,241 Corbin ("Corbin") alone and in combination
	FIG. 5 HYBRID DELETION VES VES VES VES VES VES VES VES
	to determine if the system load is greater than a threshold. If the system load is greater than the threshold, then a fast-secure delete 52 is used. <i>Id.</i> at 6:40-64, Figure 5. On the other hand, if the system load is less than the threshold, then a slow-non-contaminating delete 53 is used. <i>Id.</i> The fast-secure delete 52 does

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 5,881,241 Corbin ("Corbin") alone and in combination
	not actually delete records, rather it marks records as deleted. <i>Id.</i> at 8:1-33, Figure 7. These records are then actually deleted by a subsequent slow-non-contaminating delete 53. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
	Thus, the hybrid deletion procedure in the '663 patent dynamically determines a maximum number of records to remove. <i>See id.</i> at 6:40-64, Figure 5. If the fast-secure delete 52 is used, then maximum number of records is zero because records are not deleted they are only marked. <i>Id.</i> at 8:1-33, Figure 7. If the slow-non-contaminating delete 53 is used, then the maximum number of records to remove is all of the contaminated records in the bucket. <i>Id.</i> at 6:65- 7:68, Figures 6, 6A, 6B.
	As both Corbin and the '663 patent relate to deletion of records from hash tables using external chaining, one of ordinary skill in the art would understood how to use the '663 patent's dynamic decision on whether to perform a deletion based on a systems load in other hash table implementations such as Corbin. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the '663 patent's deletion decision procedure with Corbin would be nothing more than the predictable use of prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Pat. No. 5,881,241 Corbin ("Corbin") alone and in combination
		combined the '663 patent's dynamic decision on whether to perform a deletion based on a systems load as taught by the '663 patent and with Corbin and would have seen the benefits of doing so. One such benefit, for example, is that the system would avoid performing deletions when the system load exceeded a threshold.
		Alternatively, it would also be obvious to combine Corbin with the Opportunistic Garbage Collection Articles.
		The Opportunistic Garbage Collection Articles disclose a generational based garbage collection which dynamically determines how much garbage to collect. <i>See generally</i> , Paul R. Wilson and Thomas G. Moher, <i>Design of the Opportunistic Garbage Collector</i> , OOPSLA '89 Proceedings, October 1-6, 1989; Paul R. Wilson, <i>Opportunistic Garbage Collection</i> , ACM SIGPLAN Notices, Vol. 23, No. 12, December 1988.
		For example, the Opportunistic Garbage Collection Articles disclose in part:
		When a significant pause has been detected, a decision procedure is invoked to decide whether to garbage collect, and how many generations to scavenge. The fuller a generation is, the more likely it is to be scavenged; also, the longer the pause that has been detected, the larger the scope of the garbage collection is likely to be. <i>Design of the Opportunistic Garbage</i> <i>Collector</i> at 32.
		Every time a user-input routine is invoked, a decision routine can decide whether to garbage collect. As long as the decision routine takes no more than a few milliseconds to execute, it should not interfere with

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 5,881,241 Corbin ("Corbin") alone and in combination
	responsiveness. Since it is only invoked at these times, it does not incur a continual run-time overhead. <i>Opportunistic Garbage Collection</i> at 100.
	This decision routine should take several things into account: 1) the volume of data allocated since the last scavenge, 2) how long it has been since the user has had an opportunity to interact, and 3) the height of the stack relative to its average height at reads since the last scavenge. If the product of the allocation and the compute time is high, and if the stack is low, the scavenge favorability measure is high. If it is especially high, a multi-generation scavenge is in order. <i>Id</i> .
	If these heuristics fail and a scavenge is forced instead by the filling of a generation's space, it is likely to happen during a significant compute- bound pausethe one that has just allocated the data that forced the collection. When the opportunistic mechanism fails to find the end of a pause, it may still succeed by default, embedding a scavenge pause within a larger pause. <i>Design of the Opportunistic Garbage Collector</i> at 32.
	As both Corbin and the Opportunistic Garbage Collection Articles relate to deletion of aged records, one of ordinary skill in the art would have understood how to use the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion based on a system load in other hash table implementations such as Corbin. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how

Joint Invalidity Contentions & Production of Documents

Asserted Cl U.S. Pat. No	aims From 5. 5,893,120	U.S. Pat. No. 5,881,241 Corbin ("Corbin") alone and in combination
		many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the Opportunistic Garbage Collection Articles' deletion decision procedure with Corbin would be nothing more than the predictable use of prior art elements according to their established functions.
		By way of further example, one of ordinary skill in the art would have combined the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion and how many generations to scavenge as taught by the Opportunistic Garbage Collection Articles and with Corbin and would have seen the benefits of doing so. One such benefit, for example, is that the system would only perform deletions when the system was not already too overloaded, thus preventing slowdown of the system.
		Additionally, it would have been obvious to one of ordinary skill in the art to modify the system disclosed in Corbin to dynamically determine the maximum number of expired records to remove in the accessed linked list of records. It is a fundamental concept in computer science and the relevant art that any variable or parameter affecting any aspect of a system can be dynamically determined based on information available to the system. One of ordinary skill in the art would have been motivated to combine the system disclosed in Corbin with the fundamental concept of dynamically determining the maximum number of expired records to remove in an accessed linked list of records to solve a number of potential problems. For example, the removal of expired records described in Corbin can be burdensome on the system, adding to the system's load and slowing down the system's processing. Moreover, the removal could also force an interruption in real-time processing as the processing waits for the removal to complete.

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 5,881,241 Corbin ("Corbin") alone and in combination
	One of ordinary skill in the art would have known that dynamically determining the maximum number to remove would limit the burden on the system and bound the length of any real-time interruption to prevent delays in processing. Indeed, Nemes concedes that such dynamic determination was obvious when he states in the '120 patent that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. Further, Corbin describes the importance of performance in its packet routing system, and hence one of ordinary skill in the art would be looking for ways to optimize this performance. <i>See, e.g.</i> , Corbin col. 1:49-2:18, 10:42-56.
	records is not disclosed by Corbin in combination with Dirks, Thatte, the '663 Patent, or the Opportunistic Garbage Collection References, it is disclosed by Linux 2.0.1, which describes dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed. It would have been obvious to combine Linux 2.0.1 with Corbin. For example, both Linux 2.0.1 and Corbin describe systems and methods for performing data storage and retrieval using known programming techniques to yield a predictable result. When invoked, the function rt_cache_add automatically increments an integer variable rt_cache_size. <i>See</i> Linux 2.0.1, route.c at line 1359. When the function rt_cache_add removes an expired record, the function

33

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 5,881,241 Corbin ("Corbin") alone and in combination
	rt_cache_add decrements the variable rt_cache_size. <i>See</i> Linux 2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the number of records in the hash table (i.e., ip_rt_hash_table). Because the function rt_cache_add automatically increments and decrements the variable rt_cache_size, the variable rt_cache_size is determined dynamically.
	Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1. The function rt_garbage_collect_1 loops through each of the linked lists in the ip_rt_hash_table global variable. <i>See</i> Linux 2.0.1, route.c at lines 1122-1138. In this way, the function rt_garbage_collect_1 accesses the linked list. When the function rt_garbage_collect_1 identifies a record that is expired, the function rt_garbage_collect_1 decrements the variable rt_cache_size and frees the record. <i>See</i> Linux 2.0.1, route.c at lines 1128-1135.
	Because all records in the linked list can be expired and all records in the hash table can be in the linked list, the variable rt_cache_size can represent a dynamically determined maximum number of expired ones of the records to remove when function rt_garbage_collect_1 accesses the linked list.
	Furthermore, the function rt_cache_add determines whether the number of records in the hash table exceeds a predetermined threshold RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_cache_add invokes a function rt_garbage_collect. <i>See</i> Linux

34

Asserted Clai U.S. Pat. No.	ims From 5,893,120	U.S. Pat. No. 5,881,241 Corbin ("Corbin") alone and in combination
		2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293. The function rt_garbage_collect invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293. The function rt_garbage_collect_1 loops through each linked list in the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked list in the hash table, the function rt_garbage_collect_1 looks at each record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each record in a linked list, the function rt_garbage_collect_1 determines whether the record's last use time plus the record's expiration factor is later than the current time. See Linux 2.0.1, route.c at line 1122. If the record's last use time plus the record's expiration factor is less than the current time, the function rt_garbage_collect_1 removes the record from the linked list. See Linux 2.0.1, route.c at lines 1124-1130. The record's expiration factor is based on a variable expire and the record's reference count. See Linux 2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110. After looping through all of the linked lists in this manner, the function rt_garbage_collect_1 determines again whether the number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number of items in the hash table is still greater than the predetermined threshold
		RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves the variable expire and loops through each of the linked lists in the hash table. <i>See</i> Linux 2.0.1, route.c at line 1135. In this way, the function

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 5,881,241 Corbin ("Corbin") alone and in combination
	rt_garbage_collect_1 can remove additional records from the linked lists in the hash table. The function rt_garbage_collect_1 repeats this process until the total number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX.
	Under Bedrock's proposed claim constructions, the records removed by the function rt_garbage_collect_1 are "expired" records. That is, the records removed by the function rt_garbage_collect_1 are data items which after a limited time or after the occurrence of some event become obsolete, such that their presence in the storage system is no longer needed or desired.
	The function rt_cache_add only removes a record from a linked list when the record's last use time plus the fixed timeout value RT_CACHE_TIMEOUT is less than the current time and the record's reference count is zero. <i>See</i> Linux 2.0.1, route.c at line 1369. Thus, the maximum number of records that the function rt_cache_add can remove from a given linked list is limited to those records whose reference counts are zero.
	In contrast, the maximum number of records that the function rt_garbage_collect_1 can remove from a given linked list is not limited to those records whose reference counts are zero. <i>See</i> Linux 2.0.1, route.c at line 1122. Rather, the function rt_garbage_collect_1 can remove records whose reference counts are zero and records whose reference counts are greater than zero.
	Consequently, the maximum number of records that the function rt_garbage_collect_1 can remove from a linked list is different than

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 5,881,241 Corbin ("Corbin") alone and in combination
	the maximum number of records that the function rt_cache_add can remove from a linked list.

37

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Pat. No. 5,121,495 to Nemes ("the '495 Patent") alone and in combination
1. An information storage	5. An information storage	To the extent the preamble is a limitation, the '495 Patent discloses an
and retrieval system, the system comprising:	and retrieval system, the system comprising:	information storage and retrieval system.
		For example, the '495 Patent claims "[a]n information storage and retrieval
		system using hashing techniques to provide rapid access to the records of said
		system" U.S. Pat. No. '495 col.11:68-12:2. Moreover, the '495 Patent
		and more particularly to the use of hashing techniques in such systems " U.S.
		Pat. No. '495 col. 1:10-12; see also, Figs. 1-7, Appendix, and Columns 5-8.
		In addition, to the extent the preamble is a limitation, the '499 Patent discloses an information storage and retrieval system.
		For example, the Abstract of the '499 patent discloses "An apparatus for performing storage and retrieval in an information storage system is disclosed which uses the hashing technique." '499 patent at Abstract. This storage and retrieval system is further described in columns 4-5, which recite in part, "The present invention is concerned with information storage and retrieval systems. Such a system would form one of the application software packages 23, 24,, 25 of FIG. 2. The various processes (26,27,28) which implement the information storage and retrieval system are herein disclosed as flow charts in FIGS. 3, 4 and 5, and shown as pseudocode in the APPENDIX to this specification." Further detail is given in column 7, which recites in part "Referring then to FIG. 3, there is shown a flowchart of a retrieve algorithm for retrieving records from a data storage and retrieval system in accordance with the present invention and involving dual collision resolution schemes dynamically selected depending on load factor." <i>See also</i> , Figs. 1-5, Appendix, and Col 8-9.

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Pat. No. 5,121,495 to Nemes ("the '495 Patent") alone and in combination
[1a] a linked list to store and provide access to records stored in a memory of the system, at least some of the records automatically expiring,	[5a] a hashing means to provide access to records stored in a memory of the system and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring,	The '495 Patent discloses a chain of records to store and provide access to records stored in a memory of the system, at least some of the records automatically expiring. The '495 Patent also discloses a hashing means to provide access to records stored in a memory of the system and using a linear probing technique to store the records with same hash address, at least some of the records automatically expiring. For example, the '495 Patent claims "[a]n information storage and retrieval system using hashing techniques to provide rapid access to the records of said system and utilizing a linear probing technique to store records with the same hash address, at least some of said records automatically expiring." U.S. Pat. No. '495 col.11:68-12:4. This claim is identical to [5a] except for the substitution of a linear probing technique instead of an external chaining technique. <i>See also</i> '495 Patent col. 4:33-64; <i>id.</i> at 8:65-9:9 (code defining hash table), Abstract, Fig. 3, Col. 2:30-48, 5:36-57, 6:53-8:16, claim 1, claim 5. It would have been obvious to one of ordinary skill in the art that an external chaining technique could be used instead of a linear probing technique to store records with the same hash address. Linear probing and external chaining are two methods to solve the problem of collisions in a hash table. Both were commonly known by those skilled in the art, as Nemes admits in the '120 patent. See U.S. Pat. No. '120 col. 1:53-59 ("Some form of collision resolution must therefore be provided. For example, the simple strategy called 'linear probing,' is often used. Another methods of collision resolution are described in the prior art cited by both the '495 and '120 patents. See "The Art of Computer Programming", Sorting and Searching, D.E. Knuth, Addison-

2

Joint Invalidity Contentions & Production of Documents

Asserted Claims From	U.S. Pat. No. 5,121,495 to Nemes ("the '495 Patent") alone and in
U.S. Pat. No. 5,893,120	combination
	 Wesley Series in Computer Science and Information Processing, pp. 513, 518, 1973. Indeed, Knuth recognizes that "[plerhaps the most obvious way to solve this problem [of collision resolution] is to maintain M linked Lists, one for each possible hash code [i.e. external chaining]." See also Mark A. Weiss, Data Structures and Algorithm Analysis, p. 157, 1993 ("<i>Closed hashing</i>, also known as <i>open addressing</i>, is an alternative to resolving collisions with linked lists."). Further, U.S. Patent No. 5,289,499 ("'499 patent), discloses the use of external chaining techniques for performing storage and retrieval in an information system. <i>See '499</i> patent abstract ("In order to provide efficient and graceful operation under varying load conditions, the system shifts between collision avoidance by linear probing with open addressing when the load is below a threshold, and collision avoidance by external chaining when the load is above a threshold"); '499 patent, Figs. 3-5 (use of external chaining - linked list to perform information storage and retrieval); '499 patent, col. 2:60-65, 3:5-9, col. 5:63-65; 8:53-9:20, claims 1-3 (external chaining a required element). Thus, one of ordinary skill in the art would have been motivated by Knuth , Weiss, or the '499 patent to apply the teachings of the '495 patent to hash tables with external chaining using linked lists. Where an external chaining collision resolution strategy is used instead of linear probing, the records would be stored in linked list. The records in the system the '495 Patent discloses include records, at least some of which automatically expire. The '495 Patent discloses that "data records become obsolete merely by the passage of time or by the occurrence of some event" and that "[i]f such expired, lapsed or obsolete records are not

3

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Pat. No. 5,121,495 to Nemes ("the '495 Patent") alone and in combination
		removed from the storage table, they will, in time, seriously degrade or contaminate the performance of the retrieval system." U.S. Pat. No. '495 col. 4:23-28. <i>See also</i> '495 Patent at Abstract, Fig. 3, Col. 2:30-48, 5:22-57, 6:53-8:16, claim 1, claim 5.
[1b] a record search means utilizing a search key to access the linked list,	[5b] a record search means utilizing a search key to access a linked list of records having the same hash address	The '495 Patent discloses a record search means utilizing a search key to access a chain of records. The '495 Patent also discloses a record search means utilizing a search key to access a chain of records having the same hash address.
		For example, Claim 1 of the '495 patent is almost identical to [5b], claiming "a record search means utilizing a search key to access a chain of records having the same hash address." U.S. Pat. No. '495 col. 12:6-7. Again, the only difference between the two patents is the reference to a chain of records instead of a linked list. <i>See also</i> '495 Pat. col. 5:45-56; <i>id.</i> at 10:2511:16 (search table function code); <i>id.</i> at Figs. 3-4.
		It would have been obvious to one of ordinary skill in the art that a linked list could be used to store records with the same hash value rather than a chain of records. Linear probing and external chaining are two methods to solve the problem of collisions in a hash table. Both were commonly known by those skilled in the art, as Nemes admits in the '120 patent. See U.S. Pat. No. '120 col. 1:53-59 ("Some form of collision resolution must therefore be provided. For example, the simple strategy called 'linear probing,' is often used. Another method for resolving collisions is called 'external chaining.'"). Both of these methods of collision resolution are described in the prior art cited by both the '495 and '120 patents. See "The Art of Computer Programming", Sorting and Searching, D.E. Knuth, Addison-Wesley Series in Computer

Joint Invalidity Contentions & Production of Documents

4

Asserted C U.S. Pat. N	laims From o. 5,893,120	U.S. Pat. No. 5,121,495 to Nemes ("the '495 Patent") alone and in combination
		Science and Information Processing, pp. 513, 518, 1973. Indeed, Knuth recognizes that "[p]erhaps the most obvious way to solve this problem [of collision resolution] is to maintain M linked Lists, one for each possible hash code [i.e. external chaining]." See also Mark A. Weiss, Data Structures and Algorithm Analysis, p. 157, 1993 (" <i>Closed hashing</i> , also known as <i>open addressing</i> , is an alternative to resolving collisions with linked lists."). Further, U.S. Patent No. 5,289,499 ("'499 patent), discloses the use of external chaining techniques for performing storage and retrieval in an information system. <i>See '499</i> patent abstract ("In order to provide efficient and graceful operation under varying load conditions, the system shifts between collision avoidance by linear probing with open addressing when the load is above a threshold, and collision avoidance by external chaining a required element). Thus, one of ordinary skill in the art would have been motivated by Knuth, Weiss, or the '499 patent to apply the teachings of the '495 patent at Fig. 3-5, Col. 2:9-48, 2:50-3:7, 5:63-6:28, 7:10-10:5, claim 1. Where an external chaining collision resolution strategy is used instead of linear probing, the records would be stored in linked lists rather than in chains of records. Thus, it would also have been obvious to one of ordinary skill in the art that the records could be stored in a linked list.
[1c] the record search means including a means	[5c] the record search means including means for	The '495 Patent discloses the record search means including a means for identifying and removing at least some of the expired ones of the records from

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Pat. No. 5,121,495 to Nemes ("the '495 Patent") alone and in combination
for identifying and removing at least some of the expired ones of the records from the linked list when the linked list is accessed, and	identifying and removing at least some expired ones of the records from the linked list of records when the linked list is accessed, and	the chain of records when the chain of records is accessed. For example, Claim 1 of the '495 patent is almost identical to [5c], claiming "said record search means including means for identifying and removing all expired ones of said records from said chain of records each time said chain is accessed." U.S. Pat. No. '495 col. 12:8-11. Again, the only differences between the two patents are (1) the reference to a chain of records instead of a linked list and (2) the deletion of all of the records in the '495 patent instead of some of the records. <i>See also</i> the '495 Patent col. 5:36-57, <i>id.</i> at 10:25-11:16 (search table function code); <i>id.</i> at Figs. 3-4, Abstract, Col. 2:30-48, 6:53-8:16, claim 1, claim 5. Though this describes accessing a chain of records rather than a linked list, as discussed above in sections [1a/5a] and [1b/5b], it would have been obvious to one of ordinary skill in the art that a linked list could be used to store the records instead of a chain of records. For example, the use of a linked list to store records is discussed in detail in the '499 patent. For example, the '499 patent discloses in part, "Another technique for resolving collisions is called external chaining. In this technique, each hash table position is able to store all records hashing to that location. More particularly, a linked list is used to store the actual records outside of the hash table. The hash table entry, then, is no more than a pointer to the head of the linked list. The linked list is itself searched sequentially when retrieving or storing a record. Deletion is accomplished by adjusting pointers to eliminate the deleted record from the linked list." <i>See</i> the '499 patent at column 2. <i>See, also</i> , the '499 patent at Abstract, Fig. 3-5, Col. 2:9-48, 2:50-3:7, 5:63-6:28, 7:10-10:5, claim 1
		Moreover, the deletion of all of the expired records includes the deletion of at

Asserted C U.S. Pat. N	laims From o. 5,893,120	U.S. Pat. No. 5,121,495 to Nemes ("the '495 Patent") alone and in combination
		least some of the expired records and thus satisfies this element of the '120 patent.
[1d] means, utilizing the record search means, for accessing the linked list and, at the same time, removing at least some of the expired ones of the records in the linked list.	[5d] mea[n]s, utilizing the record search means, for inserting, retrieving, and deleting records from the system and, at the same time, removing at least some expired ones of the records in the accessed linked list of records.	The '495 Patent discloses means, utilizing the record search means, for accessing the linked list and, at the same time, removing at least some of the expired ones of the records in the linked list. The '495 Patent also discloses means, utilizing the record search means, for inserting, retrieving, and deleting records from the system and, at the same time, removing at least some expired ones of the records in the accessed linked list of records. For example, Claim 1 of the '495 patent is almost identical to [5d], claiming "means, utilizing said record search means, for inserting retrieving and deleting records from said system and, at the same time, removing all expired ones of said records in the accessed chains of records." '495 Patent col. 12:12-16. Again, the only differences between the two patents are (1) the reference to a chain of records instead of a linked list and (2) the deletion of all of the records in the '495 patent instead of some of the records. <i>See also</i> '495 Patent col. 5:65-8:16; <i>id.</i> at 9:10-10:20 (insert, retrieve, and delete function code); <i>id.</i> at Figs. 5-7.

Joint Invalidity Contentions & Production of Documents

7

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Pat. No. 5,121,495 to Nemes ("the '495 Patent") alone and in combination
		all records hashing to that location. More particularly, a linked list is used to store the actual records outside of the hash table. The hash table entry, then, is no more than a pointer to the head of the linked list. The linked list is itself searched sequentially when retrieving or storing a record. Deletion is accomplished by adjusting pointers to eliminate the deleted record from the linked list." <i>See</i> the '499 patent at column 2. <i>See, also</i> , the '499 patent at Abstract, Fig. 3-5, Col. 2:9-48, 2:50-3:7, 5:63-6:28, 7:10-10:5, claim 1. Moreover, the deletion of all of the expired records includes the deletion of at least some of the expired records and thus satisfies this element of the '120 patent.
2. The information storage and retrieval system according to claim 1 further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records.	6. The information storage and retrieval system according to claim 5 further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records.	The '495 Patent combined with Dirks, Thatte, the '663 patent and/or the Opportunistic Garbage Collection Articles discloses an information storage and retrieval system further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records. Dirks discloses the management of memory in a computer system and more particularly to the allocation of address space in a virtual memory system, which dynamically determines how many records to sweep/remove upon each allocation. Disclosure of these claim elements in Dirks is clearly shown in Exhibit B-2, which is hereby incorporated by reference in its entirety. For example, as summarized in Dirks,
		each time a VSID is assigned from the free list to a new application or

thread, a fixed number of entries in the page table are scanned to determine whether they have become inactive, by checking them against the VSIDs on the recycle list. Each entry which is identified as being inactive is
 b) the recycle list. Each entry which is identified as being matrixe is removed from the page table. After all of the entries in the page table have been examined in this manner, the VSIDs in the recycle list can be transferred to the free list, since all of their associated page table entries will have been removed. This approach thereby guarantees that a predetermined number of VSIDs are always available in the free list without requiring a time-consuming scan of the complete page table at once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14. After [a] new VSID has been allocated, the system checks a flag RFLG to determine whether a recycle sweep is currently in progress (Step 20). If there is no sweep in progress, i.e. RFLG is not equal to one, a determination is made whether a sweep should be initiated. This is done by checking whether the inactive list is full, i.e. whether it contains x entries (Step 22). If the number of entries I on the inactive list is less than x, no further action is taken, and processing control returns to the operating system (Step 24). If, however, the inactive list is full at this time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are transferred to the recycle list, and an index n is reset to 1 (Step 28). The system then sweeps a predetermined number of page table entries PT_i on the page table, to detect whether any of them are inactive, i.e. their associated VSID is on the recycle list (Step 30). The predetermined mumber of the set of

9

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 5,121,495 to Nemes ("the '495 Patent") alone and in combination
	$k = \frac{\text{total number of page table entries}}{\text{maximum number of active threads}}$ <i>Id.</i> at 8:12-30.
	Dirks discloses that any approach can be employed to determine the number of entries to be examined during each step of the sweeping process. <i>Id.</i> at 7:37-40. As stated in Dirks:
	Any other suitable approach can be employed to determine the number of entries to be examined during each step of the sweeping process. In this regard, it is not necessary that the number of examined entries be fixed for each step. Rather, it might vary from one step to the next. The only criterion is that the number of entries examined on each step be such that all entries in the page table are examined in a determinable amount of time or by the occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.
	<i>Id.</i> at 7:38-46. Thus, Dirks dynamically determines the maximum number of records to sweep/remove by calculating a value <i>k. Id.</i> at 7:15-46, 7:66-8:56.
	As both the '495 Patent and Dirks relate to deletion of aged records upon the allocation of a new incoming record, one of ordinary skill in the art would have understood how to use Dirks' dynamic decision making process of determining the maximum number of records to sweep/remove in other hash tables implementations such as the '495 Patent. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching

10

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 5,121,495 to Nemes ("the '495 Patent") alone and in combination
	the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining Dirks' deletion decision procedure with the '495 Patent nothing more than the predictable use of prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have combined Dirks' dynamic determination of the suitable number of entries to examine during each step of the sweeping process with the '495 Patent and would have seen the benefits of doing so. One possible benefit, for example, is saving the system from performing sometimes time-consuming sweeps.`
	Alternatively, one of ordinary skill in the art would be motivated to, and would understand how to, combine the system disclosed in the '495 Patent with the means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records disclosed by Thatte. For example, Thatte discloses a system and method using hash tables and/or linked lists and further discloses means for dynamically determining the maximum number for the record search means to remove in the accessed linked list of records. The disclosure of these claim elements in Thatte is clearly shown in the chart of Thatte, which is hereby incorporated by reference in its entirety.
	Moreover, one of ordinary skill in the art would recognize that these combinations would improve the similar systems and methods in the same way. Additionally, one of ordinary skill in the art would recognize that the result of combining the '495 Patent with Thatte would be nothing more than

the predictable use of prior art elements according to their established functions. The resulting combination would include the capability to determine the maximum number for the record search means to remove. Further, one of ordinary skill in the art would be motivated to combine the '495 Patent with Thatte and recognize the benefits of doing so. For example, the removal of expired records described in the '495 Patent can be burdensome on the system, adding to the system's load and slowing down the system's processing. One of ordinary skill in the art would recognize that combining the '495 Patent with the teachings of Thatte would solve this problem by dynamically determining how many records to delete based on, among other things, the system load. Moreover, the '120 patent discloses that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine the '495 Patent with Thatte. Alternatively, it would also be obvious to combine the '495 Patent with the '663 patent. Disclosure of these claim elements in the '663 patent is clearly shown in the chart of the '663 patent, which is hereby incorporated by reference in its entirety. For example, as summarized in the '663 patent: during normal times when the load on the storage system is not excessive, a non-contaminating but slow deletion of records is used. This slow, non-contaminating dueltion involves closing the collision-resolution chain of locations by moving a record	Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 5,121,495 to Nemes ("the '495 Patent") alone and in combination
Further, one of ordinary skill in the art would be motivated to combine the '495 Patent with Thatte and recognize the benefits of doing so. For example, the removal of expired records described in the '495 Patent can be burdensome on the system, adding to the system's load and slowing down the system's processing. One of ordinary skill in the art would recognize that combining the '495 Patent with the teachings of Thatte would solve this problem by dynamically determining how many records to delete based on, among other things, the system load. Moreover, the '120 patent discloses that '[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine the '495 Patent with Thatte. Alternatively, it would also be obvious to combine the '495 Patent with the '663 patent. Disclosure of these claim elements in the '663 patent is clearly shown in the chart of the '663 patent, which is hereby incorporated by reference in its entirety. For example, as summarized in the '663 patent: during normal times when the load on the storage system is not excessive, a non-contaminating but slow deletion of records is used. This slow, non-contaminating due toin involves closing the collision-resolution chain of locations by moving a record		the predictable use of prior art elements according to their established functions. The resulting combination would include the capability to determine the maximum number for the record search means to remove.
Alternatively, it would also be obvious to combine the '495 Patent with the '663 patent. Disclosure of these claim elements in the '663 patent is clearly shown in the chart of the '663 patent, which is hereby incorporated by reference in its entirety. For example, as summarized in the '663 patent:during normal times when the load on the storage system is not excessive, a non-contaminating but slow deletion of records is used. This slow, non-contaminating deletion involves closing the collision-resolution chain of locations by moving a record		Further, one of ordinary skill in the art would be motivated to combine the '495 Patent with Thatte and recognize the benefits of doing so. For example, the removal of expired records described in the '495 Patent can be burdensome on the system, adding to the system's load and slowing down the system's processing. One of ordinary skill in the art would recognize that combining the '495 Patent with the teachings of Thatte would solve this problem by dynamically determining how many records to delete based on, among other things, the system load. Moreover, the '120 patent discloses that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine the '495 Patent with Thatte.
during normal times when the load on the storage system is not excessive, a non-contaminating but slow deletion of records is used. This slow, non-contaminating deletion involves closing the collision-resolution chain of locations by moving a record		Alternatively, it would also be obvious to combine the '495 Patent with the '663 patent. Disclosure of these claim elements in the '663 patent is clearly shown in the chart of the '663 patent, which is hereby incorporated by reference in its entirety. For example, as summarized in the '663 patent:
		during normal times when the load on the storage system is not excessive, a non-contaminating but slow deletion of records is used. This slow, non-contaminating deletion involves closing the collision-resolution chain of locations by moving a record

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 5,121,495 to Nemes ("the '495 Patent") alone and in combination
	from a later position in the chain into the position of the record to be deleted. This leaves no deleted record locations in the storage space to slow down future searches. U.S. Patent 4,996,663 to Nemes at 2:24-34 ("The '663 patent").
	In times of heavy use, when deletions must be done rapidly and no time is available for decontamination, the record is simply marked as "deleted" and left in place. Later non-contaminating probes in the vicinity of such deleted record locations automatically remove the contaminating deleted records by moving records in the chain as described above. <i>Id.</i> at 2:35-41.
	This hybrid hashing technique has the decided advantage of automatically eliminating contamination caused by the fast-secure deletion procedure when the slower, non-contaminating deletion is used when the load on the system is at lower levels. <i>Id.</i> at 2:42-46.This hybrid deletion is shown in Figure 5.

Asserted Clai U.S. Pat. No.	ims From 5,893,120	U.S. Pat. No. 5,121,495 to Nemes ("the '495 Patent") alone and in combination
		FIG.5 HYBRID DELETION VES (JUAD > VES (JUA

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 5,121,495 to Nemes ("the '495 Patent") alone and in combination
	not actually delete records, rather it marks records as deleted. <i>Id.</i> at 8:1-33, Figure 7. These records are then actually deleted by a subsequent slow-non-contaminating delete 53. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
	Thus, the hybrid deletion procedure in the '663 patent dynamically determines a maximum number of records to remove. <i>See id.</i> at 6:40-64, Figure 5. If the fast-secure delete 52 is used, then maximum number of records is zero because records are not deleted they are only marked. <i>Id.</i> at 8:1-33, Figure 7. If the slow-non-contaminating delete 53 is used, then the maximum number of records to remove is all of the contaminated records in the bucket. <i>Id.</i> at 6:65- 7:68, Figures 6, 6A, 6B.
	As both the '495 Patent and the '663 patent relate to deletion of records from hash tables using external chaining, one of ordinary skill in the art would understood how to use the '663 patent's dynamic decision on whether to perform a deletion based on a systems load in other hash table implementations such as that described in the '495 Patent. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the '663 patent's deletion decision procedure with the '495 Patent would be nothing more than the predictable use of prior art elements according to their established functions.

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 5,121,495 to Nemes ("the '495 Patent") alone and in combination
	By way of further example, one of ordinary skill in the art would have combined the '663 patent's dynamic decision on whether to perform a deletion based on a systems load as taught by the '663 patent and with the '495 Patent and would have seen the benefits of doing so. One such benefit, for example, is that the system would avoid performing deletions when the system load exceeded a threshold.
	Alternatively, it would also be obvious to combine the '495 Patent with the Opportunistic Garbage Collection Articles.
	The Opportunistic Garbage Collection Articles disclose a generational based garbage collection which dynamically determines how much garbage to collect. <i>See generally</i> , Paul R. Wilson and Thomas G. Moher, <i>Design of the Opportunistic Garbage Collector</i> , OOPSLA '89 Proceedings, October 1-6, 1989; Paul R. Wilson, <i>Opportunistic Garbage Collection</i> , ACM SIGPLAN Notices, Vol. 23, No. 12, December 1988.
	For example, the Opportunistic Garbage Collection Articles disclose in part:
	When a significant pause has been detected, a decision procedure is invoked to decide whether to garbage collect, and how many generations to scavenge. The fuller a generation is, the more likely it is to be scavenged; also, the longer the pause that has been detected, the larger the scope of the garbage collection is likely to be. <i>Design of the Opportunistic Garbage</i> <i>Collector</i> at 32.
	Every time a user-input routine is invoked, a decision routine can decide whether to garbage collect. As long as the decision routine takes no more

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 5,121,495 to Nemes ("the '495 Patent") alone and in combination
	than a few milliseconds to execute, it should not interfere with
	responsiveness. Since it is only invoked at these times, it does not incur a continual run-time overhead. <i>Opportunistic Garbage Collection</i> at 100.
	This decision routine should take several things into account: 1) the volume of data allocated since the last scavenge, 2) how long it has been since the user has had an opportunity to interact, and 3) the height of the stack relative to its average height at reads since the last scavenge. If the product of the allocation and the compute time is high, and if the stack is low, the scavenge favorability measure is high. If it is especially high, a multi-generation scavenge is in order. <i>Id</i> .
	If these heuristics fail and a scavenge is forced instead by the filling of a generation's space, it is likely to happen during a significant compute- bound pausethe one that has just allocated the data that forced the collection. When the opportunistic mechanism fails to find the end of a pause, it may still succeed by default, embedding a scavenge pause within a larger pause. <i>Design of the Opportunistic Garbage Collector</i> at 32.
	As both the '495 Patent and the Opportunistic Garbage Collection Articles relate to deletion of aged records, one of ordinary skill in the art would have understood how to use the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion based on a system load in other hash table implementations such as the '495 Patent. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 5,121,495 to Nemes ("the '495 Patent") alone and in combination
	all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the Opportunistic Garbage Collection Articles' deletion decision procedure with the '495 Patent would be nothing more than the predictable use of prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have combined the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion and how many generations to scavenge as taught by the Opportunistic Garbage Collection Articles and with the '495 Patent and would have seen the benefits of doing so. One such benefit, for example, is preventing slowdown of the system.
	Additionally, it would have been obvious to one of ordinary skill in the art to modify the system disclosed in the '495 Patent to dynamically determine the maximum number of expired records to remove in the accessed linked list of records. It is a fundamental concept in computer science and the relevant art that any variable or parameter affecting any aspect of a system can be dynamically determined based on information available to the system. One of ordinary skill in the art would have been motivated to combine the system disclosed in the '495 Patent with the fundamental concept of dynamically determining the maximum number of expired records to remove in an accessed linked list of records to solve a number of potential problems. For example, the removal of expired records described in the '495 Patent can be burdensome on the system, adding to the system's load and slowing down the system's processing. Moreover, the removal could also force an interruption in real- time processing as the processing waits for the removal to complete.

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 5,121,495 to Nemes ("the '495 Patent") alone and in combination
	One of ordinary skill in the art would have known that dynamically determining the maximum number to remove would limit the burden on the system and bound the length of any real-time interruption to prevent delays in processing. Indeed, Nemes concedes that such dynamic determination was obvious when he states in the '120 patent that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. The '499 patent discloses an information storage and retrieval system further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records. For example, the '499 patent describes performing a dynamic determination of the number of records hashed to the same cell in the hash table. Then determining if this number exceeds a certain threshold. If the threshold is exceeded, then the system described by the '499 Patent at Col. 6, which recites in part "In accordance with the present invention, the major advantages of both techniques, open addressing and external chaining, are achieved in the same system. More particularly, these two techniques are combined in one system, and the actual storage strategy is selected dynamically, depending on the then current local load factor. Initially, all records are stored in the hash table using the open addressing with linear probing technique. When the local load factor exceeds a preselected threshold, the system shifts dynamically to the external chaining technique. That is, while inserting or deleting a record.

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 5,121,495 to Nemes ("the '495 Patent") alone and in combination
	the local load factor, as reflected in the number of records hashed to this same hash table cell, is examined. If this number exceeds a threshold, the records hashed to this cell address are reorganized, removed from the hash table itself and organized into an external chain in another part of the store. While such reorganization involves considerable overhead, the payoff comes in subsequent searches where the external chaining greatly reduces the search time. It is assumed, of course, that the frequency of retrievals greatly exceeds the frequency of insertions and deletions, an assumption which holds true for most data storage and retrieval systems. When a deletion from a linked list causes the chain length to fall below a threshold, not necessarily the same threshold that triggered chain formation, the chain is destroyed and the entries reabsorbed into the hash table." The '499 Patent at Col. 6. <i>See also</i> , the '499 patent at Col. 6:38-65, 8:14-39, 8:62-9:2, and claim 3.
	To the extent that dynamically determining a maximum number of expired records is not disclosed by the '495 Patent in combination with Dirks, Thatte, the '663 Patent, the '499 Patent, or the Opportunistic Garbage Collection References,, it is disclosed by Linux 2.0.1, which describes dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed. It would have been obvious to combine Linux 2.0.1 with the '495 Patent. For example, both Linux 2.0.1 and the '495 Patent describe systems and methods for performing data storage and retrieval using known programming techniques to yield a predictable result.

Joint Invalidity Contentions & Production of Documents
Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 5,121,495 to Nemes ("the '495 Patent") alone and in combination
	2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the number of records in the hash table (i.e., ip_rt_hash_table). Because the function rt_cache_add automatically increments and decrements the variable rt_cache_size, the variable rt_cache_size is determined dynamically.
	Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1. The function rt_garbage_collect_1 loops through each of the linked lists in the ip_rt_hash_table global variable. <i>See</i> Linux 2.0.1, route.c at lines 1122-1138. In this way, the function rt_garbage_collect_1 accesses the linked list. When the function rt_garbage_collect_1 identifies a record that is expired, the function rt_garbage_collect_1 decrements the variable rt_cache_size and frees the record. <i>See</i> Linux 2.0.1, route.c at lines 1128-1135.
	Because all records in the linked list can be expired and all records in the hash table can be in the linked list, the variable rt_cache_size can represent a dynamically determined maximum number of expired ones of the records to remove when function rt_garbage_collect_1 accesses the linked list.
	Furthermore, the function rt_cache_add determines whether the number of records in the hash table exceeds a predetermined threshold RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_cache_add invokes a function rt_garbage_collect. See Linux 2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect invokes a function rt_garbage_collect invokes a function rt_garbage_collect invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293. The function rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

21

Asserted Cl U.S. Pat. No	aims From 5. 5,893,120	U.S. Pat. No. 5,121,495 to Nemes ("the '495 Patent") alone and in combination
U.S. Pat. No	5,893,120	combination 2.0.1, route.c at line 1293. The function rt_garbage_collect_1 loops through each linked list in the hash table. <i>See</i> Linux 2.0.1, route.c at lines 1116-1132. For each linked list in the hash table, the function rt_garbage_collect_1 looks at each record in the linked list. <i>See</i> Linux 2.0.1, route.c at lines 1120-1131. For each record in a linked list, the function rt_garbage_collect_1 determines whether the record's last use time plus the record's expiration factor is later than the current time. <i>See</i> Linux 2.0.1, route.c at line 1122. If the record's last use time plus the record from the linked list. <i>See</i> Linux 2.0.1, route.c at line 1122. If the record's last use time plus the record's expiration factor is less than the current time, the function rt_garbage_collect_1 removes the record's expiration factor is based on a variable expire and the record's reference count. <i>See</i> Linux 2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed timeout value RT_CACHE_TIMEOUT. <i>See</i> Linux 2.0.1, route.c at line 1110.
		rt_garbage_collect_1 determines again whether the number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX. <i>See</i> Linux 2.0.1, route.c at line 1133. If the number of items in the hash table is still greater than the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves the variable expire and loops through each of the linked lists in the hash table. <i>See</i> Linux 2.0.1, route.c at line 1135. In this way, the function rt_garbage_collect_1 can remove additional records from the linked lists in the hash table. The function rt_garbage_collect_1 repeats this process until the total number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX.

22

Asserted Cl U.S. Pat. No	laims From o. 5,893,120	U.S. Pat. No. 5,121,495 to Nemes ("the '495 Patent") alone and in combination
		Under Bedrock's proposed claim constructions, the records removed by the function rt_garbage_collect_1 are "expired" records. That is, the records removed by the function rt_garbage_collect_1 are data items which after a limited time or after the occurrence of some event become obsolete, such that their presence in the storage system is no longer needed or desired.
		The function rt_cache_add only removes a record from a linked list when the record's last use time plus the fixed timeout value RT_CACHE_TIMEOUT is less than the current time and the record's reference count is zero. <i>See</i> Linux 2.0.1, route.c at line 1369. Thus, the maximum number of records that the function rt_cache_add can remove from a given linked list is limited to those records whose reference counts are zero.
		In contrast, the maximum number of records that the function <pre>rt_garbage_collect_1 can remove from a given linked list is not limited to those records whose reference counts are zero. See Linux 2.0.1, route.c at line 1122. Rather, the function rt_garbage_collect_1 can remove records whose reference counts are zero and records whose reference counts are greater than zero.</pre>
		Consequently, the maximum number of records that the function <pre>rt_garbage_collect_1 can remove from a linked list is different than the maximum number of records that the function rt_cache_add can remove from a linked list.</pre>
3. A method for storing	7. A method for storing	To the extent the preamble is a limitation, the '495 Patent discloses a method

Joint Invalidity Contentions & Production of Documents

Asserted C U.S. Pat. N	laims From o. 5,893,120	U.S. Pat. No. 5,121,495 to Nemes ("the '495 Patent") alone and in combination
and retrieving information records using a linked list to store and provide access to the records, at least some of the records automatically expiring, the method comprising the steps of:	and retrieving information records using a hashing technique to provide access to the records and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring, the method comprising the steps of:	for storing and retrieving information records using a chain of records to store and provide access to the records, at least some of the records automatically expiring. The '495 Patent also discloses a method for storing and retrieving information records using a hashing technique to provide access to the records and using a linear probing technique to store the records with same hash address, at least some of the records automatically expiring. For example, the '495 Patent claims "[a] method for storing and retrieving information records using hashing techniques to provide rapid access to said records and utilizing a linear probing technique to store records with the same hash address, at least some of said records automatically expiring." U.S. Pat. No. '495 col.12:37-41. <i>See also</i> '495 Patent col. 4:33-64; <i>id.</i> at 8:65-9:9 (code defining hash table).
		instead of a linear probing technique to store records with the same hash address. It would have been obvious to one of ordinary skill in the art that a linked list could be used to store records with the same hash value rather than a chain of records. Linear probing and external chaining are two methods to solve the problem of collisions in a hash table. Both were commonly known by those skilled in the art, as Nemes admits in the '120 patent. See U.S. Pat. No. '120 col. 1:53-59 ("Some form of collision resolution must therefore be provided. For example, the simple strategy called 'linear probing,' is often used. Another method for resolving collisions is called 'external chaining.'"). Both of these methods of collision resolution are described in the prior art cited by both the '495 and '120 patents. See "The Art of Computer Programming", Sorting and Searching, D.E. Knuth, Addison-Wesley Series in Computer

Joint Invalidity Contentions & Production of Documents

Asserted Clain U.S. Pat. No. 5	ns From 5,893,120	U.S. Pat. No. 5,121,495 to Nemes ("the '495 Patent") alone and in combination
		Science and Information Processing, pp. 513, 518, 1973. Indeed, Knuth recognizes that "[p]erhaps the most obvious way to solve this problem [of collision resolution] is to maintain M linked Lists, one for each possible hash code [i.e. external chaining]." See also Mark A. Weiss, Data Structures and Algorithm Analysis, p. 157, 1993 (" <i>Closed hashing</i> , also known as <i>open addressing</i> , is an alternative to resolving collisions with linked lists."). Further, U.S. Patent No. 5,289,499 ("'499 patent), discloses the use of external chaining techniques for performing storage and retrieval in an information system. <i>See '499</i> patent abstract ("In order to provide efficient and graceful operation under varying load conditions, the system shifts between collision avoidance by linear probing with open addressing when the load is above a threshold, and collision avoidance by external chaining a required element). Thus, one of ordinary skill in the art would have been motivated by Knuth, Weiss, or the '499 patent to apply the teachings of the '495 patent at Fig. 3-5, Col. 2:9-48, 2:50-3:7, 5:63-6:28, 7:10-10:5, claim 1. The records in the system the '495 Patent discloses includes records, at least some of which automatically expire. The '495 Patent discloses that "data records become obsolete merely by the passage of time or by the occurrence of some event" and that "[i]f such expired, lapsed or obsolete records are not removed from the storage table, they will, in time, seriously degrade or contaminate the performance of the retrieval system." U.S. Pat. No. '495 col. 4:23-28. <i>See also</i> '495 Patent col. 5:22-29.

Asserted C U.S. Pat. N	Claims From [0. 5,893,120	U.S. Pat. No. 5,121,495 to Nemes ("the '495 Patent") alone and in combination
[3a] accessing the linked list of records,	[7a] accessing a linked list of records having same	The '495 Patent discloses accessing a chain of records. The '495 Patent also discloses accessing a chain of records having same hash address.
	hash address,	For example, Claim 5 of the '495 patent is almost identical to [7a], claiming "accessing a chain or [sic] records having the same hash address." U.S. Pat. No. '495 col. 12:43-44. The only difference between the two patents is the reference to a chain of records instead of a linked list. <i>See also</i> '495 Pat. col. 5:45-56, <i>id.</i> at 10:2511:16 (search table function code); <i>id.</i> at Figs. 3-4. Though this describes accessing a chain of records rather than a linked list, as discussed above in sections [1a/5a] and [1b/5b], it would have been obvious to one of ordinary skill in the art that a linked list could be used to store the records instead of a chain of records. It would have been obvious to one of ordinary skill in the art that a linked list could be used to store records with the same hash value rather than a chain of records. Linear probing and external chaining are two methods to solve the problem of collisions in a hash table. Both were commonly known by those skilled in the art, as Nemes admits in the '120 patent. See U.S. Pat. No. '120 col. 1:53-59 ("Some form of collision resolution must therefore be provided. For example, the simple strategy called 'linear probing,' is often used. Another methods of collision resolution are described in the prior art cited by both the '495 and '120 patents. See "The Art of Computer Programming", Sorting and Searching, D.E. Knuth, Addison-Wesley Series in Computer Science and Information Processing, pp. 513, 518, 1973. Indeed, Knuth recognizes that "[p]erhaps the most obvious way to solve
		each possible hash code [i.e. external chaining]." See also Mark A. Weiss, Data Structures and Algorithm Analysis, p. 157, 1993 (" <i>Closed hashing</i> , also

Joint Invalidity Contentions & Production of Documents

Asserted C U.S. Pat. No	laims From o. 5,893,120	U.S. Pat. No	b. 5,121,495 to Nemes ("the '495 Patent") alone and in combination
		known as <i>open ad</i> lists."). Further, external chaining information syste and graceful oper between collision load is below a th the load is above – linked list to per 2:60-65, 3:5-9, co required element) motivated by Knu '495 patent to has the '499 patent at	<i>Idressing</i> , is an alternative to resolving collisions with linked U.S. Patent No. 5,289,499 ("'499 patent), discloses the use of techniques for performing storage and retrieval in an m. <i>See '499</i> patent abstract ("In order to provide efficient ation under varying load conditions, the system shifts avoidance by linear probing with open addressing when the reshold, and collision avoidance by external chaining when a threshold"); '499 patent, Figs. 3-5 (use of external chaining form information storage and retrieval); '499 patent, col. 1. 5:63-65; 8:53-9:20, claims 1-3 (external chaining a . Thus, one of ordinary skill in the art would have been th, Weiss, or the '499 patent to apply the teachings of the h tables with external chaining using linked lists. <i>See also</i> , Fig. 3-5, Col. 2:9-48, 2:50-3:7, 5:63-6:28, 7:10-10:5, claim 1.
[3b] identifying at least some of the automatically expired ones of the records, and	[7b] identifying at least some of the automatically expired ones of the records,	The '495 Patent d ones of the record For example, Clai claiming "identify Pat. No. '495 col. 10:25-11:16 (sear	iscloses identifying at least some of the automatically expired s. m 5 of the '495 patent is substantively identical to [7b], ving the automatically expired ones of said records." U.S. 12:45-46. <i>See also</i> '495 Pat. col. 5:36-56, <i>id.</i> at 6:53-8:16, ch table function code); <i>id.</i> at Figs. 3-4, Abstract.
[3c] removing at least some of the automatically expired records from the linked list when the linked	[7c] removing at least some of the automatically expired records from the linked list when the linked	The '495 Patent d records from the o For example, Cla	iscloses removing at least some of the automatically expired chain of records when the chain of records is accessed. m 5 of the '495 patent is almost identical to [7c], claiming
Joint Invalidity Contentions & Pro	duction of	27	Case No. 6:09-CV-549-LED

Documents

Asserted U.S. Pat. I	Claims From No. 5,893,120	U.S. Pat. No. 5,121,495 to Nemes ("the '495 Patent") alone and in combination
list is accessed.	list is accessed, and	"removing all automatically expired records from said chain of records each time said chain is accessed." U.S. Pat. No. '495 col. 12:47-48. The only differences between the two patents are (1) the reference to a chain of records instead of a linked list and (2) the deletion of all of the records in the '495 patent instead of some of the records. <i>See also</i> '495 Pat. col. 5:36-57, 6:53- 8:16, <i>id</i> . at 10:25-11:16 (search table function code); <i>id</i> . at Figs. 3-4. Though this describes accessing a chain of records rather than a linked list, as discussed above in sections [1a/5a] and [1b/5b], it would have been obvious to one of ordinary skill in the art that a linked list could be used to store the records instead of a chain of records. For example, the use of a linked list to store records is discussed in detail in the '499 patent. For example, the '499 patent discloses in part, "Another technique for resolving collisions is called external chaining. In this technique, each hash table position is able to store all records hashing to that location. More particularly, a linked list is used to store the actual records outside of the hash table. The hash table entry, then, is no more than a pointer to the head of the linked list. The linked list is itself searched sequentially when retrieving or storing a record. Deletion is accomplished by adjusting pointers to eliminate the deleted record from the linked list." <i>See</i> the '499 patent at column 2. <i>See, also,</i> the '499 patent at Abstract, Fig. 3-5, Col. 2:9-48, 2:50-3:7, 5:63-6:28, 7:10-10:5, claim 1 Moreover, the deletion of all of the expired records includes the deletion of at least some of the expired records and thus satisfies this element of the '120 patent.
	[7d] inserting, retrieving or deleting one of the	The '495 patent discloses inserting, retrieving, or deleting one of the records from the system following the step of removing.

Asserted C U.S. Pat. N	Claims From No. 5,893,120	U.S. Pat. No. 5,121,495 to Nemes ("the '495 Patent") alone and in combination
	records from the system following the step of removing.	For example, Claim 5 of the '495 patent is substantively identical to [7d], claiming "inserting, retrieving or deleting one of said records from said system following said step of removing." U.S. Pat. No. '495 col. 12:50-51. <i>See also</i> '495 Patent col. 5:65-8:16; <i>id.</i> at 9:10-10:20 (insert, retrieve, and delete function code); <i>id.</i> at Figs. 5-7.
		Further, the '499 patent discloses inserting, retrieving or deleting one of the records from the system following the step of removing. For example, the Abstract of the '499 Patent discloses in part, "Insertion, deletion and retrieval operations are arranged to switch dynamically between the two collision avoidance stratagems as the local loading factor on the system, as measured by the number of records hashed to the same address, crosses preselected thresholds." Further, the '499 discloses "In FIG. 5 there is shown a flowchart of a record deletion process. Starting at start box 60, box 61 is entered where the search key is hashed to provide a hash table cell location. In box 62, the cell count field at that cell location is decremented by one. Decision box 63 is then entered to determine whether or not the contents of that cell is a list pointer. If it is not, box 68 is entered to use any known table deletion algorithm to remove the record from the hash table. As previously noted, the record can merely be marked "deleted" and left in place or can by physically deleted by some algorithm such as Knuth's algorithm. The process terminates in terminal box 66. If it is determined in decision box 63 that the contents of the cell is a list pointer, box 64 is entered where the record to be deleted is removed from the linked list. This is easily accomplished by adjusting the pointer in the chain just before the record to be deleted to point the the record following the record to deleted. The storage space of the thus "deleted" record can then be returned

29

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Pat. No. 5,121,495 to Nemes ("the '495 Patent") alone and in combination
		to free storage space for future assignment to another record." See the '499 Patent, columns 8-9. <i>See also</i> , the '499 patent at Abstract, Fig. 3-5, Col. 1:29-2:8, 2:9-48, 2:50-3:7, 5:7-6:28, 7:10-10:5, claim 1.
4. The method according to claim 3 further including the step of dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed.	8. The method according to claim 7 further including the step of dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed.	 the '495 Patent combined with Dirks, Thatte, the '663 patent, and/or the Opportunistic Garbage Collection Articles discloses dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed. Dirks discloses the management of memory in a computer system and more particularly to the allocation of address space in a virtual memory system, which dynamically determines how many records to sweep/remove upon each allocation. Disclosure of these claim elements in Dirks is clearly shown in the chart of Dirks, which is hereby incorporated by reference in its entirety. For example, as summarized in Dirks, each time a VSID is assigned from the free list to a new application or thread, a fixed number of entries in the page table are scanned to determine whether they have become inactive, by checking them against the VSIDs on the recycle list. Each entry which is identified as being inactive is removed from the page table. After all of the entries in the page table have been examined in this manner, the VSIDs in the recycle list can be transferred to the free list, since all of their associated page table entries will have been removed. This approach thereby guarantees that a predetermined number of VSIDs are always available in the free list without requiring a time-consuming scan of the complete page table at once. US Patent No. 6 119 214 to Dirks a 7:2-14

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 5,121,495 to Nemes ("the '495 Patent") alone and in combination
	After [a] new VSID has been allocated, the system checks a flag RFLG to determine whether a recycle sweep is currently in progress (Step 20). If there is no sweep in progress, i.e. RFLG is not equal to one, a determination is made whether a sweep should be initiated. This is done by checking whether the inactive list is full, i.e. whether it contains x entries (Step 22). If the number of entries I on the inactive list is less than x, no further action is taken, and processing control returns to the operating system (Step 24). If, however, the inactive list is full at this time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are transferred to the recycle list, and an index n is reset to 1 (Step 28). The system then sweeps a predetermined number of page table entries PT _i on the page table, to detect whether any of them are inactive, i.e. their associated VSID is on the recycle list (Step 30). The predetermined number of entries that are swept is identified as k, where: $k = \frac{\text{total number of page table entries}}{\text{maximum number of active threads}}$
	 Dirks discloses that any approach can be employed to determine the number of entries to be examined during each step of the sweeping process. <i>Id.</i> at 7:37-40. As stated in Dirks: Any other suitable approach can be employed to determine the number of entries to be examined during each step of the sweeping process. In this regard, it is not necessary that the number of examined entries be fixed for each step. Rather, it might vary from one step to the next. The only criterion

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 5,121,495 to Nemes ("the '495 Patent") alone and in combination
	is that the number of entries examined on each step be such that all entries in the page table are examined in a determinable amount of time or by the occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.
	<i>Id.</i> at 7:38-46. Thus, Dirks dynamically determines the maximum number of records to sweep/remove by calculating a value k . <i>Id.</i> at 7:15-46, 7:66-8:56.
	As both the '495 Patent and Dirks relate to deletion of aged records upon the allocation of a new incoming record, one of ordinary skill in the art would have understood how to use Dirks' dynamic decision making process of determining the maximum number of records to sweep/remove in other hash tables implementations such as that described the '495 Patent. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining Dirks' deletion decision procedure with the '495 Patent would be nothing more than the predictable use of prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have combined Dirks' dynamic determination of the suitable number of entries to examine during each step of the sweeping process with the '495 Patent and would have seen the benefits of doing so. One possible benefit, for example, is saving the system from performing sometimes time-consuming sweeps.

Joint Invalidity Contentions & Production of Documents

Asserted Claims From	U.S. Pat. No. 5,121,495 to Nemes ("the '495 Patent") alone and in
U.S. Pat. No. 5,893,120	combination
	Alternatively, one of ordinary skill in the art would be motivated to, and would understand how to, combine the system disclosed in the '495 Patent with the means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records disclosed by Thatte. For example, Thatte discloses a system and method using hash tables and/or linked lists and further discloses means for dynamically determining the maximum number for the record search means to remove in the accessed linked list of records. The disclosure of these claim elements in Thatte is clearly shown in the chart of Thatte, which is hereby incorporated by reference in its entirety. Moreover, one of ordinary skill in the art would recognize that these combinations would improve the similar systems and methods in the same way. Additionally, one of ordinary skill in the art would recognize that the result of combining the '495 Patent with Thatte would be nothing more than the predictable use of prior art elements according to their established functions. The resulting combination would include the capability to determine the maximum number for the record search means to remove.

33

U.S. Pat. No. 5,893,120	combination
	records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine the '495 Patent with Thatte.
	Alternatively, it would also be obvious to combine the '495 Patent with the '663 patent. Disclosure of these claim elements in the '663 patent is clearly shown in the chart of the '663 patent, which is hereby incorporated by reference in its entirety. For example, as summarized in the '663 patent:
	during normal times when the load on the storage system is not excessive, a non-contaminating but slow deletion of records is used. This slow, non-contaminating deletion involves closing the collision-resolution chain of locations by moving a record from a later position in the chain into the position of the record to be deleted. This leaves no deleted record locations in the storage space to slow down future searches. U.S. Patent 4,996,663 to Nemes at 2:24-34 ("The '663 patent").
	In times of heavy use, when deletions must be done rapidly and no time is available for decontamination, the record is simply marked as "deleted" and left in place. Later non-contaminating probes in the vicinity of such deleted record locations automatically remove the contaminating deleted records by moving records in the chain as described above. <i>Id.</i> at 2:35-41.

34

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 5,121,495 to Nemes ("the '495 Patent") alone and in combination
U.S. Pat. No. 5,893,120	automatically eliminating contamination caused by the fast- secure deletion procedure when the slower, non-contaminating deletion is used when the load on the system is at lower levels. <i>Id.</i> at 2:42-46. This hybrid deletion is shown in Figure 5. FIG.5 HYBRID DELETION (JAB) = 50 (JAB) =
	(FIG.6) (FIG.6) STOP 54

35

Joint Invalidity Contentions & Production of Documents

Asserted Cl U.S. Pat. No	aims From 5, 5,893,120	U.S. Pat. No. 5,121,495 to Nemes ("the '495 Patent") alone and in combination
Asserted Cl U.S. Pat. No	ams From 5. 5,893,120	 U.S. Pat. No. 5,121,495 to Nemes ("the '495 Patent") alone and in combination <i>Id.</i> at Figure 5. During the hybrid deletion procedure decision block 51 checks the system load is greater than the threshold, then a fast-secure delete 52 is used. <i>Id.</i> at 6:40-64, Figure 5. On the other hand, if the system load is less than the threshold, then a slow-non-contaminating delete 53 is used. <i>Id.</i> The fast-secure delete 52 does not actually delete records, rather it marks records as deleted. <i>Id.</i> at 8:1-33, Figure 7. These records are then actually deleted by a subsequent slow-non-contaminating delete 53. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B. Thus, the hybrid deletion procedure in the '663 patent dynamically determines a maximum number of records to remove. <i>See id.</i> at 6:40-64, Figure 5. If the fast-secure delete 52 is used, then maximum number of records is zero because records are not deleted they are only marked. <i>Id.</i> at 8:1-33, Figure 7. If the slow-non-contaminating delete 53 is used, then the maximum number of records to remove is all of the contaminated records in the bucket. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B. As both the '495 Patent and the '663 patent relate to deletion of records from hash tables using external chaining, one of ordinary skill in the art would understood how to use the '663 patent's dynamic decision on whether to perform a deletion based on a systems load in other hash table implementations such as the '495 Patent. Moreover, one of ordinary skill in the art would
		recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 5,121,495 to Nemes ("the '495 Patent") alone and in combination
	are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the '663 patent's deletion decision procedure with the '495 Patent would be nothing more than the predictable use of prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have combined the '663 patent's dynamic decision on whether to perform a deletion based on a systems load as taught by the '663 patent and with the '495 Patent and would have seen the benefits of doing so. One such benefit, for example, is that the system would avoid performing deletions when the system load exceeded a threshold.
	Alternatively, it would also be obvious to combine the '495 Patent with the Opportunistic Garbage Collection Articles.
	The Opportunistic Garbage Collection Articles disclose a generational based garbage collection which dynamically determines how much garbage to collect. <i>See generally</i> , Paul R. Wilson and Thomas G. Moher, <i>Design of the Opportunistic Garbage Collector</i> , OOPSLA '89 Proceedings, October 1-6, 1989; Paul R. Wilson, <i>Opportunistic Garbage Collection</i> , ACM SIGPLAN Notices, Vol. 23, No. 12, December 1988.
	For example, the Opportunistic Garbage Collection Articles disclose in part:
	When a significant pause has been detected, a decision procedure is invoked to decide whether to garbage collect, and how many generations to

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 5,121,495 to Nemes ("the '495 Patent") alone and in combination
	scavenge. The fuller a generation is, the more likely it is to be scavenged; also, the longer the pause that has been detected, the larger the scope of the garbage collection is likely to be. <i>Design of the Opportunistic Garbage</i> <i>Collector</i> at 32.
	Every time a user-input routine is invoked, a decision routine can decide whether to garbage collect. As long as the decision routine takes no more than a few milliseconds to execute, it should not interfere with responsiveness. Since it is only invoked at these times, it does not incur a continual run-time overhead. <i>Opportunistic Garbage Collection</i> at 100.
	This decision routine should take several things into account: 1) the volume of data allocated since the last scavenge, 2) how long it has been since the user has had an opportunity to interact, and 3) the height of the stack relative to its average height at reads since the last scavenge. If the product of the allocation and the compute time is high, and if the stack is low, the scavenge favorability measure is high. If it is especially high, a multi-generation scavenge is in order. <i>Id</i> .
	If these heuristics fail and a scavenge is forced instead by the filling of a generation's space, it is likely to happen during a significant compute- bound pausethe one that has just allocated the data that forced the collection. When the opportunistic mechanism fails to find the end of a pause, it may still succeed by default, embedding a scavenge pause within a larger pause. <i>Design of the Opportunistic Garbage Collector</i> at 32.
	As both the '495 Patent and the Opportunistic Garbage Collection Articles relate to deletion of aged records, one of ordinary skill in the art would have

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 5,121,495 to Nemes ("the '495 Patent") alone and in combination
	understood how to use the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion based on a system load in other hash table implementations such as the '495 Patent. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the Opportunistic Garbage Collection Articles' deletion decision procedure with the '495 Patent would be nothing more than the predictable use of prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have combined the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion and how many generations to scavenge as taught by the Opportunistic Garbage Collection Articles and with the '495 Patent and would have seen the benefits of doing so. One such benefit, for example, is that the system would only perform deletions when the system was not already too overloaded, thus preventing slowdown of the system.
	Additionally, it would have been obvious to one of ordinary skill in the art to modify the system disclosed in the '495 Patent to dynamically determine the maximum number of expired records to remove in the accessed linked list of records. It is a fundamental concept in computer science and the relevant art that any variable or parameter affecting any aspect of a system can be dynamically determined based on information available to the system. One of

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 5,121,495 to Nemes ("the '495 Patent") alone and in combination
	ordinary skill in the art would have been motivated to combine the system disclosed in the '495 Patent with the fundamental concept of dynamically determining the maximum number of expired records to remove in an accessed linked list of records to solve a number of potential problems. For example, the removal of expired records described in the '495 Patent can be burdensome on the system, adding to the system's load and slowing down the system's processing. Moreover, the removal could also force an interruption in real- time processing as the processing waits for the removal to complete.
	One of ordinary skill in the art would have known that dynamically determining the maximum number to remove would limit the burden on the system and bound the length of any real-time interruption to prevent delays in processing. Indeed, Nemes concedes that such dynamic determination was obvious when he states in the '120 patent that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15.
	The '499 patent discloses an information storage and retrieval system further including means for dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed.
	For example, the '499 patent describes performing a dynamic determination of the number of records hashed to the same cell in the hash table. Then determining if this number exceeds a certain threshold. If the threshold is exceeded, then the system described by the '499 patent reorganizes and removes the records at this location. See the '499 Patent at Col. 6, which

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 5,121,495 to Nemes ("the '495 Patent") alone and in combination
	recites in part "In accordance with the present invention, the major advantages of both techniques, open addressing and external chaining, are achieved in the same system. More particularly, these two techniques are combined in one system, and the actual storage strategy is selected dynamically, depending on the then current local load factor. Initially, all records are stored in the hash table using the open addressing with linear probing technique. When the local load factor exceeds a preselected threshold, the system shifts dynamically to the external chaining technique. That is, while inserting or deleting a record, the local load factor, as reflected in the number of records hashed to this same hash table cell, is examined. If this number exceeds a threshold, the records hashed to this cell address are reorganized, removed from the hash table itself and organized into an external chaining greatly reduces the search time. It is assumed, of course, that the frequency of retrievals greatly exceeds the frequency of insertions and deletions, an assumption which holds true for most data storage and retrieval systems. When a deletion from a linked list causes the chain length to fall below a threshold, not necessarily the same threshold that triggered chain formation, the chain is destroyed and the entries reabsorbed into the hash table." The '499 Patent at Col. 6. <i>See also</i> , the '499 patent at Col. 6:38-65, 8:14-39, 8:62-9:2, and claim 3.

41

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 5,121,495 to Nemes ("the '495 Patent") alone and in combination
	with the '495 Patent. For example, both Linux 2.0.1 and the '495 Patent describe systems and methods for performing data storage and retrieval using known programming techniques to yield a predictable result.
	For example, when invoked, the function rt_cache_add automatically increments an integer variable rt_cache_size. Line 1359. When the function rt_cache_add removes an expired record, the function rt_cache_add decrements the variable rt_cache_size. Line 1373. Thus, the variable rt_cache_size indicates the number of records in the hash table (i.e., ip_rt_hash_table). Because the function rt_cache_add automatically increments and decrements the variable rt_cache_size, the variable rt_cache_size is determined dynamically.
	Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1. The function rt_garbage_collect_1 loops through each of the linked lists in the ip_rt_hash_table global variable. See lines 1122-1138. In this way, the function rt_garbage_collect_1 accesses the linked list. When the function rt_garbage_collect_1 identifies a record that is expired, the function rt_garbage_collect_1 decrements the variable rt_cache_size and frees the record. See lines 1128-1135.
	Because all records in the linked list can be expired and all records in the hash table can be in the linked list, the variable rt_cache_size can represent a dynamically determined maximum number of expired ones of the records to remove when function rt_garbage_collect_1 accesses the linked list.

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 5,121,495 to Nemes ("the '495 Patent") alone and in combination
	records in the hash table exceeds a predetermined threshold RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_cache_add invokes a function rt_garbage_collect. See lines 1341-1342. The function rt_garbage_collect invokes a function rt_garbage_collect_1. Line 1293. The function rt_garbage_collect invokes a function rt_garbage_collect_1. Line 1293.
	The function rt_garbage_collect_1 loops through each linked list in the hash table. See lines 1116-1132. For each linked list in the hash table, the function rt_garbage_collect_1 looks at each record in the linked list. See lines 1120-1131. For each record in a linked list, the function rt_garbage_collect_1 determines whether the record's last use time plus the record's expiration factor is later than the current time. See line 1122. If the record's last use time plus the record's last use time plus the record's expiration factor is less than the current time, the function rt_garbage_collect_1 removes the record from the linked list. See lines 1124-1130. The record's expiration factor is based on a variable expire and the record's reference count. Line 1122. The variable expire is initially one half of the fixed timeout value RT_CACHE_TIMEOUT. Line 1110.
	After looping through all of the linked lists in this manner, the function rt_garbage_collect_1 determines again whether the number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX. Line 1133. If the number of items in the hash table is still greater than the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves the variable expire and loops through each of the linked lists in the hash table. See line 1135. In this way, the function

43

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 5,121,495 to Nemes ("the '495 Patent") alone and in combination
	rt_garbage_collect_1 can remove additional records from the linked lists in the hash table. The function rt_garbage_collect_1 repeats this process until the total number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX.
	Under Bedrock's proposed claim constructions, the records removed by the function rt_garbage_collect_1 are "expired" records. That is, the records removed by the function rt_garbage_collect_1 are data items which after a limited time or after the occurrence of some event become obsolete, such that their presence in the storage system is no longer needed or desired.
	The function rt_cache_add only removes a record from a linked list when the record's last use time plus the fixed timeout value RT_CACHE_TIMEOUT is less than the current time and the record's reference count is zero. Line 1369. Thus, the maximum number of records that the function rt_cache_add can remove from a given linked list is limited to those records whose reference counts are zero.
	In contrast, the maximum number of records that the function rt_garbage_collect_1 can remove from a given linked list is not limited to those records whose reference counts are zero. Line 1122. Rather, the function rt_garbage_collect_1 can remove records whose reference counts are zero and records whose reference counts are greater than zero.
	Consequently, the maximum number of records that the function rt_garbage_collect_1 can remove from a linked list is different than the maximum number of records that the function rt_cache_add can remove from

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Pat. No. 5,121,495 to Nemes ("the '495 Patent") alone and in combination
	a linked list.

45

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 4,996,663 to Nemes ("the '663 Patent")
1. An information storage	5. An information storage	To the extent the preamble is a limitation, the '663 Patent discloses an
system comprising:	system comprising:	information storage and retrieval system.
		For example, The '663 Patent discloses "[a] method and apparatus for
		uses the hashing technique." U.S. Patent No. 4,996,663 to Nemes at Abstract.
[1a] a linked list to store and provide access to records stored in a memory of the system, at least some of the records automatically expiring,	[5a] a hashing means to provide access to records stored in a memory of the system and using an external chaining technique to store the records with same hash address, at least some of the records	The '663 Patent discloses a linked list to store and provide access to records stored in a memory of the system, at least some of the records automatically expiring. The '663 Patent also discloses a hashing means to provide access to records stored in a memory of the system and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring.
	automatically expiring,	performing storage and retrieval in an information storage system [] which uses the hashing technique." <i>Id</i> .
		Furthermore, the '663 Patent discloses that:
		[a] hash table can be described as a logically contiguous, circular list of consecutively numbered, fixed-sized storage units, called cells, each capable of storing a single item called a record. Each record contains a distinguishing field, called the key, which is used as the basis for storing and retrieving the associated record. The keys throughout the hash table data base are distinct and unique for each record. Hashing functions are usually not one- to-one in that they map many distinct keys to the same location.

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,996,663 to Nemes ("the '663 Patent")
	Id. at 4:41-50. When such a hash table data base is stored on a slower external storage [], the hash table is best organized as a consecutively numbered circular sequence of larger, multi-cell, fixed-sized storage units, each of which is termed a bucket. A bucket is the largest physically efficient input/output unit of the storage mechanism, such as a disk track in a disk storage unit. Each bucket consists of a sequence of consecutively numbered cells. The hashing function operates on the search key to translate or map the search key into a bucket number or address. Then the entire bucket is retrieved in a single access or probe, and the entire bucked may be processed at RAM speed. <i>Id.</i> at 4:55-68.
	The hashing technique The '663 Patent discloses is better understood with reference to Figure 3, which is a flow chart of a procedure for the retrieval of a record from the storage system:

2

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,996,663 to Nemes ("the '663 Patent")
	START 530
	FIG.3 HASH SEARCH \leq^{31}
	GET BUCKET S ³²
	Id. at Figure 3.

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 4,996,663 to Nemes ("the '663 Patent")
		retrieved is hashed in box 31 to provide the address of a bucket." <i>Id.</i> at 5: 23-25. "It can be seen that boxes 33, 39 and 44 operate to search for a cell with matching key by linear probing with open addressing." <i>Id.</i> at 5:63-65.
		The '663 Patent further qualifies the necessity of linear probing by disclosing that:
		[a] disadvantage of hashing techniques is that more than one key can translate into the same storage address, causing 'collisions' in storage or retrieval operations. Some form of collision- resolution strategy (sometimes called 'rehashing') must therefore be provided. For example, the simple strategy of searching forward from the initial storage address to the desired storage location will resolve the collision. This latter technique is called linear probing. <i>Id.</i> at 1:40-48.
		Furthermore, The '663 Patent discloses that "[i]n times of heavy use, when deletions must be done rapidly and no time is available for decontamination, the record is simply marked as 'deleted' and left in place. Later non-contaminating probes in the vicinity of such deleted record locations automatically remove the contaminating deleted records by moving records in the chain" <i>Id.</i> at 2:35-41.
[1b] a record search means utilizing a search key to access the linked list,	[5b] a record search means utilizing a search key to access a linked list of records having the same hash address,	The '663 Patent discloses a record search means utilizing a search key to access the linked list. The '663 Patent also discloses a record search means utilizing a search key to access a linked list of records having the same hash address.
Joint Invalidity Contentions & Pro	duction of	4 Case No. 6:09-CV-549-LED

Documents

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 4,996,663 to Nemes ("the '663 Patent")
		For example, the '663 Patent discloses "[a] method and apparatus for performing storage and retrieval in an information storage system [] which uses the hashing technique." <i>Id.</i> at Abstract.
		Furthermore, the '663 Patent discloses that:
		[a] hash table can be described as a logically contiguous, circular list of consecutively numbered, fixed-sized storage units, called cells, each capable of storing a single item called a record. Each record contains a distinguishing field, called the key, which is used as the basis for storing and retrieving the associated record. The keys throughout the hash table data base are distinct and unique for each record. Hashing functions are usually not one- to-one in that they map many distinct keys to the same location. <i>Id.</i> at 4:41-50.
		When such a hash table data base is stored on a slower external storage [], the hash table is best organized as a consecutively numbered circular sequence of larger, multi-cell, fixed-sized storage units, each of which is termed a bucket. A bucket is the largest physically efficient input/output unit of the storage mechanism, such as a disk track in a disk storage unit. Each bucket consists of a sequence of consecutively numbered cells. The hashing function operates on the search key to translate or map the search key into a bucket number or address. Then the entire bucket is retrieved in a single access or probe, and the entire bucked may be processed at RAM speed. <i>Id.</i> at 4:55-68.

5

Asserted C U.S. Pat. No	laims From o. 5,893,120	U.S. Patent No. 4,996,663 to Nemes ("the '663 Patent")
		The hashing technique the '663 Patent discloses is better understood with
		reference to Figure 3, which is a flow chart of a procedure for the retrieval of a
		record from the storage system:
		(START) S ³⁰
		FIG.3 HASH SEARCH \leq^{31} KEY
		GET S32 BUCKET
		YES CELL S ³³
		AND AND AND AND AND AND AND AND
		YES SAVE LOCATION OF THIS EMPTY CELL FIRST 42 DELETED CELL RETURN RECORD 541
		SAVE LOCATION OF THIS CELL
		ADVANCE TO NEXT CELL, GETTING NEXT BUCKET IF END OF CURRENT BUCKET 38
		STOP
Joint Invalidity Contentions & Pro	duction of	6 Case No. 6:09-CV-549-LED

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 4,996,663 to Nemes ("the '663 Patent")
		LL at Element 2
		1a. at Figure 5.
		"Starting in box 30 of the retrieve procedure, the search key of the record to be retrieved is hashed in box 31 to provide the address of a bucket." <i>Id.</i> at 5: 23-25. "It can be seen that boxes 33, 39 and 44 operate to search for a cell with matching key by linear probing with open addressing." <i>Id.</i> at 5:63-65.
		The '663 Patent further qualifies the necessity of linear probing by disclosing that
		[a] disadvantage of hashing techniques is that more than one key can translate into the same storage address, causing 'collisions' in storage or retrieval operations. Some form of collision- resolution strategy (sometimes called 'rehashing') must therefore be provided. For example, the simple strategy of searching forward from the initial storage address to the desired storage location will resolve the collision. This latter technique is called linear probing. <i>Id.</i> at 1:40-48.
[1c] the record search	[5c] the record search	The '663 Patent discloses the record search means including a means for
means including a means	means including means for	identifying and removing at least some of the expired ones of the records from
for identifying and	identifying and removing	the linked list when the linked list is accessed. The '663 Patent also discloses
removing at least some of	at least some expired ones	the record search means including means for identifying and removing at least
the expired ones of the	of the records from the	some expired ones of the records from the linked list of records when the
records from the linked list	linked list of records when	Inked list is accessed.
when the linked list is	and	For example, the '663 Datant discloses that "Film times of heavy use, when
accesseu, anu	anu	deletions must be done rapidly and no time is available for decontamination.
Joint Invalidity Contentions & Pro	duction of	7 Case No. 6:09-CV-549-LED

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,996,663 to Nemes ("the '663 Patent")
	the record is simply marked as 'deleted' and left in place. Later non- contaminating probes in the vicinity of such deleted record locations automatically remove the contaminating deleted records by moving records in the chain" <i>Id.</i> at 2:35-41.
	The process disclosed by the '663 Patent is again better understood with reference to Figure 3, which is a flow chart of a procedure for the retrieval of a record from the storage system:

8

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,996,663 to Nemes ("the '663 Patent")
	START START
	FIG.3 HASH SEARCH STATE
	GET BUCKET
	<i>H</i> . at Figure 3. <i>H</i> . at Figure 3. <i>H</i> . at Figure 3. <i>H</i> . at Figure 3.

9

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,996,663 to Nemes ("the '663 Patent")
	record to be retrieved is hashed in box 31 to provide the address of a bucket. In box 32, that bucket is retrieved in its entirety and stored in internal computer memory. Decision box 33 examines the first cell of that bucket to determine if the cell is empty or not. If the cell tested in decision box 42 is empty, the decision box 35 is entered to determine if a deleted cell was encountered before the empty cell was encountered. If no deleted cell was encountered, box 36 is entered to save the location of the empty cell, since this is the first empty cell in the bucket and hence can be used to store a new record. If any deleted cells were encountered prior to the empty cell, the location of the first deleted cell would have already been saved []. It should be recalled that a deleted cell can also be used to store a new record. <i>Id.</i> at 21-40.
	[I]n order to insert or store a record, starting at start box 45, it is assumed that the retrieve procedure of FIG 3 has already been invoked to see if a record with this key has already been stored in the data base. If not, the retrieve procedure of FIG. 3 returns a failure indication along with the location of the first empty or first deleted cell encountered in its search for the record. In the insert procedure [], it is therefore only necessary to store the new record in the location provided by the retrieve procedure in box 46, return the accessed bucket to the data base in box 47 and terminate the insert procedure in box 48. <i>Id.</i> at 6:8-20, Figures 3 and 4.
	Upon an insertion, if a deleted cell is returned in the process described above,

Joint Invalidity Contentions & Production of Documents

Asserted C U.S. Pat. N	laims From o. 5,893,120	U.S. Patent No. 4,996,663 to Nemes ("the '663 Patent")
		the new record replaces the contents in the deleted cell.
[1d] means, utilizing the record search means, for accessing the linked list and, at the same time, removing at least some of the expired ones of the records in the linked list.	[5d] mea[n]s, utilizing the record search means, for inserting, retrieving, and deleting records from the system and, at the same time, removing at least some expired ones of the records in the accessed linked list of records.	 The '663 Patent discloses means, utilizing the record search means, for accessing the linked list and, at the same time, removing at least some of the expired ones of the records in the linked list. The '663 Patent also discloses utilizing the record search means, for inserting, retrieving, and deleting records from the system and, at the same time, removing at least some expired ones of the records in the accessed linked list of records. For example, the '663 Patent discloses that "[i]n times of heavy use, when deletions must be done rapidly and no time is available for decontamination, the record is simply marked as 'deleted' and left in place. Later noncontaminating probes in the vicinity of such deleted record locations automatically remove the contaminating deleted records by moving records in the chain" <i>Id.</i> at 2:35-41. The process disclosed by the '663 Patent is again better understood with reference to Figure 3, which is a flow chart of a procedure for the retrieval of a record from the storage system:

11
Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,996,663 to Nemes ("the '663 Patent")
	FIG.3
	YES CELL WAS DELETED CELL PRODUNTERED YES SAVE LOCATION OF THIS EMPTY SAVE LOCATION OF THIS EMPTY SAVE LOCATION OF THIS EMPTY CELL SAVE LOCATION OF THIS ENCOUNTERED SAVE LOCATION OF THIS CELL SAVE LOCATION OF THIS CELL
	<i>ADVANCE TO</i> <i>BEXT CELL.</i> <i>GETTING NEXT</i> <i>BUCKET IF END OF</i> <i>CURRENT BUCKET</i> <i>Id.</i> at Figure 3. Starting in box 30 of the retrieve procedure, the search key of the

Joint Invalidity Contentions & Production of Documents

Case No. 6:09-CV-549-LED

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,996,663 to Nemes ("the '663 Patent")
	record to be retrieved is hashed in box 31 to provide the address of a bucket. In box 32, that bucket is retrieved in its entirety and stored in internal computer memory. Decision box 33 examines the first cell of that bucket to determine if the cell is empty or not. If the cell tested in decision box 42 is empty, the decision box 35 is entered to determine if a deleted cell was encountered before the empty cell was encountered. If no deleted cell was encountered, box 36 is entered to save the location of the empty cell, since this is the first empty cell in the bucket and hence can be used to store a new record. If any deleted cells were encountered prior to the empty cell, the location of the first deleted cell would have already been saved []. It should be recalled that a deleted cell can also be used to store a new record. <i>Id.</i> at 21-40.
	[I]n order to insert or store a record, starting at start box 45, it is assumed that the retrieve procedure of FIG 3 has already been invoked to see if a record with this key has already been stored in the data base. If not, the retrieve procedure of FIG. 3 returns a failure indication along with the location of the first empty or first deleted cell encountered in its search for the record. In the insert procedure [], it is therefore only necessary to store the new record in the location provided by the retrieve procedure in box 46, return the accessed bucket to the data base in box 47 and terminate the insert procedure in box 48. <i>Id.</i> at 6:8-20. Figures 3 and 4.
	Upon an insertion, if a deleted cell is returned in the process described above.

Joint Invalidity Contentions & Production of Documents

Case No. 6:09-CV-549-LED

Asserted C U.S. Pat. N	laims From o. 5,893,120	U.S. Patent No. 4,996,663 to Nemes ("the '663 Patent")
		the new record replaces the contents in the deleted cell.
2. The information storage and retrieval system according to claim 1 further including means for	6. The information storage and retrieval system according to claim 5 further including means for	The '663 Patent discloses an information storage and retrieval system further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records.
dynamically determining maximum number for the	dynamically determining maximum number for the	For example, the '663 Patent discloses that:
record search means to remove in the accessed linked list of records. record search means to remove in the accessed linked list of records.	 during normal times when the load on the storage system is not excessive, a non-contaminating but slow deletion of records is used. This slow, non-contaminating deletion involves closing the collision-resolution chain of locations by moving a record from a later position in the chain into the position of the record to be deleted. This leaves no deleted record locations in the storage space to slow down future searches. <i>Id.</i> at 2:24-34. In times of heavy use, when deletions must be done rapidly and no time is available for decontamination, the record is simply marked as "deleted" and left in place. Later non-contaminating 	
		probes in the vicinity of such deleted record locations automatically remove the contaminating deleted records by moving records in the chain as described above. <i>Id.</i> at 2:35-41. This hybrid hashing technique has the decided advantage of automatically eliminating contamination caused by the fast- secure deletion procedure when the slower, non-contaminating deletion is used when the load on the system is at lower levels.

Asserted Claims Fr U.S. Pat. No. 5,893,	omU.S. Patent No. 4,996,663 to Nemes ("the '663 Patent")120
	to determine if the system load is greater than a threshold. If the system load is greater than the threshold, then a fast-secure delete 52 is used. <i>Id.</i> at 6:40-64, Figure 5. On the other hand, if the system load is less than the threshold, then a slow-non-contaminating delete 53 is used. <i>Id.</i> The fast-secure delete 52 does not actually delete records, rather it marks records as deleted. <i>Id.</i> at 8:1-33, Figure 7. These records are then actually deleted by a subsequent slow-non-contaminating delete 53. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
	Thus, the '663 Patent discloses a hybrid deletion procedure that dynamically determines a maximum number of records to remove. <i>See id.</i> at 6:40-64, Figure 5. If the fast-secure delete 52 is used, then maximum number of records is zero because records are not deleted they are only marked. <i>Id.</i> at 8:1-33, Figure 7. If the slow-non-contaminating delete 53 is used, then the maximum number of records to remove is all of the contaminated records in the bucket. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
	Additionally, it would have been obvious to one of ordinary skill in the art to modify the system disclosed in the '663 Patent to dynamically determine the maximum number of expired records to remove in the accessed linked list of records. It is a fundamental concept in computer science and the relevant art that any variable or parameter affecting any aspect of a system can be dynamically determined based on information available to the system. One of ordinary skill in the art would have been motivated to combine the system disclosed in the '663 Patent with the fundamental concept of dynamically determining the maximum number of expired records to remove in an accessed linked list of records to solve a number of potential problems. For example, the removal of expired records described in the '663 Patent can be burdensome on the system, adding to the system's load and slowing down the system's

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,996,663 to Nemes ("the '663 Patent")
	processing. Moreover, the removal could also force an interruption in real- time processing as the processing waits for the removal to complete. Indeed, part of the motivation for the system disclosed in the '663 Patent is avoiding these problems. One of ordinary skill in the art would have known that dynamically determining the maximum number to remove would limit the burden on the system and bound the length of any real-time interruption to prevent delays in processing. Indeed, Nemes concedes that such dynamic determination was obvious when he states in the '120 patent that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15.
	To the extent it is not disclosed in the '663 Patent, Dirks, Thatte, the Opportunistic Garbage Collection References, and/or Linux 2.0.1 disclose a means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records.
	Dirks discloses the management of memory in a computer system and more particularly to the allocation of address space in a virtual memory system, which dynamically determines how many records to sweep/remove upon each allocation. Disclosure of these claim elements in Dirks is clearly shown in Exhibit B-2, which is hereby incorporated by reference in its entirety.
	For example, as summarized in Dirks,
	each time a VSID is assigned from the free list to a new application or

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,996,663 to Nemes ("the '663 Patent")
	thread, a fixed number of entries in the page table are scanned to determine whether they have become inactive, by checking them against the VSIDs on the recycle list. Each entry which is identified as being inactive is removed from the page table. After all of the entries in the page table have been examined in this manner, the VSIDs in the recycle list can be transferred to the free list, since all of their associated page table entries will have been removed. This approach thereby guarantees that a predetermined number of VSIDs are always available in the free list without requiring a time-consuming scan of the complete page table at once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.
	After [a] new VSID has been allocated, the system checks a flag RFLG to determine whether a recycle sweep is currently in progress (Step 20). If there is no sweep in progress, i.e. RFLG is not equal to one, a determination is made whether a sweep should be initiated. This is done by checking whether the inactive list is full, i.e. whether it contains x entries (Step 22). If the number of entries I on the inactive list is less than x, no further action is taken, and processing control returns to the operating system (Step 24). If, however, the inactive list is full at this time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are transferred to the recycle list, and an index n is reset to 1 (Step 28). The system then sweeps a predetermined number of page table entries PT _i on the page table, to detect whether any of them are inactive, i.e. their associated VSID is on the recycle list (Step 30). The predetermined number of entries that are swept is identified as <i>k</i> , where:

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,996,663 to Nemes ("the '663 Patent")
	$k = \frac{\text{total number of page table entries}}{\text{maximum number of active threads}}$ <i>Id.</i> at 8:12-30.
	Dirks discloses that any approach can be employed to determine the number of entries to be examined during each step of the sweeping process. <i>Id.</i> at 7:37-40. As stated in Dirks:
	Any other suitable approach can be employed to determine the number of entries to be examined during each step of the sweeping process. In this regard, it is not necessary that the number of examined entries be fixed for each step. Rather, it might vary from one step to the next. The only criterion is that the number of entries examined on each step be such that all entries in the page table are examined in a determinable amount of time or by the occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.
	<i>Id.</i> at 7:38-46. Thus, Dirks dynamically determines the maximum number of records to sweep/remove by calculating a value <i>k</i> . <i>Id.</i> at 7:15-46, 7:66-8:56.
	As both The '663 Patent and Dirks relate to deletion of aged records upon the allocation of a new incoming record, one of ordinary skill in the art would have understood how to use Dirks' dynamic decision making process of determining the maximum number of records to sweep/remove in other hash tables implementations such as The '663 Patent. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,996,663 to Nemes ("the '663 Patent")
	the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining Dirks' deletion decision procedure with The '663 Patent nothing more than the predictable use of prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have combined Dirks' dynamic determination of the suitable number of entries to examine during each step of the sweeping process with The '663 Patent and would have seen the benefits of doing so. One possible benefit, for example, is saving the system from performing sometimes time-consuming sweeps.`
	Alternatively, one of ordinary skill in the art would be motivated to, and would understand how to, combine the system disclosed in The '663 Patent with the means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records disclosed by Thatte. For example, Thatte discloses a system and method using hash tables and/or linked lists and further discloses means for dynamically determining the maximum number for the record search means to remove in the accessed linked list of records. The disclosure of these claim elements in Thatte is clearly shown in the chart of Thatte, which is hereby incorporated by reference in its entirety.
	Moreover, one of ordinary skill in the art would recognize that these combinations would improve the similar systems and methods in the same way. Additionally, one of ordinary skill in the art would recognize that the result of combining The '663 Patent with Thatte would be nothing more than

Asserted Clai U.S. Pat. No. 4	ms From 5,893,120	U.S. Patent No. 4,996,663 to Nemes ("the '663 Patent")
		the predictable use of prior art elements according to their established functions. The resulting combination would include the capability to determine the maximum number for the record search means to remove.
		Further, one of ordinary skill in the art would be motivated to combine The '663 Patent with Thatte and recognize the benefits of doing so. For example, the removal of expired records described in The '663 Patent can be burdensome on the system, adding to the system's load and slowing down the system's processing. One of ordinary skill in the art would recognize that combining The '663 Patent with the teachings of Thatte would solve this problem by dynamically determining how many records to delete based on, among other things, the system load. Moreover, the '120 patent discloses that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine The '663 Patent with Thatte.
		Alternatively, it would also be obvious to combine The '663 Patent with the Opportunistic Garbage Collection Articles.
		The Opportunistic Garbage Collection Articles disclose a generational based garbage collection which dynamically determines how much garbage to collect. <i>See generally</i> , Paul R. Wilson and Thomas G. Moher, <i>Design of the</i> <i>Opportunistic Garbage Collector</i> , OOPSLA '89 Proceedings, October 1-6, 1989; Paul R. Wilson, <i>Opportunistic Garbage Collection</i> , ACM SIGPLAN Notices, Vol. 23, No. 12, December 1988.

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,996,663 to Nemes ("the '663 Patent")
	 For example, the Opportunistic Garbage Collection Articles disclose in part: When a significant pause has been detected, a decision procedure is invoked to decide whether to garbage collect, and how many generations to scavenge. The fuller a generation is, the more likely it is to be scavenged; also, the longer the pause that has been detected, the larger the scope of the garbage collection is likely to be. <i>Design of the Opportunistic Garbage Collector</i> at 32. Every time a user-input routine is invoked, a decision routine can decide whether to garbage collect. As long as the decision routine takes no more than a few milliseconds to execute, it should not interfere with responsiveness. Since it is only invoked at these times, it does not incur a continual run-time overhead. <i>Opportunistic Garbage Collection</i> at 100. This decision routine should take several things into account: 1) the volume of data allocated since the last scavenge, 2) how long it has been since the user has had an opportunity to interact, and 3) the height of the stack relative to its average height at reads since the last scavenge. If the product of the allocation and the compute time is high, and if the stack is low, the scavenge favorability measure is high. If it is especially high, a multigeneration scavenge is in order. <i>Id</i>.
	bound pausethe one that has just allocated the data that forced the collection. When the opportunistic mechanism fails to find the end of a

Joint Invalidity Contentions & Production of Documents

22

Case No. 6:09-CV-549-LED

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,996,663 to Nemes ("the '663 Patent")
	pause, it may still succeed by default, embedding a scavenge pause within a larger pause. <i>Design of the Opportunistic Garbage Collector</i> at 32.
	As both The '663 Patent and the Opportunistic Garbage Collection Articles relate to deletion of aged records, one of ordinary skill in the art would have understood how to use the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion based on a system load in other hash table implementations such as The '663 Patent. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the Opportunistic Garbage Collection Articles' deletion decision procedure with The '663 Patent would be nothing more than the predictable use of prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have combined the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion and how many generations to scavenge as taught by the Opportunistic Garbage Collection Articles and with The '663 Patent and would have seen the benefits of doing so. One such benefit, for example, is preventing slowdown of the system.
	Additionally, it would have been obvious to one of ordinary skill in the art to modify the system disclosed in The '663 Patent to dynamically determine the

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,996,663 to Nemes ("the '663 Patent")
	maximum number of expired records to remove in the accessed linked list of records. It is a fundamental concept in computer science and the relevant art that any variable or parameter affecting any aspect of a system can be dynamically determined based on information available to the system. One of ordinary skill in the art would have been motivated to combine the system disclosed in The '663 Patent with the fundamental concept of dynamically determining the maximum number of expired records to remove in an accessed linked list of records to solve a number of potential problems. For example, the removal of expired records described in The '663 Patent can be burdensome on the system, adding to the system's load and slowing down the system's processing. Moreover, the removal could also force an interruption in real-time processing as the processing waits for the removal to complete.
	determining the maximum number to remove would limit the burden on the system and bound the length of any real-time interruption to prevent delays in processing. Indeed, Nemes concedes that such dynamic determination was obvious when he states in the '120 patent that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15.
	The '499 patent discloses an information storage and retrieval system further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records.
	For example, the '499 patent describes performing a dynamic determination of

the number of records hashed to the same cell in the hash table. Then determining if this number exceeds a certain threshold. If the threshold is exceeded, then the system described by the '499 patent at Col. 6, which recites in part "In accordance with the present invention, the major advantages of both techniques, open addressing and external chaining, are achieved in the same system. More particularly, these two techniques are combined in one system, and the actual storage strategy is selected dynamically, depending on the then current local load factor. Initially, all records are stored in the hash table using the open addressing with linear probing technique. When the local load factor exceeds a preselected threshold, the system shifts dynamically to the external chaining technique. That is, while inserting or deleting a record, the local load factor, as reflected in the number of records hashed to this same hash table cell, is examined. If this number exceeds a threshold, the records hashed to this cell address are reorganized, removed from the hash table and organized into an external chainin greatly reduces the search time. It is assumed, of course, that the frequency of retrievals greatly exceeds the frequency of insertions and deletions, an assumption which holds true for most data storage and retrieval systems. When a deletion from a linked list causes the chain length to fall below a threshold, not necessarily the same threshold that triggred chain formation, the chain is destroyed and the entries reabsorbed into the hash table." The '499 Patent at Col. 6. <i>See also</i> , the '499 patent at Col. 6:38-65, 8:14-39, 8:62-9:2, and claim 3.	Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,996,663 to Nemes ("the '663 Patent")
To the extent that dynamically determining a maximum number of expired records is not disclosed by The '663 Patent in combination with Dirks. Thatte		the number of records hashed to the same cell in the hash table. Then determining if this number exceeds a certain threshold. If the threshold is exceeded, then the system described by the '499 patent reorganizes and removes the records at this location. See the '499 Patent at Col. 6, which recites in part "In accordance with the present invention, the major advantages of both techniques, open addressing and external chaining, are achieved in the same system. More particularly, these two techniques are combined in one system, and the actual storage strategy is selected dynamically, depending on the then current local load factor. Initially, all records are stored in the hash table using the open addressing with linear probing technique. When the local load factor exceeds a preselected threshold, the system shifts dynamically to the external chaining technique. That is, while inserting or deleting a record, the local load factor, as reflected in the number of records hashed to this same hash table cell, is examined. If this number exceeds a threshold, the records hashed to this cell address are reorganized, removed from the hash table itself and organized into an external chain in another part of the store. While such reorganization involves considerable overhead, the payoff comes in subsequent searches where the external chaining greatly reduces the search time. It is assumed, of course, that the frequency of retrievals greatly exceeds the frequency of insertions and deletions, an assumption which holds true for most data storage and retrieval systems. When a deletion from a linked list causes the chain length to fall below a threshold, not necessarily the same threshold that triggered chain formation, the chain is destroyed and the entries reabsorbed into the hash table." The '499 Patent at Col. 6. <i>See also</i> , the '499 patent at Col. 6:38-65, 8:14-39, 8:62-9:2, and claim 3. To the extent that dynamically determining a maximum number of expired records is not disclosed by The '663 Patent in combination with Dir

Joint Invalidity Contentions & Production of Documents

Case No. 6:09-CV-549-LED

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,996,663 to Nemes ("the '663 Patent")
	or the Opportunistic Garbage Collection References, it is disclosed by Linux 2.0.1, which describes dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed. It would have been obvious to combine Linux 2.0.1 with The '663 Patent. For example, both Linux 2.0.1 and The '663 Patent describe systems and methods for performing data storage and retrieval using known programming techniques to yield a predictable result.
	For example, when invoked, the function rt_cache_add automatically increments an integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359. When the function rt_cache_add removes an expired record, the function rt_cache_add decrements the variable rt_cache_size. See Linux 2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the number of records in the hash table (i.e., ip_rt_hash_table). Because the function rt_cache_add automatically increments and decrements the variable rt_cache_size, the variable rt_cache_size is determined dynamically.
	Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1. The function rt_garbage_collect_1 loops through each of the linked lists in the ip_rt_hash_table global variable. <i>See</i> Linux 2.0.1, route.c at lines 1122-1138. In this way, the function rt_garbage_collect_1 accesses the linked list. When the function rt_garbage_collect_1 identifies a record that is expired, the function rt_garbage_collect_1 decrements the variable rt_cache_size and frees the record. <i>See</i> Linux 2.0.1, route.c at lines 1128-1135.
	Because all records in the linked list can be expired and all records in the hash

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,996,663 to Nemes ("the '663 Patent")
	table can be in the linked list, the variable rt_cache_size can represent a dynamically determined maximum number of expired ones of the records to remove when function rt_garbage_collect_1 accesses the linked list.
	Furthermore, the function rt_cache_add determines whether the number of records in the hash table exceeds a predetermined threshold RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_cache_add invokes a function rt_garbage_collect. <i>See</i> Linux 2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect invokes a function rt_garbage_collect_1. <i>See</i> Linux 2.0.1, route.c at line 1293. The function rt_garbage_collect_1. <i>See</i> Linux 2.0.1, route.c at line 1293. The function rt_garbage_collect_1. <i>See</i> Linux 2.0.1, route.c at line 1293.
	The function rt_garbage_collect_1 loops through each linked list in the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked list in the hash table, the function rt_garbage_collect_1 looks at each record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each record in a linked list, the function rt_garbage_collect_1 determines whether the record's last use time plus the record's expiration factor is later than the current time. See Linux 2.0.1, route.c at line 1122. If the record's last use time plus the record is last use time plus the record from the linked list. See Linux 2.0.1, route.c at line 1122. If the record's last use time plus the record's expiration factor is last use time plus the record's expiration factor is loss than the current time. See Linux 2.0.1, route.c at lines 1124-1130. The record's expiration factor is based on a variable expire and the record's reference count. See Linux 2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

27

After looping through all of the linked lists in this manner, the function rt_garbage_collect_1 determines again whether the number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX. <i>See</i> Linux 2.0.1, route.c at line 1133. If the number of items in the hash table is still greater than the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves the variable expire and loops through each of the linked lists in the hash table. <i>See</i> Linux 2.0.1, route.c at	Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,996,663 to Nemes ("the '663 Patent")
Ine 1155. In this way, the function rt_garbage_collect_1 can remove additional records from the linked lists in the hash table. The function rt_garbage_collect_1 repeats this process until the total number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX. Under Bedrock's proposed claim constructions, the records removed by the function rt_garbage_collect_1 are "expired" records. That is, the records removed by the function rt_garbage_collect_1 are data items which after a limited time or after the occurrence of some event become obsolete, such that their presence in the storage system is no longer needed or desired. The function rt_cache_add only removes a record from a linked list when the record's last use time plus the fixed timeout value RT_CACHE_TIMEOUT is less than the current time and the record's reference count is zero. <i>See</i> Linux 2.0.1, route.c at line 1369. Thus, the maximum number of records that the function rt_cache_add can remove from a given linked list is limited to those records whose reference counts are zero.		After looping through all of the linked lists in this manner, the function rt_garbage_collect_1 determines again whether the number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX. <i>See</i> Linux 2.0.1, route.c at line 1133. If the number of items in the hash table is still greater than the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves the variable expire and loops through each of the linked lists in the hash table. <i>See</i> Linux 2.0.1, route.c at line 1135. In this way, the function rt_garbage_collect_1 can remove additional records from the linked lists in the hash table. The function rt_garbage_collect_1 repeats this process until the total number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX. Under Bedrock's proposed claim constructions, the records removed by the function rt_garbage_collect_1 are "expired" records. That is, the records removed by the function rt_garbage_collect_1 are data items which after a limited time or after the occurrence of some event become obsolete, such that their presence in the storage system is no longer needed or desired. The function rt_cache_add only removes a record from a linked list when the record's last use time plus the fixed timeout value RT_CACHE_TIMEOUT is less than the current time and the record's reference count is zero. <i>See</i> Linux 2.0.1, route.c at line 1369. Thus, the maximum number of records that the function rt_cache_add can remove form a given linked list is limited to those records whose reference counts are zero.

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 4	,996,663 to Nemes ("the '663 Patent")
		rt_garbage_collect_1 can those records whose reference 1122. Rather, the function r whose reference counts are z greater than zero.	remove from a given linked list is not limited to e counts are zero. <i>See</i> Linux 2.0.1, route.c at line t_garbage_collect_1 can remove records ero and records whose reference counts are
		Consequently, the maximum rt_garbage_collect_1 can maximum number of records a linked list.	number of records that the function remove from a linked list is different than the that the function rt_cache_add can remove from
3. A method for storing and retrieving information records using a linked list to store and provide access to the records, at least some of the records automatically expiring, the method comprising the steps of:	7. A method for storing and retrieving information records using a hashing technique to provide access to the records and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring, the method comprising the steps of:	To the extent the preamble is for storing and retrieving info provide access to the records expiring. the '663 Patent als information records using a h and using an external chainin address, at least some of the For example, the '663 Patent performing storage and retrieving uses the hashing technique."	a limitation, the '663 Patent discloses a method ormation records using a linked list to store and , at least some of the records automatically o discloses a method for storing and retrieving hashing technique to provide access to the records ing technique to store the records with same hash records automatically expiring. discloses "[a] method and apparatus for eval in an information storage system [] which U.S. Patent No. 4,996,663 to Nemes at Abstract.
		Furthermore, the '663 Patent	discloses that described as a logically contiguous, circular
		list of consecutively	numbered, fixed-sized storage units, called
Joint Invalidity Contentions & Pro	duction of	29	Case No. 6:09-CV-549-LED

Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,996,663 to Nemes ("the '663 Patent")
	cells, each capable of storing a single item called a record. Each record contains a distinguishing field, called the key, which is used as the basis for storing and retrieving the associated record. The keys throughout the hash table data base are distinct and unique for each record. Hashing functions are usually not one-to-one in that they map many distinct keys to the same location. <i>Id.</i> at 4:41-50.
	 When such a hash table data base is stored on a slower external storage [], the hash table is best organized as a consecutively numbered circular sequence of larger, multi-cell, fixed-sized storage units, each of which is termed a bucket. A bucket is the largest physically efficient input/output unit of the storage mechanism, such as a disk track in a disk storage unit. Each bucket consists of a sequence of consecutively numbered cells. The hashing function operates on the search key to translate or map the search key into a bucket number or address. Then the entire bucket is retrieved in a single access or probe, and the entire bucked may be processed at RAM speed. <i>Id.</i> at 4:55-68. The hashing technique the '663 Patent discloses is better understood with reference to Figure 3, which is a flow chart of a procedure for the retrieval of a

30

Asserted C U.S. Pat. N	ims From U.S. Patent No. 4,996,663 to Nemes ("the '663 Patent") 5,893,120		o. 4,996,663 to Nemes ("the '663 Patent")
	1		
		"Starting in box 30 of the retrieved is hashed in box 25. "It can be seen that b matching key by linear p	e retrieve procedure, the search key of the record to be x 31 to provide the address of a bucket." <i>Id.</i> at 5: 23- boxes 33, 39 and 44 operate to search for a cell with robing with open addressing." <i>Id.</i> at 5:63-65.
		The '663 Patent further c that	ualifies the necessity of linear probing by disclosing
		[a] disadvantage can translate into in storage or re resolution strateg be provided. Fe forward from the location will reso linear probing. <i>Id</i>	of hashing techniques is that more than one key o the same storage address, causing 'collisions' trieval operations. Some form of collision- y (sometimes called 'rehashing') must therefore or example, the simple strategy of searching e initial storage address to the desired storage live the collision. This latter technique is called <i>d</i> . at 1:40-48.
		Furthermore, the '663 Pa deletions must be done ra the record is simply mark contaminating probes in automatically remove the the chain" <i>Id.</i> at 2:35	tent discloses that "[i]n times of heavy use, when apidly and no time is available for decontamination, ked as 'deleted' and left in place. Later non- the vicinity of such deleted record locations e contaminating deleted records by moving records in 5-41.
[3a] accessing the linked list of records,	[7a] accessing a linked list of records having same hash address,	The '663 Patent discloses also discloses accessing a	s accessing a linked list of records. The '663 Patent a linked list of records having same hash address.
		For example, the '663 Pa	tent discloses "[a] method and apparatus for
Joint Invalidity Contentions & Pro	oduction of	32	Case No. 6:09-CV-549-LED

Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,996,663 to Nemes ("the '663 Patent")
	performing storage and retrieval in an information storage system [] which uses the hashing technique." U.S. Patent No. 4,996,663 to Nemes at Abstract.
	Furthermore, the '663 Patent discloses that:
	[a] hash table can be described as a logically contiguous, circular list of consecutively numbered, fixed-sized storage units, called cells, each capable of storing a single item called a record. Each record contains a distinguishing field, called the key, which is used as the basis for storing and retrieving the associated record. The keys throughout the hash table data base are distinct and unique for each record. Hashing functions are usually not one-to-one in that they map many distinct keys to the same location. <i>Id.</i> at 4:41-50.
	When such a hash table data base is stored on a slower external storage [], the hash table is best organized as a consecutively numbered circular sequence of larger, multi-cell, fixed-sized storage units, each of which is termed a bucket. A bucket is the largest physically efficient input/output unit of the storage mechanism, such as a disk track in a disk storage unit. Each bucket consists of a sequence of consecutively numbered cells. The hashing function operates on the search key to translate or map the search key into a bucket number or address. Then the entire bucket is retrieved in a single access or probe, and the entire bucked may be processed at RAM speed. <i>Id.</i> at 4:55-68.
	The hashing technique the '663 Patent discloses is better understood with

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,996,663 to Nemes ("the '663 Patent")
	reference to Figure 3, which is a flow chart of a procedure for the retrieval of a record from the storage system:

34

Joint Invalidity Contentions & Production of Documents

Case No. 6:09-CV-549-LED

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 4,996,663 to Nemes ("the '663 Patent")
		 "Starting in box 30 of the retrieve procedure, the search key of the record to be retrieved is hashed in box 31 to provide the address of a bucket." <i>Id.</i> at 5: 23-25. "It can be seen that boxes 33, 39 and 44 operate to search for a cell with matching key by linear probing with open addressing." <i>Id.</i> at 5:63-65. The '663 Patent further qualifies the necessity of linear probing by disclosing that: [a] disadvantage of hashing techniques is that more than one key can translate into the same storage address, causing 'collisions' in storage or retrieval operations. Some form of collision-resolution strategy (sometimes called 'rehashing') must therefore be provided. For example, the simple strategy of searching forward from the initial storage address to the desired storage location will resolve the collision. This latter technique is called linear probing. <i>Id.</i> at 1:40-48.
[3b] identifying at least some of the automatically expired ones of the records, and	[7b] identifying at least some of the automatically expired ones of the records,	 The '663 Patent discloses identifying at least some of the automatically expired ones of the records. For example, the '663 Patent discloses that "[i]n times of heavy use, when deletions must be done rapidly and no time is available for decontamination, the record is simply marked as 'deleted' and left in place. Later non-contaminating probes in the vicinity of such deleted record locations automatically remove the contaminating deleted records by moving records in the chain" <i>Id.</i> at 2:35-41.
[3c] removing at least	[7c] removing at least	The '663 Patent discloses removing at least some of the automatically expired
Joint Invalidity Contentions & Pro	duction of	36 Case No. 6:09-CV-549-LED

Joint Invalidity Contentions & Production of Documents

US2008 1661502.3

Asserted C U.S. Pat. N	laims From o. 5,893,120	U.S. Patent No. 4,996,663 to Nemes ("the '663 Patent")
some of the automatically expired records from the linked list when the linked list is accessed.	some of the automatically expired records from the linked list when the linked list is accessed, and	records from the linked list when the linked list is accessed. For example, the '663 Patent discloses that "[i]n times of heavy use, when deletions must be done rapidly and no time is available for decontamination, the record is simply marked as 'deleted' and left in place. Later non- contaminating probes in the vicinity of such deleted record locations automatically remove the contaminating deleted records by moving records in the chain" <i>Id.</i> at 2:35-41. The process disclosed by the '663 Patent is again better understood with reference to Figure 3, which is a flow chart of a procedure for the retrieval of a record from the storage system:

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,996,663 to Nemes ("the '663 Patent")
	Starting in box 30 of the retrieve procedure, the search key of the record to be retrieved is hashed in box 31 to provide the address of a bucket. In box 32, that bucket is retrieved in its entirety and stored in internal computer memory. Decision box 33 examines the first cell of that bucket to determine if the cell is empty or not. If the cell tested in decision box 42 is empty, the decision box 35 is entered to determine if a deleted cell was encountered before the empty cell was encountered. If no deleted cell was encountered, box 36 is entered to save the location of the empty cell, since this is the first empty cell in the bucket and hence can be used to store a new record. If any deleted cells were encountered prior to the empty cell, the location of the first deleted cell would have already been saved []. It should be recalled that a deleted cell can also be used to store a new record. <i>Id.</i> at 21-40.
	[I]n order to insert or store a record, starting at start box 45, it is assumed that the retrieve procedure of FIG 3 has already been invoked to see if a record with this key has already been stored in the data base. If not, the retrieve procedure of FIG. 3 returns a failure indication along with the location of the first empty or first deleted cell encountered in its search for the record. In the insert procedure [], it is therefore only necessary to store the new record in the location provided by the retrieve procedure in box 46, return the accessed bucket to the data base in box 47 and terminate the insert procedure in box 48. <i>Id.</i> at 6:8-20. Figures 3 and 4.

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 4,996,663 to Nemes ("the '663 Patent")
		Upon an insertion, if a deleted cell is returned in the process described above, the new record replaces the contents in the deleted cell.
	[7d] inserting, retrieving or deleting one of the records from the system following the step of removing.	The '663 Patent discloses inserting, retrieving or deleting one of the records from the system following the step of removing. For example, the process disclosed in the '663 Patent is better understood with reference to Figure 8, which shows a state diagram illustrating the sequence in which the various procedures – inserting, deleting, and retrieving – can be called. <i>Id.</i> at 8:35-37, Figures 3-5.
		Is that the at box so, the retrieve procedure of FIG. 5 must be

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 4,996,663 to Nemes ("the '663 Patent")
		called first, before any other procedure. Therefore, the insert procedure of FIG. 4, or the hybrid delete procedure of FIG. 5 can be called, or the retrieve procedure of FIG. 3 reinvoked. Either the retrieve procedure of FIG. 3 or the hybrid delete procedure of FIG. 5 can be called after the insert procedure, but only the retrieve procedure can be called following the hybrid delete procedure of FIG. 5. The circular arrows at the retrieve and insert procedures indicate that these procedures can be called repetitively without calling any other procedure. <i>Id.</i> at 8:37-47.
4. The method according to claim 3 further including the step of dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed.	8. The method according to claim 7 further including the step of dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed.	 The '663 Patent discloses dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed. For example, the '663 Patent discloses that: during normal times when the load on the storage system is not excessive, a non-contaminating but slow deletion of records is used. This slow, non-contaminating deletion involves closing the collision-resolution chain of locations by moving a record from a later position in the chain into the position of the record to be deleted. This leaves no deleted record locations in the storage space to slow down future searches. <i>Id.</i> at 2:24-34. In times of heavy use, when deletions must be done rapidly and no time is available for decontamination, the record is simply marked as "deleted" and left in place. Later non-contaminating probes in the vicinity of such deleted record locations

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,996,663 to Nemes ("the '663 Patent")
	 moving records in the chain as described above. <i>Id.</i> at 2:35-41. This hybrid hashing technique has the decided advantage of automatically eliminating contamination caused by the fast-secure deletion procedure when the slower, non-contaminating deletion is used when the load on the system is at lower levels. <i>Id.</i> at 2:42-46. This hybrid deletion is shown in Figure 5.

42

Asserted Cla U.S. Pat. No	aims From . 5,893,120	U.S. Patent No. 4,996,663 to Nemes ("the '663 Patent")
		FIG.5 HYBRID DELETION YES SYSTEM LOAD > THRESHOLD FAST-SECURE JELETE (FIG.7) JELETE (FIG.6) SIOP 52 SIOP 54
		During the hybrid deletion procedure decision block 51 checks the system load to determine if the system load is greater than a threshold. If the system load is greater than the threshold, then a fast-secure delete 52 is used. <i>Id.</i> at 6:40-64, Figure 5. On the other hand, if the system load is less than the threshold, then a slow-non-contaminating delete 53 is used. <i>Id.</i> The fast-secure delete 52 does

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,996,663 to Nemes ("the '663 Patent")
	not actually delete records, rather it marks records as deleted. <i>Id.</i> at 8:1-33, Figure 7. These records are then actually deleted by a subsequent slow-non-contaminating delete 53. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
	Thus, the '663 Patent discloses a hybrid deletion procedure that dynamically determines a maximum number of records to remove. <i>See id.</i> at 6:40-64, Figure 5. If the fast-secure delete 52 is used, then maximum number of records is zero because records are not deleted they are only marked. <i>Id.</i> at 8:1-33, Figure 7. If the slow-non-contaminating delete 53 is used, then the maximum number of records to remove is all of the contaminated records in the bucket. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
	Additionally, it would have been obvious to one of ordinary skill in the art to modify the system disclosed in the '663 Patent to dynamically determine the maximum number of expired records to remove in the accessed linked list of records. It is a fundamental concept in computer science and the relevant art that any variable or parameter affecting any aspect of a system can be dynamically determined based on information available to the system. One of ordinary skill in the art would have been motivated to combine the system disclosed in the '663 Patent with the fundamental concept of dynamically determining the maximum number of expired records to remove in an accessed linked list of records to solve a number of potential problems. For example, the removal of expired records described in the '663 Patent can be burdensome on the system, adding to the system's load and slowing down the system's processing. Moreover, the removal could also force an interruption in real- time processing as the processing waits for the removal to complete. Indeed, part of the motivation for the system disclosed in the '663 Patent is avoiding these problems. One of ordinary skill in the art would have known that

Joint Invalidity Contentions & Production of Documents

Case No. 6:09-CV-549-LED

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,996,663 to Nemes ("the '663 Patent")
	dynamically determining the maximum number to remove would limit the burden on the system and bound the length of any real-time interruption to prevent delays in processing. Indeed, Nemes concedes that such dynamic determination was obvious when he states in the '120 patent that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15.
	To the extent it is not disclosed in the '663 Patent, Dirks, Thatte, the Opportunistic Garbage Collection References, and/or Linux 2.0.1 disclose dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed.
	Dirks discloses the management of memory in a computer system and more particularly to the allocation of address space in a virtual memory system, which dynamically determines how many records to sweep/remove upon each allocation. Disclosure of these claim elements in Dirks is clearly shown in Exhibit B-2, which is hereby incorporated by reference in its entirety.
	For example, as summarized in Dirks,
	each time a VSID is assigned from the free list to a new application or thread, a fixed number of entries in the page table are scanned to determine whether they have become inactive, by checking them against the VSIDs on the recycle list. Each entry which is identified as being inactive is removed from the page table. After all of the entries in the page table have

45

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,996,663 to Nemes ("the '663 Patent")
	 been examined in this manner, the VSIDs in the recycle list can be transferred to the free list, since all of their associated page table entries will have been removed. This approach thereby guarantees that a predetermined number of VSIDs are always available in the free list without requiring a time-consuming scan of the complete page table at once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14. After [a] new VSID has been allocated, the system checks a flag RFLG to determine whether a recycle sweep is currently in progress (Step 20). If there is no sweep in progress, i.e. RFLG is not equal to one, a determination is made whether a sweep should be initiated. This is done by checking whether the inactive list is full, i.e. whether it contains x
	entries (Step 22). If the number of entries I on the inactive list is less than x, no further action is taken, and processing control returns to the operating system (Step 24). If, however, the inactive list is full at this time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are transferred to the recycle list, and an index n is reset to 1 (Step 28). The system then sweeps a predetermined number of page table entries PT_i on the page table, to detect whether any of them are inactive, i.e. their associated VSID is on the recycle list (Step 30). The predetermined number of entries that are swept is identified as <i>k</i> , where:
	$k = \frac{\text{total number of page table entries}}{\text{maximum number of active threads}}$ <i>Id.</i> at 8:12-30.
	Dirks discloses that any approach can be employed to determine the number of entries to be examined during each step of the sweeping process. <i>Id.</i> at 7:37-

46

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 4,996,663 to Nemes ("the '663 Patent")
		 40. As stated in Dirks: Any other suitable approach can be employed to determine the number of entries to be examined during each step of the sweeping process. In this regard, it is not necessary that the number of examined entries be fixed for each step. Rather, it might vary from one step to the next. The only criterion is that the number of entries examined on each step be such that all entries in the page table are examined in a determinable amount of time or by the occurrence of a certain event, e.g. by the time the list of free VSIDs is empty. <i>Id.</i> at 7:38-46. Thus, Dirks dynamically determines the maximum number of records to sweep/remove by calculating a value <i>k. Id.</i> at 7:15-46, 7:66-8:56.
		As both The '663 Patent and Dirks relate to deletion of aged records upon the allocation of a new incoming record, one of ordinary skill in the art would have understood how to use Dirks' dynamic decision making process of determining the maximum number of records to sweep/remove in other hash tables implementations such as The '663 Patent. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining Dirks' deletion decision procedure with The '663 Patent nothing more than the predictable use of prior art elements according to their established functions.
Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,996,663 to Nemes ("the '663 Patent")	
---	---	
	By way of further example, one of ordinary skill in the art would have combined Dirks' dynamic determination of the suitable number of entries to examine during each step of the sweeping process with The '663 Patent and would have seen the benefits of doing so. One possible benefit, for example, is saving the system from performing sometimes time-consuming sweeps.` Alternatively, one of ordinary skill in the art would be motivated to, and would understand how to, combine the system disclosed in The '663 Patent with the means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records disclosed by Thatte. For example, Thatte discloses a system and method using hash tables and/or linked lists and further discloses means for dynamically determining the maximum number for the record search means to remove in the accessed linked list of records. The disclosure of these claim elements in Thatte is clearly shown in the chart of Thatte, which is hereby incorporated by reference in its entirety. Moreover, one of ordinary skill in the art would recognize that these combinations would improve the similar systems and methods in the same way. Additionally, one of ordinary skill in the art would recognize that the result of combining The '663 Patent with Thatte would be nothing more than the predictable use of prior art elements according to their established functions. The resulting combination would include the capability to determine the maximum number for the record search means to remove. Further, one of ordinary skill in the art would be motivated to combine The '663 Patent with Thatte and recognize the benefits of doing so. For example, the removal of avnired records described in The '663 Patent can be	

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,996,663 to Nemes ("the '663 Patent")
	 burdensome on the system, adding to the system's load and slowing down the system's processing. One of ordinary skill in the art would recognize that combining The '663 Patent with the teachings of Thatte would solve this problem by dynamically determining how many records to delete based on, among other things, the system load. Moreover, the '120 patent discloses that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine The '663 Patent with Thatte. Alternatively, it would also be obvious to combine The '663 Patent with the Opportunistic Garbage Collection Articles disclose a generational based garbage collection which dynamically determines how much garbage to collect. <i>See generally</i>, Paul R. Wilson and Thomas G. Moher, <i>Design of the Opportunistic Garbage Collector</i>, OOPSLA '89 Proceedings, October 1-6, 1989; Paul R. Wilson, <i>Opportunistic Garbage Collection</i>, ACM SIGPLAN Notices, Vol. 23, No. 12, December 1988. For example, the Opportunistic Garbage Collection Articles disclose in part: When a significant pause has been detected, a decision procedure is invoked to decide whether to garbage collect, and how many generations to scavenge. The fuller a generation is, the more likely it is to be scavenged;
	also, the longer the pause that has been detected, the larger the scope of the

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,996,663 to Nemes ("the '663 Patent")
	garbage collection is likely to be. <i>Design of the Opportunistic Garbage Collector</i> at 32.
	Every time a user-input routine is invoked, a decision routine can decide whether to garbage collect. As long as the decision routine takes no more than a few milliseconds to execute, it should not interfere with responsiveness. Since it is only invoked at these times, it does not incur a continual run-time overhead. <i>Opportunistic Garbage Collection</i> at 100.
	This decision routine should take several things into account: 1) the volume of data allocated since the last scavenge, 2) how long it has been since the user has had an opportunity to interact, and 3) the height of the stack relative to its average height at reads since the last scavenge. If the product of the allocation and the compute time is high, and if the stack is low, the scavenge favorability measure is high. If it is especially high, a multi-generation scavenge is in order. <i>Id</i> .
	If these heuristics fail and a scavenge is forced instead by the filling of a generation's space, it is likely to happen during a significant compute- bound pausethe one that has just allocated the data that forced the collection. When the opportunistic mechanism fails to find the end of a pause, it may still succeed by default, embedding a scavenge pause within a larger pause. <i>Design of the Opportunistic Garbage Collector</i> at 32.
	As both The '663 Patent and the Opportunistic Garbage Collection Articles relate to deletion of aged records, one of ordinary skill in the art would have understood how to use the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion based on a system load in other hash

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,996,663 to Nemes ("the '663 Patent")
	 table implementations such as The '663 Patent. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the Opportunistic Garbage Collection Articles' deletion decision procedure with The '663 Patent would be nothing more than the predictable use of prior art elements according to their established functions. By way of further example, one of ordinary skill in the art would have combined the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion and how many generations to scavenge as taught by the Opportunistic Garbage Collection Articles and with The '663 Patent and would have seen the benefits of doing so. One such benefit, for example, is preventing slowdown of the system. Additionally, it would have been obvious to one of ordinary skill in the art to modify the system disclosed in The '663 Patent to dynamically determine the maximum number of expired records to remove in the accessed linked list of
	that any variable or parameter affecting any aspect of a system can be dynamically determined based on information available to the system. One of ordinary skill in the art would have been motivated to combine the system disclosed in The '663 Patent with the fundamental concept of dynamically
	determining the maximum number of expired records to remove in an accessed

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,996,663 to Nemes ("the '663 Patent")
	linked list of records to solve a number of potential problems. For example, the removal of expired records described in The '663 Patent can be burdensome on the system, adding to the system's load and slowing down the system's processing. Moreover, the removal could also force an interruption in real-time processing as the processing waits for the removal to complete.
	One of ordinary skill in the art would have known that dynamically determining the maximum number to remove would limit the burden on the system and bound the length of any real-time interruption to prevent delays in processing. Indeed, Nemes concedes that such dynamic determination was obvious when he states in the '120 patent that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15.
	The '499 patent discloses an information storage and retrieval system further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records.
	For example, the '499 patent describes performing a dynamic determination of the number of records hashed to the same cell in the hash table. Then determining if this number exceeds a certain threshold. If the threshold is exceeded, then the system described by the '499 patent reorganizes and removes the records at this location. See the '499 Patent at Col. 6, which recites in part "In accordance with the present invention, the major advantages of both techniques, open addressing and external chaining, are achieved in the same system. More particularly, these two techniques are combined in one

Asserted Cl U.S. Pat. No	aims From 5, 5,893,120	U.S. Patent No. 4,996,663 to Nemes ("the '663 Patent")
		system, and the actual storage strategy is selected dynamically, depending on the then current local load factor. Initially, all records are stored in the hash table using the open addressing with linear probing technique. When the local load factor exceeds a preselected threshold, the system shifts dynamically to the external chaining technique. That is, while inserting or deleting a record, the local load factor, as reflected in the number of records hashed to this same hash table cell, is examined. If this number exceeds a threshold, the records hashed to this cell address are reorganized, removed from the hash table itself and organized into an external chain in another part of the store. While such reorganization involves considerable overhead, the payoff comes in subsequent searches where the external chaining greatly reduces the search time. It is assumed, of course, that the frequency of retrievals greatly exceeds the frequency of insertions and deletions, an assumption which holds true for most data storage and retrieval systems. When a deletion from a linked list causes the chain length to fall below a threshold, not necessarily the same threshold that triggered chain formation, the chain is destroyed and the entries reabsorbed into the hash table." The '499 Patent at Col. 6. <i>See also</i> , the '499 patent at Col. 6:38-65, 8:14-39, 8:62-9:2, and claim 3. To the extent that dynamically determining a maximum number of expired records is not disclosed by The '663 Patent in combination with Dirks, Thatte, or the Opportunistic Garbage Collection References, it is disclosed by Linux 2.0.1, which describes dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed. It would have been obvious to combine Linux 2.0.1 with The '663 Patent. For example, both Linux 2.0.1 and The '663 Patent describe systems and methods for performing data storage and retrieval using known programming techniques to yield a predictable result.

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,996,663 to Nemes ("the '663 Patent")
	For example, when invoked, the function rt_cache_add automatically increments an integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359. When the function rt_cache_add removes an expired record, the function rt_cache_add decrements the variable rt_cache_size. See Linux 2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the number of records in the hash table (i.e., ip_rt_hash_table). Because the function rt_cache_add automatically increments and decrements the variable rt_cache_size, the variable rt_cache_size is determined dynamically. Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1. The function rt_garbage_collect_1 loops through each of the linked lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at lines 1122- 1138. In this way, the function rt_garbage_collect_1 accesses the linked list. When the function rt_garbage_collect_1 identifies a record that is expired, the function rt_garbage_collect_1 decrements the variable rt_cache_size and frees the record. See Linux 2.0.1, route.c at lines 1128- 1135.
	Because all records in the linked list can be expired and all records in the hash table can be in the linked list, the variable rt_cache_size can represent a dynamically determined maximum number of expired ones of the records to remove when function rt_garbage_collect_1 accesses the linked list. Furthermore, the function rt_cache_add determines whether the number of records in the hash table exceeds a predetermined threshold RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds the

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,996,663 to Nemes ("the '663 Patent")
	predetermined threshold RT_CACHE_SIZE_MAX, the function rt_cache_add invokes a function rt_garbage_collect. See Linux 2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293. The function rt_garbage_collect invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.
	The function rt_garbage_collect_1 loops through each linked list in the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked list in the hash table, the function rt_garbage_collect_1 looks at each record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each record in a linked list, the function rt_garbage_collect_1 determines whether the record's last use time plus the record's expiration factor is later than the current time. See Linux 2.0.1, route.c at line 1122. If the record's last use time plus the record from the linked list. See Linux 2.0.1, route.c at line 1122. If the record's last use time plus the record's last use time plus the record from the linked list. See Linux 2.0.1, route.c at lines 1124-1130. The record's expiration factor is based on a variable expire and the record's reference count. See Linux 2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.
	After looping through all of the linked lists in this manner, the function rt_garbage_collect_1 determines again whether the number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX. <i>See</i> Linux 2.0.1, route.c at line 1133. If the number of items in the hash table is still greater than the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves the variable expire and loops

55

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,996,663 to Nemes ("the '663 Patent")
	through each of the linked lists in the hash table. <i>See</i> Linux 2.0.1, route.c at line 1135. In this way, the function rt_garbage_collect_1 can remove additional records from the linked lists in the hash table. The function rt_garbage_collect_1 repeats this process until the total number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX.
	Under Bedrock's proposed claim constructions, the records removed by the function rt_garbage_collect_1 are "expired" records. That is, the records removed by the function rt_garbage_collect_1 are data items which after a limited time or after the occurrence of some event become obsolete, such that their presence in the storage system is no longer needed or desired.
	The function rt_cache_add only removes a record from a linked list when the record's last use time plus the fixed timeout value RT_CACHE_TIMEOUT is less than the current time and the record's reference count is zero. <i>See</i> Linux 2.0.1, route.c at line 1369. Thus, the maximum number of records that the function rt_cache_add can remove from a given linked list is limited to those records whose reference counts are zero.
	In contrast, the maximum number of records that the function rt_garbage_collect_1 can remove from a given linked list is not limited to those records whose reference counts are zero. <i>See</i> Linux 2.0.1, route.c at line 1122. Rather, the function rt_garbage_collect_1 can remove records whose reference counts are zero and records whose reference counts are greater than zero.
	Consequently, the maximum number of records that the function

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 4,996,663 to Nemes ("the '663 Patent")
	rt_garbage_collect_1 can remove from a linked list is different than the maximum number of records that the function rt_cache_add can remove from a linked list.

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter "the '237 patent")
1. An information storage and retrieval system, the system comprising:	5. An information storage and retrieval system, the system comprising:	To the extent the preamble is a limitation, The '237 patent discloses an information storage and retrieval system. For example, the '237 patent discloses a circular array having linked lists chained to array entries for storing time storage entries. <i>See</i> the '237 patent at Col. 3:19-4:25 and FIG. 2.
[1a] a linked list to store and provide access to records stored in a memory of the system, at least some of the records automatically expiring,	[5a] a hashing means to provide access to records stored in a memory of the system and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring,	 The '237 patent discloses a linked list to store and provide access to records stored in a memory of the system, at least some of the records automatically expiring. The '237 patent also discloses a hashing means to provide access to records stored in a memory of the system and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring. For example, the '237 patent discloses using linked lists to store and provide access to records: "If there are several structures sharing the same time slot (TS), that is, the same cell of the circular array, such as time storage entries 60, 65 in FIG. 2, then the time storage entries are joined to one another in a linked list, as in linked list 50, or linked list 55 linking the plurality of TSE's 90, 91, 92 sharing the same TS of cell 4 in FIG. 4." <i>See</i> the '237 patent, Col. 3:58-3:64, FIG. 2 and FIG. 4. In addition, the '237 patent discloses a hashing means, for example: "the time slot (TS) associated with the expiration time is computed at step 240, which corresponds to a particular numbered cell of the circular array, as

Asserted Cl U.S. Pat. No	aims From 5. 5,893,120	U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter "the '237 patent")
		measured from the reference cell." See the '237 patent at Col. 7:38-7:41.
		Furthermore, the '237 patent discloses external chaining, for example:
		"If there are several structures sharing the same time slot (TS), that is, the same cell of the circular array, such as time storage entries 60, 65 in FIG. 2, then the time storage entries are joined to one another in a linked list, as in linked list 50, or linked list 55 linking the plurality of TSE's 90, 91, 92 sharing the same TS of cell 4 in FIG. 4." <i>See</i> the '237 patent, Col. 3:58-3:64, FIG. 2 and FIG. 4. Finally, the '237 patent discloses automatically expiring, for example: "If a timer is to be deleted (canceled), such as if the data packet has been successfully received by a remote node and an acknowledgement signal associated with this packet is received by a local node, the TSE associated with the packet (say TSE 60) is looked up along with the cell in the circular array it is found in (here cell 6) and the TSE is deleted from the linked list it is found in (such as linked list 50)." <i>See</i> the '237 patent at Col. 5:33-5:39.
		5:65.

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter "the '237 patent")
[1b] a record search means utilizing a search key to access the linked list,	[5b] a record search means utilizing a search key to access a linked list of records having the same hash address,	The '237 patent discloses a record search means utilizing a search key to access the linked list. The '237 patent also discloses a record search means utilizing a search key to access a linked list of records having the same hash address. For example, the '237 patent discloses a computing a slot of the circular array based on the expiration time of the timer to be stored. As discussed above linked lists of records are attached to slots in the circular array: "the time slot (TS) associated with the expiration time is computed at step 240, which corresponds to a particular numbered cell of the circular array, as
[1c] the record search means including a means for identifying and removing at least some of the expired ones of the records from the linked list when the linked list is accessed, and	[5c] the record search means including means for identifying and removing at least some expired ones of the records from the linked list of records when the linked list is accessed, and	The '237 patent discloses the record search means including a means for identifying and removing at least some of the expired ones of the records from the linked list when the linked list is accessed. The '237 patent also discloses the record search means including means for identifying and removing at least some expired ones of the records from the linked list of records when the linked list is accessed. For example, the '237 patent discloses a means for identifying and removing expired records. Timers expire either when a packet has been received or when the timer times out: "If a timer is to be deleted (canceled), such as if the data packet has been successfully received by a remote node and an acknowledgement signal associated with this packet is received by a local node, the TSE associated with the packet (say TSE 60) is looked up along with the cell in the circular array it

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter "the '237 patent")
		is found in (here cell 6) and the TSE is deleted from the linked list it is found in (such as linked list 50)." <i>See</i> the '237 patent at Col. 5:33-5:39.
		"After traversing and processing an expired time storage entry (popping), the time storage entry is removed from the linked list of TSEs, and after all such TSEs are removed from a given non-empty cell, the array entry associated with the non-empty cell is removed from the doubly linked list, and any memory associated any data structure is reallocated." <i>See</i> the '237 patent at col. 6:36-6:41.
		The citation above also discloses removing expired timers when accessing the linked list.
[1d] means, utilizing the record search means, for accessing the linked list and, at the same time, removing at least some of the expired ones of the records in the linked list.	[5d] mea[n]s, utilizing the record search means, for inserting, retrieving, and deleting records from the system and, at the same time, removing at least some expired ones of the records in the accessed	The '237 patent discloses means, utilizing the record search means, for accessing the linked list and, at the same time, removing at least some of the expired ones of the records in the linked list. The '237 patent also discloses utilizing the record search means, for inserting, retrieving, and deleting records from the system and, at the same time, removing at least some expired ones of the records in the accessed linked list of records. For example, the '237 patent discloses means for inserting, retrieving and
	linked list of records.	deleting records:
		"FIG. 6 shows a flowchart depicting how a calling function (or more generally, the protocol program) may call and interact with three functions or subroutines of the present invention, which would be extern functions in the C language: the Add function (which adds a time storage entry), the Delete function (which deletes a time storage entry), and the Pop function (which executes the

Joint Invalidity Contentions & Production of Documents

Asserted Cl U.S. Pat. No	laims From o. 5,893,120	U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter "the '237 patent")
		handler(s) associated with a time storage entry and removes the TSE)." <i>See</i> the '237 patent at Col. 7:3-7:10.
		In addition, the '237 patent discloses using the record search means and at the same time removing at least some of the expired ones from the linked list of records:
		"The Delete function, an external function, receives passed parameters from the calling function that identifies which time storage entry (TSE) is to be deleted, as indicated by step 300. Such passed parameters include, for example, the data packet ID. The passed parameters are used to identify the particular TSE referenced by the circular array that needs to be deleted, as indicated by step 310. The time slot (TS) that the TSE is found in is then computed by the processor, in step 320. The circular array cell associated with the TS is found by processor 15, and in step 330 the cell is checked to see if it contains more than one TSE. If so, the TSE is deleted from the linked list associated with the cell." <i>See</i> the '237 patent at Col. 7:62-8:7.
		As discussed above, entries expire when a packet has been successfully delivered and are then deleted using the Delete function:
		"If a timer is to be deleted (canceled), such as if the data packet has been successfully received by a remote node and an acknowledgement signal associated with this packet is received by a local node, the TSE associated with the packet (say TSE 60) is looked up along with the cell in the circular array it is found in (here cell 6) and the TSE is deleted from the linked list it is found in (such as linked list 50)." <i>See</i> the '237 patent at Col. 5:33-5:39.

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter "the '237 patent")
2. The information storage and retrieval system according to claim 1 further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records.	6. The information storage and retrieval system according to claim 5 further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records.	 The '237 patent combined with Dirks, Thatte, the '663 patent and/or the Opportunistic Garbage Collection Articles discloses an information storage and retrieval system further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records. Dirks discloses the management of memory in a computer system and more particularly to the allocation of address space in a virtual memory system, which dynamically determines how many records to sweep/remove upon each allocation. Disclosure of these claim elements in Dirks is clearly shown in Exhibit B-2, which is hereby incorporated by reference in its entirety.
		 For example, as summarized in Dirks, each time a VSID is assigned from the free list to a new application or thread, a fixed number of entries in the page table are scanned to determine whether they have become inactive, by checking them against the VSIDs on the recycle list. Each entry which is identified as being inactive is removed from the page table. After all of the entries in the page table have been examined in this manner, the VSIDs in the recycle list can be transferred to the free list, since all of their associated page table entries will have been removed. This approach thereby guarantees that a predetermined number of VSIDs are always available in the free list without requiring a time-consuming scan of the complete page table at once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14. After [a] new VSID has been allocated, the system checks a flag RFLG to determine whether a recycle sweep is currently in progress (Step 20).

6

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter "the '237 patent")
	If there is no sweep in progress, i.e. RFLG is not equal to one, a determination is made whether a sweep should be initiated. This is done by checking whether the inactive list is full, i.e. whether it contains x entries (Step 22). If the number of entries I on the inactive list is less than x, no further action is taken, and processing control returns to the operating system (Step 24). If, however, the inactive list is full at this time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are transferred to the recycle list, and an index n is reset to 1 (Step 28). The system then sweeps a predetermined number of page table entries PT _i on the page table, to detect whether any of them are inactive, i.e. their associated VSID is on the recycle list (Step 30). The predetermined number of entries that are swept is identified as k, where: $k = \frac{\text{total number of page table entries}}{\text{maximum number of active threads}}$ Id. at 8:12-30. Dirks discloses that any approach can be employed to determine the number of entries to be examined during each step of the sweeping process. Id. at 7:37- 40. As stated in Dirks: Any other suitable approach can be employed to determine the number of entries to be examined during each step of the sweeping process. In this regard, it is not necessary that the number of examined entries be fixed for each step. Rather, it might vary from one step to the next. The only criterion is that the number of entries examined on each step be such that all entries in the page table are examined in a determinable amount of time or by the occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

7

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter "the '237 patent")
		<i>Id.</i> at 7:38-46. Thus, Dirks dynamically determines the maximum number of records to sweep/remove by calculating a value <i>k. Id.</i> at 7:15-46, 7:66-8:56. As both the '237 patent and Dirks relate to deletion of aged records upon the allocation of a new incoming record, one of ordinary skill in the art would have understood how to use Dirks' dynamic decision making process of determining the maximum number of records to sweep/remove in other hash tables implementations such as the '237 patent. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining Dirks' deletion decision procedure with the '237 patent nothing more than the predictable use of prior art elements according to their established functions. By way of further example, one of ordinary skill in the art would have combined Dirks' dynamic determination of the suitable number of entries to examine during each step of the sweeping process with the '237 patent and would have seen the benefits of doing so. One possible benefit, for example, is saving the system from performing sometimes time-consuming sweeps.
		Alternatively, one of ordinary skill in the art would be motivated to, and would understand how to, combine the system disclosed in the '237 patent with the

8

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter "the '237 patent")
	neans for dynamically determining maximum number for the record search neans to remove in the accessed linked list of records disclosed by Thatte. For example, Thatte discloses a system and method using hash tables and/or linked ists and further discloses means for dynamically determining the maximum number for the record search means to remove in the accessed linked list of ecords. The disclosure of these claim elements in Thatte is clearly shown in he chart of Thatte, which is hereby incorporated by reference in its entirety. Moreover, one of ordinary skill in the art would recognize that these combinations would improve the similar systems and methods in the same way. Additionally, one of ordinary skill in the art would recognize that the esult of combining the '237 patent with Thatte would be nothing more than he predictable use of prior art elements according to their established functions. The resulting combination would include the capability to letermine the maximum number for the record search means to remove. Further, one of ordinary skill in the art would be motivated to combine the 237 patent with Thatte and recognize the benefits of doing so. For example, he removal of expired records described in the '237 patent can be burdensome on the system, adding to the system's load and slowing down the system's processing. One of ordinary skill in the art would recognize that combining he '237 patent with the teachings of Thatte would solve this problem by dynamically determining how many records to delete based on, among other hings, the system load. Moreover, the '120 patent discloses that "[a] person skilled in the art will appreciate that the technique of removing all expired ecords while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one " '120 at

9

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter "the '237 patent")
	7:10-15. Thus, the '120 patent provides motivations to combine the '237 patent with Thatte.
	Alternatively, it would also be obvious to combine the '237 patentwith the '663 patent. Disclosure of these claim elements in the '663 patent is clearly shown in the chart of the '663 patent, which is hereby incorporated by reference in its entirety. For example, as summarized in the '663 patent:
	during normal times when the load on the storage system is not excessive, a non-contaminating but slow deletion of records is used. This slow, non-contaminating deletion involves closing the collision-resolution chain of locations by moving a record from a later position in the chain into the position of the record to be deleted. This leaves no deleted record locations in the storage space to slow down future searches. U.S. Patent 4,996,663 to Nemes at 2:24-34 ("The '663 patent").
	In times of heavy use, when deletions must be done rapidly and no time is available for decontamination, the record is simply marked as "deleted" and left in place. Later non-contaminating probes in the vicinity of such deleted record locations automatically remove the contaminating deleted records by moving records in the chain as described above. <i>Id.</i> at 2:35-41.
	This hybrid hashing technique has the decided advantage of automatically eliminating contamination caused by the fast- secure deletion procedure when the slower, non-contaminating deletion is used when the load on the system is at lower levels.

10

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter "the '237 patent")
	to determine if the system load is greater than a threshold. If the system load is greater than the threshold, then a fast-secure delete 52 is used. <i>Id.</i> at 6:40-64, Figure 5. On the other hand, if the system load is less than the threshold, then a slow-non-contaminating delete 53 is used. <i>Id.</i> The fast-secure delete 52 does not actually delete records, rather it marks records as deleted. <i>Id.</i> at 8:1-33, Figure 7. These records are then actually deleted by a subsequent slow-non-contaminating delete 53. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
	Thus, the hybrid deletion procedure in the '663 patent dynamically determines a maximum number of records to remove. <i>See id.</i> at 6:40-64, Figure 5. If the fast-secure delete 52 is used, then maximum number of records is zero because records are not deleted they are only marked. <i>Id.</i> at 8:1-33, Figure 7. If the slow-non-contaminating delete 53 is used, then the maximum number of records to remove is all of the contaminated records in the bucket. <i>Id.</i> at 6:65- 7:68, Figures 6, 6A, 6B.
	As both the '237 patent and the '663 patent relate to deletion of records from hash tables using external chaining, one of ordinary skill in the art would understood how to use the '663 patent's dynamic decision on whether to perform a deletion based on a systems load in other hash table implementations such as that described in the '237 patent. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter "the '237 patent")
	combining the '663 patent's deletion decision procedure with the '237 patent would be nothing more than the predictable use of prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have combined the '663 patent's dynamic decision on whether to perform a deletion based on a systems load as taught by the '663 patent and with the '237 patent and would have seen the benefits of doing so. One such benefit, for example, is that the system would avoid performing deletions when the system load exceeded a threshold.
	Alternatively, it would also be obvious to combine the '237 patent with the Opportunistic Garbage Collection Articles.
	The Opportunistic Garbage Collection Articles disclose a generational based garbage collection which dynamically determines how much garbage to collect. <i>See generally</i> , Paul R. Wilson and Thomas G. Moher, <i>Design of the Opportunistic Garbage Collector</i> , OOPSLA '89 Proceedings, October 1-6, 1989; Paul R. Wilson, <i>Opportunistic Garbage Collection</i> , ACM SIGPLAN Notices, Vol. 23, No. 12, December 1988.
	For example, the Opportunistic Garbage Collection References disclose in part:
	When a significant pause has been detected, a decision procedure is invoked to decide whether to garbage collect, and how many generations to scavenge. The fuller a generation is, the more likely it is to be scavenged; also, the longer the pause that has been detected, the larger the scope of the

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter "the '237 patent")
	garbage collection is likely to be. <i>Design of the Opportunistic Garbage</i> <i>Collector</i> at 32.
	Every time a user-input routine is invoked, a decision routine can decide whether to garbage collect. As long as the decision routine takes no more than a few milliseconds to execute, it should not interfere with responsiveness. Since it is only invoked at these times, it does not incur a continual run-time overhead. <i>Opportunistic Garbage Collection</i> at 100.
	This decision routine should take several things into account: 1) the volume of data allocated since the last scavenge, 2) how long it has been since the user has had an opportunity to interact, and 3) the height of the stack relative to its average height at reads since the last scavenge. If the product of the allocation and the compute time is high, and if the stack is low, the scavenge favorability measure is high. If it is especially high, a multi-generation scavenge is in order. <i>Id</i> .
	If these heuristics fail and a scavenge is forced instead by the filling of a generation's space, it is likely to happen during a significant compute- bound pausethe one that has just allocated the data that forced the collection. When the opportunistic mechanism fails to find the end of a pause, it may still succeed by default, embedding a scavenge pause within a larger pause. <i>Design of the Opportunistic Garbage Collector</i> at 32.
	As both the '237 patent and the Opportunistic Garbage Collection Articles relate to deletion of aged records, one of ordinary skill in the art would have understood how to use the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion based on a system load in other hash

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter "the '237 patent")
		 table implementations such as the '237 patent. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the Opportunistic Garbage Collection Articles' deletion decision procedure with the '237 patent would be nothing more than the predictable use of prior art elements according to their established functions. By way of further example, one of ordinary skill in the art would have combined the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion and how many generations to scavenge as taught by the Opportunistic Garbage Collection Articles and with the '237 patent and would have seen the benefits of doing so. One such benefit, for example, is preventing slowdown of the system. Additionally, it would have been obvious to one of ordinary skill in the art to modify the system disclosed in the '237 patent to dynamically determine the maximum number of expired records to remove in the accessed linked list of records. It is a fundamental concept in computer science and the relevant art that any variable or parameter affecting any aspect of a system can be dynamically determined based on information available to the system disclosed in the '237 patent with the fundamental concept of dynamically determining the exit would have been motivated to combine the system

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter "the '237 patent")
	linked list of records to solve a number of potential problems. For example, the removal of expired records described in the '237 patent can be burdensome on the system, adding to the system's load and slowing down the system's processing. Moreover, the removal could also force an interruption in real- time processing as the processing waits for the removal to complete.
	One of ordinary skill in the art would have known that dynamically determining the maximum number to remove would limit the burden on the system and bound the length of any real-time interruption to prevent delays in processing. Indeed, Nemes concedes that such dynamic determination was obvious when he states in the '120 patent that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15.
	To the extent that dynamically determining a maximum number of expired records is not disclosed by the '237 patent in combination with Dirks, Thatte, the '663 Patent, or the Opportunistic Garbage Collection References, it is disclosed by Linux 2.0.1, which describes dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed. It would have been obvious to combine Linux 2.0.1 with the '237 patent. For example, both Linux 2.0.1 and the '237 patent describe systems and methods for performing data storage and retrieval using known programming techniques to yield a predictable result.
	When invoked, the function rt_cache_add automatically increments an integer variable rt_cache_size. <i>See</i> Linux 2.0.1, route.c at line 1359.

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter "the '237 patent")
	When the function rt_cache_add removes an expired record, the function rt_cache_add decrements the variable rt_cache_size. <i>See</i> Linux 2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the number of records in the hash table (i.e., ip_rt_hash_table). Because the function rt_cache_add automatically increments and decrements the variable rt_cache_size, the variable rt_cache_size is determined dynamically.
	Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1. The function rt_garbage_collect_1 loops through each of the linked lists in the ip_rt_hash_table global variable. <i>See</i> Linux 2.0.1, route.c at lines 1122-1138. In this way, the function rt_garbage_collect_1 accesses the linked list. When the function rt_garbage_collect_1 identifies a record that is expired, the function rt_garbage_collect_1 decrements the variable rt_cache_size and frees the record. <i>See</i> Linux 2.0.1, route.c at lines 1128-1135.
	Because all records in the linked list can be expired and all records in the hash table can be in the linked list, the variable rt_cache_size can represent a dynamically determined maximum number of expired ones of the records to remove when function rt_garbage_collect_1 accesses the linked list.
	Furthermore, the function rt_cache_add determines whether the number of records in the hash table exceeds a predetermined threshold RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds the predetermined threshold RT_CACHE_SIZE_MAX, the function

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter "the '237 patent")
	<pre>rt_cache_add invokes a function rt_garbage_collect. See Linux 2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293. The function rt_garbage_collect invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293. The function rt_garbage_collect_1 loops through each linked list in the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked list in the hash table, the function rt_garbage_collect_1 looks at each record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each record in a linked list, the function rt_garbage_collect_1 determines whether the record's last use time plus the record's expiration factor is later than the current time. See Linux 2.0.1, route.c at line 1122. If the record's last use time plus the record's expiration factor is less than the current time, the function rt_garbage_collect_1 removes the record from the linked list. See Linux 2.0.1, route.c at lines 1120-1130. The record's expiration factor is</pre>
	based on a variable expire and the record's reference count. See Linux 2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110. After looping through all of the linked lists in this manner, the function rt_garbage_collect_1 determines again whether the number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number of items in the hash table is still greater than the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves the variable expire and loops through each of the linked lists in the hash

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter "the '237 patent")
	table. See Linux 2.0.1, route.c at line 1135. In this way, the function rt_garbage_collect_1 can remove additional records from the linked lists in the hash table. The function rt_garbage_collect_1 repeats this process until the total number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX.
	Under Bedrock's proposed claim constructions, the records removed by the function rt_garbage_collect_1 are "expired" records. That is, the records removed by the function rt_garbage_collect_1 are data items which after a limited time or after the occurrence of some event become obsolete, such that their presence in the storage system is no longer needed or desired.
	The function rt_cache_add only removes a record from a linked list when the record's last use time plus the fixed timeout value RT_CACHE_TIMEOUT is less than the current time and the record's reference count is zero. <i>See</i> Linux 2.0.1, route.c at line 1369. Thus, the maximum number of records that the function rt_cache_add can remove from a given linked list is limited to those records whose reference counts are zero.
	In contrast, the maximum number of records that the function rt_garbage_collect_1 can remove from a given linked list is not limited to those records whose reference counts are zero. <i>See</i> Linux 2.0.1, route.c at line 1122. Rather, the function rt_garbage_collect_1 can remove records whose reference counts are zero and records whose reference counts are greater than zero.
	Consequently, the maximum number of records that the function

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter "the '237 patent")
		rt_garbage_collect_1 can remove from a linked list is different than the maximum number of records that the function rt_cache_add can remove from a linked list.
3. A method for storing and retrieving information records using a linked list to store and provide access to the records, at least some of the records automatically expiring, the method comprising the steps of:	7. A method for storing and retrieving information records using a hashing technique to provide access to the records and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring, the method comprising the steps of:	To the extent the preamble is a limitation, The '237 patent discloses a method for storing and retrieving information records using a linked list to store and provide access to the records, at least some of the records automatically expiring. The '237 patent also discloses a method for storing and retrieving information records using a hashing technique to provide access to the records and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring. For example, the '237 patent discloses using linked lists to store and provide access to records: "If there are several structures sharing the same time slot (TS), that is, the same cell of the circular array, such as time storage entries 60, 65 in FIG. 2, then the time storage entries are joined to one another in a linked list, as in linked list 50, or linked list 55 linking the plurality of TSE's 90, 91, 92 sharing the same TS of cell 4 in FIG. 4." <i>See</i> the '237 patent, Col. 3:58-3:64, FIG. 2 and FIG. 4. In addition, the '237 patent discloses a hashing technique, for example: "the time slot (TS) associated with the expiration time is computed at step 240, which corresponds to a particular numbered cell of the circular array, as measured from the reference cell." <i>See</i> the '237 patent at Col. 7:38-7:41.
	1	1 i unicimore, une 257 parent discloses external channing, for example.

Asserted C U.S. Pat. N	laims From o. 5,893,120	U.S. Patent No	o. 5,577,237 (filed Jan. 23, 1995) (hereinafter "the '237 patent")
		"If there are severa cell of the circular time storage entrie 50, or linked list 5 TS of cell 4 in FIC Finally, the '237 p "If a timer is to be successfully receiv associated with thi the packet (say TS is found in (here c in (such as linked "Deletion occurs e (sending) node and node. The timer for contrast, popping of timers have expire say an elapsed tim FIG. 4, marked by 5:65.	al structures sharing the same time slot (TS), that is, the same array, such as time storage entries 60, 65 in FIG. 2, then the s are joined to one another in a linked list, as in linked list 5 linking the plurality of TSE's 90, 91, 92 sharing the same 6. 4." <i>See</i> the '237 patent, Col. 3:58-3:64, FIG. 2 and FIG. 4. atent discloses automatically expiring, for example: deleted (canceled), such as if the data packet has been ved by a remote node and an acknowledgement signal s packet is received by a local node, the TSE associated with E 60) is looked up along with the cell in the circular array it ell 6) and the TSE is deleted from the linked list it is found list 50)." <i>See</i> the '237 patent at Col. 5:33-5:39. very time a data packet is successfully sent by a local d an acknowledgement is received from a remote (receiving) r that data then is no longer needed and is deleted. By poccurs only every so often when it is desired to see which d between the reference time (cell 1) and some other time, e 10 units from the reference time (indicated as cell 11 in reference number 100)." <i>See</i> the '237 patent at Col. 5:54-
[3a] accessing the linked	[7a] accessing a linked list	The '237 patent di	scloses accessing a linked list of records. The '237 patent
list of records,	of records having same hash address,	also discloses acce	essing a linked list of records having same hash address.
Joint Invalidity Contentions & Pro	oduction of	21	Case No. 6:09-CV-549-LED

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter "the '237 patent")
		For example, the '237 patent discloses a computing a slot of the circular array based on the expiration time of the timer to be stored. As discussed above linked lists of records are attached to slots in the circular array: "the time slot (TS) associated with the expiration time is computed at step 240, which corresponds to a particular numbered cell of the circular array, as measured from the reference cell." <i>See</i> the '237 patent at Col. 7:38-7:41.
[3b] identifying at least some of the automatically expired ones of the records, and	[7b] identifying at least some of the automatically expired ones of the records,	 The '237 patent discloses identifying at least some of the automatically expired ones of the records. For example, the '237 patent discloses a means for identifying and removing expired records. Timers expire either when a packet has been received or when the timer times out: "If a timer is to be deleted (canceled), such as if the data packet has been successfully received by a remote node and an acknowledgement signal associated with this packet is received by a local node, the TSE associated with the packet (say TSE 60) is looked up along with the cell in the circular array it is found in (here cell 6) and the TSE is deleted from the linked list it is found in (such as linked list 50)." <i>See</i> the '237 patent at Col. 5:33-5:39. "After traversing and processing an expired time storage entry (popping), the time storage entry is removed from the linked list of TSEs, and after all such TSEs are removed from a given non-empty cell, the array entry associated with the non-empty cell is reallocated." <i>See</i> the '237 patent at col. 6:36-6:41.

Asserted Claims From U.S. Pat. No. 5,893,120		U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter "the '237 patent")
		The citation above also discloses removing expired timers when accessing the linked list.
[3c] removing at least some of the automatically expired records from the linked list when the linked 	[7c] removing at least some of the automatically expired records from the	The '237 patent discloses removing at least some of the automatically expired records from the linked list when the linked list is accessed.
	For example, the '237 patent discloses a means for identifying and removing expired records. Timers expire either when a packet has been received or when the timer times out:	
		"If a timer is to be deleted (canceled), such as if the data packet has been successfully received by a remote node and an acknowledgement signal associated with this packet is received by a local node, the TSE associated with the packet (say TSE 60) is looked up along with the cell in the circular array it is found in (here cell 6) and the TSE is deleted from the linked list it is found in (such as linked list 50)." <i>See</i> the '237 patent at Col. 5:33-5:39.
		"After traversing and processing an expired time storage entry (popping), the time storage entry is removed from the linked list of TSEs, and after all such TSEs are removed from a given non-empty cell, the array entry associated with the non-empty cell is removed from the doubly linked list, and any memory associated any data structure is reallocated." <i>See</i> the '237 patent at col. 6:36-6:41.
		The citation above also discloses removing expired timers when accessing the linked list
	[7d] inserting, retrieving	The '237 patent discloses inserting, retrieving or deleting one of the records
Joint Invalidity Contentions & Pro	duction of	23 Case No. 6:09-CV-549-LED

Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter "the '237 patent")
or deleting one of the records from the system following the step of removing.	from the system following the step of removing. For example, the '237 patent discloses removing timers from the linked list followed by deleting records from the system: "Turning attention now to FIG. 9, there is shown the Pop function of the present invention, which receives from a calling function in step 400 the new time slot (TS.sub.new), which marks the elapsed time for the Pop function as well as identifies the new reference time, such as represented by cell marker 100 in FIGS. 4 and 5 described above. In step 410 the processor uses the information in TS.sub.new to compute a new reference cell (such as cell 11 in FIG. 4) which is greater in time from the old reference cell by an amount equal to the number of cells between the new minus the old reference cells times the unit of time represented by each cell (the granularity). The processor, starting at the old reference cell, TS.sub.0, (such as cell 1 in FIG. 4) traverses the non- empty cells in the doubly linked list (DLL) between the original reference cell, TS.sub.0 and the new reference cell, TS.sub.new as indicated by step 420. As indicated by step 430, the processor finds any TSE's in the non-empty cell and executes the handlers associated with the TSE. Thereafter, in step 440, the TSE is freed and any memory deallocated and for each non-empty cell traversed all
	pointers associated with the non-empty cell are deleted, and any ID map is updated." <i>See</i> the '237 patent at Col. 8:19-8:39, FIG. 9.

24

Asserted C U.S. Pat. N	laims From o. 5,893,120	U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter "the '237 patent")	
4. The method according to	8 The method according	DELETE TSES ON LL; FREE MEMORY; UPDATE IDS	
4. The method according to claim 3 further including the step of dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed.	to claim 7 further including the step of dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed.	 Opportunistic Garbage Collection Articles discloses dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed. Dirks discloses the management of memory in a computer system and more particularly to the allocation of address space in a virtual memory system, which dynamically determines how many records to sweep/remove upon each allocation. Disclosure of these claim elements in Dirks is clearly shown in the chart of Dirks, which is hereby incorporated by reference in its entirety. For example, as summarized in Dirks, each time a VSID is assigned from the free list to a new application or thread, a fixed number of entries in the page table are scanned to determine whether they have become inactive, by checking them against the VSIDs on the recycle list. Each entry which is identified as being inactive is removed from the page table. After all of the entries in the page table have 	

25

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter "the '237 patent")	
	been examined in this manner, the VSIDs in the recycle list can be transferred to the free list, since all of their associated page table entries will have been removed. This approach thereby guarantees that a predetermined number of VSIDs are always available in the free list without requiring a time-consuming scan of the complete page table at once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.	
	After [a] new VSID has been allocated, the system checks a flag RFLG to determine whether a recycle sweep is currently in progress (Step 20). If there is no sweep in progress, i.e. RFLG is not equal to one, a determination is made whether a sweep should be initiated. This is done by checking whether the inactive list is full, i.e. whether it contains x entries (Step 22). If the number of entries I on the inactive list is less than x, no further action is taken, and processing control returns to the operating system (Step 24). If, however, the inactive list is full at this time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are transferred to the recycle list, and an index n is reset to 1 (Step 28). The system then sweeps a predetermined number of page table entries PT _i on the page table, to detect whether any of them are inactive, i.e. their associated VSID is on the recycle list (Step 30). The predetermined number of entries that are swept is identified as <i>k</i> , where:	
	$k = \frac{\text{total number of page table entries}}{\text{maximum number of active threads}}$ <i>Id.</i> at 8:12-30.	
	Dirks discloses that any approach can be employed to determine the number of entries to be examined during each step of the sweeping process. <i>Id.</i> at 7:37-	
Asserted Cl U.S. Pat. No	aims From 5. 5,893,120	U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter "the '237 patent")
-----------------------------	---------------------------	--
U.S. Pat. No	5. 5,893,120	 40. As stated in Dirks: 40. As stated in Dirks: Any other suitable approach can be employed to determine the number of entries to be examined during each step of the sweeping process. In this regard, it is not necessary that the number of examined entries be fixed for each step. Rather, it might vary from one step to the next. The only criterion is that the number of entries examined on each step be such that all entries in the page table are examined in a determinable amount of time or by the occurrence of a certain event, e.g. by the time the list of free VSIDs is empty. <i>Id.</i> at 7:38-46. Thus, Dirks dynamically determines the maximum number of records to sweep/remove by calculating a value <i>k. Id.</i> at 7:15-46, 7:66-8:56. As both the '237 patent and Dirks relate to deletion of aged records upon the allocation of a new incoming record, one of ordinary skill in the art would have understood how to use Dirks' dynamic decision making process of determining the maximum number of records to sweep/remove in other hash tables implementations such as that described the '237 patent. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10.15. Additionally one of ordinary skill in the art would recognize that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10.15. Additionally one of ordinary skill in the or of ordinary skill in the or of ordinary skill in the or of ordinary skill in the ordinary skill in the ordinary skill in the ordinary skill in the ordinary skill ordinary skill ordinary skill ord
		result of combining Dirks' deletion decision procedure with the '237 patent would be nothing more than the predictable use of prior art elements according to their established functions.

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter "the '237 patent")
	By way of further example, one of ordinary skill in the art would have combined Dirks' dynamic determination of the suitable number of entries to examine during each step of the sweeping process with the '237 patent and would have seen the benefits of doing so. One possible benefit, for example, is saving the system from performing sometimes time-consuming sweeps. Alternatively, one of ordinary skill in the art would be motivated to, and would understand how to, combine the system disclosed in the '237 patent with the means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records disclosed by Thatte. For example, Thatte discloses a system and method using hash tables and/or linked lists and further discloses means for dynamically determining the maximum number for the record search means to remove in the accessed linked list of records. The disclosure of these claim elements in Thatte is clearly shown in the chart of Thatte, which is hereby incorporated by reference in its entirety.
	Moreover, one of ordinary skill in the art would recognize that these combinations would improve the similar systems and methods in the same way. Additionally, one of ordinary skill in the art would recognize that the result of combining the '237 patent with Thatte would be nothing more than the predictable use of prior art elements according to their established functions. The resulting combination would include the capability to determine the maximum number for the record search means to remove. Further, one of ordinary skill in the art would be motivated to combine the '237 patent with Thatte and recognized the benefits of doing so. For example, the removal of expired records described in the '237 patentcan be burdensome

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter "the '237 patent")
	on the system, adding to the system's load and slowing down the system's processing. One of ordinary skill in the art would recognize that combining the '237 patent with the teachings of Thatte would solve this problem by dynamically determining how many records to delete based on, among other things, the system load. Moreover, the '120 patent discloses that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine the '237 patent with Thatte.
	Alternatively, it would also be obvious to combine the '237 patent with the '663 patent. Disclosure of these claim elements in the '663 patent is clearly shown in the chart of the '663 patent, which is hereby incorporated by reference in its entirety. For example, as summarized in the '663 patent:
	during normal times when the load on the storage system is not excessive, a non-contaminating but slow deletion of records is used. This slow, non-contaminating deletion involves closing the collision-resolution chain of locations by moving a record from a later position in the chain into the position of the record to be deleted. This leaves no deleted record locations in the storage space to slow down future searches. U.S. Patent 4,996,663 to Nemes at 2:24-34 ("The '663 patent").
	In times of heavy use, when deletions must be done rapidly and no time is available for decontamination, the record is simply

29

Joint Invalidity Contentions & Production of Documents

Asserted Cl U.S. Pat. No	aims From 5, 5,893,120	U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter "the '237 patent")
		 marked as "deleted" and left in place. Later non-contaminating probes in the vicinity of such deleted record locations automatically remove the contaminating deleted records by moving records in the chain as described above. <i>Id.</i> at 2:35-41. This hybrid hashing technique has the decided advantage of automatically eliminating contamination caused by the fast-secure deletion procedure when the slower, non-contaminating deletion is used when the load on the system is at lower levels. <i>Id.</i> at 2:42-46. This hybrid deletion is shown in Figure 5.

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter "the '237 patent")
	FIG.5 HYBRID DELETION figure 5. HUBRID DELETION Figure 5. HUBRID DELETE Figure 5. HUBRID Figure 5. HUBRID Figure 5. During the hybrid deletion procedure decision block 51 checks the system load to determine if the system load is greater than a threshold. If the system load is greater than the threshold, then a fast-secure delete 52 is used. <i>Id.</i> at 6:40-64, Figure 5. On the other hand, if the system load is less than the threshold, then a slow-non-contaminating delete 53 is used. <i>Id.</i> The fast-secure delete 52 does

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter "the '237 patent")
	not actually delete records, rather it marks records as deleted. <i>Id.</i> at 8:1-33, Figure 7. These records are then actually deleted by a subsequent slow-non-contaminating delete 53. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
	Thus, the hybrid deletion procedure in the '663 patent dynamically determines a maximum number of records to remove. <i>See id.</i> at 6:40-64, Figure 5. If the fast-secure delete 52 is used, then maximum number of records is zero because records are not deleted they are only marked. <i>Id.</i> at 8:1-33, Figure 7. If the slow-non-contaminating delete 53 is used, then the maximum number of records to remove is all of the contaminated records in the bucket. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
	As both the '237 patent and the '663 patent relate to deletion of records from hash tables using external chaining, one of ordinary skill in the art would understood how to use the '663 patent's dynamic decision on whether to perform a deletion based on a systems load in other hash table implementations such as the '237 patent. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the '663 patent's deletion decision procedure with the '237 patent would be nothing more than the predictable use of prior art elements according to their established functions.

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter "the '237 patent")
	By way of further example, one of ordinary skill in the art would have combined the '663 patent's dynamic decision on whether to perform a deletion based on a systems load as taught by the '663 patent and with the '237 patent and would have seen the benefits of doing so. One such benefit, for example, is that the system would avoid performing deletions when the system load exceeded a threshold.
	Alternatively, it would also be obvious to combine the '237 patent with the Opportunistic Garbage Collection Articles.
	The Opportunistic Garbage Collection Articles disclose a generational based garbage collection which dynamically determines how much garbage to collect. <i>See generally</i> , Paul R. Wilson and Thomas G. Moher, <i>Design of the Opportunistic Garbage Collector</i> , OOPSLA '89 Proceedings, October 1-6, 1989; Paul R. Wilson, <i>Opportunistic Garbage Collection</i> , ACM SIGPLAN Notices, Vol. 23, No. 12, December 1988.
	For example, the Opportunistic Garbage Collection References disclose in part:
	When a significant pause has been detected, a decision procedure is invoked to decide whether to garbage collect, and how many generations to scavenge. The fuller a generation is, the more likely it is to be scavenged; also, the longer the pause that has been detected, the larger the scope of the garbage collection is likely to be. <i>Design of the Opportunistic Garbage</i> <i>Collector</i> at 32.
	Every time a user-input routine is invoked, a decision routine can decide

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter "the '237 patent")
	whether to garbage collect. As long as the decision routine takes no more than a few milliseconds to execute, it should not interfere with responsiveness. Since it is only invoked at these times, it does not incur a continual run-time overhead. <i>Opportunistic Garbage Collection</i> at 100.
	This decision routine should take several things into account: 1) the volume of data allocated since the last scavenge, 2) how long it has been since the user has had an opportunity to interact, and 3) the height of the stack relative to its average height at reads since the last scavenge. If the product of the allocation and the compute time is high, and if the stack is low, the scavenge favorability measure is high. If it is especially high, a multi-generation scavenge is in order. <i>Id</i> .
	If these heuristics fail and a scavenge is forced instead by the filling of a generation's space, it is likely to happen during a significant compute- bound pausethe one that has just allocated the data that forced the collection. When the opportunistic mechanism fails to find the end of a pause, it may still succeed by default, embedding a scavenge pause within a larger pause. <i>Design of the Opportunistic Garbage Collector</i> at 32.
	As both the '237 patent and the Opportunistic Garbage Collection Articles relate to deletion of aged records, one of ordinary skill in the art would have understood how to use the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion based on a system load in other hash table implementations such as the '237 patent. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter "the '237 patent")
	the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the Opportunistic Garbage Collection Articles' deletion decision procedure with the '237 patent would be nothing more than the predictable use of prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have combined the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion and how many generations to scavenge as taught by the Opportunistic Garbage Collection Articles and with the '237 patent and would have seen the benefits of doing so. One such benefit, for example, is that the system would only perform deletions when the system was not already too overloaded, thus preventing slowdown of the system.
	Additionally, it would have been obvious to one of ordinary skill in the art to modify the system disclosed in the '237 patent to dynamically determine the maximum number of expired records to remove in the accessed linked list of records. It is a fundamental concept in computer science and the relevant art that any variable or parameter affecting any aspect of a system can be dynamically determined based on information available to the system. One of ordinary skill in the art would have been motivated to combine the system disclosed in the '237 patent with the fundamental concept of dynamically determining the maximum number of expired records to remove in an accessed linked list of records to solve a number of potential problems. For example, the removal of expired records described in the '237 patent can be burdensome on the system, adding to the system's load and slowing down the system's

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter "the '237 patent")
	processing. Moreover, the removal could also force an interruption in real-
	time processing as the processing waits for the removal to complete.
	One of ordinary skill in the art would have known that dynamically determining the maximum number to remove would limit the burden on the system and bound the length of any real-time interruption to prevent delays in processing. Indeed, Nemes concedes that such dynamic determination was
	obvious when he states in the '120 patent that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15.
	To the extent that dynamically determining a maximum number of expired records is not disclosed by the '237 patent in combination with Dirks, Thatte, the '663 Patent, or the Opportunistic Garbage Collection References, it is disclosed by Linux 2.0.1, which describes dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed. It would have been obvious to combine Linux 2.0.1 with the '237 patent. For example, both Linux 2.0.1 and the '237 patent describe systems and methods for performing data storage and retrieval using known programming techniques to yield a predictable result.
	When invoked, the function rt_cache_add automatically increments an integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359. When the function rt_cache_add removes an expired record, the function rt_cache_add decrements the variable rt_cache_size. See Linux

36

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter "the '237 patent")
	2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the number of records in the hash table (i.e., ip_rt_hash_table). Because the function rt_cache_add automatically increments and decrements the variable rt_cache_size, the variable rt_cache_size is determined dynamically.
	Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1. The function rt_garbage_collect_1 loops through each of the linked lists in the ip_rt_hash_table global variable. <i>See</i> Linux 2.0.1, route.c at lines 1122-1138. In this way, the function rt_garbage_collect_1 accesses the linked list. When the function rt_garbage_collect_1 identifies a record that is expired, the function rt_garbage_collect_1 decrements the variable rt_cache_size and frees the record. <i>See</i> Linux 2.0.1, route.c at lines 1128-1135.
	Because all records in the linked list can be expired and all records in the hash table can be in the linked list, the variable rt_cache_size can represent a dynamically determined maximum number of expired ones of the records to remove when function rt_garbage_collect_1 accesses the linked list.
	Furthermore, the function rt_cache_add determines whether the number of records in the hash table exceeds a predetermined threshold RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_cache_add invokes a function rt_garbage_collect. <i>See</i> Linux 2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect

37

Asserted Claims I U.S. Pat. No. 5,89	u U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter "the '237 patent")
	invokes a function rt_garbage_collect_1. <i>See</i> Linux 2.0.1, route.c at line 1293. The function rt_garbage_collect invokes a function rt_garbage_collect_1. <i>See</i> Linux 2.0.1, route.c at line 1293.
	The function rt_garbage_collect_l loops through each linked list in the hash table. <i>See</i> Linux 2.0.1, route.c at lines 1116-1132. For each linked list in the hash table, the function rt_garbage_collect_l looks at each record in the linked list. <i>See</i> Linux 2.0.1, route.c at lines 1120-1131. For each record in a linked list, the function rt_garbage_collect_l determines whether the record's last use time plus the record's expiration factor is later than the current time. <i>See</i> Linux 2.0.1, route.c at line 1122. If the record's last use time plus the record's expiration factor is less than the current time, the function rt_garbage_collect_l removes the record from the linked list. <i>See</i> Linux 2.0.1, route.c at lines 1124-1130. The record's expiration factor is based on a variable expire and the record's reference count. <i>See</i> Linux 2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed timeout value RT_CACHE_TIMEOUT. <i>See</i> Linux 2.0.1, route.c at line 1110.
	After looping through all of the linked lists in this manner, the function rt_garbage_collect_1 determines again whether the number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX. <i>See</i> Linux 2.0.1, route.c at line 1133. If the number of items in the hash table is still greater than the predetermined threshold
	RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves the variable expire and loops through each of the linked lists in the hash table. <i>See</i> Linux 2.0.1, route.c at line 1135. In this way, the function rt_garbage_collect_1 can remove additional records from the linked

Joint Invalidity Contentions & Production of Documents

Asserted Claims U.S. Pat. No. 5,8	From 93,120	U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter "the '237 patent")
		lists in the hash table. The function rt_garbage_collect_1 repeats this process until the total number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX.
		Under Bedrock's proposed claim constructions, the records removed by the function rt_garbage_collect_1 are "expired" records. That is, the records removed by the function rt_garbage_collect_1 are data items which after a limited time or after the occurrence of some event become obsolete, such that their presence in the storage system is no longer needed or desired. The function rt_cache_add only removes a record from a linked list when the record's last use time plus the fixed timeout value RT_CACHE_TIMEOUT is less than the current time and the record's reference count is zero. <i>See</i> Linux 2.0.1, route.c at line 1369. Thus, the maximum number of records that the function rt_cache_add can remove from a given linked list is limited to those records whose reference counts are zero.
		In contrast, the maximum number of records that the function rt_garbage_collect_1 can remove from a given linked list is not limited to those records whose reference counts are zero. <i>See</i> Linux 2.0.1, route.c at line 1122. Rather, the function rt_garbage_collect_1 can remove records whose reference counts are zero and records whose reference counts are greater than zero.
		Consequently, the maximum number of records that the function rt_garbage_collect_1 can remove from a linked list is different than the maximum number of records that the function rt_cache_add can

Asserted Claims From U.S. Pat. No. 5,893,120	U.S. Patent No. 5,577,237 (filed Jan. 23, 1995) (hereinafter "the '237 patent")
	remove from a linked list.

Asserted Claims From		Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of
U.S. Pat. No. 5,893,120		Hashing with Lazy Deletion, 1 ALGORITHMICA 17 (November, 1986) ("Van
		Wyk") alone and in combination
1. An information storage	5. An information storage	To the extent the preamble is a limitation, Van Wyk discloses an information
and retrieval system, the	and retrieval system, the	storage and retrieval system.
system comprising:	system comprising:	
		For example, Van Wyk discloses "a version of the dynamic dictionary problem in which stored items have expiration times and can be removed from the dictionary once they have expired." Christopher J. Van Wyk and Jeffrey Scott Vitter, <i>The Complexity of Hashing with Lazy Deletion</i> , 1 Algorithmica 17, 17 (November, 1986).
		Moreover, Van Wyk discloses "[h]ashing with lazy deletion is a simple algorithm for dynamic dictionaries whose occupants expire spontaneously. It is also compatible with the need to accommodate explicit user requests to delete elements. Even if the expiration times of active occupants change, one can use hashing with lazy deletion: if expiration times only increase, they can be changed by moving items further down hash chains; if they may also decrease, they may need to move back in their hash chain or even be deleted immediately. (An alternative would be to forget about keeping the hash chains in expiration-time order; this would make updating expiration times simpler, and would not change the asymptotic time complexity.)" <i>Id.</i> at 28-29.
[1a] a linked list to store	[5a] a hashing means to	Van Wyk discloses a linked list to store and provide access to records stored in
records stored in a memory	stored in a memory of the	A memory of the system, at least some of the fectors automatically explicitly.
of the system at least some	system and using an	a memory of the system and using an external chaining technique to store the
of the records	external chaining technique	records with same hash address, at least some of the records automatically
automatically expiring	to store the records with	expiring
automaticany expring,	same hash address at least	capiting.
	some of the records	For example Van Wyk discloses "a version of the dynamic dictionary problem
Loint Invalidity Contentions & Pro	duction of	1 Case No. 6:00 CV 540 LED
Joint Invalidity Contentions & Production of		1 Case No. 6:09-CV-549-LED

Asserted Claims From		Christopher J. Van Wyk and Jeffrey Scott Vitter, <i>The Complexity of</i>
U.S. Pat. No. 5,893,120		Hashing with Lazy Deletion, I ALGORITHMICA 17 (November, 1986) ("Van Wyk") alone and in combination
	automatically expiring,	in which stored items have expiration times and can be removed from the dictionary once they have expired." <i>Id.</i> at 17.
		Moreover, Van Wyk discloses that "[a] sequence of items arrives to be stored in a dynamic dictionary. Besides the key used when searching for items, each item includes two times, a <i>starting</i> time and an <i>expiration</i> time. Items arrive in order of their starting times. Each time an item arrives, any items in the dictionary whose expiration times precede the incoming item's starting time can be deleted from the dictionary: they no longer represent valid search results." <i>Id</i> .
		Moreover, Van Wyk discloses that "balanced trees only offer logarithmic time complexity; besides, they are complicated to implement and require several pointers per item. So we might decide to replace the search tree [] by a separate-chaining hash table." <i>Id.</i> at 18.
[1b] a record search means utilizing a search key to access the linked list,	[5b] a record search means utilizing a search key to access a linked list of records having the same	Van Wyk discloses a record search means utilizing a search key to access the linked list. Van Wyk also discloses a record search means utilizing a search key to access a linked list of records having the same hash address.
	hash address,	For example, Van Wyk discloses "a version of the dynamic dictionary problem in which stored items have expiration times and can be removed from the dictionary once they have expired." <i>Id.</i> at 17.
		Moreover, Van Wyk discloses that "[a] sequence of items arrives to be stored in a dynamic dictionary. Besides the key used when searching for items, each item includes two times, a <i>starting</i> time and an <i>expiration</i> time. Items arrive in order of their starting times. Each time an item arrives, any items in the

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120		Christopher J. Van Wyk and Jeffrey Scott Vitter, <i>The Complexity of</i> <i>Hashing with Lazy Deletion</i> , 1 ALGORITHMICA 17 (November, 1986) ("Van
		Wyk") alone and in combination dictionary whose expiration times precede the incoming item's starting time can be deleted from the dictionary: they no longer represent valid search results." Id. Moreover, Van Wyk discloses that "balanced trees only offer logarithmic time
		complexity; besides, they are complicated to implement and require several pointers per item. So we might decide to replace the search tree by a separate-chaining hash table." <i>Id.</i> at 18.
[1c] the record search means including a means for identifying and removing at least some of the expired ones of the records from the linked list when the linked list is	[5c] the record search means including means for identifying and removing at least some expired ones of the records from the linked list of records when the linked list is accessed,	Van Wyk discloses the record search means including a means for identifying and removing at least some of the expired ones of the records from the linked list when the linked list is accessed. Van Wyk also discloses the record search means including means for identifying and removing at least some expired ones of the records from the linked list of records when the linked list is accessed.
accessed, and	and	For example, Van Wyk discloses "a version of the dynamic dictionary problem in which stored items have expiration times and can be removed from the dictionary once they have expired." <i>Id.</i> at 17.
		Moreover, Van Wyk discloses that "[a] sequence of items arrives to be stored in a dynamic dictionary. Besides the key used when searching for items, each item includes two times, a <i>starting</i> time and an <i>expiration</i> time. Items arrive in order of their starting times. Each time an item arrives, any items in the dictionary whose expiration times precede the incoming item's starting time can be deleted from the dictionary: they no longer represent valid search results." <i>Id</i> .

Joint Invalidity Contentions & Production of Documents

3

Asserted Claims From		Christopher J. Van Wyk and Jeffrey Scott Vitter, <i>The Complexity of</i> Hashing with Lazy Deletion, 1 ALCORITHMICA 17 (November, 1986) ("Van
U.S. Fat. No. 5,095,120		Wyk") alone and in combination
		 Moreover, Van Wyk discloses that "balanced trees only offer logarithmic time complexity; besides, they are complicated to implement and require several pointers per item. So we might decide to replace the search tree by a separate-chaining hash table." <i>Id</i>. at 18. Moreover, Van Wyk discloses "a strategy of lazy deletion. That is, we keep the chains in each hash bucket sorted by expiration time; when inserting an element, we delete any elements in its hash bucket whose expiration times precede its starting time." <i>Id</i>.
		"[U]nlike other applications of hashing in which one seeks to minimize the number of collisions not caused by successful searches, in hashing with lazy deletion we hope that enough collisions happen so the table is kept mostly free of expired items." <i>Id</i> .
[1d] means, utilizing the record search means, for accessing the linked list and, at the same time, removing at least some of the expired ones of the records in the linked list.	[5d] mea[n]s, utilizing the record search means, for inserting, retrieving, and deleting records from the system and, at the same time, removing at least some expired ones of the records in the accessed	Van Wyk discloses means, utilizing the record search means, for accessing the linked list and, at the same time, removing at least some of the expired ones of the records in the linked list. Van Wyk also discloses utilizing the record search means, for inserting, retrieving, and deleting records from the system and, at the same time, removing at least some expired ones of the records in the accessed linked list of records. For example, Van Wyk discloses "a version of the dynamic dictionary problem
	linked list of records.	in which stored items have expiration times and can be removed from the dictionary once they have expired." <i>Id.</i> at 17.
		in a dynamic dictionary. Besides the key used when searching for items, each

Joint Invalidity Contentions & Production of Documents

Asserted Claims From	Christopher J. Van Wyk and Jeffrey Scott Vitter, <i>The Complexity of</i>
U.S. Pat. No. 5,893,120	Hashing with Lazy Deletion, 1 ALGORITHMICA 17 (November, 1986) ("Van Wyk") along and in combination
	item includes two times, a <i>starting</i> time and an <i>expiration</i> time. Items arrive in order of their starting times. Each time an item arrives, any items in the dictionary whose expiration times precede the incoming item's starting time can be deleted from the dictionary: they no longer represent valid search results." <i>Id</i>
	Moreover, Van Wyk discloses that "balanced trees only offer logarithmic time complexity; besides, they are complicated to implement and require several pointers per item. So we might decide to replace the search tree by a separate-chaining hash table." <i>Id.</i> at 18.
	Moreover, Van Wyk discloses "a strategy of lazy deletion. That is, we keep the chains in each hash bucket sorted by expiration time; when inserting an element, we delete any elements in its hash bucket whose expiration times precede its starting time." <i>Id</i> .
	"[U]nlike other applications of hashing in which one seeks to minimize the number of collisions not caused by successful searches, in hashing with lazy deletion we hope that enough collisions happen so the table is kept mostly free of expired items." <i>Id</i> .
	To the extent Bedrock argues that Van Wyk does not anticipate this element, based on general knowledge and/or in combination with Knuth and/or Kruse, one of ordinary skill in the art would recognize that the Van Wyk applies to insertions, retrievals, and/or deletions of automatically expired records because these are all basic functions that can be performed in the same manner on a hash table or a liked list. See, e.g., "The Art of Computer Programming", Sorting and Searching, D.E. Knuth, Addison-Wesley Series in Computer

5

Joint Invalidity Contentions & Production of Documents

RITHMICA 17 (November, 1986) ("Van id in combination
p. 506-549; "Data Structures and
e-Hall, Inc. 1984, pp. 104-148."
Tathieu, Kenyon-Mathieu or Aldous retrieval system further including means in number for the record search means to ecords. and Aldous each teach methods for olexity of the hashing with lazy deletion elements that would remain in the linked hash table. See, e.g., Morrison at 1156- tieu at 475-486, Aldous 17-21. ordinary skill in the art that these number of expired elements stored in the nically determine a maximum number for Van Wyk to remove. One of ordinary mbine the teachings of Morrison, s with Van Wyk because Van Wyk as an open question for further research. son, Mathieu, and Kenyon-Mathieu all of Van Wyk. See Kenyon-Mathieu at 1155,1158, Aldous at 3.
and and and alexi elem hash ieu a ordir num nical Van V mbir s wi as an son, of V 115. e, the cles <u>mea</u>

Joint Invalidity Contentions & Production of Documents

Asserted Claims Fro U.S. Pat. No. 5,893,1	20 Christopher J. Van Wyk and Jeffrey Scott Vitter, <i>The Complexity of</i> 20 <i>Hashing with Lazy Deletion</i> , 1 ALGORITHMICA 17 (November, 1986) ("Van Wyk") alone and in combination
	maximum number for the record search means to remove in the accessed linked list of records.
	Dirks discloses the management of memory in a computer system and more particularly to the allocation of address space in a virtual memory system, which dynamically determines how many records to sweep/remove upon each allocation. Disclosure of these claim elements in Dirks is clearly shown in Exhibit B-2, which is hereby incorporated by reference in its entirety.
	For example, as summarized in Dirks,
	each time a VSID is assigned from the free list to a new application or thread, a fixed number of entries in the page table are scanned to determine whether they have become inactive, by checking them against the VSIDs on the recycle list. Each entry which is identified as being inactive is removed from the page table. After all of the entries in the page table have been examined in this manner, the VSIDs in the recycle list can be transferred to the free list, since all of their associated page table entries will have been removed. This approach thereby guarantees that a predetermined number of VSIDs are always available in the free list without requiring a time-consuming scan of the complete page table at once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.
	After [a] new VSID has been allocated, the system checks a flag RFLG to determine whether a recycle sweep is currently in progress (Step 20). If there is no sweep in progress, i.e. RFLG is not equal to one, a determination is made whether a sweep should be initiated. This is done by checking whether the inactive list is full, i.e. whether it contains x

7

Joint Invalidity Contentions & Production of Documents

Asserted C	laims From	Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of
U.S. Pat. No. 5,893,120		Hashing with Lazy Deletion, 1 ALGORITHMICA 17 (November, 1986) ("Van
		Wyk") alone and in combination
		entries (Step 22). If the number of entries I on the inactive list is less than
		x, no further action is taken, and processing control returns to the
		operating system (Step 24). If, however, the inactive list is full at this
		time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
		transferred to the recycle list, and an index n is reset to 1 (Step 28). The
		system then sweeps a predetermined number of page table entries PT _i on
		the page table, to detect whether any of them are inactive, i.e. their
		associated VSID is on the recycle list (Step 30). The predetermined
		number of entries that are swept is identified as k, where:
		total number of page table entries
		$k = \frac{1}{1}$
		maximum number of active threads
		<i>10.</i> at 8.12-30.
		Dirks discloses that any approach can be employed to determine the number of
		entries to be examined during each step of the sweeping process. <i>Id.</i> at 7:37-
		40. As stated in Dirks:
		Any other suitable approach can be employed to determine the number of
		entries to be examined during each step of the sweeping process. In this
		regard, it is not necessary that the number of examined entries be fixed for
		each step. Rather, it might vary from one step to the next. The only criterion
		is that the number of entries examined on each step be such that all entries in
		the page table are examined in a determinable amount of time or by the
		occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.
		<i>Id.</i> at 7:38-46. Thus, Dirks dynamically determines the maximum number of
		records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

8

Asserted Claims From	Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of
U.S. Pat. No. 5,893,120	Hashing with Lazy Deletion, 1 ALGORITHMICA 17 (November, 1986) ("Van
	Wyk") alone and in combination
	As both Van Wyk and Dirks relate to deletion of aged records upon the allocation of a new incoming record, one of ordinary skill in the art would have understood how to use Dirks' dynamic decision making process of determining the maximum number of records to sweep/remove in other hash tables implementations such as Van Wyk. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining Dirks' deletion decision procedure with Van Wyk's technique of "lazy deletion" would be nothing more than the predictable use of prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have combined Dirks' dynamic determination of the suitable number of entries to examine during each step of the sweeping process with Van Wyk's system and method of "lazy deletion" and would have seen the benefits of doing so. One possible benefit, for example, is that the system and method of lazy deletion could perform a specified number of deletions on any given sweep, thus saving the system from performing sometimes time-consuming sweeps. Alternatively, one of ordinary skill in the art would be motivated to, and would understand how to, combine the system disclosed in Van Wyk with the means for dynamically determining maximum number for the record search means to

9

Asserted Claims From	Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of
U.S. Pat. No. 5,893,120	Hashing with Lazy Deletion, 1 ALGORITHMICA 17 (November, 1986) ("Van
	Wyk") alone and in combination
	remove in the accessed linked list of records disclosed by Thatte. For example,
	Thatte, discloses a system and method using hash tables and/or linked lists and
	further discloses means for dynamically determining the maximum number for
	the record search means to remove in the accessed linked list of records. The
	disclosure of these claim elements in Thatte is clearly shown in Exhibit B-1,
	which is hereby incorporated by reference in its entirety.
	Moreover, one of ordinary skill in the art would recognize that these
	combinations would improve the similar systems and methods in the same
	way. Additionally, one of ordinary skill in the art would recognize that the
	result of combining Van Wyk with Thatte would be nothing more than the
	predictable use of prior art elements according to their established functions.
	The resulting combination would include the capability to determine the
	maximum number for the record search means to remove.
	Further, one of ordinary skill in the art would be motivated to combine Van
	Wyk with Thatte and recognized the benefits of doing so. For example, the
	removal of expired records described in Van Wyk can be burdensome on the
	system, adding to the system's load and slowing down the system's
	processing. One of ordinary skill in the art would recognize that combining
	Van Wyk with the teachings of Thatte would solve this problem by
	dynamically determining how many records to delete based on, among other
	things, the system load. Moreover, the '120 patent discloses that "[a] person
	skilled in the art will appreciate that the technique of removing all expired
	records while searching the linked list can be expanded to include techniques
	whereby not necessarily all expired records are removed, and that the decision
	regarding if and how many records to delete can be a dynamic one." '120 at
	7:10-15. Thus, the '120 patent provides motivations to combine Van Wyk

Asserted Claim U.S. Pat. No. 5,	ns From 893,120	Christopher J. Van Wyk and Jeffrey Scott Vitter, <i>The Complexity of</i> <i>Hashing with Lazy Deletion</i> , 1 ALGORITHMICA 17 (November, 1986) ("Van Wyk") alone and in combination
		with Thatte.
		Alternatively, it would also be obvious to combine Van Wyk with the '663 patent. Disclosure of these claim elements in the '663 patent is clearly shown in Exhibit B-13, which is hereby incorporated by reference in its entirety. For example, as summarized in the '663 patent:
		during normal times when the load on the storage system is not excessive, a non-contaminating but slow deletion of records is used. This slow, non-contaminating deletion involves closing the collision-resolution chain of locations by moving a record from a later position in the chain into the position of the record to be deleted. This leaves no deleted record locations in the storage space to slow down future searches. U.S. Patent 4,996,663 to Nemes at 2:24-34 ("The '663 patent").
		In times of heavy use, when deletions must be done rapidly and no time is available for decontamination, the record is simply marked as "deleted" and left in place. Later non-contaminating probes in the vicinity of such deleted record locations automatically remove the contaminating deleted records by moving records in the chain as described above. <i>Id.</i> at 2:35-41.
		This hybrid hashing technique has the decided advantage of automatically eliminating contamination caused by the fast- secure deletion procedure when the slower, non-contaminating deletion is used when the load on the system is at lower levels.

11

Asserted Claims From U.S. Pat. No. 5,893,120	Christopher J. Van Wyk and Jeffrey Scott Vitter, <i>The Complexity of</i> <i>Hashing with Lazy Deletion</i> , 1 ALGORITHMICA 17 (November, 1986) ("Van Wyk") alone and in combination
	Training with Eucy Determine, if Algorithmeter 17 (november, 1900) (*Val Wyk") alone and in combination Id. at 2:42-46. This hybrid deletion is shown in Figure 5. FIG. 5 HYBRID DELETION VES VES $VIC VIC VES VIC V$
	<i>Id.</i> at Figure 5. During the hybrid deletion procedure decision block 51 checks the system load

Asserted Claims F	com Christopher J. Van Wyk and Jeffrey Scott Vitter, <i>The Complexity of</i>
U.S. Pat. No. 5,893	120 Hashing with Lazy Deletion, 1 ALGORITHMICA 17 (November, 1986) ("Van
	Wyk") alone and in combination
	to determine if the system load is greater than a threshold. If the system load is
	greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
	Figure 5. On the other hand, if the system load is less than the threshold, then a
	slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
	not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
	Figure 7. These records are then actually deleted by a subsequent slow-non-
	contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.
	Thus, the hybrid deletion procedure in the '663 patent dynamically determines a maximum number of records to remove. <i>See id.</i> at 6:40-64, Figure 5. If the fast-secure delete 52 is used, then maximum number of records is zero because records are not deleted they are only marked. <i>Id.</i> at 8:1-33, Figure 7. If the slow-non-contaminating delete 53 is used, then the maximum number of records to remove is all of the contaminated records in the bucket. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
	As both Van Wyk and the '663 patent relate to deletion of records from hash
	tables using external chaining, one of ordinary skill in the art would
	understood now to use the oos patent's dynamic decision on whether to perform a deletion based on a systems load in other bash table implementations
	such as Van Wyk. Moreover, one of ordinary skill in the art would recognize
	that it would improve similar systems and methods in the same way. As the
	'120 patent states "[a] person skilled in the art will appreciate that the
	technique of removing all expired records while searching the linked list can
	be expanded to include techniques whereby not necessarily all expired records
	are removed, and that the decision regarding if and how many records to delete
	can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of
	ordinary skill in the art would recognize that the result of combining the '663

13

Joint Invalidity Contentions & Production of Documents

Asserted Claims From	Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of
U.S. Pat. No. 5,893,120	Hashing with Lazy Deletion, 1 ALGORITHMICA 17 (November, 1986) ("Van
	Wyk ²²) alone and in combination
	delation? would be nothing more than the predictable use of prior ort elements
	according to their established functions
	according to their established functions.
	By way of further example, one of ordinary skill in the art would have
	combined the '663 patent's dynamic decision on whether to perform a deletion
	based on a systems load as taught by the '663 patent and with Van Wyk's
	system and method of "lazy deletion" and would have seen the benefits of
	doing so. One such benefit, for example, is that the system and method of lazy delation would avoid performing delations when the system load avoaded a
	threshold
	Alternatively, it would also be obvious to combine Van Wyk with the
	Opportunistic Garbage Collection Articles.
	The Opportunistic Garbage Collection Articles disclose a generational based
	collect See generally Paul P. Wilson and Thomas G. Moher, Design of the
	Opportunistic Garbage Collector, OOPSLA '89 Proceedings, October 1-6
	1989; Paul R. Wilson, <i>Opportunistic Garbage Collection</i> , ACM SIGPLAN
	Notices, Vol. 23, No. 12, December 1988.
	For example, the Opportunistic Garbage Collection Articles disclose in part:
	When a significant names has been detected a desision procedure is
	when a significant pause has been detected, a decision procedure is invoked to decide whether to garbage collect, and how many generations to
	scavenge. The fuller a generation is the more likely it is to be scavenged.
	also, the longer the pause that has been detected, the larger the scope of the

Asserted Clair	ns From	Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of
U.S. Pat. No. 5	5,893,120	Hashing with Lazy Deletion, 1 ALGORITHMICA 17 (November, 1986) ("Van
		Wyk") alone and in combination
		garbage collection is likely to be. Design of the Opportunistic Garbage
		Collector at 32.
		Every time a user-input routine is invoked, a decision routine can decide
		whether to garbage collect. As long as the decision routine takes no more
		than a few milliseconds to execute, it should not interfere with
		responsiveness. Since it is only invoked at these times, it does not incur a
		continual run-time overhead. <i>Opportunistic Garbage Collection</i> at 100.
		This desigion routing should take several things into account 1) the volume
		of data allocated since the last scavenge (2) how long it has been since the
		user has had an opportunity to interact, and 3) the height of the stack
		relative to its average height at reads since the last scavenge. If the product
		of the allocation and the compute time is high, and if the stack is low, the
		scavenge favorability measure is high. If it is especially high, a multi-
		generation scavenge is in order. <i>Id</i> .
		If these heuristics fail and a scavenge is forced instead by the filling of a
		generation's space, it is likely to happen during a significant compute-
		bound pausethe one that has just allocated the data that forced the
		collection. When the opportunistic mechanism fails to find the end of a
		pause, it may still succeed by default, embedding a scavenge pause within
		a larger pause. Design of the Opportunistic Garbage Collector at 32.
		As both Van Wyk and the Opportunistic Garbage Collection Articles relate to
		deletion of aged records, one of ordinary skill in the art would have understood
		how to use the Opportunistic Garbage Collection Articles' dynamic decision
		on whether to perform a deletion based on a system load in other hash table

Asserted Claims From	Christopher J. Van Wyk and Jeffrey Scott Vitter, <i>The Complexity of</i>
U.S. Pat. No. 5,893,120	Hashing with Lazy Deletion, 1 ALGORITHMICA 17 (November, 1986) ("Van
	Wyk") alone and in combination
	implementations such as Van Wyk. Moreover, one of ordinary skill in the art
	would recognize that it would improve similar systems and methods in the
	same way. As the '120 patent states "[a] person skilled in the art will
	appreciate that the technique of removing all expired records while searching
	the linked list can be expanded to include techniques whereby not necessarily
	all expired records are removed, and that the decision regarding if and how
	many records to delete can be a dynamic one." The '120 patent at 7:10-15.
	Additionally, one of ordinary skill in the art would recognize that the result of
	combining the Opportunistic Garbage Collection Articles' deletion decision
	procedure with Van Wyk's technique of "lazy deletion" would be nothing
	more than the predictable use of prior art elements according to their
	established functions.
	By way of further example, one of ordinary skill in the art would have
	whether to perform a deletion and how many generations to seewenge as tought
	whether to perform a deletion and now many generations to scavenge as taught by the Opportunistic Carbage Collection Articles and with Van Wulc's system
	by the Opportunistic Garbage Conection Articles and with Van Wyk's system
	One such benefit for example, is that the system and method of lazy deletion
	would only perform deletions when the system was not already too overloaded
	thus preventing slowdown of the system
	thus preventing slowdown of the system.
	Additionally, it would have been obvious to one of ordinary skill in the art to
	modify the system disclosed in Van Wyk to dynamically determine the
	maximum number of expired records to remove in the accessed linked list of
	records. It is a fundamental concept in computer science and the relevant art
	that any variable or parameter affecting any aspect of a system can be
	dynamically determined based on information available to the system. One of

Asserted Claims From		Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity	, of
U.S. Pat. No. 5,893,120		Hashing with Lazy Deletion, 1 ALGORITHMICA 17 (November, 1986)	("Van
		Wyk") alone and in combination	
		ordinary skill in the art would have been motivated to combine the system	n
		disclosed in Van Wyk with the fundamental concept of dynamically	
		determining the maximum number of expired records to remove in an accurate	cessed
		linked list of records to solve a number of potential problems. For example,	ple,
		the removal of expired records described in Van Wyk can be burdensome	e on
		the system, adding to the system's load and slowing down the system's	
		processing. Moreover, the removal could also force an interruption in rea	al-
		time processing as the processing waits for the removal to complete. Ind	eed,
		part of the motivation for the system disclosed in Van Wyk is avoiding the	iese
		problems. One of ordinary skill in the art would have known that dynam	ically
		determining the maximum number to remove would limit the burden on the	the
		system and bound the length of any real-time interruption to prevent dela	ys in
		processing. Indeed, Nemes concedes that such dynamic determination w	as
		obvious when he states in the '120 patent that "[a] person skilled in the a	rt will
		appreciate that the technique of removing all expired records while search	hing
		the linked list can be expanded to include techniques whereby not necess	arily
		all expired records are removed, and that the decision regarding if and ho	W
		many records to delete can be a dynamic one." '120 at 7:10-15.	
3. A method for storing	7. A method for storing	To the extent the preamble is a limitation, Van Wyk discloses a method f	or
and retrieving information	and retrieving information	storing and retrieving information records using a linked list to store and	
records using a linked list	records using a hashing	provide access to the records, at least some of the records automatically	
to store and provide access	technique to provide access	expiring. Van Wyk also discloses a method for storing and retrieving	
to the records, at least	to the records and using an	information records using a hashing technique to provide access to the re	cords
some of the records	external chaining technique	and using an external chaining technique to store the records with same h	ıash
automatically expiring, the	to store the records with	address, at least some of the records automatically expiring.	
method comprising the	same hash address, at least		
steps of:	some of the records	For example, Van Wyk discloses "a version of the dynamic dictionary pr	oblem
Joint Invalidity Contentions & Production of		17 Case No. 6:09-CV-549-LE	ED

Documents

Asserted Claims From U.S. Pat. No. 5,893,120		Christopher J. Van Wyk and Jeffrey Scott Vitter, <i>The Complexity of</i> <i>Hashing with Lazy Deletion</i> , 1 ALGORITHMICA 17 (November, 1986) ("Van Wyk") alone and in combination
	automatically expiring, the method comprising the steps of:	in which stored items have expiration times and can be removed from the dictionary once they have expired." Van Wyk at 17.
		Moreover, Van Wyk discloses "[h]ashing with lazy deletion is a simple algorithm for dynamic dictionaries whose occupants expire spontaneously. It is also compatible with the need to accommodate explicit user requests to delete elements. Even if the expiration times of active occupants change, one can use hashing with lazy deletion: if expiration times only increase, they can be changed by moving items further down hash chains; if they may also decrease, they may need to move back in their hash chain or even be deleted immediately. (An alternative would be to forget about keeping the hash chains in expiration-time order; this would make updating expiration times simpler, and would not change the asymptotic time complexity.)" <i>Id.</i> at 29.
[3a] accessing the linked list of records,	[7a] accessing a linked list of records having same hash address,	 Van Wyk discloses accessing a linked list of records. Van Wyk also discloses accessing a linked list of records having same hash address. For example, Van Wyk discloses "a version of the dynamic dictionary problem in which stored items have expiration times and can be removed from the dictionary once they have expired." <i>Id.</i> at 17. Moreover, Van Wyk discloses that "[a] sequence of items arrives to be stored in a dynamic dictionary. Besides the key used when searching for items, each item includes two times, a <i>starting</i> time and an <i>expiration</i> time. Items arrive in order of their starting times. Each time an item arrives, any items in the dictionary whose expiration times precede the incoming item's starting time can be deleted from the dictionary: they no longer represent valid search results." <i>Id.</i>

Asserted Claims From U.S. Pat. No. 5,893,120		Christopher J. Van Wyk and Jeffrey Scott Vitter, <i>The Chashing with Lazy Deletion</i> , 1 ALGORITHMICA 17 (Novembul) Wyk") alone and in combination	<i>Complexity of</i> per, 1986) ("Van
		Moreover, Van Wyk discloses that "balanced trees only offer a complexity; besides, they are complicated to implement and repointers per item. So we might decide to replace the search trees separate-chaining hash table." <i>Id.</i> at 18.	logarithmic time equire several ee by a
[3b] identifying at least some of the automatically expired ones of the records	[7b] identifying at least some of the automatically expired ones of the records	Van Wyk discloses identifying at least some of the automatica of the records.	lly expired ones
and	expired ones of the records,	For example, Van Wyk discloses "a version of the dynamic di in which stored items have expiration times and can be remove dictionary once they have expired." <i>Id.</i> at 17.	ctionary problem ed from the
		Moreover, Van Wyk discloses that "[a] sequence of items arrives in a dynamic dictionary. Besides the key used when searching item includes two times, a <i>starting</i> time and an <i>expiration</i> time order of their starting times. Each time an item arrives, any ite dictionary whose expiration times precede the incoming item's can be deleted from the dictionary: they no longer represent var results." <i>Id</i> .	ves to be stored g for items, each e. Items arrive in ems in the s starting time alid search
[3c] removing at least some of the automatically expired records from the	[7c] removing at least some of the automatically expired records from the	Van Wyk discloses removing at least some of the automaticall records from the linked list when the linked list is accessed.	y expired
linked list when the linked list is accessed.	linked list when the linked list is accessed, and	For example, Van Wyk discloses "a version of the dynamic di in which stored items have expiration times and can be remove dictionary once they have expired." <i>Id.</i> at 17.	ctionary problem ed from the
Joint Invalidity Contentions & Pro	duction of	19 Case No. 6:09	9-CV-549-LED

Documents

Asserted Claims From		Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of
U.S. Pat. No	b. 5,893,120	Hashing with Lazy Deletion, 1 ALGORITHMICA 17 (November, 1986) ("Van
		WyK") alone and in combination Moreover, Van Wyk discloses that "[a] sequence of items arrives to be stored
		in a dynamic dictionary. Besides the key used when searching for items, each item includes two times, a <i>starting</i> time and an <i>expiration</i> time. Items arrive in order of their starting times. Each time an item arrives any items in the
		dictionary whose expiration times precede the incoming item's starting time can be deleted from the dictionary: they no longer represent valid search results." <i>Id</i> .
		Moreover, Van Wyk discloses that "balanced trees only offer logarithmic time complexity; besides, they are complicated to implement and require several pointers per item. So we might decide to replace the search treeby a separate-chaining hash table." <i>Id.</i> at 18.
		Moreover, Van Wyk discloses "a strategy of lazy deletion. That is, we keep the chains in each hash bucket sorted by expiration time; when inserting an element, we delete any elements in its hash bucket whose expiration times precede its starting time." <i>Id</i> .
		"[U]nlike other applications of hashing in which one seeks to minimize the number of collisions not caused by successful searches, in hashing with lazy deletion we hope that enough collisions happen so the table is kept mostly free of expired items." <i>Id</i> .
	[7d] inserting, retrieving or deleting one of the records from the system following	Van Wyk discloses inserting, retrieving or deleting one of the records from the system following the step of removing.
	the step of removing.	For example, Van Wyk discloses "a version of the dynamic dictionary problem in which stored items have expiration times and can be removed from the

Asserted Claims From	Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of
U.S. Pat. No. 5,893,120	Hashing with Lazy Deletion, 1 ALGORITHMICA 17 (November, 1986) ("Van
	Wyk") alone and in combination
	dictionary once they have expired." <i>Id.</i> at 17.
	Moreover, Van Wyk discloses that "[a] sequence of items arrives to be stored in a dynamic dictionary. Besides the key used when searching for items, each item includes two times, a <i>starting</i> time and an <i>expiration</i> time. Items arrive in order of their starting times. Each time an item arrives, any items in the dictionary whose expiration times precede the incoming item's starting time can be deleted from the dictionary: they no longer represent valid search results." <i>Id</i> .
	Moreover, Van Wyk discloses that "balanced trees only offer logarithmic time complexity; besides, they are complicated to implement and require several pointers per item. So we might decide to replace the search tree by a separate-chaining hash table." <i>Id.</i> at 18.
	Moreover, Van Wyk discloses "a strategy of lazy deletion. That is, we keep the chains in each hash bucket sorted by expiration time; when inserting an element, we delete any elements in its hash bucket whose expiration times precede its starting time." <i>Id</i> .
	"[U]nlike other applications of hashing in which one seeks to minimize the number of collisions not caused by successful searches, in hashing with lazy deletion we hope that enough collisions happen so the table is kept mostly free of expired items." <i>Id</i> .
	Moreover, Van Wyk and Vitter explain that " $[t]$ he insertion of element x_i proceeds as follows:

Asserted Claims From U.S. Pat. No. 5,893,120		Christopher J. Van Wyk and Jeffrey Scott Vitter, <i>The Complexity of</i> <i>Hashing with Lazy Deletion</i> , 1 ALGORITHMICA 17 (November, 1986) ("Van Wyk") alone and in combination
		 Compute h = n(k_i) Remove from the hash chain in bucket h any items x_j with t_j < s_j [i.e. remove all expired elements] Add x_i so the chain in bucket h remains sorted by termination time." <i>Id.</i> at 19. This method clearly contemplates the insertion occurring after the removal of expired elements.
4. The method according to claim 3 further including the step of dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed.	8. The method according to claim 7 further including the step of dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed.	 Van Wyk combined with Morrison, Mathieu, Kenyon-Mathieu or Aldous discloses dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed. Morrison, Mathieu, Kenyon-Mathieu, and Aldous each teach methods for calculating a bound on the space complexity of the hashing with lazy deletion algorithm, i.e., the number of expired elements that would remain in the linked lists forming the external chains of the hash table. See, e.g., Morrison at 1156-1161, Mathieu at 12-22, Kenyon-Mathieu at 475-486, Aldous 17-21. It would have been obvious to one of ordinary skill in the art that these methods of calculating bounds on the number of expired elements stored in the linked list could also be used to dynamically determine a maximum number for the record search means disclosed in Van Wyk to remove. One of ordinary skill would have been motivated to combine the teachings of Morrison, Mathieu, Kenyon-Mathieu, and Aldous with Van Wyk because Van Wyk raised the calculation of such bounds as an open question for further research. See Van Wyk at 29. Moreover, Morrison, Mathieu, and Kenyon-Mathieu all refer to and build off of the teachings of Van Wyk. See Kenyon-Mathieu at

Joint Invalidity Contentions & Production of Documents
Asserted C	laims From	Christopher J. Van Wyk and Jeffrey Scott Vitter, <i>The Complexity of</i>
U.S. Pat. N	0. 5,893,120	Hashing with Lazy Deletion, 1 ALGORITHMICA 17 (November, 1986) ("Van Wyk") alone and in combination
		473, 475, Mathieu at 1-4, Morrison at 1155,1158, Aldous at 3.
		Van Wyk combined with Dirks, Thatte, the '663 patent, and/or the Opportunistic Garbage Collection Articles discloses dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed.
		Dirks discloses the management of memory in a computer system and more particularly to the allocation of address space in a virtual memory system, which dynamically determines how many records to sweep/remove upon each allocation. Disclosure of these claim elements in Dirks is clearly shown in Exhibit B-2, which is hereby incorporated by reference in its entirety.
		For example, as summarized in Dirks,
		each time a VSID is assigned from the free list to a new application or thread, a fixed number of entries in the page table are scanned to determine whether they have become inactive, by checking them against the VSIDs on the recycle list. Each entry which is identified as being inactive is removed from the page table. After all of the entries in the page table have been examined in this manner, the VSIDs in the recycle list can be transferred to the free list, since all of their associated page table entries will have been removed. This approach thereby guarantees that a predetermined number of VSIDs are always available in the free list without requiring a time-consuming scan of the complete page table at once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.
		After [a] new VSID has been allocated, the system checks a flag RFLG

23

Joint Invalidity Contentions & Production of Documents

Asserted Claims From	Christopher J. Van Wyk and Jeffrey Scott Vitter, <i>The Complexity of</i>
U.S. Pat. No. 5,893,120	Hashing with Lazy Deletion, 1 ALGORITHMICA 17 (November, 1986) ("Van
	Wyk") alone and in combination
	to determine whether a recycle sweep is currently in progress (Step 20).
	If there is no sweep in progress, i.e. RFLG is not equal to one, a
	determination is made whether a sweep should be initiated. This is done
	by checking whether the inactive list is full, i.e. whether it contains x
	entries (Step 22). If the number of entries I on the inactive list is less than
	x, no further action is taken, and processing control returns to the
	operating system (Step 24). If, however, the inactive list is full at this
	time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
	transferred to the recycle list, and an index n is reset to 1 (Step 28). The
	system then sweeps a predetermined number of page table entries PT_i on
	the page table, to detect whether any of them are inactive, i.e. their
	associated VSID is on the recycle list (Step 30). The predetermined
	number of entries that are swept is identified as k, where:
	total number of page table entries
	$k = \frac{1}{1}$ maximum number of active threads
	<i>Id.</i> at 8:12-30.
	Dirks discloses that any approach can be employed to determine the number of entries to be examined during each step of the sweeping process. <i>Id.</i> at 7:37-40. As stated in Dirks:
	Any other suitable approach can be employed to determine the number of entries to be examined during each step of the sweeping process. In this regard, it is not necessary that the number of examined entries be fixed for each step. Rather, it might vary from one step to the next. The only criterion is that the number of entries examined on each step be such that all entries in the page table are examined in a determinable amount of time or by the

Asserted Claims From	Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of
U.S. Pat. No. 5,893,120	Hashing with Lazy Deletion, 1 ALGORITHMICA 17 (November, 1986) ("Van
	Wyk") alone and in combination
	occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.
	<i>Id.</i> at 7:38-46. Thus, Dirks dynamically determines the maximum number of records to sweep/remove by calculating a value <i>k</i> . <i>Id</i> . at 7:15-46, 7:66-8:56.
	As both Van Wyk and Dirks relate to deletion of aged records upon the allocation of a new incoming record, one of ordinary skill in the art would have understood how to use Dirks' dynamic decision making process of determining the maximum number of records to sweep/remove in other hash tables implementations such as Van Wyk. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining Dirks' deletion decision procedure with Van Wyk's technique of "lazy deletion" would be nothing more than the predictable use of prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have combined Dirks' dynamic determination of the suitable number of entries to examine during each step of the sweeping process with Van Wyk's system and method of "lazy deletion" and would have seen the benefits of doing so. One possible benefit, for example, is that the system and method of lazy deletion could perform a specified number of deletions on any given sweep, thus saving the system from performing sometimes time consuming sweeps

25

Asserted Claims From U.S. Pat. No. 5,893,12	Christopher J. Van Wyk and Jeffrey Scott Vitter, <i>The Complexity of</i> <i>Hashing with Lazy Deletion</i> , 1 ALGORITHMICA 17 (November, 1986) ("Van Wyk") alone and in combination
	Alternatively, one of ordinary skill in the art would be motivated to, and would understand how to, combine the system disclosed in Van Wyk with the means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records disclosed by Thatte. For example, Thatte discloses a system and method using hash tables and/or linked lists and further discloses means for dynamically determining the maximum number for the record search means to remove in the accessed linked list of records. The disclosure of these claim elements in Thatte is clearly shown in Exhibit B-1, which is hereby incorporated by reference in its entirety. Moreover, one of ordinary skill in the art would recognize that these combinations would improve the similar systems and methods in the same way. Additionally, one of ordinary skill in the art would recognize that the result of combining Van Wyk with Thatte would be nothing more than the predictable use of prior art elements according to their established functions. The resulting combination would include the capability to determine the maximum number for the record search means to remove. Further, one of ordinary skill in the art would be motivated to combine Van Wyk with Thatte and recognized the benefits of doing so. For example, the removal of expired records described in Van Wyk can be burdensome on the system, adding to the system's load and slowing down the system's processing. One of ordinary skill in the art would recognize that combining Van Wyk with the teachings of Thatte would solve this problem by dynamically determining how many records to delete based on, among other things, the system load. Moreover, the '120 patent discloses that '[a] person skilled in the art will appreciate that the technique of removing all expired

26

Asserted Claims From		Christopher J. Van Wyk and Jeffrey Scott Vitter, <i>The Complexity of</i> Hashing with Lazy Deletion, 1 ALCORITHMICA 17 (November, 1986) ("Van
0.0.1 00.1		Wyk") alone and in combination
		records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine Van Wyk with Thatte.
		Alternatively, it would also be obvious to combine Van Wyk with the '663 patent. Disclosure of these claim elements in the '663 patent is clearly shown in Exhibit B-13, which is hereby incorporated by reference in its entirety. For example, as summarized in the '663 patent:
		during normal times when the load on the storage system is not excessive, a non-contaminating but slow deletion of records is used. This slow, non-contaminating deletion involves closing the collision-resolution chain of locations by moving a record from a later position in the chain into the position of the record to be deleted. This leaves no deleted record locations in the storage space to slow down future searches. U.S. Patent 4,996,663 to Nemes at 2:24-34 ("The '663 patent").
		In times of heavy use, when deletions must be done rapidly and no time is available for decontamination, the record is simply marked as "deleted" and left in place. Later non-contaminating probes in the vicinity of such deleted record locations automatically remove the contaminating deleted records by moving records in the chain as described above. <i>Id.</i> at 2:35-41.
		This hybrid hashing technique has the decided advantage of

27

Asserted C U.S. Pat. N	laims From o. 5,893,120	Christopher J. Van Wyk and Jeffrey Scott Vitter, <i>The Complexity of</i> <i>Hashing with Lazy Deletion</i> , 1 ALGORITHMICA 17 (November, 1986) ("Van Wyk") alone and in combination
		automatically eliminating contamination caused by the fast- secure deletion procedure when the slower, non-contaminating deletion is used when the load on the system is at lower levels. <i>Id.</i> at 2:42-46. This hybrid deletion is shown in Figure 5. FIG. 5 HYBRID DELETION $(JAD)^{50}$ $(JAD)^{51}$ $(JAD)^{51}$ $(JAD)^{51}$ $(JAD)^{51}$ $(JAD)^{52}$ $(JAD)^{53}$ $(JAD)^{53}$ $(JAD)^{53}$ $(JAD)^{53}$ $(JAD)^{54}$

28

Joint Invalidity Contentions & Production of Documents

Asserted Claims From	Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of
U.S. Pat. No. 5,893,120	Hashing with Lazy Deletion, 1 ALGORITHMICA 17 (November, 1986) ("Van
	Wyk") alone and in combination
	<i>Id.</i> at Figure 5.
	During the hybrid deletion procedure decision block 51 checks the system load to determine if the system load is greater than a threshold. If the system load is greater than the threshold, then a fast-secure delete 52 is used. <i>Id.</i> at 6:40-64, Figure 5. On the other hand, if the system load is less than the threshold, then a slow-non-contaminating delete 53 is used. <i>Id.</i> The fast-secure delete 52 does not actually delete records, rather it marks records as deleted. <i>Id.</i> at 8:1-33, Figure 7. These records are then actually deleted by a subsequent slow-non-contaminating delete 53. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
	Thus, the hybrid deletion procedure in the '663 patent dynamically determines a maximum number of records to remove. <i>See id.</i> at 6:40-64, Figure 5. If the fast-secure delete 52 is used, then maximum number of records is zero because records are not deleted they are only marked. <i>Id.</i> at 8:1-33, Figure 7. If the slow-non-contaminating delete 53 is used, then the maximum number of records to remove is all of the contaminated records in the bucket. <i>Id.</i> at 6:65- 7:68, Figures 6, 6A, 6B.
	As both Van Wyk and the '663 patent relate to deletion of records from hash tables using external chaining, one of ordinary skill in the art would understood how to use the '663 patent's dynamic decision on whether to perform a deletion based on a systems load in other hash table implementations such as Van Wyk. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records

Asserted Clai	ms From	Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of
U.S. Pat. No. 5,893,120		Hashing with Lazy Deletion, 1 ALGORITHMICA 17 (November, 1986) ("Van
		Wyk") alone and in combination
		are removed, and that the decision regarding if and how many records to delete
		can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of
		ordinary skill in the art would recognize that the result of combining the '663
		patent's deletion decision procedure with Van Wyk's technique of "lazy
		deletion" would be nothing more than the predictable use of prior art elements
		according to their established functions.
		By way of further example, one of ordinary skill in the art would have combined the '663 patent's dynamic decision on whether to perform a deletion based on a systems load as taught by the '663 patent and with Van Wyk's system and method of "lazy deletion" and would have seen the benefits of doing so. One such benefit, for example, is that the system and method of lazy deletion would avoid performing deletions when the system load exceeded a threshold.
		Alternatively, it would also be obvious to combine Van Wyk with the Opportunistic Garbage Collection Articles.
		The Opportunistic Garbage Collection Articles disclose a generational based garbage collection which dynamically determines how much garbage to collect. <i>See generally</i> , Paul R. Wilson and Thomas G. Moher, <i>Design of the Opportunistic Garbage Collector</i> , OOPSLA '89 Proceedings, October 1-6, 1989; Paul R. Wilson, <i>Opportunistic Garbage Collection</i> , ACM SIGPLAN Notices, Vol. 23, No. 12, December 1988.
		For example, the Opportunistic Garbage Collection Articles disclose in part:
		When a significant pause has been detected, a decision procedure is

Joint Invalidity Contentions & Production of Documents

Asserted Cl	aims From	Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of
U.S. Pat. No. 5,893,120		Hashing with Lazy Deletion, 1 ALGORITHMICA 17 (November, 1986) ("Van
		Wyk") alone and in combination
		invoked to decide whether to garbage collect, and how many generations to
		scavenge. The fuller a generation is, the more likely it is to be scavenged;
		also, the longer the pause that has been detected, the larger the scope of the
		garbage collection is likely to be. Design of the Opportunistic Garbage
		Collector at 32.
		Every time a user-input routine is invoked, a decision routine can decide
		whether to garbage collect. As long as the decision routine takes no more
		than a few milliseconds to execute, it should not interfere with
		responsiveness. Since it is only invoked at these times, it does not incur a
		continual run-time overhead. <i>Opportunistic Garbage Collection</i> at 100.
		This decision routine should take several things into account: 1) the volume
		of data allocated since the last scavenge, 2) how long it has been since the
		user has had an opportunity to interact, and 3) the height of the stack
		relative to its average height at reads since the last scavenge. If the product
		of the allocation and the compute time is high, and if the stack is low, the
		scavenge favorability measure is high. If it is especially high, a multi-
		generation scavenge is in order. <i>Ia</i> .
		If these heuristics fail and a scavenge is forced instead by the filling of a
		generation's space, it is likely to happen during a significant compute-
		bound pausethe one that has just allocated the data that forced the
		collection. When the opportunistic mechanism fails to find the end of a
		pause, it may still succeed by default, embedding a scavenge pause within
		a larger pause. Design of the Opportunistic Garbage Collector at 32.
		As both Van Wyk and the Opportunistic Garbage Collection Articles relate to

Joint Invalidity Contentions & Production of Documents

Asserted Claims From	Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of
U.S. Pat. No. 5,893,120	Hashing with Lazy Deletion, 1 ALGORITHMICA 17 (November, 1986) ("Van
	Wyk") alone and in combination
	deletion of aged records, one of ordinary skill in the art would have understood
	how to use the Opportunistic Garbage Collection Articles' dynamic decision
	on whether to perform a deletion based on a system load in other hash table
	implementations such as Van Wyk. Moreover, one of ordinary skill in the art
	would recognize that it would improve similar systems and methods in the
	same way. As the '120 patent states "[a] person skilled in the art will
	appreciate that the technique of removing all expired records while searching
	the linked list can be expanded to include techniques whereby not necessarily
	all expired records are removed, and that the decision regarding if and how
	many records to delete can be a dynamic one." The 120 patent at 7:10-15.
	Additionally, one of ordinary skill in the art would recognize that the result of
	combining the Opportunistic Garbage Collection Articles' deletion decision
	procedure with vali wyk stechnique of fazy deletion would be nothing more than the predictable use of prior art elements according to their
	established functions
	established functions.
	By way of further example one of ordinary skill in the art would have
	combined the Opportunistic Garbage Collection Articles' dynamic decision on
	whether to perform a deletion and how many generations to scavenge as taught
	by the Opportunistic Garbage Collection Articles and with Van Wyk's system
	and method of "lazy deletion" and would have seen the benefits of doing so.
	One such benefit, for example, is that the system and method of lazy deletion
	would only perform deletions when the system was not already too overloaded,
	thus preventing slowdown of the system.
	Additionally, it would have been obvious to one of ordinary skill in the art to
	modify the system disclosed in Van Wyk to dynamically determine the
	maximum number of expired records to remove in the accessed linked list of

Asserted Claims From	Christopher J. Van Wyk and Jeffrey Scott Vitter, <i>The Complexity of</i>
U.S. Pat. No. 5,893,120	Hashing with Lazy Deletion, 1 ALGORITHMICA 17 (November, 1986) ("Van
	Wyk") alone and in combination
	records. It is a fundamental concept in computer science and the relevant art
	that any variable or parameter affecting any aspect of a system can be
	dynamically determined based on information available to the system. One of
	ordinary skill in the art would have been motivated to combine the system
	disclosed in Van Wyk with the fundamental concept of dynamically
	determining the maximum number of expired records to remove in an accessed
	linked list of records to solve a number of potential problems. For example,
	the removal of expired records described in Van Wyk can be burdensome on
	the system, adding to the system's load and slowing down the system's
	processing. Moreover, the removal could also force an interruption in real-
	time processing as the processing waits for the removal to complete. Indeed,
	part of the motivation for the system disclosed in Van Wyk is avoiding these
	problems. One of ordinary skill in the art would have known that dynamically
	determining the maximum number to remove would limit the burden on the
	system and bound the length of any real-time interruption to prevent delays in
	processing. Indeed, Nemes concedes that such dynamic determination was
	obvious when he states in the '120 patent that "[a] person skilled in the art will
	appreciate that the technique of removing all expired records while searching
	the linked list can be expanded to include techniques whereby not necessarily
	all expired records are removed, and that the decision regarding if and how
	many records to delete can be a dynamic one." '120 at 7:10-15.

33

Asserted Claims From U.S. Pat. No. 5,893,120		John A. Morrison et al., <i>A Queuing Analysis of Hashing with Lazy</i> <i>Deletion</i> , Society for Industrial and Applied Mathematics, Vol. 16, No. 6, 1155-1164 (December 1987) ("Morrison") alone and in combination
1. An information storage	5. An information storage	To the extent the preamble is a limitation, Morrison discloses an information
and retrieval system, the system comprising:	and retrieval system, the system comprising:	storage and retrieval system.
		For example, Morrison discloses "a simple method for maintaining a dynamic dictionary: items are inserted and sought as usual in a separate-chaining hash table; however, items that no longer need to be in the data structure remain until a later insertion operation stumbles on them and removes them from the table." Morrison, et al., <i>A Queuing Analysis of Hashing with Lazy Deletion, 16:6 SIAM J. Comput.</i> , 1155 (December 6, 1987).
		On information and belief, the techniques disclosed in Morrison were implemented and distributed in a Unix utility called IDEAL, prior to the filing date of the '120 Patent. On information and belief, the source code for IDEAL discloses an information storage and retrieval system. Defendants reserve the right to supplement these contentions once a complete version of the source code for IDEAL is produced.
[1a] a linked list to store and provide access to records stored in a memory of the system, at least some of the records automatically expiring,	[5a] a hashing means to provide access to records stored in a memory of the system and using an external chaining technique to store the records with same hash address, at least	Morrison discloses a linked list to store and provide access to records stored in a memory of the system, at least some of the records automatically expiring. Morrison also discloses a hashing means to provide access to records stored in a memory of the system and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring.
	some of the records automatically expiring,	For example, Morrison discloses "a simple method for maintaining a dynamic dictionary: items are inserted and sought as usual in a separate-chaining hash table; however, items that no longer need to be in the data structure remain until a later insertion operation stumbles on them and removes them from the

Asserted Claims Fro	m John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
U.S. Pat. No. 5,893,1	20 <i>Deletion</i> , Society for Industrial and Applied Mathematics, Vol. 16, No. 6,
	1155-1164 (December 1987) ("Morrison") alone and in combination
	table." Id.
	Moreover, Morrison discloses "a sequence of items is given; each item includes a search key, a starting time, and an expiration time. The items arrive in the order of their starting times, and each item must be kept in a dynamic dictionary (available for searching) until the arrival of an item whose starting time is later than the item's expiration time." <i>Id</i> .
	"Hashing with lazy deletion means keeping the items hashed by search key in a table of linked lists (separate chains); each time an item is added to a list, any items on that list that the new item shows to be expired are deleted from that list. This deletion procedure is 'lazy' because there is no separate operation associated with clearing expired items out of the table: expired items are only deleted when they are encountered during an insertion operation" <i>Id</i> .
	Moreover, it is inherent to the Morrison disclosure that the hash table described herein is a separate-chaining hash table to resolve unavoidable key collisions, where each slot of the bucket array is a pointer to a linked list that contains the key-value pairs that hash to the same location. Other data structures, such as balanced trees, only offer logarithmic time complexity and can be complicated to implement and require several pointers per item. With a suitable number of buckets, the separate-chaining hash table solution offers constant expected search times and makes deletion easy.
	To the extent is it not inherent, it would be obvious to combine Morrison with the prior art disclosed in, <i>The Complexity of Hashing with Lazy Deletion</i> , Christopher J. Van Wyk and Jeffrey Scott Vitter, <i>The Complexity of Hashing</i> <i>with Lazy Deletion</i> , 1 Algorithmica 17, 18 (November, 1986) ("Van Wyk"),

2

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120		John A. Morrison et al., <i>A Queuing Analysis of Hashing with Lazy</i> <i>Deletion</i> , Society for Industrial and Applied Mathematics, Vol. 16, No. 6, 1155-1164 (December 1987) ("Morrison") alone and in combination
		because Morrison describes and incorporates Van Wyk by reference. Morrison at 1155. Van Wyk discloses a method of hashing with lazy deletion using a separate-chaining hash table as a more efficient solution to collisions than the available alternatives, such as balanced trees. <i>See</i> Exhibit C-1 which is herein incorporated by reference.
		On information and belief, the techniques disclosed in Morrison were implemented and distributed in a Unix utility called IDEAL, prior to the filing date of the '120 Patent. On information and belief, the source code for IDEAL discloses a linked list to store and provide access to records stored in a memory of the system, at least some of the records automatically expiring. On information and belief, the source code for IDEAL also discloses a hashing means to provide access to records stored in a memory of the system and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring. Defendants reserve the right to supplement these contentions once a complete version of the source code for IDEAL is produced.
[1b] a record search means utilizing a search key to access the linked list,	[5b] a record search means utilizing a search key to access a linked list of records having the same hash address,	Morrison discloses a record search means utilizing a search key to access the linked list. Morrison also discloses a record search means utilizing a search key to access a linked list of records having the same hash address. For example, Morrison discloses "a simple method for maintaining a dynamic dictionary: items are inserted and sought as usual in a separate-chaining hash table; however, items that no longer need to be in the data structure remain until a later insertion operation stumbles on them and removes them from the table." <i>Id</i>

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	John A. Morrison et al., <i>A Queuing Analysis of Hashing with Lazy Deletion</i> , Society for Industrial and Applied Mathematics, Vol. 16, No. 6, 1155-1164 (December 1987) ("Morrison") alone and in combination
	Moreover, Morrison discloses "a sequence of items is given; each item includes a search key, a starting time, and an expiration time. The items arrive in the order of their starting times, and each item must be kept in a dynamic dictionary (available for searching) until the arrival of an item whose starting time is later than the item's expiration time." <i>Id.</i>
	"Hashing with lazy deletion means keeping the items hashed by search key in a table of linked lists (separate chains); each time an item is added to a list, any items on that list that the new item shows to be expired are deleted from that list. This deletion procedure is 'lazy' because there is no separate operation associated with clearing expired items out of the table: expired items are only deleted when they are encountered during an insertion operation" <i>Id</i> .
	Moreover, it is inherent to the Morrison disclosure that the hash table described herein is a separate-chaining hash table to resolve unavoidable key collisions, where each slot of the bucket array is a pointer to a linked list that contains the key-value pairs that hash to the same location. Other data structures, such as balanced trees, only offer logarithmic time complexity and can be complicated to implement and require several pointers per item. With a suitable number of buckets, the separate-chaining hash table solution offers constant expected search times and makes deletion easy.
	To the extent is it not inherent, it would be obvious to combine Morrison with the prior art disclosed in, <i>The Complexity of Hashing with Lazy Deletion</i> , Christopher J. Van Wyk and Jeffrey Scott Vitter, <i>The Complexity of Hashing</i> <i>with Lazy Deletion</i> , 1 Algorithmica 17, 18 (November, 1986) ("Van Wyk"), because Morrison describes and incorporates Van Wyk by reference. Morrison

4

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120		John A. Morrison et al., <i>A Queuing Analysis of Hashing with Lazy</i> <i>Deletion</i> , Society for Industrial and Applied Mathematics, Vol. 16, No. 6, 1155-1164 (December 1987) ("Morrison") alone and in combination
		at 1155. Van Wyk discloses a method of hashing with lazy deletion using a separate-chaining hash table as a more efficient solution to collisions than the available alternatives, such as balanced trees. <i>See</i> Exhibit C-1 which is herein incorporated by reference.
		On information and belief, the techniques disclosed in Morrison were implemented and distributed in a Unix utility called IDEAL, prior to the filing date of the '120 Patent. On information and belief, the source code for IDEAL discloses a record search means utilizing a search key to access the linked list. On information and belief, the source code for IDEAL also discloses a record search means utilizing a search key to access a linked list of records having the same hash address. Defendants reserve the right to supplement these contentions once a complete version of the source code for IDEAL is produced.
[1c] the record search means including a means for identifying and removing at least some of the expired ones of the records from the linked list when the linked list is accessed, and	[5c] the record search means including means for identifying and removing at least some expired ones of the records from the linked list of records when the linked list is accessed, and	Morrison discloses the record search means including a means for identifying and removing at least some of the expired ones of the records from the linked list when the linked list is accessed. Morrison also discloses the record search means including means for identifying and removing at least some expired ones of the records from the linked list of records when the linked list is accessed. For example, Morrison discloses "a simple method for maintaining a dynamic dictionary: items are inserted and sought as usual in a separate-chaining hash table; however, items that no longer need to be in the data structure remain until a later insertion operation stumbles on them and removes them from the table." <i>Id</i> .

Asserted Claims From U.S. Pat. No. 5,893,120	John A. Morrison et al., <i>A Queuing Analysis of Hashing with Lazy</i> <i>Deletion</i> , Society for Industrial and Applied Mathematics, Vol. 16, No. 6, 1155-1164 (December 1987) ("Morrison") alone and in combination
	Moreover, Morrison discloses "a sequence of items is given; each item includes a search key, a starting time, and an expiration time. The items arrive in the order of their starting times, and each item must be kept in a dynamic dictionary (available for searching) until the arrival of an item whose starting time is later than the item's expiration time." <i>Id</i> .
	"Hashing with lazy deletion means keeping the items hashed by search key in a table of linked lists (separate chains); each time an item is added to a list, any items on that list that the new item shows to be expired are deleted from that list. This deletion procedure is 'lazy' because there is no separate operation associated with clearing expired items out of the table: expired items are only deleted when they are encountered during an insertion operation" <i>Id</i> .
	Moreover, it is inherent to the Morrison disclosure that the hash table described herein is a separate-chaining hash table to resolve unavoidable key collisions, where each slot of the bucket array is a pointer to a linked list that contains the key-value pairs that hash to the same location. Other data structures, such as balanced trees, only offer logarithmic time complexity and can be complicated to implement and require several pointers per item. With a suitable number of buckets, the separate-chaining hash table solution offers constant expected search times and makes deletion easy.
	To the extent is it not inherent, it would be obvious to combine Morrison with the prior art disclosed in, <i>The Complexity of Hashing with Lazy Deletion</i> , Christopher J. Van Wyk and Jeffrey Scott Vitter, <i>The Complexity of Hashing</i> <i>with Lazy Deletion</i> , 1 Algorithmica 17, 18 (November, 1986) ("Van Wyk"), because Morrison describes and incorporates Van Wyk by reference. Morrison at 1155.Van Wyk discloses a method of hashing with lazy deletion using a

6

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120		John A. Morrison et al., <i>A Queuing Analysis of Hashing with Lazy</i> <i>Deletion</i> , Society for Industrial and Applied Mathematics, Vol. 16, No. 6, 1155-1164 (December 1987) ("Morrison") alone and in combination
		separate-chaining hash table as a more efficient solution to collisions than the available alternatives, such as balanced trees. <i>See</i> Exhibit C-1 which is herein incorporated by reference.
		On information and belief, the techniques disclosed in Morrison were implemented and distributed in a Unix utility called IDEAL, prior to the filing date of the '120 Patent. On information and belief, the source code for IDEAL discloses the record search means including a means for identifying and removing at least some of the expired ones of the records from the linked list when the linked list is accessed. On information and belief, the source code for IDEAL also discloses the record search means including means for identifying and removing at least some expired ones of the records from the linked list of records when the linked list is accessed. Defendants reserve the right to supplement these contentions once a complete version of the source code for IDEAL is produced.
[1d] means, utilizing the record search means, for accessing the linked list and, at the same time, removing at least some of the expired ones of the records in the linked list.	[5d] mea[n]s, utilizing the record search means, for inserting, retrieving, and deleting records from the system and, at the same time, removing at least some expired ones of the records in the accessed linked list of records.	Morrison discloses means, utilizing the record search means, for accessing the linked list and, at the same time, removing at least some of the expired ones of the records in the linked list. Morrison also discloses utilizing the record search means, for inserting, retrieving, and deleting records from the system and, at the same time, removing at least some expired ones of the records in the accessed linked list of records. For example, Morrison discloses "a simple method for maintaining a dynamic dictionary: items are inserted and sought as usual in a separate-chaining hash table; however, items that no longer need to be in the data structure remain until a later insertion operation stumbles on them and removes them from the

Asserted Claims From U.S. Pat. No. 5,893,120	John A. Morrison et al., <i>A Queuing Analysis of Hashing with Lazy Deletion</i> , Society for Industrial and Applied Mathematics, Vol. 16, No. 6, 1155-1164 (December 1987) ("Morrison") alone and in combination
	Moreover, Morrison discloses "a sequence of items is given; each item includes a search key, a starting time, and an expiration time. The items arrive in the order of their starting times, and each item must be kept in a dynamic dictionary (available for searching) until the arrival of an item whose starting time is later than the item's expiration time." <i>Id.</i>
	"Hashing with lazy deletion means keeping the items hashed by search key in a table of linked lists (separate chains); each time an item is added to a list, any items on that list that the new item shows to be expired are deleted from that list. This deletion procedure is 'lazy' because there is no separate operation associated with clearing expired items out of the table: expired items are only deleted when they are encountered during an insertion operation" <i>Id</i> .
	Moreover, it is inherent to the Morrison disclosure that the hash table described herein is a separate-chaining hash table to resolve unavoidable key collisions, where each slot of the bucket array is a pointer to a linked list that contains the key-value pairs that hash to the same location. Other data structures, such as balanced trees, only offer logarithmic time complexity and can be complicated to implement and require several pointers per item. With a suitable number of buckets, the separate-chaining hash table solution offers constant expected search times and makes deletion easy.
	To the extent is it not inherent, it would be obvious to combine Morrison with the prior art disclosed in, <i>The Complexity of Hashing with Lazy Deletion</i> , Christopher J. Van Wyk and Jeffrey Scott Vitter, <i>The Complexity of Hashing</i> <i>with Lazy Deletion</i> , 1 Algorithmica 17, 18 (November, 1986) ("Van Wyk"), because Morrison describes and incorporates Van Wyk by reference. Morrison

8

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120		John A. Morrison et al., <i>A Queuing Analysis of Hashing with Lazy Deletion</i> , Society for Industrial and Applied Mathematics, Vol. 16, No. 6, 1155-1164 (December 1987) ("Morrison") alone and in combination
		at 1155. Van Wyk discloses a method of hashing with lazy deletion using a separate-chaining hash table as a more efficient solution to collisions than the available alternatives, such as balanced trees. <i>See</i> Exhibit C-1 which is herein incorporated by reference.
		To the extent Bedrock argues that Morrison does not anticipate this element, based on general knowledge and/or in combination with Knuth and/or Kruse, one of ordinary skill in the art would recognize that the Morrison applies to insertions, retrievals, and/or deletions of automatically expired records because these are all basic functions that can be performed in the same manner on a hash table or a liked list. See, e.g., "The Art of Computer Programming", Sorting and Searching, D.E. Knuth, Addison-Wesley Series in Computer Science and Information Processing, pp. 506-549; "Data Structures and Program Design", R.L. Kruse, Prentice-Hall, Inc. 1984, pp. 104-148."
		On information and belief, the techniques disclosed in Morrison were implemented and distributed in a Unix utility called IDEAL, prior to the filing date of the '120 Patent. On information and belief, the source code for IDEAL discloses means, utilizing the record search means, for accessing the linked list and, at the same time, removing at least some of the expired ones of the records in the linked list. On information and belief, the source code for IDEAL also discloses utilizing the record search means, for inserting, retrieving, and deleting records from the system and, at the same time, removing at least some expired ones of the records in the accessed linked list of records. Defendants reserve the right to supplement these contentions once a complete version of the source code for IDEAL is produced.
2. The information storage	6. The information storage	Morrison discloses the information storage and retrieval system further

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120		John A. Morrison et al., <i>A Queuing Analysis of Hashing with Lazy</i> <i>Deletion</i> , Society for Industrial and Applied Mathematics, Vol. 16, No. 6, 1155-1164 (December 1987) ("Morrison") alone and in combination
and retrieval systemandaccording to claim 1according to claim 1further including means forfurtherdynamically determiningdynmaximum number for themaximum record search means torecord search means torecordremove in the accessedremlinked list of records.link	d retrieval system cording to claim 5 rther including means for mamically determining aximum number for the cord search means to move in the accessed aked list of records.	 The Three Teor (become for the probability of the maximum number for the record search means to remove in the accessed linked list of records. Morrison teaches a method for calculating a probabilistic bound on the space complexity of the hashing with lazy deletion algorithm, i.e., the number of expired elements that would remain in the linked lists forming the external chains of the hash table. See, e.g., Morrison at 1156-1161. That bound calculation is a means for dynamically determining the maximum number to remove, since the maximum number of elements to remove should never exceed the number of expired elements that would remain in the linked lists. To the extent Morrison does not disclose this element, Morrison combined with Mathieu, Kenyon-Mathieu or Aldous discloses this element. Mathieu, Kenyon-Mathieu and Aldous also teach methods for calculating a probabilistic bound on the space complexity of the hashing with lazy deletion algorithm. See, e.g., Mathieu at 12-22, Kenyon-Mathieu at 475-486, Aldous 17-21. It would have been obvious to one of ordinary skill in the art that these methods of calculating bounds on the number of expired elements stored in the linked list could also be used to dynamically determine a maximum number for the record search means disclosed in Morrison to remove. One of ordinary skill would have been motivated to combine the teachings of Mathieu, Kenyon-Mathieu, and Aldous with Morrison because they all sought to analyze the complexity of the hashing with lazy deletion algorithm, and each of the papers refers to and builds upon the work of those papers preceding. See, e.g., Morrison at 1155, 1158, Mathieu at 1-4, Kenyon-Mathieu at 473-475, Aldous at 2-3.

Joint Invalidity Contentions & Production of Documents

Asserted Claims Fro U.S. Pat. No. 5,893,1	nJohn A. Morrison et al., A Queuing Analysis of Hashing with Lazy20Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6, 1155-1164 (December 1987) ("Morrison") alone and in combination
	Opportunistic Garbage Collection Articles discloses an information storage and retrieval system further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records.
	Dirks discloses the management of memory in a computer system and more particularly to the allocation of address space in a virtual memory system, which dynamically determines how many records to sweep/remove upon each allocation. Disclosure of these claim elements in Dirks is clearly shown in Exhibit B-2, which is hereby incorporated by reference in its entirety.
	For example, as summarized in Dirks,
	each time a VSID is assigned from the free list to a new application or thread, a fixed number of entries in the page table are scanned to determine whether they have become inactive, by checking them against the VSIDs on the recycle list. Each entry which is identified as being inactive is removed from the page table. After all of the entries in the page table have been examined in this manner, the VSIDs in the recycle list can be transferred to the free list, since all of their associated page table entries will have been removed. This approach thereby guarantees that a predetermined number of VSIDs are always available in the free list without requiring a time-consuming scan of the complete page table at once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.
	After [a] new VSID has been allocated, the system checks a flag RFLG to determine whether a recycle sweep is currently in progress (Step 20). If there is no sweep in progress, i.e. RFLG is not equal to one, a

Asserted Claims From	John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
U.S. Pat. No. 5,893,120	Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,
	1155-1164 (December 1987) ("Morrison") alone and in combination
	determination is made whether a sweep should be initiated. This is done
	by checking whether the inactive list is full, i.e. whether it contains x
	entries (Step 22). If the number of entries I on the inactive list is less than
	x, no further action is taken, and processing control returns to the
	operating system (Step 24). If, however, the inactive list is full at this
	time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
	transferred to the recycle list, and an index n is reset to 1 (Step 28). The
	system then sweeps a predetermined number of page table entries PT _i on
	the page table, to detect whether any of them are inactive, i.e. their
	associated VSID is on the recycle list (Step 30). The predetermined
	number of entries that are swept is identified as k , where:
	total number of page table entries
	$k = \frac{1}{1}$
	maximum number of active threads
	14. ut 0.12 50.
	Dirks discloses that any approach can be employed to determine the number of
	entries to be examined during each step of the sweeping process. <i>Id.</i> at 7:37-
	40. As stated in Dirks:
	Any other suitable approach can be employed to determine the number of
	entries to be examined during each step of the sweeping process. In this
	regard, it is not necessary that the number of examined entries be fixed for
	each step. Rather, it might vary from one step to the next. The only criterion
	is that the number of entries examined on each step be such that all entries in
	the page table are examined in a determinable amount of time or by the
	occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Asserted C	laims From	John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
U.S. Pat. N	0. 5,893,120	Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,
		1155-1164 (December 1987) ("Morrison") alone and in combination
		Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
		records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.
		As both Morrison and Dirks relate to deletion of aged records upon the
		allocation of a new incoming record, one of ordinary skill in the art would have
		understood how to use Dirks' dynamic decision making process of determining
		the maximum number of records to sweep/remove in other hash tables
		implementations such as Morrison. Moreover, one of ordinary skill in the art
		would recognize that it would improve similar systems and methods in the
		same way. As the 120 patent states "[a] person skilled in the art will
		appreciate that the technique of removing all expired records while searching
		the linked list can be expanded to include techniques whereby not necessarily
		many records to delete can be a dynamic one". The '120 patent at 7:10,15
		Additionally one of ordinary skill in the art would recognize that the result of
		combining Dirks' deletion decision procedure with Morrison nothing more
		than the predictable use of prior art elements according to their established
		functions.
		By way of further example, one of ordinary skill in the art would have
		combined Dirks' dynamic determination of the suitable number of entries to
		examine during each step of the sweeping process with Morrison and would
		have seen the benefits of doing so. One possible benefit, for example, is
		saving the system from performing sometimes time-consuming sweeps.`
		Alternatively, one of ordinary skill in the art would be motivated to, and would
		understand how to, combine the system disclosed in Morrison with the means
		for dynamically determining maximum number for the record search means to

Asserted Claims From U.S. Pat. No. 5,893,120	John A. Morrison et al., <i>A Queuing Analysis of Hashing with Lazy</i> <i>Deletion</i> , Society for Industrial and Applied Mathematics, Vol. 16, No. 6, 1155-1164 (December 1987) ("Morrison") alone and in combination
	remove in the accessed linked list of records disclosed by Thatte. For example, Thatte discloses a system and method using hash tables and/or linked lists and further discloses means for dynamically determining the maximum number for the record search means to remove in the accessed linked list of records. The disclosure of these claim elements in Thatte is clearly shown in the chart of Thatte, which is hereby incorporated by reference in its entirety.
	Moreover, one of ordinary skill in the art would recognize that these combinations would improve the similar systems and methods in the same way. Additionally, Ass both Morrison and Thatte teach a system of data storage and retrieval, one of ordinary skill in the art would recognize that the result of combining Morrison with Thatte would be nothing more than the predictable use of prior art elements according to their established functions. The resulting combination would include the capability to determine the maximum number for the record search means to remove as taught by Thatte.
	Further, one of ordinary skill in the art would be motivated to combine Morrison with Thatte and recognize the benefits of doing so. For example, the removal of expired records described in Morrison can be burdensome on the system, adding to the system's load and slowing down the system's processing. One of ordinary skill in the art would recognize that combining Morrison with the teachings of Thatte would solve this problem by dynamically determining how many records to delete based on, among other things, the system load. Moreover, the '120 patent discloses that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	John A. Morrison et al., <i>A Queuing Analysis of Hashing with Lazy</i> <i>Deletion</i> , Society for Industrial and Applied Mathematics, Vol. 16, No. 6, 1155-1164 (December 1987) ("Morrison") alone and in combination
	7:10-15. Thus, the '120 patent provides motivations to combine Morrison with Thatte.
	Alternatively, it would also be obvious to combine Morrison with the '663 patent. Disclosure of these claim elements in the '663 patent is clearly shown in the chart of the '663 patent, which is hereby incorporated by reference in its entirety. For example, as summarized in the '663 patent:
	during normal times when the load on the storage system is not excessive, a non-contaminating but slow deletion of records is used. This slow, non-contaminating deletion involves closing the collision-resolution chain of locations by moving a record from a later position in the chain into the position of the record to be deleted. This leaves no deleted record locations in the storage space to slow down future searches. U.S. Patent 4,996,663 to Nemes at 2:24-34 ("The '663 patent").
	In times of heavy use, when deletions must be done rapidly and no time is available for decontamination, the record is simply marked as "deleted" and left in place. Later non-contaminating probes in the vicinity of such deleted record locations automatically remove the contaminating deleted records by moving records in the chain as described above. <i>Id.</i> at 2:35-41.
	This hybrid hashing technique has the decided advantage of automatically eliminating contamination caused by the fast- secure deletion procedure when the slower, non-contaminating deletion is used when the load on the system is at lower levels.

15

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	John A. Morrison et al., <i>A Queuing Analysis of Hashing with Lazy</i> <i>Deletion</i> , Society for Industrial and Applied Mathematics, Vol. 16, No. 6, 1155-1164 (December 1987) ("Morrison") alone and in combination
	<i>Id.</i> at 2:42-46. This hybrid deletion is shown in Figure 5.
	This hybrid deletion is shown in Figure 5. FIG.5 HYBRID DELETION VES SYSTEM VES SYSTEM IDAD > THRESHOLD FAST-SECURE (FIG.7) FIG.7) FIG.52 SLOW-NON- CONTAMINATING DELETE (FIG.6) STOP 54
	<i>Id.</i> at Figure 5.

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	John A. Morrison et al., A Queuing Analysis of Hashing with Lazy Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6, 1155-11(4 (December 1097) ("Merricer") class and in combination
	to determine if the system load is greater than a threshold. If the system load is greater than the threshold, then a fast-secure delete 52 is used. <i>Id.</i> at 6:40-64, Figure 5. On the other hand, if the system load is less than the threshold, then a slow-non-contaminating delete 53 is used. <i>Id.</i> The fast-secure delete 52 does not actually delete records, rather it marks records as deleted. <i>Id.</i> at 8:1-33, Figure 7. These records are then actually deleted by a subsequent slow-non-contaminating delete 53. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B. Thus, the hybrid deletion procedure in the '663 patent dynamically determines a maximum number of records to remove. <i>See id.</i> at 6:40-64, Figure 5. If the
	fast-secure delete 52 is used, then maximum number of records is zero because records are not deleted they are only marked. <i>Id.</i> at 8:1-33, Figure 7. If the slow-non-contaminating delete 53 is used, then the maximum number of records to remove is all of the contaminated records in the bucket. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
	As both Morrison and the '663 patent relate to deletion of records from hash tables using external chaining, one of ordinary skill in the art would understood how to use the '663 patent's dynamic decision on whether to perform a deletion based on a systems load in other hash table implementations such as that described in Morrison. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of

Asserted Clain U.S. Pat. No. 5	ns From ,893,120	John A. Morrison et al., <i>A Queuing Analysis of Hashing with Lazy</i> <i>Deletion</i> , Society for Industrial and Applied Mathematics, Vol. 16, No. 6, 1155-1164 (December 1987) ("Morrison") alone and in combination
		combining the '663 patent's deletion decision procedure with Morrison would be nothing more than the predictable use of prior art elements according to their established functions.
		By way of further example, one of ordinary skill in the art would have combined the '663 patent's dynamic decision on whether to perform a deletion based on a systems load as taught by the '663 patent and with Morrison and would have seen the benefits of doing so. One such benefit, for example, is that the system would avoid performing deletions when the system load exceeded a threshold.
		Alternatively, it would also be obvious to combine Morrison with the Opportunistic Garbage Collection Articles.
		The Opportunistic Garbage Collection Articles disclose a generational based garbage collection which dynamically determines how much garbage to collect. <i>See generally</i> , Paul R. Wilson and Thomas G. Moher, <i>Design of the Opportunistic Garbage Collector</i> , OOPSLA '89 Proceedings, October 1-6, 1989; Paul R. Wilson, <i>Opportunistic Garbage Collection</i> , ACM SIGPLAN Notices, Vol. 23, No. 12, December 1988.
		For example, the Opportunistic Garbage Collection Articles disclose in part:
		When a significant pause has been detected, a decision procedure is invoked to decide whether to garbage collect, and how many generations to scavenge. The fuller a generation is, the more likely it is to be scavenged; also, the longer the pause that has been detected, the larger the scope of the garbage collection is likely to be. <i>Design of the Opportunistic Garbage</i>

Asserted C U.S. Pat. N	laims From o. 5,893,120	John A. Morrison et al., <i>A Queuing Analysis of Hashing with Lazy</i> <i>Deletion</i> , Society for Industrial and Applied Mathematics, Vol. 16, No. 6, 1155-1164 (December 1987) ("Morrison") alone and in combination
		<i>Collector</i> at 32. Every time a user-input routine is invoked, a decision routine can decide whether to garbage collect. As long as the decision routine takes no more than a few milliseconds to execute, it should not interfere with
		responsiveness. Since it is only invoked at these times, it does not incur a continual run-time overhead. <i>Opportunistic Garbage Collection</i> at 100.
		of data allocated since the last scavenge, 2) how long it has been since the user has had an opportunity to interact, and 3) the height of the stack relative to its average height at reads since the last scavenge. If the product of the allocation and the compute time is high, and if the stack is low, the scavenge favorability measure is high. If it is especially high, a multi-generation scavenge is in order. <i>Id</i> .
		If these heuristics fail and a scavenge is forced instead by the filling of a generation's space, it is likely to happen during a significant compute- bound pausethe one that has just allocated the data that forced the collection. When the opportunistic mechanism fails to find the end of a pause, it may still succeed by default, embedding a scavenge pause within a larger pause. <i>Design of the Opportunistic Garbage Collector</i> at 32.
		As both Morrison and the Opportunistic Garbage Collection Articles relate to deletion of aged records, one of ordinary skill in the art would have understood how to use the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion based on a system load in other hash table implementations such as Morrison. Moreover, one of ordinary skill in the art

Asserted Claims From U.S. Pat. No. 5.893.120	John A. Morrison et al., <i>A Queuing Analysis of Hashing with Lazy</i> Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,
0.5.1 40.100.0,000,140	1155-1164 (December 1987) ("Morrison") alone and in combination
	 would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the Opportunistic Garbage Collection Articles' deletion decision procedure with Morrison would be nothing more than the predictable use of prior art elements according to their established functions. By way of further example, one of ordinary skill in the art would have combined the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion and how many generations to scavenge as taught by the Opportunistic Garbage Collection Articles and with Morrison and would have seen the benefits of doing so. One such benefit, for example, is preventing slowdown of the system.
	Additionally, it would have been obvious to one of ordinary skill in the art to modify the system disclosed in Morrison to dynamically determine the maximum number of expired records to remove in the accessed linked list of records. It is a fundamental concept in computer science and the relevant art that any variable or parameter affecting any aspect of a system can be dynamically determined based on information available to the system. One of ordinary skill in the art would have been motivated to combine the system disclosed in Morrison with the fundamental concept of dynamically determining the maximum number of expired records to remove in an accessed linked list of records to solve a number of potential problems. For example,

Joint Invalidity Contentions & Production of Documents

Asserted Claims From	John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
U.S. Pat. No. 5,893,120	Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,
	1155-1164 (December 1987) ("Morrison") alone and in combination
	the removal of expired records described in Morrison can be burdensome on
	the system, adding to the system's load and slowing down the system's
	processing. Moreover, the removal could also force an interruption in real-
	time processing as the processing waits for the removal to complete.
	One of ordinary skill in the art would have known that dynamically
	determining the maximum number to remove would limit the burden on the
	system and bound the length of any real-time interruption to prevent delays in
	processing. Indeed, Nemes concedes that such dynamic determination was
	obvious when he states in the '120 patent that "[a] person skilled in the art will
	appreciate that the technique of removing all expired records while searching
	the linked list can be expanded to include techniques whereby not necessarily
	all expired records are removed, and that the decision regarding if and how
	many records to delete can be a dynamic one." 120 at 7:10-15.
	To the extent that dynamically determining a maximum number of expired
	records is not disclosed by Morrison in combination with Dirks, Thatte, the
	'663 Patent, or the Opportunistic Garbage Collection References, it is
	disclosed by Linux 2.0.1, which describes dynamically determining maximum
	number of expired ones of the records to remove when the linked list is
	accessed. It would have been obvious to combine Linux 2.0.1 with Morrison.
	For example, both Linux 2.0.1 and Morrison describe systems and methods for
	performing data storage and retrieval using known programming techniques to
	yield a predictable result.
	When invoked, the function rt_cache_add automatically increments an
	integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
	When the function rt_cache_add removes an expired record, the function

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	John A. Morrison et al., <i>A Queuing Analysis of Hashing with Lazy</i> <i>Deletion</i> , Society for Industrial and Applied Mathematics, Vol. 16, No. 6, 1155-1164 (December 1987) ("Morrison") alone and in combination
	rt_cache_add decrements the variable rt_cache_size. See Linux 2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the number of records in the hash table (i.e., ip_rt_hash_table). Because the function rt_cache_add automatically increments and decrements the variable rt_cache_size, the variable rt_cache_size is determined dynamically.
	Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1. The function rt_garbage_collect_1 loops through each of the linked lists in the ip_rt_hash_table global variable. <i>See</i> Linux 2.0.1, route.c at lines 1122-1138. In this way, the function rt_garbage_collect_1 accesses the linked list. When the function rt_garbage_collect_1 identifies a record that is expired, the function rt_garbage_collect_1 decrements the variable rt_cache_size and frees the record. <i>See</i> Linux 2.0.1, route.c at lines 1128-1135.
	Because all records in the linked list can be expired and all records in the hash table can be in the linked list, the variable rt_cache_size can represent a dynamically determined maximum number of expired ones of the records to remove when function rt_garbage_collect_1 accesses the linked list.
	Furthermore, the function rt_cache_add determines whether the number of records in the hash table exceeds a predetermined threshold RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_cache_add invokes a function rt_garbage_collect. <i>See</i> Linux

22

Asserted Claims From U.S. Pat. No. 5,893,120	John A. Morrison et al., <i>A Queuing Analysis of Hashing with Lazy Deletion</i> , Society for Industrial and Applied Mathematics, Vol. 16, No. 6, 1155-1164 (December 1987) ("Morrison") alone and in combination
	2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293. The function rt_garbage_collect invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293. The function rt_garbage_collect_1 loops through each linked list in the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked list in the hash table, the function rt_garbage_collect_1 looks at each record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each record in a linked list, the function rt_garbage_collect_1 determines whether the record's last use time plus the record's expiration factor is later than the current time. See Linux 2.0.1, route.c at line 1122. If the record's last use time plus the record's expiration factor is less than the current time, the function rt_garbage_collect_1 removes the record from the linked list.
	See Linux 2.0.1, route.c at lines 1124-1130. The record's expiration factor is based on a variable expire and the record's reference count. See Linux 2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110. After looping through all of the linked lists in this manner, the function rt_garbage_collect_1 determines again whether the number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number of items in the hash table is still greater than the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves the variable expire and loops through each of the linked lists in the hash table. See Linux 2.0.1, route.c at line 1135. In this way, the function

Asserted Claims From U.S. Pat. No. 5,893,120	John A. Morrison et al., <i>A Queuing Analysis of Hashing with Lazy</i> <i>Deletion</i> , Society for Industrial and Applied Mathematics, Vol. 16, No. 6, 1155-1164 (December 1987) ("Morrison") alone and in combination
	rt_garbage_collect_1 can remove additional records from the linked lists in the hash table. The function rt_garbage_collect_1 repeats this process until the total number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX.
	Under Bedrock's proposed claim constructions, the records removed by the function rt_garbage_collect_1 are "expired" records. That is, the records removed by the function rt_garbage_collect_1 are data items which after a limited time or after the occurrence of some event become obsolete, such that their presence in the storage system is no longer needed or desired.
	The function rt_cache_add only removes a record from a linked list when the record's last use time plus the fixed timeout value RT_CACHE_TIMEOUT is less than the current time and the record's reference count is zero. <i>See</i> Linux 2.0.1, route.c at line 1369. Thus, the maximum number of records that the function rt_cache_add can remove from a given linked list is limited to those records whose reference counts are zero.
	In contrast, the maximum number of records that the function rt_garbage_collect_1 can remove from a given linked list is not limited to those records whose reference counts are zero. <i>See</i> Linux 2.0.1, route.c at line 1122. Rather, the function rt_garbage_collect_1 can remove records whose reference counts are zero and records whose reference counts are greater than zero.
	Consequently, the maximum number of records that the function rt_garbage_collect_1 can remove from a linked list is different than

Asserted C U.S. Pat. N	laims From o. 5,893,120	John A. Morrison et al., <i>A Queuing Analysis of Hashing with Lazy Deletion</i> , Society for Industrial and Applied Mathematics, Vol. 16, No. 6, 1155-1164 (December 1987) ("Morrison") alone and in combination
		the maximum number of records that the function rt_cache_add can remove from a linked list. On information and belief, the techniques disclosed in Morrison were implemented and distributed in a Unix utility called IDEAL, prior to the filing date of the '120 Patent. On information and belief, a person of ordinary skill in the art would have been motivated to combine IDEAL with the techniques taught by Linux 2.0.1, Dirks, Thatte, the '663 patent, the Opportunistic
		Garbage Collection Articles, Kenyon-Mathleu, and/or Aldous to disclose means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records. Defendants reserve the right to supplement these contentions once a complete version of the source code for IDEAL is produced.
3. A method for storing and retrieving information records using a linked list to store and provide access to the records, at least some of the records automatically expiring, the method comprising the	7. A method for storing and retrieving information records using a hashing technique to provide access to the records and using an external chaining technique to store the records with same hash address, at least	To the extent the preamble is a limitation, Morrison discloses a method for storing and retrieving information records using a linked list to store and provide access to the records, at least some of the records automatically expiring. Morrison also discloses a method for storing and retrieving information records using a hashing technique to provide access to the records and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring.
steps of:	some of the records automatically expiring, the method comprising the steps of:	For example, Morrison discloses "a simple method for maintaining a dynamic dictionary: items are inserted and sought as usual in a separate-chaining hash table; however, items that no longer need to be in the data structure remain until a later insertion operation stumbles on them and removes them from the table." Morrison at 1155.
Asserted Claims From U.S. Pat. No. 5,893,120		John A. Morrison et al., <i>A Queuing Analysis of Hashing with Lazy Deletion</i> , Society for Industrial and Applied Mathematics, Vol. 16, No. 6, 1155-1164 (December 1987) ("Morrison") alone and in combination
---	---	---
		On information and belief, the techniques disclosed in Morrison were implemented and distributed in a Unix utility called IDEAL, prior to the filing date of the '120 Patent. On information and belief, the source code for IDEAL discloses a method for storing and retrieving information records using a linked list to store and provide access to the records, at least some of the records automatically expiring. On information and belief, the source code for IDEAL also discloses a method for storing and retrieving information records using a hashing technique to provide access to the records and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring. Defendants reserve the right to supplement these contentions once a complete version of the source code for IDEAL is produced.
[3a] accessing the linked list of records,	[7a] accessing a linked list of records having same hash address,	 Morrison discloses accessing a linked list of records. Morrison also discloses accessing a linked list of records having same hash address. For example, Morrison discloses "a simple method for maintaining a dynamic dictionary: items are inserted and sought as usual in a separate-chaining hash table; however, items that no longer need to be in the data structure remain until a later insertion operation stumbles on them and removes them from the table." <i>Id.</i> Moreover, Morrison discloses "a sequence of items is given; each item includes a search key, a starting time, and an expiration time. The items arrive in the order of their starting times, and each item must be kept in a dynamic dictionary (available for searching) until the arrival of an item whose starting

Joint Invalidity Contentions & Production of Documents

Asserted C	laims From	John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
U.S. Pat. N	0. 5,893,120	Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,
		1155-1164 (December 1987) ("Morrison") alone and in combination
		time is later than the item's expiration time." Id.
		"Hashing with lazy deletion means keeping the items hashed by search key in a
		table of linked lists (separate chains); each time an item is added to a list, any
		items on that list that the new item shows to be expired are deleted from that
		list. This deletion procedure is 'lazy' because there is no separate operation
		associated with clearing expired items out of the table: expired items are only
		deleted when they are encountered during an insertion operation <i>Ia</i> .
		herein is a separate chaining bash table to resolve unavoidable key collisions
		where each slot of the bucket array is a pointer to a linked list that contains the
		key-value pairs that hash to the same location. Other data structures, such as
		balanced trees, only offer logarithmic time complexity and can be complicated
		to implement and require several pointers per item. With a suitable number of
		buckets, the separate-chaining hash table solution offers constant expected
		search times and makes deletion easy.
		To the extent is it not inherent, it would be obvious to combine Morrison with
		the prior art disclosed in, The Complexity of Hashing with Lazy Deletion,
		Christopher J. Van Wyk and Jeffrey Scott Vitter, <i>The Complexity of Hashing</i>
		with Lazy Deletion, 1 Algorithmica 17, 18 (November, 1986) ("Van Wyk"),
		because Morrison describes and incorporates van wyk by reference. Morrison
		at 1155. Vali wyk discloses a method of hashing with fazy deletion using a separate chaining bash table as a more efficient solution to collisions than the
		available alternatives, such as balanced trees. See Exhibit C-1 which is herein
		incorporated by reference.
		On information and belief, the techniques disclosed in Morrison were

Asserted Claims From U.S. Pat. No. 5,893,120		John A. Morrison et al., <i>A Queuing Analysis of Hashing with Lazy</i> <i>Deletion</i> , Society for Industrial and Applied Mathematics, Vol. 16, No. 6, 1155-1164 (December 1987) ("Morrison") alone and in combination
		implemented and distributed in a Unix utility called IDEAL, prior to the filing date of the '120 Patent. On information and belief, the source code for IDEAL discloses accessing a linked list of records. On information and belief, the source code for IDEAL also discloses accessing a linked list of records having same hash address. Defendants reserve the right to supplement these contentions once a complete version of the source code for IDEAL is produced.
[3b] identifying at least some of the automatically expired ones of the records, and	[7b] identifying at least some of the automatically expired ones of the records,	 Morrison discloses identifying at least some of the automatically expired ones of the records. For example, Morrison discloses "a simple method for maintaining a dynamic dictionary: items are inserted and sought as usual in a separate-chaining hash table; however, items that no longer need to be in the data structure remain until a later insertion operation stumbles on them and removes them from the table." <i>Id.</i> Moreover, Morrison discloses "a sequence of items is given; each item includes a search key, a starting time, and an expiration time. The items arrive in the order of their starting times, and each item must be kept in a dynamic dictionary (available for searching) until the arrival of an item whose starting time is later than the item's expiration time." <i>Id.</i>
		"Hashing with lazy deletion means keeping the items hashed by search key in a table of linked lists (separate chains); each time an item is added to a list, any items on that list that the new item shows to be expired are deleted from that list. This deletion procedure is 'lazy' because there is no separate operation

Asserted Claims U.S. Pat. No. 5,8	From 93,120	John A. Morrison et al., <i>A Queuing Analysis of Hashing with Lazy</i> <i>Deletion</i> , Society for Industrial and Applied Mathematics, Vol. 16, No. 6, 1155-1164 (December 1987) ("Morrison") alone and in combination
		associated with clearing expired items out of the table: expired items are only deleted when they are encountered during an insertion operation" <i>Id</i>
		Moreover, it is inherent to the Morrison disclosure that the hash table described herein is a separate-chaining hash table to resolve unavoidable key collisions, where each slot of the bucket array is a pointer to a linked list that contains the key-value pairs that hash to the same location. Other data structures, such as balanced trees, only offer logarithmic time complexity and can be complicated to implement and require several pointers per item. With a suitable number of buckets, the separate-chaining hash table solution offers constant expected search times and makes deletion easy.
		To the extent is it not inherent, it would be obvious to combine Morrison with the prior art disclosed in, <i>The Complexity of Hashing with Lazy Deletion</i> , Christopher J. Van Wyk and Jeffrey Scott Vitter, <i>The Complexity of Hashing with Lazy Deletion</i> , 1 Algorithmica 17, 18 (November, 1986) ("Van Wyk"), because Morrison describes and incorporates Van Wyk by reference. Morrison at 1155. Van Wyk discloses a method of hashing with lazy deletion using a separate-chaining hash table as a more efficient solution to collisions than the available alternatives, such as balanced trees. <i>See</i> Exhibit C-1 which is herein incorporated by reference.
		On information and belief, the techniques disclosed in Morrison were implemented and distributed in a Unix utility called IDEAL, prior to the filing date of the '120 Patent. On information and belief, the source code for IDEAL discloses identifying at least some of the automatically expired ones of the records. Defendants reserve the right to supplement these contentions once a complete version of the source code for IDEAL is produced.

Asserted Claims From U.S. Pat. No. 5,893,120		John A. Morrison et al., <i>A Queuing Analysis of Hashing with Lazy</i> <i>Deletion</i> , Society for Industrial and Applied Mathematics, Vol. 16, No. 6, 1155-1164 (December 1987) ("Morrison") alone and in combination
[3c] removing at least some of the automatically expired records from the	[7c] removing at least some of the automatically expired records from the	Morrison discloses removing at least some of the automatically expired records from the linked list when the linked list is accessed.
linked list when the linked list is accessed.	linked list when the linked list is accessed, and	For example, Morrison discloses "a simple method for maintaining a dynamic dictionary: items are inserted and sought as usual in a separate-chaining hash table; however, items that no longer need to be in the data structure remain until a later insertion operation stumbles on them and removes them from the table." <i>Id.</i>
		Moreover, Morrison discloses "a sequence of items is given; each item includes a search key, a starting time, and an expiration time. The items arrive in the order of their starting times, and each item must be kept in a dynamic dictionary (available for searching) until the arrival of an item whose starting time is later than the item's expiration time." <i>Id.</i>
		"Hashing with lazy deletion means keeping the items hashed by search key in a table of linked lists (separate chains); each time an item is added to a list, any items on that list that the new item shows to be expired are deleted from that list. This deletion procedure is 'lazy' because there is no separate operation associated with clearing expired items out of the table: expired items are only deleted when they are encountered during an insertion operation" <i>Id</i> .
		Moreover, it is inherent to the Morrison disclosure that the hash table described herein is a separate-chaining hash table to resolve unavoidable key collisions, where each slot of the bucket array is a pointer to a linked list that contains the key-value pairs that hash to the same location. Other data structures, such as balanced trees, only offer logarithmic time complexity and can be complicated

Asserted Claims From U.S. Pat. No. 5,893,120	John A. Morrison et al., <i>A Queuing Analysis of Hashing with Lazy</i> <i>Deletion</i> , Society for Industrial and Applied Mathematics, Vol. 16, No. 6, 1155-1164 (December 1987) ("Morrison") alone and in combination
	to implement and require several pointers per item. With a suitable number of buckets, the separate-chaining hash table solution offers constant expected search times and makes deletion easy.
	To the extent is it not inherent, it would be obvious to combine Morrison with the prior art disclosed in, <i>The Complexity of Hashing with Lazy Deletion</i> , Christopher J. Van Wyk and Jeffrey Scott Vitter, <i>The Complexity of Hashing with Lazy Deletion</i> , 1 Algorithmica 17, 18 (November, 1986) ("Van Wyk"), because Morrison describes and incorporates Van Wyk by reference. Morrison at 1155. Van Wyk discloses a method of hashing with lazy deletion using a separate-chaining hash table as a more efficient solution to collisions than the available alternatives, such as balanced trees. <i>See</i> Exhibit C-1 which is herein incorporated by reference.
	On information and belief, the techniques disclosed in Morrison were implemented and distributed in a Unix utility called IDEAL, prior to the filing date of the '120 Patent. On information and belief, the source code for IDEAL discloses removing at least some of the automatically expired records from the linked list when the linked list is accessed. Defendants reserve the right to supplement these contentions once a complete version of the source code for IDEAL is produced.
[7d] inserting, retrieving or deleting one of the records from the system following the step of removing.	Morrison discloses inserting, retrieving or deleting one of the records from the system following the step of removing.For example, Morrison discloses "a simple method for maintaining a dynamic dictionary: items are inserted and sought as usual in a separate-chaining hash

Asserted Claims From U.S. Pat. No. 5,893,120	John A. Morrison et al., <i>A Queuing Analysis of Hashing with Lazy</i> <i>Deletion</i> , Society for Industrial and Applied Mathematics, Vol. 16, No. 6, 1155-1164 (December 1987) ("Morrison") alone and in combination
	table; however, items that no longer need to be in the data structure remain until a later insertion operation stumbles on them and removes them from the table." <i>Id</i> .
	Moreover, Morrison discloses "a sequence of items is given; each item includes a search key, a starting time, and an expiration time. The items arrive in the order of their starting times, and each item must be kept in a dynamic dictionary (available for searching) until the arrival of an item whose starting time is later than the item's expiration time." <i>Id.</i>
	"Hashing with lazy deletion means keeping the items hashed by search key in a table of linked lists (separate chains); each time an item is added to a list, any items on that list that the new item shows to be expired are deleted from that list. This deletion procedure is 'lazy' because there is no separate operation associated with clearing expired items out of the table: expired items are only deleted when they are encountered during an insertion operation" <i>Id.</i>
	Moreover, it is inherent to the Morrison disclosure that the hash table described herein is a separate-chaining hash table to resolve unavoidable key collisions, where each slot of the bucket array is a pointer to a linked list that contains the key-value pairs that hash to the same location. Other data structures, such as balanced trees, only offer logarithmic time complexity and can be complicated to implement and require several pointers per item. With a suitable number of buckets, the separate-chaining hash table solution offers constant expected search times and makes deletion easy.
	To the extent is it not inherent, it would be obvious to combine Morrison with the prior art disclosed in, <i>The Complexity of Hashing with Lazy Deletion</i> ,

Asserted Claims From	John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
U.S. Pat. No. 5,893,120	<i>Deletion</i> , Society for Industrial and Applied Mathematics, Vol. 16, No. 6, 1155-1164 (December 1987) ("Morrison") alone and in combination
	 1155-1164 (December 1987) ("Morrison") alone and in combination Christopher J. Van Wyk and Jeffrey Scott Vitter, <i>The Complexity of Hashing with Lazy Deletion</i>, 1 Algorithmica 17, 18 (November, 1986) ("Van Wyk"), because Morrison describes and incorporates Van Wyk by reference. Morrison at 1155. Van Wyk discloses a method of hashing with lazy deletion using a separate-chaining hash table as a more efficient solution to collisions than the available alternatives, such as balanced trees. <i>See</i> Exhibit C-1 which is herein incorporated by reference. Moreover, Van Wyk and Vitter explain that "[t]he insertion of element x_i proceeds as follows: 1) Compute <i>h</i> = n(k_i) 2) Remove from the hash chain in bucket <i>h</i> any items x_j with t_j < s_j [i.e. remove all expired elements] 3) Add x_i so the chain in bucket <i>h</i> remains sorted by termination time." Van Wyk at 19. This method clearly contemplates the insertion occurring after the removal of expired elements. On information and belief, the techniques disclosed in Morrison were implemented and distributed in a Unix utility called IDEAL, prior to the filing date of the '120 Patent. On information and belief, the source code for IDEAL discloses inserting, retrieving or deleting one of the records from the system following the step of removing. Defendants reserve the right to supplement these contentions once a complete version of the source code for IDEAL is
	produced.

Asserted Claims From		John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
U.S. Pat. No. 5,893,120		Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,
		1155-1164 (December 1987) ("Morrison") alone and in combination
4. The method according to	8. The method according	Morrison discloses dynamically determining maximum number of expired
claim 3 further including	to claim 7 further including	ones of the records to remove when the linked list is accessed. Morrison
the step of dynamically	the step of dynamically	teaches a method for calculating a probabilistic bound on the space complexity
determining maximum	determining maximum	of the hashing with lazy deletion algorithm, i.e., the number of expired
number of expired ones of	number of expired ones of	elements that would remain in the linked lists forming the external chains of
the records to remove	the records to remove	the hash table. See, e.g., Morrison at 1156-1161. That bound calculation is a
when the linked list is	when the linked list is	means for dynamically determining the maximum number to remove, since the
accessed.	accessed.	maximum number of elements to remove should never exceed the number of
		expired elements that would remain in the linked lists.
		To the extent Morrison does not disclose this element, Morrison combined
		with Mathieu, Kenyon-Mathieu or Aldous discloses this element. Mathieu,
		Kenyon-Mathieu, and Aldous also teach methods for calculating a probabilistic
		bound on the space complexity of the hashing with lazy deletion algorithm.
		See, e.g., Mathieu at 12-22, Kenyon-Mathieu at 475-486, Aldous 17-21.
		It would have been obvious to one of ordinary skill in the art that these
		methods of calculating bounds on the number of expired elements stored in the
		linked list could also be used to dynamically determine a maximum number for
		the record search means disclosed in Morrison to remove. One of ordinary
		skill would have been motivated to combine the teachings of Mathieu,
		Kenyon-Mathieu, and Aldous with Morrison because they all sought to
		analyze the complexity of the hashing with lazy deletion algorithm, and each
		of the papers refers to and builds upon the work of those papers preceding.
		See, e.g., Morrison at 1155, 1158, Mathieu at 1-4, Kenyon-Mathieu at 473-
		4/5, Aldous at 2-3.
		Morrison combined with Dirks. Thatta the '662 nations and/or the
		1 Morrison combined with Dirks, matter, the oos patent and/or the

Joint Invalidity Contentions & Production of Documents

Asserted C U.S. Pat. N	laims From o. 5,893,120	John A. Morrison et al., <i>A Queuing Analysis of Hashing with Lazy</i> <i>Deletion</i> , Society for Industrial and Applied Mathematics, Vol. 16, No. 6, 1155-1164 (December 1987) ("Morrison") alone and in combination
		Opportunistic Garbage Collection Articles discloses dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed.
		Dirks discloses the management of memory in a computer system and more particularly to the allocation of address space in a virtual memory system, which dynamically determines how many records to sweep/remove upon each allocation. Disclosure of these claim elements in Dirks is clearly shown in Exhibit B-2, which is hereby incorporated by reference in its entirety.
		For example, as summarized in Dirks,
		each time a VSID is assigned from the free list to a new application or thread, a fixed number of entries in the page table are scanned to determine whether they have become inactive, by checking them against the VSIDs on the recycle list. Each entry which is identified as being inactive is removed from the page table. After all of the entries in the page table have been examined in this manner, the VSIDs in the recycle list can be transferred to the free list, since all of their associated page table entries will have been removed. This approach thereby guarantees that a predetermined number of VSIDs are always available in the free list without requiring a time-consuming scan of the complete page table at once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.
		After [a] new VSID has been allocated, the system checks a flag RFLG to determine whether a recycle sweep is currently in progress (Step 20). If there is no sweep in progress, i.e. RFLG is not equal to one, a determination is made whether a sweep should be initiated. This is done

35

Joint Invalidity Contentions & Production of Documents

Asserted Claims From	John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
U.S. Pat. No. 5,893,120	Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,
	1155-1164 (December 1987) ("Morrison") alone and in combination
	by checking whether the inactive list is full, i.e. whether it contains x
	entries (Step 22). If the number of entries I on the inactive list is less than
	x, no further action is taken, and processing control returns to the
	operating system (Step 24). If, however, the inactive list is full at this
	time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
	transferred to the recycle list, and an index n is reset to 1 (Step 28). The
	system then sweeps a predetermined number of page table entries PT _i on
	the page table, to detect whether any of them are inactive, i.e. their
	associated VSID is on the recycle list (Step 30). The predetermined
	number of entries that are swept is identified as k, where:
	total number of page table entries
	k = 1000000000000000000000000000000000000
	maximum number of active threads
	<i>14.</i> at 0.12-50.
	Dirks discloses that any approach can be employed to determine the number of
	entries to be examined during each step of the sweeping process. <i>Id.</i> at 7:37-
	40. As stated in Dirks:
	Any other suitable approach can be employed to determine the number of
	entries to be examined during each step of the sweeping process. In this
	regard, it is not necessary that the number of examined entries be fixed for
	each step. Rather, it might vary from one step to the next. The only criterion
	is that the number of entries examined on each step be such that all entries in
	the page table are examined in a determinable amount of time or by the
	occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.
	<i>Id.</i> at 7:38-46. Thus, Dirks dynamically determines the maximum number of

Joint Invalidity Contentions & Production of Documents

Asserted Claims From	John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
U.S. Pat. No. 5,893,120	Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,
	1155-1164 (December 1987) ("Morrison") alone and in combination
	records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.
	As both Morrison and Dirks relate to deletion of aged records upon the allocation of a new incoming record, one of ordinary skill in the art would have understood how to use Dirks' dynamic decision making process of determining the maximum number of records to sweep/remove in other hash tables implementations such as Morrison. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining Dirks' deletion decision procedure with Morrison nothing more than the predictable use of prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have combined Dirks' dynamic determination of the suitable number of entries to examine during each step of the sweeping process with Morrison and would have seen the benefits of doing so. One possible benefit, for example, is saving the system from performing sometimes time-consuming sweeps.` Alternatively, one of ordinary skill in the art would be motivated to, and would understand how to, combine the system disclosed in Morrison with the means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records disclosed by Thatte. For example

Asserted C U.S. Pat. No	aims From 5. 5,893,120	John A. Morrison et al., <i>A Queuing Analysis of Hashing with Lazy Deletion</i> , Society for Industrial and Applied Mathematics, Vol. 16, No. 6, 1155-1164 (December 1987) ("Morrison") alone and in combination
		Thatte discloses a system and method using hash tables and/or linked lists and further discloses means for dynamically determining the maximum number for the record search means to remove in the accessed linked list of records. The disclosure of these claim elements in Thatte is clearly shown in the chart of Thatte, which is hereby incorporated by reference in its entirety.
		Moreover, one of ordinary skill in the art would recognize that these combinations would improve the similar systems and methods in the same way. Additionally, Ass both Morrison and Thatte teach a system of data storage and retrieval, one of ordinary skill in the art would recognize that the result of combining Morrison with Thatte would be nothing more than the predictable use of prior art elements according to their established functions. The resulting combination would include the capability to determine the maximum number for the record search means to remove as taught by Thatte.
		Further, one of ordinary skill in the art would be motivated to combine Morrison with Thatte and recognize the benefits of doing so. For example, the removal of expired records described in Morrison can be burdensome on the system, adding to the system's load and slowing down the system's processing. One of ordinary skill in the art would recognize that combining Morrison with the teachings of Thatte would solve this problem by dynamically determining how many records to delete based on, among other things, the system load. Moreover, the '120 patent discloses that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine Morrison with

38

Asserted C U.S. Pat. N	laims From o. 5,893,120	John A. Morrison et al., <i>A Queuing Analysis of Hashing with Lazy Deletion</i> , Society for Industrial and Applied Mathematics, Vol. 16, No. 6, 1155-1164 (December 1987) ("Morrison") alone and in combination
		Thatte.
		Alternatively, it would also be obvious to combine Morrison with the '663 patent. Disclosure of these claim elements in the '663 patent is clearly shown in the chart of the '663 patent, which is hereby incorporated by reference in its entirety. For example, as summarized in the '663 patent:
		during normal times when the load on the storage system is not excessive, a non-contaminating but slow deletion of records is used. This slow, non-contaminating deletion involves closing the collision-resolution chain of locations by moving a record from a later position in the chain into the position of the record to be deleted. This leaves no deleted record locations in the storage space to slow down future searches. U.S. Patent 4,996,663 to Nemes at 2:24-34 ("The '663 patent").
		In times of heavy use, when deletions must be done rapidly and no time is available for decontamination, the record is simply marked as "deleted" and left in place. Later non-contaminating probes in the vicinity of such deleted record locations automatically remove the contaminating deleted records by moving records in the chain as described above. <i>Id.</i> at 2:35-41.
		This hybrid hashing technique has the decided advantage of automatically eliminating contamination caused by the fast- secure deletion procedure when the slower, non-contaminating deletion is used when the load on the system is at lower levels.

39

Asserted Claims From U.S. Pat. No. 5,893,120	John A. Morrison et al., <i>A Queuing Analysis of Hashing with Lazy</i> <i>Deletion</i> , Society for Industrial and Applied Mathematics, Vol. 16, No. 6, 1155-1164 (December 1987) ("Morrison") alone and in combination
	<i>Id.</i> at 2:42-46. This hybrid deletion is shown in Figure 5.
	FIG.5 HYBRID DELETION VES START VES VSTEM IND VES VSTEM IND SLOM-NON- CONTAMINATING DELETE (FIG.7) SLOM-NON- CONTAMINATING FAST-SECURE (FIG.5)
	<i>Id.</i> at Figure 5. During the hybrid deletion procedure decision block 51 checks the system load

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	John A. Morrison et al., <i>A Queuing Analysis of Hashing with Lazy</i> Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6, 1155-11(4 (December 1987) ("Merricer")) along and in combination
	 IISS-II64 (December 1987) ("Morrison") alone and in combination to determine if the system load is greater than a threshold. If the system load is greater than the threshold, then a fast-secure delete 52 is used. <i>Id.</i> at 6:40-64, Figure 5. On the other hand, if the system load is less than the threshold, then a slow-non-contaminating delete 53 is used. <i>Id.</i> The fast-secure delete 52 does not actually delete records, rather it marks records as deleted. <i>Id.</i> at 8:1-33, Figure 7. These records are then actually deleted by a subsequent slow-non-contaminating delete 53. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B. Thus, the hybrid deletion procedure in the '663 patent dynamically determines a maximum number of records to remove. <i>See id.</i> at 6:40-64, Figure 5. If the fast-secure delete 52 is used, then maximum number of records is zero because records are not deleted they are only marked. <i>Id.</i> at 8:1-33, Figure 7. If the slow-non-contaminating delete 53 is used, then the maximum number of records is zero because records are not deleted they are only marked. <i>Id.</i> at 8:1-33, Figure 7. If the slow-non-contaminating delete 53 is used, then the maximum number of records is zero because records are not deleted they are only marked. <i>Id.</i> at 8:1-33, Figure 7. If the slow-non-contaminating delete 53 is used, then the maximum number of
	records to remove is all of the contaminated records in the bucket. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B. As both Morrison and the '663 patent relate to deletion of records from hash tables using external chaining, one of ordinary skill in the art would understood how to use the '663 patent's dynamic decision on whether to perform a deletion based on a systems load in other hash table implementations such as that described in Morrison. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of

Joint Invalidity Contentions & Production of Documents

Asserted Clair U.S. Pat. No. 5	ms From 5,893,120	John A. Morrison et al., <i>A Queuing Analysis of Hashing with Lazy</i> <i>Deletion</i> , Society for Industrial and Applied Mathematics, Vol. 16, No. 6, 1155-1164 (December 1987) ("Morrison") alone and in combination
		combining the '663 patent's deletion decision procedure with Morrison would be nothing more than the predictable use of prior art elements according to their established functions.
		By way of further example, one of ordinary skill in the art would have combined the '663 patent's dynamic decision on whether to perform a deletion based on a systems load as taught by the '663 patent and with Morrison and would have seen the benefits of doing so. One such benefit, for example, is that the system would avoid performing deletions when the system load exceeded a threshold.
		Alternatively, it would also be obvious to combine Morrison with the Opportunistic Garbage Collection Articles.
		The Opportunistic Garbage Collection Articles disclose a generational based garbage collection which dynamically determines how much garbage to collect. <i>See generally</i> , Paul R. Wilson and Thomas G. Moher, <i>Design of the Opportunistic Garbage Collector</i> , OOPSLA '89 Proceedings, October 1-6, 1989; Paul R. Wilson, <i>Opportunistic Garbage Collection</i> , ACM SIGPLAN Notices, Vol. 23, No. 12, December 1988.
		For example, the Opportunistic Garbage Collection Articles disclose in part:
		When a significant pause has been detected, a decision procedure is invoked to decide whether to garbage collect, and how many generations to scavenge. The fuller a generation is, the more likely it is to be scavenged; also, the longer the pause that has been detected, the larger the scope of the garbage collection is likely to be. <i>Design of the Opportunistic Garbage</i>

Asserted C U.S. Pat. N	laims From o. 5,893,120	John A. Morrison et al., <i>A Queuing Analysis of Hashing with Lazy</i> Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6, 1155-11(4 (December 1997) ("Merricer")) along and in combination
		1155-1164 (December 1987) ("Morrison") alone and in combination
		Collector at 32.
		Every time a user-input routine is invoked, a decision routine can decide whether to garbage collect. As long as the decision routine takes no more
		than a few milliseconds to execute, it should not interfere with responsiveness. Since it is only invoked at these times, it does not incur a
		continual run-time overhead. <i>Opportunistic Garbage Collection</i> at 100.
		This decision routine should take several things into account: 1) the volume of data allocated since the last scavenge, 2) how long it has been since the user has had an opportunity to interact, and 3) the height of the stack relative to its average height at reads since the last scavenge. If the product of the allocation and the compute time is high, and if the stack is low, the scavenge favorability measure is high. If it is especially high, a multi-generation scavenge is in order. <i>Id.</i>
		If these heuristics fail and a scavenge is forced instead by the filling of a generation's space, it is likely to happen during a significant compute- bound pausethe one that has just allocated the data that forced the collection. When the opportunistic mechanism fails to find the end of a pause, it may still succeed by default, embedding a scavenge pause within a larger pause. <i>Design of the Opportunistic Garbage Collector</i> at 32.
		As both Morrison and the Opportunistic Garbage Collection Articles relate to deletion of aged records, one of ordinary skill in the art would have understood how to use the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion based on a system load in other hash table implementations such as Morrison. Moreover, one of ordinary skill in the art

Asserted Claims From	John A. Morrison et al., <i>A Queuing Analysis of Hashing with Lazy</i> Deletion Society for Industrial and Applied Mathematics Vol. 16 No. 6
0.5.1 44 100 0,000,120	1155-1164 (December 1987) ("Morrison") alone and in combination
	 would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the Opportunistic Garbage Collection Articles' deletion decision procedure with Morrison would be nothing more than the predictable use of prior art elements according to their established functions. By way of further example, one of ordinary skill in the art would have combined the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion and how many generations to scavenge as taught by the Opportunistic Garbage Collection Articles and with Morrison and would have seen the benefits of doing so. One such benefit, for example, is preventing slowdown of the system.
	Additionally, it would have been obvious to one of ordinary skill in the art to modify the system disclosed in Morrison to dynamically determine the maximum number of expired records to remove in the accessed linked list of records. It is a fundamental concept in computer science and the relevant art that any variable or parameter affecting any aspect of a system can be dynamically determined based on information available to the system. One of ordinary skill in the art would have been motivated to combine the system disclosed in Morrison with the fundamental concept of dynamically determining the maximum number of expired records to remove in an accessed linked list of records to solve a number of potential problems. For example,

44

Joint Invalidity Contentions & Production of Documents

Asserted Claims From	John A. Morrison et al., A Queuing Analysis of Hashing with Lazy
U.S. Pat. No. 5,893,120	Deletion, Society for Industrial and Applied Mathematics, Vol. 16, No. 6,
	1155-1164 (December 1987) ("Morrison") alone and in combination
	the removal of expired records described in Morrison can be burdensome on
	the system, adding to the system's load and slowing down the system's
	processing. Moreover, the removal could also force an interruption in real-
	time processing as the processing waits for the removal to complete.
	One of ordinary skill in the art would have known that dynamically
	determining the maximum number to remove would limit the burden on the
	system and bound the length of any real-time interruption to prevent delays in
	processing. Indeed, Nemes concedes that such dynamic determination was
	obvious when he states in the '120 patent that "[a] person skilled in the art will
	appreciate that the technique of removing all expired records while searching
	the linked list can be expanded to include techniques whereby not necessarily
	all expired records are removed, and that the decision regarding if and how
	many records to delete can be a dynamic one." '120 at 7:10-15.
	To the extent that dynamically determining a maximum number of expired
	records is not disclosed by Morrison in combination with Dirks, Thatte, the
	'663 Patent, or the Opportunistic Garbage Collection References, it is
	disclosed by Linux 2.0.1, which describes dynamically determining maximum
	number of expired ones of the records to remove when the linked list is
	accessed. It would have been obvious to combine Linux 2.0.1 with Morrison.
	For example, both Linux 2.0.1 and Morrison describe systems and methods for
	performing data storage and retrieval using known programming techniques to
	yield a predictable result.
	When invoked, the function rt_cache_add automatically increments an
	integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
	When the function rt_cache_add removes an expired record, the function

Asserted Claims From U.S. Pat. No. 5,893,120	John A. Morrison et al., <i>A Queuing Analysis of Hashing with Lazy</i> <i>Deletion</i> , Society for Industrial and Applied Mathematics, Vol. 16, No. 6, 1155-1164 (December 1987) ("Morrison") alone and in combination
	rt_cache_add decrements the variable rt_cache_size. See Linux 2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the number of records in the hash table (i.e., ip_rt_hash_table). Because the function rt_cache_add automatically increments and decrements the variable rt_cache_size, the variable rt_cache_size is determined dynamically.
	Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1. The function rt_garbage_collect_1 loops through each of the linked lists in the ip_rt_hash_table global variable. <i>See</i> Linux 2.0.1, route.c at lines 1122-1138. In this way, the function rt_garbage_collect_1 accesses the linked list. When the function rt_garbage_collect_1 identifies a record that is expired, the function rt_garbage_collect_1 decrements the variable rt_cache_size and frees the record. <i>See</i> Linux 2.0.1, route.c at lines 1128-1135.
	Because all records in the linked list can be expired and all records in the hash table can be in the linked list, the variable rt_cache_size can represent a dynamically determined maximum number of expired ones of the records to remove when function rt_garbage_collect_1 accesses the linked list.
	Furthermore, the function rt_cache_add determines whether the number of records in the hash table exceeds a predetermined threshold RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_cache_add invokes a function rt_garbage_collect. <i>See</i> Linux

46

Asserted Claims From U.S. Pat. No. 5,893,120	John A. Morrison et al., <i>A Queuing Analysis of Hashing with Lazy Deletion</i> , Society for Industrial and Applied Mathematics, Vol. 16, No. 6, 1155-1164 (December 1987) ("Morrison") alone and in combination
	 2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293. The function rt_garbage_collect invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293. The function rt_garbage_collect_1 loops through each linked list in the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked list in the hash table, the function rt_garbage_collect_1 looks at each record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each record in a linked list, the function rt_garbage_collect_1 determines whether the record's last use time plus the record's expiration factor is later than the current time. See Linux 2.0.1, route.c at line 1122. If the record's last use time plus the record's expiration factor is less than the current time, the function rt_garbage_collect_1 removes the record from the linked list. See Linux 2.0.1, route.c at lines 1124-1130. The record's expiration factor is based on a variable expire and the record's reference count. See Linux 2.0.1, route.c at lines 1124-1130. The record's expiration factor is
	timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110. After looping through all of the linked lists in this manner, the function rt_garbage_collect_1 determines again whether the number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number of items in the hash table is still greater than the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves the variable expire and loops through each of the linked lists in the hash table. See Linux 2.0.1, route.c at line 1135. In this way, the function

Asserted Claims From U.S. Pat. No. 5,893,120	John A. Morrison et al., <i>A Queuing Analysis of Hashing with Lazy</i> <i>Deletion</i> , Society for Industrial and Applied Mathematics, Vol. 16, No. 6, 1155-1164 (December 1987) ("Morrison") alone and in combination
	rt_garbage_collect_1 can remove additional records from the linked lists in the hash table. The function rt_garbage_collect_1 repeats this process until the total number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX.
	Under Bedrock's proposed claim constructions, the records removed by the function rt_garbage_collect_1 are "expired" records. That is, the records removed by the function rt_garbage_collect_1 are data items which after a limited time or after the occurrence of some event become obsolete, such that their presence in the storage system is no longer needed or desired.
	The function rt_cache_add only removes a record from a linked list when the record's last use time plus the fixed timeout value RT_CACHE_TIMEOUT is less than the current time and the record's reference count is zero. <i>See</i> Linux 2.0.1, route.c at line 1369. Thus, the maximum number of records that the function rt_cache_add can remove from a given linked list is limited to those records whose reference counts are zero.
	In contrast, the maximum number of records that the function rt_garbage_collect_1 can remove from a given linked list is not limited to those records whose reference counts are zero. <i>See</i> Linux 2.0.1, route.c at line 1122. Rather, the function rt_garbage_collect_1 can remove records whose reference counts are zero and records whose reference counts are greater than zero.
	Consequently, the maximum number of records that the function rt_garbage_collect_1 can remove from a linked list is different than

Asserted Claims From U.S. Pat. No. 5,893,120	John A. Morrison et al., <i>A Queuing Analysis of Hashing with Lazy Deletion</i> , Society for Industrial and Applied Mathematics, Vol. 16, No. 6, 1155-1164 (December 1987) ("Morrison") alone and in combination
	the maximum number of records that the function rt_cache_add can remove from a linked list.
	On information and belief, the techniques disclosed in Morrison were implemented and distributed in a Unix utility called IDEAL, prior to the filing date of the '120 Patent. On information and belief, a person of ordinary skill in the art would have been motivated to combine IDEAL with the techniques taught by Linux 2.0.1, Dirks, Thatte, the '663 patent, the Opportunistic Garbage Collection Articles, Kenyon-Mathieu, and/or Aldous to disclose dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed. Defendants reserve the right to supplement these contentions once a complete version of the source code for IDEAL is produced.

Asserted Claims From U.S. Pat. No. 5,893,120		Claire M. Mathieu and Jeffrey Scott Vitter, <i>Maximum Queue Size and</i> <i>Hashing with Lazy Deletion</i> , 851 RAPPORTS DE RECHERCHE 1 (June 1988) ("Mathieu") alone and in combination
1. An information storage and retrieval system, the system comprising:	5. An information storage and retrieval system, the system comprising:	 To the extent the preamble is a limitation, Mathieu discloses an information storage and retrieval system. For example, Mathieu discloses "a non-Markovian process (data structure) for processing plane-sweep information in computational geometry, called 'hashing with lazy deletion' (HwLD)." Claire M. Mathieu and Jeffrey Scott Vitter, <i>Maximum Queue Size and Hashing with Lazy Deletion</i>, 851 Rapports de Recherche 1, 2 (June 1988).
[1a] a linked list to store and provide access to records stored in a memory of the system, at least some of the records automatically expiring,	[5a] a hashing means to provide access to records stored in a memory of the system and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring,	Mathieu discloses a linked list to store and provide access to records stored in a memory of the system, at least some of the records automatically expiring. Mathieu also discloses a hashing means to provide access to records stored in a memory of the system and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring. For example, Mathieu discloses "a non-Markovian process (data structure) for processing plane-sweep information in computational geometry, called 'hashing with lazy deletion' (HwLD)." <i>Id</i> . Moreover, Mathieu discloses that "[p]lane-sweep algorithms process a sequence of items over time; at time <i>t</i> the data structure stores the items that are 'living' at time <i>t</i> . Let us think of the <i>i</i> th item as being an interval [s_i , t_i] in the unit interval, containing a unique key k_i of supplementary information. The <i>i</i> th item is 'born' at time s_i , 'dies' at time t_i , and is 'living' at time <i>t</i> when $t \in [s_i, t_i]$. The data structure must be able to support the dynamic operation of searching the living items based on key value." <i>Id</i> . at 2-3.

Asserted Claims From		Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
U.S. Pat. No. 5,893,120		Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)
		("Mathieu") alone and in combination
		"In HwLD, items are stored in a hash table of <i>H</i> buckets, based on the hash
		value of the key. The distinguishing feature of HwLD is that an item is not
		deleted as soon as it dies; the 'lazy deletion' strategy deletes a dead item only
		when a later insertion accesses the same bucket. The number H of buckets is
		chosen so that the expected number of items per bucket is small. HwLD is
		some dead items." <i>Id.</i> at 3.
		Moreover, it is inherent to the Mathieu disclosure that the hash table described
		herein is a separate-chaining hash table to resolve unavoidable key collisions,
		where each slot of the bucket array is a pointer to a linked list that contains the
		halanced trees, only offer logarithmic time complexity and can be complicated
		to implement and require several pointers per item. With a suitable number of
		buckets, the separate-chaining hash table solution offers constant expected
		search times and makes deletion easy.
		To the extent is it not inherent, it would be obvious to combine Mathieu with
		the prior art disclosed in <i>The Complexity of Hashing with Lazy Deletion</i> .
		Christopher J. Van Wyk and Jeffrey Scott Vitter. <i>The Complexity of Hashing</i>
		with Lazy Deletion, 1 Algorithmica 17, 18 (November, 1986) ("Van Wyk"),
		because Mathieu describes and incorporates Van Wyk by reference. Mathieu at
		2. Van Wyk discloses a method of hashing with lazy deletion using a separate-
		chaining hash table as a more efficient solution to collisions than the available
		alternatives, such as balanced trees. See Exhibit C-1 which is herein
		incorporated by reference.
[1b] a record search means	[5b] a record search means	Mathieu discloses a record search means utilizing a search key to access the

Asserted Claims From U.S. Pat. No. 5,893,120		Claire M. Mathieu and Jeffrey Scott Vitter, <i>Maximum Queue Size and</i> Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)
		("Mathieu") alone and in combination
utilizing a search key to	utilizing a search key to	linked list. Mathieu also discloses a record search means utilizing a search key
access the linked list,	access a linked list of records having the same	to access a linked list of records having the same hash address.
	hash address,	For example, Mathieu discloses "a non-Markovian process (data structure) for
		processing plane-sweep information in computational geometry, called
		'hashing with lazy deletion' (HwLD)." Mathieu, supra at 1.
		Moreover, Mathieu discloses that "[p]lane-sweep algorithms process a sequence of items over time; at time <i>t</i> the data structure stores the items that are 'living' at time <i>t</i> . Let us think of the <i>i</i> th item as being an interval $[s_i, t_i]$ in the unit interval, containing a unique key k_i of supplementary information. The <i>i</i> th item is 'born' at time s_i , 'dies' at time t_i , and is 'living' at time <i>t</i> when $t \in [s_i, t_i]$. The data structure must be able to support the dynamic operation of searching the living items based on key value." <i>Id.</i> at 2-3.
		Moreover, it is inherent to the Mathieu disclosure that the hash table described herein is a separate-chaining hash table to resolve unavoidable key collisions, where each slot of the bucket array is a pointer to a linked list that contains the key-value pairs that hash to the same location. Other data structures, such as balanced trees, only offer logarithmic time complexity and can be complicated to implement and require several pointers per item. With a suitable number of buckets, the separate-chaining hash table solution offers constant expected search times and makes deletion easy.
		To the extent is it not inherent, it would be obvious to combine Mathieu with the prior art disclosed in, <i>The Complexity of Hashing with Lazy Deletion</i> , Christopher J. Van Wyk and Jeffrey Scott Vitter, <i>The Complexity of Hashing</i> <i>with Lazy Deletion</i> , 1 Algorithmica 17, 18 (November, 1986) ("Van Wyk"),

Asserted Claims From U.S. Pat. No. 5,893,120		Claire M. Mathieu and Jeffrey Scott Vitter, <i>Maximum Queue Size and</i> <i>Hashing with Lazy Deletion</i> , 851 RAPPORTS DE RECHERCHE 1 (June 1988) ("Mathieu") alone and in combination
		because Mathieu describes and incorporates Van Wyk by reference. Mathieu at 2. Van Wyk discloses a method of hashing with lazy deletion using a separate-chaining hash table as a more efficient solution to collisions than the available alternatives, such as balanced trees. <i>See</i> Exhibit C-1 which is herein incorporated by reference.
[1c] the record search means including a means for identifying and removing at least some of the expired ones of the records from the linked list when the linked list is accessed, and	[5c] the record search means including means for identifying and removing at least some expired ones of the records from the linked list of records when the linked list is accessed, and	Mathieu discloses the record search means including a means for identifying and removing at least some of the expired ones of the records from the linked list when the linked list is accessed. Mathieu also discloses the record search means including means for identifying and removing at least some expired ones of the records from the linked list of records when the linked list is accessed. For example, Mathieu discloses "a non-Markovian process (data structure) for processing plane-sweep information in computational geometry, called 'hashing with lazy deletion' (HwLD)." Mathieu, <i>supra</i> at 1. Moreover, Mathieu discloses that "[p]lane-sweep algorithms process a sequence of items over time; at time <i>t</i> the data structure stores the items that are 'living' at time <i>t</i> . Let us think of the <i>i</i> th item as being an interval [s_i , t_i] in the unit interval, containing a unique key k_i of supplementary information. The <i>i</i> th item is 'born' at time s_i , 'dies' at time t_i , and is 'living' at time <i>t</i> when $t \in$ [s_i , t_i]. The data structure must be able to support the dynamic operation of searching the living items based on key value." <i>Id.</i> at 2-3. "In HwLD, items are stored in a hash table of <i>H</i> buckets, based on the hash value of the key. The distinguishing feature of HwLD is that an item is not deleted as soon as it dies: the 'lazy deletion' strategy deletes a dead item only

Asserted Claims From		Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
U.S. Pat. No. 5,893,120		Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988) ("Mathieu") alone and in combination
		("Mathieu") alone and in combination when a later insertion accesses the same bucket. The number <i>H</i> of buckets is chosen so that the expected number of items per bucket is small. HwLD is thus more time-efficient than doing 'vigilant-deletion,' at a cost of storing some dead items." <i>Id.</i> at 3. Moreover, it is inherent to the Mathieu disclosure that the hash table described herein is a separate-chaining hash table to resolve unavoidable key collisions, where each slot of the bucket array is a pointer to a linked list that contains the key-value pairs that hash to the same location. Other data structures, such as balanced trees, only offer logarithmic time complexity and can be complicated to implement and require several pointers per item. With a suitable number of buckets, the separate-chaining hash table solution offers constant expected search times and makes deletion easy.
		the prior art disclosed in, <i>The Complexity of Hashing with Lazy Deletion</i> , Christopher J. Van Wyk and Jeffrey Scott Vitter, <i>The Complexity of Hashing with Lazy Deletion</i> , 1 Algorithmica 17, 18 (November, 1986) ("Van Wyk"), because Mathieu describes and incorporates Van Wyk by reference. Mathieu at 2. Van Wyk discloses a method of hashing with lazy deletion using a separate- chaining hash table as a more efficient solution to collisions than the available alternatives, such as balanced trees. <i>See</i> Exhibit C-1 which is herein incorporated by reference.
[1d] means, utilizing the record search means, for accessing the linked list	[5d] mea[n]s, utilizing the record search means, for inserting, retrieving, and	Mathieu discloses means, utilizing the record search means, for accessing the linked list and, at the same time, removing at least some of the expired ones of the records in the linked list. Mathieu also discloses utilizing the record search
and, at the same time,	deleting records from the	means, for inserting, retrieving, and deleting records from the system and, at

Asserted Claims From U.S. Pat. No. 5,893,120		Claire M. Mathieu and Jeffrey Scott Vitter, <i>Maximum Queue Size and</i> <i>Hashing with Lazy Deletion</i> , 851 RAPPORTS DE RECHERCHE 1 (June 1988) ("Mathieu") alone and in combination
removing at least some of	system and, at the same	the same time, removing at least some expired ones of the records in the
the expired ones of the	time, removing at least	accessed linked list of records.
records in the linked list.	some expired ones of the	
	records in the accessed	For example, Mathieu discloses "a non-Markovian process (data structure) for
	linked list of records.	processing plane-sweep information in computational geometry, called
		'hashing with lazy deletion' (HwLD)." Mathieu, supra at 1.
		Moreover, Mathieu discloses that "[p]lane-sweep algorithms process a sequence of items over time; at time <i>t</i> the data structure stores the items that are 'living' at time <i>t</i> . Let us think of the <i>i</i> th item as being an interval $[s_i, t_i]$ in the unit interval, containing a unique key k_i of supplementary information. The <i>i</i> th item is 'born' at time s_i , 'dies' at time t_i , and is 'living' at time <i>t</i> when $t \in [s_i, t_i]$. The data structure must be able to support the dynamic operation of searching the living items based on key value." <i>Id.</i> at 2-3.
		"In HwLD, items are stored in a hash table of H buckets, based on the hash value of the key. The distinguishing feature of HwLD is that an item is not deleted as soon as it dies; the 'lazy deletion' strategy deletes a dead item only when a later insertion accesses the same bucket. The number H of buckets is chosen so that the expected number of items per bucket is small. HwLD is thus more time-efficient than doing 'vigilant-deletion,' at a cost of storing some dead items." <i>Id.</i> at 3.
		Moreover, it is inherent to the Mathieu disclosure that the hash table described herein is a separate-chaining hash table to resolve unavoidable key collisions, where each slot of the bucket array is a pointer to a linked list that contains the key-value pairs that hash to the same location. Other data structures, such as balanced trees, only offer logarithmic time complexity and can be complicated

Joint Invalidity Contentions & Production of Documents

6

Asserted Claims From U.S. Pat. No. 5,893,120		Claire M. Mathieu and Jeffrey Scott Vitter, <i>Maximum Queue Size and</i> <i>Hashing with Lazy Deletion</i> , 851 RAPPORTS DE RECHERCHE 1 (June 1988) ("Mathieu") alone and in combination
		to implement and require several pointers per item. With a suitable number of buckets, the separate-chaining hash table solution offers constant expected search times and makes deletion easy.
		To the extent is it not inherent, it would be obvious to combine Mathieu with the prior art disclosed in, <i>The Complexity of Hashing with Lazy Deletion</i> , Christopher J. Van Wyk and Jeffrey Scott Vitter, <i>The Complexity of Hashing with Lazy Deletion</i> , 1 Algorithmica 17, 18 (November, 1986) ("Van Wyk"), because Mathieu describes and incorporates Van Wyk by reference. Mathieu at 2. Van Wyk discloses a method of hashing with lazy deletion using a separate-chaining hash table as a more efficient solution to collisions than the available alternatives, such as balanced trees. <i>See</i> Exhibit C-1 which is herein incorporated by reference.
		To the extent Bedrock argues that Mathieu does not anticipate this element, based on general knowledge and/or in combination with Knuth and/or Kruse, one of ordinary skill in the art would recognize that the Mathieu applies to insertions, retrievals, and/or deletions of automatically expired records because these are all basic functions that can be performed in the same manner on a hash table or a liked list. See, e.g., "The Art of Computer Programming", Sorting and Searching, D.E. Knuth, Addison-Wesley Series in Computer Science and Information Processing, pp. 506-549; "Data Structures and Program Design", R.L. Kruse, Prentice-Hall, Inc. 1984, pp. 104-148."
2. The information storage and retrieval system according to claim 1 further including means for	6. The information storage and retrieval system according to claim 5 further including means for	Mathieu discloses the information storage and retrieval system further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records. Mathieu teaches a method for calculating a bound on the space complexity of the

Asserted Claims From		Claire M. Mathieu and Jeffrey Scott Vitter, <i>Maximum Queue Size and</i> Hashing with Lazy Deletion, 851 PAPPORTS DE RECHERCHE 1 (June 1988)
0.5.1 at. 110. 5,075,120		("Mathieu") alone and in combination
dynamically determining maximum number for the record search means to remove in the accessed linked list of records.	dynamically determining maximum number for the record search means to remove in the accessed linked list of records.	hashing with lazy deletion algorithm, i.e., the number of expired elements that would remain in the linked lists forming the external chains of the hash table. See, e.g., Mathieu at 12-22. That bound calculation is a means for dynamically determining the maximum number to remove, since the maximum number of elements to remove should never exceed the number of expired elements that would remain in the linked lists.
		To the extent Mathieu does not disclose this element, Mathieu combined with Morrison, Kenyon-Mathieu or Aldous discloses this element. Morrison, Kenyon-Mathieu, and Aldous also teach methods for calculating a bound on the space complexity of the hashing with lazy deletion algorithm. See, e.g., Morrison at 1156-61, Kenyon-Mathieu at 475-486, Aldous 17-21.
		It would have been obvious to one of ordinary skill in the art that these methods of calculating bounds on the number of expired elements stored in the linked list could also be used to dynamically determine a maximum number for the record search means disclosed in Mathieu to remove. One of ordinary skill would have been motivated to combine the teachings of Morrison, Kenyon-Mathieu, and Aldous with Mathieu because they all sought to analyze the complexity of the hashing with lazy deletion algorithm, and each of the papers refers to and builds upon the work of those papers preceding. See, e.g., Morrison at 1155, 1158, Mathieu at 1-4, Kenyon-Mathieu at 473-475, Aldous at 2-3.
		Mathieu combined with Dirks, Thatte, the '663 patent and/or the Opportunistic Garbage Collection Articles discloses an information storage and retrieval system further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of

8

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120		Claire M. Mathieu and Jeffrey Scott Vitter, <i>Maximum Queue Size and</i> <i>Hashing with Lazy Deletion</i> , 851 RAPPORTS DE RECHERCHE 1 (June 1988) ("Mathieu") alone and in combination
		 records. Dirks discloses the management of memory in a computer system and more particularly to the allocation of address space in a virtual memory system, which dynamically determines how many records to sweep/remove upon each allocation. Disclosure of these claim elements in Dirks is clearly shown in Exhibit B-2, which is hereby incorporated by reference in its entirety. For example, as summarized in Dirks, each time a VSID is assigned from the free list to a new application or thread, a fixed number of entries in the page table are scanned to determine whether they have become inactive, by checking them against the VSIDs on the recycle list. Each entry which is identified as being inactive is removed from the page table. After all of the entries in the page table have been examined in this manner, the VSIDs in the recycle list can be transferred to the free list, since all of their associated page table entries will have been removed. This approach thereby guarantees that a predetermined number of VSIDs are always available in the free list without requiring a time-consuming scan of the complete page table at
		After [a] new VSID has been allocated, the system checks a flag RFLG to determine whether a recycle sweep is currently in progress (Step 20). If there is no sweep in progress, i.e. RFLG is not equal to one, a determination is made whether a sweep should be initiated. This is done by checking whether the inactive list is full, i.e. whether it contains x entries (Step 22). If the number of entries I on the inactive list is less than

9

Joint Invalidity Contentions & Production of Documents

Asserted Claims From	Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
U.S. Pat. No. 5,893,120	Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)
	("Mathieu") alone and in combination
	x, no further action is taken, and processing control returns to the
	operating system (Step 24). If, however, the inactive list is full at this
	time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
	transferred to the recycle list, and an index n is reset to 1 (Step 28). The
	system then sweeps a predetermined number of page table entries PI_i on
	the page table, to detect whether any of them are inactive, i.e. their
	associated vSiD is on the recycle list (Step 50). The predetermined number of antrias that are swant is identified as k where:
	number of entries that are swept is identified as k, where.
	total number of page table entries
	$k = \frac{1}{1}$ maximum number of active threads
	<i>Id.</i> at 8:12-30.
	Dirks discloses that any approach can be employed to determine the number of entries to be examined during each step of the sweeping process. <i>Id.</i> at 7:37-40. As stated in Dirks:
	Any other suitable approach can be employed to determine the number of entries to be examined during each step of the sweeping process. In this regard, it is not necessary that the number of examined entries be fixed for each step. Rather, it might vary from one step to the next. The only criterion is that the number of entries examined on each step be such that all entries in the page table are examined in a determinable amount of time or by the occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.
	<i>Id.</i> at 7:38-46. Thus, Dirks dynamically determines the maximum number of records to sweep/remove by calculating a value <i>k</i> . <i>Id.</i> at 7:15-46, 7:66-8:56.

Asserted Claims From	Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
U.S. Pat. No. 5,893,120	Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)
	("Mathieu") alone and in combination
	As both Mathieu and Dirks relate to deletion of aged records upon the
	allocation of a new incoming record, one of ordinary skill in the art would have
	understood how to use Dirks' dynamic decision making process of determining
	the maximum number of records to sweep/remove in other hash tables
	implementations such as Mathieu. Moreover, one of ordinary skill in the art
	would recognize that it would improve similar systems and methods in the
	same way. As the '120 patent states "[a] person skilled in the art will
	appreciate that the technique of removing all expired records while searching
	the linked list can be expanded to include techniques whereby not necessarily
	all expired records are removed, and that the decision regarding if and how
	many records to delete can be a dynamic one." The '120 patent at 7:10-15.
	Additionally, one of ordinary skill in the art would recognize that the result of
	combining Dirks' deletion decision procedure with Mathieu's technique of
	"lazy deletion" would be nothing more than the predictable use of prior art
	elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have
	combined Dirks' dynamic determination of the suitable number of entries to
	examine during each step of the sweeping process with Mathieu's system and
	method of "lazy deletion" and would have seen the benefits of doing so. One
	possible benefit, for example, is that the system and method of lazy deletion
	could perform a specified number of deletions on any given sweep, thus saving
	the system from performing sometimes time-consuming sweeps.
	Alternatively, one of ordinary skill in the art would be motivated to and would
	understand how to, combine the system disclosed in Mathieu with the means
	for dynamically determining maximum number for the record search means to
	remove in the accessed linked list of records disclosed by Thatte. For example,

Asserted C	aims From	Claire M. Mathieu and Jeffrey Scott Vitter, <i>Maximum Queue Size and</i> Use hims with Law Delation, 851 Depondence DE Decump Cure 1 (June 1088)
U. 5. Pal. N	0. 5,895,120	("Mathieu") alone and in combination
		Thatte discloses a system and method using hash tables and/or linked lists and further discloses means for dynamically determining the maximum number for the record search means to remove in the accessed linked list of records. The disclosure of these claim elements in Thatte is clearly shown in Exhibit B-1, which is hereby incorporated by reference in its entirety.
		Moreover, one of ordinary skill in the art would recognize that these combinations would improve the similar systems and methods in the same way. Additionally, one of ordinary skill in the art would recognize that the result of combining Mathieu with Thatte would be nothing more than the predictable use of prior art elements according to their established functions. The resulting combination would include the capability to determine the maximum number for the record search means to remove.
		Further, one of ordinary skill in the art would be motivated to combine Mathieu with Thatte and recognized the benefits of doing so. For example, the removal of expired records described in Mathieu can be burdensome on the system, adding to the system's load and slowing down the system's processing. One of ordinary skill in the art would recognize that combining Mathieu with the teachings of Thatte would solve this problem by dynamically determining how many records to delete based on, among other things, the system load. Moreover, the '120 patent discloses that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine Mathieu with Thatte.
Asserted C U.S. Pat. No	laims From 5. 5,893,120	Claire M. Mathieu and Jeffrey Scott Vitter, <i>Maximum Queue Size and</i> <i>Hashing with Lazy Deletion</i> , 851 RAPPORTS DE RECHERCHE 1 (June 1988) ("Mathieu") alone and in combination
----------------------------	----------------------------	--
		Alternatively, it would also be obvious to combine Mathieu with the '663 patent. Disclosure of these claim elements in the '663 patent is clearly shown in Exhibit B-13, which is hereby incorporated by reference in its entirety. For example as summarized in the '663 patent:
		during normal times when the load on the storage system is not excessive, a non-contaminating but slow deletion of records is used. This slow, non-contaminating deletion involves closing the collision-resolution chain of locations by moving a record from a later position in the chain into the position of the record to be deleted. This leaves no deleted record locations in the storage space to slow down future searches. U.S. Patent 4,996,663 to Nemes at 2:24-34 ("The '663 patent").
		In times of heavy use, when deletions must be done rapidly and no time is available for decontamination, the record is simply marked as "deleted" and left in place. Later non-contaminating probes in the vicinity of such deleted record locations automatically remove the contaminating deleted records by moving records in the chain as described above. <i>Id.</i> at 2:35-41.
		This hybrid hashing technique has the decided advantage of automatically eliminating contamination caused by the fast-secure deletion procedure when the slower, non-contaminating deletion is used when the load on the system is at lower levels. <i>Id.</i> at 2:42-46.

Asserted Clai U.S. Pat. No. 5	ms From 5,893,120	Claire M. Mathieu and Jeffrey Scott Vitter, <i>Maximum Queue Size and</i> <i>Hashing with Lazy Deletion</i> , 851 RAPPORTS DE RECHERCHE 1 (June 1988) ("Mathieu") alone and in combination
		("Mathieu") alone and in combination This hybrid deletion is shown in Figure 5. FIG.5 HYBRID DELETION YES YES LOAD > SYSTEM NO FAST-SECURE S2 SUM-NON- CONTAMINATING
		<i>Id.</i> at Figure 5. During the hybrid deletion procedure decision block 51 checks the system load is greater than a threshold. If the system load is greater than the threshold, then a fast-secure delete 52 is used. <i>Id.</i> at 6:40-64,

Joint Invalidity Contentions & Production of Documents

Case No. 6:09-CV-549-LED

Asserted Claims From	Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
U.S. Pat. No. 5,893,120	Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)
	("Mathieu") alone and in combination
	Figure 5. On the other hand, if the system load is less than the threshold, then a
	slow-non-contaminating delete 53 is used. <i>Id.</i> The fast-secure delete 52 does
	not actually delete records, rather it marks records as deleted. <i>Id.</i> at 8:1-33,
	Figure 7. These records are then actually deleted by a subsequent slow-non-
	contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.
	Thus, the hybrid deletion procedure in the '663 patent dynamically determines a maximum number of records to remove. <i>See id.</i> at 6:40-64, Figure 5. If the fast-secure delete 52 is used, then maximum number of records is zero because records are not deleted they are only marked. <i>Id.</i> at 8:1-33, Figure 7. If the slow-non-contaminating delete 53 is used, then the maximum number of records to remove is all of the contaminated records in the bucket. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
	As both Mathieu and the '663 patent relate to deletion of records from hash tables using external chaining, one of ordinary skill in the art would understood how to use the '663 patent's dynamic decision on whether to perform a deletion based on a systems load in other hash table implementations such as Mathieu. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the '663 patent's deletion decision procedure with Mathieu's technique of "lazy deletion" would be nothing more than the predictable use of prior art elements

Asserted Claims From U.S. Pat. No. 5,893,120		Claire M. Mathieu and Jeffrey Scott Vitter, <i>Maximum Queue Size and</i> <i>Hashing with Lazy Deletion</i> , 851 RAPPORTS DE RECHERCHE 1 (June 1988) ("Mathieu") alone and in combination
		according to their established functions.
		By way of further example, one of ordinary skill in the art would have combined the '663 patent's dynamic decision on whether to perform a deletion based on a systems load as taught by the '663 patent and with Mathieu's system and method of "lazy deletion" and would have seen the benefits of doing so. One such benefit, for example, is that the system and method of lazy deletion would avoid performing deletions when the system load exceeded a threshold.
		Alternatively, it would also be obvious to combine Mathieu with the Opportunistic Garbage Collection Articles.
		The Opportunistic Garbage Collection Articles disclose a generational based garbage collection which dynamically determines how much garbage to collect. <i>See generally</i> , Paul R. Wilson and Thomas G. Moher, <i>Design of the Opportunistic Garbage Collector</i> , OOPSLA '89 Proceedings, October 1-6, 1989; Paul R. Wilson, <i>Opportunistic Garbage Collection</i> , ACM SIGPLAN Notices, Vol. 23, No. 12, December 1988.
		For example, the Opportunistic Garbage Collection Articles disclose in part:
		When a significant pause has been detected, a decision procedure is invoked to decide whether to garbage collect, and how many generations to scavenge. The fuller a generation is, the more likely it is to be scavenged; also, the longer the pause that has been detected, the larger the scope of the garbage collection is likely to be. <i>Design of the Opportunistic Garbage</i> <i>Collector</i> at 32.

Asserted Claims From U.S. Pat. No. 5,893,120		Claire M. Mathieu and Jeffrey Scott Vitter, <i>Maximum Queue Size and</i> <i>Hashing with Lazy Deletion</i> , 851 RAPPORTS DE RECHERCHE 1 (June 1988) ("Mathieu") alone and in combination
		Every time a user-input routine is invoked, a decision routine can decide whether to garbage collect. As long as the decision routine takes no more than a few milliseconds to execute, it should not interfere with responsiveness. Since it is only invoked at these times, it does not incur a continual run-time overhead. <i>Opportunistic Garbage Collection</i> at 100.
		This decision routine should take several things into account: 1) the volume of data allocated since the last scavenge, 2) how long it has been since the user has had an opportunity to interact, and 3) the height of the stack relative to its average height at reads since the last scavenge. If the product of the allocation and the compute time is high, and if the stack is low, the scavenge favorability measure is high. If it is especially high, a multi-generation scavenge is in order. <i>Id.</i>
		If these heuristics fail and a scavenge is forced instead by the filling of a generation's space, it is likely to happen during a significant compute- bound pausethe one that has just allocated the data that forced the collection. When the opportunistic mechanism fails to find the end of a pause, it may still succeed by default, embedding a scavenge pause within a larger pause. <i>Design of the Opportunistic Garbage Collector</i> at 32.
		As both Mathieu and the Opportunistic Garbage Collection Articles relate to deletion of aged records, one of ordinary skill in the art would have understood how to use the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion based on a system load in other hash table implementations such as Mathieu. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the

Asserted Claims From	Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
U.S. Pat. No. 5,893,120	Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)
	("Mathieu") alone and in combination
	same way. As the '120 patent states "[a] person skilled in the art will
	appreciate that the technique of removing all expired records while searching
	the linked list can be expanded to include techniques whereby not necessarily
	all expired records are removed, and that the decision regarding if and how
	many records to delete can be a dynamic one." The '120 patent at 7:10-15.
	Additionally, one of ordinary skill in the art would recognize that the result of
	combining the Opportunistic Garbage Collection Articles' deletion decision
	procedure with Mathieu's technique of "lazy deletion" would be nothing more
	than the predictable use of prior art elements according to their established
	functions.
	By way of further example, one of ordinary skill in the art would have
	combined the Opportunistic Garbage Collection Articles' dynamic decision on
	whether to perform a deletion and now many generations to scavenge as taught
	and method of "lazy deletion" and would have seen the banefits of doing so
	One such benefit, for example, is that the system and method of lazy deletion
	would only perform deletions when the system was not already too overloaded
	thus preventing slowdown of the system
	thus preventing slowdown of the system.
	Additionally, it would have been obvious to one of ordinary skill in the art to
	modify the system disclosed in Mathieu to dynamically determine the
	maximum number of expired records to remove in the accessed linked list of
	records. It is a fundamental concept in computer science and the relevant art
	that any variable or parameter affecting any aspect of a system can be
	dynamically determined based on information available to the system. One of
	ordinary skill in the art would have been motivated to combine the system
	disclosed in Mathieu with the fundamental concept of dynamically determining

Joint Invalidity Contentions & Production of Documents

Case No. 6:09-CV-549-LED

Asserted C	laims From	Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
U.S. Pat. No. 5,893,120		Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)
		("Mathieu") alone and in combination
		the maximum number of expired records to remove in an accessed linked list
		of records to solve a number of potential problems. For example, the removal
		of expired records described in Mathieu can be burdensome on the system,
		adding to the system's load and slowing down the system's processing.
		Moreover, the removal could also force an interruption in real-time processing
		as the processing waits for the removal to complete. Indeed, part of the
		motivation for the system disclosed in Mathieu is avoiding these problems.
		One of ordinary skill in the art would have known that dynamically
		determining the maximum number to remove would limit the burden on the
		system and bound the length of any real-time interruption to prevent delays in
		processing. Indeed, Nemes concedes that such dynamic determination was
		obvious when he states in the 120 patent that "[a] person skilled in the art will
		appreciate that the technique of removing all expired records while searching
		the linked list can be expanded to include techniques whereby not necessarily all avaired records are removed, and that the decision recording if and how
		an expired records are removed, and that the decision regarding if and now many records to delete can be a dynamic one " '120 at 7:10.15
		many records to delete can be a dynamic one. 120 at 7.10-13.
		To the extent that dynamically determining a maximum number of expired
		records is not disclosed by Mathieu in combination with Morrison Kenvon-
		Mathieu Aldous Dirks Thatte, the '663 Patent, or the Opportunistic Garbage
		Collection References, it is disclosed by Linux 2.0.1, which describes
		dynamically determining maximum number of expired ones of the records to
		remove when the linked list is accessed. It would have been obvious to
		combine Linux 2.0.1 with Mathieu. For example, both Linux 2.0.1 and
		Mathieu describe systems and methods for performing data storage and
		retrieval using known programming techniques to yield a predictable result.
		When invoked, the function rt_cache_add automatically increments an

Asserted Claims From U.S. Pat. No. 5,893,120	Claire M. Mathieu and Jeffrey Scott Vitter, <i>Maximum Queue Size and</i> <i>Hashing with Lazy Deletion</i> , 851 RAPPORTS DE RECHERCHE 1 (June 1988) ("Mathieu") alone and in combination
	integer variable rt_cache_size. <i>See</i> Linux 2.0.1, route.c at line 1359. When the function rt_cache_add removes an expired record, the function rt_cache_add decrements the variable rt_cache_size. <i>See</i> Linux 2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the number of records in the hash table (i.e., ip_rt_hash_table). Because the function rt_cache_add automatically increments and decrements the variable rt_cache_size is determined dynamically.
	Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1. The function rt_garbage_collect_1 loops through each of the linked lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at lines 1122-1138. In this way, the function rt_garbage_collect_1 accesses the linked list. When the function rt_garbage_collect_1 identifies a record that is expired, the function rt_garbage_collect_1 decrements the variable rt_cache_size and frees the record. See Linux 2.0.1, route.c at lines 1128-1135.
	Because all records in the linked list can be expired and all records in the hash table can be in the linked list, the variable rt_cache_size can represent a dynamically determined maximum number of expired ones of the records to remove when function rt_garbage_collect_1 accesses the linked list.
	Furthermore, the function rt_cache_add determines whether the number of records in the hash table exceeds a predetermined threshold RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds

Asserted C	laims From	Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
U.S. Pat. No. 5,895,120		Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988) ("Mathieu") alone and in combination
		the predetermined threshold RT_CACHE_SIZE_MAX, the function
		rt_cache_add invokes a function rt_garbage_collect. See Linux
		2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
		invokes a function rt_garbage_collect_1. <i>See</i> Linux 2.0.1, route.c at
		line 1293. The function rt_garbage_collect invokes a function
		rt_garbage_collect_1. <i>See</i> Linux 2.0.1, route.c at line 1293.
		The function rt_garbage_collect_1 loops through each linked list in the hash table. <i>See</i> Linux 2.0.1, route.c at lines 1116-1132. For each linked list in the hash table, the function rt_garbage_collect_1 looks at each record in the linked list. <i>See</i> Linux 2.0.1, route.c at lines 1120-1131. For each record in a linked list, the function rt_garbage_collect_1 determines whether the record's last use time plus the record's expiration factor is later than the current time. <i>See</i> Linux 2.0.1, route.c at line 1122. If the record's last use time plus the record is last the record's last use time plus the record from the linked list. <i>See</i> Linux 2.0.1, route.c at line 1122. If the record's last use time plus the record's last use time plus the record from the linked list. <i>See</i> Linux 2.0.1, route.c at lines 1124-1130. The record's expiration factor is based on a variable expire and the record's reference count. <i>See</i> Linux 2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed timeout value RT_CACHE_TIMEOUT. <i>See</i> Linux 2.0.1, route.c at line 1110.
		After looping through all of the linked lists in this manner, the function rt_garbage_collect_1 determines again whether the number of records in the hash table is less than the predetermined threshold RT CACHE SIZE MAX. <i>See</i> Linux 2.0.1, route.c at line 1133. If the number
		of items in the hash table is still greater than the predetermined threshold
		RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves

Joint Invalidity Contentions & Production of Documents

Case No. 6:09-CV-549-LED

Asserted Claims From U.S. Pat. No. 5,893,120	Claire M. Mathieu and Jeffrey Scott Vitter, <i>Maximum Queue Size and</i> <i>Hashing with Lazy Deletion</i> , 851 RAPPORTS DE RECHERCHE 1 (June 1988) ("Mathieu") alone and in combination
	the variable expire and loops through each of the linked lists in the hash table. See Linux 2.0.1, route.c at line 1135. In this way, the function rt_garbage_collect_1 can remove additional records from the linked lists in the hash table. The function rt_garbage_collect_1 repeats this process until the total number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX.
	Under Bedrock's proposed claim constructions, the records removed by the function rt_garbage_collect_1 are "expired" records. That is, the records removed by the function rt_garbage_collect_1 are data items which after a limited time or after the occurrence of some event become obsolete, such that their presence in the storage system is no longer needed or desired.
	The function rt_cache_add only removes a record from a linked list when the record's last use time plus the fixed timeout value RT_CACHE_TIMEOUT is less than the current time and the record's reference count is zero. <i>See</i> Linux 2.0.1, route.c at line 1369. Thus, the maximum number of records that the function rt_cache_add can remove from a given linked list is limited to those records whose reference counts are zero.
	In contrast, the maximum number of records that the function rt_garbage_collect_1 can remove from a given linked list is not limited to those records whose reference counts are zero. <i>See</i> Linux 2.0.1, route.c at line 1122. Rather, the function rt_garbage_collect_1 can remove records whose reference counts are zero and records whose reference counts are greater than zero.

Asserted Claims From U.S. Pat. No. 5,893,120		Claire M. Mathieu and Jeffrey Scott Vitter, <i>Maximum Queue Size and</i> <i>Hashing with Lazy Deletion</i> , 851 RAPPORTS DE RECHERCHE 1 (June 1988) ("Mathieu") alone and in combination
		Consequently, the maximum number of records that the function rt_garbage_collect_1 can remove from a linked list is different than the maximum number of records that the function rt_cache_add can remove from a linked list.
3. A method for storing and retrieving information records using a linked list to store and provide access to the records, at least some of the records automatically expiring, the method comprising the steps of:	7. A method for storing and retrieving information records using a hashing technique to provide access to the records and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring, the method comprising the steps of:	To the extent the preamble is a limitation, Mathieu discloses a method for storing and retrieving information records using a linked list to store and provide access to the records, at least some of the records automatically expiring. Mathieu also discloses a method for storing and retrieving information records using a hashing technique to provide access to the records and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring. To the extent the preamble is a limitation, Mathieu discloses a method for storing and retrieving information records using a hashing technique to provide access to the records and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring. For example, Mathieu discloses "a non-Markovian process (data structure) for processing plane-sweep information in computational geometry, called 'hashing with lazy deletion' (HwLD)." Mathieu, <i>supra</i> at 1. Moreover, it is inherent to the Mathieu disclosure that the hash table described herein is a separate-chaining hash table to resolve unavoidable key collisions, where each slot of the bucket array is a pointer to a linked list that contains the key-value pairs that hash to the same location. Other data structures, such as balanced trees, only offer logarithmic time complexity and can be complicated

Asserted Claims From		Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
U.S. Pat. No. 5,893,120		("Mathieu") alone and in combination
		buckets, the separate-chaining hash table solution offers constant expected search times and makes deletion easy. To the extent is it not inherent, it would be obvious to combine Mathieu with the prior art disclosed in, <i>The Complexity</i> <i>of Hashing with Lazy Deletion</i> , Christopher J. Van Wyk and Jeffrey Scott Vitter, <i>The Complexity of Hashing with Lazy Deletion</i> , 1 Algorithmica 17, 18 (November, 1986) ("Van Wyk"), because Mathieu describes and incorporates Van Wyk by reference. Mathieu at 2. Van Wyk discloses a method of hashing with lazy deletion using a separate-chaining hash table as a more efficient solution to collisions than the available alternatives, such as balanced trees. <i>See</i> Exhibit C-1 which is herein incorporated by reference.
[3a] accessing the linked list of records,	[7a] accessing a linked list of records having same hash address,	Mathieu discloses accessing a linked list of records. Mathieu also discloses accessing a linked list of records having same hash address. For example, Mathieu discloses "a non-Markovian process (data structure) for processing plane-sweep information in computational geometry, called 'hashing with lazy deletion' (HwLD)." Mathieu, <i>supra</i> at 1. Moreover, Mathieu discloses that "[p]lane-sweep algorithms process a sequence of items over time; at time <i>t</i> the data structure stores the items that are 'living' at time <i>t</i> . Let us think of the <i>i</i> th item as being an interval [s_i , t_i] in the unit interval, containing a unique key k_i of supplementary information. The <i>i</i> th item is 'born' at time s_i , 'dies' at time t_i , and is 'living' at time <i>t</i> when $t \in$ [s_i , t_i]. The data structure must be able to support the dynamic operation of searching the living items based on key value." <i>Id.</i> at 2-3. Moreover, it is inherent to the Mathieu disclosure that the hash table described herein is a separate-chaining hash table to resolve unavoidable key collisions,

Asserted Claims From U.S. Pat. No. 5,893,120		Claire M. Mathieu and Jeffrey Scott Vitter, <i>Maximum Queue Size and</i> <i>Hashing with Lazy Deletion</i> , 851 RAPPORTS DE RECHERCHE 1 (June 1988) ("Mathieu") alone and in combination
		 where each slot of the bucket array is a pointer to a linked list that contains the key-value pairs that hash to the same location. Other data structures, such as balanced trees, only offer logarithmic time complexity and can be complicated to implement and require several pointers per item. With a suitable number of buckets, the separate-chaining hash table solution offers constant expected search times and makes deletion easy. To the extent is it not inherent, it would be obvious to combine Mathieu with the prior art disclosed in, <i>The Complexity of Hashing with Lazy Deletion</i>, Christopher J. Van Wyk and Jeffrey Scott Vitter, <i>The Complexity of Hashing with Lazy Deletion</i>, 1 Algorithmica 17, 18 (November, 1986) ("Van Wyk"), because Mathieu describes and incorporates Van Wyk by reference. Mathieu at 2. Van Wyk discloses a method of hashing with lazy deletion using a separate-chaining hash table as a more efficient solution to collisions than the available alternatives, such as balanced trees. <i>See</i> Exhibit C-1 which is herein incorporated by reference.
[3b] identifying at least some of the automatically expired ones of the records, and	[7b] identifying at least some of the automatically expired ones of the records,	 Mathieu discloses identifying at least some of the automatically expired ones of the records. For example, Mathieu discloses "a non-Markovian process (data structure) for processing plane-sweep information in computational geometry, called 'hashing with lazy deletion' (HwLD)." Mathieu, <i>supra</i> at 1. Moreover, Mathieu discloses that "[p]lane-sweep algorithms process a sequence of items over time; at time <i>t</i> the data structure stores the items that are 'living' at time <i>t</i>. Let us think of the <i>i</i>th item as being an interval [<i>s_i</i>, <i>t_i</i>] in the unit interval, containing a unique key <i>k_i</i> of supplementary information. The

Asserted Claims From U.S. Pat. No. 5,893,120		Claire M. Mathieu and Jeffrey Scott Vitter, <i>Maximum Queue Size and</i> <i>Hashing with Lazy Deletion</i> , 851 RAPPORTS DE RECHERCHE 1 (June 1988) ("Mathieu") alone and in combination
		<i>i</i> th item is 'born' at time s_i , 'dies' at time t_i , and is 'living' at time t when $t \in [s_i, t_i]$. The data structure must be able to support the dynamic operation of searching the living items based on key value." <i>Id.</i> at 2-3.
		"In HwLD, items are stored in a hash table of <i>H</i> buckets, based on the hash value of the key. The distinguishing feature of HwLD is that an item is not deleted as soon as it dies; the 'lazy deletion' strategy deletes a dead item only when a later insertion accesses the same bucket. The number <i>H</i> of buckets is chosen so that the expected number of items per bucket is small. HwLD is thus more time-efficient than doing 'vigilant-deletion,' at a cost of storing some dead items." <i>Id.</i> at 3.
[3c] removing at least some of the automatically expired records from the	[7c] removing at least some of the automatically expired records from the	Mathieu discloses removing at least some of the automatically expired records from the linked list when the linked list is accessed.
linked list when the linked list is accessed.	linked list when the linked list is accessed, and	For example, Mathieu discloses "a non-Markovian process (data structure) for processing plane-sweep information in computational geometry, called 'hashing with lazy deletion' (HwLD)." <i>Id.</i> at 1.
		Moreover, Mathieu discloses that "[p]lane-sweep algorithms process a sequence of items over time; at time <i>t</i> the data structure stores the items that are 'living' at time <i>t</i> . Let us think of the <i>i</i> th item as being an interval $[s_i, t_i]$ in the unit interval, containing a unique key k_i of supplementary information. The <i>i</i> th item is 'born' at time s_i , 'dies' at time t_i , and is 'living' at time <i>t</i> when $t \in [s_i, t_i]$. The data structure must be able to support the dynamic operation of searching the living items based on key value." <i>Id.</i> at 2-3.
		"In HwLD, items are stored in a hash table of <i>H</i> buckets, based on the hash value of the key. The distinguishing feature of HwLD is that an item is not

Asserted Claims From U.S. Pat. No. 5,893,120		Claire M. Mathieu and Jeffrey Scott Vitter, <i>Maximum Queue Size and</i> <i>Hashing with Lazy Deletion</i> , 851 RAPPORTS DE RECHERCHE 1 (June 1988)
		("Mathieu") alone and in combination
		deleted as soon as it dies; the 'lazy deletion' strategy deletes a dead item only when a later insertion accesses the same bucket. The number <i>H</i> of buckets is chosen so that the expected number of items per bucket is small. HwLD is thus more time-efficient than doing 'vigilant-deletion,' at a cost of storing some dead items." <i>Id.</i> at 3.
		Moreover, it is inherent to the Mathieu disclosure that the hash table described herein is a separate-chaining hash table to resolve unavoidable key collisions, where each slot of the bucket array is a pointer to a linked list that contains the key-value pairs that hash to the same location. Other data structures, such as balanced trees, only offer logarithmic time complexity and can be complicated to implement and require several pointers per item. With a suitable number of buckets, the separate-chaining hash table solution offers constant expected search times and makes deletion easy.
		To the extent is it not inherent, it would be obvious to combine Mathieu with the prior art disclosed in, <i>The Complexity of Hashing with Lazy Deletion</i> , Christopher J. Van Wyk and Jeffrey Scott Vitter, <i>The Complexity of Hashing with Lazy Deletion</i> , 1 Algorithmica 17, 18 (November, 1986) ("Van Wyk"), because Mathieu describes and incorporates Van Wyk by reference. Mathieu at 2. Van Wyk discloses a method of hashing with lazy deletion using a separate-chaining hash table as a more efficient solution to collisions than the available alternatives, such as balanced trees. <i>See</i> Exhibit C-1 which is herein incorporated by reference.
	[7d] inserting, retrieving or deleting one of the records from the system following	Mathieu discloses inserting, retrieving or deleting one of the records from the system following the step of removing.

Asserted Claims From		Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
U.S. Pat. No. 5,893,120		Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)
		("Mathieu") alone and in combination
	the step of removing.	Moreover, Mathieu discloses that "[p]lane-sweep algorithms process a
		sequence of items over time; at time <i>t</i> the data structure stores the items that
		are 'living' at time t. Let us think of the <i>i</i> th item as being an interval $[s_i, t_i]$ in
		the unit interval, containing a unique key k_i of supplementary information. The
		<i>i</i> th item is 'born' at time s_i , 'dies' at time t_i , and is 'living' at time t when $t \in$
		$[s_i, t_i]$. The data structure must be able to support the dynamic operation of
		searching the living items based on key value." Id. at 2-3.
		"In HwLD, items are stored in a hash table of <i>H</i> buckets, based on the hash
		value of the key. The distinguishing feature of HwLD is that an item is not
		deleted as soon as it dies; the 'lazy deletion' strategy deletes a dead item only
		when a later insertion accesses the same bucket. The number <i>H</i> of buckets is
		chosen so that the expected number of items per bucket is small. HwLD is
		thus more time-efficient than doing 'vigilant-deletion,' at a cost of storing
		some dead items." Id. at 3.
		Moreover, it is inherent to the Mathieu disclosure that the hash table described
		herein is a separate-chaining hash table to resolve unavoidable key collisions,
		where each slot of the bucket array is a pointer to a linked list that contains the
		key-value pairs that hash to the same location. Other data structures, such as
		balanced trees, only offer logarithmic time complexity and can be complicated
		to implement and require several pointers per item. With a suitable number of
		buckets, the separate-chaining hash table solution offers constant expected
		search times and makes deletion easy.
		To the extent is it not inherent, it would be obvious to combine Mathieu with
		the prior art disclosed in, The Complexity of Hashing with Lazy Deletion,
		Christopher J. Van Wyk and Jeffrey Scott Vitter, The Complexity of Hashing

Asserted Claims From U.S. Pat. No. 5,893,120		Claire M. Mathieu and Jeffrey Scott Vitter, <i>Maximum Queue Size and</i> <i>Hashing with Lazy Deletion</i> , 851 RAPPORTS DE RECHERCHE 1 (June 1988) ("Mathieu") alone and in combination
		<i>with Lazy Deletion</i> , 1 Algorithmica 17, 18 (November, 1986) ("Van Wyk"), because Mathieu describes and incorporates Van Wyk by reference. Mathieu at 2. Van Wyk discloses a method of hashing with lazy deletion using a separate-chaining hash table as a more efficient solution to collisions than the available alternatives, such as balanced trees. <i>See</i> Exhibit C-1 which is herein incorporated by reference.
		Moreover, Van Wyk and Vitter explain that "[t]he insertion of element x_i proceeds as follows: 1) Compute $h = n(k_i)$
		2) Remove from the hash chain in bucket <i>h</i> any items x_j with $t_j < s_j$ [i.e. remove all expired elements]
		3) Add x_i so the chain in bucket <i>h</i> remains sorted by termination time." Van Wyk at 19.
		This method clearly contemplates the insertion occurring after the removal of expired elements.
4. The method according to claim 3 further including the step of dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed.	8. The method according to claim 7 further including the step of dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed.	Mathieu discloses dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed. Mathieu teaches a method for calculating a bound on the space complexity of the hashing with lazy deletion algorithm, i.e., the number of expired elements that would remain in the linked lists forming the external chains of the hash table. See, e.g., Mathieu at 12-22. That bound calculation is a means for dynamically determining the maximum number to remove, since the maximum number of elements to remove should never exceed the number of expired elements that would remain in the linked lists.

Asserted Claims F U.S. Pat. No. 5,893	rom ,120	Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)
		("Mathieu") alone and in combination To the extent Mathieu does not disclose this element, Mathieu combined with Morrison, Kenyon-Mathieu or Aldous discloses this element. Morrison, Kenyon-Mathieu, and Aldous also teach methods for calculating a bound on the space complexity of the hashing with lazy deletion algorithm. See, e.g., Morrison at 1156-61, Kenyon-Mathieu at 475-486, Aldous 17-21. It would have been obvious to one of ordinary skill in the art that these methods of calculating bounds on the number of expired elements stored in the linked list could also be used to dynamically determine a maximum number for the record search means disclosed in Mathieu to remove. One of ordinary skill would have been motivated to combine the teachings of Morrison, Kenyon-Mathieu, and Aldous with Mathieu because they all sought to analyze the complexity of the hashing with lazy deletion algorithm, and each of the papers refers to and builds upon the work of those papers preceding. See, e.g., Morrison at 1155, 1158, Mathieu at 1-4, Kenyon-Mathieu at 473-475, Aldous at 2-3.
		Mathieu combined with Dirks, Thatte, the '663 patent and/or the Opportunistic Garbage Collection Articles discloses dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed.
		Dirks discloses the management of memory in a computer system and more particularly to the allocation of address space in a virtual memory system, which dynamically determines how many records to sweep/remove upon each allocation. Disclosure of these claim elements in Dirks is clearly shown in Exhibit B-2, which is hereby incorporated by reference in its entirety.

Asserted C U.S. Pat. No	laims From 5, 5,893,120	Claire M. Mathieu and Jeffrey Scott Vitter, <i>Maximum Queue Size and Hashing with Lazy Deletion</i> , 851 RAPPORTS DE RECHERCHE 1 (June 1988)
		("Mathieu") alone and in combination
	3. 3,093,120	 Hashing with Lazy Detection, 351 KAPPORTS DE RECHERCHET (Julie 1988) ("Mathieu") alone and in combination For example, as summarized in Dirks, each time a VSID is assigned from the free list to a new application or thread, a fixed number of entries in the page table are scanned to determine whether they have become inactive, by checking them against the VSIDs on the recycle list. Each entry which is identified as being inactive is removed from the page table. After all of the entries in the page table have been examined in this manner, the VSIDs in the recycle list can be transferred to the free list, since all of their associated page table entries will have been removed. This approach thereby guarantees that a predetermined number of VSIDs are always available in the free list without requiring a time accomming scene of the complete page table at
		 without requiring a time-consuming scan of the complete page table at once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14. After [a] new VSID has been allocated, the system checks a flag RFLG to determine whether a recycle sweep is currently in progress (Step 20). If there is no sweep in progress, i.e. RFLG is not equal to one, a determination is made whether a sweep should be initiated. This is done by checking whether the inactive list is full, i.e. whether it contains x entries (Step 22). If the number of entries I on the inactive list is less than x, no further action is taken, and processing control returns to the operating system (Step 24). If, however, the inactive list is full at this time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are transferred to the recycle list, and an index n is reset to 1 (Step 28). The system then sweeps a predetermined number of page table entries PT_i on the page table, to detect whether any of them are inactive, i.e. their associated VSID is on the recycle list (Step 30). The predetermined number of entries that are swept is identified as <i>k</i>, where:

Asserted Claims From U.S. Pat. No. 5,893,120	Claire M. Mathieu and Jeffrey Scott Vitter, <i>Maximum Queue Size and</i> <i>Hashing with Lazy Deletion</i> , 851 RAPPORTS DE RECHERCHE 1 (June 1988) ("Mathieu") alone and in combination
	$k = \frac{\text{total number of page table entries}}{\text{maximum number of active threads}}$ <i>Id.</i> at 8:12-30.
	Dirks discloses that any approach can be employed to determine the number of entries to be examined during each step of the sweeping process. <i>Id.</i> at 7:37-40. As stated in Dirks:
	Any other suitable approach can be employed to determine the number of entries to be examined during each step of the sweeping process. In this regard, it is not necessary that the number of examined entries be fixed for each step. Rather, it might vary from one step to the next. The only criterion is that the number of entries examined on each step be such that all entries in the page table are examined in a determinable amount of time or by the occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.
	<i>Id.</i> at 7:38-46. Thus, Dirks dynamically determines the maximum number of records to sweep/remove by calculating a value <i>k</i> . <i>Id</i> . at 7:15-46, 7:66-8:56.
	As both Mathieu and Dirks relate to deletion of aged records upon the allocation of a new incoming record, one of ordinary skill in the art would have understood how to use Dirks' dynamic decision making process of determining the maximum number of records to sweep/remove in other hash tables implementations such as Mathieu. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching

32

Asserted Claims From		Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
U.S. Pat. No. 5,893,120		Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)
		("Mathieu") alone and in combination
		the linked list can be expanded to include techniques whereby not necessarily
		all expired records are removed, and that the decision regarding if and how
		many records to delete can be a dynamic one." The '120 patent at 7:10-15.
		Additionally, one of ordinary skill in the art would recognize that the result of
		combining Dirks' deletion decision procedure with Mathieu's technique of
		"lazy deletion" would be nothing more than the predictable use of prior art
		elements according to their established functions.
		By way of further example, one of ordinary skill in the art would have
		combined Dirks' dynamic determination of the suitable number of entries to
		examine during each step of the sweeping process with Mathieu's system and
		method of "lazy deletion" and would have seen the benefits of doing so. One
		possible benefit, for example, is that the system and method of lazy deletion
		could perform a specified number of deletions on any given sweep, thus saving
		the system from performing sometimes time-consuming sweeps.
		Alternatively, one of ordinary skill in the art would be motivated to, and would
		understand how to, combine the system disclosed in Mathieu with the means
		for dynamically determining maximum number for the record search means to
		remove in the accessed linked list of records disclosed by Thatte. For example,
		Thatte discloses a system and method using hash tables and/or linked lists and
		further discloses means for dynamically determining the maximum number for
		the record search means to remove in the accessed linked list of records. The
		uisciosure of mese claim elements in Thatle is clearly shown in Exhibit B-1, which is hereby incorporated by reference in its entirety
		which is hereby incorporated by reference in its entirety.
		Moreover, one of ordinary skill in the art would recognize that these
		combinations would improve the similar systems and methods in the same

Joint Invalidity Contentions & Production of Documents

Case No. 6:09-CV-549-LED

Asserted Claims From	Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
U.S. Pat. No. 5,893,120	Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)
	("Mathieu") alone and in combination
	 way. Additionally, one of ordinary skill in the art would recognize that the result of combining Mathieu with Thatte would be nothing more than the predictable use of prior art elements according to their established functions. The resulting combination would include the capability to determine the maximum number for the record search means to remove. Further, one of ordinary skill in the art would be motivated to combine Mathieu with Thatte and recognized the benefits of doing so. For example, the removal of expired records described in Mathieu can be burdensome on the system, adding to the system's load and slowing down the system's processing. One of ordinary skill in the art would solve this problem by dynamically determining how many records to delete based on, among other things, the system load. Moreover, the '120 patent discloses that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine Mathieu with Thatte
	Alternatively, it would also be obvious to combine Mathieu with the '663 patent. Disclosure of these claim elements in the '663 patent is clearly shown in Exhibit B-13, which is hereby incorporated by reference in its entirety. For example, as summarized in the '663 patent: during normal times when the load on the storage system is not excessive, a non-contaminating but slow deletion of records is

Asserted Claims From		Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
U.S. Pat. No. 5,893,120		Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)
		("Mathieu") alone and in combination
		("Mathieu") alone and in combination used. This slow, non-contaminating deletion involves closing the collision-resolution chain of locations by moving a record from a later position in the chain into the position of the record to be deleted. This leaves no deleted record locations in the storage space to slow down future searches. U.S. Patent 4,996,663 to Nemes at 2:24-34 ("The '663 patent"). In times of heavy use, when deletions must be done rapidly and no time is available for decontamination, the record is simply marked as "deleted" and left in place. Later non-contaminating probes in the vicinity of such deleted record locations automatically remove the contaminating deleted records by moving records in the chain as described above. <i>Id.</i> at 2:35-41. This hybrid hashing technique has the decided advantage of automatically eliminating contamination caused by the fast-secure deletion procedure when the slower, non-contaminating deletion is used when the load on the system is at lower levels. <i>Id.</i> at 2:42-46.
		This hybrid deletion is shown in Figure 5.

Asserted Claims From U.S. Pat. No. 5,893,120	Claire M. Mathieu and Jeffrey Scott Vitter, <i>Maximum Queue Size and</i> <i>Hashing with Lazy Deletion</i> , 851 RAPPORTS DE RECHERCHE 1 (June 1988) ("Mathieu") alone and in combination
	<i>FIG.5</i> HYBRID DELETION <i>FIG.5</i> <i>HYBRID</i> DELETION <i>FIG.5</i> <i>HYBRID</i> DELETION <i>FIG.7</i> <i>FIG.5</i> <i>FIG.7</i> <i>FIG.5</i> <i>FIG.7</i> <i>FIG.5</i> <i>FIG.7</i> <i>FIG.5</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i> <i>FIG.7</i>
	slow-non-contaminating delete 53 is used. <i>Id.</i> The fast-secure delete 52 does

Asserted Claims From U.S. Pat. No. 5,893,120		Claire M. Mathieu and Jeffrey Scott Vitter, <i>Maximum Queue Size and</i> <i>Hashing with Lazy Deletion</i> , 851 RAPPORTS DE RECHERCHE 1 (June 1988) ("Mathieu") alone and in combination
		not actually delete records, rather it marks records as deleted. <i>Id.</i> at 8:1-33, Figure 7. These records are then actually deleted by a subsequent slow-non- contaminating delete 53. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B. Thus, the hybrid deletion procedure in the '663 patent dynamically determines
		a maximum number of records to remove. <i>See id.</i> at 6:40-64, Figure 5. If the fast-secure delete 52 is used, then maximum number of records is zero because records are not deleted they are only marked. <i>Id.</i> at 8:1-33, Figure 7. If the slow-non-contaminating delete 53 is used, then the maximum number of records to remove is all of the contaminated records in the bucket. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
		As both Mathieu and the '663 patent relate to deletion of records from hash tables using external chaining, one of ordinary skill in the art would understood how to use the '663 patent's dynamic decision on whether to perform a deletion based on a systems load in other hash table implementations such as Mathieu. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the '663 patent's deletion decision procedure with Mathieu's technique of "lazy deletion" would be nothing more than the predictable use of prior art elements according to their established functions.

Asserted Claims From		Claire M. Mathieu and Jeffrey Scott Vitter, <i>Maximum Queue Size and</i> Hashing with Lary Deletion, 851 BARDONTS DE RECHERCHE 1 (June 1088)
U.S. Fat. No. 5,095,120		("Mathieu") alone and in combination
		By way of further example, one of ordinary skill in the art would have combined the '663 patent's dynamic decision on whether to perform a deletion based on a systems load as taught by the '663 patent and with Mathieu's system and method of "lazy deletion" and would have seen the benefits of
		Every time a user-input routine is invoked, a decision routine can decide

Asserted Claims From U.S. Pat. No. 5,893,120	Claire M. Mathieu and Jeffrey Scott Vitter, <i>Maximum Queue Size and</i> <i>Hashing with Lazy Deletion</i> , 851 RAPPORTS DE RECHERCHE 1 (June 1988)
	("Mathieu") alone and in combination
	whether to garbage collect. As long as the decision routine takes no more than a few milliseconds to execute, it should not interfere with responsiveness. Since it is only invoked at these times, it does not incur a continual run-time overhead. <i>Opportunistic Garbage Collection</i> at 100.
	This decision routine should take several things into account: 1) the volume of data allocated since the last scavenge, 2) how long it has been since the user has had an opportunity to interact, and 3) the height of the stack relative to its average height at reads since the last scavenge. If the product of the allocation and the compute time is high, and if the stack is low, the scavenge favorability measure is high. If it is especially high, a multi-generation scavenge is in order. <i>Id</i> .
	If these heuristics fail and a scavenge is forced instead by the filling of a generation's space, it is likely to happen during a significant compute- bound pausethe one that has just allocated the data that forced the collection. When the opportunistic mechanism fails to find the end of a pause, it may still succeed by default, embedding a scavenge pause within a larger pause. <i>Design of the Opportunistic Garbage Collector</i> at 32.
	As both Mathieu and the Opportunistic Garbage Collection Articles relate to deletion of aged records, one of ordinary skill in the art would have understood how to use the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion based on a system load in other hash table implementations such as Mathieu. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching

Asserted Claims From U.S. Pat. No. 5.893,120	Claire M. Mathieu and Jeffrey Scott Vitter, <i>Maximum Queue Size and</i> Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)
	("Mathieu") alone and in combination
	the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the Opportunistic Garbage Collection Articles' deletion decision procedure with Mathieu's technique of "lazy deletion" would be nothing more than the predictable use of prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have combined the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion and how many generations to scavenge as taught by the Opportunistic Garbage Collection Articles and with Mathieu's system and method of "lazy deletion" and would have seen the benefits of doing so. One such benefit, for example, is that the system and method of lazy deletion would only perform deletions when the system was not already too overloaded, thus preventing slowdown of the system.
	Additionally, it would have been obvious to one of ordinary skill in the art to modify the system disclosed in Mathieu to dynamically determine the maximum number of expired records to remove in the accessed linked list of records. It is a fundamental concept in computer science and the relevant art that any variable or parameter affecting any aspect of a system can be dynamically determined based on information available to the system. One of ordinary skill in the art would have been motivated to combine the system disclosed in Mathieu with the fundamental concept of dynamically determining the maximum number of expired records to remove in an accessed linked list of records to solve a number of potential problems. For example, the removal

Joint Invalidity Contentions & Production of Documents

Case No. 6:09-CV-549-LED

Asserted C	laims From	Claire M. Mathieu and Jeffrey Scott Vitter, Maximum Queue Size and
U.S. Pat. No. 5,893,120		Hashing with Lazy Deletion, 851 RAPPORTS DE RECHERCHE 1 (June 1988)
		("Mathieu") alone and in combination
		of expired records described in Mathieu can be burdensome on the system,
		adding to the system's load and slowing down the system's processing.
		Moreover, the removal could also force an interruption in real-time processing
		as the processing waits for the removal to complete. Indeed, part of the
		motivation for the system disclosed in Mathieu is avoiding these problems.
		One of ordinary skill in the art would have known that dynamically
		determining the maximum number to remove would limit the burden on the
		system and bound the length of any real-time interruption to prevent delays in
		processing. Indeed, Nemes concedes that such dynamic determination was
		obvious when he states in the '120 patent that "[a] person skilled in the art will
		appreciate that the technique of removing all expired records while searching
		the linked list can be expanded to include techniques whereby not necessarily
		all expired records are removed, and that the decision regarding if and now
		many records to delete can be a dynamic one. 120 at 7:10-13.
		To the extent that dynamically determining a maximum number of expired
		records is not disclosed by Mathieu in combination with Morrison Kenvon-
		Mathieu Aldous Dirks Thatte, the '663 Patent, or the Opportunistic Garbage
		Collection References, it is disclosed by Linux 2.0.1, which describes
		dynamically determining maximum number of expired ones of the records to
		remove when the linked list is accessed. It would have been obvious to
		combine Linux 2.0.1 with Mathieu. For example, both Linux 2.0.1 and
		Mathieu describe systems and methods for performing data storage and
		retrieval using known programming techniques to yield a predictable result.
		When invoked, the function rt_cache_add automatically increments an
		integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
		When the function rt_cache_add removes an expired record, the function

Asserted Claims From U.S. Pat. No. 5,893,120		Claire M. Mathieu and Jeffrey Scott Vitter, <i>Maximum Queue Size and</i> <i>Hashing with Lazy Deletion</i> , 851 RAPPORTS DE RECHERCHE 1 (June 1988) ("Mathieu") alone and in combination
		rt_cache_add decrements the variable rt_cache_size. See Linux 2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the number of records in the hash table (i.e., ip_rt_hash_table). Because the function rt_cache_add automatically increments and decrements the variable rt_cache_size, the variable rt_cache_size is determined dynamically.
		Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1. The function rt_garbage_collect_1 loops through each of the linked lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at lines 1122-1138. In this way, the function rt_garbage_collect_1 accesses the linked list. When the function rt_garbage_collect_1 identifies a record that is expired, the function rt_garbage_collect_1 decrements the variable rt_cache_size and frees the record. See Linux 2.0.1, route.c at lines 1128-1135.
		Because all records in the linked list can be expired and all records in the hash table can be in the linked list, the variable rt_cache_size can represent a dynamically determined maximum number of expired ones of the records to remove when function rt_garbage_collect_1 accesses the linked list.
		Furthermore, the function rt_cache_add determines whether the number of records in the hash table exceeds a predetermined threshold RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_cache_add invokes a function rt_garbage_collect. <i>See</i> Linux

42

Asserted Claims From U.S. Pat. No. 5,893,120		Claire M. Mathieu and Jeffrey Scott Vitter, <i>Maximum Queue Size and</i> <i>Hashing with Lazy Deletion</i> , 851 RAPPORTS DE RECHERCHE 1 (June 1988) ("Mathieu") alone and in combination
		2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
		invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
		line 1293. The function rt_garbage_collect invokes a function
		rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.
		The function rt_garbage_collect_1 loops through each linked list in
		the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
		list in the hash table, the function rt_garbage_collect_1 looks at each
		record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
		record in a linked list, the function rt_garbage_collect_1 determines
		whether the record's last use time plus the record's expiration factor is later
		than the current time. See Linux 2.0.1, route.c at line 1122. If the record's last
		function rt garbage gollogt 1 removes the record from the linked list
		See Linux 2.0.1 route c at lines 1124-1130. The record's expiration factor is
		based on a variable expire and the record's reference count See Linux
		2.0.1. route.c at line 1122. The variable expire is initially one half of the fixed
		timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.
		After looping through all of the linked lists in this manner, the function
		rt garbage collect 1 determines again whether the number of records
		in the hash table is less than the predetermined threshold
		RT CACHE SIZE MAX. See Linux 2.0.1, route.c at line 1133. If the number
		of items in the hash table is still greater than the predetermined threshold
		RT CACHE SIZE MAX, the function rt garbage collect 1 halves
		the variable expire and loops through each of the linked lists in the hash
		table. See Linux 2.0.1, route.c at line 1135. In this way, the function

Asserted Claims From U.S. Pat. No. 5,893,120	Claire M. Mathieu and Jeffrey Scott Vitter, <i>Maximum Queue Size and</i> <i>Hashing with Lazy Deletion</i> , 851 RAPPORTS DE RECHERCHE 1 (June 1988) ("Mathieu") alone and in combination
	rt_garbage_collect_1 can remove additional records from the linked lists in the hash table. The function rt_garbage_collect_1 repeats this process until the total number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX.
	Under Bedrock's proposed claim constructions, the records removed by the function rt_garbage_collect_1 are "expired" records. That is, the records removed by the function rt_garbage_collect_1 are data items which after a limited time or after the occurrence of some event become obsolete, such that their presence in the storage system is no longer needed or desired.
	The function rt_cache_add only removes a record from a linked list when the record's last use time plus the fixed timeout value RT_CACHE_TIMEOUT is less than the current time and the record's reference count is zero. <i>See</i> Linux 2.0.1, route.c at line 1369. Thus, the maximum number of records that the function rt_cache_add can remove from a given linked list is limited to those records whose reference counts are zero.
	In contrast, the maximum number of records that the function rt_garbage_collect_1 can remove from a given linked list is not limited to those records whose reference counts are zero. <i>See</i> Linux 2.0.1, route.c at line 1122. Rather, the function rt_garbage_collect_1 can remove records whose reference counts are zero and records whose reference counts are greater than zero.
	Consequently, the maximum number of records that the function rt_garbage_collect_1 can remove from a linked list is different than

Asserted Claims From U.S. Pat. No. 5,893,120	Claire M. Mathieu and Jeffrey Scott Vitter, <i>Maximum Queue Size and</i> <i>Hashing with Lazy Deletion</i> , 851 RAPPORTS DE RECHERCHE 1 (June 1988) ("Mathieu") alone and in combination
	the maximum number of records that the function rt_cache_add can remove from a linked list.

45

Asserted Claims From U.S. Pat. No. 5,893,120		Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, <i>General Methods for</i> <i>the Analysis of the Maximum Size of Dynamic Data Structures</i> , in Proc. 16 th International Colloquium on Automata, Languages, and Programming, Stresa, Italy, 473 (1989) ("Kenyon-Mathieu") alone and in combination
1. An information storage and retrieval system, the system comprising:	5. An information storage and retrieval system, the system comprising:	 To the extent the preamble is a limitation, Kenyon-Mathieu discloses an information storage and retrieval system. For example, Kenyon-Mathieu discloses "a non-Markovian process called <i>hashing with lazy deletion</i> (HwLD), which corresponds to an efficient way of processing sweepline information in computational geometry." Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, <i>General Methods for the Analysis of the Maximum Size of Dynamic Data Structures</i>, in Proc. 16th International Colloquium on Automata, Languages, and Programming, Stresa, Italy, 473 (1989).
[1a] a linked list to store and provide access to records stored in a memory of the system, at least some of the records automatically expiring,	[5a] a hashing means to provide access to records stored in a memory of the system and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring,	 Kenyon-Mathieu discloses a linked list to store and provide access to records stored in a memory of the system, at least some of the records automatically expiring. Kenyon-Mathieu also discloses a hashing means to provide access to records stored in a memory of the system and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring. For example, Kenyon-Mathieu discloses "a non-Markovian process called <i>hashing with lazy deletion</i> (HwLD), which corresponds to an efficient way of processing sweepline information in computational geometry." <i>Id</i>. Moreover, Kenyon-Mathieu discloses "[d]ata structures process a sequence of items over time; at time <i>t</i> the data structure stores the items that are 'living' at time <i>t</i>. Let us think of the <i>i</i>th item as being an interval [<i>s_i</i>, <i>t_i</i>] in the unit

Asserted Claims From U.S. Pat. No. 5,893,120	Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, <i>General Methods for</i> <i>the Analysis of the Maximum Size of Dynamic Data Structures</i> , in Proc. 16 th International Colloquium on Automata, Languages, and Programming, Stresa, Italy, 473 (1989) ("Kenyon-Mathieu") alone and in combination
	item is 'born' at time s_i , 'dies' at time t_i , and is 'living' at time t when $t \in [s_i, t_i]$. The data structure also handles dynamic queries over time." <i>Id.</i> at 474.
	"In HwLD, items are stored in a hash table of H buckets, based upon the hash value of the key. The distinguishing feature of HwLD is that an item is not deleted as soon as it dies; the 'lazy deletion' strategy deletes a dead item only when a later insertion accesses the same bucket. The number H of buckets is chosen so that the expected number of items per bucket is small. HwLD is thus more time-efficient than doing 'vigilant-deletion,' at a cost of storing dead items." <i>Id</i> .
	Moreover, it is inherent to the Kenyon-Mathieu disclosure that the hash table described herein is a separate-chaining hash table to resolve unavoidable key collisions, where each slot of the bucket array is a pointer to a linked list that contains the key-value pairs that hash to the same location. Other data structures, such as balanced trees, only offer logarithmic time complexity and can be complicated to implement and require several pointers per item. With a suitable number of buckets, the separate-chaining hash table solution offers constant expected search times and makes deletion easy.
	To the extent is it not inherent, it would be obvious to combine Kenyon- Mathieu with the prior art disclosed in, <i>The Complexity of Hashing with Lazy</i> <i>Deletion</i> , Christopher J. Van Wyk and Jeffrey Scott Vitter, <i>The Complexity of</i> <i>Hashing with Lazy Deletion</i> , 1 Algorithmica 17, 18 (November, 1986) ("Van Wyk"), because Kenyon-Mathieu describes and incorporates Van Wyk by reference. Kenyon-Mathieu at 473. Van Wyk discloses a method of hashing with lazy deletion using a separate-chaining hash table as a more efficient

2

Joint Invalidity Contentions & Production of Documents

Case No. 6:09-CV-549-LED

Asserted Claims From U.S. Pat. No. 5,893,120		Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, <i>General Methods for</i> <i>the Analysis of the Maximum Size of Dynamic Data Structures</i> , in Proc. 16 th International Colloquium on Automata, Languages, and Programming, Stresa, Italy, 473 (1989) ("Kenyon-Mathieu") alone and in combination
		solution to collisions than the available alternatives, such as balanced trees. <i>See</i> Exhibit C-1 which is herein incorporated by reference.
[1b] a record search means utilizing a search key to access the linked list,	[5b] a record search means utilizing a search key to access a linked list of records having the same hash address,	 Kenyon-Mathieu discloses a record search means utilizing a search key to access the linked list. Kenyon-Mathieu also discloses a record search means utilizing a search key to access a linked list of records having the same hash address. For example, Kenyon-Mathieu discloses "a non-Markovian process called <i>hashing with lazy deletion</i> (HwLD), which corresponds to an efficient way of processing sweepline information in computational geometry." Kenyon-Mathieu, <i>supra</i> at 473.
		Moreover, Kenyon-Mathieu discloses "[d]ata structures process a sequence of items over time; at time <i>t</i> the data structure stores the items that are 'living' at time <i>t</i> . Let us think of the <i>i</i> th item as being an interval $[s_i, t_i]$ in the unit interval, containing a unique key k_i of supplementary information. The <i>i</i> th item is 'born' at time s_i , 'dies' at time t_i , and is 'living' at time <i>t</i> when $t \in [s_i, t_i]$. The data structure also handles dynamic queries over time." <i>Id</i> . at 474. Moreover, it is inherent to the Kenyon-Mathieu disclosure that the hash table described herein is a separate-chaining hash table to resolve unavoidable key collisions, where each slot of the bucket array is a pointer to a linked list that contains the key-value pairs that hash to the same location. Other data structures, such as balanced trees, only offer logarithmic time complexity and can be complicated to implement and require several pointers per item. With a suitable number of buckets, the separate-chaining hash table solution offers

Joint Invalidity Contentions & Production of Documents

Case No. 6:09-CV-549-LED
Asserted Claims From U.S. Pat. No. 5,893,120		Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, <i>General Methods for</i> <i>the Analysis of the Maximum Size of Dynamic Data Structures</i> , in Proc. 16 th International Colloquium on Automata, Languages, and Programming, Stresa, Italy, 473 (1989) ("Kenyon-Mathieu") alone and in combination
		constant expected search times and makes deletion easy. To the extent is it not inherent, it would be obvious to combine Kenyon- Mathieu with the prior art disclosed in, <i>The Complexity of Hashing with Lazy</i> <i>Deletion</i> , Christopher J. Van Wyk and Jeffrey Scott Vitter, <i>The Complexity of</i> <i>Hashing with Lazy Deletion</i> , 1 Algorithmica 17, 18 (November, 1986) ("Van Wyk"), because Kenyon-Mathieu describes and incorporates Van Wyk by reference. Kenyon-Mathieu at 473. Van Wyk discloses a method of hashing with lazy deletion using a separate-chaining hash table as a more efficient solution to collisions than the available alternatives, such as balanced trees. <i>See</i> Exhibit C-1 which is herein incorporated by reference.
[1c] the record search means including a means for identifying and removing at least some of the expired ones of the records from the linked list when the linked list is	[5c] the record search means including means for identifying and removing at least some expired ones of the records from the linked list of records when the linked list is accessed.	Kenyon-Mathieu discloses the record search means including a means for identifying and removing at least some of the expired ones of the records from the linked list when the linked list is accessed. Kenyon-Mathieu also discloses the record search means including means for identifying and removing at least some expired ones of the records from the linked list of records when the linked list is accessed.
accessed, and	and	For example, Kenyon-Mathieu discloses "a non-Markovian process called <i>hashing with lazy deletion</i> (HwLD), which corresponds to an efficient way of processing sweepline information in computational geometry." Kenyon-Mathieu, <i>supra</i> at 473.
		Moreover, Kenyon-Mathieu discloses "[d]ata structures process a sequence of items over time; at time t the data structure stores the items that are 'living' at time t . Let us think of the <i>i</i> th item as being an interval [s_i , t_i] in the unit

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, <i>General Methods for</i> <i>the Analysis of the Maximum Size of Dynamic Data Structures</i> , in Proc. 16 th International Colloquium on Automata, Languages, and Programming, Stresa, Italy, 473 (1989) ("Kenyon-Mathieu") alone and in combination
	interval, containing a unique key k_i of supplementary information. The <i>i</i> th item is 'born' at time s_i , 'dies' at time t_i , and is 'living' at time t when $t \in [s_i, t_i]$. The data structure also handles dynamic queries over time." <i>Id.</i> at 474.
	"In HwLD, items are stored in a hash table of H buckets, based upon the hash value of the key. The distinguishing feature of HwLD is that an item is not deleted as soon as it dies; the 'lazy deletion' strategy deletes a dead item only when a later insertion accesses the same bucket. The number H of buckets is chosen so that the expected number of items per bucket is small. HwLD is thus more time-efficient than doing 'vigilant-deletion,' at a cost of storing dead items." <i>Id</i> .
	Moreover, it is inherent to the Kenyon-Mathieu disclosure that the hash table described herein is a separate-chaining hash table to resolve unavoidable key collisions, where each slot of the bucket array is a pointer to a linked list that contains the key-value pairs that hash to the same location. Other data structures, such as balanced trees, only offer logarithmic time complexity and can be complicated to implement and require several pointers per item. With a suitable number of buckets, the separate-chaining hash table solution offers constant expected search times and makes deletion easy.
	To the extent is it not inherent, it would be obvious to combine Kenyon- Mathieu with the prior art disclosed in, <i>The Complexity of Hashing with Lazy</i> <i>Deletion</i> , Christopher J. Van Wyk and Jeffrey Scott Vitter, <i>The Complexity of</i> <i>Hashing with Lazy Deletion</i> , 1 Algorithmica 17, 18 (November, 1986) ("Van Wyk"), because Kenyon-Mathieu describes and incorporates Van Wyk by reference. Kenyon-Mathieu at 473. Van Wyk discloses a method of hashing

Asserted Claims From U.S. Pat. No. 5,893,120		Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, <i>General Methods for</i> <i>the Analysis of the Maximum Size of Dynamic Data Structures</i> , in Proc. 16 th International Colloquium on Automata, Languages, and Programming, Stresa, Italy, 473 (1989) ("Kenyon-Mathieu") alone and in combination
		with lazy deletion using a separate-chaining hash table as a more efficient solution to collisions than the available alternatives, such as balanced trees. <i>See</i> Exhibit C-1 which is herein incorporated by reference.
[1d] means, utilizing the record search means, for accessing the linked list and, at the same time, removing at least some of the expired ones of the records in the linked list.	[5d] mea[n]s, utilizing the record search means, for inserting, retrieving, and deleting records from the system and, at the same time, removing at least some expired ones of the records in the accessed linked list of records.	Kenyon-Mathieu discloses means, utilizing the record search means, for accessing the linked list and, at the same time, removing at least some of the expired ones of the records in the linked list. Kenyon-Mathieu also discloses utilizing the record search means, for inserting, retrieving, and deleting records from the system and, at the same time, removing at least some expired ones of the records in the accessed linked list of records. For example, Kenyon-Mathieu discloses "a non-Markovian process called <i>hashing with lazy deletion</i> (HwLD), which corresponds to an efficient way of processing sweepline information in computational geometry." Kenyon- Mathieu, <i>supra</i> at 473. Moreover, Kenyon-Mathieu discloses "[d]ata structures process a sequence of items over time; at time <i>t</i> the data structure stores the items that are 'living' at time <i>t</i> . Let us think of the <i>i</i> th item as being an interval [s_i , t_i] in the unit interval, containing a unique key k_i of supplementary information. The <i>i</i> th item is 'born' at time s_i , 'dies' at time t_i , and is 'living' at time <i>t</i> when $t \in [s_i, t_i]$. The data structure also handles dynamic queries over time." <i>Id.</i> at 474. "In HwLD, items are stored in a hash table of <i>H</i> buckets, based upon the hash value of the key. The distinguishing feature of HwLD is that an item is not deleted as soon as it dies; the 'lazy deletion' strategy deletes a dead item only when a later insertion accesses the same bucket. The number <i>H</i> of buckets is

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, <i>General Methods for</i> <i>the Analysis of the Maximum Size of Dynamic Data Structures</i> , in Proc. 16 th International Colloquium on Automata, Languages, and Programming, Stresa, Italy, 473 (1989) ("Kenyon-Mathieu") alone and in combination
	chosen so that the expected number of items per bucket is small. HwLD is thus more time-efficient than doing 'vigilant-deletion,' at a cost of storing dead items." <i>Id</i> .
	Moreover, it is inherent to the Kenyon-Mathieu disclosure that the hash table described herein is a separate-chaining hash table to resolve unavoidable key collisions, where each slot of the bucket array is a pointer to a linked list that contains the key-value pairs that hash to the same location. Other data structures, such as balanced trees, only offer logarithmic time complexity and can be complicated to implement and require several pointers per item. With a suitable number of buckets, the separate-chaining hash table solution offers constant expected search times and makes deletion easy.
	To the extent is it not inherent, it would be obvious to combine Kenyon- Mathieu with the prior art disclosed in, <i>The Complexity of Hashing with Lazy</i> <i>Deletion</i> , Christopher J. Van Wyk and Jeffrey Scott Vitter, <i>The Complexity of</i> <i>Hashing with Lazy Deletion</i> , 1 Algorithmica 17, 18 (November, 1986) ("Van Wyk"), because Kenyon-Mathieu describes and incorporates Van Wyk by reference. Kenyon-Mathieu at 473. Van Wyk discloses a method of hashing with lazy deletion using a separate-chaining hash table as a more efficient solution to collisions than the available alternatives, such as balanced trees. <i>See</i> Exhibit C-1 which is herein incorporated by reference.
	To the extent Bedrock argues that Kenyon-Mathieu does not anticipate this element, based on general knowledge and/or in combination with Knuth and/or Kruse, one of ordinary skill in the art would recognize that the Kenyon- Mathieu applies to insertions, retrievals, and/or deletions of automatically

Joint Invalidity Contentions & Production of Documents

7

Asserted Claims From U.S. Pat. No. 5,893,120		Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, <i>General Methods for</i> <i>the Analysis of the Maximum Size of Dynamic Data Structures</i> , in Proc. 16 th International Colloquium on Automata, Languages, and Programming, Strass, Italy, 473 (1980) ("Kenyen Mathieu") elene and in combination
		expired records because these are all basic functions that can be performed in the same manner on a hash table or a liked list. See, e.g., "The Art of Computer Programming", Sorting and Searching, D.E. Knuth, Addison- Wesley Series in Computer Science and Information Processing, pp. 506-549; "Data Structures and Program Design", R.L. Kruse, Prentice-Hall, Inc. 1984, pp. 104-148."
2. The information storage and retrieval system according to claim 1 further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records.	6. The information storage and retrieval system according to claim 5 further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records.	 Kenyon-Mathieu discloses the information storage and retrieval system further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records. Kenyon-Mathieu teaches a method for calculating a bound on the space complexity of the hashing with lazy deletion algorithm, i.e., the number of expired elements that would remain in the linked lists forming the external chains of the hash table. See, e.g., Kenyon-Mathieu at 475-86. That bound calculation is a means for dynamically determining the maximum number to remove, since the maximum number of elements to remove should never exceed the number of expired elements that would remain in the linked lists. To the extent Kenyon-Mathieu does not disclose this element, Kenyon-Mathieu combined with Morrison, Mathieu or Aldous discloses this element. Morrison, Mathieu, and Aldous also teach methods for calculating a bound on the space complexity of the hashing with lazy deletion algorithm. See, e.g., Morrison at 1156-61, Mathieu at 12-22, Aldous 17-21. It would have been obvious to one of ordinary skill in the art that these methods of calculating bounds on the number of expired elements stored in the

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, <i>General Methods for</i> <i>the Analysis of the Maximum Size of Dynamic Data Structures</i> , in Proc. 16 th International Colloquium on Automata, Languages, and Programming, Stresa, Italy, 473 (1989) ("Kenyon-Mathieu") alone and in combination
	the record search means disclosed in Kenyon-Mathieu to remove. One of ordinary skill would have been motivated to combine the teachings of Morrison, Mathieu, and Aldous with Kenyon-Mathieu because they all sought to analyze the complexity of the hashing with lazy deletion algorithm, and each of the papers refers to and builds upon the work of those papers preceding. See, e.g., Morrison at 1155, 1158, Mathieu at 1-4, Kenyon-Mathieu at 473-475, Aldous at 2-3.
	Kenyon-Mathieu combined with Dirks, Thatte, the '663 patent, and/or the Opportunistic Garbage Collection Articles discloses an information storage and retrieval system further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records.
	Dirks discloses the management of memory in a computer system and more particularly to the allocation of address space in a virtual memory system, which dynamically determines how many records to sweep/remove upon each allocation. Disclosure of these claim elements in Dirks is clearly shown in Exhibit B-2, which is hereby incorporated by reference in its entirety.
	For example, as summarized in Dirks,
	each time a VSID is assigned from the free list to a new application or thread, a fixed number of entries in the page table are scanned to determine whether they have become inactive, by checking them against the VSIDs on the recycle list. Each entry which is identified as being inactive is removed from the page table. After all of the entries in the page table have

9

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, <i>General Methods for</i> the Analysis of the Maximum Size of Dynamic Data Structures, in Proc. 16 th
	International Colloquium on Automata, Languages, and Programming,
	Stresa, Italy, 473 (1989) ("Kenyon-Mathieu") alone and in combination
	 been examined in this manner, the VSIDs in the recycle list can be transferred to the free list, since all of their associated page table entries will have been removed. This approach thereby guarantees that a predetermined number of VSIDs are always available in the free list without requiring a time-consuming scan of the complete page table at once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14. After [a] new VSID has been allocated, the system checks a flag RFLG to determine whether a recycle sweep is currently in progress (Step 20). If there is no sweep in progress, i.e. RFLG is not equal to one, a determination is made whether a sweep should be initiated. This is done by checking whether the inactive list is full, i.e. whether it contains x entries (Step 22). If the number of entries I on the inactive list is less than x, no further action is taken, and processing control returns to the operating system (Step 24). If, however, the inactive list is full at this time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are transferred to the recycle list, and an index n is reset to 1 (Step 28). The system then sweeps a predetermined number of page table entries PT_i on the page table, to detect whether any of them are inactive, i.e. their associated VSID is on the recycle list (Step 30). The predetermined
	number of entries that are swept is identified as k, where:
	$k = \frac{\text{total number of page table entries}}{k}$
	maximum number of active threads <i>Id.</i> at 8:12-30.
	Dirks discloses that any approach can be employed to determine the number of

Asserted Claims From U.S. Pat. No. 5,893,120	Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, General Methods for the Analysis of the Maximum Size of Dynamic Data Structures, in Proc. 16 th
	International Colloquium on Automata, Languages, and Programming, Stresa, Italy, 473 (1989) ("Kenyon-Mathieu") alone and in combination
	entries to be examined during each step of the sweeping process. <i>Id.</i> at 7:37-40. As stated in Dirks:
	Any other suitable approach can be employed to determine the number of entries to be examined during each step of the sweeping process. In this regard, it is not necessary that the number of examined entries be fixed for each step. Rather, it might vary from one step to the next. The only criterion is that the number of entries examined on each step be such that all entries in the page table are examined in a determinable amount of time or by the occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.
	<i>Id.</i> at 7:38-46. Thus, Dirks dynamically determines the maximum number of records to sweep/remove by calculating a value <i>k</i> . <i>Id.</i> at 7:15-46, 7:66-8:56.
	As both Kenyon-Mathieu and Dirks relate to deletion of aged records upon the allocation of a new incoming record, one of ordinary skill in the art would have understood how to use Dirks' dynamic decision making process of determining the maximum number of records to sweep/remove in other hash tables implementations such as Kenyon-Mathieu. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how
	many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining Dirks' deletion decision procedure with Kenyon-Mathieu's

Asserted Claims From U.S. Pat. No. 5,893,120	Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, <i>General Methods for</i> <i>the Analysis of the Maximum Size of Dynamic Data Structures</i> , in Proc. 16 th International Colloquium on Automata, Languages, and Programming, Stresa, Italy, 473 (1989) ("Kenyon-Mathieu") alone and in combination
	technique of "lazy deletion" would be nothing more than the predictable use of prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have combined Dirks' dynamic determination of the suitable number of entries to examine during each step of the sweeping process with Kenyon-Mathieu's system and method of "lazy deletion" and would have seen the benefits of doing so. One possible benefit, for example, is that the system and method of lazy deletion could perform a specified number of deletions on any given sweep, thus saving the system from performing sometimes time-consuming sweeps.
	Alternatively, one of ordinary skill in the art would be motivated to, and would understand how to, combine the system disclosed in Kenyon-Mathieu with the means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records disclosed by Thatte. For example, Thatte discloses a system and method using hash tables and/or linked lists and further discloses means for dynamically determining the maximum number for the record search means to remove in the accessed linked list of records. The disclosure of these claim elements in Thatte is clearly shown in Exhibit B-1, which is hereby incorporated by reference in its entirety.
	Moreover, one of ordinary skill in the art would recognize that these combinations would improve the similar systems and methods in the same way. Additionally, one of ordinary skill in the art would recognize that the result of combining Kenyon-Mathieu with Thatte would be nothing more than the predictable use of prior art elements according to their established

Asserted Claims Fro U.S. Pat. No. 5,893,1	mClaire M. Kenyon-Mathieu and Jeffrey Scott Vitter, General Methods for20the Analysis of the Maximum Size of Dynamic Data Structures, in Proc. 16 th
	International Colloquium on Automata, Languages, and Programming, Stresa, Italy, 473 (1989) ("Kenyon-Mathieu") alone and in combination
	functions. The resulting combination would include the capability to determine the maximum number for the record search means to remove.
	Further, one of ordinary skill in the art would be motivated to combine Kenyon-Mathieu with Thatte and recognized the benefits of doing so. For example, the removal of expired records described in Kenyon-Mathieu can be burdensome on the system, adding to the system's load and slowing down the system's processing. One of ordinary skill in the art would recognize that combining Kenyon-Mathieu with the teachings of Thatte would solve this problem by dynamically determining how many records to delete based on, among other things, the system load. Moreover, the '120 patent discloses that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine Kenyon-Mathieu with Thatte.
	Alternatively, it would also be obvious to combine Kenyon-Mathieu with the '663 patent. Disclosure of these claim elements in the '663 patent is clearly shown in Exhibit B-13, which is hereby incorporated by reference in its entirety. For example, as summarized in the '663 patent:
	during normal times when the load on the storage system is not excessive, a non-contaminating but slow deletion of records is used. This slow, non-contaminating deletion involves closing the collision-resolution chain of locations by moving a record

Asserted Claims From U.S. Pat. No. 5,893,120	Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, <i>General Methods for</i> <i>the Analysis of the Maximum Size of Dynamic Data Structures</i> , in Proc. 16 th International Colloquium on Automata, Languages, and Programming,
	Stresa, Italy, 473 (1989) ("Kenyon-Mathieu") alone and in combination
	from a later position in the chain into the position of the record to be deleted. This leaves no deleted record locations in the storage space to slow down future searches. U.S. Patent 4,996,663 to Nemes at 2:24-34 ("The '663 patent"). In times of heavy use, when deletions must be done rapidly and no time is available for decontamination, the record is simply marked as "deleted" and left in place. Later non-contaminating probes in the vicinity of such deleted record locations automatically remove the contaminating deleted records by moving records in the chain as described above. <i>Id.</i> at 2:35-41. This hybrid hashing technique has the decided advantage of automatically eliminating contamination caused by the fast- secure deletion procedure when the slower, non-contaminating deletion is used when the load on the system is at lower levels. <i>Id.</i> at 2:42-46
	This hybrid deletion is shown in Figure 5.

14

Asserted Claims From U.S. Pat. No. 5,893,120	Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, <i>General Methods for</i> <i>the Analysis of the Maximum Size of Dynamic Data Structures</i> , in Proc. 16 th International Colloquium on Automata, Languages, and Programming,
	Stresa, Italy, 473 (1989) ("Kenyon-Mathieu") alone and in combination
	Stresa, Italy, 473 (1989) ("Kenyon-Mathieu") alone and in combination FIG.5 HYBRID DELETION FES STOP FAST-SECURE 52 Id. at Figure 5.
	During the hybrid deletion procedure decision block 51 checks the system load to determine if the system load is greater than a threshold. If the system load is greater than the threshold, then a fast-secure delete 52 is used. <i>Id.</i> at 6:40-64, Figure 5. On the other hand, if the system load is less than the threshold, then a

Asserted Claims From U.S. Pat. No. 5,893,120		Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, <i>General Methods for</i> <i>the Analysis of the Maximum Size of Dynamic Data Structures</i> , in Proc. 16 th International Colloquium on Automata, Languages, and Programming, Stress, Italy, 473 (1980) (Wenyon Mathiev??) class and in combination	
		slow-non-contaminating delete 53 is used. <i>Id.</i> The fast-secure delete 52 does not actually delete records, rather it marks records as deleted. <i>Id.</i> at 8:1-33, Figure 7. These records are then actually deleted by a subsequent slow-non-contaminating delete 53. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.	
		Thus, the hybrid deletion procedure in the '663 patent dynamically determines a maximum number of records to remove. <i>See id.</i> at 6:40-64, Figure 5. If the fast-secure delete 52 is used, then maximum number of records is zero because records are not deleted they are only marked. <i>Id.</i> at 8:1-33, Figure 7. If the slow-non-contaminating delete 53 is used, then the maximum number of records to remove is all of the contaminated records in the bucket. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.	
		As both Kenyon-Mathieu and the '663 patent relate to deletion of records from hash tables using external chaining, one of ordinary skill in the art would understood how to use the '663 patent's dynamic decision on whether to perform a deletion based on a systems load in other hash table implementations such as Kenyon-Mathieu. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the '663 patent's deletion decision procedure with Kenyon-Mathieu's technique of "lazy deletion" would be nothing more than the predictable use of prior art	

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120		Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, <i>General Methods for</i> <i>the Analysis of the Maximum Size of Dynamic Data Structures</i> , in Proc. 16 th International Colloquium on Automata, Languages, and Programming, Stresa, Italy, 473 (1989) ("Kenyon-Mathieu") alone and in combination	
		elements according to their established functions.	
		By way of further example, one of ordinary skill in the art would have combined the '663 patent's dynamic decision on whether to perform a deletion based on a systems load as taught by the '663 patent and with Kenyon- Mathieu's system and method of "lazy deletion" and would have seen the benefits of doing so. One such benefit, for example, is that the system and method of lazy deletion would avoid performing deletions when the system load exceeded a threshold.	
		Alternatively, it would also be obvious to combine Kenyon-Mathieu with the Opportunistic Garbage Collection Articles.	
		The Opportunistic Garbage Collection Articles disclose a generational based garbage collection which dynamically determines how much garbage to collect. <i>See generally</i> , Paul R. Wilson and Thomas G. Moher, <i>Design of the Opportunistic Garbage Collector</i> , OOPSLA '89 Proceedings, October 1-6, 1989; Paul R. Wilson, <i>Opportunistic Garbage Collection</i> , ACM SIGPLAN Notices, Vol. 23, No. 12, December 1988.	
		For example, the Opportunistic Garbage Collection Articles disclose in part:	
		When a significant pause has been detected, a decision procedure is invoked to decide whether to garbage collect, and how many generations to scavenge. The fuller a generation is, the more likely it is to be scavenged; also, the longer the pause that has been detected, the larger the scope of the garbage collection is likely to be. <i>Design of the Opportunistic Garbage</i>	

Asserted Claims Fr	Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, <i>General Methods for</i>
U.S. Pat. No. 5,893,1	20 <i>the Analysis of the Maximum Size of Dynamic Data Structures</i> , in Proc. 16 th
	Stresa, Italy, 473 (1989) ("Kenvon-Mathieu") alone and in combination
	Collector at 32.
	Every time a user-input routine is invoked, a decision routine can decide whether to garbage collect. As long as the decision routine takes no more than a few milliseconds to execute, it should not interfere with responsiveness. Since it is only invoked at these times, it does not incur a continual run-time overhead. <i>Opportunistic Garbage Collection</i> at 100.
	This decision routine should take several things into account: 1) the volume of data allocated since the last scavenge, 2) how long it has been since the user has had an opportunity to interact, and 3) the height of the stack relative to its average height at reads since the last scavenge. If the product of the allocation and the compute time is high, and if the stack is low, the scavenge favorability measure is high. If it is especially high, a multi-generation scavenge is in order. <i>Id</i> .
	If these heuristics fail and a scavenge is forced instead by the filling of a generation's space, it is likely to happen during a significant compute- bound pausethe one that has just allocated the data that forced the collection. When the opportunistic mechanism fails to find the end of a pause, it may still succeed by default, embedding a scavenge pause within a larger pause. <i>Design of the Opportunistic Garbage Collector</i> at 32.
	As both Kenyon-Mathieu and the Opportunistic Garbage Collection Articles relate to deletion of aged records, one of ordinary skill in the art would have understood how to use the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion based on a system load in other hash

Asserted Claims From U.S. Pat. No. 5,893,120	Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, <i>General Methods for</i> <i>the Analysis of the Maximum Size of Dynamic Data Structures</i> , in Proc. 16 th International Colloquium on Automata, Languages, and Programming, Stresa, Italy, 473 (1989) ("Kenyon-Mathieu") alone and in combination	
	table implementations such as Kenyon-Mathieu. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the Opportunistic Garbage Collection Articles' deletion decision procedure with Kenyon-Mathieu's technique of "lazy deletion" would be nothing more than the predictable use of prior art elements according to their established functions.	
	By way of further example, one of ordinary skill in the art would have combined the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion and how many generations to scavenge as taught by the Opportunistic Garbage Collection Articles and with Kenyon-Mathieu's system and method of "lazy deletion" and would have seen the benefits of doing so. One such benefit, for example, is that the system and method of lazy deletion would only perform deletions when the system was not already too overloaded, thus preventing slowdown of the system. Additionally, it would have been obvious to one of ordinary skill in the art to modify the system disclosed in Kenvon-Mathieu to dynamically determine the	
	maximum number of expired records to remove in the accessed linked list of records. It is a fundamental concept in computer science and the relevant art that any variable or parameter affecting any aspect of a system can be	

Asserted Claims From U.S. Pat. No. 5,893,120		Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter , <i>General Methods for the Analysis of the Maximum Size of Dynamic Data Structures</i> , in Proc. 16 th	
		International Colloquium on Automata, Languages, and Programming,	
		Stresa, Italy, 473 (1989) ("Kenyon-Mathieu") alone and in combination	
		dynamically determined based on information available to the system. One of	
		ordinary skill in the art would have been motivated to combine the system	
		disclosed in Kenyon-Mathieu with the fundamental concept of dynamically	
		determining the maximum number of expired records to remove in an accessed	
		linked list of records to solve a number of potential problems. For example,	
		the removal of expired records described in Kenyon-Mathieu can be	
		burdensome on the system, adding to the system's load and slowing down the	
		system's processing. Moreover, the removal could also force an interruption in	
		Indeed, part of the motivation for the system disclosed in Kenvon Mathieu is	
		avoiding these problems. One of ordinary skill in the art would have known	
		that dynamically determining the maximum number to remove would limit the	
		burden on the system and bound the length of any real-time interruption to	
		prevent delays in processing. Indeed, Nemes concedes that such dynamic	
		determination was obvious when he states in the '120 patent that "[a] person	
		skilled in the art will appreciate that the technique of removing all expired	
		records while searching the linked list can be expanded to include techniques	
		whereby not necessarily all expired records are removed, and that the decision	
		regarding if and how many records to delete can be a dynamic one." '120 at	
		7:10-15.	
		To the extent that dynamically determining a maximum number of expired	
		records is not disclosed by Kenyon-Mathieu in combination with Morrison,	
		Mathieu, Aldous, Dirks, Thatte, the '663 Patent, or the Opportunistic Garbage	
		Collection References, it is disclosed by Linux 2.0.1, which describes	
		aynamically determining maximum number of expired ones of the records to	
		remove when the linked list is accessed. It would have been obvious to	

Asserted Claims From U.S. Pat. No. 5,893,120	Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, <i>General Methods for</i> <i>the Analysis of the Maximum Size of Dynamic Data Structures</i> , in Proc. 16 th International Colloquium on Automata, Languages, and Programming, Stresa, Italy, 473 (1989) ("Kenyon-Mathieu") alone and in combination	
	combine Linux 2.0.1 with Kenyon-Mathieu. For example, both Linux 2.0.1 and Kenyon-Mathieu describe systems and methods for performing data storage and retrieval using known programming techniques to yield a predictable result.	
	When invoked, the function rt_cache_add automatically increments an integer variable rt_cache_size. <i>See</i> Linux 2.0.1, route.c at line 1359. When the function rt_cache_add removes an expired record, the function rt_cache_add decrements the variable rt_cache_size. <i>See</i> Linux 2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the number of records in the hash table (i.e., ip_rt_hash_table). Because the function rt_cache_size, the variable rt_cache_size is determined dynamically.	
	Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1. The function rt_garbage_collect_1 loops through each of the linked lists in the ip_rt_hash_table global variable. <i>See</i> Linux 2.0.1, route.c at lines 1122-1138. In this way, the function rt_garbage_collect_1 accesses the linked list. When the function rt_garbage_collect_1 identifies a record that is expired, the function rt_garbage_collect_1 decrements the variable rt_cache_size and frees the record. <i>See</i> Linux 2.0.1, route.c at lines 1128-1135.	
	Because all records in the linked list can be expired and all records in the hash table can be in the linked list, the variable rt_cache_size can represent a	

Asserted Claims From U.S. Pat. No. 5,893,120	Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, <i>General Methods for</i> <i>the Analysis of the Maximum Size of Dynamic Data Structures</i> , in Proc. 16 th International Colloquium on Automata, Languages, and Programming,	
	Stresa, Italy, 473 (1989) ("Kenyon-Mathieu") alone and in combination	
	dynamically determined maximum number of expired ones of the records to	
	remove when function rt_garbage_collect_1 accesses the linked list.	
	Furthermore, the function rt_cache_add determines whether the number of records in the hash table exceeds a predetermined threshold	
	RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds the predetermined threshold RT_CACHE_SIZE_MAX the function	
	rt cache add invokes a function rt garbage collect See Linux	
	2.0.1. route.c at lines 1341-1342. The function rt garbage collect	
	invokes a function rt garbage collect 1. See Linux 2.0.1, route.c at	
	line 1293. The function rt_garbage_collect invokes a function	
	rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.	
	The function rt_garbage_collect_1 loops through each linked list in the bash table. See Linux 2.0.1 route c at lines 1116, 1132. For each linked	
	list in the hash table the function rt_garbage_collect_1 looks at each	
	record in the linked list. See Linux 2.0.1. route.c at lines 1120-1131. For each	
	record in a linked list, the function rt garbage collect 1 determines	
	whether the record's last use time plus the record's expiration factor is later	
	than the current time. See Linux 2.0.1, route.c at line 1122. If the record's last	
	use time plus the record's expiration factor is less than the current time, the	
	tunction rt_garbage_collect_1 removes the record from the linked list.	
	See Linux 2.0.1, route.c at lines 1124-1130. The record's expiration factor is	
	2.0.1 route c at line 1122. The variable expire is initially one half of the fixed	
	timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.	

Joint Invalidity Contentions & Production of Documents

Asserted Clair U.S. Pat. No. 5	ms From 5,893,120	Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, <i>General Methods for</i> <i>the Analysis of the Maximum Size of Dynamic Data Structures</i> , in Proc. 16 th International Colloquium on Automata, Languages, and Programming, Stresa, Italy, 473 (1989) ("Kenyon-Mathieu") alone and in combination
		After looping through all of the linked lists in this manner, the function rt_garbage_collect_1 determines again whether the number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number of items in the hash table is still greater than the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves the variable expire and loops through each of the linked lists in the hash table. See Linux 2.0.1, route.c at line 1135. In this way, the function rt_garbage_collect_1 can remove additional records from the linked lists in the hash table. The function rt_garbage_collect_1 repeats this process until the total number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX. Under Bedrock's proposed claim constructions, the records removed by the function rt_garbage_collect_1 are "expired" records. That is, the records removed by the function rt_garbage_collect_1 are data items which after a limited time or after the occurrence of some event become obsolete, such that their presence in the storage system is no longer needed or desired. The function rt_cache_add only removes a record from a linked list when the record's last use time plus the fixed timeout value RT_CACHE_TIMEOUT is less than the current time and the record's reference count is zero. See Linux 2.0.1, route.c at line 1369. Thus, the maximum number of records that the function rt_cache_add can remove from a given linked list is limited to those records whose reference counts are zero.

23

Asserted Claims From U.S. Pat. No. 5,893,120		Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, <i>General Methods for</i> <i>the Analysis of the Maximum Size of Dynamic Data Structures</i> , in Proc. 16 th International Colloquium on Automata, Languages, and Programming, Stresa, Italy, 473 (1989) ("Kenyon-Mathieu") alone and in combination
		In contrast, the maximum number of records that the function rt_garbage_collect_1 can remove from a given linked list is not limited to those records whose reference counts are zero. <i>See</i> Linux 2.0.1, route.c at line 1122. Rather, the function rt_garbage_collect_1 can remove records whose reference counts are zero and records whose reference counts are greater than zero.
		the maximum number of records that the function rt_cache_add can remove from a linked list.
3. A method for storing and retrieving information records using a linked list to store and provide access to the records, at least some of the records automatically expiring, the method comprising the steps of:	7. A method for storing and retrieving information records using a hashing technique to provide access to the records and using an external chaining technique to store the records with same hash address, at least some of the records	To the extent the preamble is a limitation, Kenyon-Mathieu discloses a method for storing and retrieving information records using a linked list to store and provide access to the records, at least some of the records automatically expiring. Kenyon-Mathieu also discloses a method for storing and retrieving information records using a hashing technique to provide access to the records and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring. For example, Kenyon-Mathieu discloses "a non-Markovian process called
	automatically expiring, the method comprising the steps of:	hashing with lazy deletion (HwLD), which corresponds to an efficient way of processing sweepline information in computational geometry." Kenyon-Mathieu, <i>supra</i> at 473.Moreover, it is inherent to the Kenyon-Mathieu disclosure that the hash table

Asserted Claims From U.S. Pat. No. 5,893,120		Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, <i>General Methods for</i> <i>the Analysis of the Maximum Size of Dynamic Data Structures</i> , in Proc. 16 th International Colloquium on Automata, Languages, and Programming, Stresa, Italy, 473 (1989) ("Kenyon-Mathieu") alone and in combination
		described herein is a separate-chaining hash table to resolve unavoidable key collisions, where each slot of the bucket array is a pointer to a linked list that contains the key-value pairs that hash to the same location. Other data structures, such as balanced trees, only offer logarithmic time complexity and can be complicated to implement and require several pointers per item. With a suitable number of buckets, the separate-chaining hash table solution offers constant expected search times and makes deletion easy.
		To the extent is it not inherent, it would be obvious to combine Kenyon- Mathieu with the prior art disclosed in, <i>The Complexity of Hashing with Lazy Deletion</i> , Christopher J. Van Wyk and Jeffrey Scott Vitter, <i>The Complexity of Hashing with Lazy Deletion</i> , 1 Algorithmica 17, 18 (November, 1986) ("Van Wyk"), because Kenyon-Mathieu describes and incorporates Van Wyk by reference. Kenyon-Mathieu at 473. Van Wyk discloses a method of hashing with lazy deletion using a separate-chaining hash table as a more efficient solution to collisions than the available alternatives, such as balanced trees. <i>See</i> Exhibit C-1 which is herein incorporated by reference.
[3a] accessing the linked list of records,	[7a] accessing a linked list of records having same hash address,	Kenyon-Mathieu discloses accessing a linked list of records. Kenyon-Mathieu also discloses accessing a linked list of records having same hash address. For example, Kenyon-Mathieu discloses "a non-Markovian process called <i>hashing with lazy deletion</i> (HwLD), which corresponds to an efficient way of processing sweepline information in computational geometry." Kenyon- Mathieu, <i>supra</i> at 473.
		Moreover, Kenyon-Mathieu discloses "[d]ata structures process a sequence of

Asserted Claims From U.S. Pat. No. 5,893,120		Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, <i>General Methods for</i> <i>the Analysis of the Maximum Size of Dynamic Data Structures</i> , in Proc. 16 th International Colloquium on Automata, Languages, and Programming.
		Stresa, Italy, 473 (1989) ("Kenyon-Mathieu") alone and in combination
		items over time; at time <i>t</i> the data structure stores the items that are 'living' at time <i>t</i> . Let us think of the <i>i</i> th item as being an interval $[s_i, t_i]$ in the unit interval, containing a unique key k_i of supplementary information. The <i>i</i> th item is 'born' at time s_i , 'dies' at time t_i , and is 'living' at time <i>t</i> when $t \in [s_i, t_i]$. The data structure also handles dynamic queries over time." <i>Id</i> . at 474.
	Moreover, it is inherent to the Kenyon-Mathieu disclosure that the h described herein is a separate-chaining hash table to resolve unavoid collisions, where each slot of the bucket array is a pointer to a linked contains the key-value pairs that hash to the same location. Other da structures, such as balanced trees, only offer logarithmic time compl can be complicated to implement and require several pointers per ite suitable number of buckets, the separate-chaining hash table solution constant expected search times and makes deletion easy.	
		To the extent is it not inherent, it would be obvious to combine Kenyon- Mathieu with the prior art disclosed in, <i>The Complexity of Hashing with Lazy Deletion</i> , Christopher J. Van Wyk and Jeffrey Scott Vitter, <i>The Complexity of Hashing with Lazy Deletion</i> , 1 Algorithmica 17, 18 (November, 1986) ("Van Wyk"), because Kenyon-Mathieu describes and incorporates Van Wyk by reference. Kenyon-Mathieu at 473. Van Wyk discloses a method of hashing with lazy deletion using a separate-chaining hash table as a more efficient solution to collisions than the available alternatives, such as balanced trees. <i>See</i> Exhibit C-1 which is herein incorporated by reference.
[3b] identifying at least some of the automatically	[7b] identifying at least some of the automatically	Kenyon-Mathieu discloses identifying at least some of the automatically expired ones of the records.

Asserted Claims From U.S. Pat. No. 5,893,120		Claire M. Kenyon-Mathieu and Jeffrey Scott V the Analysis of the Maximum Size of Dynamic D. International Colloquium on Automata, Lang Stresa, Italy, 473 (1989) ("Kenyon-Mathieu")	Vitter, General Methods for ata Structures, in Proc. 16 th uages, and Programming, alone and in combination
expired ones of the records, and	expired ones of the records,	For example, Kenyon-Mathieu discloses "a non-M hashing with lazy deletion (HwLD), which corresp processing sweepline information in computationa Mathieu, supra at 473.	arkovian process called onds to an efficient way of l geometry." Kenyon-
		Moreover, Kenyon-Mathieu discloses "[d]ata structive stores to time; at time t the data structure stores to time t . Let us think of the <i>i</i> th item as being an interval, containing a unique key k_i of supplementative item is 'born' at time s_i , 'dies' at time t_i , and is 'live t_i]. The data structure also handles dynamic queries	etures process a sequence of the items that are 'living' at rval $[s_i, t_i]$ in the unit ary information. The <i>i</i> th ing' at time <i>t</i> when $t \in [s_i,$ es over time." <i>Id</i> . at 474.
		"In HwLD, items are stored in a hash table of <i>H</i> buvalue of the key. The distinguishing feature of Hwdeleted as soon as it dies; the 'lazy deletion' stratege when a later insertion accesses the same bucket. The chosen so that the expected number of items per but thus more time-efficient than doing 'vigilant-deletient items." <i>Id</i> .	ackets, based upon the hash VLD is that an item is not gy deletes a dead item only The number <i>H</i> of buckets is acket is small. HwLD is ion,' at a cost of storing dead
[3c] removing at least some of the automatically expired records from the	[7c] removing at least some of the automatically expired records from the	Kenyon-Mathieu discloses removing at least some records from the linked list when the linked list is a	of the automatically expired accessed.
linked list when the linked list is accessed.	linked list when the linked list is accessed, and	For example, Kenyon-Mathieu discloses "a non-M hashing with lazy deletion (HwLD), which corresp processing sweepline information in computationa	arkovian process called onds to an efficient way of l geometry." <i>Id.</i> at 473.
Joint Invalidity Contentions & Pro	duction of	27	Case No. 6:09-CV-549-LED

Documents

Asserted Claims From U.S. Pat. No. 5,893,120	Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, <i>General Methods for</i> <i>the Analysis of the Maximum Size of Dynamic Data Structures</i> , in Proc. 16 th International Colloquium on Automata, Languages, and Programming, Stresa, Italy, 473 (1989) ("Kenyon-Mathieu") alone and in combination
	Moreover, Kenyon-Mathieu discloses "[d]ata structures process a sequence of items over time; at time <i>t</i> the data structure stores the items that are 'living' at time <i>t</i> . Let us think of the <i>i</i> th item as being an interval $[s_i, t_i]$ in the unit interval, containing a unique key k_i of supplementary information. The <i>i</i> th item is 'born' at time s_i , 'dies' at time t_i , and is 'living' at time <i>t</i> when $t \in [s_i, t_i]$. The data structure also handles dynamic queries over time." <i>Id</i> . at 474. "In HwLD, items are stored in a hash table of <i>H</i> buckets, based upon the hash value of the key. The distinguishing feature of HwLD is that an item is not deleted as soon as it dies; the 'lazy deletion' strategy deletes a dead item only when a later insertion accesses the same bucket. The number <i>H</i> of buckets is chosen so that the expected number of items per bucket is small. HwLD is thus more time-efficient than doing 'vigilant-deletion,' at a cost of storing dead items." <i>Id</i> .
	Moreover, it is inherent to the Kenyon-Mathieu disclosure that the hash table described herein is a separate-chaining hash table to resolve unavoidable key collisions, where each slot of the bucket array is a pointer to a linked list that contains the key-value pairs that hash to the same location. Other data structures, such as balanced trees, only offer logarithmic time complexity and can be complicated to implement and require several pointers per item. With a suitable number of buckets, the separate-chaining hash table solution offers constant expected search times and makes deletion easy. To the extent is it not inherent, it would be obvious to combine Kenyon-Mathieu with the prior art disclosed in, <i>The Complexity of Hashing with Lazy</i>

Asserted C U.S. Pat. N	laims From o. 5,893,120	Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, <i>General Methods for</i> <i>the Analysis of the Maximum Size of Dynamic Data Structures</i> , in Proc. 16 th International Colloquium on Automata, Languages, and Programming, Stresa, Italy, 473 (1989) ("Kenyon-Mathieu") alone and in combination
		<i>Deletion</i> , Christopher J. Van Wyk and Jeffrey Scott Vitter, <i>The Complexity of Hashing with Lazy Deletion</i> , 1 Algorithmica 17, 18 (November, 1986) ("Van Wyk"), because Kenyon-Mathieu describes and incorporates Van Wyk by reference. Kenyon-Mathieu at 473. Van Wyk discloses a method of hashing with lazy deletion using a separate-chaining hash table as a more efficient solution to collisions than the available alternatives, such as balanced trees. <i>See</i> Exhibit C-1 which is herein incorporated by reference.
	[7d] inserting, retrieving or deleting one of the records from the system following the step of removing.	 Kenyon-Mathieu discloses inserting, retrieving or deleting one of the records from the system following the step of removing. For example, Kenyon-Mathieu discloses "a non-Markovian process called <i>hashing with lazy deletion</i> (HwLD), which corresponds to an efficient way of processing sweepline information in computational geometry." Kenyon-Mathieu, <i>supra</i> at 473.
		Moreover, Kenyon-Mathieu discloses "[d]ata structures process a sequence of items over time; at time <i>t</i> the data structure stores the items that are 'living' at time <i>t</i> . Let us think of the <i>i</i> th item as being an interval $[s_i, t_i]$ in the unit interval, containing a unique key k_i of supplementary information. The <i>i</i> th item is 'born' at time s_i , 'dies' at time t_i , and is 'living' at time <i>t</i> when $t \in [s_i, t_i]$. The data structure also handles dynamic queries over time." <i>Id</i> . at 474.
		"In HwLD, items are stored in a hash table of H buckets, based upon the hash value of the key. The distinguishing feature of HwLD is that an item is not deleted as soon as it dies; the 'lazy deletion' strategy deletes a dead item only when a later insertion accesses the same bucket. The number H of buckets is

Asserted Claims From U.S. Pat. No. 5,893,120	Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, <i>General Methods for</i> <i>the Analysis of the Maximum Size of Dynamic Data Structures</i> , in Proc. 16 th International Colloquium on Automata, Languages, and Programming, Stresa, Italy, 473 (1989) ("Kenyon-Mathieu") alone and in combination
	chosen so that the expected number of items per bucket is small. HwLD is thus more time-efficient than doing 'vigilant-deletion,' at a cost of storing dead items." <i>Id</i> .
	Moreover, it is inherent to the Kenyon-Mathieu disclosure that the hash table described herein is a separate-chaining hash table to resolve unavoidable key collisions, where each slot of the bucket array is a pointer to a linked list that contains the key-value pairs that hash to the same location. Other data structures, such as balanced trees, only offer logarithmic time complexity and can be complicated to implement and require several pointers per item. With a suitable number of buckets, the separate-chaining hash table solution offers constant expected search times and makes deletion easy.
	To the extent is it not inherent, it would be obvious to combine Kenyon- Mathieu with the prior art disclosed in, <i>The Complexity of Hashing with Lazy Deletion</i> , Christopher J. Van Wyk and Jeffrey Scott Vitter, <i>The Complexity of Hashing with Lazy Deletion</i> , 1 Algorithmica 17, 18 (November, 1986) ("Van Wyk"), because Kenyon-Mathieu describes and incorporates Van Wyk by reference. Kenyon-Mathieu at 473. Van Wyk discloses a method of hashing with lazy deletion using a separate-chaining hash table as a more efficient solution to collisions than the available alternatives, such as balanced trees. <i>See</i> Exhibit C-1 which is herein incorporated by reference.
	Moreover, Van Wyk and Vitter explain that "[t]he insertion of element x_i proceeds as follows: 1) Compute $h = n(k_i)$

Asserted Claims From U.S. Pat. No. 5,893,120		Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, <i>General Methods for</i> <i>the Analysis of the Maximum Size of Dynamic Data Structures</i> , in Proc. 16 th International Colloquium on Automata, Languages, and Programming,
		Stresa, Italy, 473 (1989) ("Kenyon-Mathieu") alone and in combination
		 2) Remove from the hash chain in bucket <i>h</i> any items x_j with t_j < s_j [i.e. remove all expired elements] 3) Add x_i so the chain in bucket <i>h</i> remains sorted by termination time." Van Wyk at 19. This method clearly contemplates the insertion occurring after the removal of expired elements.
4. The method according to claim 3 further including the step of dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed.	8. The method according to claim 7 further including the step of dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed.	Kenyon-Mathieu discloses dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed. Kenyon-Mathieu teaches a method for calculating a bound on the space complexity of the hashing with lazy deletion algorithm, i.e., the number of expired elements that would remain in the linked lists forming the external chains of the hash table. See, e.g., Kenyon-Mathieu at 475-86. That bound calculation is a means for dynamically determining the maximum number to remove, since the maximum number of elements to remove should never exceed the number of expired elements that would remain in the linked lists. To the extent Kenyon-Mathieu does not disclose this element, Kenyon- Mathieu combined with Morrison, Mathieu or Aldous discloses this element. Morrison, Mathieu, and Aldous also teach methods for calculating a bound on the space complexity of the hashing with lazy deletion algorithm. See, e.g., Morrison at 1156-61, Mathieu at 12-22, Aldous 17-21. It would have been obvious to one of ordinary skill in the art that these methods of calculating bounds on the number of expired elements stored in the linked list could also be used to dynamically determine a maximum number for

Asserted Claims From U.S. Pat. No. 5,893,120	Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, <i>General Methods for</i> <i>the Analysis of the Maximum Size of Dynamic Data Structures</i> , in Proc. 16 th International Colloquium on Automata, Languages, and Programming, Stresa, Italy, 473 (1989) ("Kenyon-Mathieu") alone and in combination
	the record search means disclosed in Kenyon-Mathieu to remove. One of ordinary skill would have been motivated to combine the teachings of Morrison, Mathieu, and Aldous with Kenyon-Mathieu because they all sought to analyze the complexity of the hashing with lazy deletion algorithm, and each of the papers refers to and builds upon the work of those papers preceding. See, e.g., Morrison at 1155, 1158, Mathieu at 1-4, Kenyon-Mathieu at 473-475, Aldous at 2-3.
	Kenyon-Mathieu combined with Dirks, Thatte, the '663 patent and/or the Opportunistic Garbage Collection Articles discloses dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed.
	Dirks discloses the management of memory in a computer system and more particularly to the allocation of address space in a virtual memory system, which dynamically determines how many records to sweep/remove upon each allocation. Disclosure of these claim elements in Dirks is clearly shown in Exhibit B-2, which is hereby incorporated by reference in its entirety.
	For example, as summarized in Dirks,
	each time a VSID is assigned from the free list to a new application or thread, a fixed number of entries in the page table are scanned to determine whether they have become inactive, by checking them against the VSIDs on the recycle list. Each entry which is identified as being inactive is removed from the page table. After all of the entries in the page table have been examined in this manner, the VSIDs in the recycle list can be

Asserted Claims From U.S. Pat. No. 5,893,120	Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, <i>General Methods for</i> <i>the Analysis of the Maximum Size of Dynamic Data Structures</i> , in Proc. 16 th International Colloquium on Automata, Languages, and Programming, Stresa, Italy, 473 (1989) ("Kenyon-Mathieu") alone and in combination
	transferred to the free list, since all of their associated page table entries will have been removed. This approach thereby guarantees that a predetermined number of VSIDs are always available in the free list without requiring a time-consuming scan of the complete page table at once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.
	After [a] new VSID has been allocated, the system checks a flag RFLG to determine whether a recycle sweep is currently in progress (Step 20). If there is no sweep in progress, i.e. RFLG is not equal to one, a determination is made whether a sweep should be initiated. This is done by checking whether the inactive list is full, i.e. whether it contains x entries (Step 22). If the number of entries I on the inactive list is less than x, no further action is taken, and processing control returns to the operating system (Step 24). If, however, the inactive list is full at this time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are transferred to the recycle list, and an index n is reset to 1 (Step 28). The system then sweeps a predetermined number of page table entries PT _i on the page table, to detect whether any of them are inactive, i.e. their associated VSID is on the recycle list (Step 30). The predetermined number of entries that are swept is identified as <i>k</i> , where:
	$k = \frac{\text{total number of page table entries}}{\text{maximum number of active threads}}$ <i>Id.</i> at 8:12-30.
	Dirks discloses that any approach can be employed to determine the number of entries to be examined during each step of the sweeping process. <i>Id.</i> at 7:37-

33

Asserted Claims From U.S. Pat. No. 5.893.120	Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, <i>General Methods for</i> the Analysis of the Maximum Size of Dynamic Data Structures, in Proc. 16 th
	International Colloquium on Automata, Languages, and Programming, Stresa, Italy, 473 (1989) ("Kenyon-Mathieu") alone and in combination
	40. As stated in Dirks:
	Any other suitable approach can be employed to determine the number of entries to be examined during each step of the sweeping process. In this regard, it is not necessary that the number of examined entries be fixed for each step. Rather, it might vary from one step to the next. The only criterion is that the number of entries examined on each step be such that all entries in the page table are examined in a determinable amount of time or by the occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.
	<i>Id.</i> at 7:38-46. Thus, Dirks dynamically determines the maximum number of records to sweep/remove by calculating a value <i>k</i> . <i>Id.</i> at 7:15-46, 7:66-8:56.
	As both Kenyon-Mathieu and Dirks relate to deletion of aged records upon the allocation of a new incoming record, one of ordinary skill in the art would have understood how to use Dirks' dynamic decision making process of determining the maximum number of records to sweep/remove in other hash tables implementations such as Kenyon-Mathieu. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining Dirks' deletion decision procedure with Kenyon-Mathieu's technique of "lazy deletion" would be nothing more than the predictable use of

Asserted Claims From U.S. Pat. No. 5,893,120	Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, <i>General Methods for</i> <i>the Analysis of the Maximum Size of Dynamic Data Structures</i> , in Proc. 16 th International Colloquium on Automata, Languages, and Programming, Stresa, Italy, 473 (1989) ("Kenyon-Mathieu") alone and in combination
	prior art elements according to their established functions. By way of further example, one of ordinary skill in the art would have combined Dirks' dynamic determination of the suitable number of entries to examine during each step of the sweeping process with Kenyon-Mathieu's system and method of "lazy deletion" and would have seen the benefits of doing so. One possible benefit, for example, is that the system and method of lazy deletion could perform a specified number of deletions on any given sweep, thus saving the system from performing sometimes time-consuming sweeps.
	Alternatively, one of ordinary skill in the art would be motivated to, and would understand how to, combine the system disclosed in Kenyon-Mathieu with the means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records disclosed by Thatte. For example, Thatte discloses a system and method using hash tables and/or linked lists and further discloses means for dynamically determining the maximum number for the record search means to remove in the accessed linked list of records. The disclosure of these claim elements in Thatte is clearly shown in Exhibit B-1, which is hereby incorporated by reference in its entirety.
	Moreover, one of ordinary skill in the art would recognize that these combinations would improve the similar systems and methods in the same way. Additionally, one of ordinary skill in the art would recognize that the result of combining Kenyon-Mathieu with Thatte would be nothing more than the predictable use of prior art elements according to their established functions. The resulting combination would include the capability to

Joint Invalidity Contentions & Production of Documents

Asserted Cl U.S. Pat. No	aims From 5,893,120	Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, <i>General Methods for</i> the Analysis of the Maximum Size of Dynamic Data Structures, in Proc. 16 th International Colloquium on Automata Languages and Programming
		Stresa, Italy, 473 (1989) ("Kenyon-Mathieu") alone and in combination
		determine the maximum number for the record search means to remove.
		Further, one of ordinary skill in the art would be motivated to
		combine Kenyon-Mathieu with Thatte and recognized the benefits of doing so.
		For example, the removal of expired records described in Kenyon-Mathieu can
		be burdensome on the system, adding to the system's load and slowing down the system's processing. One of ordinary skill in the art would recognize that combining Kenyon-Mathieu with the teachings of Thatte would solve this problem by dynamically determining how many records to delete based on, among other things, the system load. Moreover, the '120 patent discloses that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine Kenyon-Mathieu with Thatte.
		Alternatively, it would also be obvious to combine Kenyon-Mathieu with the '663 patent. Disclosure of these claim elements in the '663 patent is clearly shown in Exhibit B-13, which is hereby incorporated by reference in its entirety. For example, as summarized in the '663 patent:
		during normal times when the load on the storage system is not excessive, a non-contaminating but slow deletion of records is used. This slow, non-contaminating deletion involves closing the collision-resolution chain of locations by moving a record from a later position in the chain into the position of the record

36

Asserted Claims From U.S. Pat. No. 5,893,120	Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, <i>General Methods for</i> <i>the Analysis of the Maximum Size of Dynamic Data Structures</i> , in Proc. 16 th International Colloquium on Automata, Languages, and Programming, Stresa, Italy, 473 (1989) ("Kenyon-Mathieu") alone and in combination
	to be deleted. This leaves no deleted record locations in the storage space to slow down future searches. U.S. Patent 4,996,663 to Nemes at 2:24-34 ("The '663 patent").
	In times of heavy use, when deletions must be done rapidly and no time is available for decontamination, the record is simply marked as "deleted" and left in place. Later non-contaminating probes in the vicinity of such deleted record locations automatically remove the contaminating deleted records by moving records in the chain as described above. <i>Id.</i> at 2:35-41.
	 This hybrid hashing technique has the decided advantage of automatically eliminating contamination caused by the fast-secure deletion procedure when the slower, non-contaminating deletion is used when the load on the system is at lower levels. <i>Id.</i> at 2:42-46. This hybrid deletion is shown in Figure 5.

37

Asserted Claims From U.S. Pat. No. 5,893,120	Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, <i>General Methods for</i> <i>the Analysis of the Maximum Size of Dynamic Data Structures</i> , in Proc. 16 th International Colloquium on Automata, Languages, and Programming, Stresa, Italy, 473 (1989) ("Kenyon-Mathieu") alone and in combination
	Stresa, Italy, 473 (1989) ("Kenyon-Mathieu") alone and in combination FIG.5 HYBRID DELETION VES START VES VSTEM UAD > THRESHOLD FAST-SECURE 52 DELETE (FIG.7) Ld. at Figure 5. During the hybrid deletion procedure decision block 51 checks the system load is greater than a threshold. If the system load is to determine if the system load is greater than a threshold. If the system load is
	Figure 5. On the other hand, if the system load is less than the threshold, then a

Asserted Claims From	Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, General Methods for
U.S. Pat. No. 5,893,120	the Analysis of the Maximum Size of Dynamic Data Structures, in Proc. 16 th
	International Colloquium on Automata, Languages, and Programming, Stress, Italy, 473 (1980) ("Konyon Mothiov") along and in combination
	slow non contaminating delate 53 is used <i>Id</i> . The fast secure delate 52 does
	not actually delete records, rather it marks records as deleted Id at 8:1-33
	Figure 7. These records are then actually deleted by a subsequent slow-non-
	contaminating delete 53. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
	Thus, the hybrid deletion procedure in the '663 patent dynamically determines a maximum number of records to remove. <i>See id.</i> at 6:40-64, Figure 5. If the fast-secure delete 52 is used, then maximum number of records is zero because records are not deleted they are only marked. <i>Id.</i> at 8:1-33, Figure 7. If the slow-non-contaminating delete 53 is used, then the maximum number of records to remove is all of the contaminated records in the bucket. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
	As both Kenyon-Mathieu and the '663 patent relate to deletion of records from hash tables using external chaining, one of ordinary skill in the art would understood how to use the '663 patent's dynamic decision on whether to perform a deletion based on a systems load in other hash table implementations such as Kenyon-Mathieu. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the '663 patent's deletion decision procedure with Kenyon-Mathieu's technique of "lazy deletion" would be nothing more than the predictable use of prior art

Joint Invalidity Contentions & Production of Documents
Asserted Claims From U.S. Pat. No. 5,893,120	Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, <i>General Methods for</i> <i>the Analysis of the Maximum Size of Dynamic Data Structures</i> , in Proc. 16 th International Colloquium on Automata, Languages, and Programming, Stresa, Italy, 473 (1989) ("Kenyon-Mathieu") alone and in combination
	elements according to their established functions. By way of further example, one of ordinary skill in the art would have combined the '663 patent's dynamic decision on whether to perform a deletion based on a systems load as taught by the '663 patent and with Kenyon- Mathieu's system and method of "lazy deletion" and would have seen the
	benefits of doing so. One such benefit, for example, is that the system and method of lazy deletion would avoid performing deletions when the system load exceeded a threshold. Alternatively, it would also be obvious to combine Kenyon-Mathieu with the Opportunistic Garbage Collection Articles.
	The Opportunistic Garbage Collection Articles disclose a generational based garbage collection which dynamically determines how much garbage to collect. <i>See generally</i> , Paul R. Wilson and Thomas G. Moher, <i>Design of the Opportunistic Garbage Collector</i> , OOPSLA '89 Proceedings, October 1-6, 1989; Paul R. Wilson, <i>Opportunistic Garbage Collection</i> , ACM SIGPLAN Notices, Vol. 23, No. 12, December 1988.
	For example, the Opportunistic Garbage Collection Articles disclose in part: When a significant pause has been detected, a decision procedure is
	invoked to decide whether to garbage collect, and how many generations to scavenge. The fuller a generation is, the more likely it is to be scavenged; also, the longer the pause that has been detected, the larger the scope of the garbage collection is likely to be. <i>Design of the Opportunistic Garbage</i>

Asserted Claims Fr	Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, <i>General Methods for</i>
U.S. Pat. No. 5,893,1	20 <i>the Analysis of the Maximum Size of Dynamic Data Structures</i> , in Proc. 16 th
	Stresa, Italy, 473 (1989) ("Kenvon-Mathieu") alone and in combination
	Collector at 32.
	Every time a user-input routine is invoked, a decision routine can decide whether to garbage collect. As long as the decision routine takes no more than a few milliseconds to execute, it should not interfere with responsiveness. Since it is only invoked at these times, it does not incur a continual run-time overhead. <i>Opportunistic Garbage Collection</i> at 100.
	This decision routine should take several things into account: 1) the volume of data allocated since the last scavenge, 2) how long it has been since the user has had an opportunity to interact, and 3) the height of the stack relative to its average height at reads since the last scavenge. If the product of the allocation and the compute time is high, and if the stack is low, the scavenge favorability measure is high. If it is especially high, a multi-generation scavenge is in order. <i>Id</i> .
	If these heuristics fail and a scavenge is forced instead by the filling of a generation's space, it is likely to happen during a significant compute- bound pausethe one that has just allocated the data that forced the collection. When the opportunistic mechanism fails to find the end of a pause, it may still succeed by default, embedding a scavenge pause within a larger pause. <i>Design of the Opportunistic Garbage Collector</i> at 32.
	As both Kenyon-Mathieu and the Opportunistic Garbage Collection Articles relate to deletion of aged records, one of ordinary skill in the art would have understood how to use the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion based on a system load in other hash

Asserted Claims From U.S. Pat. No. 5,893,120	Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, <i>General Methods for</i> <i>the Analysis of the Maximum Size of Dynamic Data Structures</i> , in Proc. 16 th International Colloquium on Automata, Languages, and Programming, Stresa, Italy, 473 (1989) ("Kenyon-Mathieu") alone and in combination
	table implementations such as Kenyon-Mathieu. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the Opportunistic Garbage Collection Articles' deletion decision procedure with Kenyon-Mathieu's technique of "lazy deletion" would be nothing more than the predictable use of prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have combined the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion and how many generations to scavenge as taught by the Opportunistic Garbage Collection Articles and with Kenyon-Mathieu's system and method of "lazy deletion" and would have seen the benefits of doing so. One such benefit, for example, is that the system and method of lazy deletion would only perform deletions when the system was not already too overloaded, thus preventing slowdown of the system.
	Additionally, it would have been obvious to one of ordinary skill in the art to modify the system disclosed in Kenyon-Mathieu to dynamically determine the maximum number of expired records to remove in the accessed linked list of records. It is a fundamental concept in computer science and the relevant art that any variable or parameter affecting any aspect of a system can be

Asserted Claims F U.S. Pat. No. 5,893	rom ,120	Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, General Methods for the Analysis of the Maximum Size of Dynamic Data Structures, in Proc. 16 th
		International Colloquium on Automata, Languages, and Programming,
		Stresa, Italy, 473 (1989) ("Kenyon-Mathieu") alone and in combination
		dynamically determined based on information available to the system. One of
		ordinary skill in the art would have been motivated to combine the system
		disclosed in Kenyon-Mathieu with the fundamental concept of dynamically
		determining the maximum number of expired records to remove in an accessed
		linked list of records to solve a number of potential problems. For example,
		the removal of expired records described in Kenyon-Mathieu can be
		burdensome on the system, adding to the system's load and slowing down the
		system's processing. Moreover, the removal could also force an interruption in
		Indeed, part of the motivation for the system disclosed in Kenvon Mathieu is
		avoiding these problems. One of ordinary skill in the art would have known
		that dynamically determining the maximum number to remove would limit the
		burden on the system and bound the length of any real-time interruption to
		prevent delays in processing. Indeed, Nemes concedes that such dynamic
		determination was obvious when he states in the '120 patent that "[a] person
		skilled in the art will appreciate that the technique of removing all expired
		records while searching the linked list can be expanded to include techniques
		whereby not necessarily all expired records are removed, and that the decision
		regarding if and how many records to delete can be a dynamic one." '120 at
		7:10-15.
		To the extent that dynamically determining a maximum number of expired
		records is not disclosed by Kenyon-Mathieu in combination with Morrison,
		Mathieu, Aldous, Dirks, Thatte, the '663 Patent, or the Opportunistic Garbage
		Collection References, it is disclosed by Linux 2.0.1, which describes
		aynamically determining maximum number of expired ones of the records to
		remove when the linked list is accessed. It would have been obvious to

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, <i>General Methods for</i> <i>the Analysis of the Maximum Size of Dynamic Data Structures</i> , in Proc. 16 th International Colloquium on Automata, Languages, and Programming, Stresa, Italy, 473 (1989) ("Kenyon-Mathieu") alone and in combination
	combine Linux 2.0.1 with Kenyon-Mathieu. For example, both Linux 2.0.1 and Kenyon-Mathieu describe systems and methods for performing data storage and retrieval using known programming techniques to yield a predictable result.
	When invoked, the function rt_cache_add automatically increments an integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359. When the function rt_cache_add removes an expired record, the function rt_cache_add decrements the variable rt_cache_size. See Linux 2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the number of records in the hash table (i.e., ip_rt_hash_table). Because the function rt_cache_size, the variable rt_cache_size is determined dynamically.
	Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1. The function rt_garbage_collect_1 loops through each of the linked lists in the ip_rt_hash_table global variable. <i>See</i> Linux 2.0.1, route.c at lines 1122-1138. In this way, the function rt_garbage_collect_1 accesses the linked list. When the function rt_garbage_collect_1 identifies a record that is expired, the function rt_garbage_collect_1 decrements the variable rt_cache_size and frees the record. <i>See</i> Linux 2.0.1, route.c at lines 1128-1135.
	Because all records in the linked list can be expired and all records in the hash table can be in the linked list, the variable rt_cache_size can represent a

Joint Invalidity Contentions & Production of Documents

Asserted Cla U.S. Pat. No.	ims From 5.893.120	Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, <i>General Methods for</i> the Analysis of the Maximum Size of Dynamic Data Structures, in Proc. 16 th
		International Colloquium on Automata, Languages, and Programming,
		Stresa, Italy, 473 (1989) ("Kenyon-Mathieu") alone and in combination
		dynamically determined maximum number of expired ones of the records to
		remove when function rt_garbage_collect_1 accesses the linked list.
		Furthermore, the function rt_cache_add determines whether the number of records in the hash table exceeds a predetermined threshold
		RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
		the predetermined threshold RT_CACHE_SIZE_MAX, the function
		rt_cache_add invokes a function rt_garbage_collect. See Linux
		2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
		invokes a function rt_garbage_collect_1. <i>See</i> Linux 2.0.1, route.c at
		line 1293. The function rt_garbage_collect invokes a function
		rt_garbage_collect_1. <i>See</i> Linux 2.0.1, route.c at line 1293.
		The function rt_garbage_collect_1 loops through each linked list in the hash table. <i>See</i> Linux 2.0.1, route.c at lines 1116-1132. For each linked
		list in the hash table, the function rt garbage collect 1 looks at each
		record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
		record in a linked list, the function rt garbage collect 1 determines
		whether the record's last use time plus the record's expiration factor is later
		than the current time. See Linux 2.0.1, route.c at line 1122. If the record's last
		use time plus the record's expiration factor is less than the current time, the
		function rt_garbage_collect_1 removes the record from the linked list.
		See Linux 2.0.1, route.c at lines 1124-1130. The record's expiration factor is
		based on a variable expire and the record's reference count. See Linux
		2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
		timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

Asserted Clair U.S. Pat. No. 5	ms From 5,893,120	Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, <i>General Methods for</i> <i>the Analysis of the Maximum Size of Dynamic Data Structures</i> , in Proc. 16 th International Colloquium on Automata, Languages, and Programming, Stresa, Italy, 473 (1989) ("Kenyon-Mathieu") alone and in combination
		After looping through all of the linked lists in this manner, the function rt_garbage_collect_1 determines again whether the number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number of items in the hash table is still greater than the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves the variable expire and loops through each of the linked lists in the hash table. See Linux 2.0.1, route.c at line 1135. In this way, the function rt_garbage_collect_1 can remove additional records from the linked lists in the hash table. The function rt_garbage_collect_1 repeats this process until the total number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX. Under Bedrock's proposed claim constructions, the records removed by the function rt_garbage_collect_1 are "expired" records. That is, the records removed by the function rt_garbage_collect_1 are data items which after a limited time or after the occurrence of some event become obsolete, such that their presence in the storage system is no longer needed or desired. The function rt_cache_add only removes a record from a linked list when the record's last use time plus the fixed timeout value RT_CACHE_TIMEOUT is less than the current time and the record's reference count is zero. See Linux 2.0.1, route.c at line 1369. Thus, the maximum number of records that the function rt_cache_add can remove from a given linked list is limited to those records whose reference counts are zero.

Asserted Claims From U.S. Pat. No. 5,893,120	Claire M. Kenyon-Mathieu and Jeffrey Scott Vitter, <i>General Methods for</i> <i>the Analysis of the Maximum Size of Dynamic Data Structures</i> , in Proc. 16 th International Colloquium on Automata, Languages, and Programming, Stresa, Italy, 473 (1989) ("Kenyon-Mathieu") alone and in combination
	In contrast, the maximum number of records that the function rt_garbage_collect_1 can remove from a given linked list is not limited to those records whose reference counts are zero. <i>See</i> Linux 2.0.1, route.c at line 1122. Rather, the function rt_garbage_collect_1 can remove records whose reference counts are zero and records whose reference counts are greater than zero.
	Consequently, the maximum number of records that the function rt_garbage_collect_1 can remove from a linked list is different than the maximum number of records that the function rt_cache_add can remove from a linked list.

Asserted Claims From U.S. Pat. No. 5,893,120		David Aldous, Micha Hofri, & Wojciech Szpankowski, <i>Maximum Size of a Dynamic Data Structure: Hashing with Lazy Deletion Revisited</i> , 21 SIAM J. COMPUT. 713 (August 1992) ("Aldous") alone and in combination
1. An information storage	5. An information storage	To the extent the preamble is a limitation, Aldous discloses an information
system comprising:	system comprising:	storage and retrieval system.
		For example, Aldous discloses "a dynamic data structure management
		under HwLD is built by a sequence of insertions and deletions of items."
		David Aldous et al., Maximum Size of a Dynamic Data Structure: Hashing
		with Lazy Deletion Revisited, 21 SIAM J. COMPUT. 713 (August 1992) at 713.
[1a] a linked list to store and provide access to records stored in a memory of the system, at least some of the records automatically expiring,	[5a] a hashing means to provide access to records stored in a memory of the system and using an external chaining technique to store the records with same hash address, at least some of the records	Aldous discloses a linked list to store and provide access to records stored in a memory of the system, at least some of the records automatically expiring. Aldous also discloses a hashing means to provide access to records stored in a memory of the system and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring. For example, Aldous discloses "a dynamic data structure management
	automatically expiring,	technique called <i>hashing with lazy deletion</i> (HwLD) A table managed under HwLD is built by a sequence of insertions and deletions of items." <i>Id</i> .
		"An item arrives at a hashing table and needs to be stored for some period (the item's <i>lifetime</i>) We always assume that the assignment of items to the H buckets of the hashing table is uniform: That is, each item has probability $1/H$ to select each bucket, independent for different items and independent of the arrival and lifetimes." <i>Id</i> .
		"An arriving item selects one out of the <i>H</i> buckets at random (with uniform probability) and joins the items assigned to this bucket." <i>Id.</i> at 715.

Asserted C U.S. Pat. No	laims From o. 5,893,120	David Aldous, Micha Hofri, & Wojciech Szpankowski, <i>Maximum Size of a Dynamic Data Structure: Hashing with Lazy Deletion Revisited</i> , 21 SIAM J. COMPUT. 713 (August 1992) ("Aldous") alone and in combination
		Moreover, Aldous discloses that "[t]he principle HwLD is very simple: An item in a bucket is not deleted as soon as possible (i.e., when its lifetime expires). Instead, the item is removed at the first arrival to the item's bucket after the item's expiration time. The point is that algorithms that delete items as soon as possible may have unacceptably high overhead, even though they require less storage space for the items themselves." <i>Id.</i> at 713. Moreover, it is inherent to the Aldous disclosure that the hash table described herein is a separate-chaining hash table to resolve unavoidable key collisions, where each slot of the bucket array is a pointer to a linked list that contains the key-value pairs that hash to the same location. Other data structures, such as balanced trees, only offer logarithmic time complexity and can be complicated to implement and require several pointers per item. With a suitable number of buckets, the separate-chaining hash table solution offers constant expected search times and makes deletion easy.
		To the extent is it not inherent, it would be obvious to combine Aldous with the prior art disclosed in, <i>The Complexity of Hashing with Lazy Deletion</i> , (Christopher J. Van Wyk and Jeffrey Scott Vitter, <i>The Complexity of Hashing with Lazy Deletion</i> , 1 Algorithmica 17, 18 (November, 1986)), by Van Wyk and Vitter because Aldous describes and incorporates Van Wyk by reference. Aldous at 713. Van Wyk discloses a method of hashing with lazy deletion using a separate-chaining hash table as a more efficient solution to collisions than the available alternatives, such as balanced trees. <i>See</i> Exhibit C-1 which is herein incorporated by reference.
[1b] a record search means	[5b] a record search means	Aldous discloses a record search means utilizing a search key to access the

Asserted C U.S. Pat. N	Claims From Io. 5,893,120	David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.
		COMPUT. 713 (August 1992) ("Aldous") alone and in combination
utilizing a search key to access the linked list,	utilizing a search key to access a linked list of records having the same	linked list. Aldous also discloses a record search means utilizing a search key to access a linked list of records having the same hash address.
	hash address,	For example, Aldous discloses "a dynamic data structure management technique called <i>hashing with lazy deletion</i> (HwLD) A table managed under HwLD is built by a sequence of insertions and deletions of items." Aldous, <i>supra</i> at 713.
		"An item arrives at a hashing table and needs to be stored for some period (the item's <i>lifetime</i>) We always assume that the assignment of items to the H buckets of the hashing table is uniform: That is, each item has probability $1/H$ to select each bucket, independent for different items and independent of the arrival and lifetimes." <i>Id</i> .
		"An arriving item selects one out of the <i>H</i> buckets at random (with uniform probability) and joins the items assigned to this bucket." <i>Id.</i> at 715.
		Moreover, it is inherent to the Aldous disclosure that the hash table described herein is a separate-chaining hash table to resolve unavoidable key collisions, where each slot of the bucket array is a pointer to a linked list that contains the key-value pairs that hash to the same location. Other data structures, such as balanced trees, only offer logarithmic time complexity and can be complicated to implement and require several pointers per item. With a suitable number of buckets, the separate-chaining hash table solution offers constant expected search times and makes deletion easy.
		To the extent is it not inherent, it would be obvious to combine Aldous with the prior art disclosed in, <i>The Complexity of Hashing with Lazy Deletion</i> ,

Asserted Claims From U.S. Pat. No. 5,893,120		David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J. COMPUT. 713 (August 1992) ("Aldous") alone and in combination
		Christopher J. Van Wyk and Jeffrey Scott Vitter, <i>The Complexity of Hashing with Lazy Deletion</i> , 1 Algorithmica 17, 18 (November, 1986), because Aldous describes and incorporates Van Wyk by reference. Aldous at 713. Van Wyk discloses a method of hashing with lazy deletion using a separate-chaining hash table as a more efficient solution to collisions than the available alternatives, such as balanced trees. <i>See</i> Exhibit C-1 which is herein incorporated by reference.
[1c] the record search means including a means for identifying and removing at least some of the expired ones of the records from the linked list when the linked list is accessed, and	[5c] the record search means including means for identifying and removing at least some expired ones of the records from the linked list of records when the linked list is accessed, and	 Aldous discloses the record search means including a means for identifying and removing at least some of the expired ones of the records from the linked list when the linked list is accessed. Aldous also discloses the record search means including means for identifying and removing at least some expired ones of the records from the linked list of records when the linked list is accessed. For example, Aldous discloses "a dynamic data structure management technique called <i>hashing with lazy deletion</i> (HwLD) A table managed under HwLD is built by a sequence of insertions and deletions of items." Aldous, <i>supra</i> at 713. "An item arrives at a hashing table and needs to be stored for some period (the
		 item's <i>lifetime</i>) We always assume that the assignment of items to the <i>H</i> buckets of the hashing table is uniform: That is, each item has probability 1/<i>H</i> to select each bucket, independent for different items and independent of the arrival and lifetimes." <i>Id</i>. "An arriving item selects one out of the <i>H</i> buckets at random (with uniform probability) and joins the items assigned to this bucket." <i>Id</i>. at 715.

Asserted Claims From U.S. Pat. No. 5,893,120		David Aldous, Micha Hofri, & Wojciech Szpankowski, <i>Maximum Size of a Dynamic Data Structure: Hashing with Lazy Deletion Revisited</i> , 21 SIAM J.
		COMPUT. 713 (August 1992) ("Aldous") alone and in combination Moreover, Aldous discloses that "[t]he principle HwLD is very simple: An item in a bucket is not deleted as soon as possible (i.e., when its lifetime expires). Instead, the item is removed at the first arrival to the item's bucket after the item's expiration time. The point is that algorithms that delete items as soon as possible may have unacceptably high overhead, even though they require less storage space for the items themselves." <i>Id.</i> at 713 Moreover, it is inherent to the Aldous disclosure that the hash table described herein is a separate-chaining hash table to resolve unavoidable key collisions, where each slot of the bucket array is a pointer to a linked list that contains the key-value pairs that hash to the same location. Other data structures, such as balanced trees, only offer logarithmic time complexity and can be complicated to implement and require several pointers per item. With a suitable number of buckets, the separate-chaining hash table solution offers constant expected search times and makes deletion easy.
		To the extent is it not inherent, it would be obvious to combine Aldous with the prior art disclosed in, <i>The Complexity of Hashing with Lazy Deletion</i> , Christopher J. Van Wyk and Jeffrey Scott Vitter, <i>The Complexity of Hashing with Lazy Deletion</i> , 1 Algorithmica 17, 18 (November, 1986), because Aldous describes and incorporates Van Wyk by reference. Aldous at 713. Van Wyk discloses a method of hashing with lazy deletion using a separate-chaining hash table as a more efficient solution to collisions than the available alternatives, such as balanced trees. <i>See</i> Exhibit C-1 which is herein incorporated by reference.
[1d] means, utilizing the	[5d] mea[n]s, utilizing the	Aldous discloses means, utilizing the record search means, for accessing the

Asserted Claims From U.S. Pat. No. 5,893,120		David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J. COMPUT. 713 (August 1992) ("Aldous") alone and in combination
record search means, for accessing the linked list and, at the same time, removing at least some of the expired ones of the records in the linked list.	record search means, for inserting, retrieving, and deleting records from the system and, at the same time, removing at least some expired ones of the records in the accessed linked list of records.	 linked list and, at the same time, removing at least some of the expired ones of the records in the linked list. Aldous also discloses utilizing the record search means, for inserting, retrieving, and deleting records from the system and, at the same time, removing at least some expired ones of the records in the accessed linked list of records. For example, Aldous discloses "a dynamic data structure management technique called <i>hashing with lazy deletion</i> (HwLD) A table managed under HwLD is built by a sequence of insertions and deletions of items." Aldous, <i>supra</i> at 713. "An item arrives at a hashing table and needs to be stored for some period (the item's <i>lifetime</i>) We always assume that the assignment of items to the <i>H</i> buckets of the hashing table is uniform: That is, each item has probability 1/<i>H</i> to select each bucket, independent for different items and independent of the arrival and lifetimes." <i>Id.</i> "An arriving item selects one out of the <i>H</i> buckets at random (with uniform probability) and joins the items assigned to this bucket." <i>Id.</i> at 715. Moreover, Aldous discloses that "[t]he principle HwLD is very simple: An item in a bucket is not deleted as soon as possible (i.e., when its lifetime expires). Instead, the item is removed at the first arrival to the item's bucket after the item's expiration time. The point is that algorithms that delete items as soon as possible may have unacceptably high overhead, even though they require less storage space for the items themselves." <i>Id.</i> at 713.
		Moreover, it is inherent to the Aldous disclosure that the hash table described

Asserted Claims From U.S. Pat. No. 5,893,120		David Aldous, Micha Hofri, & Wojciech Szpankowski, <i>Maximum Size of a Dynamic Data Structure: Hashing with Lazy Deletion Revisited</i> , 21 SIAM J. COMPUT. 713 (August 1992) ("Aldous") alone and in combination
		herein is a separate-chaining hash table to resolve unavoidable key collisions, where each slot of the bucket array is a pointer to a linked list that contains the key-value pairs that hash to the same location. Other data structures, such as balanced trees, only offer logarithmic time complexity and can be complicated to implement and require several pointers per item. With a suitable number of buckets, the separate-chaining hash table solution offers constant expected search times and makes deletion easy.
		To the extent is it not inherent, it would be obvious to combine Aldous with the prior art disclosed in, <i>The Complexity of Hashing with Lazy Deletion</i> , Christopher J. Van Wyk and Jeffrey Scott Vitter, <i>The Complexity of Hashing with Lazy Deletion</i> , 1 Algorithmica 17, 18 (November, 1986), because Aldous describes and incorporates Van Wyk by reference. Aldous at 713. Van Wyk discloses a method of hashing with lazy deletion using a separate-chaining hash table as a more efficient solution to collisions than the available alternatives, such as balanced trees. <i>See</i> Exhibit C-1 which is herein incorporated by reference.
		To the extent Bedrock argues that Aldous does not anticipate this element, based on general knowledge and/or in combination with Knuth and/or Kruse, one of ordinary skill in the art would recognize that the Aldous applies to insertions, retrievals, and/or deletions of automatically expired records because these are all basic functions that can be performed in the same manner on a hash table or a liked list. See, e.g., "The Art of Computer Programming", Sorting and Searching, D.E. Knuth, Addison-Wesley Series in Computer Science and Information Processing, pp. 506-549; "Data Structures and Program Design", R.L. Kruse, Prentice-Hall, Inc. 1984, pp. 104-148."

Asserted Claims From		David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
U.S. Pat. No. 5,893,120		Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.
		COMPUT. 713 (August 1992) ("Aldous") alone and in combination
2. The information storage	6. The information storage	Aldous discloses the information storage and retrieval system further including
and retrieval system	and retrieval system	means for dynamically determining maximum number for the record search
according to claim 1	according to claim 5	means to remove in the accessed linked list of records. Aldous teaches a
further including means for	further including means for	method for calculating a bound on the space complexity of the hashing with
dynamically determining	dynamically determining	lazy deletion algorithm, i.e., the number of expired elements that would remain
maximum number for the	maximum number for the	in the linked lists forming the external chains of the hash table. See, e.g.,
record search means to	record search means to	Aldous at 17-21. That bound calculation is a means for dynamically
remove in the accessed	remove in the accessed	determining the maximum number to remove, since the maximum number of
linked list of records.	linked list of records.	elements to remove should never exceed the number of expired elements that
		would remain in the linked lists.
		To the extent Aldous does not disclose this element, Aldous combined with
		Morrison, Mathieu or Kenyon-Mathieu discloses this element. Morrison,
		Mathieu, and Kenyon-Mathieu also teach methods for calculating a bound on
		the space complexity of the hashing with lazy deletion algorithm. See, e.g.,
		Morrison at 1156-61, Mathieu at 12-22, Kenyon-Mathieu 475-86.
		It would have been obvious to one of ordinary skill in the ort that these
		methods of calculating bounds on the number of expired elements stored in the
		linked list could also be used to dynamically determine a maximum number for
		the record search means disclosed in Aldous to remove One of ordinary skill
		would have been motivated to combine the teachings of Morrison. Mathiau
		and Kenvon Mathieu with Aldous because they all sought to analyze the
		complexity of the hashing with lazy deletion algorithm, and each of the papers
		refers to and builds upon the work of those papers preceding. See e.g.
		Morrison at 1155 1158 Mathieu at 1-4 Kenvon-Mathieu at 473-475 Aldous
		at 2-3.

Asserted C	laims From	David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
U.S. Pat. No. 5,893,120		Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.
	1	COMPUT. 713 (August 1992) ("Aldous") alone and in combination
		Aldous combined with Dirks, Thatte, the '663 patent, and/or the Opportunistic
		Garbage Collection Articles discloses an information storage and retrieval
		system further including means for dynamically determining maximum
		number for the record search means to remove in the accessed linked list of
		records.
		Dirks discloses the management of memory in a computer system and more particularly to the allocation of address space in a virtual memory system, which dynamically determines how many records to sweep/remove upon each
		allocation. Disclosure of these claim elements in Dirks is clearly shown in
		Exhibit B-2, which is hereby incorporated by reference in its entirety.
		For example, as summarized in Dirks,
		each time a VSID is assigned from the free list to a new application or thread, a fixed number of entries in the page table are scanned to determine whether they have become inactive, by checking them against the VSIDs on the recycle list. Each entry which is identified as being inactive is removed from the page table. After all of the entries in the page table have been examined in this manner, the VSIDs in the recycle list can be transferred to the free list, since all of their associated page table entries will have been removed. This approach thereby guarantees that a predetermined number of VSIDs are always available in the free list without requiring a time-consuming scan of the complete page table at once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.
		After [a] new VSID has been allocated, the system checks a flag RFLG to determine whether a recycle sweep is currently in progress (Step 20).

9

Joint Invalidity Contentions & Production of Documents

Asserted C	laims From	David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
U.S. Pat. N	o. 5,893,120	Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.
		COMPUT. 713 (August 1992) ("Aldous") alone and in combination
		If there is no sweep in progress, i.e. RFLG is not equal to one, a
		determination is made whether a sweep should be initiated. This is done
		by checking whether the inactive list is full, i.e. whether it contains x
		entries (Step 22). If the number of entries I on the inactive list is less than
		x, no further action is taken, and processing control returns to the
		operating system (Step 24). If, however, the inactive list is full at this
		time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
		transferred to the recycle list, and an index n is reset to 1 (Step 28). The
		system then sweeps a predetermined number of page table entries PI_i on the page table to detect whether any of them are inactive, i.e. their
		associated VSID is on the recycle list (Stop 30). The predetormined
		number of entries that are swept is identified as k where:
		number of entries that are swept is identified as k, where.
		total number of page table entries
		$\kappa = \frac{1}{\text{maximum number of active threads}}$
		<i>Id.</i> at 8:12-30.
		Dirks discloses that any approach can be employed to determine the number of
		entries to be examined during each step of the sweeping process. Id. at 7:37-
		40. As stated in Dirks:
		Any other suitable approach can be employed to determine the number of
		entries to be examined during each step of the sweeping process. In this
		regard, it is not necessary that the number of examined entries be fixed for
		each step. Rather, it might vary from one step to the next. The only criterion
		is that the number of entries examined on each step be such that all entries in
		the page table are examined in a determinable amount of time or by the
		occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Asserted Claims From	David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
U.S. Pat. No. 5,893,120	Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.
	COMPUT. 713 (August 1992) ("Aldous") alone and in combination
	<i>Id.</i> at 7:38-46. Thus, Dirks dynamically determines the maximum number of records to sweep/remove by calculating a value <i>k. Id.</i> at 7:15-46, 7:66-8:56. As both Aldous and Dirks relate to deletion of aged records upon the allocation of a new incoming record, one of ordinary skill in the art would have understood how to use Dirks' dynamic decision making process of determining the maximum number of records to sweep/remove in other hash tables implementations such as Aldous. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining Dirks' deletion decision procedure with Aldous's technique of "lazy deletion" would be nothing more than the predictable use of prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have combined Dirks' dynamic determination of the suitable number of entries to examine during each step of the sweeping process with Aldous's system and method of "lazy deletion" and would have seen the benefits of doing so. One possible benefit, for example, is that the system and method of lazy deletion could perform a specified number of deletions on any given sweep, thus saving the system from performing sometimes time-consuming sweeps.

Joint Invalidity Contentions & Production of Documents

Asserted Claims From	David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
U.S. Pat. No. 5,893,120	Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.
	COMPUT. 713 (August 1992) ("Aldous") alone and in combination
	understand how to, combine the system disclosed in Aldous with the means for
	dynamically determining maximum number for the record search means to
	remove in the accessed linked list of records disclosed by Thatte. For example,
	Thatte discloses a system and method using hash tables and/or linked lists and
	further discloses means for dynamically determining the maximum number for
	the record search means to remove in the accessed linked list of records. The
	disclosure of these claim elements in Thatte is clearly shown in Exhibit B-1,
	which is hereby incorporated by reference in its entirety.
	Moreover, one of ordinary skill in the art would recognize that these
	combinations would improve the similar systems and methods in the same
	way. Additionally, one of ordinary skill in the art would recognize that the
	result of combining Aldous with Thatte would be nothing more than the
	predictable use of prior art elements according to their established functions.
	The resulting combination would include the capability to determine the
	maximum number for the record search means to remove.
	Further, one of ordinary skill in the art would be motivated to combine Aldous
	with Thatte and recognized the benefits of doing so. For example, the removal
	of expired records described in Aldous can be burdensome on the system
	adding to the system's load and slowing down the system's processing. One of
	ordinary skill in the art would recognize that combining Aldous with the
	teachings of Thatte would solve this problem by dynamically determining how
	many records to delete based on, among other things, the system load.
	Moreover, the '120 patent discloses that "[a] person skilled in the art will
	appreciate that the technique of removing all expired records while searching
	the linked list can be expanded to include techniques whereby not necessarily
	all expired records are removed, and that the decision regarding if and how

12

Joint Invalidity Contentions & Production of Documents

Asserted C	laims From	David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
U.S. Pat. No. 5,893,120		Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.
		COMPUT. 713 (August 1992) ("Aldous") alone and in combination
		many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the
		'120 patent provides motivations to combine Aldous with Thatte.
		Alternatively, it would also be obvious to combine Aldous with the '663
		patent. Disclosure of these claim elements in the '663 patent is clearly shown
		in Exhibit B-13, which is hereby incorporated by reference in its entirety. For
		example, as summarized in the '663 patent:
		during normal times when the load on the storage system is not excessive, a non-contaminating but slow deletion of records is used. This slow, non-contaminating deletion involves closing the collision-resolution chain of locations by moving a record from a later position in the chain into the position of the record to be deleted. This leaves no deleted record locations in the storage space to slow down future searches. U.S. Patent 4,996,663 to Nemes at 2:24-34 ("The '663 patent").
		In times of heavy use, when deletions must be done rapidly and no time is available for decontamination, the record is simply marked as "deleted" and left in place. Later non-contaminating probes in the vicinity of such deleted record locations automatically remove the contaminating deleted records by moving records in the chain as described above. <i>Id.</i> at 2:35-41.
		This hybrid hashing technique has the decided advantage of automatically eliminating contamination caused by the fast- secure deletion procedure when the slower, non-contaminating deletion is used when the load on the system is at lower levels.

13

Asserted Claims From U.S. Pat. No. 5,893,120		David Aldous, Micha Hofri, & Wojciech Szpankowski, <i>Maximum Size of a Dynamic Data Structure: Hashing with Lazy Deletion Revisited</i> , 21 SIAM J. COMPUT. 713 (August 1992) ("Aldous") alone and in combination
		<i>Id.</i> at 2:42-46.
		This hybrid deletion is shown in Figure 5.
		FIG.5 HYBRID DELETION
		START YES SYSTEM NO LOAD > THRESHOLD ? SLOW-NON- FAST-SECURE 52 SLOW-NON- 53
		DELETE (FIG.7) STOP 54
		<i>Id.</i> at Figure 5.
		During the hybrid deletion procedure decision block 51 checks the system load

Asserted Claims From U.S. Pat. No. 5,893,120		David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.
		to determine if the system load is greater than a threshold. If the system load is greater than the threshold, then a fast-secure delete 52 is used. <i>Id.</i> at 6:40-64, Figure 5. On the other hand, if the system load is less than the threshold, then a slow-non-contaminating delete 53 is used. <i>Id.</i> The fast-secure delete 52 does not actually delete records, rather it marks records as deleted. <i>Id.</i> at 8:1-33, Figure 7. These records are then actually deleted by a subsequent slow-non-contaminating delete 53. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
		a maximum number of records to remove. <i>See id.</i> at 6:40-64, Figure 5. If the fast-secure delete 52 is used, then maximum number of records is zero because records are not deleted they are only marked. <i>Id.</i> at 8:1-33, Figure 7. If the slow-non-contaminating delete 53 is used, then the maximum number of records to remove is all of the contaminated records in the bucket. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
		As both Aldous and the '663 patent relate to deletion of records from hash tables using external chaining, one of ordinary skill in the art would understood how to use the '663 patent's dynamic decision on whether to perform a deletion based on a systems load in other hash table implementations such as Aldous. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the '663

15

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120		David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.
		COMPUT. 713 (August 1992) ("Aldous") alone and in combination
		patent's deletion decision procedure with Aldous's technique of "lazy
		deletion" would be nothing more than the predictable use of prior art elements according to their established functions.
		By way of further example, one of ordinary skill in the art would have combined the '663 patent's dynamic decision on whether to perform a deletion based on a systems load as taught by the '663 patent and with Aldous's system and method of "lazy deletion" and would have seen the benefits of doing so. One such benefit, for example, is that the system and method of lazy deletion would avoid performing deletions when the system load exceeded a threshold. Alternatively, it would also be obvious to combine Aldous with the
		Opportunistic Garbage Collection Articles dicelese a concretional based
		arbage collection which dynamically determines how much garbage to collect. <i>See generally</i> , Paul R. Wilson and Thomas G. Moher, <i>Design of the</i> <i>Opportunistic Garbage Collector</i> , OOPSLA '89 Proceedings, October 1-6, 1989; Paul R. Wilson, <i>Opportunistic Garbage Collection</i> , ACM SIGPLAN Notices, Vol. 23, No. 12, December 1988.
		For example, the Opportunistic Garbage Collection Articles disclose in part:
		When a significant pause has been detected, a decision procedure is invoked to decide whether to garbage collect, and how many generations to scavenge. The fuller a generation is, the more likely it is to be scavenged; also, the longer the pause that has been detected, the larger the scope of the garbage collection is likely to be. <i>Design of the Opportunistic Garbage</i>

Asserted C U.S. Pat. N	laims From o. 5,893,120	David Aldous, Micha Hofri, & Wojciech Szpankowski, <i>Maximum Size of a Dynamic Data Structure: Hashing with Lazy Deletion Revisited</i> , 21 SIAM J.
		COMPUT. 713 (August 1992) ("Aldous") alone and in combination
		Collector at 32.
		Every time a user-input routine is invoked, a decision routine can decide whether to garbage collect. As long as the decision routine takes no more than a few milliseconds to execute, it should not interfere with responsiveness. Since it is only invoked at these times, it does not incur a continual run-time overhead. <i>Opportunistic Garbage Collection</i> at 100.
		This decision routine should take several things into account: 1) the volume of data allocated since the last scavenge, 2) how long it has been since the user has had an opportunity to interact, and 3) the height of the stack relative to its average height at reads since the last scavenge. If the product of the allocation and the compute time is high, and if the stack is low, the scavenge favorability measure is high. If it is especially high, a multi-generation scavenge is in order. <i>Id</i> .
		If these heuristics fail and a scavenge is forced instead by the filling of a generation's space, it is likely to happen during a significant compute- bound pausethe one that has just allocated the data that forced the collection. When the opportunistic mechanism fails to find the end of a pause, it may still succeed by default, embedding a scavenge pause within a larger pause. <i>Design of the Opportunistic Garbage Collector</i> at 32.
		As both Aldous and the Opportunistic Garbage Collection Articles relate to deletion of aged records, one of ordinary skill in the art would have understood how to use the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion based on a system load in other hash table implementations such as Aldous. Moreover, one of ordinary skill in the art

Asserted Claims From	David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
U.S. Pat. No. 5,893,120	Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.
	COMPUT. 713 (August 1992) ("Aldous") alone and in combination
	would recognize that it would improve similar systems and methods in the
	same way. As the '120 patent states "[a] person skilled in the art will
	appreciate that the technique of removing all expired records while searching
	the linked list can be expanded to include techniques whereby not necessarily
	all expired records are removed, and that the decision regarding if and how
	many records to delete can be a dynamic one." The 120 patent at 7:10-15.
	Additionally, one of ordinary skill in the art would recognize that the result of
	combining the Opportunistic Garbage Collection Articles' deletion decision
	procedure with Aldous s technique of lazy deletion would be nothing more than the mudiatable use of mior art elements according to their established
	functions
	Tunctions.
	By way of further example, one of ordinary skill in the art would have
	combined the Opportunistic Garbage Collection Articles' dynamic decision on
	whether to perform a deletion and how many generations to scavenge as taught
	by the Opportunistic Garbage Collection Articles and with Aldous's system
	and method of "lazy deletion" and would have seen the benefits of doing so.
	One such benefit, for example, is that the system and method of lazy deletion
	would only perform deletions when the system was not already too overloaded,
	thus preventing slowdown of the system.
	Additionally, it would have been obvious to one of ordinary skill in the art to
	modify the system disclosed in Aldous to dynamically determine the maximum
	number of expired records to remove in the accessed linked list of records. It
	is a fundamental concept in computer science and the relevant art that any
	variable or parameter affecting any aspect of a system can be dynamically
	determined based on information available to the system. One of ordinary skill
	in the art would have been motivated to combine the system disclosed in

Asserted Cla	aims From	David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
U.S. Pat. No.	. 5,893,120	Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.
		COMPUT. 713 (August 1992) ("Aldous") alone and in combination
		Aldous with the fundamental concept of dynamically determining the
		maximum number of expired records to remove in an accessed linked list of
		records to solve a number of potential problems. For example, the removal of
		expired records described in Aldous can be burdensome on the system, adding
		to the system's load and slowing down the system's processing. Moreover, the
		removal could also force an interruption in real-time processing as the
		processing waits for the removal to complete. Indeed, part of the motivation
		for the system disclosed in Aldous is avoiding these problems. One of
		ordinary skill in the art would have known that dynamically determining the
		maximum number to remove would limit the burden on the system and bound
		the length of any real-time interruption to prevent delays in processing.
		Indeed, Nemes concedes that such dynamic determination was obvious when
		he states in the 120 patent that [a] person skilled in the art will appreciate that
		an be expanded to include techniques whereby not necessarily all expired
		records are removed, and that the decision regarding if and how many records
		to delete can be a dynamic one " '120 at 7:10-15
		to defete can be a dynamic one. 120 at 7.10 15.
		To the extent that dynamically determining a maximum number of expired
		records is not disclosed by Aldous in combination with Morrison. Mathieu.
		Kenvon-Mathieu, Dirks, Thatte, the '663 Patent, or the Opportunistic Garbage
		Collection References, it is disclosed by Linux 2.0.1, which describes
		dynamically determining maximum number of expired ones of the records to
		remove when the linked list is accessed. It would have been obvious to
		combine Linux 2.0.1 with Aldous. For example, both Linux 2.0.1 and
		Aldous describe systems and methods for performing data storage and retrieval
		using known programming techniques to yield a predictable result.

Asserted Claims From U.S. Pat. No. 5,893,120	David Aldous, Micha Hofri, & Wojciech Szpankowski, <i>Maximum Size of a Dynamic Data Structure: Hashing with Lazy Deletion Revisited</i> , 21 SIAM J. COMPUT. 713 (August 1992) ("Aldous") alone and in combination
	When invoked, the function rt_cache_add automatically increments an integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359. When the function rt_cache_add removes an expired record, the function rt_cache_add decrements the variable rt_cache_size. See Linux 2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the number of records in the hash table (i.e., ip_rt_hash_table). Because the function rt_cache_add automatically increments and decrements the variable rt_cache_size, the variable rt_cache_size is determined dynamically.
	Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1. The function rt_garbage_collect_1 loops through each of the linked lists in the ip_rt_hash_table global variable. <i>See</i> Linux 2.0.1, route.c at lines 1122-1138. In this way, the function rt_garbage_collect_1 accesses the linked list. When the function rt_garbage_collect_1 identifies a record that is expired, the function rt_garbage_collect_1 decrements the variable rt_cache_size and frees the record. <i>See</i> Linux 2.0.1, route.c at lines 1128-1135.
	Because all records in the linked list can be expired and all records in the hash table can be in the linked list, the variable rt_cache_size can represent a dynamically determined maximum number of expired ones of the records to remove when function rt_garbage_collect_1 accesses the linked list. Furthermore, the function rt_cache_add determines whether the number of records in the hash table exceeds a predetermined threshold

Asserted C	laims From	David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
U.S. Pat. N	0. 5,893,120	Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.
		COMPUT. 713 (August 1992) ("Aldous") alone and in combination
		RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
		the predetermined threshold RT_CACHE_SIZE_MAX, the function
		rt_cache_add invokes a function rt_garbage_collect. See Linux
		2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
		invokes a function rt_garbage_collect_1. <i>See</i> Linux 2.0.1, route.c at
		line 1293. The function rt_garbage_collect invokes a function
		rt_garbage_collect_1. <i>See</i> Linux 2.0.1, route.c at line 1293.
		The function rt_garbage_collect_1 loops through each linked list in
		the hash table. <i>See</i> Linux 2.0.1, route.c at lines 1116-1132. For each linked
		list in the hash table, the function rt_garbage_collect_1 looks at each
		record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
		record in a linked list, the function rt_garbage_collect_l determines
		whether the record's last use time plus the record's expiration factor is later
		use time plus the record's expiration factor is less than the current time, the
		function rt garbage collect 1 removes the record from the linked list
		See Linux 2.0.1 route c at lines $1124-1130$ The record's expiration factor is
		based on a variable expire and the record's reference count. See Linux
		2.0.1. route.c at line 1122. The variable expire is initially one half of the fixed
		timeout value RT CACHE TIMEOUT. See Linux 2.0.1, route.c at line 1110.
		After looping through all of the linked lists in this manner, the function
		rt_garbage_collect_1 determines again whether the number of records
		in the hash table is less than the predetermined threshold
		RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
		of items in the hash table is still greater than the predetermined threshold

Joint Invalidity Contentions & Production of Documents

Asserted C U.S. Pat. N	laims From o. 5,893,120	David Aldous, Micha Hofri, & Wojciech Szpankowski, <i>Maximum Size of a Dynamic Data Structure: Hashing with Lazy Deletion Revisited</i> , 21 SIAM J. COMPUT. 713 (August 1992) ("Aldous") alone and in combination
		RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves the variable expire and loops through each of the linked lists in the hash table. <i>See</i> Linux 2.0.1, route.c at line 1135. In this way, the function rt_garbage_collect_1 can remove additional records from the linked lists in the hash table. The function rt_garbage_collect_1 repeats this process until the total number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX.
		Under Bedrock's proposed claim constructions, the records removed by the function rt_garbage_collect_1 are "expired" records. That is, the records removed by the function rt_garbage_collect_1 are data items which after a limited time or after the occurrence of some event become obsolete, such that their presence in the storage system is no longer needed or desired.
		The function rt_cache_add only removes a record from a linked list when the record's last use time plus the fixed timeout value RT_CACHE_TIMEOUT is less than the current time and the record's reference count is zero. <i>See</i> Linux 2.0.1, route.c at line 1369. Thus, the maximum number of records that the function rt_cache_add can remove from a given linked list is limited to those records whose reference counts are zero.
		In contrast, the maximum number of records that the function rt_garbage_collect_1 can remove from a given linked list is not limited to those records whose reference counts are zero. <i>See</i> Linux 2.0.1, route.c at line 1122. Rather, the function rt_garbage_collect_1 can remove records whose reference counts are zero and records whose reference counts are greater than zero.

Asserted Claims From U.S. Pat. No. 5,893,120		David Aldous, Micha Hofri, & Wojciech Szpankowski, <i>Maximum Size of a Dynamic Data Structure: Hashing with Lazy Deletion Revisited</i> , 21 SIAM J. COMPUT. 713 (August 1992) ("Aldous") alone and in combination
		Consequently, the maximum number of records that the function rt_garbage_collect_1 can remove from a linked list is different than the maximum number of records that the function rt_cache_add can remove from a linked list.
3. A method for storing and retrieving information records using a linked list to store and provide access to the records, at least some of the records automatically expiring, the method comprising the steps of:	7. A method for storing and retrieving information records using a hashing technique to provide access to the records and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring, the method comprising the steps of:	 To the extent the preamble is a limitation, Aldous discloses a method for storing and retrieving information records using a linked list to store and provide access to the records, at least some of the records automatically expiring. Aldous also discloses a method for storing and retrieving information records using a hashing technique to provide access to the records and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring. For example, Aldous discloses "a dynamic data structure management technique called <i>hashing with lazy deletion</i> (HwLD) A table managed under HwLD is built by a sequence of insertions and deletions of items." Aldous, <i>supra</i> at 713.
		Moreover, it is inherent to the Aldous disclosure that the hash table described herein is a separate-chaining hash table to resolve unavoidable key collisions, where each slot of the bucket array is a pointer to a linked list that contains the key-value pairs that hash to the same location. Other data structures, such as balanced trees, only offer logarithmic time complexity and can be complicated to implement and require several pointers per item. With a suitable number of buckets, the separate-chaining hash table solution offers constant expected search times and makes deletion easy.
		To the extent is it not inherent, it would be obvious to combine Aldous with

Asserted Claims From U.S. Pat. No. 5,893,120		David Aldous, Micha Hofri, & Wojciech Szpankowski, <i>Maximum Size of a Dynamic Data Structure: Hashing with Lazy Deletion Revisited</i> , 21 SIAM J. COMPUT. 713 (August 1992) ("Aldous") alone and in combination
		the prior art disclosed in, <i>The Complexity of Hashing with Lazy Deletion</i> , Christopher J. Van Wyk and Jeffrey Scott Vitter, <i>The Complexity of Hashing with Lazy Deletion</i> , 1 Algorithmica 17, 18 (November, 1986), because Aldous describes and incorporates Van Wyk by reference. Aldous at 713. Van Wyk discloses a method of hashing with lazy deletion using a separate-chaining hash table as a more efficient solution to collisions than the available alternatives, such as balanced trees. <i>See</i> Exhibit C-1 which is herein incorporated by reference.
[3a] accessing the linked list of records,	[7a] accessing a linked list of records having same hash address,	 Aldous discloses accessing a linked list of records. Aldous also discloses accessing a linked list of records having same hash address. For example, Aldous discloses "a dynamic data structure management technique called <i>hashing with lazy deletion</i> (HwLD) A table managed under HwLD is built by a sequence of insertions and deletions of items." Aldous, <i>supra</i> at 713. "An item arrives at a hashing table and needs to be stored for some period (the item's <i>lifetime</i>) We always assume that the assignment of items to the <i>H</i> buckets of the hashing table is uniform: That is, each item has probability 1/<i>H</i> to select each bucket, independent for different items and independent of the
		 "An arriving item selects one out of the <i>H</i> buckets at random (with uniform probability) and joins the items assigned to this bucket." <i>Id.</i> at 715. Moreover, it is inherent to the Aldous disclosure that the hash table described herein is a separate-chaining hash table to resolve unavoidable key collisions,

Asserted Claims From U.S. Pat. No. 5,893,120		David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J. COMPUT. 713 (August 1992) ("Aldous") alone and in combination
		where each slot of the bucket array is a pointer to a linked list that contains the key-value pairs that hash to the same location. Other data structures, such as balanced trees, only offer logarithmic time complexity and can be complicated to implement and require several pointers per item. With a suitable number of buckets, the separate-chaining hash table solution offers constant expected search times and makes deletion easy.
		To the extent is it not inherent, it would be obvious to combine Aldous with the prior art disclosed in, <i>The Complexity of Hashing with Lazy Deletion</i> , Christopher J. Van Wyk and Jeffrey Scott Vitter, <i>The Complexity of Hashing with Lazy Deletion</i> , 1 Algorithmica 17, 18 (November, 1986), because Aldous describes and incorporates Van Wyk by reference. Aldous at 713. Van Wyk discloses a method of hashing with lazy deletion using a separate-chaining hash table as a more efficient solution to collisions than the available alternatives, such as balanced trees. <i>See</i> Exhibit C-1 which is herein incorporated by reference.
[3b] identifying at least some of the automatically expired ones of the records, and	[7b] identifying at least some of the automatically expired ones of the records,	 Aldous discloses identifying at least some of the automatically expired ones of the records. For example, Aldous discloses "a dynamic data structure management technique called <i>hashing with lazy deletion</i> (HwLD) A table managed under HwLD is built by a sequence of insertions and deletions of items."Aldous, <i>supra</i> at 713.
		"An item arrives at a hashing table and needs to be stored for some period (the item's <i>lifetime</i>) We always assume that the assignment of items to the H buckets of the hashing table is uniform: That is, each item has probability $1/H$

Asserted Claims From U.S. Pat. No. 5,893,120		David Aldous, Micha Hofri, & Wojciech Szpankowski, <i>Maximum Size of a Dynamic Data Structure: Hashing with Lazy Deletion Revisited</i> , 21 SIAM J. COMPUT. 713 (August 1992) ("Aldous") alone and in combination
		to select each bucket, independent for different items and independent of the arrival and lifetimes." <i>Id</i> .
		"An arriving item selects one out of the H buckets at random (with uniform probability) and joins the items assigned to this bucket." ¹
		Moreover, Aldous discloses that "[t]he principle HwLD is very simple: An item in a bucket is not deleted as soon as possible (i.e., when its lifetime expires). Instead, the item is removed at the first arrival to the item's bucket after the item's expiration time. The point is that algorithms that delete items as soon as possible may have unacceptably high overhead, even though they require less storage space for the items themselves." <i>Id.</i> at 713.
[3c] removing at least some of the automatically expired records from the linked list when the linked list is accessed.	[7c] removing at least some of the automatically expired records from the linked list when the linked list is accessed, and	 Aldous discloses removing at least some of the automatically expired records from the linked list when the linked list is accessed. For example, Aldous discloses "a dynamic data structure management technique called <i>hashing with lazy deletion</i> (HwLD) A table managed under HwLD is built by a sequence of insertions and deletions of items." <i>Id.</i> "An item arrives at a hashing table and needs to be stored for some period (the item's <i>lifetime</i>) We always assume that the assignment of items to the <i>H</i> buckets of the hashing table is uniform: That is, each item has probability 1/<i>H</i> to select each bucket, independent for different items and independent of the arrival and lifetimes." <i>Id.</i>

Asserted Cla U.S. Pat. No	aims From . 5,893,120	David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.
		COMPUT. 715 (August 1992) ("Aldous") alone and in combination
		An arriving item selects one out of the <i>H</i> buckets at random (with uniform
		probability) and joins the items assigned to this bucket. Id. at 715.
		Moreover, Aldous discloses that "[t]he principle HwLD is very simple: An
		item in a bucket is not deleted as soon as possible (i.e., when its lifetime
		expires). Instead, the item is removed at the first arrival to the item's bucket
		after the item's expiration time. The point is that algorithms that delete items
		as soon as possible may have unacceptably high overhead, even though they
		require less storage space for the items themselves." <i>Id.</i> at 713.
		Moreover, it is inherent to the Aldous disclosure that the hash table described
		herein is a separate-chaining hash table to resolve unavoidable key collisions,
		where each slot of the bucket array is a pointer to a linked list that contains the
		key-value pairs that hash to the same location. Other data structures, such as
		balanced trees, only offer logarithmic time complexity and can be complicated
		to implement and require several pointers per item. With a suitable number of
		buckets, the separate-chaining hash table solution offers constant expected
		search times and makes deletion easy.
		To the entent is it and ishe much it more like she is a white Aldere with
		To the extent is it not innerent, it would be obvious to combine Aldous with the prior art disclosed in The Complexity of Hashing with Lary Deletion
		Christonhan L. Van Welk and Joffrey Soott Vitton. The Complexity of Hashing
		Christopher J. Van wyk and Jenney Scoul Viller, <i>The Complexity of Hashing</i>
		with Lazy Deterion, 1 Algorithmica 17, 18 (November, 1980), because Aldous describes and incorrected Van Wult by reference. Aldous et 712, Van Wult
		discloses a method of bashing with lazy deletion using a separate chaining
		hash table as a more afficient solution to colligions than the available
		alternatives such as balanced trees. See Exhibit C 1 which is herein
		incorporated by reference
		incorporated by reference.

Asserted Claims From U.S. Pat. No. 5,893,120		David Aldous, Micha Hofri, & Wojciech Szpankowski, <i>Maximum Size of a Dynamic Data Structure: Hashing with Lazy Deletion Revisited</i> , 21 SIAM J. COMPUT. 713 (August 1992) ("Aldous") alone and in combination
	[7d] inserting, retrieving or deleting one of the records from the system	Aldous discloses inserting, retrieving or deleting one of the records from the system following the step of removing.
	following the step of removing.	For example, Aldous discloses "a dynamic data structure management technique called <i>hashing with lazy deletion</i> (HwLD) A table managed under HwLD is built by a sequence of insertions and deletions of items." Aldous, <i>supra</i> at 713.
		"An item arrives at a hashing table and needs to be stored for some period (the item's <i>lifetime</i>) We always assume that the assignment of items to the H buckets of the hashing table is uniform: That is, each item has probability $1/H$ to select each bucket, independent for different items and independent of the arrival and lifetimes." <i>Id</i> .
		"An arriving item selects one out of the <i>H</i> buckets at random (with uniform probability) and joins the items assigned to this bucket." <i>Id.</i> at 715.
		Moreover, Aldous discloses that "[t]he principle HwLD is very simple: An item in a bucket is not deleted as soon as possible (i.e., when its lifetime expires). Instead, the item is removed at the first arrival to the item's bucket after the item's expiration time. The point is that algorithms that delete items as soon as possible may have unacceptably high overhead, even though they require less storage space for the items themselves." <i>Id.</i> at 713.
		Moreover, it is inherent to the Aldous disclosure that the hash table described herein is a separate-chaining hash table to resolve unavoidable key collisions, where each slot of the bucket array is a pointer to a linked list that contains the
Asserted Claims From		David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
----------------------------	------------------------------	--
U.S. Pat. No. 5,893,120		Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.
		COMPUT. 713 (August 1992) ("Aldous") alone and in combination
		key-value pairs that hash to the same location. Other data structures, such as
		balanced trees, only offer logarithmic time complexity and can be complicated
		to implement and require several pointers per item. With a suitable number of
		buckets, the separate-chaining hash table solution offers constant expected
		search times and makes deletion easy. To the extent is it not inherent, it would
		be obvious to combine Aldous with the prior art disclosed in, The Complexity
		of Hashing with Lazy Deletion, Christopher J. Van Wyk and Jeffrey Scott
		Vitter, The Complexity of Hashing with Lazy Deletion, 1 Algorithmica 17, 18
		(November, 1986), because Aldous describes and incorporates Van Wyk by
		reference. Aldous at 713. Van Wyk discloses a method of hashing with lazy
		deletion using a separate-chaining hash table as a more efficient solution to
		collisions than the available alternatives, such as balanced trees. See Exhibit C-
		1 which is herein incorporated by reference.
		Moreover, Van Wyk and Vitter explain that "[t]he insertion of element x_i
		proceeds as follows:
		1) Compute $h = n(k_i)$
		2) Remove from the hash chain in bucket <i>h</i> any items x_j with $t_j < s_j$ [i.e. remove all expired elements]
		3) Add x_i so the chain in bucket <i>h</i> remains sorted by termination time." Van
		Wyk at 19.
		This method clearly contemplates the insertion occurring after the removal of
		expired elements.
4. The method according to	8. The method according	Aldous discloses dynamically determining maximum number of expired ones
claim 3 further including	to claim / further including	of the records to remove when the linked list is accessed. Aldous teaches a

Asserted Claims From U.S. Pat. No. 5,893,120		David Aldous, Micha Hofri, & Wojciech Szpankowski, <i>Maximum Size of a Dynamic Data Structure: Hashing with Lazy Deletion Revisited</i> , 21 SIAM J. COMPUT. 713 (August 1992) ("Aldous") alone and in combination
the step of dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed.	the step of dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed.	method for calculating a bound on the space complexity of the hashing with lazy deletion algorithm, i.e., the number of expired elements that would remain in the linked lists forming the external chains of the hash table. See, e.g., Aldous at 17-21. That bound calculation is a means for dynamically determining the maximum number to remove, since the maximum number of elements to remove should never exceed the number of expired elements that would remain in the linked lists.
		To the extent Aldous does not disclose this element, Aldous combined with Morrison, Mathieu or Kenyon-Mathieu discloses this element. Morrison, Mathieu, and Kenyon-Mathieu also teach methods for calculating a bound on the space complexity of the hashing with lazy deletion algorithm. See, e.g., Morrison at 1156-61, Mathieu at 12-22, Kenyon-Mathieu 475-86.
		It would have been obvious to one of ordinary skill in the art that these methods of calculating bounds on the number of expired elements stored in the linked list could also be used to dynamically determine a maximum number for the record search means disclosed in Aldous to remove. One of ordinary skill would have been motivated to combine the teachings of Morrison, Mathieu, and Kenyon-Mathieu with Aldous because they all sought to analyze the complexity of the hashing with lazy deletion algorithm, and each of the papers refers to and builds upon the work of those papers preceding. See, e.g., Morrison at 1155, 1158, Mathieu at 1-4, Kenyon-Mathieu at 473-475, Aldous at 2-3.
		Aldous combined with Dirks, Thatte, the '663 patent, and/or the Opportunistic Garbage Collection Articles discloses dynamically determining maximum number of expired ones of the records to remove when the linked list is

Asserted Claims From	David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
U.S. Pat. No. 5,895,120	COMPUT. 713 (August 1992) ("Aldous") alone and in combination
	accessed. Dirks discloses the management of memory in a computer system and more particularly to the allocation of address space in a virtual memory system, which dynamically determines how many records to sweep/remove upon each allocation. Disclosure of these claim elements in Dirks is clearly shown in Exhibit B-2, which is hereby incorporated by reference in its entirety. For example, as summarized in Dirks, each time a VSID is assigned from the free list to a new application or thread, a fixed number of entries in the page table are scanned to determine whether they have become inactive, by checking them against the VSIDs on the recycle list. Each entry which is identified as being inactive is removed from the page table. After all of the entries in the page table have been examined in this manner, the VSIDs in the recycle list can be transferred to the free list, since all of their associated page table entries will have been removed. This approach thereby guarantees that a predetermined number of VSIDs are always available in the free list
	 without requiring a time-consuming scan of the complete page table at once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14. After [a] new VSID has been allocated, the system checks a flag RFLG to determine whether a recycle sweep is currently in progress (Step 20). If there is no sweep in progress, i.e. RFLG is not equal to one, a determination is made whether a sweep should be initiated. This is done by checking whether the inactive list is full, i.e. whether it contains x entries (Step 22). If the number of entries I on the inactive list is less than

Asserted Claims From	David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
U.S. Pat. No. 5,893,120	Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.
	COMPUT. 713 (August 1992) ("Aldous") alone and in combination
	x, no further action is taken, and processing control returns to the
	operating system (Step 24). If, however, the inactive list is full at this
	time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
	transferred to the recycle list, and an index n is reset to 1 (Step 28). The
	system then sweeps a predetermined number of page table entries PT _i on
	the page table, to detect whether any of them are inactive, i.e. their
	associated VSID is on the recycle list (Step 30). The predetermined
	number of entries that are swept is identified as k, where:
	total number of page table entries
	$k = \frac{1}{maximum number of active threads}$
	Id. at 8:12-30.
	Dirks discloses that any approach can be employed to determine the number of entries to be examined during each step of the sweeping process. <i>Id.</i> at 7:37-40. As stated in Dirks:
	Any other suitable approach can be employed to determine the number of entries to be examined during each step of the sweeping process. In this regard, it is not necessary that the number of examined entries be fixed for each step. Rather, it might vary from one step to the next. The only criterion is that the number of entries examined on each step be such that all entries in the page table are examined in a determinable amount of time or by the occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.
	<i>Id.</i> at 7:38-46. Thus, Dirks dynamically determines the maximum number of records to sweep/remove by calculating a value <i>k. Id.</i> at 7:15-46, 7:66-8:56. As both Aldous and Dirks relate to deletion of aged records upon the allocation

Asserted Claims From	David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
U.S. Pat. No. 5,893,120	Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.
	COMPUT. 713 (August 1992) ("Aldous") alone and in combination
	of a new incoming record, one of ordinary skill in the art would have
	understood how to use Dirks' dynamic decision making process of determining
	the maximum number of records to sweep/remove in other hash tables
	implementations such as Aldous. Moreover, one of ordinary skill in the art
	would recognize that it would improve similar systems and methods in the
	same way. As the '120 patent states "[a] person skilled in the art will
	appreciate that the technique of removing all expired records while searching
	the linked list can be expanded to include techniques whereby not necessarily
	all expired records are removed, and that the decision regarding if and how
	many records to delete can be a dynamic one." The '120 patent at 7:10-15.
	Additionally, one of ordinary skill in the art would recognize that the result of
	combining Dirks' deletion decision procedure with Aldous's technique of
	"lazy deletion" would be nothing more than the predictable use of prior art
	elements according to their established functions.
	Dy way of further avanuals, one of ordinary skill in the art would have
	by way of future example, one of ordinary skin in the art would have
	examine during each step of the sweeping process with Aldous's system and
	method of "lazy deletion" and would have seen the benefits of doing so. One
	nothed of fazy deletion and would have seen the benefits of doing so. One possible benefit for example, is that the system and method of lazy deletion
	could perform a specified number of deletions on any given sweep, thus saying
	the system from performing sometimes time-consuming sweeps
	the system nom performing sometimes time consuming sweeps.
	Alternatively, one of ordinary skill in the art would be motivated to, and would
	understand how to, combine the system disclosed in Aldous with the means for
	dynamically determining maximum number for the record search means to
	remove in the accessed linked list of records disclosed by Thatte. For example,
	Thatte discloses a system and method using hash tables and/or linked lists and

Asserted Claims From U.S. Pat. No. 5,893,120	David Aldous, Micha Hofri, & Wojciech Szpankowski, <i>Maximum Size of a Dynamic Data Structure: Hashing with Lazy Deletion Revisited</i> , 21 SIAM J. COMPUT. 713 (August 1992) ("Aldous") alone and in combination
	further discloses means for dynamically determining the maximum number for the record search means to remove in the accessed linked list of records. The disclosure of these claim elements in Thatte is clearly shown in Exhibit B-1, which is hereby incorporated by reference in its entirety.
	Moreover, one of ordinary skill in the art would recognize that these combinations would improve the similar systems and methods in the same way. Additionally, one of ordinary skill in the art would recognize that the result of combining Aldous with Thatte would be nothing more than the predictable use of prior art elements according to their established functions. The resulting combination would include the capability to determine the maximum number for the record search means to remove.
	Further, one of ordinary skill in the art would be motivated to combine Aldous with Thatte and recognized the benefits of doing so. For example, the removal of expired records described in Aldous can be burdensome on the system, adding to the system's load and slowing down the system's processing. One of ordinary skill in the art would recognize that combining Aldous with the teachings of Thatte would solve this problem by dynamically determining how many records to delete based on, among other things, the system load. Moreover, the '120 patent discloses that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine Aldous with Thatte.

Joint Invalidity Contentions & Production of Documents

Asserted C U.S. Pat. N	laims From o. 5,893,120	David Aldous, Micha Hofri, & Wojciech Szpankowski, <i>Maximum Size of a Dynamic Data Structure: Hashing with Lazy Deletion Revisited</i> , 21 SIAM J. COMPUT. 713 (August 1992) ("Aldous") alone and in combination
		patent. Disclosure of these claim elements in the '663 patent is clearly shown in Exhibit B-13, which is hereby incorporated by reference in its entirety. For example, as summarized in the '663 patent:
		during normal times when the load on the storage system is not excessive, a non-contaminating but slow deletion of records is used. This slow, non-contaminating deletion involves closing the collision-resolution chain of locations by moving a record from a later position in the chain into the position of the record to be deleted. This leaves no deleted record locations in the storage space to slow down future searches. U.S. Patent 4,996,663 to Nemes at 2:24-34 ("The '663 patent").
		In times of heavy use, when deletions must be done rapidly and no time is available for decontamination, the record is simply marked as "deleted" and left in place. Later non-contaminating probes in the vicinity of such deleted record locations automatically remove the contaminating deleted records by moving records in the chain as described above. <i>Id.</i> at 2:35-41.
		This hybrid hashing technique has the decided advantage of automatically eliminating contamination caused by the fast-secure deletion procedure when the slower, non-contaminating deletion is used when the load on the system is at lower levels. <i>Id.</i> at 2:42-46.
		This hybrid deletion is shown in Figure 5.

35

Asserted C U.S. Pat. N	laims From o. 5,893,120	David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J. COMPUT. 713 (August 1992) ("Aldous") alone and in combination
		FIG.5 HYBRID DELETION

36

Asserted C	laims From	David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
U.S. Pat. N	0. 5,893,120	Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.
		COMPUT. 713 (August 1992) ("Aldous") alone and in combination
		not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
		Figure 7. These records are then actually deleted by a subsequent slow-non-
		contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.
		Thus, the hybrid deletion procedure in the '663 patent dynamically determines
		a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
		fast-secure delete 52 is used, then maximum number of records is zero because
		records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
		slow-non-contaminating delete 53 is used, then the maximum number of
		records to remove is all of the contaminated records in the bucket. Id. at 6:65-
		7:68, Figures 6, 6A, 6B.
		As both Aldous and the '663 patent relate to deletion of records from hash
		tables using external chaining, one of ordinary skill in the art would
		understood how to use the '663 patent's dynamic decision on whether to
		perform a deletion based on a systems load in other hash table implementations
		such as Aldous. Moreover, one of ordinary skill in the art would recognize
		that it would improve similar systems and methods in the same way. As the
		'120 patent states "[a] person skilled in the art will appreciate that the
		technique of removing all expired records while searching the linked list can
		be expanded to include techniques whereby not necessarily all expired records
		are removed, and that the decision regarding if and how many records to delete
		can be a dynamic one." The 120 patent at 7:10-15. Additionally, one of
		ordinary skill in the art would recognize that the result of combining the 663
		patent's deletion decision procedure with Aldous's technique of "lazy
		deletion would be nothing more than the predictable use of prior art elements
		according to their established functions.
		By way of further example, one of ordinary skill in the art would have

Joint Invalidity Contentions & Production of Documents

Asserted Cla	ims From	David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
U.S. Pat. No.	5,893,120	Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.
		COMPUT. 713 (August 1992) ("Aldous") alone and in combination
		combined the '663 patent's dynamic decision on whether to perform a deletion
		based on a systems load as taught by the '663 patent and with Aldous's system
		and method of "lazy deletion" and would have seen the benefits of doing so.
		One such benefit, for example, is that the system and method of lazy deletion
		would avoid performing deletions when the system load exceeded a threshold.
		Alternatively, it would also be obvious to combine Aldous with the
		Opportunistic Garbage Collection Articles.
		The Opportunistic Garbage Collection Articles disclose a generational based
		garbage collection which dynamically determines how much garbage to
		collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
		<i>Opportunistic Garbage Collector</i> , OOPSLA '89 Proceedings, October 1-6, 1080: Paul P. Wilson, Opportunistic Carbage Collection, ACM SIGPLAN
		Notices Vol 23 No. 12 December 1988
		101000, vol. 23, 10. 12, December 1900.
		For example, the Opportunistic Garbage Collection Articles disclose in part:
		When a significant pause has been detected, a decision procedure is
		invoked to decide whether to garbage collect, and how many generations to
		scavenge. The fuller a generation is, the more likely it is to be scavenged;
		also, the longer the pause that has been detected, the larger the scope of the
		garbage collection is likely to be. <i>Design of the Opportunistic Garbage</i>
		Collector at 32.
		Every time a user-input routine is invoked, a decision routine can decide
		whether to garbage collect. As long as the decision routine takes no more
		than a few milliseconds to execute, it should not interfere with

Asserted Claims From	David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
U.S. Pat. No. 5,893,120	Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.
	COMPUT. 713 (August 1992) ("Aldous") alone and in combination
	continual run time overhead. Opportunistic Carbaga Collection at 100
	continuar fun-time overhead. Opportunistic Ourbage Conection at 100.
	This decision routine should take several things into account: 1) the volume
	of data allocated since the last scavenge, 2) how long it has been since the
	user has had an opportunity to interact, and 3) the height of the stack
	relative to its average height at reads since the last scavenge. If the product
	of the allocation and the compute time is high, and if the stack is low, the
	scavenge favorability measure is high. If it is especially high, a multi-
	generation scavenge is in order. <i>Id</i> .
	If these houristics fail and a sequence is forced instead by the filling of a
	generation's space it is likely to happen during a significant compute-
	bound pausethe one that has just allocated the data that forced the
	collection. When the opportunistic mechanism fails to find the end of a
	pause, it may still succeed by default, embedding a scavenge pause within
	a larger pause. Design of the Opportunistic Garbage Collector at 32.
	As both Aldous and the Opportunistic Garbage Collection Articles relate to
	deletion of aged records, one of ordinary skill in the art would have understood
	now to use the Opportunistic Garbage Collection Articles' dynamic decision
	implementations such as Aldous Moreover one of ordinary skill in the art
	would recognize that it would improve similar systems and methods in the
	same way. As the '120 patent states "[a] person skilled in the art will
	appreciate that the technique of removing all expired records while searching
	the linked list can be expanded to include techniques whereby not necessarily
	all expired records are removed, and that the decision regarding if and how

39

Joint Invalidity Contentions & Production of Documents

Asserted Claims From	David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
U.S. Pat. No. 5,893,120	Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.
	COMPUT. 713 (August 1992) ("Aldous") alone and in combination
	many records to delete can be a dynamic one." The '120 patent at 7:10-15.
	Additionally, one of ordinary skill in the art would recognize that the result of
	combining the Opportunistic Garbage Collection Articles' deletion decision
	procedure with Aldous's technique of "lazy deletion" would be nothing more
	than the predictable use of prior art elements according to their established
	functions.
	By way of further example, one of ordinary skill in the art would have combined the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion and how many generations to scavenge as taught by the Opportunistic Garbage Collection Articles and with Aldous's system and method of "lazy deletion" and would have seen the benefits of doing so. One such benefit, for example, is that the system and method of lazy deletion would only perform deletions when the system was not already too overloaded, thus preventing slowdown of the system.
	Additionally, it would have been obvious to one of ordinary skill in the art to modify the system disclosed in Aldous to dynamically determine the maximum number of expired records to remove in the accessed linked list of records. It is a fundamental concept in computer science and the relevant art that any variable or parameter affecting any aspect of a system can be dynamically determined based on information available to the system. One of ordinary skill in the art would have been motivated to combine the system disclosed in Aldous with the fundamental concept of dynamically determining the maximum number of expired records to remove in an accessed linked list of records to solve a number of potential problems. For example, the removal of expired records described in Aldous can be burdensome on the system, adding to the system's load and slowing down the system's processing. Moreover, the

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.
	COMPUT. 713 (August 1992) ("Aldous") alone and in combination
	removal could also force an interruption in real-time processing as the
	processing waits for the removal to complete. Indeed, part of the motivation
	for the system disclosed in Aldous is avoiding these problems. One of
	ordinary skill in the art would have known that dynamically determining the
	maximum number to remove would limit the burden on the system and bound
	the length of any real-time interruption to prevent delays in processing.
	Indeed, Nemes concedes that such dynamic determination was obvious when
	he states in the '120 patent that "[a] person skilled in the art will appreciate that
	the technique of removing all expired records while searching the linked list
	can be expanded to include techniques whereby not necessarily all expired
	records are removed, and that the decision regarding if and how many records
	to delete can be a dynamic one." 120 at 7:10-15.
	To the extent that dynamically determining a maximum number of expired records is not disclosed by Aldous in combination with Morrison, Mathieu, Kenyon-Mathieu, Dirks, Thatte, the '663 Patent, or the Opportunistic Garbage Collection References, it is disclosed by Linux 2.0.1, which describes dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed. It would have been obvious to combine Linux 2.0.1 with Aldous. For example, both Linux 2.0.1 and Aldous describe systems and methods for performing data storage and retrieval
	using known programming techniques to yield a predictable result.
	When invoked, the function rt_cache_add automatically increments an
	integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
	When the function rt cache add removes an expired record, the function
	rt_cache_add decrements the variable rt_cache_size. See Linux

Asserted C U.S. Pat. No	laims From p. 5,893,120	David Aldous, Micha Hofri, & Wojciech Szpankowski, <i>Maximum Size of a Dynamic Data Structure: Hashing with Lazy Deletion Revisited</i> , 21 SIAM J. COMPUT. 713 (August 1992) ("Aldous") alone and in combination
		 2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the number of records in the hash table (i.e., ip_rt_hash_table). Because the function rt_cache_add automatically increments and decrements the variable rt_cache_size, the variable rt_cache_size is determined dynamically. Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1. The function rt_garbage_collect 1 loops through each of the linked
		lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at lines 1122-1138. In this way, the function rt_garbage_collect_1 accesses the linked list. When the function rt_garbage_collect_1 identifies a record that is expired, the function rt_garbage_collect_1 decrements the variable rt_cache_size and frees the record. See Linux 2.0.1, route.c at lines 1128-1135.
		Because all records in the linked list can be expired and all records in the hash table can be in the linked list, the variable rt_cache_size can represent a dynamically determined maximum number of expired ones of the records to remove when function rt_garbage_collect_1 accesses the linked list.
		Furthermore, the function rt_cache_add determines whether the number of records in the hash table exceeds a predetermined threshold RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_cache_add invokes a function rt_garbage_collect. <i>See</i> Linux 2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect

42

Asserted Claims From U.S. Pat. No. 5,893,120	David Aldous, Micha Hofri, & Wojciech Szpankowski, <i>Maximum Size of a Dynamic Data Structure: Hashing with Lazy Deletion Revisited</i> , 21 SIAM J. COMPUT. 713 (August 1992) ("Aldous") alone and in combination
	invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293. The function rt_garbage_collect invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.
	The function rt_garbage_collect_1 loops through each linked list in the hash table. <i>See</i> Linux 2.0.1, route.c at lines 1116-1132. For each linked list in the hash table, the function rt_garbage_collect_1 looks at each record in the linked list. <i>See</i> Linux 2.0.1, route.c at lines 1120-1131. For each record in a linked list, the function rt_garbage_collect_1 determines whether the record's last use time plus the record's expiration factor is later than the current time. <i>See</i> Linux 2.0.1, route.c at line 1122. If the record's last use time plus the record's expiration factor is less than the current time, the function rt_garbage_collect_1 removes the record from the linked list. <i>See</i> Linux 2.0.1, route.c at lines 1124-1130. The record's expiration factor is based on a variable expire and the record's reference count. <i>See</i> Linux 2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed timeout value RT_CACHE_TIMEOUT. <i>See</i> Linux 2.0.1, route.c at line 1110.
	After looping through all of the linked lists in this manner, the function rt_garbage_collect_1 determines again whether the number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX. <i>See</i> Linux 2.0.1, route.c at line 1133. If the number of items in the hash table is still greater than the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves the variable expire and loops through each of the linked lists in the hash table. <i>See</i> Linux 2.0.1, route.c at line 1135. In this way, the function rt_garbage_collect_1 halves table. <i>See</i> Linux 2.0.1, route.c at line 1135. In this way, the function

Asserted Claims From U.S. Pat. No. 5,893,120	David Aldous, Micha Hofri, & Wojciech Szpankowski, <i>Maximum Size of a Dynamic Data Structure: Hashing with Lazy Deletion Revisited</i> , 21 SIAM J. COMPUT. 713 (August 1992) ("Aldous") alone and in combination
	lists in the hash table. The function rt_garbage_collect_1 repeats this process until the total number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX.
	 Under Bedrock's proposed claim constructions, the records removed by the function rt_garbage_collect_1 are "expired" records. That is, the records removed by the function rt_garbage_collect_1 are data items which after a limited time or after the occurrence of some event become obsolete, such that their presence in the storage system is no longer needed or desired. The function rt_cache_add only removes a record from a linked list when the record's last use time plus the fixed timeout value RT_CACHE_TIMEOUT is less than the current time and the record's reference count is zero. See Linux 2.0.1, route.c at line 1369. Thus, the maximum number of records that the function rt_cache_add can remove from a given linked list is limited to those records whose reference counts are zero.
	In contrast, the maximum number of records that the function rt_garbage_collect_1 can remove from a given linked list is not limited to those records whose reference counts are zero. <i>See</i> Linux 2.0.1, route.c at line 1122. Rather, the function rt_garbage_collect_1 can remove records whose reference counts are zero and records whose reference counts are greater than zero.
	Consequently, the maximum number of records that the function rt_garbage_collect_1 can remove from a linked list is different than the maximum number of records that the function rt_cache_add can

Asserted Claims From	David Aldous, Micha Hofri, & Wojciech Szpankowski, Maximum Size of a
U.S. Pat. No. 5,893,120	Dynamic Data Structure: Hashing with Lazy Deletion Revisited, 21 SIAM J.
	COMPUT. 713 (August 1992) ("Aldous") alone and in combination
	remove from a linked list.

45

Asserted Claims From U.S. Pat. No. 5,893,120		Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i> <i>Upper and Lower Bounds</i> , Revised Version January 7, 1990 ("Dietzfelbinger").
1. An information storage and retrieval system, the system comprising:	5. An information storage and retrieval system, the system comprising:	To the extent the preamble is a limitation, Dietzfelbinger discloses an information storage and retrieval system.
		For example, Dietzfelbinger discloses that "[t]he dynamic dictionary problem is considered: provide an algorithm for storing a dynamic set, allowing the operations insert, delete, and lookup. A dynamic perfect hashing strategy is given: a <i>randomized</i> algorithm for the dynamic dictionary problem that takes O(1) worst-case time for lookups and $O(1)$ amortized expected time for insertions and deletions" Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing: Upper and Lower Bounds</i> , Revised Version January 7, 1990, at 1.
		"A dictionary over a universe $U = \{0, 1,, N-1\}$ is a partial function S from U to some set I. The operations $Lookup(x)$, $Insert(x, i)$, and $Delete(x)$ are available on a dictionary S; $Lookup(x)$ returns $S(x)$, $Insert(x, i)$ adds x to the domain of S and sets $S(x)$ to I, and $Delete(x)$ removes x from the domain of S." Id. at 2.
[1a] a linked list to store	[5a] a hashing means to	Dietzfelbinger discloses a linked list to store and provide access to records
and provide access to records stored in a memory of the system at least some	stored in a memory of the	expiring. Dietzfelbinger also discloses a hashing means to provide access to records stored in a memory of the system and using an external chaining
of the records automatically expiring,	external chaining technique to store the records with	technique to store the records with same hash address, at least some of the records automatically expiring.
	same hash address, at least	For example Dietzfelbinger discloses that "[t]he dynamic dictionary problem
Joint Invalidity Contentions & Pro	duction of	1 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From U.S. Pat. No. 5,893,120		Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i> <i>Upper and Lower Bounds</i> , Revised Version January 7, 1990 ("Dietzfelbinger").
	automatically expiring,	is considered: provide an algorithm for storing a dynamic set, allowing the operations insert, delete, and lookup. A dynamic perfect hashing strategy is given: a <i>randomized</i> algorithm for the dynamic dictionary problem that takes $O(1)$ worst-case time for lookups and $O(1)$ amortized expected time for insertions and deletions" <i>Id.</i> at 1.
		"A <i>dictionary</i> over a <i>universe</i> $U = \{0, 1,, N - 1\}$ is a partial function S from U to some set I. The operations $Lookup(x)$, $Insert(x, i)$, and $Delete(x)$ are available on a dictionary S; $Lookup(x)$ returns $S(x)$, $Insert(x, i)$ adds x to the domain of S and sets $S(x)$ to I, and $Delete(x)$ removes x from the domain of S." Id. at 2.
		Furthermore, Dietzfelbinger discloses that "[t]here are two major techniques for implementing dictionaries: trees and hashing." <i>Id</i> .
		Dietzfelbinger discloses an extension of the Fredman, Kómlos, and Szemerédi scheme to the dynamic situation, wherein membership queries are processed in constant worst-case time, insertions and deletions are processed in constant expected amortized time, and the storage used at any time is proportional to the number of elements currently stored in the dictionary. "[F]redman, Komlós, and Szemerédi [FKS84] described a hashing technique that achieves linear storage (in n) and constant query time for all N and n , where n is the size of S ." <i>Id</i> .
		This FSK Scheme that Dietzfelbinger discloses "has two levels. At the top level, a hash function partitions the elements being stored into <i>s</i> sets. The second level consists of a perfect hash function for each of these sets.

Joint Invalidity Contentions & Production of Documents

Asserted Cl U.S. Pat. No	aims From 5, 5,893,120	Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i> <i>Upper and Lower Bounds</i> , Revised Version January 7, 1990 ("Dietzfelbinger").
		Specifically, a function h chosen uniformly at random from H_s is used to partition the set S into s blocks." <i>Id.</i> at 3-4.
		While Dietzfelbinger does not disclose whether or not the FKS scheme uses hashing with chaining to handle the unavoidable key collisions problem, Dietzfelbinger discloses other schemes that do use hashing with chaining. "Carter and Wegman [CW79] proposed <i>universal hashing</i> as a way of avoiding assumption on the distribution of input values. This approach works particularly well in combination with the idea of "continuous rehashing" introduced by Brassard and Kannan [BK88]. In this way an algorithm is obtained that needs linear space and expected constant time for each single instruction. However, for <i>n</i> keys being stored in the dictionary in a scheme of this kind the best upper bound known on the expected <i>worst case time</i> for an instruction (i.e., the length of the longest chain in the resulting hash table with chaining) is $O(\log n / \log \log n)" Id.$ at 2-3. Since Dietzfelbinger does not specify which collision handling approach FKS uses (the focus of this paper is not collision handling but a computation of the upper and lower bounds for the time complexity of a class of deterministic algorithms for the dictionary problem), it is inherent from the disclosure of other schemes, such as the CW scheme, that FKS also uses hashing with chaining.
		To the extent that Bedrock argues that Dietzefelbinger does not anticipate Claims $1 - 8$ because it is not inherent that the FKS scheme incorporates linked lists to handling key collisions, it would have been obvious to one of ordinary skill in the art to store table entries in a linked list. The admitted prior art in the Introduction discloses that linked lists/external chaining were already common place to resolve collisions within hash tables. <i>Id</i> . Thus,

3

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120		Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i> <i>Upper and Lower Bounds</i> , Revised Version January 7, 1990 ("Dietzfelbinger").
		Dietzefelbinger and the admitted prior art in the Introduction show that one of ordinary skill in the art understood how to use linked lists/external chaining to resolve collisions within hash tables, and would recognize that it would improve similar systems and methods in the same way.
		Furthermore, Dietzfelbinger discloses that "[d]eletions are performed by attaching a tag "deleted" to the table entry to be erased; only when a new level-1 hash function h or a new hash function h_j for the sub table T_j is chosen, do we drop the elements with a tag "deleted" from T_j ." <i>Id</i> . at 5.
[1b] a record search means utilizing a search key to access the linked list,	[5b] a record search means utilizing a search key to access a linked list of records having the same hash address,	Dietzfelbinger discloses a record search means utilizing a search key to access the linked list. Dietzfelbinger also discloses a record search means utilizing a search key to access a linked list of records having the same hash address. For example, Dietzfelbinger discloses that "[t]he dynamic dictionary problem is considered: provide an algorithm for storing a dynamic set, allowing the operations insert, delete, and lookup. A dynamic perfect hashing strategy is given: a <i>randomized</i> algorithm for the dynamic dictionary problem that takes Q(1) worst-case time for lookups and $Q(1)$ amortized expected time for
		insertions and deletions" <i>Id.</i> at 1. "A <i>dictionary</i> over a <i>universe</i> $U = \{0, 1,, N - 1\}$ is a partial function S from U to some set I. The operations $Lookup(x)$, $Insert(x, i)$, and $Delete(x)$ are available on a dictionary S; $Lookup(x)$ returns $S(x)$, $Insert(x, i)$ adds x to the domain of S and sets $S(x)$ to I, and $Delete(x)$ removes x from the domain of S." <i>Id.</i> at 2.

Joint Invalidity Contentions & Production of Documents

4

Asserted Clair U.S. Pat. No. 5	ms From 5,893,120	Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i> <i>Upper and Lower Bounds</i> , Revised Version January 7, 1990 ("Dietzfelbinger").
		Furthermore, Dietzfelbinger discloses that "[t]here are two major techniques for implementing dictionaries: trees and hashing." <i>Id</i> .
		Dietzfelbinger discloses an extension of the Fredman, Komlós, and Szemerédi scheme to the dynamic situation, wherein membership queries are processed in constant worst-case time, insertions and deletions are processed in constant expected amortized time, and the storage used at any time is proportional to the number of elements currently stored in the dictionary. "[F]redman, Komlós, and Szemerédi [FKS84] describe a hashing technique that achieves linear storage (in n) and constant query time for all N and n , where n is the size of S ." <i>Id</i> .
		This FSK Scheme that Dietzfelbinger discloses "has two levels. At the top level, a hash function partitions the elements being stored into <i>s</i> sets. The second level consists of a perfect hash function for each of these sets. Specifically, a function <i>h</i> chosen uniformly at random from H_s is used to partition the set <i>S</i> into <i>s</i> blocks." <i>Id.</i> at 3-4.
		While Dietzfelbinger does not disclose whether or not the FKS scheme uses hashing with chaining to handle the unavoidable key collisions problem, Dietzfelbinger discloses other schemes that do use hashing with chaining. "Carter and Wegman [CW79] proposed <i>universal hashing</i> as a way of avoiding assumption on the distribution of input values. This approach works particularly well in combination with the idea of "continuous rehashing" introduced by Brassard and Kannan [BK88]. In this way an algorithm is obtained that needs linear space and expected constant time for each single instruction. However, for <i>n</i> keys being stored in the dictionary in a scheme of

5

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120		Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i> <i>Upper and Lower Bounds</i> , Revised Version January 7, 1990 ("Dietzfelbinger").
		this kind the best upper bound known on the expected <i>worst case time</i> for an instruction (i.e., the length of the longest chain in the resulting hash table with chaining) is $O(\log n / \log \log n)$ " <i>Id.</i> at 2-3. Since Dietzfelbinger does not specify which collision handling approach FKS uses (the focus of this paper is not collision handling but a computation of the upper and lower bounds for the time complexity of a class of deterministic algorithms for the dictionary problem), it is inherent from the disclosure of other schemes, such as the CW scheme, that FKS also uses hashing with chaining.
		To the extent that Bedrock argues that Dietzefelbinger does not anticipate Claims 1 – 8 because it is not inherent that the FKS scheme incorporates linked lists to handling key collisions, it would have been obvious to one of ordinary skill in the art to store table entries in a linked list. The admitted prior art in the Introduction discloses that linked lists/external chaining were already common place to resolve collisions within hash tables. <i>Id.</i> Thus, Dietzefelbinger and the admitted prior art in the Introduction show that one of ordinary skill in the art understood how to use linked lists/external chaining to resolve collisions within hash tables, and would recognize that it would improve similar systems and methods in the same way.
[1c] the record search means including a means for identifying and removing at least some of the expired ones of the records from the linked list when the linked list is	[5c] the record search means including means for identifying and removing at least some expired ones of the records from the linked list of records when the linked list is accessed,	Dietzfelbinger discloses the record search means including a means for identifying and removing at least some of the expired ones of the records from the linked list when the linked list is accessed. Dietzfelbinger also discloses the record search means including means for identifying and removing at least some expired ones of the records from the linked list of records when the linked list is accessed.

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120		Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i> <i>Upper and Lower Bounds</i> , Revised Version January 7, 1990 ("Dietzfelbinger").
accessed, and	and	For example, Dietzfelbinger discloses that "[t]he dynamic dictionary problem is considered: provide an algorithm for storing a dynamic set, allowing the operations insert, delete, and lookup. A dynamic perfect hashing strategy is given: a <i>randomized</i> algorithm for the dynamic dictionary problem that takes O(1) worst-case time for lookups and $O(1)$ amortized expected time for insertions and deletions" <i>Id.</i> at 1.
		"A <i>dictionary</i> over a <i>universe</i> $U = \{0, 1,, N - 1\}$ is a partial function S from U to some set I. The operations $Lookup(x)$, $Insert(x, i)$, and $Delete(x)$ are available on a dictionary S; $Lookup(x)$ returns $S(x)$, $Insert(x, i)$ adds x to the domain of S and sets $S(x)$ to I, and $Delete(x)$ removes x from the domain of S." Id. at 2.
		Furthermore, Dietzfelbinger discloses that "[t]here are two major techniques for implementing dictionaries: trees and hashing." <i>Id</i> .
		Dietzfelbinger discloses an extension of the Fredman, Komlós, and Szemerédi scheme to the dynamic situation, wherein membership queries are processed in constant worst-case time, insertions and deletions are processed in constant expected amortized time, and the storage used at any time is proportional to the number of elements currently stored in the dictionary. "[F]redman, Komlós, and Szemerédi [FKS84] describe a hashing technique that achieves linear storage (in <i>n</i>) and constant query time for all <i>N</i> and <i>n</i> , where <i>n</i> is the size of <i>S</i> ." <i>Id</i> .
		This FSK Scheme that Dietzfelbinger discloses "has two levels. At the top level, a hash function partitions the elements being stored into <i>s</i> sets. The

7

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i> <i>Upper and Lower Bounds</i> , Revised Version January 7, 1990 ("Dietzfelbinger").
	second level consists of a perfect hash function for each of these sets. Specifically, a function h chosen uniformly at random from H_s is used to partition the set S into s blocks." <i>Id.</i> at 3-4.
	While Dietzfelbinger does not disclose whether or not the FKS scheme uses hashing with chaining to handle the unavoidable key collisions problem, Dietzfelbinger discloses other schemes that do use hashing with chaining. "Carter and Wegman [CW79] proposed <i>universal hashing</i> as a way of avoiding assumption on the distribution of input values. This approach works particularly well in combination with the idea of "continuous rehashing" introduced by Brassard and Kannan [BK88]. In this way an algorithm is obtained that needs linear space and expected constant time for each single instruction. However, for <i>n</i> keys being stored in the dictionary in a scheme of this kind the best upper bound known on the expected <i>worst case time</i> for an instruction (i.e., the length of the longest chain in the resulting hash table with chaining) is $O(\log n / \log \log n)" Id.$ at 2-3. Since Dietzfelbinger does not specify which collision handling approach FKS uses (the focus of this paper is not collision handling but a computation of the upper and lower bounds for the time complexity of a class of deterministic algorithms for the dictionary problem), it is inherent from the disclosure of other schemes, such as the CW scheme, that FKS also uses hashing with chaining.
	To the extent that Bedrock argues that Dietzefelbinger does not anticipate Claims $1 - 8$ because it is not inherent that the FKS scheme incorporates linked lists to handling key collisions, it would have been obvious to one of ordinary skill in the art to store table entries in a linked list. The admitted prior art in the Introduction discloses that linked lists/external chaining were already

8

Joint Invalidity Contentions & Production of Documents

Asserted Claims From	Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
U.S. Pat. No. 5,893,120	auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:
	Upper and Lower Bounds, Revised Version January 7, 1990
	("Dietzfelbinger").
	common place to resolve collisions within hash tables. <i>Id.</i> Thus, Dietzefelbinger and the admitted prior art in the Introduction show that one of ordinary skill in the art understood how to use linked lists/external chaining to resolve collisions within hash tables, and would recognize that it would improve similar systems and methods in the same way.
	Furthermore, Dietzfelbinger discloses that "[d]eletions are performed by attaching a tag "deleted" to the table entry to be erased; only when a new level-1 hash function h or a new hash function h_j for the sub table T_j is chosen, do we drop the elements with a tag "deleted" from T_j ." <i>Id.</i> at 5.
	A call to the procedure $Insert(x)$ conducts the following steps, as displayed by the code in the figure below. The procedure hashes x to determine the proper position for x, $h_j(x)$. If the position in which x is to be placed is empty, then x is stored in the position. However, if the position is not empty, then the procedure goes through and places all the elements in the sub table that are not labeled "deleted" into a list L_j , and marks all positions in the sub table as empty. Then, x is appended to the list L_j . By marking all positions in the sub table as empty, the procedure effectively deletes all those that are left in the sub table those that were labeled "deleted." <i>Id</i> . at 6.

9

Asserted Claims From U.S. Pat. No. 5,893,120	Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i> <i>Upper and Lower Bounds</i> , Revised Version January 7, 1990 ("Dietzfelbinger").
	procedure $Insert(x)$;
	$count \leftarrow count + 1;$
	$11 \ count > M$
	Rehash All(x)
	else
	$i \leftarrow h(x)$:
	if position $h_i(x)$ of subtable T_i contains x
	then
	if x is marked "deleted" then remove this tag;
	else (* x is new for W_j *)
	$b_j \leftarrow b_j + 1;$
	$ \text{if } b_j \leq m_j $
	then (* size of T_j sufficient *)
	If position $h_j(x)$ of I_j is empty
	store x in position $h_1(x)$ of T:
	else
	go through the subtable T_i , put all elements
	not marked "deleted" into a list L_i , and
	mark all positions of T_j empty;
	append x to list L_j ; $b_j \leftarrow$ length of L_j ;
	repeat $h_j \leftarrow$ randomly chosen function in \mathcal{H}_{s_j}
	until h_j is injective on the elements of list L_j ;
	for all y on list L_j store y in position $h_j(y)$ of T_j ;

Asserted Claims From U.S. Pat. No. 5,893,120		Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i> <i>Upper and Lower Bounds</i> , Revised Version January 7, 1990 ("Dietzfelbinger").
		$\begin{array}{l} \textbf{else} (* \ T_j \text{ is too small }*) \\ m_j \leftarrow 2 \cdot \max\{1, m_j\}; \ s_j \leftarrow 2m_j(m_j - 1); \\ \textbf{if condition} \ (**) \text{ is still satisfied} \\ \textbf{then} \ (* \text{ double capacity of } T_j *) \\ \text{ allocate new space, namely } s_j \text{ cells, for new subtable } T_j; \\ \text{ go through old subtable } T_j, \text{ put all elements} \\ \text{ not marked "deleted" into a list } L_j, \\ \text{ and mark all positions empty;} \\ \text{ append } x \text{ to list } L_j; \ b_j \leftarrow \text{ length of } L_j; \\ \textbf{repeat } h_j \leftarrow \text{ randomly chosen function in } \mathcal{H}_{s_j} \\ \textbf{until } h_j \text{ is injective on the elements of list } L_j; \\ \textbf{for all } y \text{ on list } L_j \text{ store } y \text{ in position } h_j(y) \text{ of } T_j; \\ \textbf{else} \ (* \text{ level-1-function } h \ \text{``bad'' } *) \\ RehashAll(x); \end{array}$
		<i>Id.</i> at Figure 1.
[1d] means, utilizing the record search means, for accessing the linked list and, at the same time, removing at least some of the expired ones of the records in the linked list.	[5d] mea[n]s, utilizing the record search means, for inserting, retrieving, and deleting records from the system and, at the same time, removing at least some expired ones of the records in the accessed linked list of records.	Dietzfelbinger discloses the record search means including a means for identifying and removing at least some of the expired ones of the records from the linked list when the linked list is accessed. Dietzfelbinger also discloses the record search means including means for identifying and removing at least some expired ones of the records from the linked list of records when the linked list is accessed. For example, Dietzfelbinger discloses that "[t]he dynamic dictionary problem is considered: provide an algorithm for storing a dynamic set, allowing the operations insert, delete, and lookup. A dynamic perfect hashing strategy is

Asserted Clai U.S. Pat. No.	ims From 5,893,120	Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i> <i>Upper and Lower Bounds</i> , Revised Version January 7, 1990 ("Dietzfelbinger").
		given: a <i>randomized</i> algorithm for the dynamic dictionary problem that takes $O(1)$ worst-case time for lookups and $O(1)$ amortized expected time for insertions and deletions " <i>Id.</i> at 1.
		"A dictionary over a universe $U = \{0, 1,, N - 1\}$ is a partial function S from U to some set I. The operations $Lookup(x)$, $Insert(x, i)$, and $Delete(x)$ are available on a dictionary S; $Lookup(x)$ returns $S(x)$, $Insert(x, i)$ adds x to the domain of S and sets $S(x)$ to I, and $Delete(x)$ removes x from the domain of S." Id. at 2.
		Furthermore, Dietzfelbinger discloses that "[t]here are two major techniques for implementing dictionaries: trees and hashing." <i>Id</i> .
		Dietzfelbinger discloses an extension of the Fredman, Komlós, and Szemerédi scheme to the dynamic situation, wherein membership queries are processed in constant worst-case time, insertions and deletions are processed in constant expected amortized time, and the storage used at any time is proportional to the number of elements currently stored in the dictionary. "[F]redman, Komlós, and Szemerédi [FKS84] describe a hashing technique that achieves linear storage (in n) and constant query time for all N and n , where n is the size of S ." <i>Id.</i>
		This FSK Scheme that Dietzfelbinger discloses "has two levels. At the top level, a hash function partitions the elements being stored into <i>s</i> sets. The second level consists of a perfect hash function for each of these sets. Specifically, a function <i>h</i> chosen uniformly at random from H_s is used to partition the set <i>S</i> into <i>s</i> blocks." <i>Id.</i> at 3-4.

Asserted Claims From U.S. Pat. No. 5,893,120	Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i> <i>Upper and Lower Bounds</i> , Revised Version January 7, 1990 ("Dietzfelbinger").
	While Dietzfelbinger does not disclose whether or not the FKS scheme uses hashing with chaining to handle the unavoidable key collisions problem, Dietzfelbinger discloses other schemes that do use hashing with chaining. "Carter and Wegman [CW79] proposed <i>universal hashing</i> as a way of avoiding assumption on the distribution of input values. This approach works particularly well in combination with the idea of "continuous rehashing" introduced by Brassard and Kannan [BK88]. In this way an algorithm is obtained that needs linear space and expected constant time for each single instruction. However, for <i>n</i> keys being stored in the dictionary in a scheme of this kind the best upper bound known on the expected <i>worst case time</i> for an instruction (i.e., the length of the longest chain in the resulting hash table with chaining) is $O(\log n / \log \log n)$ " <i>Id.</i> at 2-3.Since Dietzfelbinger does not specify which collision handling approach FKS uses (the focus of this paper is not collision handling but a computation of the upper and lower bounds for the time complexity of a class of deterministic algorithms for the dictionary problem), it is inherent from the disclosure of other schemes, such as the CW scheme, that FKS also uses hashing with chaining. To the extent that Bedrock argues that Dietzefelbinger does not anticipate Claims 1 – 8 because it is not inherent that the FKS scheme incorporates linked lists to handling key collisions, it would have been obvious to one of ordinary skill in the art to store table entries in a linked list. The admitted prior art in the Introduction discloses that linked lists/external chaining were already common place to resolve collisions within hash tables. <i>Id.</i> Thus,
	ordinary skill in the art understood how to use linked lists/external chaining to

Asserted Cla U.S. Pat. No	aims From 5,893,120	Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i> <i>Upper and Lower Bounds</i> , Revised Version January 7, 1990 ("Dietzfelbinger").
		resolve collisions within hash tables, and would recognize that it would improve similar systems and methods in the same way. Furthermore, Dietzfelbinger discloses that "[d]eletions are performed by attaching a tag "deleted" to the table entry to be erased; only when a new level- 1 hash function <i>h</i> or a new hash function h_j for the sub table T_j is chosen, do we drop the elements with a tag "deleted" from T_j ." <i>Id.</i> at 5. A call to the procedure <i>Insert(x)</i> conducts the following steps, as displayed by the code in the figure below. The procedure hashes <i>x</i> to determine the proper position for <i>x</i> , $h_j(x)$. If the position in which <i>x</i> is to be placed is empty, then <i>x</i> is stored in the position. However, if the position is not empty, then the procedure goes through and places all the elements in the sub table that are not labeled "deleted" into a list L_j , and marks all positions in the sub table as empty. Then, <i>x</i> is appended to the list L_j . By marking all positions in the sub table as empty, the procedure effectively deletes all those that are left in the sub table those that were labeled "deleted." <i>Id.</i> at 6.

14

Asserted Cla U.S. Pat. No.	iims From . 5,893,120	Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i> <i>Upper and Lower Bounds</i> , Revised Version January 7, 1990 ("Dietzfelbinger").
		$ \begin{array}{llllllllllllllllllllllllllllllllllll$

Asserted Claims From U.S. Pat. No. 5,893,120		Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i> <i>Upper and Lower Bounds</i> , Revised Version January 7, 1990 ("Dietzfelbinger")
		$\begin{array}{c} \textbf{else } (* \ T_j \text{ is too small }*) \\ m_j \leftarrow 2 \cdot \max\{1, m_j\}; \ s_j \leftarrow 2m_j(m_j - 1); \\ \textbf{if condition } (**) \ \textbf{is still satisfied} \\ \textbf{then } (* \ \textbf{double capacity of } T_j \ *) \\ allocate \ new \ space, \ namely \ s_j \ cells, \ \textbf{for new subtable } T_j; \\ go \ \textbf{through old subtable } T_j, \ \textbf{put all elements} \\ not \ marked \ "deleted" \ into a \ list \ L_j, \\ and \ mark \ all \ positions \ empty; \\ append \ x \ to \ list \ L_j; \ b_j \leftarrow \ length \ of \ L_j; \\ \textbf{repeat } h_j \leftarrow \ randomly \ chosen \ function \ in \ \mathcal{H}_{s_j} \\ \textbf{until } h_j \ is \ injective \ on \ the \ elements \ of \ list \ L_j; \\ \textbf{for all } y \ on \ list \ L_j \ store \ y \ in \ position \ h_j(y) \ of \ T_j; \\ \textbf{else } (* \ level-1\ function \ h \ "bad" \ *) \\ RehashAll(x); \end{array}$
		<i>Id.</i> at Figure 1.
2. The information storage and retrieval system according to claim 1 further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records.	6. The information storage and retrieval system according to claim 5 further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records.	Dietzfelbinger discloses an information storage and retrieval system further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records. For example, a call to the procedure $Insert(x)$ conducts the following steps, as displayed by the code in the figure below. The procedure hashes x to determine the proper position for x, $h_j(x)$. First, the procedure determines if x already exists in the sub table. If x does exist, then the only determination to make is whether x is marked for deletion. If x is marked for deletion, then the procedure removes this deletion tag. Id. at 6.

Joint Invalidity Contentions & Production of Documents

Asserted C U.S. Pat. N	laims From o. 5,893,120	Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i> <i>Upper and Lower Bounds</i> , Revised Version January 7, 1990 ("Dietzfelbinger").
		Second, if the sub table does not contain x and the position in which x is to be placed is found empty, then x is stored in the position. <i>Id</i> . Third, if the sub table does not contain x and the position in which x is to be placed is not empty, then the procedure goes through and places all the elements in the sub table that are not labeled "deleted" into a list L_j , and marks all positions in the sub table as empty. Then, x is appended to the list L_j . By marking all positions in the sub table as empty, the procedure effectively deletes all those that are left in the sub table $$ those that were labeled "deleted." <i>Id</i> . Therefore, the procedure dynamically determines whether or not to delete the records marked "deleted" if either of the following two conditions occur: (1) x already exists in the sub table or (2) the position in which x is to be placed is empty. Deletion takes place during a call to procedure <i>Insert</i> (x) only if the above two conditions are not met.

17

$ \begin{array}{c c} \textbf{procedure } Insert(x); \\ count \leftarrow count + 1; \\ \textbf{if } count > M \\ \textbf{then} \\ RchashAll(x); \\ \textbf{else} \\ j \leftarrow h(x); \\ \textbf{if position } h_j(x) \text{ of subtable } T_j \text{ contains } x \\ \textbf{then} \\ \textbf{if } x \text{ is marked "deleted" then remove this tag; } \\ \textbf{else} (* x \text{ is new for } W_j *) \\ b_j \leftarrow b_j + 1; \\ \textbf{if } b_j \leq m_j \\ \textbf{then} (* \text{ size of } T_j \text{ sufficient } *) \\ \textbf{if } position h_j(x) \text{ of } T_j \text{ is empty} \\ \textbf{then} \\ \textbf{store } x \text{ in position } h_j(x) \text{ of } T_j; \\ \textbf{else} \\ go \text{ through the subtable } T_j, \text{ put all elements} \\ not marked "deleted" into a \text{ list } L_j, \text{ and} \\ mark \text{ all positions of } T_j \text{ empty:} \\ append x \text{ to list } L_i; b_i \leftarrow \text{ length of } L_i; \end{array} $	Asserted Claims Fro U.S. Pat. No. 5,893,1	n Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer 0 auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i> <i>Upper and Lower Bounds</i> , Revised Version January 7, 1990 ("Dietzfelbinger").
$\begin{array}{c} \textbf{repeat} \ h_j \leftarrow \text{randomly chosen function in } \mathcal{H}_{s_j} \\ \textbf{until} \ h_j \text{ is injective on the elements of list } L_j; \\ \textbf{for all } y \text{ on list } L_j \text{ store } y \text{ in position } h_j(y) \text{ of } T_j; \end{array}$		$ \begin{array}{c} \textbf{procedure } Insert(x); \\ count \leftarrow count + 1; \\ \textbf{if } count > M \\ \textbf{then} \\ RehashAll(x); \\ \textbf{else} \\ j \leftarrow h(x); \\ \textbf{if } position \; h_j(x) \; \text{of subtable } T_j \; \text{contains } x \\ \textbf{then} \\ \textbf{if } x \; \text{is marked "deleted" then remove this tag;} \\ \textbf{else} \; (* \; x \; \text{is new for } W_j \; *) \\ b_j \leftarrow b_j + 1; \\ \textbf{if } b_j \leq m_j \\ \textbf{then} \; (* \; \text{size of } T_j \; \text{sufficient } *) \\ \textbf{if } position \; h_j(x) \; \text{of } T_j \; \text{is empty} \\ \textbf{then} \\ \text{store } x \; \text{in position } h_j(x) \; \text{of } T_j; \\ \textbf{else} \\ go \; \textbf{through the subtable } T_j, \text{ put all elements} \\ not \; \text{marked "deleted" into a \; list } L_j, \text{ and} \\ mark \; \text{all positions of } T_j \; \text{empty}; \\ append \; x \; \textbf{to list } L_j; \; b_j \leftarrow \text{length of } L_j; \\ \textbf{repeat } h_j \leftarrow \text{randomly chosen function in } \mathcal{H}_{s_j} \\ \textbf{until } h_j \; \text{is injective on the elements of list } L_j; \\ \textbf{for all } y \; \text{on list } L_j \; \text{store } y \; \text{in position } h_j(y) \; \text{of } T_j; \end{array} $

18

Asserted Claims From U.S. Pat. No. 5,893,120	Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i> <i>Upper and Lower Bounds</i> , Revised Version January 7, 1990 ("Dietzfelbinger").	
	$\begin{array}{c c} \textbf{else } (* \ T_j \ \text{is too small }*) \\ m_j \leftarrow 2 \cdot \max\{1, m_j\}; \ s_j \leftarrow 2m_j(m_j - 1); \\ \textbf{if condition } (**) \ \text{is still satisfied} \\ \textbf{then } (* \ \text{double capacity of } T_j \ *) \\ & \text{allocate new space, namely } s_j \ \text{cells, for new subtable } T_j; \\ & \text{go through old subtable } T_j, \ \text{put all elements} \\ & \text{not marked "deleted" into a list } L_j, \\ & \text{and mark all positions empty;} \\ & \text{append } x \ \text{to list } L_j; \ b_j \leftarrow \text{length of } L_j; \\ & \textbf{repeat } h_j \leftarrow \text{randomly chosen function in } \mathcal{H}_{s_j} \\ & \textbf{until } h_j \ \text{is injective on the elements of list } L_j; \\ & \textbf{for all } y \ \text{on list } L_j \ \text{store } y \ \text{in position } h_j(y) \ \text{of } T_j; \\ & \textbf{else } (* \ \text{level-1-function } h \ \text{"bad" } *) \\ & RehashAll(x); \end{array}$	
	<i>Id.</i> at Figure 1. Additionally, it would have been obvious to one of ordinary skill in the art to modify the system disclosed in Dietzfelbinger to dynamically determine the maximum number of expired records to remove in the accessed linked list of records. It is a fundamental concept in computer science and the relevant art that any variable or parameter affecting any aspect of a system can be dynamically determined based on information available to the system. One of ordinary skill in the art would have been motivated to combine the system disclosed in Dietzfelbinger with the fundamental concept of dynamically determining the maximum number of expired records to remove in an accessed	
Asserted C U.S. Pat. N	laims From o. 5,893,120	Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i>
---------------------------	----------------------------	---
		Upper and Lower Bounds, Revised Version January 7, 1990
		 Internet of potential problems. For example, the removal of expired records described in Dietzfelbinger can be burdensome on the system, adding to the system's load and slowing down the system's processing. Moreover, the removal could also force an interruption in real-time processing as the processing waits for the removal to complete. Indeed, part of the motivation for the system disclosed in Dietzfelbinger is avoiding these problems. One of ordinary skill in the art would have known that dynamically determining the maximum number to remove would limit the burden on the system and bound the length of any real-time interruption to prevent delays in processing. Indeed, Nemes concedes that such dynamic determination was obvious when he states in the '120 patent that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. Dietzfelbinger combined with Dirks, Thatte, the '663 patent and/or the Opportunistic Garbage Collection Articles discloses an information storage and retrieval system further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records. Dirks discloses the management of memory in a computer system and more particularly to the allocation of address space in a virtual memory system, which dynamically determines how many records to sweep/remove upon each allocation. Disclosure of these claim elements in Dirks is clearly shown in

Asserted C U.S. Pat. No	laims From o. 5,893,120	Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i> <i>Upper and Lower Bounds</i> , Revised Version January 7, 1990 ("Dietzfelbinger"))
		Exhibit B-2, which is hereby incorporated by reference in its entirety.
		For example, as summarized in Dirks,
		each time a VSID is assigned from the free list to a new application or thread, a fixed number of entries in the page table are scanned to determine whether they have become inactive, by checking them against the VSIDs on the recycle list. Each entry which is identified as being inactive is removed from the page table. After all of the entries in the page table have been examined in this manner, the VSIDs in the recycle list can be transferred to the free list, since all of their associated page table entries will have been removed. This approach thereby guarantees that a predetermined number of VSIDs are always available in the free list without requiring a time-consuming scan of the complete page table at once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.
		After [a] new VSID has been allocated, the system checks a flag RFLG to determine whether a recycle sweep is currently in progress (Step 20). If there is no sweep in progress, i.e. RFLG is not equal to one, a determination is made whether a sweep should be initiated. This is done by checking whether the inactive list is full, i.e. whether it contains x entries (Step 22). If the number of entries I on the inactive list is less than x, no further action is taken, and processing control returns to the operating system (Step 24). If, however, the inactive list is full at this time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are transferred to the recycle list, and an index n is reset to 1 (Step 28). The system then sweeps a predetermined number of page table entries PT _i on

Asserted Claims From U.S. Pat. No. 5,893,120	Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i> <i>Upper and Lower Bounds</i> , Revised Version January 7, 1990 ("Dietzfelbinger").
	the page table, to detect whether any of them are inactive, i.e. their associated VSID is on the recycle list (Step 30). The predetermined number of entries that are swept is identified as k , where:
	$k = \frac{\text{total number of page table entries}}{\text{maximum number of active threads}}$ <i>Id.</i> at 8:12-30.
	Dirks discloses that any approach can be employed to determine the number of entries to be examined during each step of the sweeping process. <i>Id.</i> at 7:37-40. As stated in Dirks:
	Any other suitable approach can be employed to determine the number of entries to be examined during each step of the sweeping process. In this regard, it is not necessary that the number of examined entries be fixed for each step. Rather, it might vary from one step to the next. The only criterion is that the number of entries examined on each step be such that all entries in the page table are examined in a determinable amount of time or by the occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.
	<i>Id.</i> at 7:38-46. Thus, Dirks dynamically determines the maximum number of records to sweep/remove by calculating a value <i>k</i> . <i>Id</i> . at 7:15-46, 7:66-8:56.
	As both Dietzfelbinger and Dirks relate to deletion of aged records upon the allocation of a new incoming record, one of ordinary skill in the art would have understood how to use Dirks' dynamic decision making process of determining the maximum number of records to sweep/remove in other hash tables

Joint Invalidity Contentions & Production of Documents

Case No. 6:09-CV-549-LED

Asserted Claims From U.S. Pat. No. 5,893,120	Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i> <i>Upper and Lower Bounds</i> , Revised Version January 7, 1990 ("Dietzfelbinger")
	implementations such as Dietzfelbinger. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining Dirks' deletion decision procedure with Dietzfelbinger nothing more than the predictable use of prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have combined Dirks' dynamic determination of the suitable number of entries to examine during each step of the sweeping process with Dietzfelbinger and would have seen the benefits of doing so. One possible benefit, for example, is saving the system from performing sometimes time-consuming sweeps.`
	Alternatively, one of ordinary skill in the art would be motivated to, and would understand how to, combine the system disclosed in Dietzfelbinger with the means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records disclosed by Thatte. For example, Thatte discloses a system and method using hash tables and/or linked lists and further discloses means for dynamically determining the maximum number for the record search means to remove in the accessed linked list of records. The disclosure of these claim elements in Thatte is clearly shown in the chart of Thatte, which is hereby incorporated by reference in its entirety.

Joint Invalidity Contentions & Production of Documents

Case No. 6:09-CV-549-LED

Asserted Claims From U.S. Pat. No. 5,893,120	Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i> <i>Upper and Lower Bounds</i> , Revised Version January 7, 1990 ("Dietzfelbinger").
	Moreover, one of ordinary skill in the art would recognize that these combinations would improve the similar systems and methods in the same way. Additionally, Ass both Dietzfelbinger and Thatte teach a system of data storage and retrieval, one of ordinary skill in the art would recognize that the result of combining Dietzfelbinger with Thatte would be nothing more than the predictable use of prior art elements according to their established functions. The resulting combination would include the capability to determine the maximum number for the record search means to remove as taught by Thatte. Further, one of ordinary skill in the art would be motivated to combine Dietzfelbinger with Thatte and recognize the benefits of doing so. For example, the removal of expired records described in Dietzfelbinger can be burdensome on the system, adding to the system's load and slowing down the system's processing. One of ordinary skill in the art would solve this problem by dynamically determining how many records to delete based on, among other things, the system load. Moreover, the '120 patent discloses that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine Dietzfelbinger with Thatte. Alternatively, it would also be obvious to combine Dietzfelbinger with the
	'663 patent. Disclosure of these claim elements in the '663 patent is clearly

Asserted Claims From	Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
0.5. Fat. No. 5,895,120	<i>Upper and Lower Bounds</i> , Revised Version January 7, 1990 ("Dietzfelbinger").
	shown in the chart of the '663 patent, which is hereby incorporated by reference in its entirety. For example, as summarized in the '663 patent:
	during normal times when the load on the storage system is not excessive, a non-contaminating but slow deletion of records is used. This slow, non-contaminating deletion involves closing the collision-resolution chain of locations by moving a record from a later position in the chain into the position of the record to be deleted. This leaves no deleted record locations in the storage space to slow down future searches. U.S. Patent 4,996,663 to Nemes at 2:24-34 ("The '663 patent").
	In times of heavy use, when deletions must be done rapidly and no time is available for decontamination, the record is simply marked as "deleted" and left in place. Later non-contaminating probes in the vicinity of such deleted record locations automatically remove the contaminating deleted records by moving records in the chain as described above. <i>Id.</i> at 2:35-41.
	This hybrid hashing technique has the decided advantage of automatically eliminating contamination caused by the fast-secure deletion procedure when the slower, non-contaminating deletion is used when the load on the system is at lower levels. <i>Id.</i> at 2:42-46.
	This hybrid deletion is shown in Figure 5.

25

Asserted Claims From U.S. Pat. No. 5,893,120	Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i> <i>Upper and Lower Bounds</i> , Revised Version January 7, 1990 ("Dietzfelbinger").
	FIG.5 HYBRID DELETION (YES) STRH (JAD)

Asserted Claims From U.S. Pat. No. 5,893,120	Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i> <i>Upper and Lower Bounds</i> , Revised Version January 7, 1990
	("Dietzfelbinger").
	slow-non-contaminating delete 53 is used. <i>Id.</i> The fast-secure delete 52 does not actually delete records, rather it marks records as deleted. <i>Id.</i> at 8:1-33, Figure 7. These records are then actually deleted by a subsequent slow-non-contaminating delete 53. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
	Thus, the hybrid deletion procedure in the '663 patent dynamically determines a maximum number of records to remove. <i>See id.</i> at 6:40-64, Figure 5. If the fast-secure delete 52 is used, then maximum number of records is zero because records are not deleted they are only marked. <i>Id.</i> at 8:1-33, Figure 7. If the slow-non-contaminating delete 53 is used, then the maximum number of records to remove is all of the contaminated records in the bucket. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
	As both Dietzfelbinger and the '663 patent relate to deletion of records from hash tables using external chaining, one of ordinary skill in the art would understood how to use the '663 patent's dynamic decision on whether to perform a deletion based on a systems load in other hash table implementations such as that described in Dietzfelbinger. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the '663 patent's deletion decision procedure with Dietzfelbinger would be nothing more than the predictable use of prior art elements according

Joint Invalidity Contentions & Production of Documents

Case No. 6:09-CV-549-LED

Asserted Claims Fr U.S. Pat. No. 5,893,	omMartin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer120auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing: Upper and Lower Bounds, Revised Version January 7, 1990 ("Dietzfelbinger").
	to their established functions. By way of further example, one of ordinary skill in the art would have combined the '663 patent's dynamic decision on whether to perform a deletion based on a systems load as taught by the '663 patent and with Dietzfelbinger and would have seen the benefits of doing so. One such benefit, for example,
	Alternatively, it would also be obvious to combine Dietzfelbinger with the Opportunistic Garbage Collection Articles.
	The Opportunistic Garbage Collection Articles disclose a generational based garbage collection which dynamically determines how much garbage to collect. <i>See generally</i> , Paul R. Wilson and Thomas G. Moher, <i>Design of the</i> <i>Opportunistic Garbage Collector</i> , OOPSLA '89 Proceedings, October 1-6, 1989; Paul R. Wilson, <i>Opportunistic Garbage Collection</i> , ACM SIGPLAN Notices, Vol. 23, No. 12, December 1988.
	For example, the Opportunistic Garbage Collection Articles disclose in part: When a significant pause has been detected, a decision procedure is invoked to decide whether to garbage collect, and how many generations to scavenge. The fuller a generation is, the more likely it is to be scavenged; also, the longer the pause that has been detected, the larger the scope of the garbage collection is likely to be. <i>Design of the Opportunistic Garbage</i> <i>Collector</i> at 32.

Asserted Claims From U.S. Pat. No. 5,893,120	Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i> <i>Upper and Lower Bounds</i> , Revised Version January 7, 1990 ("Dietzfelbinger").
	Every time a user-input routine is invoked, a decision routine can decide whether to garbage collect. As long as the decision routine takes no more than a few milliseconds to execute, it should not interfere with responsiveness. Since it is only invoked at these times, it does not incur a continual run-time overhead. <i>Opportunistic Garbage Collection</i> at 100.
	This decision routine should take several things into account: 1) the volume of data allocated since the last scavenge, 2) how long it has been since the user has had an opportunity to interact, and 3) the height of the stack relative to its average height at reads since the last scavenge. If the product of the allocation and the compute time is high, and if the stack is low, the scavenge favorability measure is high. If it is especially high, a multi-generation scavenge is in order. <i>Id</i> .
	If these heuristics fail and a scavenge is forced instead by the filling of a generation's space, it is likely to happen during a significant compute- bound pausethe one that has just allocated the data that forced the collection. When the opportunistic mechanism fails to find the end of a pause, it may still succeed by default, embedding a scavenge pause within a larger pause. <i>Design of the Opportunistic Garbage Collector</i> at 32.
	As both Dietzfelbinger and the Opportunistic Garbage Collection Articles relate to deletion of aged records, one of ordinary skill in the art would have understood how to use the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion based on a system load in other hash table implementations such as Dietzfelbinger. Moreover, one of ordinary skill

Asserted Claims From U.S. Pat. No. 5,893,120	Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i> <i>Upper and Lower Bounds</i> , Revised Version January 7, 1990
	in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one "The '120 patent at 7:10-15
	Additionally, one of ordinary skill in the art would recognize that the result of combining the Opportunistic Garbage Collection Articles' deletion decision procedure with Dietzfelbinger would be nothing more than the predictable use of prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have combined the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion and how many generations to scavenge as taught by the Opportunistic Garbage Collection Articles and with Dietzfelbinger and would have seen the benefits of doing so. One such benefit, for example, is preventing slowdown of the system.
	Additionally, it would have been obvious to one of ordinary skill in the art to modify the system disclosed in Dietzfelbinger to dynamically determine the maximum number of expired records to remove in the accessed linked list of records. It is a fundamental concept in computer science and the relevant art that any variable or parameter affecting any aspect of a system can be dynamically determined based on information available to the system. One of ordinary skill in the art would have been motivated to combine the system disclosed in Dietzfelbinger with the fundamental concept of dynamically determining the maximum number of expired records to remove in an accessed

Asserted Claims From U.S. Pat. No. 5,893,120	Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i> Ummer and Lower Bounda, Davised Version, January 7, 1990
	("Dietzfelbinger").
	linked list of records to solve a number of potential problems. For example, the removal of expired records described in Dietzfelbinger can be burdensome on the system, adding to the system's load and slowing down the system's processing. Moreover, the removal could also force an interruption in real- time processing as the processing waits for the removal to complete.
	One of ordinary skill in the art would have known that dynamically determining the maximum number to remove would limit the burden on the system and bound the length of any real-time interruption to prevent delays in processing. Indeed, Nemes concedes that such dynamic determination was obvious when he states in the '120 patent that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15.
	To the extent that dynamically determining a maximum number of expired records is not disclosed by Dietzfelbinger in combination with Dirks, Thatte, the '663 Patent, or the Opportunistic Garbage Collection References, it is disclosed by Linux 2.0.1, which describes dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed. It would have been obvious to combine Linux 2.0.1 with Dietzfelbinger. For example, both Linux 2.0.1 and Dietzfelbinger describe systems and methods for performing data storage and retrieval using known programming techniques to yield a predictable result.
	When invoked, the function rt_cache_add automatically increments an

Joint Invalidity Contentions & Production of Documents

Case No. 6:09-CV-549-LED

Asserted Claims From U.S. Pat. No. 5.893.120	Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:
	Upper and Lower Bounds, Revised Version January 7, 1990
	("Dietzfelbinger").
	integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
	When the function rt_cache_add removes an expired record, the function
	rt_cache_add decrements the variable rt_cache_size. See Linux
	2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
	number of records in the hash table (i.e., ip_rt_hash_table). Because
	the function rt_cache_add automatically increments and decrements the
	variable rt_cache_size, the variable rt_cache_size is determined
	dynamically.
	Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
	liets in the input hadbe table global variable. See Linux 2.0.1 route a st
	lines 1122 1138 In this way the function rt garbage gold oct 1
	accesses the linked list. When the function rt_garbage_collect_1
	identifies a record that is expired the function rt_garbage_collect_1
	decrements the variable rt_cache_gize and frees the record_See Linux
	2.0.1 route c at lines 1128-1135
	Because all records in the linked list can be expired and all records in the hash
	table can be in the linked list, the variable rt_cache_size can represent a
	dynamically determined maximum number of expired ones of the records to
	remove when function rt_garbage_collect_1 accesses the linked list.
	Furthermore, the function rt_cache_add determines whether the number of
	records in the hash table exceeds a predetermined threshold

Asserted Claims From U.S. Pat. No. 5,893,120	Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i>
	Upper and Lower Bounds, Revised Version January 7, 1990 ("Diatzfelbinger")
	("Dietziendinger").RT_CACHE_SIZE_MAX. If the number of records in the hash table exceedsthe predetermined threshold RT_CACHE_SIZE_MAX, the functionrt_cache_add invokes a function rt_garbage_collect. See Linux2.0.1, route.c at lines 1341-1342. The function rt_garbage_collectinvokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c atline 1293. The function rt_garbage_collect invokes a functionrt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.The function rt_garbage_collect_1 loops through each linked list inthe hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linkedlist in the hash table, the function rt_garbage_collect_1 looks at eachrecord in a linked list. See Linux 2.0.1, route.c at lines 1120-1131. For eachrecord in a linked list. See Linux 2.0.1, route.c at line 1122. If the record's lastuse time plus the record's expiration factor is less than the current time. See Linux 2.0.1, route.c at line 1122. If the record's lastuse time plus the record's reference count. See Linux2.0.1, route.c at lines 1124-1130. The record's expiration factor isbased on a variable expire and the record's reference count. See Linux2.0.1, route.c at line 1122. The variable expire is initially one half of the fixedtimeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.After looping through all of the linked lists in this manner, the functionrt_garbage_collect_1 determines again whether the number of recordsin the hash table is less than the predetermined thresholdRT <cache_size_max. 1133.="" 2.0.1,="" at="" if="" line="" linux="" number<="" route.c="" see="" td="" the=""></cache_size_max.>

Joint Invalidity Contentions & Production of Documents

Case No. 6:09-CV-549-LED

Asserted Claims From	Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
U.S. Pat. No. 5,893,120	auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:
	Upper and Lower Bounds, Revised Version January 7, 1990
	("Dietzfelbinger").
	of items in the hash table is still greater than the predetermined threshold
	RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
	the variable expire and loops through each of the linked lists in the hash
	table. See Linux 2.0.1, route.c at line 1135. In this way, the function
	rt_garbage_collect_1 can remove additional records from the linked
	lists in the hash table. The function rt_garbage_collect_1 repeats this
	process until the total number of records in the hash table is less than the
	predetermined threshold RT_CACHE_SIZE_MAX.
	Under Bedrock's proposed claim constructions, the records removed by the
	function rt_garbage_collect_1 are "expired" records. That is, the
	records removed by the function rt_garbage_collect_l are data items which
	after a limited time or after the occurrence of some event become obsolete,
	such that their presence in the storage system is no longer needed of desired.
	The function rt_cache_add only removes a record from a linked list when
	the record's last use time plus the fixed timeout value PT_CACUE_TIMEOUT
	is less than the current time and the record's reference count is zero. See Linux
	2.0.1 route c at line 1369. Thus, the maximum number of records that the
	function rt_ cache_add can remove from a given linked list is limited to
	those records whose reference counts are zero
	In contrast, the maximum number of records that the function
	rt garbage collect 1 can remove from a given linked list is not
	limited to those records whose reference counts are zero. See Linux 2.0.1,
	route.c at line 1122. Rather, the function rt_garbage_collect_1 can

Asserted Claims From U.S. Pat. No. 5,893,120		Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i> <i>Upper and Lower Bounds</i> , Revised Version January 7, 1990 ("Dietzfelbinger").
		remove records whose reference counts are zero and records whose reference counts are greater than zero.
		Consequently, the maximum number of records that the function rt_garbage_collect_1 can remove from a linked list is different than the maximum number of records that the function rt_cache_add can remove from a linked list.
3. A method for storing and retrieving information records using a linked list to store and provide access to the records, at least some of the records automatically expiring, the method comprising the	7. A method for storing and retrieving information records using a hashing technique to provide access to the records and using an external chaining technique to store the records with same hash address, at least	To the extent the preamble is a limitation, Dietzfelbinger discloses a method for storing and retrieving information records using a linked list to store and provide access to the records, at least some of the records automatically expiring. Dietzfelbinger also discloses a method for storing and retrieving information records using a hashing technique to provide access to the records and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring.
steps of:	some of the records automatically expiring, the method comprising the steps of:	For example, Dietzfelbinger discloses that "[t]he dynamic dictionary problem is considered: provide an algorithm for storing a dynamic set, allowing the operations insert, delete, and lookup. A dynamic perfect hashing strategy is given: a <i>randomized</i> algorithm for the dynamic dictionary problem that takes O(1) worst-case time for lookups and $O(1)$ amortized expected time for insertions and deletions" Deitzfelbinger at 1.
		"A dictionary over a universe $U = \{0, 1,, N - 1\}$ is a partial function S from U to some set I. The operations $Lookup(x)$, $Insert(x, i)$, and $Delete(x)$ are available on a dictionary S; $Lookup(x)$ returns $S(x)$, $Insert(x, i)$ adds x to the domain of S and sets $S(x)$ to I, and $Delete(x)$ removes x from the domain of S."

Asserted Cl U.S. Pat. No	laims From 5. 5,893,120	Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i> <i>Upper and Lower Bounds</i> , Revised Version January 7, 1990 ("Dietzfelbinger").
		<i>Id</i> . at 2.
		Furthermore, Dietzfelbinger discloses that "[t]here are two major techniques for implementing dictionaries: trees and hashing." <i>Id</i> .
		Dietzfelbinger discloses an extension of the Fredman, Komlós, and Szemerédi scheme to the dynamic situation, wherein membership queries are processed in constant worst-case time, insertions and deletions are processed in constant expected amortized time, and the storage used at any time is proportional to the number of elements currently stored in the dictionary. "[F]redman, Komlós, and Szemerédi [FKS84] describe a hashing technique that achieves linear storage (in n) and constant query time for all N and n , where n is the size of S ." <i>Id</i> .
		This FSK Scheme that Dietzfelbinger discloses "has two levels. At the top level, a hash function partitions the elements being stored into <i>s</i> sets. The second level consists of a perfect hash function for each of these sets. Specifically, a function <i>h</i> chosen uniformly at random from H_s is used to partition the set <i>S</i> into <i>s</i> blocks." <i>Id.</i> at 3-4.
		While Dietzfelbinger does not disclose whether or not the FKS scheme uses hashing with chaining to handle the unavoidable key collisions problem, Dietzfelbinger discloses other schemes that do use hashing with chaining. "Carter and Wegman [CW79] proposed <i>universal hashing</i> as a way of avoiding assumption on the distribution of input values. This approach works particularly well in combination with the idea of "continuous rehashing" introduced by Brassard and Kannan [BK88]. In this way an algorithm is

Asserted Cl	aims From	Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
U.S. Pat. No	5,893,120	auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:
		Upper and Lower Bounds, Revised Version January 7, 1990
		("Dietzfelbinger"). obtained that needs linear space and expected constant time for each single instruction. However, for <i>n</i> keys being stored in the dictionary in a scheme of this kind the best upper bound known on the expected <i>worst case time</i> for an instruction (i.e., the length of the longest chain in the resulting hash table with chaining) is $O(\log n / \log \log n)"$ <i>Id.</i> at 2-3.Since Dietzfelbinger does not specify which collision handling approach FKS uses (the focus of this paper is not collision handling but a computation of the upper and lower bounds for the time complexity of a class of deterministic algorithms for the dictionary problem), it is inherent from the disclosure of other schemes, such as the CW scheme, that FKS also uses hashing with chaining. To the extent that Bedrock argues that Dietzefelbinger does not anticipate Claims 1 – 8 because it is not inherent that the FKS scheme incorporates linked lists to handling key collisions, it would have been obvious to one of ordinary skill in the art to store table entries in a linked list. The admitted prior art in the Introduction discloses that linked lists/external chaining were already common place to resolve collisions within hash tables. <i>Id.</i> Thus, Dietzefelbinger and the admitted prior art in the Introduction show that one of ordinary skill in the art understood how to use linked lists/external chaining to resolve collisions within hash tables, and would recognize that it would improve similar systems and methods in the same way. Furthermore, Dietzfelbinger discloses that "[d]eletions are performed by attaching a tag "deleted" to the table entry to be erased; only when a new level- 1 hash function <i>h</i> or a new hash function <i>h_j</i> for the sub table <i>T_j</i> is chosen, do we drop the elements with a tag "deleted" from <i>T_j</i> ." <i>Id.</i> at 5.

Asserted C U.S. Pat. N	laims From o. 5,893,120	Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i> <i>Upper and Lower Bounds</i> , Revised Version January 7, 1990 ("Dietzfelbinger").
[3a] accessing the linked	[7a] accessing a linked list	Dietzfelbinger discloses accessing a linked list of records. Dietzfelbinger also
list of records,	of records having same	discloses accessing a linked list of records having same hash address.
		For example, Dietzfelbinger discloses that "[t]he dynamic dictionary problem is considered: provide an algorithm for storing a dynamic set, allowing the operations insert, delete, and lookup. A dynamic perfect hashing strategy is given: a <i>randomized</i> algorithm for the dynamic dictionary problem that takes O(1) worst-case time for lookups and $O(1)$ amortized expected time for insertions and deletions" <i>Id.</i> at 1. "A <i>dictionary</i> over a <i>universe</i> $U = \{0, 1,, N - 1\}$ is a partial function S from <i>U</i> to some set <i>I</i> . The operations <i>Lookup</i> (<i>x</i>), <i>Insert</i> (<i>x</i> , <i>i</i>), and <i>Delete</i> (<i>x</i>) are available on a dictionary <i>S</i> ; <i>Lookup</i> (<i>x</i>) returns <i>S</i> (<i>x</i>), <i>Insert</i> (<i>x</i> , <i>i</i>) adds <i>x</i> to the domain of <i>S</i> and sets <i>S</i> (<i>x</i>) to <i>I</i> , and <i>Delete</i> (<i>x</i>) removes <i>x</i> from the domain of <i>S</i> ." <i>Id.</i> at 2.
		Furthermore, Dietzfelbinger discloses that "[t]here are two major techniques for implementing dictionaries: trees and hashing." <i>Id</i> .
		Dietzfelbinger discloses an extension of the Fredman, Komlós, and Szemerédi scheme to the dynamic situation, wherein membership queries are processed in constant worst-case time, insertions and deletions are processed in constant expected amortized time, and the storage used at any time is proportional to the number of elements currently stored in the dictionary. "[F]redman, Komlós, and Szemerédi [FKS84] describe a hashing technique that achieves linear storage (in <i>n</i>) and constant query time for all <i>N</i> and <i>n</i> , where <i>n</i> is the size of <i>S</i> ." <i>Id</i> .

Asserted Claims From U.S. Pat. No. 5,893,120	Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i> <i>Upper and Lower Bounds</i> , Revised Version January 7, 1990 ("Dietzfelbinger").
	This FSK Scheme that Dietzfelbinger discloses "has two levels. At the top level, a hash function partitions the elements being stored into <i>s</i> sets. The second level consists of a perfect hash function for each of these sets. Specifically, a function <i>h</i> chosen uniformly at random from H_s is used to partition the set <i>S</i> into <i>s</i> blocks." <i>Id.</i> at 3-4.
	While Dietzfelbinger does not disclose whether or not the FKS scheme uses hashing with chaining to handle the unavoidable key collisions problem, Dietzfelbinger discloses other schemes that do use hashing with chaining. "Carter and Wegman [CW79] proposed <i>universal hashing</i> as a way of avoiding assumption on the distribution of input values. This approach works particularly well in combination with the idea of "continuous rehashing" introduced by Brassard and Kannan [BK88]. In this way an algorithm is obtained that needs linear space and expected constant time for each single instruction. However, for <i>n</i> keys being stored in the dictionary in a scheme of this kind the best upper bound known on the expected <i>worst case time</i> for an instruction (i.e., the length of the longest chain in the resulting hash table with chaining) is $O(\log n / \log \log n)" Id.$ at 2-3. Since Dietzfelbinger does not specify which collision handling approach FKS uses (the focus of this paper is not collision handling but a computation of the upper and lower bounds for the time complexity of a class of deterministic algorithms for the dictionary problem), it is inherent from the disclosure of other schemes, such as the CW scheme, that FKS also uses hashing with chaining.
	To the extent that Bedrock argues that Dietzefelbinger does not anticipate Claims $1 - 8$ because it is not inherent that the FKS scheme incorporates linked

Joint Invalidity Contentions & Production of Documents

Case No. 6:09-CV-549-LED

Asserted Claims From U.S. Pat. No. 5,893,120		Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i>
		Upper and Lower Bounds, Revised Version January 7, 1990 ("Dietzfelbinger").
		lists to handling key collisions, it would have been obvious to one of ordinary skill in the art to store table entries in a linked list. The admitted prior art in the Introduction discloses that linked lists/external chaining were already common place to resolve collisions within hash tables. <i>Id.</i> Thus, Dietzefelbinger and the admitted prior art in the Introduction show that one of ordinary skill in the art understood how to use linked lists/external chaining to resolve collisions within hash tables, and would recognize that it would improve similar systems and methods in the same way.
[3b] identifying at least some of the automatically expired ones of the records, and	[7b] identifying at least some of the automatically expired ones of the records,	Dietzfelbinger discloses identifying at least some of the automatically expired ones of the records. For example, Dietzfelbinger discloses that "[t]he dynamic dictionary problem is considered: provide an algorithm for storing a dynamic set, allowing the operations insert, delete, and lookup. A dynamic perfect hashing strategy is given: a <i>randomized</i> algorithm for the dynamic dictionary problem that takes O(1) worst-case time for lookups and $O(1)$ amortized expected time for insertions and deletions" <i>Id.</i> at 1. "A <i>dictionary</i> over a <i>universe</i> $U = \{0, 1,, N - 1\}$ is a partial function S from <i>U</i> to some set <i>I</i> . The operations <i>Lookup</i> (<i>x</i>), <i>Insert</i> (<i>x</i> , <i>i</i>), and <i>Delete</i> (<i>x</i>) are available on a dictionary <i>S</i> ; <i>Lookup</i> (<i>x</i>) returns <i>S</i> (<i>x</i>), <i>Insert</i> (<i>x</i> , <i>i</i>) adds <i>x</i> to the domain of <i>S</i> and sets <i>S</i> (<i>x</i>) to <i>I</i> , and <i>Delete</i> (<i>x</i>) removes <i>x</i> from the domain of <i>S</i> ." <i>Id.</i> at 2. Furthermore, Dietzfelbinger discloses that "[d]eletions are performed by attaching a tag "deleted" to the table entry to be erased; only when a new level-

Asserted Claims From U.S. Pat. No. 5,893,120		Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i> <i>Upper and Lower Bounds</i> , Revised Version January 7, 1990 ("Dietzfelbinger").
		1 hash function h or a new hash function h_j for the sub table T_j is chosen, do we drop the elements with a tag "deleted" from T_j ." <i>Id.</i> at 5.
[3c] removing at least some of the automatically expired records from the linked list when the linked list is accessed.	[7c] removing at least some of the automatically expired records from the linked list when the linked list is accessed, and	Dietzfelbinger discloses removing at least some of the automatically expired records from the linked list when the linked list is accessed. For example, Dietzfelbinger discloses that "[t]he dynamic dictionary problem is considered: provide an algorithm for storing a dynamic set, allowing the operations insert, delete, and lookup. A dynamic perfect hashing strategy is given: a <i>randomized</i> algorithm for the dynamic dictionary problem that takes $O(1)$ worst-case time for lookups and $O(1)$ amortized expected time for insertions and deletions " <i>Id</i> . at 1. "A <i>dictionary</i> over a <i>universe</i> $U = \{0, 1, , N - 1\}$ is a partial function S from U to some set I. The operations $Lookup(x)$, $Insert(x, i)$, and $Delete(x)$ are available on a dictionary S; $Lookup(x)$ returns $S(x)$, $Insert(x, i)$ adds x to the domain of S and sets $S(x)$ to I, and $Delete(x)$ removes x from the domain of S." <i>Id</i> . at 2. Furthermore, Dietzfelbinger discloses that "[t]here are two major techniques for implementing dictionaries: trees and hashing." <i>Id</i> . Dietzfelbinger discloses an extension of the Fredman, Komlós, and Szemerédi scheme to the dynamic situation, wherein membership queries are processed in constant expected amortized time, and the storage used at any time is proportional to the number of elements currently stored in the dictionary. "[F]redman, Komlós,

Asserted Claims From U.S. Pat. No. 5.893,120	Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarian, Dynamic Perfect Hashing:
	Upper and Lower Bounds, Revised Version January 7, 1990
	and Szemerédi [FKS84] describe a hashing technique that achieves linear storage (in n) and constant query time for all N and n , where n is the size of S ." <i>Id</i> .
	This FSK Scheme that Dietzfelbinger discloses "has two levels. At the top level, a hash function partitions the elements being stored into <i>s</i> sets. The second level consists of a perfect hash function for each of these sets. Specifically, a function <i>h</i> chosen uniformly at random from H_s is used to partition the set <i>S</i> into <i>s</i> blocks." <i>Id.</i> at 3-4.
	While Dietzfelbinger does not disclose whether or not the FKS scheme uses hashing with chaining to handle the unavoidable key collisions problem, Dietzfelbinger discloses other schemes that do use hashing with chaining. "Carter and Wegman [CW79] proposed <i>universal hashing</i> as a way of avoiding assumption on the distribution of input values. This approach works particularly well in combination with the idea of "continuous rehashing" introduced by Brassard and Kannan [BK88]. In this way an algorithm is obtained that needs linear space and expected constant time for each single instruction. However, for <i>n</i> keys being stored in the dictionary in a scheme of this kind the best upper bound known on the expected <i>worst case time</i> for an instruction (i.e., the length of the longest chain in the resulting hash table with chaining) is $O(\log n / \log \log n)" Id.$ at 2-3. Since Dietzfelbinger does not specify which collision handling approach FKS uses (the focus of this paper is not collision handling but a computation of the upper and lower bounds for the time complexity of a class of deterministic algorithms for the dictionary problem), it is inherent from the disclosure of other schemes, such as the CW

Asserted Claims From U.S. Pat. No. 5,893,120	Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i> <i>Upper and Lower Bounds</i> , Revised Version January 7, 1990 ("Dietzfelbinger").
	To the extent that Bedrock argues that Dietzefelbinger does not anticipate Claims 1 – 8 because it is not inherent that the FKS scheme incorporates linked lists to handling key collisions, it would have been obvious to one of ordinary skill in the art to store table entries in a linked list. The admitted prior art in the Introduction discloses that linked lists/external chaining were already common place to resolve collisions within hash tables. <i>Id.</i> Thus, Dietzefelbinger and the admitted prior art in the Introduction show that one of ordinary skill in the art understood how to use linked lists/external chaining to resolve collisions within hash tables, and would recognize that it would improve similar systems and methods in the same way.
	1 hash function h or a new hash function h_j for the sub table T_j is chosen, do we drop the elements with a tag "deleted" from T_j ." <i>Id.</i> at 5.
	A call to the procedure $Insert(x)$ conducts the following steps, as displayed by the code in the figure below. The procedure hashes x to determine the proper position for x, $h_j(x)$. If the position in which x is to be placed is empty, then x is stored in the position. However, if the position is not empty, then the procedure goes through and places all the elements in the sub table that are not labeled "deleted" into a list L_j , and marks all positions in the sub table as empty. Then, x is appended to the list L_j . By marking all positions in the sub table as empty, the procedure effectively deletes all those that are left in the sub table those that were labeled "deleted." <i>Id.</i> at 6.

Asserted Claims From U.S. Pat. No. 5,893,120	Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i> <i>Upper and Lower Bounds</i> , Revised Version January 7, 1990 ("Dietzfelbinger").
	$\begin{array}{c} \textbf{("Dietzfelbinger").} \\ \hline \textbf{("Dietzfelbinger").} \\ \hline \textbf{procedure } Insert(x); \\ count \leftarrow count + 1; \\ \textbf{if } count > M \\ \textbf{then} \\ RehashAll(x); \\ \textbf{else} \\ j \leftarrow h(x); \\ \textbf{if } position \; h_j(x) \; \text{of subtable } T_j \; \text{contains } x \\ \textbf{then} \\ \textbf{if } x \; \text{is marked "deleted" then remove this tag;} \\ \textbf{else} \; (* \; x \; \text{is new for } W_j \; *) \\ b_j \leftarrow b_j + 1; \\ \textbf{if } b_j \leq m_j \\ \textbf{then} \; (* \; \text{size of } T_j \; \text{sufficient } *) \\ \textbf{if } position \; h_j(x) \; \text{of } T_j \; \text{is empty} \\ \textbf{then} \\ \text{store } x \; \text{in position } h_j(x) \; \text{of } T_j; \\ \textbf{else} \end{array}$
	go through the subtable T_j , put all elements not marked "deleted" into a list L_j , and mark all positions of T_j empty; append x to list L_j ; $b_j \leftarrow$ length of L_j ; repeat $h_j \leftarrow$ randomly chosen function in \mathcal{H}_{s_j} until h_j is injective on the elements of list L_j ; for all y on list L_j store y in position $h_j(y)$ of T_j ;

44

Asserted Claims From U.S. Pat. No. 5,893,120	Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i> <i>Upper and Lower Bounds</i> , Revised Version January 7, 1990 ("Dietzfelbinger").
	else (* T_j is too small *) $m_j \leftarrow 2 \cdot \max\{1, m_j\}; s_j \leftarrow 2m_j(m_j - 1);$ if condition (**) is still satisfied then (* double capacity of T_j *) allocate new space, namely s_j cells, for new subtable $T_j;$ go through old subtable T_j , put all elements not marked "deleted" into a list L_j , and mark all positions empty; append x to list $L_j; b_j \leftarrow$ length of $L_j;$ repeat $h_j \leftarrow$ randomly chosen function in \mathcal{H}_{s_j} until h_j is injective on the elements of list $L_j;$ for all y on list L_j store y in position $h_j(y)$ of $T_j;$ else (* level-1-function h "bad" *) RehashAll(x); <i>Id</i> , at Figure 1.
[7d] inserting, retrieving or deleting one of the records from the system following the step of removing.	 Dietzfelbinger discloses inserting, retrieving or deleting one of the records from the system following the step of removing. For example, Dietzfelbinger discloses that "[t]he dynamic dictionary problem is considered: provide an algorithm for storing a dynamic set, allowing the operations insert, delete, and lookup. A dynamic perfect hashing strategy is given: a <i>randomized</i> algorithm for the dynamic dictionary problem that takes <i>O</i>(1) worst-case time for lookups and <i>O</i>(1) amortized expected time for insertions and deletions" <i>Id</i>. at 1.

Asserted Claims From U.S. Pat. No. 5,893,120		Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i> <i>Upper and Lower Bounds</i> , Revised Version January 7, 1990 ("Dietzfelbinger").
		"A dictionary over a universe $U = \{0, 1,, N - 1\}$ is a partial function S from U to some set I. The operations $Lookup(x)$, $Insert(x, i)$, and $Delete(x)$ are available on a dictionary S; $Lookup(x)$ returns $S(x)$, $Insert(x, i)$ adds x to the domain of S and sets $S(x)$ to I, and $Delete(x)$ removes x from the domain of S." Id. at 2.
		Furthermore, Dietzfelbinger discloses that "[t]here are two major techniques for implementing dictionaries: trees and hashing." <i>Id</i> .
		Dietzfelbinger discloses an extension of the Fredman, Komlós, and Szemerédi scheme to the dynamic situation, wherein membership queries are processed in constant worst-case time, insertions and deletions are processed in constant expected amortized time, and the storage used at any time is proportional to the number of elements currently stored in the dictionary. "[F]redman, Komlós, and Szemerédi [FKS84] describe a hashing technique that achieves linear storage (in n) and constant query time for all N and n , where n is the size of S ." <i>Id</i> .
		This FSK Scheme that Dietzfelbinger discloses "has two levels. At the top level, a hash function partitions the elements being stored into <i>s</i> sets. The second level consists of a perfect hash function for each of these sets. Specifically, a function <i>h</i> chosen uniformly at random from H_s is used to partition the set <i>S</i> into <i>s</i> blocks." <i>Id.</i> at 3-4.
		While Dietzfelbinger does not disclose whether or not the FKS scheme uses hashing with chaining to handle the unavoidable key collisions problem,

Asserted Claims From	Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
U.S. Pat. No. 5,893,120	auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:
	Upper and Lower Bounds, Revised Version January 7, 1990
	("Dietzfelbinger").
	Dietzfelbinger discloses other schemes that do use hashing with chaining. "Carter and Wegman [CW79] proposed <i>universal hashing</i> as a way of avoiding assumption on the distribution of input values. This approach works particularly well in combination with the idea of "continuous rehashing" introduced by Brassard and Kannan [BK88]. In this way an algorithm is obtained that needs linear space and expected constant time for each single instruction. However, for <i>n</i> keys being stored in the dictionary in a scheme of this kind the best upper bound known on the expected <i>worst case time</i> for an instruction (i.e., the length of the longest chain in the resulting hash table with chaining) is $O(\log n / \log \log n)"$ <i>Id.</i> at 2-3.Since Dietzfelbinger does not specify which collision handling approach FKS uses (the focus of this paper is not collision handling but a computation of the upper and lower bounds for the time complexity of a class of deterministic algorithms for the dictionary problem), it is inherent from the disclosure of other schemes, such as the CW scheme, that FKS also uses hashing with chaining. To the extent that Bedrock argues that Dietzefelbinger does not anticipate Claims 1 – 8 because it is not inherent that the FKS scheme incorporates linked lists to handling key collisions, it would have been obvious to one of ordinary skill in the art to store table entries in a linked list. The admitted prior art in the Introduction discloses that linked lists/external chaining were already common place to resolve collisions within hash tables. <i>Id.</i> Thus, Dietzfelbinger and the admitted prior art in the Introduction show that one of ordinary skill in the art understood how to use linked lists/external chaining to resolve collisions within hash tables, and would recognize that it would improve similar systems and methods in the same way.

Asserted Cl U.S. Pat. No	aims From 5. 5,893,120	Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i> <i>Upper and Lower Bounds</i> , Revised Version January 7, 1990 ("Dietzfelbinger").
		Furthermore, Dietzfelbinger discloses that "[d]eletions are performed by attaching a tag "deleted" to the table entry to be erased; only when a new level- 1 hash function h or a new hash function h_j for the sub table T_j is chosen, do we drop the elements with a tag "deleted" from T_j ." <i>Id.</i> at 5. A call to the procedure <i>Insert</i> (x) conducts the following steps, as displayed by the code in the figure below. The procedure hashes x to determine the proper position for x , $h_j(x)$. If the position in which x is to be placed is empty, then x is stored in the position. However, if the position is not empty, then the procedure goes through and places all the elements in the sub table that are not labeled "deleted" into a list L_j , and marks all positions in the sub table as empty, the procedure effectively deletes all those that are left in the sub table as empty, the procedure effectively deleted." <i>Id.</i> at 6.

48

Asserted Claims From U.S. Pat. No. 5,893,120	Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i> Unner and Lower Bounds, Revised Version January 7, 1990
	("Dietzfelbinger").
	procedure Insert(x);
	$count \leftarrow count + 1;$
	if $count > M$
	then
	RehashAll(x);
	else
	$j \leftarrow h(x);$
	If position $h_j(x)$ of subtable T_j contains x
	then
	If x is marked "deleted" then remove this tag;
	else (* x is new for W_j *)
	$b_j \leftarrow b_j + 1;$ if $b_j < m$
	$\frac{11}{thon} \frac{b_j \ge m_j}{(t \text{ size of } T) \text{ sufficient } t)}$
	if position $h_j(x)$ of T_j is empty
	then
	store x in position $b_i(x)$ of T:
	else
	go through the subtable T_i , put all elements
	not marked "deleted" into a list L_i , and
	mark all positions of T_i empty:
	append x to list L_i ; $b_i \leftarrow$ length of L_i ;
	repeat $h_i \leftarrow$ randomly chosen function in \mathcal{H}_{s_i}
	until h_i is injective on the elements of list L_i :
	for all y on list L_i store y in position $h_i(y)$ of T_i ;

49

Asserted Claims From U.S. Pat. No. 5,893,120		Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i> <i>Upper and Lower Bounds</i> , Revised Version January 7, 1990 ("Dietzfelbinger").
		else (* T_j is too small *) $m_j \leftarrow 2 \cdot \max\{1, m_j\}; s_j \leftarrow 2m_j(m_j - 1);$ if condition (**) is still satisfied then (* double capacity of T_j *) allocate new space, namely s_j cells, for new subtable $T_j;$ go through old subtable T_j , put all elements not marked "deleted" into a list L_j , and mark all positions empty; append x to list $L_j; b_j \leftarrow$ length of $L_j;$ repeat $h_j \leftarrow$ randomly chosen function in \mathcal{H}_{s_j} until h_j is injective on the elements of list $L_j;$ for all y on list L_j store y in position $h_j(y)$ of $T_j;$ else (* level-1-function h "bad" *) RehashAll(x);
4. The method according to claim 3 further including the step of dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed.	8. The method according to claim 7 further including the step of dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed.	Dietzfelbinger discloses dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed. For example, a call to the procedure $Insert(x)$ conducts the following steps, as displayed by the code in the figure below. The procedure hashes x to determine the proper position for x, $h_j(x)$. First, the procedure determines if x already exists in the sub table. If x does exist, then the only determination to make is whether x is marked for deletion. If x is marked for deletion, then the procedure removes this deletion tag. Id. at 6.

Asserted Claims From U.S. Pat. No. 5,893,120	Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i> <i>Upper and Lower Bounds</i> , Revised Version January 7, 1990 ("Dietzfelbinger").
	Second, if the sub table does not contain x and the position in which x is to be placed is found empty, then x is stored in the position. Id. Third, if the sub table does not contain x and the position in which x is to be placed is not empty, then the procedure goes through and places all the elements in the sub table that are not labeled "deleted" into a list L_j , and marks all positions in the sub table as empty. Then, x is appended to the list L_j . By marking all positions in the sub table as empty, the procedure effectively deletes all those that are left in the sub table $$ those that were labeled "deleted." Id. Therefore, the procedure dynamically determines whether or not to delete the records marked "deleted" if either of the following two conditions occur: (1) x already exists in the sub table or (2) the position in which x is to be placed is empty. Deletion takes place during a call to procedure $Insert(x)$ only if the above two conditions are not met.

51

Asserted C U.S. Pat. N	laims From o. 5,893,120	Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i> <i>Upper and Lower Bounds</i> , Revised Version January 7, 1990 ("Dietzfelbinger").
		$ \begin{array}{llllllllllllllllllllllllllllllllllll$

52

Asserted Claims From U.S. Pat. No. 5,893,120	Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i> <i>Upper and Lower Bounds</i> , Revised Version January 7, 1990 ("Dietzfelbinger").
	$ \begin{array}{c c} \textbf{else} (* \ T_j \text{ is too small }*) \\ m_j \leftarrow 2 \cdot \max\{1, m_j\}; \ s_j \leftarrow 2m_j(m_j - 1); \\ \textbf{if condition } (**) \ \textbf{is still satisfied} \\ \textbf{then } (* \ \textbf{double capacity of } T_j \ *) \\ & \text{allocate new space, namely } s_j \ \textbf{cells, for new subtable } T_j; \\ & \text{go through old subtable } T_j, \ \textbf{put all elements} \\ & \text{not marked "deleted" into a list } L_j, \\ & \text{and mark all positions empty;} \\ & \text{append } x \ \textbf{to list } L_j; \ b_j \leftarrow \text{length of } L_j; \\ & \textbf{repeat } h_j \leftarrow \text{randomly chosen function in } \mathcal{H}_{s_j} \\ & \textbf{until } h_j \ \textbf{is injective on the elements of list } L_j; \\ & \textbf{for all } y \ \textbf{on list } L_j \ \text{store } y \ \textbf{in position } h_j(y) \ \text{of } T_j; \\ & \textbf{else } (* \ \text{level-1-function } h \ \text{"bad" } *) \\ & RehashAll(x); \end{array} $
	<i>Id.</i> at Figure 1. Additionally, it would have been obvious to one of ordinary skill in the art to modify the system disclosed in Dietzfelbinger to dynamically determine the maximum number of expired records to remove in the accessed linked list of records. It is a fundamental concept in computer science and the relevant art that any variable or parameter affecting any aspect of a system can be dynamically determined based on information available to the system. One of ordinary skill in the art would have been motivated to combine the system disclosed in Dietzfelbinger with the fundamental concept of dynamically determining the maximum number of expired records to remove in an accessed

Asserted Claims From U.S. Pat. No. 5,893,120		Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i> <i>Upper and Lower Bounds</i> , Revised Version January 7, 1990 ("Dietzfelbinger").
		linked list of records to solve a number of potential problems. For example, the removal of expired records described in Dietzfelbinger can be burdensome on the system, adding to the system's load and slowing down the system's processing. Moreover, the removal could also force an interruption in real-time processing as the processing waits for the removal to complete. Indeed, part of the motivation for the system disclosed in Dietzfelbinger is avoiding these problems. One of ordinary skill in the art would have known that dynamically determining the maximum number to remove would limit the burden on the system and bound the length of any real-time interruption to prevent delays in processing. Indeed, Nemes concedes that such dynamic determination was obvious when he states in the '120 patent that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15.
		Dietzfelbinger combined with Dirks, Thatte, the '663 patent and/or the Opportunistic Garbage Collection Articles discloses an information storage and retrieval system further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records. Dirks discloses the management of memory in a computer system and more particularly to the allocation of address space in a virtual memory system, which dynamically determines how many records to sweep/remove upon each allocation. Disclosure of these claim elements in Dirks is clearly shown in

Asserted Claims From U.S. Pat. No. 5,893,120		Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i> <i>Upper and Lower Bounds</i> , Revised Version January 7, 1990 ("Dietzfelbinger").
		Exhibit B-2, which is hereby incorporated by reference in its entirety.
		For example, as summarized in Dirks,
		each time a VSID is assigned from the free list to a new application or thread, a fixed number of entries in the page table are scanned to determine whether they have become inactive, by checking them against the VSIDs on the recycle list. Each entry which is identified as being inactive is removed from the page table. After all of the entries in the page table have been examined in this manner, the VSIDs in the recycle list can be transferred to the free list, since all of their associated page table entries will have been removed. This approach thereby guarantees that a predetermined number of VSIDs are always available in the free list without requiring a time-consuming scan of the complete page table at once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.
		After [a] new VSID has been allocated, the system checks a flag RFLG to determine whether a recycle sweep is currently in progress (Step 20). If there is no sweep in progress, i.e. RFLG is not equal to one, a determination is made whether a sweep should be initiated. This is done by checking whether the inactive list is full, i.e. whether it contains x entries (Step 22). If the number of entries I on the inactive list is less than x, no further action is taken, and processing control returns to the operating system (Step 24). If, however, the inactive list is full at this time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are transferred to the recycle list, and an index n is reset to 1 (Step 28). The system then sweeps a predetermined number of page table entries PT _i on

55

Joint Invalidity Contentions & Production of Documents

Case No. 6:09-CV-549-LED
Asserted Claims From U.S. Pat. No. 5,893,120	Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i> <i>Upper and Lower Bounds</i> , Revised Version January 7, 1990 ("Dietzfelbinger").
	the page table, to detect whether any of them are inactive, i.e. their associated VSID is on the recycle list (Step 30). The predetermined number of entries that are swept is identified as k , where:
	$k = \frac{\text{total number of page table entries}}{\text{maximum number of active threads}}$ <i>Id.</i> at 8:12-30.
	Dirks discloses that any approach can be employed to determine the number of entries to be examined during each step of the sweeping process. <i>Id.</i> at 7:37-40. As stated in Dirks:
	Any other suitable approach can be employed to determine the number of entries to be examined during each step of the sweeping process. In this regard, it is not necessary that the number of examined entries be fixed for each step. Rather, it might vary from one step to the next. The only criterion is that the number of entries examined on each step be such that all entries in the page table are examined in a determinable amount of time or by the occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.
	<i>Id.</i> at 7:38-46. Thus, Dirks dynamically determines the maximum number of records to sweep/remove by calculating a value <i>k</i> . <i>Id</i> . at 7:15-46, 7:66-8:56.
	As both Dietzfelbinger and Dirks relate to deletion of aged records upon the allocation of a new incoming record, one of ordinary skill in the art would have understood how to use Dirks' dynamic decision making process of determining the maximum number of records to sweep/remove in other hash tables

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i> <i>Upper and Lower Bounds</i> , Revised Version January 7, 1990 ("Dietzfelbinger").
	implementations such as Dietzfelbinger. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining Dirks' deletion decision procedure with Dietzfelbinger nothing more than the predictable use of prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have combined Dirks' dynamic determination of the suitable number of entries to examine during each step of the sweeping process with Dietzfelbinger and would have seen the benefits of doing so. One possible benefit, for example, is saving the system from performing sometimes time-consuming sweeps.`
	Alternatively, one of ordinary skill in the art would be motivated to, and would understand how to, combine the system disclosed in Dietzfelbinger with the means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records disclosed by Thatte. For example, Thatte discloses a system and method using hash tables and/or linked lists and further discloses means for dynamically determining the maximum number for the record search means to remove in the accessed linked list of records. The disclosure of these claim elements in Thatte is clearly shown in the chart of Thatte, which is hereby incorporated by reference in its entirety.

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i> <i>Upper and Lower Bounds</i> , Revised Version January 7, 1990 ("Dietzfelbinger").
	Moreover, one of ordinary skill in the art would recognize that these combinations would improve the similar systems and methods in the same way. Additionally, Ass both Dietzfelbinger and Thatte teach a system of data storage and retrieval, one of ordinary skill in the art would recognize that the result of combining Dietzfelbinger with Thatte would be nothing more than the predictable use of prior art elements according to their established functions. The resulting combination would include the capability to determine the maximum number for the record search means to remove as taught by Thatte. Further, one of ordinary skill in the art would be motivated to combine Dietzfelbinger with Thatte and recognize the benefits of doing so. For example, the removal of expired records described in Dietzfelbinger can be burdensome on the system, adding to the system's load and slowing down the system's processing. One of ordinary skill in the art would recognize that combining Dietzfelbinger with the teachings of Thatte would solve this problem by dynamically determining how many records to delete based on, among other things, the system load. Moreover, the '120 patent discloses that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine Dietzfelbinger with Thatte.
	'663 patent. Disclosure of these claim elements in the '663 patent is clearly

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i> <i>Upper and Lower Bounds</i> , Revised Version January 7, 1990 ("Dietzfelbinger")
	Upper and Lower Bounds, Revised Version January 7, 1990 ("Dietzfelbinger").shown in the chart of the '663 patent, which is hereby incorporated by reference in its entirety. For example, as summarized in the '663 patent:during normal times when the load on the storage system is not excessive, a non-contaminating but slow deletion of records is used. This slow, non-contaminating deletion involves closing the collision-resolution chain of locations by moving a record from a later position in the chain into the position of the record to be deleted. This leaves no deleted record locations in the storage space to slow down future searches. U.S. Patent 4,996,663 to Nemes at 2:24-34 ("The '663 patent").In times of heavy use, when deletions must be done rapidly and no time is available for decontamination, the record is simply marked as "deleted" and left in place. Later non-contaminating probes in the vicinity of such deleted record locations
	 moving records in the chain as described above. <i>Id.</i> at 2:35-41. This hybrid hashing technique has the decided advantage of automatically eliminating contamination caused by the fast-secure deletion procedure when the slower, non-contaminating deletion is used when the load on the system is at lower levels. <i>Id.</i> at 2:42-46. This hybrid deletion is shown in Figure 5.

59

Asserted Claims From U.S. Pat. No. 5,893,120	Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i> <i>Upper and Lower Bounds</i> , Revised Version January 7, 1990 ("Dietzfelbinger").
	FIG.5 HYBRID DELETION (YES) STRH (JAD)

Asserted Claims From	Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide Hans Rohnert Robert F. Tarian, Dynamic Perfect Hashing:
0.5. 1 at. 110. 5,075,120	Upper and Lower Bounds, Revised Version January 7, 1990
	("Dietzfelbinger").
	slow-non-contaminating delete 53 is used. <i>Id.</i> The fast-secure delete 52 does not actually delete records, rather it marks records as deleted. <i>Id.</i> at 8:1-33, Figure 7. These records are then actually deleted by a subsequent slow-non-contaminating delete 53. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
	Thus, the hybrid deletion procedure in the '663 patent dynamically determines a maximum number of records to remove. <i>See id.</i> at 6:40-64, Figure 5. If the fast-secure delete 52 is used, then maximum number of records is zero because records are not deleted they are only marked. <i>Id.</i> at 8:1-33, Figure 7. If the slow-non-contaminating delete 53 is used, then the maximum number of records to remove is all of the contaminated records in the bucket. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
	As both Dietzfelbinger and the '663 patent relate to deletion of records from hash tables using external chaining, one of ordinary skill in the art would understood how to use the '663 patent's dynamic decision on whether to perform a deletion based on a systems load in other hash table implementations such as that described in Dietzfelbinger. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the '663 patent's deletion decision procedure with Dietzfelbinger would be nothing more than the predictable use of prior art elements according

61

Joint Invalidity Contentions & Production of Documents

Asserted Claims Fr U.S. Pat. No. 5,893,	omMartin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer120auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing: Upper and Lower Bounds, Revised Version January 7, 1990 ("Dietzfelbinger").
	to their established functions. By way of further example, one of ordinary skill in the art would have combined the '663 patent's dynamic decision on whether to perform a deletion based on a systems load as taught by the '663 patent and with Dietzfelbinger and would have seen the benefits of doing so. One such benefit, for example,
	Alternatively, it would also be obvious to combine Dietzfelbinger with the Opportunistic Garbage Collection Articles.
	The Opportunistic Garbage Collection Articles disclose a generational based garbage collection which dynamically determines how much garbage to collect. <i>See generally</i> , Paul R. Wilson and Thomas G. Moher, <i>Design of the</i> <i>Opportunistic Garbage Collector</i> , OOPSLA '89 Proceedings, October 1-6, 1989; Paul R. Wilson, <i>Opportunistic Garbage Collection</i> , ACM SIGPLAN Notices, Vol. 23, No. 12, December 1988.
	For example, the Opportunistic Garbage Collection Articles disclose in part: When a significant pause has been detected, a decision procedure is invoked to decide whether to garbage collect, and how many generations to scavenge. The fuller a generation is, the more likely it is to be scavenged; also, the longer the pause that has been detected, the larger the scope of the garbage collection is likely to be. <i>Design of the Opportunistic Garbage</i> <i>Collector</i> at 32.

Asserted Cl U.S. Pat. No	laims From 5. 5,893,120	Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i> <i>Upper and Lower Bounds</i> , Revised Version January 7, 1990 ("Dietzfelbinger").
		Every time a user-input routine is invoked, a decision routine can decide whether to garbage collect. As long as the decision routine takes no more than a few milliseconds to execute, it should not interfere with responsiveness. Since it is only invoked at these times, it does not incur a continual run-time overhead. <i>Opportunistic Garbage Collection</i> at 100.
		This decision routine should take several things into account: 1) the volume of data allocated since the last scavenge, 2) how long it has been since the user has had an opportunity to interact, and 3) the height of the stack relative to its average height at reads since the last scavenge. If the product of the allocation and the compute time is high, and if the stack is low, the scavenge favorability measure is high. If it is especially high, a multi-generation scavenge is in order. <i>Id</i> .
		If these heuristics fail and a scavenge is forced instead by the filling of a generation's space, it is likely to happen during a significant compute- bound pausethe one that has just allocated the data that forced the collection. When the opportunistic mechanism fails to find the end of a pause, it may still succeed by default, embedding a scavenge pause within a larger pause. <i>Design of the Opportunistic Garbage Collector</i> at 32.
		As both Dietzfelbinger and the Opportunistic Garbage Collection Articles relate to deletion of aged records, one of ordinary skill in the art would have understood how to use the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion based on a system load in other hash table implementations such as Dietzfelbinger. Moreover, one of ordinary skill

63

Asserted Claims From U.S. Pat. No. 5,893,120	Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i> <i>Upper and Lower Bounds</i> , Revised Version January 7, 1990
	in the art would recognize that it would improve similar systems and methods
	in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the Opportunistic Garbage Collection Articles' deletion decision procedure with Dietzfelbinger would be nothing more than the predictable use
	of prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have combined the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion and how many generations to scavenge as taught by the Opportunistic Garbage Collection Articles and with Dietzfelbinger and would have seen the benefits of doing so. One such benefit, for example, is preventing slowdown of the system.
	Additionally, it would have been obvious to one of ordinary skill in the art to modify the system disclosed in Dietzfelbinger to dynamically determine the maximum number of expired records to remove in the accessed linked list of records. It is a fundamental concept in computer science and the relevant art that any variable or parameter affecting any aspect of a system can be dynamically determined based on information available to the system. One of ordinary skill in the art would have been motivated to combine the system disclosed in Dietzfelbinger with the fundamental concept of dynamically determining the maximum number of expired records to remove in an accessed

Asserted Claims From U.S. Pat. No. 5,893,120	Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i> <i>Upper and Lower Bounds</i> , Revised Version January 7, 1990
	("Dietzfelbinger").
	linked list of records to solve a number of potential problems. For example, the removal of expired records described in Dietzfelbinger can be burdensome on the system, adding to the system's load and slowing down the system's processing. Moreover, the removal could also force an interruption in real- time processing as the processing waits for the removal to complete.
	One of ordinary skill in the art would have known that dynamically determining the maximum number to remove would limit the burden on the system and bound the length of any real-time interruption to prevent delays in processing. Indeed, Nemes concedes that such dynamic determination was obvious when he states in the '120 patent that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15.
	To the extent that dynamically determining a maximum number of expired records is not disclosed by Dietzfelbinger in combination with Dirks, Thatte, the '663 Patent, or the Opportunistic Garbage Collection References, it is disclosed by Linux 2.0.1, which describes dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed. It would have been obvious to combine Linux 2.0.1 with Dietzfelbinger. For example, both Linux 2.0.1 and Dietzfelbinger describe systems and methods for performing data storage and retrieval using known programming techniques to yield a predictable result.
	When invoked, the function rt_cache_add automatically increments an

Asserted Claims From U.S. Pat. No. 5,893,120	Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i>
	Upper and Lower Bounds, Revised Version January 7, 1990
	("Dietzfelbinger").
	integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
	When the function rt_cache_add removes an expired record, the function
	rt_cache_add decrements the variable rt_cache_size. See Linux
	2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
	number of records in the hash table (i.e., ip_rt_hash_table). Because
	the function rt_cache_add automatically increments and decrements the
	variable rt_cache_size, the variable rt_cache_size is determined
	dynamically.
	Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
	liets in the in the head table clobel verifield. See Linux 2.0.1 route each
	lines 1122 1128 In this way, the function at gambage gollogt 1
	intes 1122-1138. In this way, the function rt_garbage_collect_1
	identifies a record that is expired the function rt_garbage_collect_1
	decrements the variable rt_cache_gize and frees the record See Linux
	2.0.1 route c at lines 1128-1135
	2.0.1, Toute.e at filles 1120 1155.
	Because all records in the linked list can be expired and all records in the hash
	table can be in the linked list, the variable rt cache size can represent a
	dynamically determined maximum number of expired ones of the records to
	remove when function rt_garbage_collect_1 accesses the linked list.
	Furthermore, the function rt_cache_add determines whether the number of
	records in the hash table exceeds a predetermined threshold

66

Asserted Claims From U.S. Pat. No. 5,893,120	Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i>
	Upper and Lower Bounds, Revised Version January 7, 1990 ("Diatzfelbinger")
	("Dietziendinger").RT_CACHE_SIZE_MAX. If the number of records in the hash table exceedsthe predetermined threshold RT_CACHE_SIZE_MAX, the functionrt_cache_add invokes a function rt_garbage_collect. See Linux2.0.1, route.c at lines 1341-1342. The function rt_garbage_collectinvokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c atline 1293. The function rt_garbage_collect invokes a functionrt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.The function rt_garbage_collect_1 loops through each linked list inthe hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linkedlist in the hash table, the function rt_garbage_collect_1 looks at eachrecord in a linked list. See Linux 2.0.1, route.c at lines 1120-1131. For eachrecord in a linked list. See Linux 2.0.1, route.c at line 1122. If the record's lastuse time plus the record's expiration factor is less than the current time. See Linux 2.0.1, route.c at line 1122. If the record's lastuse time plus the record's reference count. See Linux2.0.1, route.c at lines 1124-1130. The record's expiration factor isbased on a variable expire and the record's reference count. See Linux2.0.1, route.c at line 1122. The variable expire is initially one half of the fixedtimeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.After looping through all of the linked lists in this manner, the functionrt_garbage_collect_1 determines again whether the number of recordsin the hash table is less than the predetermined thresholdRT <cache_size_max. 1133.="" 2.0.1,="" at="" if="" line="" linux="" number<="" route.c="" see="" td="" the=""></cache_size_max.>

Joint Invalidity Contentions & Production of Documents

Asserted Claims	From	Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
U.S. Pat. No. 5,89	3,120	auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:
		Upper and Lower Bounds, Revised Version January 7, 1990
		("Dietzfelbinger").
		of items in the hash table is still greater than the predetermined threshold
		RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
		the variable expire and loops through each of the linked lists in the hash
		table. See Linux 2.0.1, route.c at line 1135. In this way, the function
		rt_garbage_collect_1 can remove additional records from the linked
		lists in the hash table. The function rt_garbage_collect_1 repeats this
		process until the total number of records in the hash table is less than the
		predetermined threshold RT_CACHE_SIZE_MAX.
		Under Bedrock's proposed claim constructions, the records removed by the
		function rt_garbage_collect_1 are "expired" records. That is, the
		records removed by the function rt_garbage_collect_l are data items which
		after a limited time or after the occurrence of some event become obsolete,
		such that their presence in the storage system is no longer needed or desired.
		The function rt cache add only removes a record from a linked list when
		the record's last use time plus the fixed timeout value PT_CACHE_TIMEOUT
		is less than the current time and the record's reference count is zero. See Linux
		2.0.1 route c at line 1369. Thus the maximum number of records that the
		function rt cache add can remove from a given linked list is limited to
		those records whose reference counts are zero.
		In contrast, the maximum number of records that the function
		rt garbage collect 1 can remove from a given linked list is not
		limited to those records whose reference counts are zero. See Linux 2.0.1,
		route.c at line 1122. Rather, the function rt_garbage_collect_1 can

Asserted Claims From U.S. Pat. No. 5,893,120	Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan, <i>Dynamic Perfect Hashing:</i> <i>Upper and Lower Bounds</i> , Revised Version January 7, 1990 ("Dietzfelbinger").
	remove records whose reference counts are zero and records whose reference counts are greater than zero. Consequently, the maximum number of records that the function rt_garbage_collect_1 can remove from a linked list is different than the maximum number of records that the function rt_cache_add can remove from a linked list.

US2008 1290297.1

69

Asserted Claims From U.S. Pat. No. 5.893.120		James Griffioen, Remote Memory Backing Storage for Distributed Virtual Memory Operating Systems, PhD (1992), available at
		http://protocols.netlab.uky.edu/~griff/papers/phd_thesis ("Griffioen") alone and in combination
1. An information storage and retrieval system, the system comprising:	5. An information storage and retrieval system, the system comprising:	To the extent the preamble is a limitation, Griffioen discloses an information storage and retrieval system.
		For example, the Remote Memory Model described in Griffioen "consists of multiple <i>client</i> machines, one or more <i>memory server machines</i> , various other servers (e.g., time servers, name servers, or file servers), and a communication channel interconnecting all the machines." Griffioen at 21. The model "centers around the use of remote memory servers for backing storage." See Griffioen at 91.
[1a] a linked list to store and provide access to records stored in a memory	[5a] a hashing means to provide access to records stored in a memory of the	Griffioen describes the use of a hash table with a double hashing algorithm to locate data. Griffioen at 101.
of the system, at least some of the records automatically expiring,	system and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring,	For example, there are two well-known approaches to solving the problem of collisions within a hash table, which occur whenever two entries "hash" or are assigned to the same "bucket" within the hash table. The computer programmer may store the records external to the hash table—that is, using memory separate from the memory allocated to the hash table—or he may store the records internal to the hash table—that is, using memory that is allocated to other buckets within the hash table. Using external memory is termed "external chaining," while using internal memory is termed "open addressing." See "The Art of Computer Programming", Sorting and Searching, D.E. Knuth, Addison-Wesley Series in Computer Science and Information Processing, pp. 506-549, 1973. The applicant has conceded that both forms of collision resolution are known to those of ordinary skill in the art. See, e.g., '120 patent at 1:53-57 (describing linear probing—a type of open addressing—as being "often used" for "collision resolution"); 1:58-2:6

Joint Invalidity Contentions & Production of Documents

1

Asserted Claims From	James Griffioen, Remote Memory Backing Storage for Distributed Virtual
U.S. Pat. No. 5,893,120	Memory Operating Systems, PhD (1992), available at
	http://protocols.netlab.uky.edu/~griff/papers/phd_thesis ("Griffioen")
	alone and in combination
	(citing to several prior art resources that describe external chaining as using linked lists). Indeed, Knuth recognizes that "[p]erhaps the most obvious way to solve this problem [of collision resolution] is to maintain M linked Lists, one for each possible hash code [i.e. external chaining]." Knuth at 513. <i>See also</i> Mark A. Weiss, Data Structures and Algorithm Analysis, p. 157, 1993 (" <i>Closed hashing</i> , also known as <i>open addressing</i> , is an alternative to resolving collisions with linked lists."). Double hashing is another form of open addressing. <i>See</i> Knuth at 519-524.
	It would have been obvious to one skilled in the art to apply the teachings in Griffioen to a hash table which resolves collisions using external chaining with linked lists. As detailed above, one of ordinary skill has a limited number of ways of resolving hash collisions: he may either store the entries within the hash table or outside the hash table, and both were well known to those of ordinary skill.
	The records in the system Griffioen discloses includes records, at least some of which automatically expire.
	For example, Griffioen describes a memory reclamation process through which the remote memory server maintains a timestamp for each process in the system in a separate process hash table. "When the memory server receives a page store request for a process, the server saves the timestamp of the requesting process in the virtual-page hash table entry. Consequently, all pages belonging to a VS have the VS's timestamp. When the memory server receives a terminate request, it updates the current timestamp in the VS table, thereby invalidating all the pages in the VS." Griffioen at 106. "Updating a

2

Joint Invalidity Contentions & Production of Documents

Asserted Claims From		James Griffioen, Remote Memory Backing Storage for Distributed Virtual
U.S. Pat. No. 5,893,120		Memory Operating Systems, PhD (1992), available at
		http://protocols.netlab.uky.edu/~griff/papers/phd_thesis ("Griffioen")
		timestamp invalidates all the data in a VS or LMS in a single operation "
		Griffioen at 108
[1b] a record search means	[5b] a record search means	Griffioen discloses a record search means utilizing a search key to access the
utilizing a search key to	utilizing a search key to	chain of records. Griffioen also discloses a record search means utilizing a
access the linked list,	access a linked list of	search key to access a chain of records beginning at the same hash address.
	hash address	For example, Grifficen explains that "fallient machines uniquely label each
	nash address,	page with an ordered triple containing the LMS ID_VS ID_ and page number
		Given a paging request, the server can quickly verify whether a particular hash
		table entry contains the requested page." Griffioen at 100. "The memory
		server efficiently locates a hash table entry by applying a double hashing
		algorithm to the ordered triple that uniquely identifies the desired page."
		Griffioen at 101.
		As discussed in [1a/5a], it would have been obvious to one of ordinary skill in
		the art to use a hash table with external chaining instead of a hash table with
		open addressing/double hashing. As such, the search means utilizing the
		search key would be accessing a linked list of records beginning at the same
		hash address.
[1c] the record search	[5c] the record search	Griffioen discloses the record search means including means for identifying
means including a means	means including means for	and removing at least some expired ones of the records from the chain of
for identifying and	identifying and removing	records when the chain is accessed.
removing at least some of	at least some expired ones	
the expired ones of the	of the records from the	For example, the remote memory server "reclaims memory while processing
records from the linked list	linked list of records when	store and fetch requests. When a client issues a store or fetch request, the
Joint Invalidity Contentions & Production of		3 Case No. 6:09-CV-549-LED

Asserted Claims From		James Griffioen, Remote Memory Backing Storage for Distributed Virtual Memory Operating Systems, PhD (1992), available at
U.S. Pat. No. 5,695,120		http://protocols.netlab.uky.edu/~griff/papers/phd_thesis ("Griffioen")
		alone and in combination
when the linked list is accessed, and	the linked list is accessed, and	server applies the double hashing algorithm to locate an entry in the virtual- page hash table. The double hashing algorithm requires the server to check for a collision on each probe to the table. That is, the server must compare the requested page's information against the information found in the hash table entry to see if the entry contains the desired page. If a collision occurs, the server checks the timestamp found in the hash table entry against the owner's timestamp in the VS and LMS hash tables. If the timestamps differ, the server reclaims the page. If the timestamps match, the hash table entry is still valid, and the double hashing algorithm proceeds as normal. This modification to the double hashing algorithm allows the server to reclaim invalid pages during its normal processing." Griffioen at 108. The remote memory server also performs garbage collection in the background. <i>Id</i> . As discussed in [1a/5a], it would have been obvious to one of ordinary skill in the art to use a hash table with external chaining instead of a hash table with open addressing/double hashing. In such a system, the probe that resulted from a collision would occur on the linked list used to resolve the collision. As such, the expired records from the linked list would be removed when the algorithm processes the linked list in search of the desired record.
[1d] means, utilizing the record search means, for accessing the linked list and, at the same time, removing at least some of the expired ones of the records in the linked list.	[5d] mea[n]s, utilizing the record search means, for inserting, retrieving, and deleting records from the system and, at the same time, removing at least some expired ones of the	Griffioen discloses means, utilizing the record search means, for accessing the chain of records and, at the same time, removing at least some of the expired ones of the records in the chain. Griffioen also discloses means, utilizing the record search means, for inserting, retrieving, and deleting records from the system and, at the same time, removing at least some expired ones of the records in the accessed chain of records.

Asserted Claims From U.S. Pat. No. 5,893,120		James Griffioen, <i>Remote Memory Backing Storage for Distributed Virtual</i> <i>Memory Operating Systems</i> , PhD (1992), available at http://protocols.netlab.uky.edu/~griff/papers/phd thesis ("Griffioen")
		alone and in combination
	records in the accessed linked list of records.	For example, the remote memory server "reclaims memory while processing store and fetch requests. When a client issues a store or fetch request, the server applies the double hashing algorithm to locate an entry in the virtual- page hash table. The double hashing algorithm requires the server to check for a collision on each probe to the table. That is, the server must compare the requested page's information against the information found in the hash table entry to see if the entry contains the desired page. If a collision occurs, the server checks the timestamp found in the hash table entry against the owner's timestamp in the VS and LMS hash tables. If the timestamps differ, the server reclaims the page. If the timestamps match, the hash table entry is still valid, and the double hashing algorithm proceeds as normal. This modification to the double hashing algorithm allows the server to reclaim invalid pages during its normal processing." Grifficen at 108. The remote memory server also performs garbage collection in the background. <i>Id.</i> To the extent Grifficen does not disclose removal of expired records during a deletion of records, it would have been obvious to one of ordinary skill in the art that a deletion could occur at such a time, since insertion, retrievals, and deletions are basic operations that can be performed on all hash tables. As discussed in [1a/5a], it would have been obvious to one of ordinary skill in the art to use a hash table with external chaining instead of a hash table with open addressing/double hashing. In such a system, the probe that resulted from a collision would occur on the linked list used to resolve the collision. As such, the expired records from the linked list would be removed when the algorithm processes the linked list in search of the desired record.
2. The information storage	6. The information storage	Griffioen combined with Dirks, Thatte, the '663 patent and/or the

Asserted Claims From		James Griffioen, Remote Memory Backing Storage for Distributed Virtual
U.S. Pat. No. 5,893,120		Memory Operating Systems, PhD (1992), available at
		http://protocols.netlab.uky.edu/~griff/papers/phd_thesis ("Griffioen")
		alone and in combination
and retrieval system	and retrieval system	Opportunistic Garbage Collection Articles discloses an information storage
according to claim 1	according to claim 5	and retrieval system further including means for dynamically determining
further including means for	further including means for	maximum number for the record search means to remove in the accessed
dynamically determining	dynamically determining	linked list of records.
maximum number for the	maximum number for the	
record search means to	record search means to	Dirks discloses the management of memory in a computer system and more
remove in the accessed	remove in the accessed	particularly to the allocation of address space in a virtual memory system,
linked list of records.	linked list of records.	which dynamically determines how many records to sweep/remove upon each
		allocation. Disclosure of these claim elements in Dirks is clearly shown in
		Exhibit B-2, which is hereby incorporated by reference in its entirety.
		For example, as summarized in Dirks,
		each time a VSID is assigned from the free list to a new application or thread, a fixed number of entries in the page table are scanned to determine whether they have become inactive, by checking them against the VSIDs on the recycle list. Each entry which is identified as being inactive is removed from the page table. After all of the entries in the page table have been examined in this manner, the VSIDs in the recycle list can be transferred to the free list, since all of their associated page table entries will have been removed. This approach thereby guarantees that a predetermined number of VSIDs are always available in the free list without requiring a time-consuming scan of the complete page table at once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.
		After [a] new VSID has been allocated, the system checks a flag RFLG to determine whether a recycle sweep is currently in progress (Step 20).

6

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	James Griffioen, Remote Memory Backing Storage for Distributed Virtual Memory Operating Systems, PhD (1992), available at http://protocols.netlab.uky.edu/~griff/papers/phd_thesis ("Griffioen") alone and in combination
	If there is no sweep in progress, i.e. RFLG is not equal to one, a determination is made whether a sweep should be initiated. This is done by checking whether the inactive list is full, i.e. whether it contains x entries (Step 22). If the number of entries I on the inactive list is less than x, no further action is taken, and processing control returns to the operating system (Step 24). If, however, the inactive list is full at this time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are transferred to the recycle list, and an index n is reset to 1 (Step 28). The system then sweeps a predetermined number of page table entries PT _i on the page table, to detect whether any of them are inactive, i.e. their associated VSID is on the recycle list (Step 30). The predetermined number of entries that are swept is identified as <i>k</i> , where:
	$k = \frac{\text{total number of page table entries}}{\text{maximum number of active threads}}$ <i>Id.</i> at 8:12-30.
	Dirks discloses that any approach can be employed to determine the number of entries to be examined during each step of the sweeping process. <i>Id.</i> at 7:37-40. As stated in Dirks:
	Any other suitable approach can be employed to determine the number of entries to be examined during each step of the sweeping process. In this regard, it is not necessary that the number of examined entries be fixed for each step. Rather, it might vary from one step to the next. The only criterion is that the number of entries examined on each step be such that all entries in the page table are examined in a determinable amount of time or by the

Asserted Claims From	James Griffioen, Remote Memory Backing Storage for Distributed Virtual
U.S. Fat. No. 5,075,120	http://protocols.netlab.uky.edu/~griff/papers/phd_thesis ("Griffioen")
	alone and in combination
	occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.
	<i>Id.</i> at 7:38-46. Thus, Dirks dynamically determines the maximum number of records to sweep/remove by calculating a value <i>k</i> . <i>Id.</i> at 7:15-46, 7:66-8:56.
	As both Griffioen and Dirks relate to deletion of aged records upon the allocation of a new incoming record, one of ordinary skill in the art would have understood how to use Dirks' dynamic decision making process of determining the maximum number of records to sweep/remove in other hash tables implementations such as Griffioen. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining Dirks' deletion decision procedure with Griffioen nothing more than the predictable use of prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have combined Dirks' dynamic determination of the suitable number of entries to examine during each step of the sweeping process with Griffioen and would have seen the benefits of doing so. One possible benefit, for example, is saving the system from performing sometimes time-consuming sweeps.`

Asserted Claims From	James Griffioen, Remote Memory Backing Storage for Distributed Virtual
U.S. Pat. No. 5,893,120	Memory Operating Systems, PhD (1992), available at
	http://protocols.netlab.uky.edu/~griff/papers/phd_thesis ("Griffioen")
	alone and in combination
	Alternatively, one of ordinary skill in the art would be motivated to, and would
	understand how to, combine the system disclosed in Griffioen with the means
	for dynamically determining maximum number for the record search means to
	remove in the accessed linked list of records disclosed by Thatte. For example,
	Thatte discloses a system and method using hash tables and/or linked lists and
	further discloses means for dynamically determining the maximum number for
	the record search means to remove in the accessed linked list of records. The
	disclosure of these claim elements in Thatte is clearly shown in the chart of
	Thatte, which is hereby incorporated by reference in its entirety.
	Moreover, one of ordinary skill in the art would recognize that these
	combinations would improve the similar systems and methods in the same
	way. Additionally, Ass both Grifficen and Thatte teach a system of data
	storage and retrieval, one of ordinary skill in the art would be nothing more than the
	predictable use of prior art elements according to their established functions
	The resulting combination would include the capability to determine the
	maximum number for the record search means to remove as taught by Thatte
	maximum number for the record search means to remove as taught by Thate.
	Further, one of ordinary skill in the art would be motivated to combine
	Griffioen with Thatte and recognize the benefits of doing so. For example, the
	removal of expired records described in Griffioen can be burdensome on the
	system, adding to the system's load and slowing down the system's
	processing. One of ordinary skill in the art would recognize that combining
	Griffioen with the teachings of Thatte would solve this problem by
	dynamically determining how many records to delete based on, among other
	things, the system load. Moreover, the '120 patent discloses that "[a] person

9

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	James Griffioen, <i>Remote Memory Backing Storage for Distributed Virtual</i> <i>Memory Operating Systems</i> , PhD (1992), available at http://protocols.netlab.uky.edu/~griff/papers/phd_thesis ("Griffioen") alone and in combination
	skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine Griffioen with Thatte.
	Alternatively, it would also be obvious to combine Griffioen with the '663 patent. Disclosure of these claim elements in the '663 patent is clearly shown in the chart of the '663 patent, which is hereby incorporated by reference in its entirety. For example, as summarized in the '663 patent:
	during normal times when the load on the storage system is not excessive, a non-contaminating but slow deletion of records is used. This slow, non-contaminating deletion involves closing the collision-resolution chain of locations by moving a record from a later position in the chain into the position of the record to be deleted. This leaves no deleted record locations in the storage space to slow down future searches. U.S. Patent 4,996,663 to Nemes at 2:24-34 ("The '663 patent").
	In times of heavy use, when deletions must be done rapidly and no time is available for decontamination, the record is simply marked as "deleted" and left in place. Later non-contaminating probes in the vicinity of such deleted record locations automatically remove the contaminating deleted records by

10

Asserted Claims From U.S. Pat. No. 5,893,120		James Griffioen, Remote Memory Backing Storage for Distributed Virtual Memory Operating Systems, PhD (1992), available at http://protocols.netlab.uky.edu/~griff/papers/phd_thesis ("Griffioen") alone and in combination
		 moving records in the chain as described above. <i>Id.</i> at 2:35-41. This hybrid hashing technique has the decided advantage of automatically eliminating contamination caused by the fast-secure deletion procedure when the slower, non-contaminating deletion is used when the load on the system is at lower levels. <i>Id.</i> at 2:42-46. This hybrid deletion is shown in Figure 5.

Asserted Claims From U.S. Pat. No. 5,893,120	James Griffioen, Remote Memory Backing Storage for Distributed Virtual Memory Operating Systems, PhD (1992), available at http://protocols.netlab.uky.edu/~griff/papers/phd_thesis ("Griffioen") alone and in combination
	FIG.5 HYBRID DELETION FIG.5 FIG.5 FIG.5 FIG.5 FIG.7 FIG

12

Asserted Claims From	James Griffioen, Remote Memory Backing Storage for Distributed Virtual
U.S. Pat. No. 5,893,120	Memory Operating Systems, PhD (1992), available at
	http://protocols.netlab.uky.edu/~griff/papers/phd_thesis ("Griffioen")
	alone and in combination
	slow-non-contaminating delete 53 is used. <i>Id.</i> The fast-secure delete 52 does not actually delete records, rather it marks records as deleted. <i>Id.</i> at 8:1-33, Figure 7. These records are then actually deleted by a subsequent slow-non-
	contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.
	Thus, the hybrid deletion procedure in the '663 patent dynamically determines a maximum number of records to remove. <i>See id.</i> at 6:40-64, Figure 5. If the fast-secure delete 52 is used, then maximum number of records is zero because records are not deleted they are only marked. <i>Id.</i> at 8:1-33, Figure 7. If the slow-non-contaminating delete 53 is used, then the maximum number of records to remove is all of the contaminated records in the bucket. <i>Id.</i> at 6:65- 7:68, Figures 6, 6A, 6B.
	As both Griffioen and the '663 patent relate to deletion of records from hash tables using external chaining, one of ordinary skill in the art would understood how to use the '663 patent's dynamic decision on whether to perform a deletion based on a systems load in other hash table implementations such as that described in Griffioen. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the '663 patent's deletion decision procedure with Griffioen would be nothing more than the predictable use of prior art elements according to

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	James Griffioen, Remote Memory Backing Storage for Distributed Virtual Memory Operating Systems, PhD (1992), available at http://protocols.netlab.uky.edu/~griff/papers/phd_thesis ("Griffioen") alone and in combination
	their established functions. By way of further example, one of ordinary skill in the art would have combined the '663 patent's dynamic decision on whether to perform a deletion based on a systems load as taught by the '663 patent and with Grifficen and
	based on a systems load as taught by the '663 patent and with Griffioen and would have seen the benefits of doing so. One such benefit, for example, is that the system would avoid performing deletions when the system load exceeded a threshold.
	Alternatively, it would also be obvious to combine Griffioen with the Opportunistic Garbage Collection Articles.
	The Opportunistic Garbage Collection Articles disclose a generational based garbage collection which dynamically determines how much garbage to collect. <i>See generally</i> , Paul R. Wilson and Thomas G. Moher, <i>Design of the Opportunistic Garbage Collector</i> , OOPSLA '89 Proceedings, October 1-6, 1989; Paul R. Wilson, <i>Opportunistic Garbage Collection</i> , ACM SIGPLAN Notices, Vol. 23, No. 12, December 1988.
	For example, the Opportunistic Garbage Collection Articles disclose in part:
	When a significant pause has been detected, a decision procedure is invoked to decide whether to garbage collect, and how many generations to scavenge. The fuller a generation is, the more likely it is to be scavenged; also, the longer the pause that has been detected, the larger the scope of the garbage collection is likely to be. <i>Design of the Opportunistic Garbage</i> <i>Collector</i> at 32.

Asserted Claims From U.S. Pat. No. 5,893,120	James Griffioen, Remote Memory Backing Storage for Distributed Virtual Memory Operating Systems, PhD (1992), available at http://protocols.netlab.uky.edu/~griff/papers/phd_thesis ("Griffioen") alone and in combination	
	Every time a user-input routine is invoked, a decision routine can decide whether to garbage collect. As long as the decision routine takes no more than a few milliseconds to execute, it should not interfere with responsiveness. Since it is only invoked at these times, it does not incur a continual run-time overhead. <i>Opportunistic Garbage Collection</i> at 100.	
	This decision routine should take several things into account: 1) the volume of data allocated since the last scavenge, 2) how long it has been since the user has had an opportunity to interact, and 3) the height of the stack relative to its average height at reads since the last scavenge. If the product of the allocation and the compute time is high, and if the stack is low, the scavenge favorability measure is high. If it is especially high, a multi-generation scavenge is in order. <i>Id.</i>	
	If these heuristics fail and a scavenge is forced instead by the filling of a generation's space, it is likely to happen during a significant compute- bound pausethe one that has just allocated the data that forced the collection. When the opportunistic mechanism fails to find the end of a pause, it may still succeed by default, embedding a scavenge pause within a larger pause. <i>Design of the Opportunistic Garbage Collector</i> at 32.	
	As both Griffioen and the Opportunistic Garbage Collection Articles relate to deletion of aged records, one of ordinary skill in the art would have understood how to use the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion based on a system load in other hash table implementations such as Griffioen. Moreover, one of ordinary skill in the art	

Asserted Claims From	James Griffioen, Remote Memory Backing Storage for Distributed Virtual
U.S. Pat. No. 5,893,120	Memory Operating Systems, PhD (1992), available at
	http://protocols.netlab.uky.edu/~griff/papers/phd_thesis ("Griffioen")
	alone and in combination
	 alone and in combination would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the Opportunistic Garbage Collection Articles' deletion decision procedure with Griffioen would be nothing more than the predictable use of prior art elements according to their established functions. By way of further example, one of ordinary skill in the art would have combined the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion and how many generations to scavenge as taught by the Opportunistic Garbage Collection Articles and with Griffioen and would have seen the benefits of doing so. One such benefit, for example, is preventing slowdown of the system. Additionally, it would have been obvious to one of ordinary skill in the art to modify the system disclosed in Griffioen to dynamically determine the maximum number of expired records to remove in the accessed linked list of records. It is a fundamental concept in computer science and the relevant art that any variable or parameter affecting any aspect of a system can be dynamically determined based on information available to the system.
	determining the maximum number of expired records to remove in an accessed

Asserted Claims From	James Griffioen, Remote Memory Backing Storage for Distributed Virtual
U.S. Fat. No. 5,895,120	http://protocols.netlab.uky.edu/~griff/naners/nhd_thesis ("Crifficen")
	alone and in combination
	alone and in combinationlinked list of records to solve a number of potential problems. For example, the removal of expired records described in Griffioen can be burdensome on the system, adding to the system's load and slowing down the system's processing. Moreover, the removal could also force an interruption in real- time processing as the processing waits for the removal to complete.One of ordinary skill in the art would have known that dynamically determining the maximum number to remove would limit the burden on the system and bound the length of any real-time interruption to prevent delays in processing. Indeed, Nemes concedes that such dynamic determination was obvious when he states in the '120 patent that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. To the extent that dynamically determining a maximum number of expired records is not disclosed by Griffioen in combination with Dirks, Thatte, the '663 Patent, or the Opportunistic Garbage Collection References, it is disclosed by Linux 2.0.1, which describes dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed. It would have been obvious to combine Linux 2.0.1 with Griffioen. For example, both Linux 2.0.1 and Griffioen describe systems and methods for performing data storage and retrieval using known programming techniques to
	yield a predictable result.
	When invoked, the function rt_cache_add automatically increments an integer variable rt_cache_size. <i>See</i> Linux 2.0.1, route.c at line 1359.

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5.893.120	James Griffioen, Remote Memory Backing Storage for Distributed Virtual Memory Operating Systems, PhD (1992), available at
	http://protocols.netlab.uky.edu/~griff/papers/phd_thesis ("Griffioen")
	alone and in combination
	When the function rt_cache_add removes an expired record, the function rt_cache_add decrements the variable rt_cache_size. See Linux 2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the number of records in the hash table (i.e., ip_rt_hash_table). Because the function rt_cache_add automatically increments and decrements the variable rt_cache_size is determined dynamically.
	Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1. The function rt_garbage_collect_1 loops through each of the linked lists in the ip_rt_hash_table global variable. <i>See</i> Linux 2.0.1, route.c at lines 1122-1138. In this way, the function rt_garbage_collect_1 accesses the linked list. When the function rt_garbage_collect_1 identifies a record that is expired, the function rt_garbage_collect_1 decrements the variable rt_cache_size and frees the record. <i>See</i> Linux 2.0.1, route.c at lines 1128-1135.
	Because all records in the linked list can be expired and all records in the hash table can be in the linked list, the variable rt_cache_size can represent a dynamically determined maximum number of expired ones of the records to remove when function rt_garbage_collect_1 accesses the linked list.
	Furthermore, the function rt_cache_add determines whether the number of records in the hash table exceeds a predetermined threshold RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds

18

Asserted Claims From	James Griffioen, Remote Memory Backing Storage for Distributed Virtual
U.S. Pat. No. 5,893,120	Memory Operating Systems, PhD (1992), available at
	http://protocols.netlab.uky.edu/~griff/papers/phd_thesis ("Griffioen")
	alone and in combination
	the predetermined threshold RT_CACHE_SIZE_MAX, the function
	rt_cache_add invokes a function rt_garbage_collect. See Linux
	2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
	invokes a function rt_garbage_collect_1. <i>See</i> Linux 2.0.1, route.c at
	line 1293. The function rt_garbage_collect invokes a function
	rt_garbage_collect_1. <i>See</i> Linux 2.0.1, route.c at line 1293.
	The function rt_garbage_collect_1 loops through each linked list in the hash table. <i>See</i> Linux 2.0.1, route.c at lines 1116-1132. For each linked list in the hash table, the function rt_garbage_collect_1 looks at each record in the linked list. <i>See</i> Linux 2.0.1, route.c at lines 1120-1131. For each record in a linked list, the function rt_garbage_collect_1 determines whether the record's last use time plus the record's expiration factor is later than the current time. <i>See</i> Linux 2.0.1, route.c at line 1122. If the record's last use time plus the record is less than the current time, the function rt_garbage_collect_1 removes the record from the linked list. <i>See</i> Linux 2.0.1, route.c at lines 1124-1130. The record's expiration factor is based on a variable expire and the record's reference count. <i>See</i> Linux 2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed timeout value RT_CACHE_TIMEOUT. <i>See</i> Linux 2.0.1, route.c at line 1110.
	After looping through all of the linked lists in this manner, the function
	rt_garbage_collect_l determines again whether the number of records
	In the hash table is less than the predetermined threshold
	of items in the hash table is still greater than the predetermined threshold

Joint Invalidity Contentions & Production of Documents

Asserted Claims From	James Griffioen, Remote Memory Backing Storage for Distributed Virtual
U.S. Pat. No. 5,893,120	Memory Operating Systems, PhD (1992), available at
	http://protocols.netlab.uky.edu/~griff/papers/phd_thesis ("Griffioen")
	alone and in combination
	RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
	the variable expire and loops through each of the linked lists in the hash
	table. See Linux 2.0.1, route.c at line 1135. In this way, the function
	rt_garbage_collect_1 can remove additional records from the linked
	lists in the hash table. The function rt_garbage_collect_1 repeats this
	process until the total number of records in the hash table is less than the
	predetermined threshold RT_CACHE_SIZE_MAX.
	Under Bedrock's proposed claim constructions, the records removed by the
	function rt_garbage_collect_1 are "expired" records. That is, the
	records removed by the function rt_garbage_collect_1 are data items which
	after a limited time or after the occurrence of some event become obsolete,
	such that their presence in the storage system is no longer needed or desired.
	The function rt_cache_add only removes a record from a linked list when
	the record's last use time plus the fixed timeout value RT_CACHE_TIMEOUT
	is less than the current time and the record's reference count is zero. See Linux
	2.0.1, route.c at line 1369. Thus, the maximum number of records that the
	function rt cache add can remove from a given linked list is limited to
	those records whose reference counts are zero.
	In contrast, the maximum number of records that the function
	rt_garbage_collect_1 can remove from a given linked list is not
	limited to those records whose reference counts are zero. See Linux 2.0.1,
	route.c at line 1122. Rather, the function rt_garbage_collect_1 can
	remove records whose reference counts are zero and records whose reference

20

Asserted Claims From U.S. Pat. No. 5.893.120		James Griffioen, Remote Memory Backing Storage for Distributed Virtual Memory Operating Systems, PhD (1992), available at
0.5.1 at. 110. 5,075,120		http://protocols.netlab.uky.edu/~griff/papers/phd_thesis ("Griffioen") alone and in combination
		counts are greater than zero. Consequently, the maximum number of records that the function rt_garbage_collect_1 can remove from a linked list is different than the maximum number of records that the function rt_cache_add can remove from a linked list.
3. A method for storing and retrieving information records using a linked list to store and provide access to the records, at least some of the records automatically expiring, the method comprising the steps of:	7. A method for storing and retrieving information records using a hashing technique to provide access to the records and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring, the method comprising the steps of:	 To the extent the preamble is a limitation, Griffioen also discloses a method for storing and retrieving information records using a hashing technique, at least some of the records automatically expiring. For example, the Remote Memory Model described in Griffioen "consists of multiple <i>client</i> machines, one or more <i>memory server machines</i>, various other servers (e.g., time servers, name servers, or file servers), and a communication channel interconnecting all the machines." Griffioen at 21. The model "centers around the use of remote memory servers for backing storage." See Griffioen at 91. Griffioen describes a method of using a hash table with a double hashing algorithm to locate data. Griffioen at 101. As discussed in [1a/5a], it would have been obvious to one of ordinary skill in the art that a hash table with external chaining using linked lists could be used instead of a hash table with double hashing. The records in the system Griffioen discloses includes records, at least some of which automatically expire.

Asserted Claims From U.S. Pat. No. 5,893,120		James Griffioen, <i>Remote Memory Backing Storage for Distributed Virtual</i> <i>Memory Operating Systems</i> , PhD (1992), available at http://protocols.netlab.uky.edu/~griff/papers/phd_thesis ("Griffioen") alone and in combination
		For example, Griffioen describes a memory reclamation process through which the remote memory server maintains a timestamp for each process in the system in a separate process hash table. "When the memory server receives a page store request for a process, the server saves the timestamp of the requesting process in the virtual-page hash table entry. Consequently, all pages belonging to a VS have the VS's timestamp. When the memory server receives a terminate request, it updates the current timestamp in the VS table, thereby invalidating all the pages in the VS." Griffioen at 106. "Updating a timestamp invalidates all the data in a VS or LMS in a single operation." Griffioen at 108.
[3a] accessing the linked list of records,	[7a] accessing a linked list of records having same hash address,	 Griffioen discloses accessing the chain of records. Griffioen also discloses accessing a chain of records beginning at the same hash address. For example, Griffioen describes a method of using a hash table with a double hashing algorithm to locate data. Griffioen at 101. As discussed in [1a/5a], it would have been obvious to one of ordinary skill in the art to use a hash table with external chaining instead of a hash table with open addressing/double hashing. In such a system, the probe that resulted from a collision would occur on the linked list used to resolve the collision. As such, the expired records from the linked list would be removed when the algorithm processes the linked list in search of the desired record.

22
Asserted Claims From U.S. Pat. No. 5,893,120		James Griffioen, Remote Memory Backing Storage for Distributed Virtual Memory Operating Systems, PhD (1992), available at http://protocols.netlab.uky.edu/~griff/papers/phd_thesis ("Griffioen")
		alone and in combination
[3b] identifying at least some of the automatically expired ones of the records,	[7b] identifying at least some of the automatically expired ones of the records,	Griffioen discloses identifying at least some of the automatically expired ones of the records.
and		For example, the remote memory server "reclaims memory while processing store and fetch requests. When a client issues a store or fetch request, the server applies the double hashing algorithm to locate an entry in the virtual-page hash table. The double hashing algorithm requires the server to check for a collision on each probe to the table. That is, the server must compare the requested page's information against the information found in the hash table entry to see if the entry contains the desired page. If a collision occurs, the server checks the timestamp found in the hash table entry against the owner's timestamp in the VS and LMS hash tables. If the timestamps differ, the server reclaims the page. If the timestamps match, the hash table entry is still valid, and the double hashing algorithm proceeds as normal. This modification to the double hashing algorithm allows the server to reclaim invalid pages during its normal processing." Griffioen at 108. The remote memory server also performs garbage collection in the background. <i>Id</i> .
[3c] removing at least some of the automatically expired records from the	[7c] removing at least some of the automatically expired records from the	Griffioen discloses removing at least some of the automatically expired records from the chain of records when the chain is accessed.
linked list when the linked list is accessed.	linked list when the linked list is accessed, and	For example, the remote memory server "reclaims memory while processing store and fetch requests. When a client issues a store or fetch request, the server applies the double hashing algorithm to locate an entry in the virtual- page hash table. The double hashing algorithm requires the server to check for a collision on each probe to the table. That is, the server must compare the requested page's information against the information found in the hash table

Asserted Claims From		James Griffioen, Remote Memory Backing Storage for Distributed Virtual
U.S. Pat. No. 5,893,120		Memory Operating Systems, PhD (1992), available at
		http://protocols.netlab.uky.edu/~griff/papers/phd_thesis ("Griffioen")
		alone and in combination
		entry to see if the entry contains the desired page. If a collision occurs, the
		server checks the timestamp found in the hash table entry against the owner's
		timestamp in the VS and LMS hash tables. If the timestamps differ, the server
		reclaims the page. If the timestamps match, the hash table entry is still valid,
		and the double hashing algorithm proceeds as normal. This modification to the
		double hashing algorithm allows the server to reclaim invalid pages during its
		normal processing." Griffioen at 108. The remote memory server also
		performs garbage collection in the background. <i>Ia</i> .
		As discussed in [1a/5a], it would have been obvious to one of ordinary skill in
		the art to use a hash table with external chaining instead of a hash table with
		open addressing/double hashing. In such a system, the probe that resulted
		from a collision would occur on the linked list used to resolve the collision. As
		such, the expired records from the linked list would be removed when the
		algorithm processes the linked list in search of the desired record.
	[7d] inserting, retrieving	Griffioen discloses inserting, retrieving or deleting one of the records from the
	or deleting one of the	system following the step of removing.
	records from the system	
	following the step of	For example, Griffioen states that the memory server "reclaims memory while
	removing.	processing store and fetch requests." Griffioen at 108. These store and fetch
		requests constitute insertions and retrievals from the hash table.
4. The method according to	8. The method according	Griffioen combined with Dirks, Thatte, the '663 patent and/or the
claim 3 further including	to claim / further including	Opportunistic Garbage Collection Articles discloses dynamically determining
the step of dynamically	the step of dynamically	maximum number of expired ones of the records to remove when the linked
determining maximum	determining maximum	list is accessed.
number of expired ones of	number of expired ones of	
the records to remove	the records to remove	Dirks discloses the management of memory in a computer system and more
Joint Invalidity Contentions & Pro	duction of	24 Case No. 6:09-CV-549-LED

Documents

Asserted Claims From U.S. Pat. No. 5,893,120		James Griffioen, <i>Remote Memory Backing Storage for Distributed Virtual</i> <i>Memory Operating Systems</i> , PhD (1992), available at http://protocols.netlab.uky.edu/~griff/papers/phd_thesis ("Griffioen")
		alone and in combination
when the linked list is accessed.	when the linked list is accessed.	particularly to the allocation of address space in a virtual memory system, which dynamically determines how many records to sweep/remove upon each allocation. Disclosure of these claim elements in Dirks is clearly shown in Exhibit B-2, which is hereby incorporated by reference in its entirety.
		For example, as summarized in Dirks,
		each time a VSID is assigned from the free list to a new application or thread, a fixed number of entries in the page table are scanned to determine whether they have become inactive, by checking them against the VSIDs on the recycle list. Each entry which is identified as being inactive is removed from the page table. After all of the entries in the page table have been examined in this manner, the VSIDs in the recycle list can be transferred to the free list, since all of their associated page table entries will have been removed. This approach thereby guarantees that a predetermined number of VSIDs are always available in the free list without requiring a time-consuming scan of the complete page table at once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.
		After [a] new VSID has been allocated, the system checks a flag RFLG to determine whether a recycle sweep is currently in progress (Step 20). If there is no sweep in progress, i.e. RFLG is not equal to one, a determination is made whether a sweep should be initiated. This is done by checking whether the inactive list is full, i.e. whether it contains x entries (Step 22). If the number of entries I on the inactive list is less than x, no further action is taken, and processing control returns to the operating system (Step 24). If, however, the inactive list is full at this

25

Asserted C	aims From	James Griffioen, Remote Memory Backing Storage for Distributed Virtual
U.S. Pat. No	b. 5,893,120	Memory Operating Systems, PhD (1992), available at
		http://protocols.netlab.uky.edu/~griff/papers/phd_thesis ("Griffioen")
		alone and in combination
		time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are transferred to the recycle list, and an index n is reset to 1 (Step 28). The system then sweeps a predetermined number of page table entries PT_i on the page table, to detect whether any of them are inactive, i.e. their associated VSID is on the recycle list (Step 30). The predetermined number of entries that are swept is identified as <i>k</i> , where:
		$k = \frac{\text{total number of page table entries}}{\text{maximum number of active threads}}$ <i>Id.</i> at 8:12-30.
		Dirks discloses that any approach can be employed to determine the number of entries to be examined during each step of the sweeping process. <i>Id.</i> at 7:37-40. As stated in Dirks:
		Any other suitable approach can be employed to determine the number of entries to be examined during each step of the sweeping process. In this regard, it is not necessary that the number of examined entries be fixed for each step. Rather, it might vary from one step to the next. The only criterion is that the number of entries examined on each step be such that all entries in the page table are examined in a determinable amount of time or by the occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.
		<i>Id.</i> at 7:38-46. Thus, Dirks dynamically determines the maximum number of records to sweep/remove by calculating a value k . <i>Id.</i> at 7:15-46, 7:66-8:56.
		As both Griffioen and Dirks relate to deletion of aged records upon the

Asserted Claims From	James Griffioen, Remote Memory Backing Storage for Distributed Virtual
U.S. Pat. No. 5,893,120	Memory Operating Systems, PhD (1992), available at
	http://protocols.netlab.uky.edu/~griff/papers/phd_thesis ("Griffioen")
	alone and in combination
	allocation of a new incoming record, one of ordinary skill in the art would have understood how to use Dirks' dynamic decision making process of determining the maximum number of records to sweep/remove in other hash tables implementations such as Griffioen. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining Dirks' deletion decision procedure with Griffioen nothing more than the predictable use of prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have combined Dirks' dynamic determination of the suitable number of entries to examine during each step of the sweeping process with Griffioen and would have seen the benefits of doing so. One possible benefit, for example, is saving the system from performing sometimes time-consuming sweeps.` Alternatively, one of ordinary skill in the art would be motivated to, and would understand how to, combine the system disclosed in Griffioen with the means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records disclosed by Thatte. For example, Thatte discloses a system and method using hash tables and/or linked lists and further discloses means for dynamically determining the maximum number for

Asserted Claims From	James Griffioen, Remote Memory Backing Storage for Distributed Virtual
U.S. Pat. No. 5,893,120	Memory Operating Systems, PhD (1992), available at
	http://protocols.netlab.uky.edu/~griff/papers/phd_thesis ("Griffioen")
	alone and in combination
	the record search means to remove in the accessed linked list of records. The
	disclosure of these claim elements in Thatte is clearly shown in the chart of
	Thatte, which is hereby incorporated by reference in its entirety.
	Moreover, one of ordinary skill in the art would recognize that these
	combinations would improve the similar systems and methods in the same
	way. Additionally, Ass both Griffioen and Thatte teach a system of data
	storage and retrieval, one of ordinary skill in the art would recognize that the
	result of combining Griffioen with Thatte would be nothing more than the
	The resulting combination would include the conchility to determine the
	maximum number for the record search means to remove as taught by Thatta
	maximum number for the record search means to remove as taught by Thatte.
	Further, one of ordinary skill in the art would be motivated to combine
	Griffioen with Thatte and recognize the benefits of doing so. For example, the
	removal of expired records described in Griffioen can be burdensome on the
	system, adding to the system's load and slowing down the system's
	processing. One of ordinary skill in the art would recognize that combining
	Grifficen with the teachings of Thatte would solve this problem by
	things, the system load. Moreover, the '120 petert discloses that "[a] person
	skilled in the art will appreciate that the technique of removing all expired
	records while searching the linked list can be expanded to include techniques
	whereby not necessarily all expired records are removed, and that the decision
	regarding if and how many records to delete can be a dynamic one." '120 at
	7:10-15. Thus, the '120 patent provides motivations to combine Griffioen with
	Thatte.

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	James Griffioen, Remote Memory Backing Storage for Distributed Virtual Memory Operating Systems, PhD (1992), available at http://protocols.netlab.uky.edu/~griff/papers/phd_thesis ("Griffioen") alone and in combination
	Alternatively, it would also be obvious to combine Griffioen with the '663 patent. Disclosure of these claim elements in the '663 patent is clearly shown in the chart of the '663 patent, which is hereby incorporated by reference in its entirety. For example, as summarized in the '663 patent:
	during normal times when the load on the storage system is not excessive, a non-contaminating but slow deletion of records is used. This slow, non-contaminating deletion involves closing the collision-resolution chain of locations by moving a record from a later position in the chain into the position of the record to be deleted. This leaves no deleted record locations in the storage space to slow down future searches. U.S. Patent 4,996,663 to Nemes at 2:24-34 ("The '663 patent").
	In times of heavy use, when deletions must be done rapidly and no time is available for decontamination, the record is simply marked as "deleted" and left in place. Later non-contaminating probes in the vicinity of such deleted record locations automatically remove the contaminating deleted records by moving records in the chain as described above. <i>Id.</i> at 2:35-41.
	This hybrid hashing technique has the decided advantage of automatically eliminating contamination caused by the fast- secure deletion procedure when the slower, non-contaminating deletion is used when the load on the system is at lower levels.

29

Asserted Claims From	James Griffioen, Remote Memory Backing Storage for Distributed Virtual
U.S. Pat. No. 5,893,120	Memory Operating Systems, PhD (1992), available at
	http://protocols.netlab.uky.edu/~griff/papers/phd_thesis ("Griffioen")
	alone and in combination
	During the hybrid deletion procedure decision block 51 checks the system load to determine if the system load is greater than a threshold. If the system load is greater than the threshold, then a fast-secure delete 52 is used. <i>Id.</i> at 6:40-64, Figure 5. On the other hand, if the system load is less than the threshold, then a slow-non-contaminating delete 53 is used. <i>Id.</i> The fast-secure delete 52 does not actually delete records, rather it marks records as deleted. <i>Id.</i> at 8:1-33, Figure 7. These records are then actually deleted by a subsequent slow-non-contaminating delete 53. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
	Thus, the hybrid deletion procedure in the '663 patent dynamically determines a maximum number of records to remove. <i>See id.</i> at 6:40-64, Figure 5. If the fast-secure delete 52 is used, then maximum number of records is zero because records are not deleted they are only marked. <i>Id.</i> at 8:1-33, Figure 7. If the slow-non-contaminating delete 53 is used, then the maximum number of records to remove is all of the contaminated records in the bucket. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
	As both Griffioen and the '663 patent relate to deletion of records from hash tables using external chaining, one of ordinary skill in the art would understood how to use the '663 patent's dynamic decision on whether to perform a deletion based on a systems load in other hash table implementations such as that described in Griffioen. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how

Asserted Claims From	James Griffioen, Remote Memory Backing Storage for Distributed Virtual
U.S. Pat. No. 5,893,120	Memory Operating Systems, PhD (1992), available at
	http://protocols.netlab.uky.edu/~griff/papers/phd_thesis ("Griffioen")
	alone and in combination
	many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the '663 patent's deletion decision procedure with Griffioen would be nothing more than the predictable use of prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have combined the '663 patent's dynamic decision on whether to perform a deletion based on a systems load as taught by the '663 patent and with Griffioen and would have seen the benefits of doing so. One such benefit, for example, is that the system would avoid performing deletions when the system load exceeded a threshold.
	Alternatively, it would also be obvious to combine Griffioen with the Opportunistic Garbage Collection Articles.
	The Opportunistic Garbage Collection Articles disclose a generational based garbage collection which dynamically determines how much garbage to collect. <i>See generally</i> , Paul R. Wilson and Thomas G. Moher, <i>Design of the Opportunistic Garbage Collector</i> , OOPSLA '89 Proceedings, October 1-6, 1989; Paul R. Wilson, <i>Opportunistic Garbage Collection</i> , ACM SIGPLAN Notices, Vol. 23, No. 12, December 1988.
	For example, the Opportunistic Garbage Collection Articles disclose in part:
	When a significant pause has been detected, a decision procedure is invoked to decide whether to garbage collect, and how many generations to

Asserted Claims From	James Griffioen, Remote Memory Backing Storage for Distributed Virtual
U.S. Pat. No. 5,893,120	Memory Operating Systems, PhD (1992), available at
	http://protocols.netlab.uky.edu/~griff/papers/phd_thesis ("Griffioen")
	alone and in combination
	scavenge. The fuller a generation is, the more likely it is to be scavenged; also, the longer the pause that has been detected, the larger the scope of the garbage collection is likely to be. <i>Design of the Opportunistic Garbage Collector</i> at 32.
	Every time a user-input routine is invoked, a decision routine can decide whether to garbage collect. As long as the decision routine takes no more than a few milliseconds to execute, it should not interfere with responsiveness. Since it is only invoked at these times, it does not incur a continual run-time overhead. <i>Opportunistic Garbage Collection</i> at 100.
	This decision routine should take several things into account: 1) the volume of data allocated since the last scavenge, 2) how long it has been since the user has had an opportunity to interact, and 3) the height of the stack relative to its average height at reads since the last scavenge. If the product of the allocation and the compute time is high, and if the stack is low, the scavenge favorability measure is high. If it is especially high, a multi-generation scavenge is in order. <i>Id</i> .
	If these heuristics fail and a scavenge is forced instead by the filling of a generation's space, it is likely to happen during a significant compute- bound pausethe one that has just allocated the data that forced the collection. When the opportunistic mechanism fails to find the end of a pause, it may still succeed by default, embedding a scavenge pause within a larger pause. <i>Design of the Opportunistic Garbage Collector</i> at 32.
	As both Griffioen and the Opportunistic Garbage Collection Articles relate to

Asserted Claims From U.S. Pat. No. 5,893,120	James Griffioen, Remote Memory Backing Storage for Distributed Virtual Memory Operating Systems, PhD (1992), available at
	http://protocols.netlab.uky.edu/~griff/papers/phd_thesis ("Griffioen") alone and in combination
	 deletion of aged records, one of ordinary skill in the art would have understood how to use the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion based on a system load in other hash table implementations such as Griffioen. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the Opportunistic Garbage Collection Articles' deletion decision procedure with Griffioen would be nothing more than the predictable use of prior art elements according to their established functions. By way of further example, one of ordinary skill in the art would have combined the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion and how many generations to scavenge as taught by the Opportunistic Garbage Collection Articles and with Griffioen and would have seen the benefits of doing so. One such benefit, for example, is preventing slowdown of the system. Additionally, it would have been obvious to one of ordinary skill in the art to modify the system disclosed in Griffioen to dynamically determine the maximum number of expired records to remove in the accessed linked list of records. It is a fundamental concept in computer science and the relevant art that any variable or parameter affecting any aspect of a system can be

Asserted Claims From	James Griffioen, Remote Memory Backing Storage for Distributed Virtual
U.S. Pat. No. 5,893,120	Memory Operating Systems, PhD (1992), available at
	http://protocols.netlab.uky.edu/~griff/papers/phd_thesis ("Griffioen")
	alone and in combination
	dynamically determined based on information available to the system. One of
	ordinary skill in the art would have been motivated to combine the system
	disclosed in Griffioen with the fundamental concept of dynamically
	determining the maximum number of expired records to remove in an accessed
	linked list of records to solve a number of potential problems. For example,
	the removal of expired records described in Griffioen can be burdensome on
	the system, adding to the system's load and slowing down the system's
	processing. Moreover, the removal could also force an interruption in real-
	time processing as the processing waits for the removal to complete.
	One of ordinary skill in the art would have known that dynamically
	determining the maximum number to remove would limit the burden on the
	system and bound the length of any real-time interruption to prevent delays in
	processing. Indeed, Nemes concedes that such dynamic determination was
	obvious when he states in the '120 patent that "[a] person skilled in the art will
	appreciate that the technique of removing all expired records while searching
	the linked list can be expanded to include techniques whereby not necessarily
	all expired records are removed, and that the decision regarding if and how
	many records to delete can be a dynamic one." '120 at 7:10-15.
	To the extent that dynamically determining a maximum number of expired
	records is not disclosed by Griffioen in combination with Dirks, Thatte, the
	'663 Patent, or the Opportunistic Garbage Collection References, it is
	disclosed by Linux 2.0.1, which describes dynamically determining maximum
	number of expired ones of the records to remove when the linked list is
	accessed. It would have been obvious to combine Linux 2.0.1 with Griffioen.
	For example, both Linux 2.0.1 and Griffioen describe systems and methods for
	performing data storage and retrieval using known programming techniques to

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120		James Griffioen, Remote Memory Backing Storage for Distributed Virtual Memory Operating Systems, PhD (1992), available at http://protocols.netlab.uky.edu/~griff/papers/phd_thesis ("Griffioen") alone and in combination
		yield a predictable result.
		When invoked, the function rt_cache_add automatically increments an integer variable rt_cache_size. <i>See</i> Linux 2.0.1, route.c at line 1359. When the function rt_cache_add removes an expired record, the function rt_cache_add decrements the variable rt_cache_size. <i>See</i> Linux 2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the number of records in the hash table (i.e., ip_rt_hash_table). Because the function rt_cache_size, the variable rt_cache_size is determined dynamically.
		Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1. The function rt_garbage_collect_1 loops through each of the linked lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at lines 1122-1138. In this way, the function rt_garbage_collect_1 accesses the linked list. When the function rt_garbage_collect_1 identifies a record that is expired, the function rt_garbage_collect_1 decrements the variable rt_cache_size and frees the record. See Linux 2.0.1, route.c at lines 1128-1135.
		Because all records in the linked list can be expired and all records in the hash table can be in the linked list, the variable rt_cache_size can represent a dynamically determined maximum number of expired ones of the records to remove when function rt_garbage_collect_1 accesses the linked list.

36

Asserted Claims From U.S. Pat. No. 5,893,120	James Griffioen, Remote Memory Backing Storage for Distributed Virtual Memory Operating Systems, PhD (1992), available at
	http://protocols.netlab.uky.edu/~griff/papers/phd_thesis ("Griffioen")
	alone and in combination
	Furthermore, the function rt_cache_add determines whether the number of records in the hash table exceeds a predetermined threshold RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_cache_add invokes a function rt_garbage_collect. <i>See</i> Linux 2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect invokes a function rt_garbage_collect_1. <i>See</i> Linux 2.0.1, route.c at line 1293. The function rt_garbage_collect invokes a function rt_garbage_collect_1. <i>See</i> Linux 2.0.1, route.c at line 1293. The function rt_garbage_collect invokes a function rt_garbage_collect_1. <i>See</i> Linux 2.0.1, route.c at line 1293.
	The function rt_garbage_collect_1 loops through each linked list in the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked list in the hash table, the function rt_garbage_collect_1 looks at each record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each record in a linked list, the function rt_garbage_collect_1 determines whether the record's last use time plus the record's expiration factor is later than the current time. See Linux 2.0.1, route.c at line 1122. If the record's last use time plus the record's expiration factor is less than the current time, the function rt_garbage_collect_1 removes the record from the linked list. See Linux 2.0.1, route.c at lines 1124-1130. The record's expiration factor is based on a variable expire and the record's reference count. See Linux 2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110. After looping through all of the linked lists in this manner, the function

Joint Invalidity Contentions & Production of Documents

Asserted Claims From	James Griffioen, Remote Memory Backing Storage for Distributed Virtual
U.S. Pat. No. 5,893,120	Memory Operating Systems, PhD (1992), available at
	http://protocols.netlab.uky.edu/~griff/papers/phd_thesis ("Griffioen")
	alone and in combination
	rt_garbage_collect_1 determines again whether the number of records
	in the hash table is less than the predetermined threshold
	RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
	of items in the hash table is still greater than the predetermined threshold
	RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
	the variable expire and loops through each of the linked lists in the hash
	table. See Linux 2.0.1, route.c at line 1135. In this way, the function
	rt_garbage_collect_1 can remove additional records from the linked
	lists in the hash table. The function rt_garbage_collect_1 repeats this
	process until the total number of records in the hash table is less than the
	predetermined threshold RT_CACHE_SIZE_MAX.
	Under Bedrock's proposed claim constructions, the records removed by the
	function rt_garbage_collect_1 are "expired" records. That is, the
	records removed by the function rt_garbage_collect_1 are data items which
	after a limited time or after the occurrence of some event become obsolete,
	such that their presence in the storage system is no longer needed or desired.
	The function rt cache, add only removes a record from a linked list when
	the record's last use time plus the fixed timeout value PT_CACUE_TIMEOUT
	is less than the current time and the record's reference count is zero. See Linux
	20.1 route c at line 1369. Thus, the maximum number of records that the
	function rt cache add can remove from a given linked list is limited to
	those records whose reference counts are zero
	In contrast, the maximum number of records that the function

Asserted Claims From U.S. Pat. No. 5,893,120		James Griffioen, <i>Remote Memory Backing Storage for Distributed Virtual</i> <i>Memory Operating Systems</i> , PhD (1992), available at http://protocols.netlab.uky.edu/~griff/papers/phd_thesis ("Griffioen") alone and in combination
		<pre>rt_garbage_collect_1 can remove from a given linked list is not limited to those records whose reference counts are zero. See Linux 2.0.1, route.c at line 1122. Rather, the function rt_garbage_collect_1 can remove records whose reference counts are zero and records whose reference counts are greater than zero.</pre> Consequently, the maximum number of records that the function rt_garbage_collect_1 can remove from a linked list is different than the maximum number of records that the function rt_cache_add can remove from a linked list.

39

Asserted Claims From		Douglas Comer and James Griffioen, A New Design for Distributed
U.S. Pat. No. 5,893,120		http://protocols.netlab.ukv.edu/~griff/napers/usenix90.pdf ("Comer")
		alone and in combination
1. An information storage and retrieval system, the system comprising:	5. An information storage and retrieval system, the system comprising:	To the extent the preamble is a limitation, Comer discloses an information storage and retrieval system.
		For example, the Remote Memory Model described in Comer "consists of several client machines, various server machines, one or more dedicated machines called remote memory servers, and a communication channel interconnecting all the machines." See p. 2. "[C]lient machines use the remote memory server for backing storage." See p. 3. The "remote memory server transfers data to and from heterogeneous clients in an architecture-independent manner." <i>See</i> Comer at 9; <i>see also</i> Comer at 1.
[1a] a linked list to store and provide access to records stored in a memory	[5a] a hashing means to provide access to records stored in a memory of the	Comer describes the use of a hash table with a double hashing algorithm to locate data. See, e.g., 10.
of the system, at least some of the records automatically expiring,	system and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring,	There are two well-known approaches to solving the problem of collisions within a hash table, which occur whenever two entries "hash" or are assigned to the same "bucket" within the hash table. The computer programmer may store the records external to the hash table—that is, using memory separate from the memory allocated to the hash table—or he may store the records internal to the hash table—that is, using memory that is allocated to other buckets within the hash table. Using external memory is termed "external chaining," while using internal memory is termed "open addressing." See "The Art of Computer Programming", Sorting and Searching, D.E. Knuth, Addison-Wesley Series in Computer Science and Information Processing, pp. 506-549, 1973. The applicant has conceded that both forms of collision resolution are known to those of ordinary skill in the art. See, e.g., '120 patent at 1:53-57 (describing linear probing a type of open addressing as being

Joint Invalidity Contentions & Production of Documents

Asserted Claims From	Douglas Comer and James Griffioen, A New Design for Distributed
U.S. Pat. No. 5,893,120	Systems: The Remote Memory Model (1990), available at
	http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf ("Comer")
	alone and in combination
	"often used" for "collision resolution"); 1:58-2:6 (citing to several prior art resources that describe external chaining as using linked lists). Indeed, Knuth recognizes that "[p]erhaps the most obvious way to solve this problem [of collision resolution] is to maintain M linked Lists, one for each possible hash code [i.e. external chaining]." Knuth at 513. <i>See also</i> Mark A. Weiss, Data Structures and Algorithm Analysis, p. 157, 1993 (" <i>Closed hashing</i> , also known as <i>open addressing</i> , is an alternative to resolving collisions with linked lists."). Double hashing is another form of open addressing. <i>See</i> Knuth at 519-524.
	It would have been obvious to one skilled in the art to apply the teachings in Comer to a hash table which resolves collisions using external chaining with linked lists. As detailed above, one of ordinary skill has a limited number of ways to resolve hash collisions: he may either store the entries within the hash table or outside the hash table, and both were well known to those of ordinary skill.
	The records in the system Comer discloses includes records, at least some of which automatically expire.
	For example, Comer describes a memory reclamation process through which the remote memory server maintains a timestamp for each process in the system in a separate process hash table. "When the server receives a page store request for a process, the server saves the process's timestamp with the page in the <i>data</i> hash table. Each time the server receives a terminate request, the server updates the timestamp in the process hash table, thereby invalidating all pages associated with the terminated process." P. 10.

2

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120		Douglas Comer and James Griffioen, A New Design for Distributed Systems: The Remote Memory Model (1990), available at http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf ("Comer") alone and in combination
[1b] a record search means utilizing a search key to access the linked list,	[5b] a record search means utilizing a search key to access a linked list of records having the same hash address,	Comer discloses a record search means utilizing a search key to access the chain of records. Comer also discloses a record search means utilizing a search key to access a chain of records beginning at the same hash address. For example, Comer explains that "[c]lient machines uniquely identify a page
		with an ordered triple consisting of a unique machine identifier, a process identifier, and a page identifier. The server applies a double hashing algorithm to the triple to locate the hash table entry that contains pointers to the data."
		As discussed in [1a/5a], it would have been obvious to one of ordinary skill in the art to use a hash table with external chaining instead of a hash table with open addressing/double hashing. As such, the search means utilizing the search key would be accessing a linked list of records beginning at the same hash address.
[1c] the record search means including a means for identifying and removing at least some of	[5c] the record search means including means for identifying and removing at least some expired ones	Comer discloses the record search means including means for identifying and removing at least some expired ones of the records from the chain of records when the chain is accessed.
the expired ones of the records from the linked list when the linked list is accessed, and	of the records from the linked list of records when the linked list is accessed, and	For example, the remote memory server "reclaims obsolete pages during later probes to the data hash table and with a garbage collection process that executes in the background." P. 10-11. "Each time a probe to the data hash table results in a collision, the server checks the timestamp on the page against the timestamp of the owner. If the timestamps differ, the server reclaims the page. Together, the garbage collection process and the lazy reclamation algorithm amortize the cost of reclaiming memory over time." P. 11.

Asserted Claims From U.S. Pat. No. 5,893,120		Douglas Comer and James Griffioen, A New Design for Distributed Systems: The Remote Memory Model (1990), available at http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf ("Comer") alone and in combination
		As discussed in [1a/5a], it would have been obvious to one of ordinary skill in the art to use a hash table with external chaining instead of a hash table with open addressing/double hashing. In such a system, the probe that resulted from a collision would occur on the linked list used to resolve the collision. As such, the expired records from the linked list would be removed when the algorithm processes the linked list in search of the desired record.
[1d] means, utilizing the record search means, for accessing the linked list and, at the same time, removing at least some of the expired ones of the records in the linked list.	[5d] mea[n]s, utilizing the record search means, for inserting, retrieving, and deleting records from the system and, at the same time, removing at least some expired ones of the records in the accessed linked list of records.	Comer discloses means, utilizing the record search means, for accessing the chain of records and, at the same time, removing at least some of the expired ones of the records in the chain. Comer also discloses means, utilizing the record search means, for inserting, retrieving, and deleting records from the system and, at the same time, removing at least some expired ones of the records in the accessed chain of records. For example, the remote memory server "reclaims obsolete pages during later probes to the data hash table." P. 10. "Each time a probe to the data hash table results in a collision, the server checks the timestamp on the page against the timestamp of the owner. If the timestamps differ, the server reclaims the page." P. 10. As discussed in [1a/5a], it would have been obvious to one of ordinary skill in the art to use a hash table with external chaining instead of a hash table with open addressing/double hashing. In such a system, the probe that resulted from a collision would occur on the linked list used to resolve the collision. As such, the expired records from the linked list would be removed when the algorithm processes the linked list in search of the desired record.

Asserted Claims From U.S. Pat. No. 5,893,120		Douglas Comer and James Griffioen, A New Design for Distributed Systems: The Remote Memory Model (1990), available at http://protocols.netlab.uky.edu/~griff/papers/useniy90.ndf ("Comer")
		alone and in combination
2. The information storage and retrieval system according to claim 1 further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records.	6. The information storage and retrieval system according to claim 5 further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records.	http://protocols.hetrab.uky.edu/~grif/papers/usenix90.pdf ("Comer") alone and in combination Comer combined with Dirks, Thatte, the '663 patent and/or the Opportunistic Garbage Collection Articles discloses an information storage and retrieval system further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records. Dirks discloses the management of memory in a computer system and more particularly to the allocation of address space in a virtual memory system, which dynamically determines how many records to sweep/remove upon each allocation. Disclosure of these claim elements in Dirks is clearly shown in Exhibit B-2, which is hereby incorporated by reference in its entirety. For example, as summarized in Dirks,
		each time a VSID is assigned from the free list to a new application or thread, a fixed number of entries in the page table are scanned to determine whether they have become inactive, by checking them against the VSIDs on the recycle list. Each entry which is identified as being inactive is removed from the page table. After all of the entries in the page table have been examined in this manner, the VSIDs in the recycle list can be transferred to the free list, since all of their associated page table entries will have been removed. This approach thereby guarantees that a predetermined number of VSIDs are always available in the free list without requiring a time-consuming scan of the complete page table at once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

Asserted Claims From	Douglas Comer and James Griffioen, A New Design for Distributed
U.S. Pat. No. 5,893,120	Systems: The Remote Memory Model (1990), available at
	nttp://protocols.netiab.uky.edu/~griii/papers/usenix90.pdf ("Comer")
	After [a] new VSID has been allocated, the system checks a flag RFLG to determine whether a recycle sweep is currently in progress (Step 20). If there is no sweep in progress, i.e. RFLG is not equal to one, a determination is made whether a sweep should be initiated. This is done by checking whether the inactive list is full, i.e. whether it contains x entries (Step 22). If the number of entries I on the inactive list is less than x, no further action is taken, and processing control returns to the operating system (Step 24). If, however, the inactive list is full at this time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are transferred to the recycle list, and an index n is reset to 1 (Step 28). The system then sweeps a predetermined number of page table entries PT _i on the page table, to detect whether any of them are inactive, i.e. their
	associated VSID is on the recycle list (Step 30). The predetermined number of entries that are swept is identified as k, where: $k = \frac{\text{total number of page table entries}}{\text{maximum number of active threads}}$ Id. at 8:12-30.
	Dirks discloses that any approach can be employed to determine the number of entries to be examined during each step of the sweeping process. <i>Id.</i> at 7:37-40. As stated in Dirks:
	Any other suitable approach can be employed to determine the number of entries to be examined during each step of the sweeping process. In this regard, it is not necessary that the number of examined entries be fixed for each step. Rather, it might vary from one step to the next. The only criterion

6

Asserted Claims From U.S. Pat. No. 5,893,120	Douglas Comer and James Griffioen, A New Design for Distributed Systems: The Remote Memory Model (1990), available at http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf ("Comer") alone and in combination
	is that the number of entries examined on each step be such that all entries in the page table are examined in a determinable amount of time or by the occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.
	<i>Id.</i> at 7:38-46. Thus, Dirks dynamically determines the maximum number of records to sweep/remove by calculating a value k . <i>Id.</i> at 7:15-46, 7:66-8:56.
	As both Comer and Dirks relate to deletion of aged records upon the allocation of a new incoming record, one of ordinary skill in the art would have understood how to use Dirks' dynamic decision making process of determining the maximum number of records to sweep/remove in other hash tables implementations such as Comer. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining Dirks' deletion decision procedure with Comer nothing more than the predictable use of prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have combined Dirks' dynamic determination of the suitable number of entries to examine during each step of the sweeping process with Comer and would have seen the benefits of doing so. One possible benefit, for example, is saving the

7

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120		Douglas Comer and James Griffioen , A New Design for Distributed Systems: The Remote Memory Model (1990), available at
		http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf ("Comer")
		alone and in combination
		system from performing sometimes time-consuming sweeps.`
		Alternatively, one of ordinary skill in the art would be motivated to, and would understand how to, combine the system disclosed in Comer with the means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records disclosed by Thatte. For example, Thatte discloses a system and method using hash tables and/or linked lists and further discloses means for dynamically determining the maximum number for the record search means to remove in the accessed linked list of records. The disclosure of these claim elements in Thatte is clearly shown in the chart of Thatte, which is hereby incorporated by reference in its entirety.
		Moreover, one of ordinary skill in the art would recognize that these combinations would improve the similar systems and methods in the same way. Additionally, Ass both Comer and Thatte teach a system of data storage and retrieval, one of ordinary skill in the art would recognize that the result of combining Comer with Thatte would be nothing more than the predictable use of prior art elements according to their established functions. The resulting combination would include the capability to determine the maximum number for the record search means to remove as taught by Thatte.
		Further, one of ordinary skill in the art would be motivated to combine Comer with Thatte and recognize the benefits of doing so. For example, the removal of expired records described in Comer can be burdensome on the system, adding to the system's load and slowing down the system's processing. One of ordinary skill in the art would recognize that combining Comer with the teachings of Thatte would solve this problem by dynamically determining how

8

Joint Invalidity Contentions & Production of Documents

Asserted C U.S. Pat. N	laims From o. 5,893,120	Douglas Comer and James Griffioen, A New Design for Distributed Systems: The Remote Memory Model (1990), available at http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf ("Comer") alone and in combination
		 many records to delete based on, among other things, the system load. Moreover, the '120 patent discloses that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine Comer with Thatte. Alternatively, it would also be obvious to combine Comer with the '663 patent. Disclosure of these claim elements in the '663 patent is clearly shown in the chart of the '663 patent, which is hereby incorporated by reference in its entirety. For example, as summarized in the '663 patent: during normal times when the load on the storage system is not excessive, a non-contaminating but slow deletion of records is used. This slow, non-contaminating deletion involves closing the collision-resolution chain of locations by moving a record from a later position in the chain into the position of the record to be deleted. This leaves no deleted record locations in the storage space to slow down future searches. U.S. Patent 4,996,663 to Nemes at 2:24-34 ("The '663 patent"). In times of heavy use, when deletions must be done rapidly and no time is available for decontamination, the record is simply marked as "deleted" and left in place. Later non-contaminating probes in the vicinity of such deleted record locations automatically remove the contaminating deleted record locations

9

Joint Invalidity Contentions & Production of Documents

Asserted Cla U.S. Pat. No.	ims From . 5,893,120	Douglas Comer and James Griffioen, A New Design for Distributed Systems: The Remote Memory Model (1990), available at http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf ("Comer") alone and in combination
		 moving records in the chain as described above. <i>Id.</i> at 2:35-41. This hybrid hashing technique has the decided advantage of automatically eliminating contamination caused by the fast-secure deletion procedure when the slower, non-contaminating deletion is used when the load on the system is at lower levels. <i>Id.</i> at 2:42-46. This hybrid deletion is shown in Figure 5.

10

Asserted Claims From U.S. Pat. No. 5,893,120	Douglas Comer and James Griffioen, A New Design for Distributed Systems: The Remote Memory Model (1990), available at http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf ("Comer") alone and in combination
	FIG. 5 HYBRID DELETION VES START VES

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	Douglas Comer and James Griffioen , A New Design for Distributed Systems: The Remote Memory Model (1990), available at
	http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf ("Comer")
	alone and in combination
	slow-non-contaminating delete 53 is used. <i>Id.</i> The fast-secure delete 52 does not actually delete records, rather it marks records as deleted. <i>Id.</i> at 8:1-33, Figure 7. These records are then actually deleted by a subsequent slow-non-contaminating delete 53. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
	Thus, the hybrid deletion procedure in the '663 patent dynamically determines a maximum number of records to remove. <i>See id.</i> at 6:40-64, Figure 5. If the fast-secure delete 52 is used, then maximum number of records is zero because records are not deleted they are only marked. <i>Id.</i> at 8:1-33, Figure 7. If the slow-non-contaminating delete 53 is used, then the maximum number of records to remove is all of the contaminated records in the bucket. <i>Id.</i> at 6:65- 7:68, Figures 6, 6A, 6B.
	As both Comer and the '663 patent relate to deletion of records from hash tables using external chaining, one of ordinary skill in the art would understood how to use the '663 patent's dynamic decision on whether to perform a deletion based on a systems load in other hash table implementations such as that described in Comer. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the '663 patent's deletion decision procedure with Comer would be nothing more than the predictable use of prior art elements according to their

Asserted Claims From U.S. Pat. No. 5,893,120	Douglas Comer and James Griffioen, A New Design for Distributed Systems: The Remote Memory Model (1990), available at http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf ("Comer") alone and in combination
	established functions.
	By way of further example, one of ordinary skill in the art would have combined the '663 patent's dynamic decision on whether to perform a deletion based on a systems load as taught by the '663 patent and with Comer and would have seen the benefits of doing so. One such benefit, for example, is that the system would avoid performing deletions when the system load exceeded a threshold.
	Alternatively, it would also be obvious to combine Comer with the Opportunistic Garbage Collection Articles.
	The Opportunistic Garbage Collection Articles disclose a generational based garbage collection which dynamically determines how much garbage to collect. <i>See generally</i> , Paul R. Wilson and Thomas G. Moher, <i>Design of the Opportunistic Garbage Collector</i> , OOPSLA '89 Proceedings, October 1-6, 1989; Paul R. Wilson, <i>Opportunistic Garbage Collection</i> , ACM SIGPLAN Notices, Vol. 23, No. 12, December 1988.
	For example, the Opportunistic Garbage Collection Articles disclose in part:
	When a significant pause has been detected, a decision procedure is invoked to decide whether to garbage collect, and how many generations to scavenge. The fuller a generation is, the more likely it is to be scavenged; also, the longer the pause that has been detected, the larger the scope of the garbage collection is likely to be. <i>Design of the Opportunistic Garbage</i> <i>Collector</i> at 32.

Asserted Claims From U.S. Pat. No. 5,893,120	Douglas Comer and James Griffioen, A New Design for Distributed Systems: The Remote Memory Model (1990), available at http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf ("Comer") alone and in combination
	Every time a user-input routine is invoked, a decision routine can decide whether to garbage collect. As long as the decision routine takes no more than a few milliseconds to execute, it should not interfere with responsiveness. Since it is only invoked at these times, it does not incur a continual run-time overhead. <i>Opportunistic Garbage Collection</i> at 100.
	This decision routine should take several things into account: 1) the volume of data allocated since the last scavenge, 2) how long it has been since the user has had an opportunity to interact, and 3) the height of the stack relative to its average height at reads since the last scavenge. If the product of the allocation and the compute time is high, and if the stack is low, the scavenge favorability measure is high. If it is especially high, a multi-generation scavenge is in order. <i>Id.</i>
	If these heuristics fail and a scavenge is forced instead by the filling of a generation's space, it is likely to happen during a significant compute- bound pausethe one that has just allocated the data that forced the collection. When the opportunistic mechanism fails to find the end of a pause, it may still succeed by default, embedding a scavenge pause within a larger pause. <i>Design of the Opportunistic Garbage Collector</i> at 32.
	As both Comer and the Opportunistic Garbage Collection Articles relate to deletion of aged records, one of ordinary skill in the art would have understood how to use the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion based on a system load in other hash table implementations such as Comer. Moreover, one of ordinary skill in the art

Asserted Claims From U.S. Pat. No. 5,893,120	Douglas Comer and James Griffioen, A New Design for DistributedSystems: The Remote Memory Model (1990), available at
	http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf ("Comer")
	alone and in combination
	 would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the Opportunistic Garbage Collection Articles' deletion decision procedure with Comer would be nothing more than the predictable use of prior art elements according to their established functions. By way of further example, one of ordinary skill in the art would have combined the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion and how many generations to scavenge as taught by the Opportunistic Garbage Collection Articles and with Comer and would have seen the benefits of doing so. One such benefit, for example, is proventing allow of the avetameter.
	Additionally, it would have been obvious to one of ordinary skill in the art to modify the system disclosed in Comer to dynamically determine the maximum number of expired records to remove in the accessed linked list of records. It is a fundamental concept in computer science and the relevant art that any variable or parameter affecting any aspect of a system can be dynamically determined based on information available to the system. One of ordinary skill in the art would have been motivated to combine the system disclosed in Comer with the fundamental concept of dynamically determining the maximum number of expired records to remove in an accessed linked list of

Asserted Claims From	Douglas Comer and James Griffioen, A New Design for Distributed Systems: The Remote Memory Model (1990), systems at
0.5. 1 at. 110. 5,095,120	http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf ("Comer")
	alone and in combination
	records to solve a number of potential problems. For example, the removal of expired records described in Comer can be burdensome on the system, adding to the system's load and slowing down the system's processing. Moreover, the removal could also force an interruption in real-time processing as the processing waits for the removal to complete.
	One of ordinary skill in the art would have known that dynamically determining the maximum number to remove would limit the burden on the system and bound the length of any real-time interruption to prevent delays in processing. Indeed, Nemes concedes that such dynamic determination was obvious when he states in the '120 patent that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. To the extent that dynamically determining a maximum number of expired records is not disclosed by Comer in combination with Dirks, Thatte, the '663 Patent, or the Opportunistic Garbage Collection References, it is disclosed by Linux 2.0.1, which describes dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed. It would have been obvious to combine Linux 2.0.1 with Comer. For example, both Linux 2.0.1 and Comer describe systems and methods for performing data storage and retrieval using known programming techniques to yield a predictable result.
	When invoked, the function rt_cache_add automatically increments an integer variable rt_cache_size. <i>See</i> Linux 2.0.1, route.c at line 1359.

Joint Invalidity Contentions & Production of Documents

Asserted Claims From	Douglas Comer and James Griffioen, A New Design for Distributed
U.S. Pat. No. 5,893,120	Systems: The Remote Memory Model (1990), available at http://protocols.netlab.uky.edu/~griff/papers/useniy90.ndf ("Comer")
	alone and in combination
	When the function rt_cache_add removes an expired record, the function rt_cache_add decrements the variable rt_cache_size. <i>See</i> Linux 2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the number of records in the hash table (i.e., ip_rt_hash_table). Because the function rt_cache_add automatically increments and decrements the variable rt_cache_size is determined dynamically.
	Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1. The function rt_garbage_collect_1 loops through each of the linked lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at lines 1122-1138. In this way, the function rt_garbage_collect_1 accesses the linked list. When the function rt_garbage_collect_1 identifies a record that is expired, the function rt_garbage_collect_1 decrements the variable rt_cache_size and frees the record. See Linux 2.0.1, route.c at lines 1128-1135.
	Because all records in the linked list can be expired and all records in the hash table can be in the linked list, the variable rt_cache_size can represent a dynamically determined maximum number of expired ones of the records to remove when function rt_garbage_collect_1 accesses the linked list.
	Furthermore, the function rt_cache_add determines whether the number of records in the hash table exceeds a predetermined threshold RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds

17

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at
http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf ("Comer")
alone and in combination
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. <i>See</i> Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. <i>See</i> Linux 2.0.1, route.c at line 1293.
The function rt_garbage_collect_1 loops through each linked list in the hash table. <i>See</i> Linux 2.0.1, route.c at lines 1116-1132. For each linked list in the hash table, the function rt_garbage_collect_1 looks at each record in the linked list. <i>See</i> Linux 2.0.1, route.c at lines 1120-1131. For each record in a linked list, the function rt_garbage_collect_1 determines whether the record's last use time plus the record's expiration factor is later than the current time. <i>See</i> Linux 2.0.1, route.c at line 1122. If the record's last use time plus the record's expiration factor is less than the current time, the function rt_garbage_collect_1 removes the record from the linked list. <i>See</i> Linux 2.0.1, route.c at lines 1124-1130. The record's expiration factor is based on a variable expire and the record's reference count. <i>See</i> Linux 2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed timeout value RT_CACHE_TIMEOUT. <i>See</i> Linux 2.0.1, route.c at line 1110.
After looping through all of the linked lists in this manner, the function
in the head toble is loss than the predetermined threshold
III the hash table is less than the predetermined threshold
of items in the hash table is still greater than the predetermined threshold

Joint Invalidity Contentions & Production of Documents

Asserted Claims From	Douglas Comer and James Griffioen, A New Design for Distributed	
U.S. Pat. No. 5,895,120	Systems: The Remote Memory Model (1990), available at http://protocols.notlab.uky.odu/~griff/papors/usoniy00.ndf ("Comor")	
	alone and in combination	
	RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves the variable expire and loops through each of the linked lists in the hash table. <i>See</i> Linux 2.0.1, route.c at line 1135. In this way, the function rt_garbage_collect_1 can remove additional records from the linked lists in the hash table. The function rt_garbage_collect_1 repeats this process until the total number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX. Under Bedrock's proposed claim constructions, the records removed by the function rt_garbage_collect_1 are "expired" records. That is, the records removed by the function rt_garbage_collect_1 are data items which after a limited time or after the occurrence of some event become obsolete, such that their presence in the storage system is no longer needed or desired. The function rt_cache_add only removes a record from a linked list when the record's last use time plus the fixed timeout value RT_CACHE_TIMEOUT is less than the current time and the record's reference count is zero. <i>See</i> Linux 2.0.1, route.c at line 1369. Thus, the maximum number of records that the function rt_cache_add can remove from a given linked list is limited to those records whose reference counts are zero.	
	In contrast, the maximum number of records that the function rt_garbage_collect_1 can remove from a given linked list is not limited to those records whose reference counts are zero. <i>See</i> Linux 2.0.1, route.c at line 1122. Rather, the function rt_garbage_collect_1 can	
	remove records whose reference counts are zero and records whose reference	
Asserted Claims From		Douglas Comer and James Griffioen, A New Design for Distributed
--	--	---
U.S. Pat. No. 5,893,120		Systems: The Remote Memory Model (1990), available at http://protocols.potlob.uky.odu/.griff/papars/usopiy00.pdf ("Comor")
		alone and in combination
		counts are greater than zero.
		Consequently, the maximum number of records that the function rt_garbage_collect_1 can remove from a linked list is different than the maximum number of records that the function rt_cache_add can remove from a linked list.
3. A method for storing and retrieving information records using a linked list to store and provide access	7. A method for storing and retrieving information records using a hashing technique to provide access	To the extent the preamble is a limitation, Comer also discloses method for storing and retrieving information records using a hashing technique, at least some of the records automatically expiring.
to the records, at least some of the records automatically expiring, the method comprising the steps of:	to the records and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring, the method comprising the steps of:	For example, the Remote Memory Model described in Comer "consists of several client machines, various server machines, one or more dedicated machines called remote memory servers, and a communication channel interconnecting all the machines." See Comer at 2. "[C]lient machines use the remote memory server for backing storage." See Comer at 3. The "remote memory server transfers data to and from heterogeneous clients in an architecture-independent manner." See Comer at 9; <i>see also</i> Comer at 1.
		Comer describes a method of using of a hash table with a double hashing algorithm to locate data on the remote memory server. See, e.g., p. 10. There are two well-known approaches to solving the problem of collisions within a hash table, which occur whenever two entries "hash" or are assigned to the same "bucket" within the hash table. The computer programmer may store the records external to the hash table—that is, using memory separate from the memory allocated to the hash table—or he may store the records internal to the hash table—that is, using memory that is allocated to other buckets within the

Joint Invalidity Contentions & Production of Documents

Case No. 6:09-CV-549-LED

Asserted Claims From	Douglas Comer and James Griffioen, A New Design for Distributed
U.S. Pat. No. 5,893,120	Systems: The Remote Memory Model (1990), available at
	http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf ("Comer")
	alone and in combination
	hash table. Using external memory is termed "external chaining," while using
	internal memory is termed "open addressing." See "The Art of Computer
	Programming", Sorting and Searching, D.E. Knuth, Addison-Wesley Series in
	Computer Science and Information Processing, pp. 506-549, 1973. The
	applicant has conceded that both forms of collision resolution are known to
	linear probing a type of open addressing as being "often used" for
	"collision resolution"): 1:58 2:6 (citing to several prior art resources that
	describe external chaining as using linked lists) Indeed Knuth recognizes that
	"[n]erhans the most obvious way to solve this problem [of collision resolution]
	is to maintain M linked Lists, one for each possible hash code [i.e. external
	chaining]." Knuth at 513. <i>See also</i> Mark A. Weiss. Data Structures and
	Algorithm Analysis, p. 157, 1993 ("Closed hashing, also known as open
	<i>addressing</i> , is an alternative to resolving collisions with linked lists.").
	Double hashing is another form of open addressing. See Knuth at 519-524.
	It would have been obvious to one skilled in the art to apply the teachings in
	Comer to a hash table which resolves collisions using external chaining with
	linked lists. As detailed above, one of ordinary skill has a limited number of
	ways of resolving hash collisions: he may either store the entries within the
	hash table or outside the hash table, and both were well known to those of
	ordinary skill.
	The records in the system Comer discloses includes records, at least some of
	which automatically expire
	For example, Comer describes a memory reclamation process through which

Asserted Claims From		Douglas Comer and James Griffioen, A New Design for Distributed
U.S. Pat. No. 5,893,120		Systems: The Remote Memory Model (1990), available at
		http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf ("Comer")
		alone and in combination
		the remote memory server maintains a timestamp for each process in the system in a separate process hash table. "When the server receives a page store request for a process, the server saves the process's timestamp with the page in the <i>data</i> hash table. Each time the server receives a terminate request, the server updates the timestamp in the process hash table, thereby invalidating all pages associated with the terminated process." P. 10.
[3a] accessing the linked list of records,	[7a] accessing a linked list of records having same hash address,	Comer discloses accessing the chain of records. Comer also discloses accessing a chain of records beginning at the same hash address. For example, Comer describes a method of using of a hash table with a double hashing algorithm to locate data on the remote memory server. See, e.g., p. 10. As discussed in [3/7], it would have been obvious to one of ordinary skill in the art to use a hash table with external chaining instead of a hash table with open addressing/double hashing. In such a system, the probe that resulted from a collision would occur on the linked list used to resolve the collision. As such, the expired records from the linked list would be removed when the algorithm processes the linked list in search of the desired record.

Asserted Claims From U.S. Pat. No. 5,893,120		Douglas Comer and James Griffioen , A New Design for Distributed Systems: The Remote Memory Model (1990), available at
		http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf ("Comer") alone and in combination
[3b] identifying at least some of the automatically expired ones of the records,	[7b] identifying at least some of the automatically expired ones of the records,	Comer discloses identifying at least some of the automatically expired ones of the records.
and		For example, the remote memory server "reclaims obsolete pages during later probes to the data hash table." P. 10. "Each time a probe to the data hash table results in a collision, the server checks the timestamp on the page against the timestamp of the owner. If the timestamps differ, the server reclaims the page." P. 10.
[3c] removing at least some of the automatically expired records from the linked list when the linked list is accessed.	[7c] removing at least some of the automatically expired records from the linked list when the linked list is accessed, and	Comer discloses the removing at least some of the automatically expired records from the chain of records when the chain of records is accessed. For example, the remote memory server "reclaims obsolete pages during later probes to the data hash table and with a garbage collection process that executes in the background." P. 10-11. "Each time a probe to the data hash table results in a collision, the server checks the timestamp on the page against the timestamp of the owner. If the timestamps differ, the server reclaims the page. Together, the garbage collection process and the lazy reclamation algorithm amortize the cost of reclaiming memory over time." P. 11.
		As discussed in [3/7], it would have been obvious to one of ordinary skill in the art to use a hash table with external chaining instead of a hash table with open addressing/double hashing. In such a system, the probe that resulted from a collision would occur on the linked list used to resolve the collision. As such, the expired records from the linked list would be removed when the algorithm processes the linked list in search of the desired record.

Asserted Claims From U.S. Pat. No. 5,893,120		Douglas Comer and James Griffioen, A New Design for Distributed Systems: The Remote Memory Model (1990), available at http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf ("Comer") alone and in combination
	[7d] inserting, retrieving or deleting one of the records from the system following the step of removing.	Comer discloses inserting, retrieving or deleting one of the records from the system following the step of removing.For example, Comer states that "[t]he server reclaims obsolete pages during later probes to the data hash table" P. 10.
4. The method according to claim 3 further including the step of dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed.	8. The method according to claim 7 further including the step of dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed.	Comer combined with Dirks, Thatte, the '663 patent and/or the Opportunistic Garbage Collection Articles discloses dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed. Dirks discloses the management of memory in a computer system and more particularly to the allocation of address space in a virtual memory system, which dynamically determines how many records to sweep/remove upon each allocation. Disclosure of these claim elements in Dirks is clearly shown in Exhibit B-2, which is hereby incorporated by reference in its entirety. For example, as summarized in Dirks, each time a VSID is assigned from the free list to a new application or thread, a fixed number of entries in the page table are scanned to determine whether they have become inactive, by checking them against the VSIDs on the recycle list. Each entry which is identified as being inactive is removed from the page table. After all of the entries in the page table have been examined in this manner, the VSIDs in the recycle list can be transferred to the free list, since all of their associated page table entries

Asserted Claims From	Douglas Comer and James Griffioen, A New Design for Distributed
U.S. Pat. No. 5,893,120	Systems: The Remote Memory Model (1990), available at
	http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf ("Comer")
	alone and in combination
	will have been removed. This approach thereby guarantees that a predetermined number of VSIDs are always available in the free list without requiring a time-consuming scan of the complete page table at once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.
	After [a] new VSID has been allocated, the system checks a flag RFLG to determine whether a recycle sweep is currently in progress (Step 20). If there is no sweep in progress, i.e. RFLG is not equal to one, a determination is made whether a sweep should be initiated. This is done by checking whether the inactive list is full, i.e. whether it contains x entries (Step 22). If the number of entries I on the inactive list is less than x, no further action is taken, and processing control returns to the operating system (Step 24). If, however, the inactive list is full at this time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are transferred to the recycle list, and an index n is reset to 1 (Step 28). The system then sweeps a predetermined number of page table entries PT _i on the page table, to detect whether any of them are inactive, i.e. their associated VSID is on the recycle list (Step 30). The predetermined number of entries that are swept is identified as k , where:
	$k = \frac{\text{total number of page table entries}}{\text{maximum number of active threads}}$ <i>Id.</i> at 8:12-30.
	Dirks discloses that any approach can be employed to determine the number of entries to be examined during each step of the sweeping process. <i>Id.</i> at 7:37-40. As stated in Dirks:

Asserted Claims From U.S. Pat. No. 5,893,120	Douglas Comer and James Griffioen, A New Design for Distributed Systems: The Remote Memory Model (1990), available at http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf ("Comer") alone and in combination
	Any other suitable approach can be employed to determine the number of entries to be examined during each step of the sweeping process. In this regard, it is not necessary that the number of examined entries be fixed for each step. Rather, it might vary from one step to the next. The only criterion is that the number of entries examined on each step be such that all entries in the page table are examined in a determinable amount of time or by the occurrence of a certain event, e.g. by the time the list of free VSIDs is empty. <i>Id.</i> at 7:38-46. Thus, Dirks dynamically determines the maximum number of records to sweep/remove by calculating a value <i>k. Id.</i> at 7:15-46, 7:66-8:56.As both Comer and Dirks relate to deletion of aged records upon the allocation of a new incoming record, one of ordinary skill in the art would have understood how to use Dirks' dynamic decision making process of determining the maximum number of records to sweep/remove in other hash tables implementations such as Comer. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the
	appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining Dirks' deletion decision procedure with Comer nothing more than the predictable use of prior art elements according to their established functions.

Asserted Claims From U.S. Pat. No. 5,893,120	Douglas Comer and James Griffioen, A New Design for Distributed Systems: The Remote Memory Model (1990), available at http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf ("Comer")
	alone and in combination
	By way of further example, one of ordinary skill in the art would have combined Dirks' dynamic determination of the suitable number of entries to examine during each step of the sweeping process with Comer and would have seen the benefits of doing so. One possible benefit, for example, is saving the system from performing sometimes time-consuming sweeps.`
	Alternatively, one of ordinary skill in the art would be motivated to, and would understand how to, combine the system disclosed in Comer with the means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records disclosed by Thatte. For example, Thatte discloses a system and method using hash tables and/or linked lists and further discloses means for dynamically determining the maximum number for the record search means to remove in the accessed linked list of records. The disclosure of these claim elements in Thatte is clearly shown in the chart of Thatte, which is hereby incorporated by reference in its entirety.
	Moreover, one of ordinary skill in the art would recognize that these combinations would improve the similar systems and methods in the same way. Additionally, Ass both Comer and Thatte teach a system of data storage and retrieval, one of ordinary skill in the art would recognize that the result of combining Comer with Thatte would be nothing more than the predictable use of prior art elements according to their established functions. The resulting combination would include the capability to determine the maximum number for the record search means to remove as taught by Thatte.
	Further, one of ordinary skill in the art would be motivated to combine Comer

Asserted Claims From	Douglas Comer and James Griffioen, A New Design for Distributed
U.S. Pat. No. 5,893,120	Systems: The Remote Memory Model (1990), available at
	http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf ("Comer")
	alone and in combination
	with Thatte and recognize the benefits of doing so. For example, the removal
	of expired records described in Comer can be burdensome on the system,
	adding to the system's load and slowing down the system's processing. One of
	ordinary skill in the art would recognize that combining Comer with the
	teachings of Thatte would solve this problem by dynamically determining how
	Moreover, the 120 retert discloses that "[a] renear drilled in the art will
	appreciate that the technique of removing all expired records while searching
	the linked list can be expanded to include techniques whereby not necessarily
	all expired records are removed, and that the decision regarding if and how
	many records to delete can be a dynamic one " '120 at 7.10-15. Thus, the '120
	patent provides motivations to combine Comer with Thatte.
	Alternatively, it would also be obvious to combine Comer with the '663 patent.
	Disclosure of these claim elements in the '663 patent is clearly shown in the
	chart of the '663 patent, which is hereby incorporated by reference in its
	entirety. For example, as summarized in the '663 patent:
	during normal times when the load on the storage system is not
	excessive, a non-contaminating but slow deletion of records is
	used. This slow, non-contaminating deletion involves closing
	the collision-resolution chain of locations by moving a record
	to be deleted. This leaves no deleted record locations in the
	storage space to slow down future searches U.S. Patent
	4.996.663 to Nemes at $2.24.34$ ("The '663 natent")
	1,770,000 to remes at 2.24 54 (The 005 patent).

28

Asserted Claims From U.S. Pat. No. 5,893,12	Douglas Comer and James Griffioen, A New Design for Distributed Systems: The Remote Memory Model (1990), available at http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf ("Comer") alone and in combination
	In times of heavy use, when deletions must be done rapidly and no time is available for decontamination, the record is simply marked as "deleted" and left in place. Later non-contaminating probes in the vicinity of such deleted record locations automatically remove the contaminating deleted records by moving records in the chain as described above. <i>Id.</i> at 2:35-41. This hybrid hashing technique has the decided advantage of automatically eliminating contamination caused by the fast- secure deletion procedure when the slower, non-contaminating deletion is used when the load on the system is at lower levels. <i>Id.</i> at 2:42-46. This hybrid deletion is shown in Figure 5.

Asserted Claims From U.S. Pat. No. 5,893,120	Douglas Comer and James Griffioen, A New Design for Distributed Systems: The Remote Memory Model (1990), available at http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf ("Comer") alone and in combination
	FIG. 5 HYBRID DELETION VES START VES

Asserted Claims From	Douglas Comer and James Griffioen, A New Design for Distributed
U.S. Pat. No. 5,895,120	Systems: The Remote Memory Model (1990), available at http://protocols.potlob.ukv.odu/.griff/popors/usopiy00.pdf ("Comor")
	alone and in combination
	slow-non-contaminating delete 53 is used. <i>Id.</i> The fast-secure delete 52 does not actually delete records, rather it marks records as deleted. <i>Id.</i> at 8:1-33, Figure 7. These records are then actually deleted by a subsequent slow-non-contaminating delete 53. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
	Thus, the hybrid deletion procedure in the '663 patent dynamically determines a maximum number of records to remove. <i>See id.</i> at 6:40-64, Figure 5. If the fast-secure delete 52 is used, then maximum number of records is zero because records are not deleted they are only marked. <i>Id.</i> at 8:1-33, Figure 7. If the slow-non-contaminating delete 53 is used, then the maximum number of records to remove is all of the contaminated records in the bucket. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
	As both Comer and the '663 patent relate to deletion of records from hash tables using external chaining, one of ordinary skill in the art would understood how to use the '663 patent's dynamic decision on whether to perform a deletion based on a systems load in other hash table implementations such as that described in Comer. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the '663 patent's deletion decision procedure with Comer would be nothing more than the predictable use of prior art elements according to their

Joint Invalidity Contentions & Production of Documents

Case No. 6:09-CV-549-LED

Asserted Claims F U.S. Pat. No. 5,893	FromDouglas Comer and James Griffioen, A New Design for Distributed5,120Systems: The Remote Memory Model (1990), available at http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf ("Comer") alone and in combination
	established functions. By way of further example, one of ordinary skill in the art would have combined the '663 patent's dynamic decision on whether to perform a deletion
	based on a systems load as taught by the '663 patent and with Comer and would have seen the benefits of doing so. One such benefit, for example, is that the system would avoid performing deletions when the system load exceeded a threshold.
	Alternatively, it would also be obvious to combine Comer with the Opportunistic Garbage Collection Articles.
	The Opportunistic Garbage Collection Articles disclose a generational based garbage collection which dynamically determines how much garbage to collect. <i>See generally</i> , Paul R. Wilson and Thomas G. Moher, <i>Design of the Opportunistic Garbage Collector</i> , OOPSLA '89 Proceedings, October 1-6, 1989; Paul R. Wilson, <i>Opportunistic Garbage Collection</i> , ACM SIGPLAN Notices, Vol. 23, No. 12, December 1988.
	For example, the Opportunistic Garbage Collection Articles disclose in part:
	When a significant pause has been detected, a decision procedure is invoked to decide whether to garbage collect, and how many generations to scavenge. The fuller a generation is, the more likely it is to be scavenged; also, the longer the pause that has been detected, the larger the scope of the garbage collection is likely to be. <i>Design of the Opportunistic Garbage</i> <i>Collector</i> at 32.

Asserted Claims From U.S. Pat. No. 5,893,120	Douglas Comer and James Griffioen, A New Design for Distributed Systems: The Remote Memory Model (1990), available at http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf ("Comer") alone and in combination
	Every time a user-input routine is invoked, a decision routine can decide whether to garbage collect. As long as the decision routine takes no more than a few milliseconds to execute, it should not interfere with responsiveness. Since it is only invoked at these times, it does not incur a continual run-time overhead. <i>Opportunistic Garbage Collection</i> at 100.
	This decision routine should take several things into account: 1) the volume of data allocated since the last scavenge, 2) how long it has been since the user has had an opportunity to interact, and 3) the height of the stack relative to its average height at reads since the last scavenge. If the product of the allocation and the compute time is high, and if the stack is low, the scavenge favorability measure is high. If it is especially high, a multi-generation scavenge is in order. <i>Id</i> .
	If these heuristics fail and a scavenge is forced instead by the filling of a generation's space, it is likely to happen during a significant compute- bound pausethe one that has just allocated the data that forced the collection. When the opportunistic mechanism fails to find the end of a pause, it may still succeed by default, embedding a scavenge pause within a larger pause. <i>Design of the Opportunistic Garbage Collector</i> at 32.
	As both Comer and the Opportunistic Garbage Collection Articles relate to deletion of aged records, one of ordinary skill in the art would have understood how to use the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion based on a system load in other hash table implementations such as Comer. Moreover, one of ordinary skill in the art

Asserted Claims From U.S. Pat. No. 5,893,120	Douglas Comer and James Griffioen, A New Design for Distributed Systems: The Remote Memory Model (1990), available at
	http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf ("Comer") alone and in combination
	 would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the Opportunistic Garbage Collection Articles' deletion decision procedure with Comer would be nothing more than the predictable use of prior art elements according to their established functions. By way of further example, one of ordinary skill in the art would have combined the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion and how many generations to scavenge as taught by the Opportunistic Garbage Collection Articles and with Comer and would have seen the benefits of doing so. One such benefit, for example, is preventing slowdown of the system.
	Additionally, it would have been obvious to one of ordinary skill in the art to modify the system disclosed in Comer to dynamically determine the maximum number of expired records to remove in the accessed linked list of records. It is a fundamental concept in computer science and the relevant art that any variable or parameter affecting any aspect of a system can be dynamically determined based on information available to the system. One of ordinary skill in the art would have been motivated to combine the system disclosed in Comer with the fundamental concept of dynamically determining the maximum number of expired records to remove in an accessed linked list of

Asserted Claims From U.S. Pat. No. 5,893,120	Douglas Comer and James Griffioen , A New Design for Distributed Systems: The Remote Memory Model (1990), available at
	http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf ("Comer") alone and in combination
	records to solve a number of potential problems. For example, the removal of expired records described in Comer can be burdensome on the system, adding to the system's load and slowing down the system's processing. Moreover, the removal could also force an interruption in real-time processing as the processing waits for the removal to complete.
	One of ordinary skill in the art would have known that dynamically determining the maximum number to remove would limit the burden on the system and bound the length of any real-time interruption to prevent delays in processing. Indeed, Nemes concedes that such dynamic determination was obvious when he states in the '120 patent that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. To the extent that dynamically determining a maximum number of expired records is not disclosed by Comer in combination with Dirks, Thatte, the '663 Patent, or the Opportunistic Garbage Collection References, it is disclosed by Linux 2.0.1, which describes dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed. It would have been obvious to combine Linux 2.0.1 with Comer. For example, both Linux 2.0.1 and Comer describe systems and methods for performing data storage and retrieval using known programming techniques to yield a predictable result.
	When invoked, the function rt_cache_add automatically increments an integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.

Asserted Claims From	Douglas Comer and James Griffioen, A New Design for Distributed
U.S. Pat. No. 5,893,120	Systems: The Remote Memory Model (1990), available at http://protocols.netlab.uky.edu/~griff/papers/useniy00.ndf ("Comer")
	alone and in combination
	When the function rt_cache_add removes an expired record, the function rt_cache_add decrements the variable rt_cache_size. <i>See</i> Linux 2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the number of records in the hash table (i.e., ip_rt_hash_table). Because the function rt_cache_add automatically increments and decrements the variable rt_cache_size is determined dynamically.
	Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1. The function rt_garbage_collect_1 loops through each of the linked lists in the ip_rt_hash_table global variable. <i>See</i> Linux 2.0.1, route.c at lines 1122-1138. In this way, the function rt_garbage_collect_1 accesses the linked list. When the function rt_garbage_collect_1 identifies a record that is expired, the function rt_garbage_collect_1 decrements the variable rt_cache_size and frees the record. <i>See</i> Linux 2.0.1, route.c at lines 1128-1135.
	Because all records in the linked list can be expired and all records in the hash table can be in the linked list, the variable rt_cache_size can represent a dynamically determined maximum number of expired ones of the records to remove when function rt_garbage_collect_1 accesses the linked list.
	Furthermore, the function rt_cache_add determines whether the number of records in the hash table exceeds a predetermined threshold RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds

Asserted Claims From	Douglas Comer and James Griffioen , A New Design for Distributed Systems: The Remote Memory Model (1990), available at
0.5. I al. 110. 5,675,120	http://protocols.netlab.uky.edu/~griff/naners/useniy90.ndf ("Comer")
	alone and in combination
	the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_cache_add invokes a function rt_garbage_collect. See Linux 2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293. The function rt_garbage_collect invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.
	The function rt_garbage_collect_1 loops through each linked list in the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked list in the hash table, the function rt_garbage_collect_1 looks at each record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each record in a linked list, the function rt_garbage_collect_1 determines whether the record's last use time plus the record's expiration factor is later than the current time. See Linux 2.0.1, route.c at line 1122. If the record's last use time plus the record's expiration factor is less than the current time, the function rt_garbage_collect_1 removes the record from the linked list. See Linux 2.0.1, route.c at lines 1124-1130. The record's expiration factor is based on a variable expire and the record's reference count. See Linux 2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.
	After looping through all of the linked lists in this manner, the function rt_garbage_collect_1 determines again whether the number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX. <i>See</i> Linux 2.0.1, route.c at line 1133. If the number of items in the hash table is still greater than the predetermined threshold

Joint Invalidity Contentions & Production of Documents

Case No. 6:09-CV-549-LED

Asserted Claims From U.S. Pat. No. 5 893 120	Douglas Comer and James Griffioen, A New Design for Distributed Systems: The Remote Memory Model (1990) available at
0.5.1 at. 110. 5,075,120	http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf ("Comer")
	alone and in combination
	<pre>RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves the variable expire and loops through each of the linked lists in the hash table. See Linux 2.0.1, route.c at line 1135. In this way, the function rt_garbage_collect_1 can remove additional records from the linked lists in the hash table. The function rt_garbage_collect_1 repeats this process until the total number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX.</pre> Under Bedrock's proposed claim constructions, the records removed by the function rt_garbage_collect_1 are "expired" records. That is, the records removed by the function rt_garbage_collect_1 are data items which after a limited time or after the occurrence of some event become obsolete, such that their presence in the storage system is no longer needed or desired. The function rt_cache_add only removes a record from a linked list when the record's last use time plus the fixed timeout value RT_CACHE_TIMEOUT is less than the current time and the record's reference count is zero. See Linux 2.0.1, route.c at line 1369. Thus, the maximum number of records that the
	function rt_cache_add can remove from a given linked list is limited to those records whose reference counts are zero.
	In contrast, the maximum number of records that the function
	rt_garbage_collect_1 can remove from a given linked list is not
	Inited to those records whose reference counts are zero. See Linux 2.0.1, route.c at line 1122. Rather, the function rt_garbage_collect_1 can remove records whose reference counts are zero and records whose reference.

Asserted Cla U.S. Pat. No.	ims From 5,893,120	Douglas Comer and James Griffioen, A New Design for Distributed Systems: The Remote Memory Model (1990), available at http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf ("Comer") alone and in combination
		counts are greater than zero. Consequently, the maximum number of records that the function rt_garbage_collect_1 can remove from a linked list is different than the maximum number of records that the function rt_cache_add can remove from a linked list.

Asserted Claims From U.S. Pat. No. 5,893,120		Roger Sessions, <i>Reusable Data Structures for C</i> (Prentice-Hall, Inc. 1989) ("Sessions") alone and in combination with Kit Lester, <i>A Practical</i>
		Approach to Data Structures: Related Algorithms in Pascal with Applications (Ellis Horwood Ltd. 1990) ("Lester") and others
1. An information storage and retrieval system, the system comprising:	5. An information storage and retrieval system, the system comprising:	To the extent the preamble is a limitation, Sessions discloses an information storage and retrieval system.
		For example, Sessions discloses that "[o]ur newly completed linked list package can now form the basis for a cache." (Sessions at 29). Thus, Sessions inherently discloses an information storage and retrieval system. (<i>See id.</i>)
[1a] a linked list to store and provide access to records stored in a memory	[5a] a hashing means to provide access to records stored in a memory of the	Sessions discloses a linked list to store and provide access to records stored in a memory of the system, at least some of the records automatically expiring.
of the system, at least some of the records automatically expiring,	system and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring,	To the extent that Bedrock argues that Sessions does not anticipate this claim element, it would have been obvious to one of ordinary skill in the art to combine Sessions with Lester. For example, Lester discloses hash tables where "the hash table entries could be pointer-type values, or array indexes, or some encoding of array indexes." (Lester at 153). Lester further discloses an external chaining technique to store the records with same hash address by stating "[e]ach hash-table element that doesn't yet correspond to any data would contain nil , otherwise it would point either • to a keyed table or to a keyed linked-list of those data-items whose keys all hash to that place in the table" (<i>See id.</i>). Lester also states that "I usually use a keyed linked-list: it is simple to program, and if any of the lists get long it means that I should have made the hash-array bigger, to get more lists, and therefore shorter lists." (Lester at 154). Thus, Sessions and Lester show that one of ordinary skill in the art understood how to utilize a hashing means to provide access to records stored in a memory of the system and using an external chaining technique to store the records with same hash address, and would recognize that it would improve

Joint Invalidity Contentions & Production of Documents

Case No. 6:09-CV-549-LED

Asserted Claims From U.S. Pat. No. 5,893,120		Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)("Sessions") alone and in combination with Kit Lester, A Practical Approach to Data Structures: Related Algorithms in Pascal with Applications (Ellis Horwood Ltd. 1990) ("Lester") and others
		similar systems and methods in the same way. Sessions also discloses that a "function ca_add() assumes that an item is not in the cache," and that "this function has three variable states 2. The cache is full and an item must be discarded. As already described, the tail item is always discarded." (Sessions at 29).
[1b] a record search means utilizing a search key to access the linked list,	[5b] a record search means utilizing a search key to access a linked list of records having the same hash address,	Sessions discloses a record search means utilizing a search key to access the linked list. For example, Sessions discloses that "[t]he next function, ca_check(), searches the cache for a particular item, returning a value of true or false depending on the search results. If the item is found, it becomes the most recently reference item and is promoted to the head of the list.

Asserted Claims From	Roger Sessions , <i>Reusable Data Structures for C</i> (Prentice-Hall, Inc. 1989)
U.S. Pat. No. 5,893,120	("Sessions") alone and in combination with Kit Lester, A Practical
	Approach to Data Structures: Related Algorithms in Pascal with
	Applications (Ellis Horwood Ltd. 1990) ("Lester") and others
	ca_cneck(lookior) /* See 11 Item is in cache */
	/* Return IROE OF FALSE
	struct itemtype *iookior;
	i
	struct itemtype lookat;
	cmpitem();
	11head();
	for (;;) {
	llretrieve (&lookat);
	if (cmpitem(lookfor, &lookat)) {
	lldelete()
	lladdhead(&lookat);
	return (1);
	}
	if (!llnext())
	return (0);
	}
	}
	(Sessions at 30).
	To the extent that Bedrock argues that Sessions does not anticipate this claim
	element, it would have been obvious to one of ordinary skill in the art to
	combine Sessions with Lester. For example, Lester discloses that "[t]he
	complier <i>should</i> include "garbage collection" in a program translated from a
	Pascal source that uses any pointer-types: when the program runs low on spare

3

Asserted Claims From		Roger Sessions, <i>Reusable Data Structures for C</i> (Prentice-Hall, Inc. 1989)
U.S. Pat. No. 5,893,120		("Sessions") alone and in combination with Kit Lester, A Practical
		Approach to Data Structures: Related Algorithms in Pascal with
		Applications (Ellis Horwood Ltd. 1990) ("Lester") and others
		memory the garbage collection should search for any nodes that no longer have
		pointers to them, and deallocate them, freeing up some spare." (Lester at 69).
		Therefore, Lester inherently discloses "accessing a linked list of records having
		the same hash address." (See id.) Thus, Sessions and Lester show that one of
		ordinary skill in the art understood a record search means utilizing a search key
		to access a linked list of records having the same hash address, and would
		recognize that it would improve similar systems and methods in the same way.
[1c] the record search	[5c] the record search	Sessions discloses the record search means including a means for identifying
means including a means	means including means for	and removing at least some of the expired ones of the records from the linked
for identifying and	identifying and removing	list when the linked list is accessed. Sessions also discloses the record search
the evpired energy of the	at least some expired ones	means including means for identifying and removing at least some expired
records from the linked list	linked list of records when	ones of the records from the linked list of records when the linked list is
when the linked list is	the linked list is accessed	accessed.
when the linked list is	and	For example Sessions discloses the standard function free () which "reasives
accessed, and	and	a pointer to one of the blocks in the dynamic memory pool proviously allocated
		by mall a co(). The pool is first scanned to validate the pointer, and then the
		block is released for use (Sessions at 78)
[1d] magne utilizing the	[5d] maa[n]a utilizing the	Diock is released for use. (Sessions at 78).
record search means for	[Ju] mea[ii]s, unizing the	linked list and at the same time, removing at least some of the expired ones of
accessing the linked list	inserting retrieving and	the records in the linked list. Sessions also discloses utilizing the record search
and at the same time	deleting records from the	means for inserting retrieving and deleting records from the system and at
removing at least some of	system and at the same	the same time, removing at least some expired ones of the records in the
the expired ones of the	time removing at least	accessed linked list of records
records in the linked list	some expired ones of the	
records in the innet list.	records in the accessed	For example Sessions discloses that the "functions mmget() and mmfree()
	linked list of records.	To chample, sessions discroses that the Tanenons hangee() and hant i ee()
Joint Invalidity Contentions & Pro	oduction of	4 Case No. 6:09-CV-549-LED

Asserted Claims From		Roger Sessions , <i>Reusable Data Structures for C</i> (Prentice-Hall, Inc. 1989) ("Sessions") alone and in combination with Kit Lester A Practical
0.5. I al. 110. 5,075,120		Approach to Data Structures: Related Algorithms in Pascal with
2. The information storage and retrieval system according to claim 1 further including means for dynamically determining	 6. The information storage and retrieval system according to claim 5 further including means for dynamically determining 	Approach to Data Structures: Related Algorithms in Pascal with Applications (Ellis Horwood Ltd. 1990) ("Lester") and otherscan solve this problem by dynamically collecting free memory into a single contiguous chunk if a program uses mmget() to set a pointer p1 to a block of memory, p1 will always point to the same values. Any dynamic memory collection that results in relocating the memory block also results in an automatic update of p1." (Sessions at 78-79).Also, Sessions discloses that "[t]he static functions setfree() and consolidate() perform the work of freeing a used memory block This rudimentary garbage collection could be accomplished by the standard C library function free() as well. (Sessions at 83).Further, Sessions discloses an exercise where the student must "[m]odify mmfree() so that a full garbage collection is always performed with each call. What are the advantages and disadvantages of this change?" (Sessions at 86).Sessions discloses an information storage and retrieval system further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records.For example, Sessions discloses that "[h]owever many blocks we decide to
maximum number for the record search means to remove in the accessed linked list of records.	maximum number for the record search means to remove in the accessed linked list of records.	save, we would eventually read one block too many. Then we would have to reuse the memory space occupied by one of the blocks. Which block should be thrown away? The best block to discard is the block we would least likely want again." (Sessions at 89).
		Sessions also discloses a routine ca_check() which "promote(s) any found items to the head of the linked list, indicating their changed status to 'Most

Asserted Claims From U.S. Pat. No. 5,893,120	Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989) ("Sessions") alone and in combination with Kit Lester, A Practical
	Approach to Data Structures: Related Algorithms in Pascal with Applications (Ellis Horwood Ltd. 1990) ("Lester") and others
	Recently Referenced." (Sessions at 91).
	Sessions further discloses an exercise where the student must "[m]odify mmfree() so that garbage is collected whenever the largest single chunk of available memory is less than ³ / ₄ of the total available pool." (Sessions at 86). Thus, Sessions inherently discloses a means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records. (<i>See id.</i>)
	Sessions combined with Dirks, Thatte, the '663 patent and/or the Opportunistic Garbage Collection Articles discloses an information storage and retrieval system further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records.
	Dirks discloses the management of memory in a computer system and more particularly to the allocation of address space in a virtual memory system, which dynamically determines how many records to sweep/remove upon each allocation. Disclosure of these claim elements in Dirks is clearly shown in Exhibit B-2, which is hereby incorporated by reference in its entirety.
	For example, as summarized in Dirks,
	each time a VSID is assigned from the free list to a new application or thread, a fixed number of entries in the page table are scanned to determine whether they have become inactive, by checking them against the VSIDs on the recycle list. Each entry which is identified as being inactive is

6

Joint Invalidity Contentions & Production of Documents

Case No. 6:09-CV-549-LED

Asserted Claims From	Roger Sessions, <i>Reusable Data Structures for C</i> (Prentice-Hall, Inc. 1989)
U.S. Pat. No. 5,893,120	("Sessions") alone and in combination with Kit Lester, A Practical
	Approach to Data Structures: Ketalea Algorithms in Fuscal with Applications (Ellis Horwood Ltd. 1990) ("Lester") and others
	Applications (Enis Horwood Ed. 1990) ("Lester) and othersremoved from the page table. After all of the enises in the page table have been examined in this manner, the VSIDs in the recycle list can be transferred to the free list, since all of their associated page table entries will have been removed. This approach thereby guarantees that a

Asserted Claims From U.S. Pat. No. 5,893,120		Roger Sessions, <i>Reusable Data Structures for C</i> (Prentice-Hall, Inc. 1989) ("Sessions") alone and in combination with Kit Lester, <i>A Practical</i> <i>Approach to Data Structures: Related Algorithms in Pascal with</i> <i>Applications</i> (Ellis Horwood Ltd. 1990) ("Lester") and others
		Dirks discloses that any approach can be employed to determine the number of entries to be examined during each step of the sweeping process. <i>Id.</i> at 7:37-40. As stated in Dirks:
		Any other suitable approach can be employed to determine the number of entries to be examined during each step of the sweeping process. In this regard, it is not necessary that the number of examined entries be fixed for each step. Rather, it might vary from one step to the next. The only criterion is that the number of entries examined on each step be such that all entries in the page table are examined in a determinable amount of time or by the occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.
		<i>Id.</i> at 7:38-46. Thus, Dirks dynamically determines the maximum number of records to sweep/remove by calculating a value <i>k</i> . <i>Id</i> . at 7:15-46, 7:66-8:56.
		As both Sessions and Dirks relate to deletion of aged records upon the allocation of a new incoming record, one of ordinary skill in the art would have understood how to use Dirks' dynamic decision making process of determining the maximum number of records to sweep/remove in other hash tables implementations such as Sessions. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of

8

Joint Invalidity Contentions & Production of Documents

Case No. 6:09-CV-549-LED

Asserted Claims From U.S. Pat. No. 5,893,120	Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)("Sessions") alone and in combination with Kit Lester, A PracticalApproach to Data Structures: Related Algorithms in Pascal withApplications (Ellis Horwood Ltd. 1990) ("Lester") and others
	combining Dirks' deletion decision procedure with Sessions nothing more than the predictable use of prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have combined Dirks' dynamic determination of the suitable number of entries to examine during each step of the sweeping process with Sessions and would have seen the benefits of doing so. One possible benefit, for example, is saving the system from performing sometimes time-consuming sweeps.`
	Alternatively, one of ordinary skill in the art would be motivated to, and would understand how to, combine the system disclosed in Sessions with the means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records disclosed by Thatte. For example, Thatte discloses a system and method using hash tables and/or linked lists and further discloses means for dynamically determining the maximum number for the record search means to remove in the accessed linked list of records. The disclosure of these claim elements in Thatte is clearly shown in the chart of Thatte, which is hereby incorporated by reference in its entirety.
	Moreover, one of ordinary skill in the art would recognize that these combinations would improve the similar systems and methods in the same way. Additionally, one of ordinary skill in the art would recognize that the result of combining Sessions with Thatte would be nothing more than the predictable use of prior art elements according to their established functions. The resulting combination would include the capability to determine the maximum number for the record search means to remove.

Asserted Claims From U.S. Pat. No. 5,893,120		Roger Sessions, <i>Reusable Data Structures for C</i> (Prentice-Hall, Inc. 1989) ("Sessions") alone and in combination with Kit Lester, <i>A Practical</i> <i>Approach to Data Structures: Related Algorithms in Pascal with</i> <i>Applications</i> (Ellis Horwood Ltd. 1990) ("Lester") and others
		Further, one of ordinary skill in the art would be motivated to combine Sessions with Thatte and recognize the benefits of doing so. For example, the removal of expired records described in Sessions can be burdensome on the system, adding to the system's load and slowing down the system's processing. One of ordinary skill in the art would recognize that combining Sessions with the teachings of Thatte would solve this problem by dynamically determining how many records to delete based on, among other things, the system load. Moreover, the '120 patent discloses that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine Sessions with Thatte. Alternatively, it would also be obvious to combine Sessions with the '663 patent. Disclosure of these claim elements in the '663 patent is clearly shown in the chart of the '663 patent, which is hereby incorporated by reference in its entirety. For example, as summarized in the '663 patent: during normal times when the load on the storage system is not excessive, a non-contaminating but slow deletion of records is used. This slow, non-contaminating deletion involves closing the collision-resolution chain of locations by moving a record from a later position in the chain into the position of the record to be deleted. This leaves no deleted record locations in the storage space to slow down future searches, U.S. Patent

Asserted Claims From U.S. Pat. No. 5,893,120		Roger Sessions, <i>Reusable Data Structures for C</i> (Prentice-Hall, Inc. 1989) ("Sessions") alone and in combination with Kit Lester, <i>A Practical</i> <i>Approach to Data Structures: Related Algorithms in Pascal with</i> <i>Applications</i> (Ellis Horwood Ltd. 1990) ("Lester") and others
		 4,996,663 to Nemes at 2:24-34 ("The '663 patent"). In times of heavy use, when deletions must be done rapidly and no time is available for decontamination, the record is simply marked as "deleted" and left in place. Later non-contaminating probes in the vicinity of such deleted record locations automatically remove the contaminating deleted records by moving records in the chain as described above. <i>Id.</i> at 2:35-41. This hybrid hashing technique has the decided advantage of automatically eliminating contamination caused by the fast-secure deletion procedure when the slower, non-contaminating deletion is used when the load on the system is at lower levels. <i>Id.</i> at 2:42-46. This hybrid deletion is shown in Figure 5.

Asserted Claims From U.S. Pat. No. 5,893,120	Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)("Sessions") alone and in combination with Kit Lester, A PracticalApproach to Data Structures: Related Algorithms in Pascal withApplications (Ellis Horwood Ltd. 1990) ("Lester") and others
	FIG. 5 HYBRID DELETION FIG. 5 HYBRID DELETION FAST-SECURE 52 FAST-SECURE 52 FAST-SECURE 52 FIG. 5 FIG. 5
	greater than the threshold, then a fast-secure delete 52 is used. <i>Id.</i> at 6:40-64, Figure 5. On the other hand, if the system load is less than the threshold, then a

Asserted Claims From U.S. Pat. No. 5,893,120		Roger Sessions, <i>Reusable Data Structures for C</i> (Prentice-Hall, Inc. 1989) ("Sessions") alone and in combination with Kit Lester, <i>A Practical</i> <i>Approach to Data Structures: Related Algorithms in Pascal with</i> <i>Applications</i> (Ellis Horwood Ltd. 1990) ("Lester") and others
		slow-non-contaminating delete 53 is used. <i>Id.</i> The fast-secure delete 52 does not actually delete records, rather it marks records as deleted. <i>Id.</i> at 8:1-33, Figure 7. These records are then actually deleted by a subsequent slow-non-contaminating delete 53. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
		Thus, the hybrid deletion procedure in the '663 patent dynamically determines a maximum number of records to remove. <i>See id.</i> at 6:40-64, Figure 5. If the fast-secure delete 52 is used, then maximum number of records is zero because records are not deleted they are only marked. <i>Id.</i> at 8:1-33, Figure 7. If the slow-non-contaminating delete 53 is used, then the maximum number of records to remove is all of the contaminated records in the bucket. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
		As both Sessions and the '663 patent relate to deletion of records from hash tables using external chaining, one of ordinary skill in the art would understood how to use the '663 patent's dynamic decision on whether to perform a deletion based on a systems load in other hash table implementations such as that described in Sessions. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the '663 patent's deletion decision procedure with Sessions would be nothing more than the predictable use of prior art elements according to

Joint Invalidity Contentions & Production of Documents

Case No. 6:09-CV-549-LED

Asserted Claims From U.S. Pat. No. 5,893,120	Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)("Sessions") alone and in combination with Kit Lester, A PracticalApproach to Data Structures: Related Algorithms in Pascal withApplications (Ellis Horwood Ltd. 1990) ("Lester") and others
	their established functions.
	By way of further example, one of ordinary skill in the art would have combined the '663 patent's dynamic decision on whether to perform a deletion based on a systems load as taught by the '663 patent and with Sessions and would have seen the benefits of doing so. One such benefit, for example, is that the system would avoid performing deletions when the system load exceeded a threshold.
	Alternatively, it would also be obvious to combine Sessions with the Opportunistic Garbage Collection Articles.
	The Opportunistic Garbage Collection Articles disclose a generational based garbage collection which dynamically determines how much garbage to collect. <i>See generally</i> , Paul R. Wilson and Thomas G. Moher, <i>Design of the Opportunistic Garbage Collector</i> , OOPSLA '89 Proceedings, October 1-6, 1989; Paul R. Wilson, <i>Opportunistic Garbage Collection</i> , ACM SIGPLAN Notices, Vol. 23, No. 12, December 1988.
	For example, the Opportunistic Garbage Collection Articles disclose in part:
	When a significant pause has been detected, a decision procedure is invoked to decide whether to garbage collect, and how many generations to scavenge. The fuller a generation is, the more likely it is to be scavenged; also, the longer the pause that has been detected, the larger the scope of the garbage collection is likely to be. <i>Design of the Opportunistic Garbage</i> <i>Collector</i> at 32.

Asserted Claims From U.S. Pat. No. 5,893,120		Roger Sessions, <i>Reusable Data Structures for C</i> (Prentice-Hall, Inc. 1989) ("Sessions") alone and in combination with Kit Lester, <i>A Practical</i> <i>Approach to Data Structures: Related Algorithms in Pascal with</i> <i>Applications</i> (Ellis Horwood Ltd. 1990) ("Lester") and others
		Every time a user-input routine is invoked, a decision routine can decide whether to garbage collect. As long as the decision routine takes no more than a few milliseconds to execute, it should not interfere with responsiveness. Since it is only invoked at these times, it does not incur a continual run-time overhead. <i>Opportunistic Garbage Collection</i> at 100.
		This decision routine should take several things into account: 1) the volume of data allocated since the last scavenge, 2) how long it has been since the user has had an opportunity to interact, and 3) the height of the stack relative to its average height at reads since the last scavenge. If the product of the allocation and the compute time is high, and if the stack is low, the scavenge favorability measure is high. If it is especially high, a multi-generation scavenge is in order. <i>Id.</i>
		If these heuristics fail and a scavenge is forced instead by the filling of a generation's space, it is likely to happen during a significant compute- bound pausethe one that has just allocated the data that forced the collection. When the opportunistic mechanism fails to find the end of a pause, it may still succeed by default, embedding a scavenge pause within a larger pause. <i>Design of the Opportunistic Garbage Collector</i> at 32.
		As both Sessions and the Opportunistic Garbage Collection Articles relate to deletion of aged records, one of ordinary skill in the art would have understood how to use the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion based on a system load in other hash table implementations such as Sessions. Moreover, one of ordinary skill in the art

Asserted Claims From	Roger Sessions, <i>Reusable Data Structures for C</i> (Prentice-Hall, Inc. 1989)
U.S. Pat. No. 5,893,120	("Sessions") alone and in combination with Kit Lester, A Practical
	Approach to Data Structures: Related Algorithms in Pascal with
	Applications (Ellis Horwood Ltd. 1990) ("Lester") and others
	would recognize that it would improve similar systems and methods in the
	same way. As the 120 patent states [a] person skilled in the art will
	the linked list can be expended to include techniques whereby not necessarily
	all avaired records are removed, and that the decision recording if and how
	many records to delete can be a dynamic one "The '120 patent at 7:10-15
	Additionally one of ordinary skill in the art would recognize that the result of
	combining the Opportunistic Garbage Collection Articles' deletion decision
	procedure with Sessions would be nothing more than the predictable use of
	prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have combined the Opportunistic Garbage Collection Articles' dynamic decision on
	whether to perform a deletion and how many generations to scavenge as taught
	by the Opportunistic Garbage Collection Articles and with Sessions and would
	have seen the benefits of doing so. One such benefit, for example, is
	preventing slowdown of the system.
	Additionally, it would have been obvious to one of ordinary skill in the art to
	modify the system disclosed in Sessions to dynamically determine the
	maximum number of expired records to remove in the accessed linked list of
	records. It is a fundamental concept in computer science and the relevant art
	that any variable or parameter affecting any aspect of a system can be
	dynamically determined based on information available to the system. One of
	ordinary skill in the art would have been motivated to combine the system
	disclosed in Sessions with the fundamental concept of dynamically
	determining the maximum number of expired records to remove in an accessed
Asserted Claims From	Roger Sessions, <i>Reusable Data Structures for C</i> (Prentice-Hall, Inc. 1989) ("Sossions") along and in combination with Kit Loston A Practical
-------------------------	---
U.S. Fat. NO. 5,095,120	Approach to Data Structures: Related Algorithms in Pascal with
	Applications (Ellis Horwood Ltd. 1990) ("Lester") and others
	linked list of records to solve a number of potential problems. For example,
	the removal of expired records described in Sessionscan be burdensome on the
	system, adding to the system's load and slowing down the system's
	time processing as the processing waits for the removal to complete
	time processing as the processing waits for the femoval to complete.
	One of ordinary skill in the art would have known that dynamically determining the maximum number to remove would limit the burden on the system and bound the length of any real-time interruption to prevent delays in processing. Indeed, Nemes concedes that such dynamic determination was obvious when he states in the '120 patent that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15.
	To the extent that dynamically determining a maximum number of expired records is not disclosed by Sessions in combination with Dirks, Thatte, the '663 Patent, or the Opportunistic Garbage Collection References, it is disclosed by Linux 2.0.1, which describes dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed. It would have been obvious to combine Linux 2.0.1 with Sessions. For example, both Linux 2.0.1 and Sessions describe systems and methods for performing data storage and retrieval using known programming techniques to yield a predictable result.
	When invoked, the function rt_cache_add automatically increments an

Asserted Claims From U.S. Pat. No. 5,893,120	Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989) ("Sessions") alone and in combination with Kit Lester, A Practical
	Approach to Data Structures: Related Algorithms in Pascal with Applications (Ellis Horwood Ltd. 1990) ("Lester") and others
	integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359. When the function rt_cache_add removes an expired record, the function rt_cache_add decrements the variable rt_cache_size. See Linux 2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the number of records in the hash table (i.e., ip_rt_hash_table). Because the function rt_cache_add automatically increments and decrements the variable rt_cache_size is determined dynamically.
	Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1. The function rt_garbage_collect_1 loops through each of the linked lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at lines 1122-1138. In this way, the function rt_garbage_collect_1 accesses the linked list. When the function rt_garbage_collect_1 identifies a record that is expired, the function rt_garbage_collect_1 decrements the variable rt_cache_size and frees the record. See Linux 2.0.1, route.c at lines 1128-1135.
	Because all records in the linked list can be expired and all records in the hash table can be in the linked list, the variable rt_cache_size can represent a dynamically determined maximum number of expired ones of the records to remove when function rt_garbage_collect_1 accesses the linked list. Furthermore, the function rt_cache_add determines whether the number of
	records in the hash table exceeds a predetermined threshold

Asserted Clair	ms From	Roger Sessions, <i>Reusable Data Structures for C</i> (Prentice-Hall, Inc. 1989)
U.S. Pat. No. 5	5,893,120	("Sessions") alone and in combination with Kit Lester, A Practical
		Approach to Data Structures: Related Algorithms in Pascal with
		Applications (Ellis Horwood Ltd. 1990) ("Lester") and others
		RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
		the predetermined threshold RT_CACHE_SIZE_MAX, the function
		rt_cache_add invokes a function rt_garbage_collect. See Linux
		2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
		invokes a function rt_garbage_collect_1. <i>See</i> Linux 2.0.1, route.c at
		line 1293. The function rt_garbage_collect invokes a function
		rt_garbage_collect_1. <i>See</i> Linux 2.0.1, route.c at line 1293.
		The function rt_garbage_collect_1 loops through each linked list in
		the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
		list in the hash table, the function rt_garbage_collect_1 looks at each
		record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
		record in a linked list, the function rt_garbage_collect_l determines
		than the current time See Linux 2.0.1 route c at line 1122. If the record's last
		use time plus the record's expiration factor is less than the current time the
		function rt garbage collect 1 removes the record from the linked list
		See Linux 2.0.1. route.c at lines 1124-1130. The record's expiration factor is
		based on a variable expire and the record's reference count. See Linux
		2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
		timeout value RT CACHE TIMEOUT. See Linux 2.0.1, route.c at line 1110.
		After looping through all of the linked lists in this manner, the function
		rt_garbage_collect_1 determines again whether the number of records
		in the hash table is less than the predetermined threshold
		RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number

Asserted Claims From	Roger Sessions, <i>Reusable Data Structures for C</i> (Prentice-Hall, Inc. 1989)
U.S. Pat. No. 5,893,120	("Sessions") alone and in combination with Kit Lester, A Practical
	Approach to Data Structures: Related Algorithms in Pascal with
	Applications (Ellis Horwood Ltd. 1990) ("Lester") and others
	of items in the hash table is still greater than the predetermined threshold
	RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
	the variable expire and loops through each of the linked lists in the hash
	table. See Linux 2.0.1, route.c at line 1135. In this way, the function
	rt_garbage_collect_1 can remove additional records from the linked
	lists in the hash table. The function rt_garbage_collect_1 repeats this
	process until the total number of records in the hash table is less than the
	predetermined threshold RT_CACHE_SIZE_MAX.
	Under Dedroek's proposed claim constructions, the records removed by the
	function ret_garchage_gallegt_1 are "expired" records. That is the
	records removed by the function rt garbage collect 1 are data items which
	after a limited time or after the occurrence of some event become obsolete
	such that their presence in the storage system is no longer needed or desired.
	The function rt cache add only removes a record from a linked list when
	the record's last use time plus the fixed timeout value RT CACHE TIMEOUT
	is less than the current time and the record's reference count is zero. See Linux
	2.0.1, route.c at line 1369. Thus, the maximum number of records that the
	function rt_cache_add can remove from a given linked list is limited to
	those records whose reference counts are zero.
	In contrast, the maximum number of records that the function
	rt_garbage_collect_1 can remove from a given linked list is not
	limited to those records whose reference counts are zero. See Linux 2.0.1,
	route.c at line 1122. Rather, the function rt_garbage_collect_1 can

Asserted Claims From U.S. Pat. No. 5,893,120		Roger Sessions, <i>Reusable Data Structures for C</i> (Prentice-Hall, Inc. 1989) ("Sessions") alone and in combination with Kit Lester, <i>A Practical</i> <i>Approach to Data Structures: Related Algorithms in Pascal with</i>
		Applications (Ellis Horwood Ltd. 1990) ("Lester") and others
		remove records whose reference counts are zero and records whose reference counts are greater than zero.
		Consequently, the maximum number of records that the function rt_garbage_collect_1 can remove from a linked list is different than the maximum number of records that the function rt_cache_add can remove from a linked list.
3. A method for storing and retrieving information records using a linked list to store and provide access to the records, at least	7. A method for storing and retrieving information records using a hashing technique to provide access to the records and using an	To the extent the preamble is a limitation, Sessions discloses a method for storing and retrieving information records using a linked list to store and provide access to the records, at least some of the records automatically expiring.
some of the records automatically expiring, the method comprising the steps of:	external chaining technique to store the records with same hash address, at least some of the records automatically expiring, the method comprising the steps of:	 To the extent that Bedrock argues that Sessions does not anticipate this claim element, it would have been obvious to one of ordinary skill in the art to combine Sessions with Lester. For example, Lester discloses hash tables where "the hash table entries could be pointer-type values, or array indexes, or some encoding of array indexes." (Lester at 153). Lester further discloses an external chaining technique to store the records with same hash address by stating "[e]ach hash-table element that doesn't yet correspond to any data would contain nil, otherwise it would point either to a keyed table or to a keyed linked-list of those data-items whose keys all hash to that place in the table" (See id.). Lester also states that "I usually use a keyed linked-list: it is simple
		to program, and if any of the lists get long it means that I should have made the hash-array bigger, to get more lists, and therefore shorter lists." (Lester at

Asserted Claims From		Roger Sessions, <i>Reusable Data Structures for C</i> (Prentice-Hall, Inc. 1989)
U.S. Pat. No. 5,893,120		("Sessions") alone and in combination with Kit Lester, A Practical
		Approach to Data Structures: Related Algorithms in Pascal with
		Applications (Ellis Horwood Ltd. 1990) ("Lester") and others
		154). Thus, Sessions and Lester show that one of ordinary skill in the art
		understood how to utilize a hashing means to provide access to records stored
		in a memory of the system and using an external chaining technique to store
		the records with same hash address, and would recognize that it would improve
		similar systems and methods in the same way.
		For example, Sessions discloses that "[o]ur newly completed linked list
		package can now form the basis for a cache." (Sessions at 29). Thus, Sessions
		inherently discloses a method for storing and retrieving information records
		using a linked list to store and provide access to the records.
		Sessions also discloses that a "function ca_add() assumes that an item is not
		in the cache," and that "this function has three variable states 2. The cache
		is full and an item must be discarded. As already described, the tail item is
		always discarded." (Sessions at 29).
[3a] accessing the linked	[7a] accessing a linked list	Sessions discloses accessing a linked list of records.
list of records,	of records having same	
	hash address,	For example, Sessions discloses that "[t]he next function, ca_check(),
		searches the cache for a particular item, returning a value of true or false
		depending on the search results. If the item is found, it becomes the most
		recently reference item and is promoted to the head of the list.

22

Asserted Claims From	Roger Sessions, <i>Reusable Data Structures for C</i> (Prentice-Hall, Inc. 1989)
U.S. Pat. No. 5,893,120	("Sessions") alone and in combination with Kit Lester, A Practical
	Approach to Data Structures: Related Algorithms in Pascal with
	Applications (Ellis Horwood Ltd. 1990) ("Lester") and others
	<pre>ca_check(lookfor) /* See if item is in cache */</pre>
	/* Return TRUE or FALSE
	struct itemtype *lookfor;
	{
	struct itemtype lookat;
	<pre>cmpitem();</pre>
	11head():
	for (::) {
	llretrieve (&lookat);
	if (cmpitem(lookfor, &lookat)) {
	lldelete()
	<pre>lladdhead (&lookat);</pre>
	return (1);
	}
	if (!llnext())
	return (0);
	}
	}
	(Sessions at 30)
	To the extent that Bedrock argues that Sessions does not anticipate this claim
	element, it would have been obvious to one of ordinary skill in the art to
	combine Sessions with Lester. For example, Lester discloses that "Ithe
	complier <i>should</i> include "garbage collection" in a program translated from a
	Pascal source that uses any pointer-types: when the program runs low on spare

23

Asserted Claims From U.S. Pat. No. 5,893,120		Roger Sessions, <i>Reusable Data Structures for C</i> (Prentice-Hall, Inc. 1989) ("Sessions") alone and in combination with Kit Lester, <i>A Practical</i>
		Approach to Data Structures: Related Algorithms in Pascal with Applications (Filis Horwood Ltd, 1990) ("Lester") and others
		memory the garbage collection should search for any nodes that no longer have pointers to them, and deallocate them, freeing up some spare." (Lester at 69). Thus, Lester inherently discloses "accessing a linked list of records having same hash address." (<i>See id.</i>) Together, Sessions and Lester show that one of ordinary skill in the art understood how to access a linked list of records having same hash address, and would recognize that it would improve similar systems and methods in the same way.
[3b] identifying at least some of the automatically expired ones of the records, and	[7b] identifying at least some of the automatically expired ones of the records,	Sessions discloses identifying at least some of the automatically expired ones of the records. Sessions also discloses identifying at least some of the automatically expired ones of the records. For example, Sessions discloses the standard function free(), which "receives a pointer to one of the blocks in the dynamic memory pool previously allocated by malloc(). The pool is first scanned to validate the pointer, and then the block is released for use. (Sessions at 78).
[3c] removing at least some of the automatically expired records from the linked list when the linked list is accessed.	[7c] removing at least some of the automatically expired records from the linked list when the linked list is accessed, and	Sessions discloses removing at least some of the automatically expired records from the linked list when the linked list is accessed. Sessions also discloses removing at least some of the automatically expired records from the linked list when the linked list is accessed. Also, Sessions discloses that "[t]he static functions setfree() and consolidate() perform the work of freeing a used memory block This rudimentary garbage collection could be accomplished by the standard C library function free() as well. (Sessions at 83).
		Further, Sessions discloses an exercise where the student must "[m]odify

Asserted C	laims From	Roger Sessions, <i>Reusable Data Structures for C</i> (Prentice-Hall, Inc. 1989)
U.S. Pat. N	0. 5,893,120	("Sessions") alone and in combination with Kit Lester, A Practical
		Approach to Data Structures: Related Algorithms in Pascal with
		Applications (Ellis Horwood Ltd. 1990) ("Lester") and others
		mmfree() so that a full garbage collection is always performed with each call.
		What are the advantages and disadvantages of this change?" (Sessions at 86).
	[7d] inserting, retrieving	Sessions discloses inserting, retrieving or deleting one of the records from the
	or deleting one of the	system following the step of removing.
	records from the system	
	following the step of	For example, Sessions discloses deleting one of the records from the system in
	removing.	the consolidate() function following the step of removing.

25

Asserted Cl	aims From	Roger Sessions, <i>Reusable Data Structures for C</i> (Prentice-Hall, Inc. 1989)
U.S. Pat. No	b. 5,893,120	("Sessions") alone and in combination with Kit Lester, A Practical
		Approach to Data Structures: Related Algorithms in Pascal with
		Applications (Ellis Horwood Ltd. 1990) ("Lester") and others
		<pre>static consolidate(first, second)</pre>
		struct memory_type *first, *second;
		{
		first->nbytes += second->nbytes; /* Consolidate sizes. */
		first->start = /* See which is first. */
		(first->start < second->start) ?
		(first->start) : (second->start);
		}
		static setfree()
		struct memory_type *free, *other;
		/* Prepare current block for freedom.
		free = llexemine(): /* See which block is current. */
		free->addr owner = 0: $/*$ Note that block is unowned */
		free->type = FREE; /* and available for use. */
		/* If previous block is also free, consolidate.
		if (1) isheed()) (/* Denit do hevend head */
		lineau()) (* Check the previous block */
		other = llevamine():
		if $(other_styne = FRFR) / /* If free consolidate */$
		consolidate (free other);
		lldelete().
		(Sessions at 83).
4. The method according to	8. The method according	Sessions discloses dynamically determining maximum number of expired ones

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5.893,120		Roger Sessions, <i>Reusable Data Structures for C</i> (Prentice-Hall, Inc. 1989) ("Sessions") alone and in combination with Kit Lester, <i>A Practical</i>
		Approach to Data Structures: Related Algorithms in Pascal with Applications (Ellis Horwood Ltd. 1990) ("Lester") and others
claim 3 further including the step of dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed.	to claim 7 further including the step of dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed.	 Applications (Enis Horwood Eld, 1996) ("Elester") and others of the records to remove when the linked list is accessed. For example, Sessions discloses that "[h]owever many blocks we decide to save, we would eventually read one block too many. Then we would have to reuse the memory space occupied by one of the blocks. Which block should be thrown away? The best block to discard is the block we would least likely want again." (Sessions at 89). Sessions also discloses a routine ca_check() which "promote(s) any found items to the head of the linked list, indicating their changed status to 'Most Recently Referenced.'" (Sessions at 91).
		Sessions further discloses an exercise where the student must "[m]odify mmfree() so that garbage is collected whenever the largest single chunk of available memory is less than ³ / ₄ of the total available pool." (Sessions at 86). Thus, Sessions inherently discloses a step of dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed. (<i>See id.</i>)
		Sessions combined with Dirks, Thatte, the '663 patent, and/or the Opportunistic Garbage Collection Articles discloses dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed.
		Dirks discloses the management of memory in a computer system and more particularly to the allocation of address space in a virtual memory system, which dynamically determines how many records to sweep/remove upon each

Asserted Claims From U.S. Pat. No. 5,893,120	Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)("Sessions") alone and in combination with Kit Lester, A Practical Approach to Data Structures: Related Algorithms in Pascal with Applications (Ellis Horwood Ltd. 1990) ("Lester") and others
	allocation. Disclosure of these claim elements in Dirks is clearly shown in the chart of Dirks, which is hereby incorporated by reference in its entirety.
	For example, as summarized in Dirks,
	each time a VSID is assigned from the free list to a new application or thread, a fixed number of entries in the page table are scanned to determine whether they have become inactive, by checking them against the VSIDs on the recycle list. Each entry which is identified as being inactive is removed from the page table. After all of the entries in the page table have been examined in this manner, the VSIDs in the recycle list can be transferred to the free list, since all of their associated page table entries will have been removed. This approach thereby guarantees that a predetermined number of VSIDs are always available in the free list without requiring a time-consuming scan of the complete page table at once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.
	After [a] new VSID has been allocated, the system checks a flag RFLG to determine whether a recycle sweep is currently in progress (Step 20). If there is no sweep in progress, i.e. RFLG is not equal to one, a determination is made whether a sweep should be initiated. This is done by checking whether the inactive list is full, i.e. whether it contains x entries (Step 22). If the number of entries I on the inactive list is less than x, no further action is taken, and processing control returns to the operating system (Step 24). If, however, the inactive list is full at this time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are transferred to the recycle list, and an index n is reset to 1 (Step 28). The

28

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	Roger Sessions, <i>Reusable Data Structures for C</i> (Prentice-Hall, Inc. 1989) ("Sessions") alone and in combination with Kit Lester, <i>A Practical</i>
	Approach to Data Structures: Related Algorithms in Pascal with Applications (Ellis Horwood Ltd. 1990) ("Lester") and others
	system then sweeps a predetermined number of page table entries PT_i on the page table, to detect whether any of them are inactive, i.e. their associated VSID is on the recycle list (Step 30). The predetermined number of entries that are swept is identified as k , where:
	$k = \frac{\text{total number of page table entries}}{\text{maximum number of active threads}}$ <i>Id.</i> at 8:12-30.
	Dirks discloses that any approach can be employed to determine the number of entries to be examined during each step of the sweeping process. <i>Id.</i> at 7:37-40. As stated in Dirks:
	Any other suitable approach can be employed to determine the number of entries to be examined during each step of the sweeping process. In this regard, it is not necessary that the number of examined entries be fixed for each step. Rather, it might vary from one step to the next. The only criterion is that the number of entries examined on each step be such that all entries in the page table are examined in a determinable amount of time or by the occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.
	<i>Id.</i> at 7:38-46. Thus, Dirks dynamically determines the maximum number of records to sweep/remove by calculating a value <i>k</i> . <i>Id.</i> at 7:15-46, 7:66-8:56.
	As both Sessions and Dirks relate to deletion of aged records upon the allocation of a new incoming record, one of ordinary skill in the art would have understood how to use Dirks' dynamic decision making process of determining

29

Asserted Claims From U.S. Pat. No. 5,893,120	Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989) ("Sessions") alone and in combination with Kit Lester, A Practical Approach to Data Structures: Related Algorithms in Pascal with Applications (Ellis Horwood Ltd, 1990) ("Lester") and others
	the maximum number of records to sweep/remove in other hash tables implementations such as that described Sessions. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining Dirks' deletion decision procedure with Sessions would be nothing more than the predictable use of prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have combined Dirks' dynamic determination of the suitable number of entries to examine during each step of the sweeping process with Sessions and would have seen the benefits of doing so. One possible benefit, for example, is saving the system from performing sometimes time-consuming sweeps.
	Alternatively, one of ordinary skill in the art would be motivated to, and would understand how to, combine the system disclosed in Sessions with the means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records disclosed by Thatte. For example, Thatte discloses a system and method using hash tables and/or linked lists and further discloses means for dynamically determining the maximum number for the record search means to remove in the accessed linked list of records. The disclosure of these claim elements in Thatte is clearly shown in the chart of

Asserted Claims Fro U.S. Pat. No. 5.893.1	m Roger Sessions, <i>Reusable Data Structures for C</i> (Prentice-Hall, Inc. 1989) ("Sessions") alone and in combination with Kit Lester, <i>A Practical</i>
	Approach to Data Structures: Related Algorithms in Pascal with
	Applications (Ellis Horwood Ltd. 1990) ("Lester") and others
	Thatte, which is hereby incorporated by reference in its entirety.
	Moreover, one of ordinary skill in the art would recognize that these combinations would improve the similar systems and methods in the same way. Additionally, one of ordinary skill in the art would recognize that the result of combining Sessions with Thatte would be nothing more than the predictable use of prior art elements according to their established functions. The resulting combination would include the capability to determine the maximum number for the record search means to remove.
	Further, one of ordinary skill in the art would be motivated to combine Sessions with Thatte and recognized the benefits of doing so. For example, the removal of expired records described in Sessions can be burdensome on the system, adding to the system's load and slowing down the system's processing. One of ordinary skill in the art would recognize that combining Sessions with the teachings of Thatte would solve this problem by dynamically determining how many records to delete based on, among other things, the system load. Moreover, the '120 patent discloses that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine Sessions with Thatte.
	Alternatively, it would also be obvious to combine Sessions with the '663 patent. Disclosure of these claim elements in the '663 patent is clearly shown in the chart of the '663 patent, which is hereby incorporated by reference in its

Asserted Claims From U.S. Pat. No. 5,893,120	Roger Sessions, <i>Reusable Data Structures for C</i> (Prentice-Hall, Inc. 1989) ("Sessions") alone and in combination with Kit Lester, <i>A Practical</i> <i>Approach to Data Structures: Related Algorithms in Pascal with</i> <i>Annlications</i> (Ellis Horwood Ltd, 1990) ("Lester") and others
	 Approach to Data Structures: Related Algorithms in Pascal with Applications (Ellis Horwood Ltd. 1990) ("Lester") and others entirety. For example, as summarized in the '663 patent: during normal times when the load on the storage system is not excessive, a non-contaminating but slow deletion of records is used. This slow, non-contaminating deletion involves closing the collision-resolution chain of locations by moving a record from a later position in the chain into the position of the record to be deleted. This leaves no deleted record locations in the storage space to slow down future searches. U.S. Patent 4,996,663 to Nemes at 2:24-34 ("The '663 patent"). In times of heavy use, when deletions must be done rapidly and no time is available for decontamination, the record is simply marked as "deleted" and left in place. Later non-contaminating probes in the vicinity of such deleted record locations automatically remove the contaminating deleted records by moving records in the chain as described above. <i>Id.</i> at 2:35-41. This hybrid hashing technique has the decided advantage of automatically eliminating contamination caused by the fast-secure deletion procedure when the slower, non-contaminating deletion is used when the load on the system is at lower levels. <i>Id.</i> at 2:42-46.
	This hybrid deletion is shown in Figure 5.

32

Asserted Claims From U.S. Pat. No. 5,893,120	Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)("Sessions") alone and in combination with Kit Lester, A PracticalApproach to Data Structures: Related Algorithms in Pascal withApplications (Ellis Horwood Ltd. 1990) ("Lester") and others
	FIG. 5 HYBRID DELETION FIG. 5 HYBRID DELETION FAST-SECURE 52 FAST-SECURE 52 FAST-SECURE 52 FIG. 5 FIG. 5
	greater than the threshold, then a fast-secure delete 52 is used. <i>Id.</i> at 6:40-64, Figure 5. On the other hand, if the system load is less than the threshold, then a

Asserted Claims From U.S. Pat. No. 5,893,120	Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989) ("Sessions") alone and in combination with Kit Lester, A Practical
	Approach to Data Structures: Related Algorithms in Pascal with Applications (Ellis Horwood Ltd. 1990) ("Lester") and others
	slow-non-contaminating delete 53 is used. <i>Id.</i> The fast-secure delete 52 does not actually delete records, rather it marks records as deleted. <i>Id.</i> at 8:1-33, Figure 7. These records are then actually deleted by a subsequent slow-non- contaminating delete 53. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
	Thus, the hybrid deletion procedure in the '663 patent dynamically determines a maximum number of records to remove. <i>See id.</i> at 6:40-64, Figure 5. If the fast-secure delete 52 is used, then maximum number of records is zero because records are not deleted they are only marked. <i>Id.</i> at 8:1-33, Figure 7. If the slow-non-contaminating delete 53 is used, then the maximum number of records to remove is all of the contaminated records in the bucket. <i>Id.</i> at 6:65- 7:68, Figures 6, 6A, 6B.
	As both Sessions and the '663 patent relate to deletion of records from hash tables using external chaining, one of ordinary skill in the art would understood how to use the '663 patent's dynamic decision on whether to perform a deletion based on a systems load in other hash table implementations such as Sessions. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the '663 patent's deletion decision procedure with Sessions would be nothing more than the predictable use of prior art elements according to their established

34

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)("Sessions") alone and in combination with Kit Lester, A PracticalApproach to Data Structures: Related Algorithms in Pascal withApplications (Ellis Horwood Ltd. 1990) ("Lester") and others
	functions. By way of further example, one of ordinary skill in the art would have combined the '663 patent's dynamic decision on whether to perform a deletion
	based on a systems load as taught by the '663 patent and with Sessions and would have seen the benefits of doing so. One such benefit, for example, is that the system would avoid performing deletions when the system load exceeded a threshold.
	Alternatively, it would also be obvious to combine Sessions with the Opportunistic Garbage Collection Articles.
	The Opportunistic Garbage Collection Articles disclose a generational based garbage collection which dynamically determines how much garbage to collect. <i>See generally</i> , Paul R. Wilson and Thomas G. Moher, <i>Design of the Opportunistic Garbage Collector</i> , OOPSLA '89 Proceedings, October 1-6, 1989; Paul R. Wilson, <i>Opportunistic Garbage Collection</i> , ACM SIGPLAN Notices, Vol. 23, No. 12, December 1988.
	For example, the Opportunistic Garbage Collection Articles disclose in part:
	When a significant pause has been detected, a decision procedure is invoked to decide whether to garbage collect, and how many generations to scavenge. The fuller a generation is, the more likely it is to be scavenged; also, the longer the pause that has been detected, the larger the scope of the garbage collection is likely to be. <i>Design of the Opportunistic Garbage</i> <i>Collector</i> at 32.

Asserted Cl U.S. Pat. No	aims From 5. 5,893,120	Roger Sessions, <i>Reusable Data Structures for C</i> (Prentice-Hall, Inc. 1989) ("Sessions") alone and in combination with Kit Lester, <i>A Practical</i> <i>Approach to Data Structures: Related Algorithms in Pascal with</i> <i>Applications</i> (Ellis Horwood Ltd. 1990) ("Lester") and others
		Every time a user-input routine is invoked, a decision routine can decide whether to garbage collect. As long as the decision routine takes no more than a few milliseconds to execute, it should not interfere with responsiveness. Since it is only invoked at these times, it does not incur a continual run-time overhead. <i>Opportunistic Garbage Collection</i> at 100.
		This decision routine should take several things into account: 1) the volume of data allocated since the last scavenge, 2) how long it has been since the user has had an opportunity to interact, and 3) the height of the stack relative to its average height at reads since the last scavenge. If the product of the allocation and the compute time is high, and if the stack is low, the scavenge favorability measure is high. If it is especially high, a multi-generation scavenge is in order. <i>Id</i> .
		If these heuristics fail and a scavenge is forced instead by the filling of a generation's space, it is likely to happen during a significant compute- bound pausethe one that has just allocated the data that forced the collection. When the opportunistic mechanism fails to find the end of a pause, it may still succeed by default, embedding a scavenge pause within a larger pause. <i>Design of the Opportunistic Garbage Collector</i> at 32.
		As both Sessions and the Opportunistic Garbage Collection Articles relate to deletion of aged records, one of ordinary skill in the art would have understood how to use the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion based on a system load in other hash table implementations such as Sessions. Moreover, one of ordinary skill in the art

Asserted Claims From	Roger Sessions, <i>Reusable Data Structures for C</i> (Prentice-Hall, Inc. 1989)
U.S. Pat. No. 5,893,120	("Sessions") alone and in combination with Kit Lester, A Practical
	Approach to Data Structures: Related Algorithms in Pascal with
	Applications (Ellis Horwood Ltd. 1990) ("Lester") and others
	Applications (Ellis Horwood Ltd. 1990) ("Lester") and otherswould recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the Opportunistic Garbage Collection Articles' deletion decision procedure with Sessions would be nothing more than the predictable use of prior art elements according to their established functions.By way of further example, one of ordinary skill in the art would have combined the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion and how many generations to scavenge as taught by the Opportunistic Garbage Collection Articles and with Sessions and would
	 by the Opportunistic Garbage Conection Articles and with Sessions and would have seen the benefits of doing so. One such benefit, for example, is that the system would only perform deletions when the system was not already too overloaded, thus preventing slowdown of the system. Additionally, it would have been obvious to one of ordinary skill in the art to modify the system disclosed in Sessions to dynamically determine the maximum number of expired records to remove in the accessed linked list of records. It is a fundamental concept in computer science and the relevant art that any variable or parameter affecting any aspect of a system can be dynamically determined based on information available to the system. One of ordinary skill in the art would have been motivated to combine the system disclosed in Sessions with the fundamental concept of dynamically

37

Asserted Claims From U.S. Pat. No. 5,893,120	Roger Sessions, <i>Reusable Data Structures for C</i> (Prentice-Hall, Inc. 1989) ("Sessions") alone and in combination with Kit Lester, <i>A Practical</i> <i>Approach to Data Structures: Related Algorithms in Pascal with</i> <i>Applications</i> (Ellis Horwood Ltd. 1990) ("Lester") and others
	determining the maximum number of expired records to remove in an accessed linked list of records to solve a number of potential problems. For example, the removal of expired records described in Sessions can be burdensome on the system, adding to the system's load and slowing down the system's processing. Moreover, the removal could also force an interruption in real- time processing as the processing waits for the removal to complete.
	One of ordinary skill in the art would have known that dynamically determining the maximum number to remove would limit the burden on the system and bound the length of any real-time interruption to prevent delays in processing. Indeed, Nemes concedes that such dynamic determination was obvious when he states in the '120 patent that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15.
	To the extent that dynamically determining a maximum number of expired records is not disclosed by Sessions in combination with Dirks, Thatte, the '663 Patent, or the Opportunistic Garbage Collection References, it is disclosed by Linux 2.0.1, which describes dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed. It would have been obvious to combine Linux 2.0.1 with Sessions. For example, both Linux 2.0.1 and Sessions describe systems and methods for performing data storage and retrieval using known programming techniques to yield a predictable result.

Asserted Claims From U.S. Pat. No. 5,893,120	Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)("Sessions") alone and in combination with Kit Lester, A Practical Approach to Data Structures: Related Algorithms in Pascal with Applications (Ellis Horwood Ltd. 1990) ("Lester") and others
	When invoked, the function rt_cache_add automatically increments an integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359. When the function rt_cache_add removes an expired record, the function rt_cache_add decrements the variable rt_cache_size. See Linux 2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the number of records in the hash table (i.e., ip_rt_hash_table). Because the function rt_cache_add automatically increments and decrements the variable rt_cache_size is determined dynamically.
	Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1. The function rt_garbage_collect_1 loops through each of the linked lists in the ip_rt_hash_table global variable. <i>See</i> Linux 2.0.1, route.c at lines 1122-1138. In this way, the function rt_garbage_collect_1 accesses the linked list. When the function rt_garbage_collect_1 identifies a record that is expired, the function rt_garbage_collect_1 decrements the variable rt_cache_size and frees the record. <i>See</i> Linux 2.0.1, route.c at lines 1128-1135.
	Because all records in the linked list can be expired and all records in the hash table can be in the linked list, the variable rt_cache_size can represent a dynamically determined maximum number of expired ones of the records to remove when function rt_garbage_collect_1 accesses the linked list.

Asserted Claims Fro	m Roger Sessions, <i>Reusable Data Structures for C</i> (Prentice-Hall, Inc. 1989)
U.S. Pat. No. 5,893,12	20 ("Sessions") alone and in combination with Kit Lester, A Practical
	Approach to Data Structures: Related Algorithms in Pascal with
	Applications (Ellis Horwood Ltd. 1990) ("Lester") and others
	records in the hash table exceeds a predetermined threshold
	RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
	the predetermined threshold RT_CACHE_SIZE_MAX, the function
	rt_cache_add invokes a function rt_garbage_collect. See Linux
	2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
	invokes a function rt_garbage_collect_1. <i>See</i> Linux 2.0.1, route.c at
	line 1293. The function rt_garbage_collect invokes a function
	rt_garbage_collect_1. <i>See</i> Linux 2.0.1, route.c at line 1293.
	The function rt_garbage_collect_1 loops through each linked list in
	the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
	list in the hash table, the function rt_garbage_collect_1 looks at each
	record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
	record in a linked list, the function rt_garbage_collect_l determines
	whether the record's last use time plus the record's expiration factor is later
	than the current time. See Linux 2.0.1, route c at line 1122. If the record's last
	function rt garbage gollegt 1 removes the record from the linked list
	S_{aa} Linux 2.0.1 route c at lines 1124 1130. The record's expiration factor is
	based on a variable expline and the record's reference count See Linux
	2.0.1 route c at line 1122. The variable expire is initially one half of the fixed
	timeout value RT_CACHE_TIMEOUT_See Linux 2.0.1 route c at line 1110
	After looping through all of the linked lists in this manner, the function
	rt_garbage_collect_1 determines again whether the number of records
	in the hash table is less than the predetermined threshold

Joint Invalidity Contentions & Production of Documents

Asserted Claims From	Roger Sessions, <i>Reusable Data Structures for C</i> (Prentice-Hall, Inc. 1989)
U.S. Pat. No. 5,893,120	("Sessions") alone and in combination with Kit Lester, A Practical
	Approach to Data Structures: Related Algorithms in Pascal with
	Applications (Ellis Horwood Ltd. 1990) ("Lester") and others
	RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
	of items in the hash table is still greater than the predetermined threshold
	RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
	the variable expire and loops through each of the linked lists in the hash
	table. See Linux 2.0.1, route.c at line 1135. In this way, the function
	rt_garbage_collect_1 can remove additional records from the linked
	lists in the hash table. The function rt_garbage_collect_1 repeats this
	process until the total number of records in the hash table is less than the
	predetermined threshold RT_CACHE_SIZE_MAX.
	Under Bedrock's proposed claim constructions, the records removed by the
	function rt_garbage_collect_1 are "expired" records. That is, the
	records removed by the function rt_garbage_collect_l are data items which
	after a limited time or after the occurrence of some event become obsolete,
	such that their presence in the storage system is no longer needed or desired.
	The function rt cache add only removes a record from a linked list when
	the record's last use time plus the fixed timeout value PT_CACHE_TIMEOUT
	is less than the current time and the record's reference count is zero. See Linux
	2.0.1 route c at line 1369. Thus, the maximum number of records that the
	function rt_cache_add can remove from a given linked list is limited to
	those records whose reference counts are zero.
	In contrast, the maximum number of records that the function
	rt_garbage_collect_1 can remove from a given linked list is not
	limited to those records whose reference counts are zero. See Linux 2.0.1,

41

Asserted Claims From U.S. Pat. No. 5,893,120	Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)("Sessions") alone and in combination with Kit Lester, A Practical Approach to Data Structures: Related Algorithms in Pascal with Applications (Ellis Horwood Ltd. 1990) ("Lester") and others
	route.c at line 1122. Rather, the function rt_garbage_collect_1 can remove records whose reference counts are zero and records whose reference counts are greater than zero.
	Consequently, the maximum number of records that the function rt_garbage_collect_1 can remove from a linked list is different than the maximum number of records that the function rt_cache_add can remove from a linked list.

42

Asserted Claims From U.S. Pat. No. 5,893,120		Christopher J. Van Wyk, Data Structures and C Programs (Addison- Wesley Publ'g Co. & Bell Telephone Laboratories, Inc. 1988)
1. An information storage and retrieval system, the system comprising:	5. An information storage and retrieval system, the system comprising:	To the extent the preamble is a limitation, Van Wyk 2 discloses an information storage and retrieval system.
		<i>"File systems</i> are a familiar example of an external data structure." (Van Wyk 2 at 142).
[1a] a linked list to store and provide access to records stored in a memory of the system, at least some of the records automatically expiring,	[5a] a hashing means to provide access to records stored in a memory of the system and using an external chaining technique to store the records with same hash address, at least	Van Wyk 2 discloses a linked list to store and provide access to records stored in a memory of the system, at least some of the records automatically expiring. Van Wyk 2 also discloses a hashing means to provide access to records stored in a memory of the system and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring.
	some of the records automatically expiring,	For example, Van Wyk 2 discloses that "[i]f the header nodes can be linked together, then no arbitrary limit on file size need be imposed." (Van Wyk 2 at 142). Therefore, Van Wyk 2 inherently discloses a linked list to store and provide access to records stored in a memory of the system. (<i>See id.</i>)
		Van Wyk 2 further discloses that "[i]n the <i>reference count</i> scheme for garbage collection, each node contains a value that tells how many pointers point to it. When a node's reference count becomes zero, the node is garbage and can be collected. (Van Wyk 2 at 145). Thus, Van Wyk 2 inherently discloses that at least some of the records are automatically expiring. (<i>See id.</i>)
		Van Wyk 2 further discloses that "[h]ashing with linked lists is an excellent solution to many searching problems. At the price of some space for pointers, we obtain a table of potentially unlimited size that readily supports insertions and deletions." (Van Wyk 2 at 186).

Asserted Claims From U.S. Pat. No. 5,893,120		Christopher J. Van Wyk, Data Structures and C Programs (Addison- Wesley Publ'g Co. & Bell Telephone Laboratories, Inc. 1988) ("Van Wyk 2") alone and in combination
[1b] a record search means	[5b] a record search means	Van Wyk 2 discloses a record search means utilizing a search key to access the
utilizing a search key to	utilizing a search key to	linked list. Van Wyk 2 also discloses a record search means utilizing a search
access the linked list,	access a linked list of	key to access a linked list of records having the same hash address.
	hash address	For example Van Wyk 2 discloses that "a successful search will examine only
	nush uduress,	slots that contain items with the same hash value as that of the sought item: we
		need only examine other items when we seek space in which to store a new
		item." (Van Wyk 2 at 187).
[1c] the record search	[5c] the record search	Van Wyk 2 discloses the record search means including a means for
means including a means	means including means for	identifying and removing at least some of the expired ones of the records from
for identifying and	identifying and removing	the linked list when the linked list is accessed. Van Wyk 2 also discloses the
removing at least some of	at least some expired ones	record search means including means for identifying and removing at least
the expired ones of the	of the records from the	some expired ones of the records from the linked list of records when the
records from the linked list	linked list of records when	linked list is accessed.
when the linked list is	the linked list is accessed,	
accessed, and	and	For example, Van Wyk 2 discloses that "[i]n the <i>reference count</i> scheme for
		garbage collection, each node contains a value that tells how many pointers
		point to it. When a node's reference count becomes zero, the node is garbage
		and can be collected. (Van Wyk 2 at 145).
[1d] means, utilizing the	[5d] mea[n]s, utilizing the	Van Wyk 2 discloses means, utilizing the record search means, for accessing
record search means, for	record search means, for	the linked list and, at the same time, removing at least some of the expired ones
accessing the linked list	inserting, retrieving, and	of the records in the linked list. Van Wyk 2 also discloses utilizing the record
and, at the same time,	deleting records from the	search means, for inserting, retrieving, and deleting records from the system
removing at least some of	system and, at the same	and, at the same time, removing at least some expired ones of the records in the
the expired ones of the	time, removing at least	accessed linked list of records.
records in the linked list.	some expired ones of the	
	records in the accessed	For example, van wyk 2 discloses "[t]ne <i>lazy</i> approach to garbage collection
	inked list of records.	is to collect only in emergencies. Thus, when an allocation fails, we sweep
Joint Invalidity Contentions & Pro	duction of	2 Case No. 6:09-CV-549-LED

Documents

US2008 1290285.1

Asserted Claims From		Christopher J. Van Wyk, Data Structures and C Programs (Addison-
U.S. Pat. No. 5,893,120		Wesley Publ'g Co. & Bell Telephone Laboratories, Inc. 1988)
		("Van Wyk 2") alone and in combination
		through memory hoping to pick up and de-allocate enough garbage to permit
		the program to continue." (Van Wyk 2 at 146).
2. The information storage	6. The information storage	Van Wyk 2 discloses an information storage and retrieval system further
and retrieval system	and retrieval system	including means for dynamically determining maximum number for the record
according to claim 1	according to claim 5	search means to remove in the accessed linked list of records.
further including means for	further including means for	
dynamically determining	dynamically determining	For example, Van Wyk 2 discloses that "[0]ur programs have never used
maximum number for the	maximum number for the	free() [T]hey can leave dynamically allocated nodes unaccessibly lost in
record search means to	record search means to	space. If memory space were scarce, however, we could revise them to free
remove in the accessed	remove in the accessed	space explicitly when appropriate." (Van Wyk 2 at 136).
linked list of records.	linked list of records.	
		<i>rover</i> , which always points to the last node allocated or de-allocated As
		soon as <i>rover</i> points to a node with enough room, <i>malloc()</i> chops off a piece of the appropriate size and marks it occupied, adds the remainder of the node to
		the heap as a free node, and finally returns <i>rover</i> as a pointer to the newly
		allocated space." (Van Wyk 2 at 137). Thus, Van Wyk 2 inherently discloses
		means for dynamically determining maximum number for the record search
		means to remove in the accessed linked list of records. (See id.)
		Van Wyk 2 combined with Dirks, Thatte, the '663 patent and/or the
		Opportunistic Garbage Collection Articles discloses an information storage
		and retrieval system further including means for dynamically determining
		maximum number for the record search means to remove in the accessed
		linked list of records.
		Dirks discloses the management of memory in a computer system and more
		particularly to the allocation of address space in a virtual memory system,

Asserted Claims U.S. Pat. No. 5,8	s From 893,120	Christopher J. Van Wyk, Data Structures and C Programs (Addison- Wesley Publ'g Co. & Bell Telephone Laboratories, Inc. 1988) ("Van Wyk 2") alone and in combination
		which dynamically determines how many records to sweep/remove upon each allocation. Disclosure of these claim elements in Dirks is clearly shown in Exhibit B-2, which is hereby incorporated by reference in its entirety.
		For example, as summarized in Dirks,
		each time a VSID is assigned from the free list to a new application or thread, a fixed number of entries in the page table are scanned to determine whether they have become inactive, by checking them against the VSIDs on the recycle list. Each entry which is identified as being inactive is removed from the page table. After all of the entries in the page table have been examined in this manner, the VSIDs in the recycle list can be transferred to the free list, since all of their associated page table entries will have been removed. This approach thereby guarantees that a predetermined number of VSIDs are always available in the free list without requiring a time-consuming scan of the complete page table at once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.
		After [a] new VSID has been allocated, the system checks a flag RFLG to determine whether a recycle sweep is currently in progress (Step 20). If there is no sweep in progress, i.e. RFLG is not equal to one, a determination is made whether a sweep should be initiated. This is done by checking whether the inactive list is full, i.e. whether it contains x entries (Step 22). If the number of entries I on the inactive list is less than x, no further action is taken, and processing control returns to the operating system (Step 24). If, however, the inactive list is full at this time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are transferred to the recycle list, and an index n is reset to 1 (Step 28). The

4

Joint Invalidity Contentions & Production of Documents

Asserted Claims U.S. Pat. No. 5,8	From 93,120	Christopher J. Van Wyk, Data Structures and C Programs (Addison- Wesley Publ'g Co. & Bell Telephone Laboratories, Inc. 1988)
		("Van Wyk 2") alone and in combination system then sweeps a predetermined number of page table entries PT_i on the page table, to detect whether any of them are inactive, i.e. their associated VSID is on the recycle list (Step 30). The predetermined number of entries that are swept is identified as k, where: $k = \frac{\text{total number of page table entries}}{\frac{1}{2}}$
		<i>Id.</i> at 8:12-30. Dirks discloses that any approach can be employed to determine the number of entries to be examined during each step of the sweeping process. <i>Id.</i> at 7:37-
		40. As stated in Dirks: Any other suitable approach can be employed to determine the number of entries to be examined during each step of the sweeping process. In this
		regard, it is not necessary that the number of examined entries be fixed for each step. Rather, it might vary from one step to the next. The only criterion is that the number of entries examined on each step be such that all entries in the page table are examined in a determinable amount of time or by the occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.
		<i>Id.</i> at 7:38-46. Thus, Dirks dynamically determines the maximum number of records to sweep/remove by calculating a value <i>k</i> . <i>Id.</i> at 7:15-46, 7:66-8:56.
		As both Van Wyk 2 and Dirks relate to deletion of aged records upon the allocation of a new incoming record, one of ordinary skill in the art would have understood how to use Dirks' dynamic decision making process of determining the maximum number of records to sweep/remove in other hash tables

5

Joint Invalidity Contentions & Production of Documents

Asserted Claims From	Christopher J. Van Wyk, Data Structures and C Programs (Addison-
U.S. Pat. No. 5,893,120	Wesley Publ'g Co. & Bell Telephone Laboratories, Inc. 1988)
	("Van Wyk 2") alone and in combination
	implementations such as Van Wyk 2. Moreover, one of ordinary skill in the
	art would recognize that it would improve similar systems and methods in the
	same way. As the '120 patent states "[a] person skilled in the art will
	appreciate that the technique of removing all expired records while searching
	the linked list can be expanded to include techniques whereby not necessarily
	all expired records are removed, and that the decision regarding if and how
	many records to delete can be a dynamic one." The '120 patent at 7:10-15.
	Additionally, one of ordinary skill in the art would recognize that the result of
	combining Dirks' deletion decision procedure with Van Wyk 2 nothing more
	than the predictable use of prior art elements according to their established
	functions.
	By way of further example, one of ordinary skill in the art would have
	combined Dirks' dynamic determination of the suitable number of entries to
	examine during each step of the sweeping process with Van Wyk 2 and would
	have seen the benefits of doing so. One possible benefit, for example, is
	saving the system from performing sometimes time-consuming sweeps.
	Alternatively, one of ordinary skill in the art would be motivated to and would
	understand how to combine the system disclosed in Van Wyk 2 with the
	means for dynamically determining maximum number for the record search
	means for any annearly determining maximum number for the record search means to remove in the accessed linked list of records disclosed by Thatte. For
	example. Thatte discloses a system and method using hash tables and/or linked
	lists and further discloses means for dynamically determining the maximum
	number for the record search means to remove in the accessed linked list of
	records. The disclosure of these claim elements in Thatte is clearly shown in
	the chart of Thatte, which is hereby incorporated by reference in its entirety
	the chart of Thate, which is hereby meerporated by reference in its entitety.

Asserted Claims Fr U.S. Pat. No. 5,893,	Christopher J. Van Wyk, Data Structures and C Programs (Addison- Wesley Publ'g Co. & Bell Telephone Laboratories, Inc. 1988)
	("Van Wyk 2") alone and in combination
	 Moreover, one of ordinary skill in the art would recognize that these combinations would improve the similar systems and methods in the same way. Additionally, one of ordinary skill in the art would recognize that the result of combining Van Wyk 2 with Thatte would be nothing more than the predictable use of prior art elements according to their established functions. The resulting combination would include the capability to determine the maximum number for the record search means to remove. Further, one of ordinary skill in the art would be motivated to combine Van Wyk 2 with Thatte and recognize the benefits of doing so. For example, the removal of expired records described in Van Wyk 2 can be burdensome on the system, adding to the system's load and slowing down the system's processing. One of ordinary skill in the art would recognize that combining Van Wyk 2 with the teachings of Thatte would solve this problem by dynamically determining how many records to delete based on, among other things, the system load. Moreover, the '120 patent discloses that "[a] person skilled in the art will appreciate that the technique of removing all expired records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine Van Wyk 2 with Thatte. Alternatively, it would also be obvious to combine Van Wyk 2 with the '663 patent. Disclosure of these claim elements in the '663 patent is clearly shown in the chart of the '663 patent, which is hereby incorporated by reference in its entirety. For example, a summarized in the '663 patent:

Asserted C	laims From	Christopher J. Van Wyk, Data Structures and C Programs (Addison-
U.S. Pat. No. 5,893,120		Wesley Publ'g Co. & Bell Telephone Laboratories, Inc. 1988)
		("Van Wyk 2") alone and in combination
		during normal times when the load on the storage system is not excessive, a non-contaminating but slow deletion of records is used. This slow, non-contaminating deletion involves closing the collision-resolution chain of locations by moving a record from a later position in the chain into the position of the record
		to be deleted. This leaves no deleted record locations in the storage space to slow down future searches. U.S. Patent 4,996,663 to Nemes at 2:24-34 ("The '663 patent").
		In times of heavy use, when deletions must be done rapidly and no time is available for decontamination, the record is simply marked as "deleted" and left in place. Later non-contaminating probes in the vicinity of such deleted record locations automatically remove the contaminating deleted records by moving records in the chain as described above. <i>Id.</i> at 2:35-41.
		This hybrid hashing technique has the decided advantage of automatically eliminating contamination caused by the fast-secure deletion procedure when the slower, non-contaminating deletion is used when the load on the system is at lower levels. <i>Id.</i> at 2:42-46.
		This hybrid deletion is shown in Figure 5.

Asserted C U.S. Pat. N	laims From o. 5,893,120	Christopher J. Van Wyk, Data Structures and C Programs (Addison- Wesley Publ'g Co. & Bell Telephone Laboratories, Inc. 1988) ("Van Wyk 2") alone and in combination
		FIG.5 HYBRID DELETION fist = 5 Fist = 5 During the hybrid deletion procedure decision block 51 checks the system load is greater than a threshold. If the system load is greater than a threshold. If the system load is greater than a threshold. If the system load is greater than a threshold. If the system load is greater than the threshold, then a fast-secure delete 52 is used. Id . at 6:40-64, Figure 5. On the other hand, if the system load is less than the threshold, then a slow-non-contaminating delete 53 is used. Id . The fast-secure delete 52 does

9

Asserted C U.S. Pat. No	aims From 5, 5,893,120	Christopher J. Van Wyk, Data Structures and C Programs (Addison- Wesley Publ'g Co. & Bell Telephone Laboratories, Inc. 1988) ("Van Wyk 2") alone and in combination
		not actually delete records, rather it marks records as deleted. <i>Id.</i> at 8:1-33, Figure 7. These records are then actually deleted by a subsequent slow-non-contaminating delete 53. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
		Thus, the hybrid deletion procedure in the '663 patent dynamically determines a maximum number of records to remove. <i>See id.</i> at 6:40-64, Figure 5. If the fast-secure delete 52 is used, then maximum number of records is zero because records are not deleted they are only marked. <i>Id.</i> at 8:1-33, Figure 7. If the slow-non-contaminating delete 53 is used, then the maximum number of records to remove is all of the contaminated records in the bucket. <i>Id.</i> at 6:65- 7:68, Figures 6, 6A, 6B.
		As both Van Wyk 2 and the '663 patent relate to deletion of records from hash tables using external chaining, one of ordinary skill in the art would understood how to use the '663 patent's dynamic decision on whether to perform a deletion based on a systems load in other hash table implementations such as that described in Van Wyk 2. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the '663 patent's deletion decision procedure with Van Wyk 2 would be nothing more than the predictable use of prior art elements according to their established functions.
Asserted Claims From U.S. Pat. No. 5,893,120	Christopher J. Van Wyk, Data Structures and C Programs (Addison- Wesley Publ'g Co. & Bell Telephone Laboratories, Inc. 1988) ("Van Wyk 2") alone and in combination	
---	---	
	("Van Wyk 2") alone and in combinationBy way of further example, one of ordinary skill in the art would have combined the '663 patent's dynamic decision on whether to perform a deletion based on a systems load as taught by the '663 patent and with Van Wyk 2 and would have seen the benefits of doing so. One such benefit, for example, is that the system would avoid performing deletions when the system load exceeded a threshold.Alternatively, it would also be obvious to combine Van Wyk 2 with the Opportunistic Garbage Collection Articles.The Opportunistic Garbage Collection Articles disclose a generational based garbage collection which dynamically determines how much garbage to collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the Opportunistic Garbage Collector, OOPSLA '89 Proceedings, October 1-6, 	
	 For example, the Opportunistic Garbage Conection Afficies disclose in part. When a significant pause has been detected, a decision procedure is invoked to decide whether to garbage collect, and how many generations to scavenge. The fuller a generation is, the more likely it is to be scavenged; also, the longer the pause that has been detected, the larger the scope of the garbage collection is likely to be. <i>Design of the Opportunistic Garbage Collector</i> at 32. Every time a user-input routine is invoked, a decision routine can decide whether to garbage collect. As long as the decision routine takes no more 	

Joint Invalidity Contentions & Production of Documents

Asserted C	laims From	Christopher J. Van Wyk, Data Structures and C Programs (Addison-
U.S. Pat. N	0. 5,893,120	Wesley Publ'g Co. & Bell Telephone Laboratories, Inc. 1988)
		("Van Wyk 2") alone and in combination
		than a few milliseconds to execute, it should not interfere with
		responsiveness. Since it is only invoked at these times, it does not incur a
		continual run-time overnead. <i>Opportunistic Garbage Collection</i> at 100.
		This decision routine should take several things into account: 1) the volume
		of data allocated since the last scavenge, 2) how long it has been since the
		user has had an opportunity to interact, and 3) the height of the stack
		relative to its average height at reads since the last scavenge. If the product
		of the allocation and the compute time is high, and if the stack is low, the
		scavenge favorability measure is high. If it is especially high, a multi-
		generation scavenge is in order. <i>Id.</i>
		If these heuristics fail and a scavenge is forced instead by the filling of a
		generation's space, it is likely to happen during a significant compute-
		bound pausethe one that has just allocated the data that forced the
		collection. When the opportunistic mechanism fails to find the end of a
		pause, it may still succeed by default, embedding a scavenge pause within
		a larger pause. <i>Design of the Opportunistic Garbage Collector</i> at 32.
		As both Van Wyk 2 and the Opportunistic Garbage Collection Articles relate
		to deletion of aged records, one of ordinary skill in the art would have
		understood how to use the Opportunistic Garbage Collection Articles' dynamic
		decision on whether to perform a deletion based on a system load in other hash
		table implementations such as Van Wyk 2. Moreover, one of ordinary skill in
		the art would recognize that it would improve similar systems and methods in
		the same way. As the '120 patent states "[a] person skilled in the art will
		appreciate that the technique of removing all expired records while searching
		the linked list can be expanded to include techniques whereby not necessarily

Asserted Clair	ns From 5 893 120	Christopher J. Van Wyk, Data Structures and C Programs (Addison- Wesley Publ'g Co. & Bell Telephone Laboratories, Inc. 1988)
0.5.140.100.2	,0,0,1,1,20	("Van Wyk 2") alone and in combination
		all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the Opportunistic Garbage Collection Articles' deletion decision procedure with Van Wyk 2 would be nothing more than the predictable use of prior art elements according to their established functions.
		By way of further example, one of ordinary skill in the art would have combined the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion and how many generations to scavenge as taught by the Opportunistic Garbage Collection Articles and with Van Wyk 2 and would have seen the benefits of doing so. One such benefit, for example, is preventing slowdown of the system.
		Additionally, it would have been obvious to one of ordinary skill in the art to modify the system disclosed in Van Wyk 2 to dynamically determine the maximum number of expired records to remove in the accessed linked list of records. It is a fundamental concept in computer science and the relevant art that any variable or parameter affecting any aspect of a system can be dynamically determined based on information available to the system. One of ordinary skill in the art would have been motivated to combine the system disclosed in Van Wyk 2 with the fundamental concept of dynamically determining the maximum number of expired records to remove in an accessed linked list of records to solve a number of potential problems. For example, the removal of expired records described in Van Wyk 2can be burdensome on the system, adding to the system's load and slowing down the system's processing. Moreover, the removal could also force an interruption in real-time processing as the processing waits for the removal to complete.

Joint Invalidity Contentions & Production of Documents

Asserted C U.S. Pat. N	laims From o. 5,893,120	Christopher J. Van Wyk, Data Structures and C Programs (Addison- Wesley Publ'g Co. & Bell Telephone Laboratories, Inc. 1988) ("Van Wyk 2") alone and in combination
		One of ordinary skill in the art would have known that dynamically determining the maximum number to remove would limit the burden on the system and bound the length of any real-time interruption to prevent delays in processing. Indeed, Nemes concedes that such dynamic determination was obvious when he states in the '120 patent that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine Van Wyk 2 with Thatte, Dirks, the '663 patent, and/or the Opportunistic Garbage Collection Articles, in addition to motivations within the text of Van Wyk 2, "[a]ccess to the heap is through a single pointer, <i>rover</i> , which always points to the last node allocated or de-allocated As soon as <i>rover</i> points to a node with enough room, <i>malloc</i> () chops off a piece of the appropriate size and marks it occupied, adds the remainder of the node to the heap as a free node, and finally returns <i>rover</i> as a pointer to the newly allocated space." (Van Wyk 2 at 137).
		To the extent that dynamically determining a maximum number of expired records is not disclosed by Van Wyk 2 in combination with Dirks, Thatte, the '663 Patent, or the Opportunistic Garbage Collection References, it is disclosed by Linux 2.0.1, which describes dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed. It would have been obvious to combine Linux 2.0.1 with Van Wyk 2. For example, both Linux 2.0.1 and Van Wyk 2 describe systems and methods for performing data storage and retrieval using known programming techniques to yield a predictable result.

Asserted C U.S. Pat. No	laims From 5. 5,893,120	Christopher J. Van Wyk, Data Structures and C Programs (Addison- Wesley Publ'g Co. & Bell Telephone Laboratories, Inc. 1988) ("Van Wyk 2") alone and in combination
		When invoked, the function rt_cache_add automatically increments an integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359. When the function rt_cache_add removes an expired record, the function rt_cache_add decrements the variable rt_cache_size. See Linux 2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the number of records in the hash table (i.e., ip_rt_hash_table). Because the function rt_cache_add automatically increments and decrements the variable rt_cache_size is determined dynamically.
		Furthermore, the function rt_cache_add determines whether the number of

Asserted C	laims From	Christopher J. Van Wyk, Data Structures and C Programs (Addison- Wesley Public Co. & Bell Telephone Laboratories, Inc. 1988)
U. 5. Pal. N	0. 5,895,120	("Van Wyk 2") alone and in combination
		records in the hash table exceeds a predetermined threshold
		RT CACHE SIZE MAX. If the number of records in the hash table exceeds
		the predetermined threshold RT_CACHE_SIZE_MAX, the function
		rt_cache_add invokes a function rt_garbage_collect. See Linux
		2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
		invokes a function rt_garbage_collect_1. <i>See</i> Linux 2.0.1, route.c at
		line 1293. The function rt_garbage_collect invokes a function
		rt_garbage_collect_1. <i>See</i> Linux 2.0.1, route.c at line 1293.
		The function rt_garbage_collect_1 loops through each linked list in the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked list in the hash table, the function rt_garbage_collect_1 looks at each record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each record in a linked list, the function rt_garbage_collect_1 determines whether the record's last use time plus the record's expiration factor is later than the current time. See Linux 2.0.1, route.c at line 1122. If the record's last use time plus the record's expiration factor is less than the current time, the function rt_garbage_collect_1 removes the record from the linked list. See Linux 2.0.1, route.c at lines 1124-1130. The record's expiration factor is based on a variable expire and the record's reference count. See Linux 2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.
		After looping through all of the linked lists in this manner, the function
		rt garbage collect 1 determines again whether the number of records
		in the hash table is less than the predetermined threshold
		RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number

Asserted Claim	ms From	Christopher J. Van Wyk, Data Structures and C Programs (Addison- Wesley Public Co. & Bell Telephone Laboratorica, Inc. 1989)
U.S. Pat. No. 3	5,695,120	("Van Wyk 2") alone and in combination
		of items in the hash table is still greater than the predetermined threshold
		RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
		the variable expire and loops through each of the linked lists in the hash
		table. See Linux 2.0.1, route.c at line 1135. In this way, the function
		rt_garbage_collect_1 can remove additional records from the linked
		lists in the hash table. The function rt_garbage_collect_1 repeats this
		process until the total number of records in the hash table is less than the
		predetermined threshold RT_CACHE_SIZE_MAX.
		Under Bedrock's proposed claim constructions, the records removed by the
		function rt garbage collect 1 are "expired" records That is the
		records removed by the function rt garbage collect 1 are data items which
		after a limited time or after the occurrence of some event become obsolete,
		such that their presence in the storage system is no longer needed or desired.
		The function rt_cache_add only removes a record from a linked list when
		the record's last use time plus the fixed timeout value RT_CACHE_TIMEOUT
		is less than the current time and the record's reference count is zero. See Linux $2.0.1$ route a at line 1260. Thus, the maximum number of records that the
		function rt cache add can remove from a given linked list is limited to
		those records whose reference counts are zero
		mose records whose reference counts are zero.
		In contrast, the maximum number of records that the function
		rt_garbage_collect_1 can remove from a given linked list is not
		limited to those records whose reference counts are zero. See Linux 2.0.1,
		route.c at line 1122. Rather, the function rt_garbage_collect_1 can
		remove records whose reference counts are zero and records whose reference

Asserted Claims From U.S. Pat. No. 5,893,120		Christopher J. Van Wyk, Data Structures and C Programs (Addison- Wesley Publ'g Co. & Bell Telephone Laboratories, Inc. 1988) ("Van Wyk 2") alone and in combination
		counts are greater than zero. Consequently, the maximum number of records that the function rt_garbage_collect_1 can remove from a linked list is different than the maximum number of records that the function rt_cache_add can remove from a linked list.
 3. A method for storing and retrieving information records using a linked list to store and provide access to the records, at least some of the records automatically expiring, the method comprising the steps of: 7. A method for storing and retrieving information records using a hashing technique to provide access to the records and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring, the method comprising the steps of: 	 To the extent the preamble is a limitation, Van Wyk 2 discloses a method for storing and retrieving information records using a linked list to store and provide access to the records, at least some of the records automatically expiring. Van Wyk 2 also discloses a method for storing and retrieving information records using a hashing technique to provide access to the records and using an external chaining technique to store the records with same hash address, at least some of the records automatically expiring. For example, Van Wyk 2 discloses external data structures, explaining that <i>"File systems</i> are a familiar example of an external data structure." (Van Wyk 2 at 142). Van Wyk 2 also discloses that "[i]f the header nodes can be linked together, then no arbitrary limit on file size need be imposed." (Van Wyk 2 at 142). Therefore, Van Wyk 2 inherently discloses a linked list to store and provide access to records 	
		Van Wyk 2 further discloses that "[i]n the <i>reference count</i> scheme for garbage collection, each node contains a value that tells how many pointers point to it. When a node's reference count becomes zero, the node is garbage and can be collected. (Van Wyk 2 at 145). Thus, Van Wyk 2 inherently discloses that at

Asserted C	laims From	Christopher J. Van Wyk, Data Structures and C Programs (Addiso	n-
U.S. Pat. N	o. 5,893,120	Wesley Publ'g Co. & Bell Telephone Laboratories, Inc. 1988)	
		("Van Wyk 2") alone and in combination	
		least some of the records are automatically expiring. (See id.)	
		Van Wyk 2 further discloses that "[h]ashing with linked lists is an excellen	it
		solution to many searching problems. At the price of some space for point	ers,
		we obtain a table of potentially unlimited size that readily supports insertio	ons
		and deletions." (Van Wyk 2 at 186).	
[3a] accessing the linked	[7a] accessing a linked list	Van Wyk 2 discloses accessing a linked list of records. Van Wyk 2 also	
list of records,	of records having same	discloses accessing a linked list of records having same hash address.	
	hash address,		
		For example, Van Wyk 2 states that "[a]ccess to the heap is through a sing	le
		pointer, rover, which always points to the last node allocated or de-allocated	ed.
		As soon as <i>rover</i> points to a node with enough room, <i>malloc()</i> chops off	fa
		piece of the appropriate size and marks it occupied, adds the remainder of	the
		node to the heap as a free node, and finally returns <i>rover</i> as a pointer to the	;
		newly allocated space." (Van Wyk 2 at 137).	
[3b] identifying at least	[7b] identifying at least	Van Wyk 2 discloses identifying at least some of the automatically expired	1
some of the automatically	some of the automatically	ones of the records. Van Wyk 2 also discloses identifying at least some of	the
expired ones of the records,	expired ones of the records,	automatically expired ones of the records.	
and			
		For example, Van Wyk 2 discloses that "[i]n the <i>reference count</i> scheme for	or
		garbage collection, each node contains a value that tells how many pointers	S
		point to it. When a node's reference count becomes zero, the node is garba	ige
		and can be collected. (Van Wyk 2 at 145).	
[3c] removing at least	[7c] removing at least	Van Wyk 2 discloses removing at least some of the automatically expired	
some of the automatically	some of the automatically	records from the linked list when the linked list is accessed. Van Wyk 2 al	SO
expired records from the	expired records from the	discloses removing at least some of the automatically expired records from	the
linked list when the linked	linked list when the linked	linked list when the linked list is accessed.	
list is accessed.	list is accessed, and		
Joint Invalidity Contentions & Pro	duction of	19 Case No. 6:09-CV-549-LED)

Documents

Asserted C U.S. Pat. N	laims From o. 5,893,120	Christopher J. Van Wyk, Data Structures and C Programs (Addison- Wesley Publ'g Co. & Bell Telephone Laboratories, Inc. 1988) ("Van Wyk 2") alone and in combination
		For example, Van Wyk 2 discloses "[t]he <i>lazy</i> approach to garbage collection is to collect only in emergencies. Thus, when an allocation fails, we sweep through memory hoping to pick up and de-allocate enough garbage to permit the program to continue." (Van Wyk 2 at 146).
	[7d] inserting, retrieving or deleting one of the records from the system following the step of removing.	Van Wyk 2 discloses inserting, retrieving or deleting one of the records from the system following the step of removing.For example, Van Wyk 2 discloses that "we can delete an item from the dictionary using the straightforward algorithm to remove a node from a linked list." (Van Wyk 2 at 186).
4. The method according to claim 3 further including the step of dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed.	8. The method according to claim 7 further including the step of dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed.	 Van Wyk 2 discloses dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed. For example, Van Wyk 2 discloses that "[o]ur programs have never used free() [T]hey can leave dynamically allocated nodes unaccessibly lost in space. If memory space were scarce, however, we could revise them to free space explicitly when appropriate." (Van Wyk 2 at 136). Van Wyk 2 further states that "[a]ccess to the heap is through a single pointer, <i>rover</i>, which always points to the last node allocated or de-allocated As soon as <i>rover</i> points to a node with enough room, <i>malloc</i>() chops off a piece of the appropriate size and marks it occupied, adds the remainder of the node to the heap as a free node, and finally returns <i>rover</i> as a pointer to the newly allocated space." (Van Wyk 2 at 137). Thus, Van Wyk 2 inherently discloses
		means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records. Van Wyk 2 combined with Dirks, Thatte, the '663 patent, and/or the

Asserted Cl U.S. Pat. No	aims From 5,893,120	Christopher J. Van Wyk, Data Structures and C Programs (Addison- Wesley Publ'g Co. & Bell Telephone Laboratories, Inc. 1988)
		Opportunistic Garbage Collection Articles discloses dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed.
		Dirks discloses the management of memory in a computer system and more particularly to the allocation of address space in a virtual memory system, which dynamically determines how many records to sweep/remove upon each allocation. Disclosure of these claim elements in Dirks is clearly shown in the chart of Dirks, which is hereby incorporated by reference in its entirety.
		For example, as summarized in Dirks,
		each time a VSID is assigned from the free list to a new application or thread, a fixed number of entries in the page table are scanned to determine whether they have become inactive, by checking them against the VSIDs on the recycle list. Each entry which is identified as being inactive is removed from the page table. After all of the entries in the page table have been examined in this manner, the VSIDs in the recycle list can be transferred to the free list, since all of their associated page table entries will have been removed. This approach thereby guarantees that a predetermined number of VSIDs are always available in the free list without requiring a time-consuming scan of the complete page table at once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.
		After [a] new VSID has been allocated, the system checks a flag RFLG to determine whether a recycle sweep is currently in progress (Step 20). If there is no sweep in progress, i.e. RFLG is not equal to one, a determination is made whether a sweep should be initiated. This is done

Asserted Clair	ns From	Christopher J. Van Wyk, Data Structures and C Programs (Addison-
U.S. Pat. No. 5	5,893,120	Wesley Publ'g Co. & Bell Telephone Laboratories, Inc. 1988)
		("Van Wyk 2") alone and in combination
		by checking whether the inactive list is full, i.e. whether it contains x
		entries (Step 22). If the number of entries I on the inactive list is less than
		x, no further action is taken, and processing control returns to the
		operating system (Step 24). If, however, the inactive list is full at this
		time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
		transferred to the recycle list, and an index n is reset to 1 (Step 28). The
		system then sweeps a predetermined number of page table entries PT _i on
		the page table, to detect whether any of them are inactive, i.e. their
		associated VSID is on the recycle list (Step 30). The predetermined
		number of entries that are swept is identified as k , where:
		total number of page table entries
		k = 1000000000000000000000000000000000000
		maximum number of active threads
		<i>Ia.</i> at 8.12-50.
		Dirks discloses that any approach can be employed to determine the number of
		entries to be examined during each step of the sweeping process. <i>Id.</i> at 7:37-
		40. As stated in Dirks:
		Any other suitable approach can be employed to determine the number of
		entries to be examined during each step of the sweeping process. In this
		regard, it is not necessary that the number of examined entries be fixed for
		each step. Rather, it might vary from one step to the next. The only criterion
		is that the number of entries examined on each step be such that all entries in
		the page table are examined in a determinable amount of time or by the
		occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.
		<i>Id.</i> at 7:38-46. Thus, Dirks dynamically determines the maximum number of

Joint Invalidity Contentions & Production of Documents

Asserted C	laims From	Christopher J. Van Wyk, Data Structures and C Programs (Addison-
U.S. Pat. N	0. 5,893,120	Wesley Publ'g Co. & Bell Telephone Laboratories, Inc. 1988)
		(van wyk 2 [*]) alone and in combination records to sweep/remove by calculating a value k Id at 7:15 46 7:66 8:56
		records to sweep/remove by calculating a value k. <i>ia</i> . at 7.13-40, 7.00-8.50.
		As both Van Wyk 2 and Dirks relate to deletion of aged records upon the
		understood how to use Dirks' dynamic decision making process of determining
		the maximum number of records to sweep/remove in other hash tables
		implementations such as that described Van Wyk 2. Moreover, one of
		ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining Dirks' deletion decision procedure with Van Wyk 2 would be nothing more than the predictable use of prior art elements according to their established functions.
		By way of further example, one of ordinary skill in the art would have combined Dirks' dynamic determination of the suitable number of entries to examine during each step of the sweeping process with Van Wyk 2 and would have seen the benefits of doing so. One possible benefit, for example, is saving the system from performing sometimes time-consuming sweeps.
		Alternatively, one of ordinary skill in the art would be motivated to, and would understand how to, combine the system disclosed in Van Wyk 2 with the means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records disclosed by Thatte. For

23

Asserted Claims From	Christopher J. Van Wyk, Data Structures and C Programs (Addison-
U.S. Pat. No. 5,893,120	Wesley Publ'g Co. & Bell Telephone Laboratories, Inc. 1988)
	("Van Wyk 2") alone and in combination
	example, Thatte discloses a system and method using hash tables and/or linked
	lists and further discloses means for dynamically determining the maximum
	number for the record search means to remove in the accessed linked list of
	records. The disclosure of these claim elements in Thatte is clearly shown in
	the chart of Thatte, which is hereby incorporated by reference in its entirety.
	Moreover, one of ordinary skill in the art would recognize that these combinations would improve the similar systems and methods in the same way. Additionally, one of ordinary skill in the art would recognize that the result of combining Van Wyk 2 with Thatte would be nothing more than the predictable use of prior art elements according to their established functions. The resulting combination would include the capability to determine the maximum number for the record search means to remove.
	Further, one of ordinary skill in the art would be motivated to combine Van Wyk 2 with Thatte and recognized the benefits of doing so. For example, the removal of expired records described in Van Wyk 2can be burdensome on the system, adding to the system's load and slowing down the system's processing. One of ordinary skill in the art would recognize that combining Van Wyk 2 with the teachings of Thatte would solve this problem by dynamically determining how many records to delete based on, among other things, the system load. Moreover, the '120 patent discloses that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine Van Wyk 2 with Thatte.

Asserted Cl U.S. Pat. No	laims From o. 5,893,120	Christopher J. Van Wyk, Data Structures and C Programs (Addison- Wesley Publ'g Co. & Bell Telephone Laboratories, Inc. 1988) ("Van Wyk 2") alone and in combination
		Alternatively, it would also be obvious to combine Van Wyk 2 with the '663 patent. Disclosure of these claim elements in the '663 patent is clearly shown in the chart of the '663 patent, which is hereby incorporated by reference in its entirety. For example, as summarized in the '663 patent:
		during normal times when the load on the storage system is not excessive, a non-contaminating but slow deletion of records is used. This slow, non-contaminating deletion involves closing the collision-resolution chain of locations by moving a record from a later position in the chain into the position of the record to be deleted. This leaves no deleted record locations in the storage space to slow down future searches. U.S. Patent 4,996,663 to Nemes at 2:24-34 ("The '663 patent").
		In times of heavy use, when deletions must be done rapidly and no time is available for decontamination, the record is simply marked as "deleted" and left in place. Later non-contaminating probes in the vicinity of such deleted record locations automatically remove the contaminating deleted records by moving records in the chain as described above. <i>Id.</i> at 2:35-41.
		This hybrid hashing technique has the decided advantage of automatically eliminating contamination caused by the fast-secure deletion procedure when the slower, non-contaminating deletion is used when the load on the system is at lower levels. <i>Id.</i> at 2:42-46.

25

Asserted Cla U.S. Pat. No.	ims From 5,893,120	Christopher J. Van Wyk, Data Structures and C Programs (Addison- Wesley Publ'g Co. & Bell Telephone Laboratories, Inc. 1988) ("Van Wyk 2") alone and in combination
		This hybrid deletion is shown in Figure 5. FIG.5 HYBRID DELETION
		FAST-SECURE (FIG. 7) (FIG. 7) (FIG. 6) (FIG. 6) (FIG. 6) (FIG. 7) (FIG. 6) (FIG. 7) (FIG. 6) (FIG. 7) (FIG. 7) (FI
		<i>Id.</i> at Figure 5.
		During the hybrid deletion procedure decision block 51 checks the system load to determine if the system load is greater than a threshold. If the system load is greater than the threshold, then a fast-secure delete 52 is used. <i>Id.</i> at 6:40-64,

Joint Invalidity Contentions & Production of Documents

Asserted Claims From		Christopher J. Van Wyk, Data Structures and C Programs (Addison-
U.S. Pat. No. 5,893,120		("Van Wyk 2") alone and in combination
		 Figure 5. On the other hand, if the system load is less than the threshold, then a slow-non-contaminating delete 53 is used. <i>Id.</i> The fast-secure delete 52 does not actually delete records, rather it marks records as deleted. <i>Id.</i> at 8:1-33, Figure 7. These records are then actually deleted by a subsequent slow-non-contaminating delete 53. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B. Thus, the hybrid deletion procedure in the '663 patent dynamically determines a maximum number of records to remove. <i>See id.</i> at 6:40-64, Figure 5. If the fast-secure delete 52 is used, then maximum number of records is zero because records are not deleted they are only marked. <i>Id.</i> at 8:1-33, Figure 7. If the slow-non-contaminating delete 53 is used, then the maximum number of records to remove is all of the contaminated records in the bucket. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
		As both Van Wyk 2 and the '663 patent relate to deletion of records from hash tables using external chaining, one of ordinary skill in the art would understood how to use the '663 patent's dynamic decision on whether to perform a deletion based on a systems load in other hash table implementations such as Van Wyk 2. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the '663 patent's deletion decision procedure with Van Wyk 2 would be nothing more than the predictable use of prior art elements according to their established

Joint Invalidity Contentions & Production of Documents

 functions. By way of further example, one of ordinary skill in the art would have combined the '663 patent's dynamic decision on whether to perform a deletion based on a systems load as taught by the '663 patent and with Van Wyk 2 and would have seen the benefits of doing so. One such benefit, for example, is that the system would avoid performing deletions when the system load exceeded a threshold. Alternatively, it would also be obvious to combine Van Wyk 2 with the Opportunistic Garbage Collection Articles. The Opportunistic Garbage Collection Articles disclose a generational based garbage collection which dynamically determines how much garbage to collect. <i>See generally</i>, Paul R. Wilson and Thomas G. Moher, <i>Design of the Opportunistic Garbage Collector</i>, OOPSLA '89 Proceedings, October 1-6, 1989; Paul R. Wilson, <i>Opportunistic Garbage Collection</i>, ACM SIGPLAN Notices, Vol. 23, No. 12, December 1988. For example, the Opportunistic Garbage collection Articles disclose in part: When a significant pause has been detected, a decision procedure is invoked to decide whether to garbage collect, and how many generations to scavenge. The fuller a generation is, the more likely it is to be scavenged; also, the longer the pause that has been detected, the larger the scope of the garbage collector at 32. 	Asserted Claims From U.S. Pat. No. 5,893,120	Christopher J. Van Wyk, Data Structures and C Programs (Addison- Wesley Publ'g Co. & Bell Telephone Laboratories, Inc. 1988) ("Van Wyk 2") alone and in combination
		functions.By way of further example, one of ordinary skill in the art would have combined the '663 patent's dynamic decision on whether to perform a deletion based on a systems load as taught by the '663 patent and with Van Wyk 2 and would have seen the benefits of doing so. One such benefit, for example, is that the system would avoid performing deletions when the system load exceeded a threshold.Alternatively, it would also be obvious to combine Van Wyk 2 with the Opportunistic Garbage Collection Articles.The Opportunistic Garbage Collection Articles disclose a generational based garbage collection which dynamically determines how much garbage to collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the Opportunistic Garbage Collector, OOPSLA '89 Proceedings, October 1-6,

Asserted Claims F	Christopher J. Van Wyk, Data Structures and C Programs (Addison-
U.S. Pat. No. 5,893	Wesley Publ'g Co. & Bell Telephone Laboratories, Inc. ("Van Wyk 2") alone and in combination	1988)
	 Every time a user-input routine is invoked, a decision routine c whether to garbage collect. As long as the decision routine take than a few milliseconds to execute, it should not interfere with responsiveness. Since it is only invoked at these times, it does continual run-time overhead. <i>Opportunistic Garbage Collection</i> This decision routine should take several things into account: 1 of data allocated since the last scavenge, 2) how long it has beet user has had an opportunity to interact, and 3) the height of the relative to its average height at reads since the last scavenge. If of the allocation and the compute time is high, and if the stack is the several take the stack is the stack of the several take the stack is the several take take the several take take the several take take take take take take take take	an decide es no more not incur a on at 100.) the volume en since the stack the product is low, the
	 scavenge favorability measure is high. If it is especially high, a generation scavenge is in order. <i>Id.</i> If these heuristics fail and a scavenge is forced instead by the figeneration's space, it is likely to happen during a significant cobound pausethe one that has just allocated the data that forced collection. When the opportunistic mechanism fails to find the pause, it may still succeed by default, embedding a scavenge para larger pause. <i>Design of the Opportunistic Garbage Collector</i> As both Van Wyk 2 and the Opportunistic Garbage Collection Article decision on whether to perform a deletion based on a system load it table implementations such as Van Wyk 2. Moreover, one of ordin the art would recognize that it would improve similar systems and the same way. As the '120 patent states "[a] person skilled in the art 	multi- illing of a impute- l the end of a ause within at 32. icles relate ave les' dynamic n other hash nary skill in methods in art will

29

Asserted Cla	ims From	Christopher J. Van Wyk, Data Structures and C Programs (Addison-
U.S. Pat. No.	5,893,120	Wesley Publ'g Co. & Bell Telephone Laboratories, Inc. 1988)
		("Van Wyk 2") alone and in combination
		appreciate that the technique of removing all expired records while searching
		the linked list can be expanded to include techniques whereby not necessarily
		all expired records are removed, and that the decision regarding if and how
		many records to delete can be a dynamic one." The 120 patent at 7:10-15.
		Additionally, one of ordinary skill in the art would recognize that the result of
		combining the Opportunistic Garbage Collection Articles' deletion decision
		procedure with Van Wyk 2 would be nothing more than the predictable use of
		prior art elements according to their established functions.
		By way of further example, one of ordinary skill in the art would have
		combined the Opportunistic Garbage Collection Articles' dynamic decision on
		whether to perform a deletion and how many generations to scavenge as taught
		by the Opportunistic Garbage Collection Articles and with Van Wyk 2 and
		would have seen the benefits of doing so. One such benefit, for example, is
		that the system would only perform deletions when the system was not already
		too overloaded, thus preventing slowdown of the system.
		Additionally, it would have been obvious to one of ordinary skill in the art to
		modify the system disclosed in Van Wyk 2 to dynamically determine the
		maximum number of expired records to remove in the accessed linked list of
		records. It is a fundamental concept in computer science and the relevant art
		that any variable or parameter affecting any aspect of a system can be
		dynamically determined based on information available to the system. One of
		ordinary skill in the art would have been motivated to combine the system
		disclosed in Van Wyk 2 with the fundamental concept of dynamically
		determining the maximum number of expired records to remove in an accessed
		linked list of records to solve a number of potential problems. For example,
		the removal of expired records described in Van Wyk 2 can be burdensome on

Asserted Claims From U.S. Pat. No. 5,893,120		Christopher J. Van Wyk, Data Structures and C Programs (Addison- Wesley Publ'g Co. & Bell Telephone Laboratories, Inc. 1988) ("Van Wyk 2") alone and in combination
		the system, adding to the system's load and slowing down the system's processing. Moreover, the removal could also force an interruption in real- time processing as the processing waits for the removal to complete.
		one of ordinary skill in the art would have known that dynamically determining the maximum number to remove would limit the burden on the system and bound the length of any real-time interruption to prevent delays in processing. Indeed, Nemes concedes that such dynamic determination was obvious when he states in the '120 patent that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine Van Wyk 2 with Thatte, Dirks, the '663 patent, and/or the Opportunistic Garbage Collection Articles in addition to motivations within the text of Van Wyk 2, "[a]ccess to the heap is through a single pointer, <i>rover</i> , which always points to the last node allocated or de-allocated As soon as <i>rover</i> points to a node with enough room, <i>malloc()</i> chops off a piece of the appropriate size and marks it occupied, adds the remainder of the node to the heap as a free node, and finally returns <i>rover</i> as a pointer to the newly allocated space." (Van Wyk 2 at 137).
		To the extent that dynamically determining a maximum number of expired records is not disclosed by Van Wyk 2 in combination with Dirks, Thatte, the '663 Patent, or the Opportunistic Garbage Collection References, it is disclosed by Linux 2.0.1, which describes dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed. It would have been obvious to combine Linux 2.0.1 with Van Wyk

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	Christopher J. Van Wyk, Data Structures and C Programs (Addison- Wesley Publ'g Co. & Bell Telephone Laboratories, Inc. 1988) ("Van Wyk 2") alone and in combination
	2. For example, both Linux 2.0.1 and Van Wyk 2 describe systems and methods for performing data storage and retrieval using known programming techniques to yield a predictable result.
	When invoked, the function rt_cache_add automatically increments an integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359. When the function rt_cache_add removes an expired record, the function rt_cache_add decrements the variable rt_cache_size. See Linux 2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the number of records in the hash table (i.e., ip_rt_hash_table). Because the function rt_cache_add automatically increments and decrements the variable rt_cache_size is determined dynamically.
	Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1. The function rt_garbage_collect_1 loops through each of the linked lists in the ip_rt_hash_table global variable. <i>See</i> Linux 2.0.1, route.c at lines 1122-1138. In this way, the function rt_garbage_collect_1 accesses the linked list. When the function rt_garbage_collect_1 identifies a record that is expired, the function rt_garbage_collect_1 decrements the variable rt_cache_size and frees the record. <i>See</i> Linux 2.0.1, route.c at lines 1128-1135. Because all records in the linked list can be expired and all records in the hash table can be in the linked list, the variable rt_cache_size can represent a dynamically determined maximum number of expired ones of the records to

32

Asserted C	laims From	Christopher J. Van Wyk, Data Structures and C Programs (Addison-
U.S. Pat. No	0. 5,893,120	Wesley Publ'g Co. & Bell Telephone Laboratories, Inc. 1988)
		("Van Wyk 2") alone and in combination
		rt_garbage_collect_1 determines again whether the number of records
		in the hash table is less than the predetermined threshold
		RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
		of items in the hash table is still greater than the predetermined threshold
		RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
		the variable expire and loops through each of the linked lists in the hash
		table. See Linux 2.0.1, route.c at line 1135. In this way, the function
		rt_garbage_collect_1 can remove additional records from the linked
		lists in the hash table. The function rt_garbage_collect_1 repeats this
		process until the total number of records in the hash table is less than the
		predetermined threshold RT_CACHE_SIZE_MAX.
		Under Bedrock's proposed claim constructions, the records removed by the
		function rt_garbage_collect_1 are "expired" records. That is, the
		records removed by the function rt_garbage_collect_1 are data items which
		after a limited time or after the occurrence of some event become obsolete,
		such that their presence in the storage system is no longer needed or desired.
		The function rt_cache_add only removes a record from a linked list when
		the record's last use time plus the fixed timeout value RT_CACHE_TIMEOUT
		is less than the current time and the record's reference count is zero. See Linux
		2.0.1, route.c at line 1369. Thus, the maximum number of records that the
		function rt_cache_add can remove from a given linked list is limited to
		those records whose reference counts are zero.
		In contrast, the monimum number of mean letter the formation
		in contrast, the maximum number of records that the function
		rt_garbage_collect_1 can remove from a given linked list is not

Asserted Claims From U.S. Pat. No. 5,893,120	Christopher J. Van Wyk, Data Structures and C Programs (Addison- Wesley Publ'g Co. & Bell Telephone Laboratories, Inc. 1988)
	("Van Wyk 2") alone and in combination
	limited to those records whose reference counts are zero. <i>See</i> Linux 2.0.1, route.c at line 1122. Rather, the function rt_garbage_collect_1 can remove records whose reference counts are zero and records whose reference counts are greater than zero.
	Consequently, the maximum number of records that the function rt_garbage_collect_1 can remove from a linked list is different than the maximum number of records that the function rt_cache_add can remove from a linked list.

35

Asserted Claims From		Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
U.S. Pat. No. 5,893,120		Benjamin/Cummings Publ'g Co. 1993) alone and in combination
1. An information storage	5. An information storage	To the extent the preamble is a limitation, Weiss discloses an information
and retrieval system, the	and retrieval system, the	storage and retrieval system.
system comprising:	system comprising:	
		For example, Weiss discloses that a "linked list consists of a series of
		structures, which are not necessarily adjacent in memory. Each structure
		contains the element and a pointer to a structure containing its successor."
		Weiss at 43. Thus, Weiss inherently discloses an information storage and
		retrieval system. See id.
[1a] a linked list to store	[5a] a hashing means to	Weiss discloses a linked list to store and provide access to records stored in a
and provide access to	provide access to records	memory of the system, at least some of the records automatically expiring.
records stored in a memory	stored in a memory of the	Weiss also discloses a hashing means to provide access to records stored in a
of the system, at least some	system and using an	memory of the system and using an external chaining technique to store the
of the records	external chaining technique	records with same hash address, at least some of the records automatically
automatically expiring,	to store the records with	expiring.
	same hash address, at least	
	some of the records	For example, Weiss discloses that a "linked list consists of a series of
	automatically expiring,	structures, which are not necessarily adjacent in memory. Each structure
		contains the element and a pointer to a structure containing its successor."
		Weiss at 43.
		Weiss further discloses that "hashing is a technique used for performing
		insertions deletions and finds in constant average time." Weiss at 149. Weiss
		discloses a method of collision resolution called Open Hashing (Separate
		Chaining) which "keeps a list of all elements that hash to the same value."
		Weiss at 152. "The hash table structure contains the actual size and an array of
		linked lists, which are dynamically allocated when the table is initialized. The
		HASH_TABLE type is just a pointer to this structure." Weiss at 153-54.
[1b] a record search means	[5b] a record search means	Weiss discloses a record search means utilizing a search key to access the
utilizing a search key to	utilizing a search key to	linked list. Weiss also discloses a record search means utilizing a search key to
Joint Invalidity Contentions & Pro	duction of	1 Case No. 6:09-CV-549-LED

Joint Invalidity Contentions & Production of Documents

Asserted Claims From		Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The	
U.S. Pat. No	b. 5,893,120	Benjamin/Cummings Publ'g Co. 1993) alone and in combination	
access the linked list,	access a linked list of records having the same	access a linked list of records having the same hash address.	
	hash address,	For example, Weiss discloses accessing by way of an insert command, "the insert command requires obtaining a new cell from the system by using an <i>malloc</i> call (more on this later) and then executing two pointer maneuvers. The general idea is shown in Figure 3.4. The dashed line represents the old pointer." Weiss at 44.	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		Figure 3.4 Insertion into a linked list	
		Further, Weiss discloses, "[d]eciding what to do when two keys hash to the same value (this is known as a <i>collision</i>)." Weiss at 150. Weiss also discloses that "when inserting an element, it hashes to the same value as an already inserted element, then we have a collision and need to resolve it." Weiss at 152.	
[1c] the record search	[5c] the record search	Weiss discloses the record search means including a means for identifying and	
means including a means for identifying and	means including means for identifying and removing	removing at least some of the expired ones of the records from the linked list when the linked list is accessed. Weiss also discloses the record search means	

2

Asserted Claims From		Mark Allen Weiss, <i>Data Structures & Algorithm Analysis in C</i> (The Bonismin/Cummings Public Co. 1993) along and in combination
U.S. Pat. N removing at least some of the expired ones of the records from the linked list when the linked list is accessed, and	at least some expired ones of the records from the linked list of records when the linked list is accessed, and	 Benjamin/Cummings Publ'g Co. 1993) alone and in combination including means for identifying and removing at least some expired ones of the records from the linked list of records when the linked list is accessed. For example, Weiss discloses that "[w]hen things are no longer needed, you can issue a <i>free</i> command to inform the system that it may reclaim the space. A consequence of the <i>free</i>(p) command is that the address that p is pointing to is unchanged, but the data that resides at that address is now undefined." Weiss at 50. To the extent that Bedrock argues that Weiss does not anticipate this claim element, it would have been obvious to one of ordinary skill in the art to combine Weiss with Kruse. Kruse discloses "[t]he task of the procedure Vivify is to traverse the list live, determine whether each cell on it satisfies the conditions to become alive, and vivify it if so, else delete it from the list. The usual way to facilitate deletion from a linked list is to keep two pointers in lock step, one position apart, while traversing the list." "Let us take advantage of the indirect linkage of our lists, and when we wish to delete an entry form the list, let us leave the node in place, but set its entry field to nil. In this way, the node will be flagged as empty when it is again encountered in the procedure AddNeighbors." Kruse at 219. Thus, Weiss and Kruse show that one of ordinary skill in the art understood how to identify and remove at least some expired ones of the records from the linked list of records when the linked list is accessed, and would recognize that it would improve similar systems and methods in the same way.
[1d] means, utilizing the record search means, for accessing the linked list and, at the same time,	[5d] mea[n]s, utilizing the record search means, for inserting, retrieving, and deleting records from the	Weiss discloses means, utilizing the record search means, for accessing the linked list and, at the same time, removing at least some of the expired ones of the records in the linked list. Weiss also discloses utilizing the record search means, for inserting, retrieving, and deleting records from the system and, at

Asserted Claims From		Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
U.S. Pat. No. 5,893,120		Benjamin/Cummings Publ'g Co. 1993) alone and in combination
removing at least some of	system and, at the same	the same time, removing at least some expired ones of the records in the
the expired ones of the	time, removing at least	accessed linked list of records.
records in the linked list.	some expired ones of the	
	records in the accessed	For example, Weiss discloses method of retrieving records in a find routine as
	linked list of records.	shown in figure 3.10.
		Figure 3.10 Find routine
		<pre>/* Return position of x in L; NULL if not found */ h to a check % position find(element_type x, LIST L) { position p; /*1*/</pre>

4

Asserted Claims From U.S. Pat. No. 5,893,120	Mark Allen Weiss, <i>Data Structures & Algorithm Analysis in C</i> (The Benjamin/Cummings Publ'g Co. 1993) alone and in combination	
	Figure 3.12 Find_previous—the find routine for use with delete	
	/* Insert (after legal position p).*/	
	/* Header implementation assumed. */	
	<pre>void insert(element.type x, LIST L, position p) {</pre>	
	Weiss at 48.	
	weiss further discloses that a "deletion routine is a straightforward implementation of deletion in a linked list, so we will not bother with it here." Weiss at156. Weiss also discloses that "[a]fter a deletion in a linked list, it is usually a good idea to free the cell, especially if there are lots of insertions and deletions intermingled and memory might become a problem."	

5

Joint Invalidity Contentions & Production of Documents

Asserted C U.S. Pat. N	laims From o. 5,893,120	Mark Allen Weiss, <i>Data Structures & Algorithm Analysis in C</i> (The Benjamin/Cummings Publ'g Co. 1993) alone and in combination		
		Figure 3.15 Correct way	to delete a list	
		void		4
		delete_list(LIST L)	V
		i position	p, tmp;	
		/*l*/ p = L->n /*2*/ L->next : /*3*/ while(p	ext; /* header assumed */ = NULL; != NULL)	
		/*4*/ tmm		
		/*5*/ fre	e(p);	
		/*6*/ p =	tmp;	
		}		
		Weiss at 50.		
2. The information storage and retrieval system according to claim 1 further including means for	6. The information storage and retrieval system according to claim 5 further including means for	Weiss discloses an informeans for dynamically d means to remove in the a	nation storage and retrieval system etermining maximum number for the accessed linked list of records.	further including he record search
dynamically determining maximum number for the record search means to remove in the accessed linked list of records.	dynamically determining maximum number for the record search means to remove in the accessed linked list of records.	For example, Weiss disc hash table, and in Figure dynamically determine w determination inherently of expired ones of the rec	loses in Figure 5.8, an initialization 5.1, an insert routine for open hash when there is a fatal error due to a la discloses dynamically determining cords to remove. Weiss at 154-56.	a routine for open a table, that can ack of space. This g maximum number

6

Asserted Cl U.S. Pat. No	aims From Ma b. 5,893,120 Be	rk Allen Weiss, <i>Data Structures & Algorithm Analysis in C</i> (The njamin/Cummings Publ'g Co. 1993) alone and in combination
	Figure	5.8 Initialization routine for open hash table
	*/*8*/ /*9*/ /*10*	HASH_TABLE initialize_table(unsigned int table_size) { /* Allocate list pointers */ H->the_lists = (position *) if(H->the_lists == NULL) fatal_error("Out of space!!!");
		/* Allocate list headers */
	· /*Ъъ*/	for(i=0; i <h->table_size; i++)</h->
	/*12*/	H->the_lists[i] = (LIST) malloc
	(17	(sizeof (struct list_node));
	/*D3*/	if(H->the_lists[i] == NULL)
	/*54*/	<pre>Intal.error("Out of space!!!"); </pre>
	/*15*/	H->the_lists[i]->next = NULL;

7

Asserted Claims From	Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The	
U.S. Pat. No. 5,893,120	Benjamin/Cummings Publ'g Co. 1993) alone and in combination	
Asserted Claims From U.S. Pat. No. 5,893,120	<pre>Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The Benjamin/Cummings Publ'g Co. 1993) alone and in combination void insert(element_type key, HASH_TABLE H) { position pos, new_cell; LIST L; /*1*/ pos = find(key, H); /*2*/ if(pos = NULL)</pre>	
	fundamental concept in computer science and the relevant art that any variable	
	or parameter affecting any aspect of a system can be dynamically determined	
	based on information available to the system. One of ordinary skill in the art	

8

Asserted Claims From	Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
U.S. Pat. No. 5,893,120	Benjamin/Cummings Publ'g Co. 1993) alone and in combination
	would have been motivated to combine the system disclosed in Weiss with the fundamental concept of dynamically determining the maximum number of expired records to remove in an accessed linked list of records to solve a number of potential problems. For example, the removal of expired records described in Weiss can be burdensome on the system, adding to the system's load and slowing down the system's processing. Moreover, the removal could also force an interruption in real-time processing as the processing waits for the removal to complete. Indeed, part of the motivation for the system disclosed in Weiss is avoiding these problems. One of ordinary skill in the art would have known that dynamically determining the maximum number to remove would limit the burden on the system and bound the length of any real-time interruption to prevent delays in processing. Indeed, Nemes concedes that such dynamic determination was obvious when he states in the '120 patent that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15.
	 Weiss combined with Dirks, Thatte, the '663 patent and/or the Opportunistic Garbage Collection Articles discloses an information storage and retrieval system further including means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records. Dirks discloses the management of memory in a computer system and more particularly to the allocation of address space in a virtual memory system, which dynamically determines how many records to sweep/remove upon each allocation. Disclosure of these claim elements in Dirks is clearly shown in

9

Asserted Claims From	Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
U.S. Pat. No. 5,893,120	Benjamin/Cummings Publ'g Co. 1993) alone and in combination
	Exhibit B-2, which is hereby incorporated by reference in its entirety.
	r or example, as summarized in Dirks,
	each time a VSID is assigned from the free list to a new application or thread, a fixed number of entries in the page table are scanned to determine whether they have become inactive, by checking them against the VSIDs on the recycle list. Each entry which is identified as being inactive is removed from the page table. After all of the entries in the page table have been examined in this manner, the VSIDs in the recycle list can be transferred to the free list, since all of their associated page table entries will have been removed. This approach thereby guarantees that a predetermined number of VSIDs are always available in the free list without requiring a time-consuming scan of the complete page table at once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.
	After [a] new VSID has been allocated, the system checks a flag RFLG to determine whether a recycle sweep is currently in progress (Step 20). If there is no sweep in progress, i.e. RFLG is not equal to one, a determination is made whether a sweep should be initiated. This is done by checking whether the inactive list is full, i.e. whether it contains x entries (Step 22). If the number of entries I on the inactive list is less than x, no further action is taken, and processing control returns to the operating system (Step 24). If, however, the inactive list is full at this time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are transferred to the recycle list, and an index n is reset to 1 (Step 28). The system then sweeps a predetermined number of page table entries PT _i on the page table, to detect whether any of them are inactive, i.e. their associated VSID is on the recycle list (Step 30). The predetermined

Asserted Claims From	Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
U.S. Pat. No. 5,893,120	Benjamin/Cummings Publ'g Co. 1993) alone and in combination
	number of entries that are swept is identified as k, where: $k = \frac{\text{total number of page table entries}}{\text{maximum number of active threads}}$ <i>Id.</i> at 8:12-30.
	Dirks discloses that any approach can be employed to determine the number of entries to be examined during each step of the sweeping process. <i>Id.</i> at 7:37-40. As stated in Dirks:
	Any other suitable approach can be employed to determine the number of entries to be examined during each step of the sweeping process. In this regard, it is not necessary that the number of examined entries be fixed for each step. Rather, it might vary from one step to the next. The only criterion is that the number of entries examined on each step be such that all entries in the page table are examined in a determinable amount of time or by the occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.
	<i>Id.</i> at 7:38-46. Thus, Dirks dynamically determines the maximum number of records to sweep/remove by calculating a value <i>k. Id.</i> at 7:15-46, 7:66-8:56.
	As both Weiss and Dirks relate to deletion of aged records upon the allocation of a new incoming record, one of ordinary skill in the art would have understood how to use Dirks' dynamic decision making process of determining the maximum number of records to sweep/remove in other hash tables implementations such as Weiss. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching

11

Joint Invalidity Contentions & Production of Documents
Asserted Claims From	Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
U.S. Pat. No. 5,893,120	Benjamin/Cummings Publ'g Co. 1993) alone and in combination
	the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining Dirks' deletion decision procedure with Weiss nothing more than the predictable use of prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have combined Dirks' dynamic determination of the suitable number of entries to examine during each step of the sweeping process with Weiss and would have seen the benefits of doing so. One possible benefit, for example, is saving the system from performing sometimes time-consuming sweeps.`
	Alternatively, one of ordinary skill in the art would be motivated to, and would understand how to, combine the system disclosed in Weiss with the means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records disclosed by Thatte. For example, Thatte discloses a system and method using hash tables and/or linked lists and further discloses means for dynamically determining the maximum number for the record search means to remove in the accessed linked list of records. The disclosure of these claim elements in Thatte is clearly shown in the chart of Thatte, which is hereby incorporated by reference in its entirety.
	Moreover, one of ordinary skill in the art would recognize that these combinations would improve the similar systems and methods in the same way. Additionally, one of ordinary skill in the art would recognize that the result of combining Weiss with Thatte would be nothing more than the predictable use of prior art elements according to their established functions.

Asserted Claims From	Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
U.S. Pat. No. 5,893,120	Benjamin/Cummings Publ'g Co. 1993) alone and in combination
	The resulting combination would include the capability to determine the maximum number for the record search means to remove.
	with Thatte and recognize the benefits of doing so. For example, the removal of expired records described in Weiss can be burdensome on the system, adding to the system's load and slowing down the system's processing. One of ordinary skill in the art would recognize that combining Weiss with the teachings of Thatte would solve this problem by dynamically determining how many records to delete based on, among other things, the system load. Moreover, the '120 patent discloses that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120
	patent provides motivations to combine Weiss with Thatte. Alternatively, it would also be obvious to combine Weisswith the '663 patent. Disclosure of these claim elements in the '663 patent is clearly shown in the chart of the '663 patent, which is hereby incorporated by reference in its entirety. For example, as summarized in the '663 patent: during normal times when the load on the storage system is not excessive, a non-contaminating but slow deletion of records is used. This slow, non-contaminating deletion involves closing the collision-resolution chain of locations by moving a record from a later position in the chain into the position of the record to be deleted. This leaves no deleted record locations in the storage among to slow down future correlations.

13

Joint Invalidity Contentions & Production of Documents

Asserted Claims From	Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
U.S. Pat. No. 5,893,120	Benjamin/Cummings Publ'g Co. 1993) alone and in combination
	4,996,663 to Nemes at 2:24-34 ("The '663 patent").
	In times of heavy use, when deletions must be done rapidly and no time is available for decontamination, the record is simply marked as "deleted" and left in place. Later non-contaminating probes in the vicinity of such deleted record locations automatically remove the contaminating deleted records by moving records in the chain as described above. <i>Id.</i> at 2:35-41.
	 This hybrid hashing technique has the decided advantage of automatically eliminating contamination caused by the fast-secure deletion procedure when the slower, non-contaminating deletion is used when the load on the system is at lower levels. <i>Id.</i> at 2:42-46. This hybrid deletion is shown in Figure 5.

Asserted Claims From	Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
U.S. Pat. No. 5,893,120	Benjamin/Cummings Publ'g Co. 1993) alone and in combination
	FIG.5 HYBRID DELETION YES SYSTEM LOAD > THRESHOLD FAST-SECURE JELETE (FIG.7) SLOW-NON- CONTAMINATING JELETE (FIG.6) SLOW-START SLOW-NON- CONTAMINATING JELETE (FIG.6) SLOW-START SLOW-NON- CONTAMINATING START SLOW-NON- CONTAMINATING START SLOW-SL
	<i>Id.</i> at Figure 5. During the hybrid deletion procedure decision block 51 checks the system load to determine if the system load is greater than a threshold. If the system load is greater than the threshold, then a fast-secure delete 52 is used. <i>Id.</i> at 6:40-64, Figure 5. On the other hand, if the system load is less than the threshold, then a slow-non-contaminating delete 53 is used. <i>Id.</i> The fast-secure delete 52 does not actually delete records, rather it marks records as deleted. <i>Id.</i> at 8:1-33,

15

Asserted Claims From	Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
U.S. Pat. No. 5,893,120	Benjamin/Cummings Publ'g Co. 1993) alone and in combination
	Figure 7. These records are then actually deleted by a subsequent slow-non-contaminating delete 53. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
	Thus, the hybrid deletion procedure in the '663 patent dynamically determines a maximum number of records to remove. <i>See id.</i> at 6:40-64, Figure 5. If the fast-secure delete 52 is used, then maximum number of records is zero because records are not deleted they are only marked. <i>Id.</i> at 8:1-33, Figure 7. If the slow-non-contaminating delete 53 is used, then the maximum number of records to remove is all of the contaminated records in the bucket. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
	As both Weiss and the '663 patent relate to deletion of records from hash tables using external chaining, one of ordinary skill in the art would understood how to use the '663 patent's dynamic decision on whether to perform a deletion based on a systems load in other hash table implementations such as that described in Weiss. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the '663 patent's deletion decision procedure with Weiss would be nothing more than the predictable use of prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have combined the '663 patent's dynamic decision on whether to perform a deletion

Joint Invalidity Contentions & Production of Documents

Asserted Claims From	Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
U.S. Pat. No. 5,893,120	Benjamin/Cummings Publ'g Co. 1993) alone and in combination
	based on a systems load as taught by the '663 patent and with Weiss and would have seen the benefits of doing so. One such benefit, for example, is that the
	system would avoid performing deletions when the system load exceeded a threshold.
	Alternatively, it would also be obvious to combine Weiss with the Opportunistic Garbage Collection Articles.
	The Opportunistic Garbage Collection Articles disclose a generational based garbage collection which dynamically determines how much garbage to collect. <i>See generally</i> , Paul R. Wilson and Thomas G. Moher, <i>Design of the Opportunistic Garbage Collector</i> , OOPSLA '89 Proceedings, October 1-6, 1989; Paul R. Wilson, <i>Opportunistic Garbage Collection</i> , ACM SIGPLAN Notices, Vol. 23, No. 12, December 1988.
	For example, the Opportunistic Garbage Collection Articles disclose in part:
	When a significant pause has been detected, a decision procedure is invoked to decide whether to garbage collect, and how many generations to scavenge. The fuller a generation is, the more likely it is to be scavenged; also, the longer the pause that has been detected, the larger the scope of the garbage collection is likely to be. <i>Design of the Opportunistic Garbage</i> <i>Collector</i> at 32.
	Every time a user-input routine is invoked, a decision routine can decide whether to garbage collect. As long as the decision routine takes no more than a few milliseconds to execute, it should not interfere with responsiveness. Since it is only invoked at these times, it does not incur a continual run-time overhead. <i>Opportunistic Garbage Collection</i> at 100.

Asserted Claims From	Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
U.S. Pat. No. 5,893,120	Benjamin/Cummings Publ'g Co. 1993) alone and in combination
	This decision routine should take several things into account: 1) the volume of data allocated since the last scavenge, 2) how long it has been since the user has had an opportunity to interact, and 3) the height of the stack relative to its average height at reads since the last scavenge. If the product of the allocation and the compute time is high, and if the stack is low, the scavenge favorability measure is high. If it is especially high, a multi-generation scavenge is in order. <i>Id</i> .
	If these heuristics fail and a scavenge is forced instead by the filling of a generation's space, it is likely to happen during a significant compute- bound pausethe one that has just allocated the data that forced the collection. When the opportunistic mechanism fails to find the end of a pause, it may still succeed by default, embedding a scavenge pause within a larger pause. <i>Design of the Opportunistic Garbage Collector</i> at 32.
	As both Weiss and the Opportunistic Garbage Collection Articles relate to deletion of aged records, one of ordinary skill in the art would have understood how to use the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion based on a system load in other hash table implementations such as Weiss. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the Opportunistic Garbage Collection Articles' deletion decision

Asserted Claims From	Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
U.S. Pat. No. 5,893,120	Benjamin/Cummings Publ'g Co. 1993) alone and in combination
	procedure with Weiss would be nothing more than the predictable use of prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have combined the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion and how many generations to scavenge as taught by the Opportunistic Garbage Collection Articles and with Weiss and would have seen the benefits of doing so. One such benefit, for example, is preventing slowdown of the system.
	Additionally, it would have been obvious to one of ordinary skill in the art to modify the system disclosed in Weiss to dynamically determine the maximum number of expired records to remove in the accessed linked list of records. It is a fundamental concept in computer science and the relevant art that any variable or parameter affecting any aspect of a system can be dynamically determined based on information available to the system. One of ordinary skill in the art would have been motivated to combine the system disclosed in Weiss with the fundamental concept of dynamically determining the maximum number of expired records to remove in an accessed linked list of records to solve a number of potential problems. For example, the removal of expired records described in Weisscan be burdensome on the system, adding to the system's load and slowing down the system's processing. Moreover, the removal could also force an interruption in real-time processing as the processing waits for the removal to complete.
	One of ordinary skill in the art would have known that dynamically determining the maximum number to remove would limit the burden on the system and bound the length of any real-time interruption to prevent delays in processing. Indeed, Nemes concedes that such dynamic determination was

Joint Invalidity Contentions & Production of Documents

Asserted Claims From	Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
U.S. Pat. No. 5,893,120	Benjamin/Cummings Publ'g Co. 1993) alone and in combination
	obvious when he states in the '120 patent that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine Weiss with Thatte, Dirks, the '663 patent, and/or the Opportunistic Garbage Collection Articles, in addition to motivations within the text of Weiss, such as the initialization routine of Figure 5.8, and the insert routine of Figure 5.1 that can dynamically determine when there is a fatal error due to a lack of space. Weiss at 154-56. To the extent that dynamically determining a maximum number of expired records is not disclosed by Weiss in combination with Dirks, Thatte, the '663 Patent, or the Opportunistic Garbage Collection References, it is disclosed by Linux 2.0.1, which describes dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed. It
	 would have been obvious to combine Linux 2.0.1 with Weiss. For example, both Linux 2.0.1 and Weiss describe systems and methods for performing data storage and retrieval using known programming techniques to yield a predictable result. When invoked, the function rt_cache_add automatically increments an integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359. When the function rt_cache_add removes an expired record, the function rt_cache_add decrements the variable rt_cache_size. See Linux 2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the number of records in the hash table (i.e., ip_rt_hash_table). Because the function rt_cache_add automatically increments and decrements the

Asserted Claims From	Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
U.S. Pat. No. 5,893,120	Benjamin/Cummings Publ'g Co. 1993) alone and in combination
	variable rt_cache_size, the variable rt_cache_size is determined dynamically.
	Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1. The function rt_garbage_collect_1 loops through each of the linked lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at lines 1122-1138. In this way, the function rt_garbage_collect_1 accesses the linked list. When the function rt_garbage_collect_1 identifies a record that is expired, the function rt_garbage_collect_1 decrements the variable rt_cache_size and frees the record. See Linux 2.0.1, route.c at lines 1128-1135.
	Because all records in the linked list can be expired and all records in the hash table can be in the linked list, the variable rt_cache_size can represent a dynamically determined maximum number of expired ones of the records to remove when function rt_garbage_collect_1 accesses the linked list.
	Furthermore, the function rt_cache_add determines whether the number of records in the hash table exceeds a predetermined threshold RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_cache_add invokes a function rt_garbage_collect. <i>See</i> Linux 2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect invokes a function rt_garbage_collect_1. <i>See</i> Linux 2.0.1, route.c at line 1293. The function rt_garbage_collect invokes a function rt_garbage_collect_1. <i>See</i> Linux 2.0.1, route.c at line 1293. The function rt_garbage_collect invokes a function rt_garbage_collect_1. <i>See</i> Linux 2.0.1, route.c at line 1293.

21

Asserted Claims From	Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
U.S. Pat. No. 5,893,120	Benjamin/Cummings Publ'g Co. 1993) alone and in combination
	The function rt_garbage_collect_1 loops through each linked list in the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked list in the hash table, the function rt_garbage_collect_1 looks at each record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each record in a linked list, the function rt_garbage_collect_1 determines whether the record's last use time plus the record's expiration factor is later than the current time. See Linux 2.0.1, route.c at line 1122. If the record's last use time plus the record's expiration factor is less than the current time, the function rt_garbage_collect_1 removes the record from the linked list. See Linux 2.0.1, route.c at lines 1124-1130. The record's expiration factor is based on a variable expire and the record's reference count. See Linux 2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110. After looping through all of the linked lists in this manner, the function rt_garbage_collect_1 determines again whether the number of records in the hash table is less than the predatermined threshold
	In the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number of items in the hash table is still greater than the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves the variable expire and loops through each of the linked lists in the hash table. See Linux 2.0.1, route.c at line 1135. In this way, the function rt_garbage_collect_1 can remove additional records from the linked lists in the hash table. The function rt_garbage_collect_1 repeats this process until the total number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX.

Joint Invalidity Contentions & Production of Documents

Asserted C U.S. Pat. N	laims From o. 5,893,120	Mark Allen Weiss, <i>Data Structures & Algorithm Analysis in C</i> (The Benjamin/Cummings Publ'g Co. 1993) alone and in combination
U.S. Pat. N	o. 5,893,120	Benjamin/Cummings Publ'g Co. 1993) alone and in combinationfunction rt_garbage_collect_1 are "expired" records. That is, therecords removed by the function rt_garbage_collect_1 are data items whichafter a limited time or after the occurrence of some event become obsolete,such that their presence in the storage system is no longer needed or desired.The function rt_cache_add only removes a record from a linked list whenthe record's last use time plus the fixed timeout value RT_CACHE_TIMEOUTis less than the current time and the record's reference count is zero. See Linux2.0.1, route.c at line 1369. Thus, the maximum number of records that thefunction rt_cache_add can remove from a given linked list is limited tothose records whose reference counts are zero.In contrast, the maximum number of records that the functionrt_garbage_collect_1 can remove from a given linked list is notlimited to those records whose reference counts are zero. See Linux 2.0.1,route.c at line 1122. Rather, the function rt_garbage_collect_1 canremove meends whose reference counts are zero and records whose reference
		counts are greater than zero.
		Consequently, the maximum number of records that the function rt_garbage_collect_1 can remove from a linked list is different than the maximum number of records that the function rt_cache_add can remove from a linked list.
3. A method for storing and retrieving information records using a linked list to store and provide access	7. A method for storing and retrieving information records using a hashing technique to provide access	To the extent the preamble is a limitation, Weiss discloses a method for storing and retrieving information records using a linked list to store and provide access to the records, at least some of the records automatically expiring. Weiss also discloses a method for storing and retrieving information records

Asserted Claims From		Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
U.S. Pat. N	0. 5,893,120	Benjamin/Cummings Publ'g Co. 1993) alone and in combination
to the records, at least	to the records and using an	using a hashing technique to provide access to the records and using an
some of the records	external chaining technique	external chaining technique to store the records with same hash address, at
automatically expiring, the	to store the records with	least some of the records automatically expiring.
method comprising the	same hash address, at least	
steps of:	some of the records	For example, Weiss discloses that a "linked list consists of a series of
	automatically expiring, the	structures, which are not necessarily adjacent in memory. Each structure
	method comprising the	contains the element and a pointer to a structure containing its successor."
	steps of:	Weiss at 43. Thus, Weiss inherently discloses a method for storing and
		retrieving information records. See id.
		Weiss further discloses that "hashing is a technique used for performing
		insertions, deletions and finds in constant average time." Weiss at 149. Weiss
		discloses a method of collision resolution called Open Hashing (Separate
		Chaining) which "keeps a list of all elements that hash to the same value."
		Weiss at 152. "The hash table structure contains the actual size and an array of
		linked lists, which are dynamically allocated when the table is initialized. The
		HASH_TABLE type is just a pointer to this structure." Weiss at 153-54.
[3a] accessing the linked	[7a] accessing a linked list	Weiss discloses accessing a linked list of records. Weiss also discloses
list of records,	of records having same	accessing a linked list of records having same hash address.
	hash address,	
		For example, Weiss discloses accessing by way of an insert command, "the
		insert command requires obtaining a new cell from the system by using an
		malloc call (more on this later) and then executing two pointer maneuvers.
		The general idea is shown in Figure 3.4. The dashed line represents the old
		pointer." Weiss at 44.

Asserted Claims From U.S. Pat. No. 5.893.120		Mark Allen Weiss, <i>Data Structures & Algorithm Analysis in C</i> (The Benjamin/Cummings Publ'g Co. 1993) alone and in combination
		a_1 a_2 a_3 a_4 a_5 Figure 3.3 Deletion from a linked list
		a1 a2 a3 a4 a4 a5 a3 a4 a4 a5 a4 a5 a5 a5 a6 a5 a7 a6 a7 a7 a8 a7 a7 a7 a7 a7 a8 a7 a7 a7 a8 a7 a9 a7
[3b] identifying at least some of the automatically expired ones of the records, and	[7b] identifying at least some of the automatically expired ones of the records,	 Weiss discloses identifying at least some of the automatically expired ones of the records. For example, Weiss discloses that "[w]hen things are no longer needed, you can issue a <i>free</i> command to inform the system that it may reclaim the space. A consequence of the <i>free</i>(p) command is that the address that <i>p</i> is pointing to is unchanged, but the data that resides at that address is now undefined." Weiss at 50. To the extent that Bedrock argues that Weiss does not anticipate this claim

Asserted Claims From		Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The Baniamin/Cummings Public Co. 1993) along and in combination
	5. 5,893,120	element, it would have been obvious to one of ordinary skill in the art to combine Weiss with Kruse. Kruse discloses "[t]he task of the procedure Vivify is to traverse the list live, determine whether each cell on it satisfies the conditions to become alive, and vivify it if so, else delete it from the list. The usual way to facilitate deletion from a linked list is to keep two pointers in lock step, one position apart, while traversing the list." "Let us take advantage of the indirect linkage of our lists, and when we wish to delete an entry form the list, let us leave the node in place, but set its entry field to nil . In this way, the node will be flagged as empty when it is again encountered in the procedure AddNeighbors." Kruse at 219. Thus, Weiss and Kruse show that one of ordinary skill in the art understood how to identify at least some of the automatically expired ones of the records, and would recognize that it would improve similar systems and methods in the same way.
[3c] removing at least some of the automatically expired records from the linked list when the linked list is accessed.	[7c] removing at least some of the automatically expired records from the linked list when the linked list is accessed, and	 Weiss discloses removing at least some of the automatically expired records from the linked list when the linked list is accessed. For example, Weiss discloses that "[w]hen things are no longer needed, you can issue a <i>free</i> command to inform the system that it may reclaim the space. A consequence of the <i>free</i>(p) command is that the address that p is pointing to is unchanged, but the data that resides at that address is now undefined." Weiss at 50. To the extent that Bedrock argues that Weiss does not anticipate this claim element, it would have been obvious to one of ordinary skill in the art to combine Weiss with Kruse. Kruse discloses "[t]he task of the procedure Vivify is to traverse the list live, determine whether each cell on it satisfies the conditions to become alive, and vivify it if so, else delete it from the list. The usual way to facilitate deletion from a linked list is to keep two pointers in

Asserted Claims From U.S. Pat. No. 5,893,120		Mark Allen Weiss, <i>Data Structures & Algorithm Analysis in C</i> (The Benjamin/Cummings Publ'g Co. 1993) alone and in combination
		lock step, one position apart, while traversing the list." "Let us take advantage of the indirect linkage of our lists, and when we wish to delete an entry form the list, let us leave the node in place, but set its entry field to nil . In this way, the node will be flagged as empty when it is again encountered in the procedure AddNeighbors." Kruse at 219. Thus, Weiss and Kruse show that one of ordinary skill in the art understood how to remove at least some of the automatically expired records from the linked list when the linked list is accessed, and would recognize that it would improve similar systems and methods in the same way.
[7d] inserting, ret or deleting one of records from the s following the step removing.	rieving the system of	 Weiss discloses inserting, retrieving or deleting one of the records from the system following the step of removing. For example, Weiss discloses method of retrieving records in a find routine as shown in figure 3.10. Figure 3.10 Find routine
		<pre>/* Return position of x in L; NULL if not found */ + to a check find (common product of the content find(element_type x, LIST L) { position p; position p; /*1*/ /*2*/ p = L->next; /*1*/ /*2*/ while((p != NULL) && (p->element != x)) /*3*/</pre>

Joint Invalidity Contentions & Production of Documents

Asserted C U.S. Pat. N	Claims From [0. 5,893,120	Mark Allen Weiss, <i>Data Structures & Algorithm Analysis in C</i> (The Benjamin/Cummings Publ'g Co. 1993) alone and in combination
		Weiss at 46. Weiss also discloses a method of inserting a record in an insert routine as shown in figure 3.12. Figure 3.12 Figure 3.13 Figure 3.14 Figure 3.15 Figure 3.16 Figure 3.17 Figure 3.18 Figure 3.19 Figure 3.19 Figure 3.12 Figure 3.12 Figure 3.14 Figure 3.15 Figure 3.16 Figure 3.17 Figure 3.18 Figure 3.19 Figure 3.19
		<pre>/* Insert (after legal position p).*/ /* Header implementation assumed. */ void insert(element.type x, LIST L, position p) if if position tmp.cell; tmp.cell = (position) malloc(sizeof (struct node)); if(tmp.cell = NULL) fatal.error("Out of space!!!"); else void { tmp.cell->element = x; tmp.cell->element = x; tmp.cell->next = p->next; } Weiss at 48. Weiss further discloses that a "deletion routine is a straightforward</pre>

Asserted Claims From U.S. Pat. No. 5,893,120		Mark Allen Weiss, <i>Data Structures & Algorithm Analysis in C</i> (The Benjamin/Cummings Publ'g Co. 1993) alone and in combination
		implementation of deletion in a linked list, so we will not bother with it here." Weiss at156. Weiss also discloses that "[a]fter a deletion in a linked list, it is usually a good idea to free the cell, especially if there are lots of insertions and deletions intermingled and memory might become a problem." Figure 3.15 Correct way to delete a list
		<pre>void delete_list(LIST L) { position p, tmp;</pre>
		<pre>/*l*/ p = L->next; /* header assumed */ /*2*/ L->next = NULL; /*3*/ while(p != NULL)</pre>
		Weiss at 50.
4. The method according to claim 3 further including the step of dynamically	8. The method according to claim 7 further including the step of dynamically	Weiss discloses dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed.
determining maximum number of expired ones of the records to remove when the linked list is accessed.	determining maximum number of expired ones of the records to remove when the linked list is accessed.	For example, Weiss discloses in Figure 5.8, an initialization routine for open hash table, and in Figure 5.1, an insert routine for open hash table, that can dynamically determine when there is a fatal error due to a lack of space. This determination inherently discloses dynamically determining maximum number of expired ones of the records to remove. Weiss at 154-56.

Asserted Claims From	Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
U.S. Pat. No. 5,893,120	Benjamin/Cummings Publ'g Co. 1993) alone and in combination
	<pre>Figure 5.8 Initialization routine for open hash table HASH.TABLE initialize_table(unsigned int table_size) { /*&Allocate list pointers /*&Allocate lists = (position *) małłoc(sizeof (LIST) * H->table_size); /*A*/ if(H->the_lists == NULL) /*l0*/ fatal_enror("Out of space!!!"); /* Allocate list headers */ /*l1*/ for(i=0; i<h->table_size; i++) { /*L2*/ H->the_lists[i] = (LIST) malloc (sizeof (struct list_node)); /*13*/ if(H->the_lists[i] == NULL) /*14*/ fatal_enror("Out of space!!!"); else /*15*/ H->the_lists[i]->next = NULL; </h-></pre>

30

Asserted Claims From	Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
U.S. Pat. No. 5,893,120	Benjamin/Cummings Publ'g Co. 1993) alone and in combination
Asserted Claims From U.S. Pat. No. 5,893,120	<pre>Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The Benjamin/Cummings Publ'g Co. 1993) alone and in combination void insert(element_type key, HASH_TABLE H) { position pos, new_cell; LIST L; /*1*/ pos = find(key, H); /*2*/ if(pos = NULL)</pre>
	expired records to remove in the accessed linked list of records. It is a fundamental concert in computer science and the relevant art that any variable
	or parameter affecting any aspect of a system can be dynamically determined
	based on information available to the system. One of ordinary skill in the art

31

Asserted Claims From	Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
U.S. Pat. No. 5,893,120	Benjamin/Cummings Publ'g Co. 1993) alone and in combination
	would have been motivated to combine the system disclosed in Weiss with the fundamental concept of dynamically determining the maximum number of expired records to remove in an accessed linked list of records to solve a number of potential problems. For example, the removal of expired records described in Weiss can be burdensome on the system, adding to the system's load and slowing down the system's processing. Moreover, the removal could also force an interruption in real-time processing as the processing waits for the removal to complete. Indeed, part of the motivation for the system disclosed in Weiss is avoiding these problems. One of ordinary skill in the art would have known that dynamically determining the maximum number to remove would limit the burden on the system and bound the length of any real-time interruption to prevent delays in processing. Indeed, Nemes concedes that such dynamic determination was obvious when he states in the '120 patent that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15.
	Weiss combined with Dirks, Thatte, the '663 patent, and/or the Opportunistic Garbage Collection Articles discloses dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed.
	Dirks discloses the management of memory in a computer system and more particularly to the allocation of address space in a virtual memory system, which dynamically determines how many records to sweep/remove upon each allocation. Disclosure of these claim elements in Dirks is clearly shown in the chart of Dirks, which is hereby incorporated by reference in its entirety.

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	Mark Allen Weiss, <i>Data Structures & Algorithm Analysis in C</i> (The Benjamin/Cummings Publ'g Co. 1993) alone and in combination
	For example, as summarized in Dirks,
	each time a VSID is assigned from the free list to a new application or thread, a fixed number of entries in the page table are scanned to determine whether they have become inactive, by checking them against the VSIDs on the recycle list. Each entry which is identified as being inactive is removed from the page table. After all of the entries in the page table have been examined in this manner, the VSIDs in the recycle list can be transferred to the free list, since all of their associated page table entries will have been removed. This approach thereby guarantees that a predetermined number of VSIDs are always available in the free list without requiring a time-consuming scan of the complete page table at once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.
	After [a] new VSID has been allocated, the system checks a flag RFLG to determine whether a recycle sweep is currently in progress (Step 20). If there is no sweep in progress, i.e. RFLG is not equal to one, a determination is made whether a sweep should be initiated. This is done by checking whether the inactive list is full, i.e. whether it contains x entries (Step 22). If the number of entries I on the inactive list is less than x, no further action is taken, and processing control returns to the operating system (Step 24). If, however, the inactive list is full at this time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are transferred to the recycle list, and an index n is reset to 1 (Step 28). The system then sweeps a predetermined number of page table entries PT _i on the page table, to detect whether any of them are inactive, i.e. their associated VSID is on the recycle list (Step 30). The predetermined number of entries that are swept is identified as k , where:

33

Joint Invalidity Contentions & Production of Documents

Asserted Claims From U.S. Pat. No. 5,893,120	Mark Allen Weiss, <i>Data Structures & Algorithm Analysis in C</i> (The Benjamin/Cummings Publ'g Co. 1993) alone and in combination
	$k = \frac{\text{total number of page table entries}}{\text{maximum number of active threads}}$ <i>Id.</i> at 8:12-30.
	Dirks discloses that any approach can be employed to determine the number of entries to be examined during each step of the sweeping process. <i>Id.</i> at 7:37-40. As stated in Dirks:
	Any other suitable approach can be employed to determine the number of entries to be examined during each step of the sweeping process. In this regard, it is not necessary that the number of examined entries be fixed for each step. Rather, it might vary from one step to the next. The only criterion is that the number of entries examined on each step be such that all entries in the page table are examined in a determinable amount of time or by the occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.
	<i>Id.</i> at 7:38-46. Thus, Dirks dynamically determines the maximum number of records to sweep/remove by calculating a value <i>k</i> . <i>Id</i> . at 7:15-46, 7:66-8:56.
	As both Weiss and Dirks relate to deletion of aged records upon the allocation of a new incoming record, one of ordinary skill in the art would have understood how to use Dirks' dynamic decision making process of determining the maximum number of records to sweep/remove in other hash tables implementations such as that described Weiss. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily

Asserted Claims From	Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
U.S. Pat. No. 5,893,120	Benjamin/Cummings Publ'g Co. 1993) alone and in combination
	all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining Dirks' deletion decision procedure with Weiss would be nothing more than the predictable use of prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have combined Dirks' dynamic determination of the suitable number of entries to examine during each step of the sweeping process with Weiss and would have seen the benefits of doing so. One possible benefit, for example, is saving the system from performing sometimes time-consuming sweeps.
	Alternatively, one of ordinary skill in the art would be motivated to, and would understand how to, combine the system disclosed in Weiss with the means for dynamically determining maximum number for the record search means to remove in the accessed linked list of records disclosed by Thatte. For example, Thatte discloses a system and method using hash tables and/or linked lists and further discloses means for dynamically determining the maximum number for the record search means to remove in the accessed linked list of records. The disclosure of these claim elements in Thatte is clearly shown in the chart of Thatte, which is hereby incorporated by reference in its entirety.
	Moreover, one of ordinary skill in the art would recognize that these combinations would improve the similar systems and methods in the same way. Additionally, one of ordinary skill in the art would recognize that the result of combining Weiss with Thatte would be nothing more than the predictable use of prior art elements according to their established functions. The resulting combination would include the capability to determine the

Joint Invalidity Contentions & Production of Documents

35

Asserted Claims From	Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
U.S. Pat. No. 5,893,120	Benjamin/Cummings Publ'g Co. 1993) alone and in combination
	maximum number for the record search means to remove.
	Further, one of ordinary skill in the art would be motivated to combine Weiss
	of expired records described in Weisscan be burdensome on the system, adding
	to the system's load and slowing down the system's processing. One of ordinary skill in the art would recognize that combining Weiss with the
	teachings of Thatte would solve this problem by dynamically determining how
	Moreover, the '120 patent discloses that "[a] person skilled in the art will
	appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily
	all expired records are removed, and that the decision regarding if and how
	many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine Weiss with Thatte.
	Alternatively, it would also be obvious to combine Weiss with the '663 patent.
	Disclosure of these claim elements in the '663 patent is clearly shown in the chart of the '663 patent, which is hereby incorporated by reference in its
	entirety. For example, as summarized in the '663 patent:
	during normal times when the load on the storage system is not
	excessive, a non-contaminating but slow deletion of records is used. This slow, non-contaminating deletion involves closing
	the collision-resolution chain of locations by moving a record
	from a later position in the chain into the position of the record to be deleted. This leaves no deleted record locations in the
	storage space to slow down future searches. U.S. Patent

36

Asserted Claims From	Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
U.S. Pat. No. 5,893,120	Benjamin/Cummings Publ'g Co. 1993) alone and in combination
	4,996,663 to Nemes at 2:24-34 ("The '663 patent").
	In times of heavy use, when deletions must be done rapidly and no time is available for decontamination, the record is simply marked as "deleted" and left in place. Later non-contaminating probes in the vicinity of such deleted record locations automatically remove the contaminating deleted records by moving records in the chain as described above. <i>Id.</i> at 2:35-41.
	 This hybrid hashing technique has the decided advantage of automatically eliminating contamination caused by the fast-secure deletion procedure when the slower, non-contaminating deletion is used when the load on the system is at lower levels. <i>Id.</i> at 2:42-46. This hybrid deletion is shown in Figure 5.

37

Asserted Claims From	Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
U.S. Pat. No. 5,893,120	Benjamin/Cummings Publ'g Co. 1993) alone and in combination
	FIG.5 HYBRID DELETION YES SYSTEM FAST-SECURE DELETE (FIG.7) START YES SYSTEM NO SLOW-NON- CONTAMINATING DELETE (FIG.6) STOP 54
	<i>Id.</i> at Figure 5. During the hybrid deletion procedure decision block 51 checks the system load to determine if the system load is greater than a threshold. If the system load is
	greater than the threshold, then a fast-secure delete 52 is used. <i>Id.</i> at 6:40-64, Figure 5. On the other hand, if the system load is less than the threshold, then a slow-non-contaminating delete 53 is used. <i>Id.</i> The fast-secure delete 52 does not actually delete records, rather it marks records as deleted. <i>Id.</i> at 8:1-33,

Asserted Claims From	Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
U.S. Pat. No. 5,893,120	Benjamin/Cummings Publ'g Co. 1993) alone and in combination
	Figure 7. These records are then actually deleted by a subsequent slow-non- contaminating delete 53. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
	Thus, the hybrid deletion procedure in the '663 patent dynamically determines a maximum number of records to remove. <i>See id.</i> at 6:40-64, Figure 5. If the fast-secure delete 52 is used, then maximum number of records is zero because records are not deleted they are only marked. <i>Id.</i> at 8:1-33, Figure 7. If the slow-non-contaminating delete 53 is used, then the maximum number of records to remove is all of the contaminated records in the bucket. <i>Id.</i> at 6:65-7:68, Figures 6, 6A, 6B.
	As both Weiss and the '663 patent relate to deletion of records from hash tables using external chaining, one of ordinary skill in the art would understood how to use the '663 patent's dynamic decision on whether to perform a deletion based on a systems load in other hash table implementations such as Weiss. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the '663 patent's deletion decision procedure with Weiss would be nothing more than the predictable use of prior art elements according to their established functions.
	By way of further example, one of ordinary skill in the art would have combined the '663 patent's dynamic decision on whether to perform a deletion based on a systems load as taught by the '663 patent and with Weiss and would

Asserted Claims From	Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
U.S. Pat. No. 5,893,120	have seen the benefits of doing so. One such benefit, for example, is that the system would avoid performing deletions when the system load exceeded a threshold.
	Alternatively, it would also be obvious to combine Weiss with the Opportunistic Garbage Collection Articles.
	The Opportunistic Garbage Collection Articles disclose a generational based garbage collection which dynamically determines how much garbage to collect. <i>See generally</i> , Paul R. Wilson and Thomas G. Moher, <i>Design of the Opportunistic Garbage Collector</i> , OOPSLA '89 Proceedings, October 1-6, 1989; Paul R. Wilson, <i>Opportunistic Garbage Collection</i> , ACM SIGPLAN Notices, Vol. 23, No. 12, December 1988.
	For example, the Opportunistic Garbage Collection Articles disclose in part:
	When a significant pause has been detected, a decision procedure is invoked to decide whether to garbage collect, and how many generations to scavenge. The fuller a generation is, the more likely it is to be scavenged; also, the longer the pause that has been detected, the larger the scope of the garbage collection is likely to be. <i>Design of the Opportunistic Garbage</i> <i>Collector</i> at 32.
	Every time a user-input routine is invoked, a decision routine can decide whether to garbage collect. As long as the decision routine takes no more than a few milliseconds to execute, it should not interfere with responsiveness. Since it is only invoked at these times, it does not incur a continual run-time overhead. <i>Opportunistic Garbage Collection</i> at 100.

Asserted Claims From	Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
U.S. Pat. No. 5,893,120	Benjamin/Cummings Publ'g Co. 1993) alone and in combination
	This decision routine should take several things into account: 1) the volume of data allocated since the last scavenge, 2) how long it has been since the user has had an opportunity to interact, and 3) the height of the stack relative to its average height at reads since the last scavenge. If the product of the allocation and the compute time is high, and if the stack is low, the scavenge favorability measure is high. If it is especially high, a multi-generation scavenge is in order. <i>Id</i> .
	If these heuristics fail and a scavenge is forced instead by the filling of a generation's space, it is likely to happen during a significant compute- bound pausethe one that has just allocated the data that forced the collection. When the opportunistic mechanism fails to find the end of a pause, it may still succeed by default, embedding a scavenge pause within a larger pause. <i>Design of the Opportunistic Garbage Collector</i> at 32.
	As both Weiss and the Opportunistic Garbage Collection Articles relate to deletion of aged records, one of ordinary skill in the art would have understood how to use the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion based on a system load in other hash table implementations such as Weiss. Moreover, one of ordinary skill in the art would recognize that it would improve similar systems and methods in the same way. As the '120 patent states "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." The '120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the result of combining the Opportunistic Garbage Collection Articles' deletion decision procedure with Weiss would be nothing more than the predictable use of prior

Asserted Claims From	Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
U.S. Pat. No. 5,893,120	Benjamin/Cummings Publ'g Co. 1993) alone and in combination
	art elements according to their established functions. By way of further example, one of ordinary skill in the art would have combined the Opportunistic Garbage Collection Articles' dynamic decision on whether to perform a deletion and how many generations to scavenge as taught by the Opportunistic Garbage Collection Articles and with Weiss and would have seen the benefits of doing so. One such benefit, for example, is that the system would only perform deletions when the system was not already too overloaded, thus preventing slowdown of the system.
	Additionally, it would have been obvious to one of ordinary skill in the art to modify the system disclosed in Weiss to dynamically determine the maximum number of expired records to remove in the accessed linked list of records. It is a fundamental concept in computer science and the relevant art that any variable or parameter affecting any aspect of a system can be dynamically determined based on information available to the system. One of ordinary skill in the art would have been motivated to combine the system disclosed in Weiss with the fundamental concept of dynamically determining the maximum number of expired records to remove in an accessed linked list of records to solve a number of potential problems. For example, the removal of expired records described in Weiss can be burdensome on the system, adding to the system's load and slowing down the system's processing. Moreover, the removal could also force an interruption in real-time processing as the processing waits for the removal to complete.
	One of ordinary skill in the art would have known that dynamically determining the maximum number to remove would limit the burden on the system and bound the length of any real-time interruption to prevent delays in processing. Indeed, Nemes concedes that such dynamic determination was

Asserted Claims From	Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
U.S. Pat. No. 5,893,120	Benjamin/Cummings Publ'g Co. 1993) alone and in combination
	 obvious when he states in the '120 patent that "[a] person skilled in the art will appreciate that the technique of removing all expired records while searching the linked list can be expanded to include techniques whereby not necessarily all expired records are removed, and that the decision regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine Weiss with Thatte, Dirks, the '663 patent, and/or the Opportunistic Garbage Collection Articles in addition to motivations within the text of Weiss, such as the initialization routine of Figure 5.8, and the insert routine of Figure 5.1 that can dynamically determine when there is a fatal error due to a lack of space. Weiss at 154-56. To the extent that dynamically determining a maximum number of expired records is not disclosed by Weiss in combination with Dirks, Thatte, the '663 Patent, or the Opportunistic Garbage Collection References, it is disclosed by Linux 2.0.1, which describes dynamically determining maximum number of expired ones of the records to remove when the linked list is accessed. It would have been obvious to combine Linux 2.0.1 with Weiss. For example, both Linux 2.0.1 and Weiss describe systems and methods for performing data storage and retrieval using known programming techniques to yield a predictable result.
	When invoked, the function rt_cache_add automatically increments an integer variable rt_cache_size. <i>See</i> Linux 2.0.1, route.c at line 1359. When the function rt_cache_add removes an expired record, the function rt_cache_add decrements the variable rt_cache_size. <i>See</i> Linux 2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the number of records in the hash table (i.e., ip_rt_hash_table). Because the function rt_cache_add automatically increments and decrements the

43

Asserted Claims From	Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
U.S. Pat. No. 5,893,120	Benjamin/Cummings Publ'g Co. 1993) alone and in combination
	variable rt_cache_size, the variable rt_cache_size is determined dynamically.
	Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1. The function rt_garbage_collect_1 loops through each of the linked lists in the ip_rt_hash_table global variable. <i>See</i> Linux 2.0.1, route.c at lines 1122-1138. In this way, the function rt_garbage_collect_1 accesses the linked list. When the function rt_garbage_collect_1 identifies a record that is expired, the function rt_garbage_collect_1 decrements the variable rt_cache_size and frees the record. <i>See</i> Linux 2.0.1, route.c at lines 1128-1135.
	Because all records in the linked list can be expired and all records in the hash table can be in the linked list, the variable rt_cache_size can represent a dynamically determined maximum number of expired ones of the records to remove when function rt_garbage_collect_1 accesses the linked list.
	Furthermore, the function rt_cache_add determines whether the number of records in the hash table exceeds a predetermined threshold RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_cache_add invokes a function rt_garbage_collect. <i>See</i> Linux 2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect invokes a function rt_garbage_collect_1. <i>See</i> Linux 2.0.1, route.c at line 1293. The function rt_garbage_collect invokes a function

44

Asserted Claims From	Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
U.S. Pat. No. 5,893,120	Benjamin/Cummings Publ'g Co. 1993) alone and in combination
	The function rt_garbage_collect_1 loops through each linked list in the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked list in the hash table, the function rt_garbage_collect_1 looks at each record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each record in a linked list, the function rt_garbage_collect_1 determines whether the record's last use time plus the record's expiration factor is later than the current time. See Linux 2.0.1, route.c at line 1122. If the record's last use time plus the record's expiration factor is less than the current time, the function rt_garbage_collect_1 removes the record from the linked list. See Linux 2.0.1, route.c at lines 1124-1130. The record's expiration factor is based on a variable expire and the record's reference count. See Linux 2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110. After looping through all of the linked lists in this manner, the function rt_garbage_collect_1 determines again whether the number of records in the hash table, is lass then the predatermined threshold
	In the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number of items in the hash table is still greater than the predetermined threshold RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves the variable expire and loops through each of the linked lists in the hash table. See Linux 2.0.1, route.c at line 1135. In this way, the function rt_garbage_collect_1 can remove additional records from the linked lists in the hash table. The function rt_garbage_collect_1 repeats this process until the total number of records in the hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX.

Joint Invalidity Contentions & Production of Documents

Asserted Claims From	Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
U.S. Pat. No. 5,893,120	Benjamin/Cummings Publ'g Co. 1993) alone and in combination
	function rt_garbage_collect_1 are "expired" records. That is, the records removed by the function rt_garbage_collect_1 are data items which after a limited time or after the occurrence of some event become obsolete, such that their presence in the storage system is no longer needed or desired.
	The function rt_cache_add only removes a record from a linked list when the record's last use time plus the fixed timeout value RT_CACHE_TIMEOUT is less than the current time and the record's reference count is zero. <i>See</i> Linux 2.0.1, route.c at line 1369. Thus, the maximum number of records that the function rt_cache_add can remove from a given linked list is limited to those records whose reference counts are zero.
	In contrast, the maximum number of records that the function rt_garbage_collect_1 can remove from a given linked list is not limited to those records whose reference counts are zero. <i>See</i> Linux 2.0.1, route.c at line 1122. Rather, the function rt_garbage_collect_1 can remove records whose reference counts are zero and records whose reference counts are greater than zero.
	Consequently, the maximum number of records that the function rt_garbage_collect_1 can remove from a linked list is different than the maximum number of records that the function rt_cache_add can remove from a linked list.