

Exhibit A
(Part 2of 2)

Bedrock Computer Technologies, LLC v. Softlayer Technologies, Inc. et al Doc. 328 Att. 2

Dockets.Justia.com

http://dockets.justia.com/docket/texas/txedce/6:2009cv00269/116887/
http://docs.justia.com/cases/federal/district-courts/texas/txedce/6:2009cv00269/116887/328/2.html
http://dockets.justia.com/

EXHIBIT C-12

Joint Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination
1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, Frakes discloses an information
storage and retrieval system.

For example, Frakes discloses “hashing, an information storage and retrieval
technique useful for implementing many … other structures.” (Frakes at 293).

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

Frakes discloses a linked list to store and provide access to records stored in a
memory of the system, at least some of the records automatically expiring.
Frakes also discloses a hashing means to provide access to records stored in a
memory of the system and using an external chaining technique to store the
records with same hash address, at least some of the records automatically
expiring.

For example, Frakes discloses “hashing, an information storage and retrieval
technique useful for implementing many … other structures.” (Frakes at 293).
Frakes discloses that hashing is “a ubiquitous information retrieval strategy for
providing efficient access to information based on a key.” Id. Frakes further
discloses “chained hashing. It is so named because each bucket stores a linked
list—that is, a chain—of key-information pairs, rather than a single one.”
(Frakes at 298).

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of
records having the same
hash address,

Frakes discloses a record search means utilizing a search key to access the
linked list. Frakes also discloses a record search means utilizing a search key
to access a linked list of records having the same hash address.

For example, Frakes discloses that “[t]he goal (of hashing) is to avoid
collisions. A collision occurs when two or more keys map to the same
location. If no keys collide, then locating the information associated with a
key is simply the process of determining the key’s location. Whenever a

EXHIBIT C-12

Joint Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination
collision occurs, some extra computation is necessary to further determine a
unique location for a key.” (Frakes at 294).

[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the
records from the linked list
when the linked list is
accessed, and

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

Frakes discloses the record search means including a means for identifying and
removing at least some of the expired ones of the records from the linked list
when the linked list is accessed. Frakes also discloses the record search means
including means for identifying and removing at least some expired ones of the
records from the linked list of records when the linked list is accessed.

For example, Frakes discloses that a “hash table with m buckets may therefore
store more than m keys. However, performance will degrade as the number of
keys increases. Computing the bucket in which a key resides is still fast—a
matter of evaluating the hash function—but locating it within that bucket (or
simply determining its presence, which is necessary in all operations) requires
traversing the linked list.” (Frakes at 299).

Additionally, Frakes discloses that “performance will degrade as the number of
keys increases.” Id. Thus, Frakes suggests removing at least some of the
automatically expired records from the linked list when the linked list is
accessed. (See id.)

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

Frakes discloses means, utilizing the record search means, for accessing the
linked list and, at the same time, removing at least some of the expired ones of
the records in the linked list. Frakes also discloses utilizing the record search
means, for inserting, retrieving, and deleting records from the system and, at
the same time, removing at least some expired ones of the records in the
accessed linked list of records.

For example, Frakes discloses several operations that are usually provided by
an implementation of hashing:

EXHIBIT C-12

Joint Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination
1. Initialization: indicate that the hash table contains no elements.
2. Insertion: insert information, indexed by a key k, into a hash table. If

the has table already contains k, then it cannot be inserted. (Some
implementations do allow such insertion, to permit replacing existing
information.)

3. Retrieval: given a key k, retrieve the information associated with it.
4. Deletion: remove the information associated with key k from a hash

table, if any exists. New information indexed by k may subsequently
be placed in the table.

(Frakes at 297).

Frakes further discloses that “[m]ost of the code from the routines Insert,
Delete, Clear (for Initialize), and Member (for Retrieve) can be
used directly.” (Frakes at 299).

Additionally, Frakes discloses that “performance will degrade as the number of
keys increases.” Id. Thus Frakes suggests removing at least some of the
automatically expired records from the linked list when the linked list is
accessed. (See id.)

2. The information storage
and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

6. The information storage
and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

It would have been obvious to one of ordinary skill in the art to modify the
system disclosed in Frakes to dynamically determine the maximum number of
expired records to remove in the accessed linked list of records. It is a
fundamental concept in computer science and the relevant art that any variable
or parameter affecting any aspect of a system can be dynamically determined
based on information available to the system. One of ordinary skill in the art
would have been motivated to combine the system disclosed in Frakes with the
fundamental concept of dynamically determining the maximum number of
expired records to remove in an accessed linked list of records to solve a

EXHIBIT C-12

Joint Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination
number of potential problems. For example, the removal of expired records
described in Frakes can be burdensome on the system, adding to the system’s
load and slowing down the system’s processing. Moreover, the removal could
also force an interruption in real-time processing as the processing waits for
the removal to complete. Indeed, part of the motivation for the system
disclosed in Frakes is avoiding these problems. One of ordinary skill in the art
would have known that dynamically determining the maximum number to
remove would limit the burden on the system and bound the length of any real-
time interruption to prevent delays in processing. Indeed, Nemes concedes that
such dynamic determination was obvious when he states in the ‘120 patent that
“[a] person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records are removed, and that
the decision regarding if and how many records to delete can be a dynamic
one.” ‘120 at 7:10-15.

Frakes combined with Dirks, Thatte, the ’663 patent and/or the Opportunistic
Garbage Collection Articles discloses an information storage and retrieval
system further including means for dynamically determining maximum
number for the record search means to remove in the accessed linked list of
records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

EXHIBIT C-12

Joint Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination
For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

EXHIBIT C-12

Joint Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Frakes and Dirks relate to deletion of aged records upon the allocation
of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as Frakes. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching

EXHIBIT C-12

Joint Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Frakes nothing more than
the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Frakes and would have
seen the benefits of doing so. One possible benefit, for example, is saving the
system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Frakes with the means for
dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. For example,
Thatte discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Frakes with Thatte would be nothing more than the

EXHIBIT C-12

Joint Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine Frakes
with Thatte and recognize the benefits of doing so. For example, the removal
of expired records described in Frakes can be burdensome on the system,
adding to the system’s load and slowing down the system’s processing. One of
ordinary skill in the art would recognize that combining Frakes with the
teachings of Thatte would solve this problem by dynamically determining how
many records to delete based on, among other things, the system load.
Moreover, the '120 patent discloses that "[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120
patent provides motivations to combine Frakes with Thatte.

Alternatively, it would also be obvious to combine Frakeswith the ’663 patent.
Disclosure of these claim elements in the ’663 patent is clearly shown in the
chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record

EXHIBIT C-12

Joint Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT C-12

Joint Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does

EXHIBIT C-12

Joint Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Frakes and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in Frakes. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with Frakes would be
nothing more than the predictable use of prior art elements according to their
established functions.

EXHIBIT C-12

Joint Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination
By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Frakes and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Frakes with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more

EXHIBIT C-12

Joint Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Frakes and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Frakes. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily

EXHIBIT C-12

Joint Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Frakes would be nothing more than the predictable use of prior
art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Frakes and would
have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Frakes to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in
Frakes with the fundamental concept of dynamically determining the
maximum number of expired records to remove in an accessed linked list of
records to solve a number of potential problems. For example, the removal of
expired records described in Frakescan be burdensome on the system, adding
to the system’s load and slowing down the system’s processing. Moreover, the
removal could also force an interruption in real-time processing as the
processing waits for the removal to complete.

EXHIBIT C-12

Joint Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Frakes in combination with Dirks, Thatte, the ‘663
Patent, or the Opportunistic Garbage Collection References, it is disclosed by
Linux 2.0.1, which describes dynamically determining maximum number of
expired ones of the records to remove when the linked list is accessed. It
would have been obvious to combine Linux 2.0.1 with Frakes. For example,
both Linux 2.0.1 and Frakes describe systems and methods for performing data
storage and retrieval using known programming techniques to yield a
predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because

EXHIBIT C-12

Joint Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function

EXHIBIT C-12

Joint Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the

EXHIBIT C-12

Joint Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

EXHIBIT C-12

Joint Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination
3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

To the extent the preamble is a limitation, Frakes discloses a method for
storing and retrieving information records using a linked list to store and
provide access to the records, at least some of the records automatically
expiring. Frakes also discloses a method for storing and retrieving information
records using a hashing technique to provide access to the records and using an
external chaining technique to store the records with same hash address, at
least some of the records automatically expiring.

For example, Frakes discloses “hashing, an information storage and retrieval
technique useful for implementing many … other structures.” (Frakes at 293).

Frakes also discloses “hashing, an information storage and retrieval technique
useful for implementing many … other structures.” (Frakes at 293). Frakes
discloses that hashing is “a ubiquitous information retrieval strategy for
providing efficient access to information based on a key.” Id. Frakes further
discloses “chained hashing. It is so named because each bucket stores a linked
list—that is, a chain—of key-information pairs, rather than a single one.”
(Frakes at 298).

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

Frakes discloses accessing a linked list of records. Frakes also discloses
accessing a linked list of records having same hash address.

For example, Frakes discloses that “[t]he goal (of hashing) is to avoid
collisions. A collision occurs when two or more keys map to the same
location. If no keys collide, then locating the information associated with a
key is simply the process of determining the key’s location. Whenever a
collision occurs, some extra computation is necessary to further determine a
unique location for a key.” (Frakes at 294).

[3b] identifying at least [7b] identifying at least Frakes discloses identifying at least some of the automatically expired ones of

EXHIBIT C-12

Joint Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination
some of the automatically
expired ones of the records,
and

some of the automatically
expired ones of the records,

the records. Frakes also discloses identifying at least some of the
automatically expired ones of the records.

For example, Frakes discloses that a “hash table with m buckets may therefore
store more than m keys. However, performance will degrade as the number of
keys increases. Computing the bucket in which a key resides is still fast—a
matter of evaluating the hash function—but locating it within that bucket (or
simply determining its presence, which is necessary in all operations) requires
traversing the linked list.” (Frakes at 299).

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

Frakes discloses removing at least some of the automatically expired records
from the linked list when the linked list is accessed. Frakes also discloses
removing at least some of the automatically expired records from the linked
list when the linked list is accessed.

For example, Frakes discloses that “performance will degrade as the number of
keys increases.” (Frakes at 299). Thus, Frakes suggests removing at least
some of the automatically expired records from the linked list when the linked
list is accessed. (See id.)

 [7d] inserting, retrieving
or deleting one of the
records from the system
following the step of
removing.

Frakes discloses inserting, retrieving or deleting one of the records from the
system following the step of removing.

For example, Frakes discloses several operations that “are usually provided by
an implementation of hashing:

1. Initialization: indicate that the hash table contains no elements.
2. Insertion: insert information, indexed by a key k, into a hash table. If

the has table already contains k, then it cannot be inserted. (Some
implementations do allow such insertion, to permit replacing existing
information.)

EXHIBIT C-12

Joint Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination
3. Retrieval: given a key k, retrieve the information associated with it.
4. Deletion: remove the information associated with key k from a hash

table, if any exists. New information indexed by k may subsequently
be placed in the table.”

(Frakes at 297).

Frakes further discloses that “[m]ost of the code from the routines Insert,
Delete, Clear (for Initialize), and Member (for Retrieve) can be
used directly.” (Frakes at 299).

4. The method according to
claim 3 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

It would have been obvious to one of ordinary skill in the art to modify the
system disclosed in Frakes to dynamically determine the maximum number of
expired records to remove in the accessed linked list of records. It is a
fundamental concept in computer science and the relevant art that any variable
or parameter affecting any aspect of a system can be dynamically determined
based on information available to the system. One of ordinary skill in the art
would have been motivated to combine the system disclosed in Frakes with the
fundamental concept of dynamically determining the maximum number of
expired records to remove in an accessed linked list of records to solve a
number of potential problems. For example, the removal of expired records
described in Frakes can be burdensome on the system, adding to the system’s
load and slowing down the system’s processing. Moreover, the removal could
also force an interruption in real-time processing as the processing waits for
the removal to complete. Indeed, part of the motivation for the system
disclosed in Frakes is avoiding these problems. One of ordinary skill in the art
would have known that dynamically determining the maximum number to
remove would limit the burden on the system and bound the length of any real-
time interruption to prevent delays in processing. Indeed, Nemes concedes that
such dynamic determination was obvious when he states in the ‘120 patent that

EXHIBIT C-12

Joint Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination
“[a] person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records are removed, and that
the decision regarding if and how many records to delete can be a dynamic
one.” ‘120 at 7:10-15.

Frakes combined with Dirks, Thatte, the ’663 patent, and/or the Opportunistic
Garbage Collection Articles discloses dynamically determining maximum
number of expired ones of the records to remove when the linked list is
accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in the
chart of Dirks, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list

EXHIBIT C-12

Joint Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this

EXHIBIT C-12

Joint Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Frakes and Dirks relate to deletion of aged records upon the allocation
of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as that described Frakes. Moreover, one of ordinary
skill in the art would recognize that it would improve similar systems and
methods in the same way. As the ’120 patent states “[a] person skilled in the
art will appreciate that the technique of removing all expired records while
searching the linked list can be expanded to include techniques whereby not
necessarily all expired records are removed, and that the decision regarding if
and how many records to delete can be a dynamic one.” The ’120 patent at
7:10-15. Additionally, one of ordinary skill in the art would recognize that the
result of combining Dirks’ deletion decision procedure with Frakes would be
nothing more than the predictable use of prior art elements according to their
established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Frakes and would have

EXHIBIT C-12

Joint Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination
seen the benefits of doing so. One possible benefit, for example, is saving the
system from performing sometimes time-consuming sweeps.

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Frakes with the means for
dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. For example,
Thatte discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Frakes with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine Frakes
with Thatte and recognized the benefits of doing so. For example, the removal
of expired records described in Frakescan be burdensome on the system,
adding to the system’s load and slowing down the system’s processing. One of
ordinary skill in the art would recognize that combining Frakes with the
teachings of Thatte would solve this problem by dynamically determining how
many records to delete based on, among other things, the system load.

EXHIBIT C-12

Joint Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination
Moreover, the '120 patent discloses that "[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120
patent provides motivations to combine Frakes with Thatte.

Alternatively, it would also be obvious to combine Frakes with the ’663 patent.
Disclosure of these claim elements in the ’663 patent is clearly shown in the
chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

EXHIBIT C-12

Joint Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination
This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT C-12

Joint Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does

EXHIBIT C-12

Joint Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Frakes and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as Frakes. Moreover, one of ordinary skill in the art would recognize that
it would improve similar systems and methods in the same way. As the ’120
patent states “[a] person skilled in the art will appreciate that the technique of
removing all expired records while searching the linked list can be expanded to
include techniques whereby not necessarily all expired records are removed,
and that the decision regarding if and how many records to delete can be a
dynamic one.” The ’120 patent at 7:10-15. Additionally, one of ordinary skill
in the art would recognize that the result of combining the ’663 patent’s
deletion decision procedure with Frakes would be nothing more than the
predictable use of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have

EXHIBIT C-12

Joint Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Frakes and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Frakes with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with

EXHIBIT C-12

Joint Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Frakes and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Frakes. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how

EXHIBIT C-12

Joint Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Frakes would be nothing more than the predictable use of prior
art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Frakes and would
have seen the benefits of doing so. One such benefit, for example, is that the
system would only perform deletions when the system was not already too
overloaded, thus preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Frakes to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in
Frakes with the fundamental concept of dynamically determining the
maximum number of expired records to remove in an accessed linked list of
records to solve a number of potential problems. For example, the removal of
expired records described in Frakes can be burdensome on the system, adding
to the system’s load and slowing down the system’s processing. Moreover, the
removal could also force an interruption in real-time processing as the
processing waits for the removal to complete.

EXHIBIT C-12

Joint Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Frakes in combination with Dirks, Thatte, the ‘663
Patent, or the Opportunistic Garbage Collection References, it is disclosed by
Linux 2.0.1, which describes dynamically determining maximum number of
expired ones of the records to remove when the linked list is accessed. It
would have been obvious to combine Linux 2.0.1 with Frakes. For example,
both Linux 2.0.1 and Frakes describe systems and methods for performing data
storage and retrieval using known programming techniques to yield a
predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because

EXHIBIT C-12

Joint Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function

EXHIBIT C-12

Joint Invalidity Contentions & Production of
Documents

35 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the

EXHIBIT C-12

Joint Invalidity Contentions & Production of
Documents

36 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

EXHIBIT C-13

Joint Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, Brown discloses an information
storage and retrieval system.

For example, Brown discloses an information storage and retrieval system
made up of a hash table of linked lists. See, e.g., Brown at 60-62, Fig. 3.5. For
example, Brown discloses in part: “We have implemented a Mneme-based
hash table for our inverted File Manager using the overall structure shown in
Figure 3.5 Each slot points to a linked list of buckets, which contain the
key/value pairs for the keys that hash to that slot.” See Brown at 60-62, Fig.
3.5.

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

Brown discloses a linked list to store and provide access to records stored in a
memory of the system, at least some of the records automatically expiring.
Brown also discloses a hashing means to provide access to records stored in a
memory of the system and using an external chaining technique to store the
records with same hash address, at least some of the records automatically
expiring. See, e.g., Brown at 33-34, 60-62, Fig. 3.5.

For example, Brown discloses in part: “We have implemented a Mneme-based
hash table for our inverted File Manager using the overall structure shown in
Figure 3.5 Each slot points to a linked list of buckets, which contain the
key/value pairs for the keys that hash to that slot.” See Brown at 60-62, Fig.
3.5.

Brown discloses in part: “The ability to modify an existing document
collection is a natural requirement for any information retrieval system
Additionally, old news articles will eventually expire and must be deleted from
the current events document collection.” See Brown at 33-34.

[1b] a record search means [5b] a record search means Brown discloses a record search means utilizing a search key to access the

EXHIBIT C-13

Joint Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

utilizing a search key to
access the linked list,

utilizing a search key to
access a linked list of
records having the same
hash address,

linked list. Brown also discloses a record search means utilizing a search key
to access a linked list of records having the same hash address. See, e.g.,
Brown at 60-62, Fig. 3.5.

For example, Brown discloses in part: “We have implemented a Mneme-based
hash table for our inverted File Manager using the overall structure shown in
Figure 3.5 Each slot points to a linked list of buckets, which contain the
key/value pairs for the keys that hash to that slot.” See Brown at 60-62, Fig.
3.5.

[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the
records from the linked list
when the linked list is
accessed, and

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

Brown discloses the record search means including a means for identifying and
removing at least some of the expired ones of the records from the linked list
when the linked list is accessed. Brown also discloses the record search means
including means for identifying and removing at least some expired ones of the
records from the linked list of records when the linked list is accessed. See,
e.g., Brown at 33, 60-62, 66-68, Fig. 3.5.

For example, Brown discloses in part: “We have implemented a Mneme-based
hash table for our inverted File Manager using the overall structure shown in
Figure 3.5 Each slot points to a linked list of buckets, which contain the
key/value pairs for the keys that hash to that slot.” See Brown at 60-62, Fig.
3.5.

Brown further discloses: “The value array and the key heap grow towards each
other, such that the maximum number of entries in a bucket is variable. The
array and heap entries are paired-up from inside out, eliminating the need for
string heap offsets in the value array entries and minimizing the amount of
space required by the key/value pairs (compression techniques excluded). The

EXHIBIT C-13

Joint Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

tradeoff is a more complex bucket and search algorithm. To find a key/value
pair in a bucket, we must scan the bucket’s key heap from left to right” See
Brown at 61.

Brown further discloses: “The ability to modify an existing document
collection is a natural requirement for any information retrieval system
Additionally, old news articles will eventually expire and must be deleted from
the current events document collection.” See Brown at 33-34.

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

Brown discloses means, utilizing the record search means, for accessing the
linked list and, at the same time, removing at least some of the expired ones of
the records in the linked list. Brown also discloses utilizing the record search
means, for inserting, retrieving, and deleting records from the system and, at
the same time, removing at least some expired ones of the records in the
accessed linked list of records. See, e.g., Brown at 33-34, 60-62, 66-68, Fig.
3.5.

For example, Brown discloses in part: “We have implemented a Mneme-based
hash table for our inverted File Manager using the overall structure shown in
Figure 3.5 Each slot points to a linked list of buckets, which contain the
key/value pairs for the keys that hash to that slot.” See Brown at 60-62, Fig.
3.5.

In addition, Brown discloses: “The value array and the key heap grow towards
each other, such that the maximum number of entries in a bucket is variable.
The array and heap entries are paired-up from inside out, eliminating the need
for string heap offsets in the value array entries and minimizing the amount of
space required by the key/value pairs (compression techniques excluded). The
tradeoff is a more complex bucket and search algorithm. To find a key/value

EXHIBIT C-13

Joint Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

pair in a bucket, we must scan the bucket’s key heap from left to right” See
Brown at 61.

Brown further discloses: “The ability to modify an existing document
collection is a natural requirement for any information retrieval system
Additionally, old news articles will eventually expire and must be deleted from
the current events document collection. Articles may expire either because
their content is relevant only for a certain period of time, or because the size of
the current events collection must be held below some threshold due to
performance requirements or capacity limitations. Expired articles will either
be discarded or archived in a larger secondary document collection, leading to
further document addition operations.” See Brown at 33-34.

Brown further discloses: “In the third approach, all of the inverted lists in the
inverted file are scanned and entries for the deleted document are removed
from inverted lists as they are found The scan of the inverted file is driven
at the object level and is supported by Mneme’s object scanning facility. This
facility allows an object pool to iterate through its objects in order of object
identifier.” See Brown at 67.

2. The information storage
and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed

6. The information storage
and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed

It would have been obvious to one of ordinary skill in the art to modify the
system disclosed in Brown to dynamically determine the maximum number of
expired records to remove in the accessed linked list of records. It is a
fundamental concept in computer science and the relevant art that any variable
or parameter affecting any aspect of a system can be dynamically determined
based on information available to the system. One of ordinary skill in the art
would have been motivated to combine the system disclosed in Brown with the
fundamental concept of dynamically determining the maximum number of

EXHIBIT C-13

Joint Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

linked list of records. linked list of records. expired records to remove in an accessed linked list of records to solve a

number of potential problems. For example, the removal of expired records
described in Brown can be burdensome on the system, adding to the system’s
load and slowing down the system’s processing. Moreover, the removal could
also force an interruption in real-time processing as the processing waits for
the removal to complete. Indeed, part of the motivation for the system
disclosed in Brown is avoiding these problems. One of ordinary skill in the art
would have known that dynamically determining the maximum number to
remove would limit the burden on the system and bound the length of any real-
time interruption to prevent delays in processing. Indeed, Nemes concedes that
such dynamic determination was obvious when he states in the ‘120 patent that
“[a] person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records are removed, and that
the decision regarding if and how many records to delete can be a dynamic
one.” ‘120 at 7:10-15.

Brown combined with Dirks, Thatte, the ’663 patent and/or the Opportunistic
Garbage Collection Articles discloses an information storage and retrieval
system further including means for dynamically determining maximum
number for the record search means to remove in the accessed linked list of
records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

EXHIBIT C-13

Joint Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined

EXHIBIT C-13

Joint Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Brown and Dirks relate to deletion of aged records upon the allocation
of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as Brown. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching

EXHIBIT C-13

Joint Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Brown nothing more than
the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Brown and would have
seen the benefits of doing so. One possible benefit, for example, is saving the
system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Brown with the means for
dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. For example,
Thatte discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Brown with Thatte would be nothing more than the

EXHIBIT C-13

Joint Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine Brown
with Thatte and recognize the benefits of doing so. For example, the removal
of expired records described in Brown can be burdensome on the system,
adding to the system’s load and slowing down the system’s processing. One of
ordinary skill in the art would recognize that combining Brown with the
teachings of Thatte would solve this problem by dynamically determining how
many records to delete based on, among other things, the system load.
Moreover, the '120 patent discloses that "[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120
patent provides motivations to combine Brown with Thatte.

Alternatively, it would also be obvious to combine Brown with the ’663 patent.
Disclosure of these claim elements in the ’663 patent is clearly shown in the
chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record

EXHIBIT C-13

Joint Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT C-13

Joint Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,

EXHIBIT C-13

Joint Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Brown and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in Brown. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with Brown would be
nothing more than the predictable use of prior art elements according to their
established functions.

By way of further example, one of ordinary skill in the art would have

EXHIBIT C-13

Joint Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Brown and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Brown with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, Brown discloses in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with

EXHIBIT C-13

Joint Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Brown and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Brown. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how

EXHIBIT C-13

Joint Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Brown would be nothing more than the predictable use of prior
art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Brown and would
have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Brown to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in
Brown with the fundamental concept of dynamically determining the
maximum number of expired records to remove in an accessed linked list of
records to solve a number of potential problems. For example, the removal of
expired records described in Browncan be burdensome on the system, adding
to the system’s load and slowing down the system’s processing. Moreover, the
removal could also force an interruption in real-time processing as the
processing waits for the removal to complete.

EXHIBIT C-13

Joint Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Brown in combination with Dirks, Thatte, the ‘663
Patent, or the Opportunistic Garbage Collection References, it is disclosed by
Linux 2.0.1, which describes dynamically determining maximum number of
expired ones of the records to remove when the linked list is accessed. It
would have been obvious to combine Linux 2.0.1 with Brown. For example,
both Linux 2.0.1 and Brown describe systems and methods for performing data
storage and retrieval using known programming techniques to yield a
predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined

EXHIBIT C-13

Joint Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in

EXHIBIT C-13

Joint Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the

EXHIBIT C-13

Joint Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

3. A method for storing
and retrieving information
records using a linked list
to store and provide access

7. A method for storing
and retrieving information
records using a hashing
technique to provide access

To the extent the preamble is a limitation, Brown discloses a method for
storing and retrieving information records using a linked list to store and
provide access to the records, at least some of the records automatically
expiring. Brown also discloses a method for storing and retrieving information

EXHIBIT C-13

Joint Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

records using a hashing technique to provide access to the records and using an
external chaining technique to store the records with same hash address, at
least some of the records automatically expiring. See, e.g., Brown at 33-34, 60-
62, 66-68, Fig. 3.5.

For example, Brown discloses in part: “We have implemented a Mneme-based
hash table for our inverted File Manager using the overall structure shown in
Figure 3.5 Each slot points to a linked list of buckets, which contain the
key/value pairs for the keys that hash to that slot.” See Brown at 60-62, Fig.
3.5.

Brown further discloses: “The value array and the key heap grow towards each
other, such that the maximum number of entries in a bucket is variable. The
array and heap entries are paired-up from inside out, eliminating the need for
string heap offsets in the value array entries and minimizing the amount of
space required by the key/value pairs (compression techniques excluded). The
tradeoff is a more complex bucket and search algorithm. To find a key/value
pair in a bucket, we must scan the bucket’s key heap from left to right” See
Brown at 61.

In addition, Brown discloses: “The ability to modify an existing document
collection is a natural requirement for any information retrieval system
Additionally, old news articles will eventually expire and must be deleted from
the current events document collection. Articles may expire either because
their content is relevant only for a certain period of time, or because the size of
the current events collection must be held below some threshold due to
performance requirements or capacity limitations. Expired articles will either
be discarded or archived in a larger secondary document collection, leading to

EXHIBIT C-13

Joint Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

further document addition operations.” See Brown at 33-34.

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

Brown discloses accessing a linked list of records. Brown also discloses
accessing a linked list of records having same hash address. See, e.g., Brown
at 33-34, 60-62, 66-68, Fig. 3.5.

For example, Brown discloses in part: “We have implemented a Mneme-based
hash table for our inverted File Manager using the overall structure shown in
Figure 3.5 Each slot points to a linked list of buckets, which contain the
key/value pairs for the keys that hash to that slot.” See Brown at 60-62, Fig.
3.5.

Brown further discloses: “The value array and the key heap grow towards each
other, such that the maximum number of entries in a bucket is variable. The
array and heap entries are paired-up from inside out, eliminating the need for
string heap offsets in the value array entries and minimizing the amount of
space required by the key/value pairs (compression techniques excluded). The
tradeoff is a more complex bucket and search algorithm. To find a key/value
pair in a bucket, we must scan the bucket’s key heap from left to right”

Brown also discloses for example: “The ability to modify an existing document
collection is a natural requirement for any information retrieval system
Additionally, old news articles will eventually expire and must be deleted from
the current events document collection. Articles may expire either because
their content is relevant only for a certain period of time, or because the size of
the current events collection must be held below some threshold due to
performance requirements or capacity limitations. Expired articles will either
be discarded or archived in a larger secondary document collection, leading to

EXHIBIT C-13

Joint Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

further document addition operations.” See Brown at 33-34.

Brown further discloses: “In the third approach, all of the inverted lists in the
inverted file are scanned and entries for the deleted document are removed
from inverted lists as they are found The scan of the inverted file is driven
at the object level and is supported by Mneme’s object scanning facility. This
facility allows an object pool to iterate through its objects in order of object
identifier.” See Brown at 67.

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

Brown discloses identifying at least some of the automatically expired ones of
the records. See, e.g., Brown at 33-34, 60-62, 66-68, Fig. 3.5.

For example, Brown discloses in part: “The ability to modify an existing
document collection is a natural requirement for any information retrieval
system Additionally, old news articles will eventually expire and must be
deleted from the current events document collection. Articles may expire
either because their content is relevant only for a certain period of time, or
because the size of the current events collection must be held below some
threshold due to performance requirements or capacity limitations. Expired
articles will either be discarded or archived in a larger secondary document
collection, leading to further document addition operations.” See Brown at 33-
34.

Brown further discloses: “In the third approach, all of the inverted lists in the
inverted file are scanned and entries for the deleted document are removed
from inverted lists as they are found The scan of the inverted file is driven
at the object level and is supported by Mneme’s object scanning facility. This
facility allows an object pool to iterate through its objects in order of object

EXHIBIT C-13

Joint Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

identifier.” See Brown at 67.

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

Brown discloses removing at least some of the automatically expired records
from the linked list when the linked list is accessed. See, e.g., Brown at 33-34,
60-62, 66-68, Fig. 3.5.

For example, Brown discloses in part: “The ability to modify an existing
document collection is a natural requirement for any information retrieval
system Additionally, old news articles will eventually expire and must be
deleted from the current events document collection. Articles may expire
either because their content is relevant only for a certain period of time, or
because the size of the current events collection must be held below some
threshold due to performance requirements or capacity limitations. Expired
articles will either be discarded or archived in a larger secondary document
collection, leading to further document addition operations.” See Brown at 33-
34.

Brown further discloses: “In the third approach, all of the inverted lists in the
inverted file are scanned and entries for the deleted document are removed
from inverted lists as they are found The scan of the inverted file is driven
at the object level and is supported by Mneme’s object scanning facility. This
facility allows an object pool to iterate through its objects in order of object
identifier.” See Brown at 67.

 [7d] inserting, retrieving
or deleting one of the
records from the system
following the step of

Brown discloses inserting, retrieving or deleting one of the records from the
system following the step of removing. See, e.g., Brown at 33-34, 60-62, 66-
68, Fig. 3.5.

EXHIBIT C-13

Joint Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

removing. For example, Brown discloses in part: “The ability to modify an existing

document collection is a natural requirement for any information retrieval
system Additionally, old news articles will eventually expire and must be
deleted from the current events document collection. Articles may expire
either because their content is relevant only for a certain period of time, or
because the size of the current events collection must be held below some
threshold due to performance requirements or capacity limitations. Expired
articles will either be discarded or archived in a larger secondary document
collection, leading to further document addition operations.” See Brown at 33-
34.

Brown further discloses: “In the third approach, all of the inverted lists in the
inverted file are scanned and entries for the deleted document are removed
from inverted lists as they are found The scan of the inverted file is driven
at the object level and is supported by Mneme’s object scanning facility. This
facility allows an object pool to iterate through its objects in order of object
identifier.” See Brown at 67.

In addition, Brown discloses: “Should all of the document entries be deleted
from an inverted list, the list’s object can be freed and the corresponding term
can be deleted from the term hash table The long inverted lists are
processed next. The page-object pool that contains the link list object is
scanned, giving us the first object of each long inverted list.” See Brown at 67-
68.

4. The method according to
claim 3 further including
the step of dynamically

8. The method according
to claim 7 further including
the step of dynamically

It would have been obvious to one of ordinary skill in the art to modify the
system disclosed in Brown to dynamically determine the maximum number of
expired records to remove in the accessed linked list of records. It is a

EXHIBIT C-13

Joint Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

fundamental concept in computer science and the relevant art that any variable
or parameter affecting any aspect of a system can be dynamically determined
based on information available to the system. One of ordinary skill in the art
would have been motivated to combine the system disclosed in Brown with the
fundamental concept of dynamically determining the maximum number of
expired records to remove in an accessed linked list of records to solve a
number of potential problems. For example, the removal of expired records
described in Brown can be burdensome on the system, adding to the system’s
load and slowing down the system’s processing. Moreover, the removal could
also force an interruption in real-time processing as the processing waits for
the removal to complete. Indeed, part of the motivation for the system
disclosed in Brown is avoiding these problems. One of ordinary skill in the art
would have known that dynamically determining the maximum number to
remove would limit the burden on the system and bound the length of any real-
time interruption to prevent delays in processing. Indeed, Nemes concedes that
such dynamic determination was obvious when he states in the ‘120 patent that
“[a] person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records are removed, and that
the decision regarding if and how many records to delete can be a dynamic
one.” ‘120 at 7:10-15.

Brown combined with Dirks, Thatte, the ’663 patent, and/or the Opportunistic
Garbage Collection Articles discloses dynamically determining maximum
number of expired ones of the records to remove when the linked list is
accessed.

Dirks discloses the management of memory in a computer system and more

EXHIBIT C-13

Joint Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in the
chart of Dirks, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are

EXHIBIT C-13

Joint Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Brown and Dirks relate to deletion of aged records upon the allocation
of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables

EXHIBIT C-13

Joint Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

implementations such as that described Brown. Moreover, one of ordinary
skill in the art would recognize that it would improve similar systems and
methods in the same way. As the ’120 patent states “[a] person skilled in the
art will appreciate that the technique of removing all expired records while
searching the linked list can be expanded to include techniques whereby not
necessarily all expired records are removed, and that the decision regarding if
and how many records to delete can be a dynamic one.” The ’120 patent at
7:10-15. Additionally, one of ordinary skill in the art would recognize that the
result of combining Dirks’ deletion decision procedure with Brown would be
nothing more than the predictable use of prior art elements according to their
established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Brown and would have
seen the benefits of doing so. One possible benefit, for example, is saving the
system from performing sometimes time-consuming sweeps.

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Brown with the means for
dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. For example,
Thatte discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

EXHIBIT C-13

Joint Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Brown with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine Brown
with Thatte and recognized the benefits of doing so. For example, the removal
of expired records described in Brown can be burdensome on the system,
adding to the system’s load and slowing down the system’s processing. One of
ordinary skill in the art would recognize that combining Brown with the
teachings of Thatte would solve this problem by dynamically determining how
many records to delete based on, among other things, the system load.
Moreover, the '120 patent discloses that "[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120
patent provides motivations to combine Brown with Thatte.

Alternatively, it would also be obvious to combine Brown with the ’663 patent.
Disclosure of these claim elements in the ’663 patent is clearly shown in the
chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not

EXHIBIT C-13

Joint Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT C-13

Joint Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,

EXHIBIT C-13

Joint Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Brown and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as Brown. Moreover, one of ordinary skill in the art would recognize that
it would improve similar systems and methods in the same way. As the ’120
patent states “[a] person skilled in the art will appreciate that the technique of
removing all expired records while searching the linked list can be expanded to
include techniques whereby not necessarily all expired records are removed,
and that the decision regarding if and how many records to delete can be a
dynamic one.” The ’120 patent at 7:10-15. Additionally, one of ordinary skill
in the art would recognize that the result of combining the ’663 patent’s
deletion decision procedure with Brown would be nothing more than the
predictable use of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion

EXHIBIT C-13

Joint Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

based on a systems load as taught by the ’663 patent and with Brown and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Brown with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, Brown discloses in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a

EXHIBIT C-13

Joint Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Brown and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Brown. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.

EXHIBIT C-13

Joint Invalidity Contentions & Production of
Documents

35 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Brown would be nothing more than the predictable use of prior
art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Brown and would
have seen the benefits of doing so. One such benefit, for example, is that the
system would only perform deletions when the system was not already too
overloaded, thus preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Brown to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in
Brown with the fundamental concept of dynamically determining the
maximum number of expired records to remove in an accessed linked list of
records to solve a number of potential problems. For example, the removal of
expired records described in Brown can be burdensome on the system, adding
to the system’s load and slowing down the system’s processing. Moreover, the
removal could also force an interruption in real-time processing as the
processing waits for the removal to complete.

EXHIBIT C-13

Joint Invalidity Contentions & Production of
Documents

36 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Brown in combination with Dirks, Thatte, the ‘663
Patent, or the Opportunistic Garbage Collection References, it is disclosed by
Linux 2.0.1, which describes dynamically determining maximum number of
expired ones of the records to remove when the linked list is accessed. It
would have been obvious to combine Linux 2.0.1 with Brown. For example,
both Linux 2.0.1 and Brown describe systems and methods for performing data
storage and retrieval using known programming techniques to yield a
predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined

EXHIBIT C-13

Joint Invalidity Contentions & Production of
Documents

37 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in

EXHIBIT C-13

Joint Invalidity Contentions & Production of
Documents

38 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the

EXHIBIT C-13

Joint Invalidity Contentions & Production of
Documents

39 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

EXHIBIT C-14

Joint Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Costello, Adam, et al., Redesigning the BSD - Callout and Time Facilities,
WUSC 95-23, November 2, 1995 (“Costello”). See also, Costello, Adam,

et al., Presentation - Redesigning the BSD Unix Callout and Time
Facilities, January 10, 1996 (“Costello Presentation”).

1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, Costello discloses an information
storage and retrieval system.

For example, Costello describes a method and system for storing and retrieving
callouts. See, e.g., Costello, page 3-4. See also, Costello Presentation, page 3,
15-18, and 26.

For example, Costello describes in part: “Instead of a single sorted list of callout
structures, we use a circular array of unsorted lists. The array, called a
callwheel (see Figure 2), contains callwheelsize entries. All callouts
scheduled to expire at time t appear in the list callwheel[t%
callwheelsize], and their c_time members are set to
t/callwheelsize.” See, Costello, page 3.

Costello also describes: “We could try to find a way, given a function pointer
and argument pointer, to produce a pointer to the matching callout in constant
time. A hash table is the obvious mechanism.” See, Costello, page 4.

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

Costello discloses a linked list to store and provide access to records stored in a
memory of the system, at least some of the records automatically expiring.
Costello also discloses a hashing means to provide access to records stored in a
memory of the system and using an external chaining technique to store the
records with same hash address, at least some of the records automatically
expiring.

For example, Costello describes storing outstanding callouts in a linked list.
See, e.g., Costello, page 3, 7. The entries are removed when the callout is
expired. Id. See also, Costello Presentation, page 3, 15-18, and 26.

EXHIBIT C-14

Joint Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Costello, Adam, et al., Redesigning the BSD - Callout and Time Facilities,
WUSC 95-23, November 2, 1995 (“Costello”). See also, Costello, Adam,

et al., Presentation - Redesigning the BSD Unix Callout and Time
Facilities, January 10, 1996 (“Costello Presentation”).

For example, Costello describes storing the callouts in both a circular array of
linked lists and a hash table of linked lists. See, e.g., Costello, page 3. Id. at 4.
See also, Costello Presentation, page 3, 15-18, and 26.

For example, Costello discloses in part: “Instead of a single sorted list of callout
structures, we use a circular array of unsorted lists. The array, called a
callwheel (see Figure 2), contains callwheelsize entries. All callouts
scheduled to expire at time t appear in the list callwheel[t%
callwheelsize], and their c_time members are set to
t/callwheelsize.” See, Costello, page 3.

Costello further discloses: “We could try to find a way, given a function pointer
and argument pointer, to produce a pointer to the matching callout in constant
time. A hash table is the obvious mechanism.” See, Costello, page 4.

Costello discloses in part: “At first, we used a closed-chaining hash table.” See,
Costello, page 4.

Costello further discloses: “We wanted both sorts of calls to have equal costs in
the new implementation as well, so we switched to an open-chaining hash table,
in which only one bucket needs to be searched in any case.” See, Costello, page
7.

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of
records having the same

Costello discloses a record search means utilizing a search key to access the
linked list. Costello also discloses a record search means utilizing a search key
to access a linked list of records having the same hash address.

EXHIBIT C-14

Joint Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Costello, Adam, et al., Redesigning the BSD - Callout and Time Facilities,
WUSC 95-23, November 2, 1995 (“Costello”). See also, Costello, Adam,

et al., Presentation - Redesigning the BSD Unix Callout and Time
Facilities, January 10, 1996 (“Costello Presentation”).

hash address, For example, Costello describes using both a circular array and a hash table.

See, e.g., Costello, page 3, 7. In either case, a search key is utilized to access
the linked list of callouts. Id. at 4. See also, Costello Presentation, page 3, 15-
18, and 26.

For example, Costello discloses in part: “Instead of a single sorted list of callout
structures, we use a circular array of unsorted lists. The array, called a
callwheel (see Figure 2), contains callwheelsize entries. All callouts
scheduled to expire at time t appear in the list callwheel[t%
callwheelsize], and their c_time members are set to
t/callwheelsize.” See, Costello, page 3.

Costello further discloses: “We could try to find a way, given a function pointer
and argument pointer, to produce a pointer to the matching callout in constant
time. A hash table is the obvious mechanism.” See, Costello, page 4.

Costello further recites: “At first, we used a closed-chaining hash table.” See,
Costello, page 4.

Costello further recites: “We wanted both sorts of calls to have equal costs in
the new implementation as well, so we switched to an open-chaining hash table,
in which only one bucket needs to be searched in any case.” See, Costello, page
7.

[1c] the record search
means including a means
for identifying and
removing at least some of

[5c] the record search
means including means for
identifying and removing
at least some expired ones

Costello discloses the record search means including a means for identifying
and removing at least some of the expired ones of the records from the linked
list when the linked list is accessed. Costello also discloses the record search
means including means for identifying and removing at least some expired

EXHIBIT C-14

Joint Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Costello, Adam, et al., Redesigning the BSD - Callout and Time Facilities,
WUSC 95-23, November 2, 1995 (“Costello”). See also, Costello, Adam,

et al., Presentation - Redesigning the BSD Unix Callout and Time
Facilities, January 10, 1996 (“Costello Presentation”).

the expired ones of the
records from the linked list
when the linked list is
accessed, and

of the records from the
linked list of records when
the linked list is accessed,
and

ones of the records from the linked list of records when the linked list is
accessed.

For example, Costello describes identifying the expired callouts and removing
them from the linked list when it is accessed. See, e.g., Costello, page 3-4, 7.
See also, Costello Presentation, page 3, 15-18, and 26.

For example, Costello discloses in part: “Instead of a single sorted list of callout
structures, we use a circular array of unsorted lists. The array, called a
callwheel (see Figure 2), contains callwheelsize entries. All callouts
scheduled to expire at time t appear in the list callwheel[t%
callwheelsize], and their c_time members are set to
t/callwheelsize.” See, Costello, page 3.

Costello further discloses that: “If the first callout has expired, a software clock
interrupt is generated. Its handler, softclock(), repeatedly checks the
callout at the head of the list, and if it is expired (c_time member equal to
zero), removes it and calls its function.” See, Costello, page 3.

In addition, Costello discloses: “We could try to find a way, given a function
pointer and argument pointer, to produce a pointer to the matching callout in
constant time. A hash table is the obvious mechanism.” See, Costello, page 4.

Costello further discloses: “At first, we used a closed-chaining hash table.” See,
Costello, page 4.

Costello further discloses: “We wanted both sorts of calls to have equal costs in
the new implementation as well, so we switched to an open-chaining hash table,

EXHIBIT C-14

Joint Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Costello, Adam, et al., Redesigning the BSD - Callout and Time Facilities,
WUSC 95-23, November 2, 1995 (“Costello”). See also, Costello, Adam,

et al., Presentation - Redesigning the BSD Unix Callout and Time
Facilities, January 10, 1996 (“Costello Presentation”).

in which only one bucket needs to be searched in any case.” See, Costello, page
7.

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

Costello discloses means, utilizing the record search means, for accessing the
linked list and, at the same time, removing at least some of the expired ones of
the records in the linked list. Costello also discloses utilizing the record search
means, for inserting, retrieving, and deleting records from the system and, at
the same time, removing at least some expired ones of the records in the
accessed linked list of records.

For example, Costello describes using the record search means to access the
linked list and retrieving and removing expired callouts from the linked list at
the same time. See, e.g., Costello, page 3-4. See also, Costello Presentation,
page 3, 15-18, and 26.

For example, Costello discloses in part: “Instead of a single sorted list of callout
structures, we use a circular array of unsorted lists. The array, called a
callwheel (see Figure 2), contains callwheelsize entries. All callouts
scheduled to expire at time t appear in the list callwheel[t%
callwheelsize], and their c_time members are set to
t/callwheelsize.” See, Costello, page 3.

Costello further discloses: “If the first callout has expired, a software clock
interrupt is generated. Its handler, softclock(), repeatedly checks the
callout at the head of the list, and if it is expired (c_time member equal to
zero), removes it and calls its function.” See, Costello, page 3.

2. The information storage 6. The information storage Costello discloses an information storage and retrieval system further including

EXHIBIT C-14

Joint Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Costello, Adam, et al., Redesigning the BSD - Callout and Time Facilities,
WUSC 95-23, November 2, 1995 (“Costello”). See also, Costello, Adam,

et al., Presentation - Redesigning the BSD Unix Callout and Time
Facilities, January 10, 1996 (“Costello Presentation”).

and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records.

For example, Costello describes limiting the number of records removed from
the linked list during a particular sequence using a max_softclock_steps
variable. See, e.g., Costello, page 8.

For example, Costello discloses in part: “softclock() keeps track of the
number of steps it has taken since it last enabled interrupts, and whenever the
count reaches MAX_SOFTCLOCK_STEPS, it briefly enables them. Therefore,
softclock() never disables interrupts for more than a constant amount of
time.” See, e.g., Costello, page 8.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Costello to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Costello with the fundamental concept of dynamically determining
the maximum number of expired records to remove in an accessed linked list
of records to solve a number of potential problems. For example, the removal
of expired records described in Costello can be burdensome on the system,
adding to the system’s load and slowing down the system’s processing.
Moreover, the removal could also force an interruption in real-time processing
as the processing waits for the removal to complete. Indeed, part of the
motivation for the system disclosed in Costello is avoiding these problems.

EXHIBIT C-14

Joint Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Costello, Adam, et al., Redesigning the BSD - Callout and Time Facilities,
WUSC 95-23, November 2, 1995 (“Costello”). See also, Costello, Adam,

et al., Presentation - Redesigning the BSD Unix Callout and Time
Facilities, January 10, 1996 (“Costello Presentation”).

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Costello, Costello combined with Dirks, Thatte, the
’663 patent and/or the Opportunistic Garbage Collection Articles discloses an
information storage and retrieval system further including means for
dynamically determining maximum number for the record search means to
remove in the accessed linked list of records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs

EXHIBIT C-14

Joint Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Costello, Adam, et al., Redesigning the BSD - Callout and Time Facilities,
WUSC 95-23, November 2, 1995 (“Costello”). See also, Costello, Adam,

et al., Presentation - Redesigning the BSD Unix Callout and Time
Facilities, January 10, 1996 (“Costello Presentation”).

on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

EXHIBIT C-14

Joint Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Costello, Adam, et al., Redesigning the BSD - Callout and Time Facilities,
WUSC 95-23, November 2, 1995 (“Costello”). See also, Costello, Adam,

et al., Presentation - Redesigning the BSD Unix Callout and Time
Facilities, January 10, 1996 (“Costello Presentation”).

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Costello and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as Costello. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Costello nothing more than

EXHIBIT C-14

Joint Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Costello, Adam, et al., Redesigning the BSD - Callout and Time Facilities,
WUSC 95-23, November 2, 1995 (“Costello”). See also, Costello, Adam,

et al., Presentation - Redesigning the BSD Unix Callout and Time
Facilities, January 10, 1996 (“Costello Presentation”).

the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Costello and would
have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Costello with the means
for dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. For example,
Thatte discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, as both Costello and Thatte teach a system of data storage
and retrieval, one of ordinary skill in the art would recognize that the result of
combining Costello with Thatte would be nothing more than the predictable
use of prior art elements according to their established functions. The resulting
combination would include the capability to determine the maximum number
for the record search means to remove as taught by Thatte.

EXHIBIT C-14

Joint Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Costello, Adam, et al., Redesigning the BSD - Callout and Time Facilities,
WUSC 95-23, November 2, 1995 (“Costello”). See also, Costello, Adam,

et al., Presentation - Redesigning the BSD Unix Callout and Time
Facilities, January 10, 1996 (“Costello Presentation”).

Further, one of ordinary skill in the art would be motivated to combine
Costello with Thatte and recognize the benefits of doing so. For example, the
removal of expired records described in Costello can be burdensome on the
system, adding to the system’s load and slowing down the system’s
processing. One of ordinary skill in the art would recognize that combining
Costello with the teachings of Thatte would solve this problem by dynamically
determining how many records to delete based on, among other things, the
system load. Moreover, the '120 patent discloses that "[a] person skilled in the
art will appreciate that the technique of removing all expired records while
searching the linked list can be expanded to include techniques whereby not
necessarily all expired records are removed, and that the decision regarding if
and how many records to delete can be a dynamic one." '120 at 7:10-15. Thus,
the '120 patent provides motivations to combine Costello with Thatte.

Alternatively, it would also be obvious to combine Costello with the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

EXHIBIT C-14

Joint Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Costello, Adam, et al., Redesigning the BSD - Callout and Time Facilities,
WUSC 95-23, November 2, 1995 (“Costello”). See also, Costello, Adam,

et al., Presentation - Redesigning the BSD Unix Callout and Time
Facilities, January 10, 1996 (“Costello Presentation”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT C-14

Joint Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Costello, Adam, et al., Redesigning the BSD - Callout and Time Facilities,
WUSC 95-23, November 2, 1995 (“Costello”). See also, Costello, Adam,

et al., Presentation - Redesigning the BSD Unix Callout and Time
Facilities, January 10, 1996 (“Costello Presentation”).

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,

EXHIBIT C-14

Joint Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Costello, Adam, et al., Redesigning the BSD - Callout and Time Facilities,
WUSC 95-23, November 2, 1995 (“Costello”). See also, Costello, Adam,

et al., Presentation - Redesigning the BSD Unix Callout and Time
Facilities, January 10, 1996 (“Costello Presentation”).

Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Costello and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in Costello. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with Costello would
be nothing more than the predictable use of prior art elements according to
their established functions.

By way of further example, one of ordinary skill in the art would have

EXHIBIT C-14

Joint Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Costello, Adam, et al., Redesigning the BSD - Callout and Time Facilities,
WUSC 95-23, November 2, 1995 (“Costello”). See also, Costello, Adam,

et al., Presentation - Redesigning the BSD Unix Callout and Time
Facilities, January 10, 1996 (“Costello Presentation”).

combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Costello and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Costello with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with

EXHIBIT C-14

Joint Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Costello, Adam, et al., Redesigning the BSD - Callout and Time Facilities,
WUSC 95-23, November 2, 1995 (“Costello”). See also, Costello, Adam,

et al., Presentation - Redesigning the BSD Unix Callout and Time
Facilities, January 10, 1996 (“Costello Presentation”).

responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Costello and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Costello. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how

EXHIBIT C-14

Joint Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Costello, Adam, et al., Redesigning the BSD - Callout and Time Facilities,
WUSC 95-23, November 2, 1995 (“Costello”). See also, Costello, Adam,

et al., Presentation - Redesigning the BSD Unix Callout and Time
Facilities, January 10, 1996 (“Costello Presentation”).

many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Costello would be nothing more than the predictable use of
prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Costello and would
have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Costello to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Costello with the fundamental concept of dynamically determining
the maximum number of expired records to remove in an accessed linked list
of records to solve a number of potential problems. For example, the removal
of expired records described in Costello can be burdensome on the system,
adding to the system’s load and slowing down the system’s processing.
Moreover, the removal could also force an interruption in real-time processing
as the processing waits for the removal to complete.

EXHIBIT C-14

Joint Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Costello, Adam, et al., Redesigning the BSD - Callout and Time Facilities,
WUSC 95-23, November 2, 1995 (“Costello”). See also, Costello, Adam,

et al., Presentation - Redesigning the BSD Unix Callout and Time
Facilities, January 10, 1996 (“Costello Presentation”).

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Costello in combination with Dirks, Thatte, the
‘663 Patent, or the Opportunistic Garbage Collection References, it is
disclosed by Linux 2.0.1, which describes dynamically determining maximum
number of expired ones of the records to remove when the linked list is
accessed. It would have been obvious to combine Linux 2.0.1 with Costello.
For example, both Linux 2.0.1 and Costello describe systems and methods for
performing data storage and retrieval using known programming techniques to
yield a predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined

EXHIBIT C-14

Joint Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Costello, Adam, et al., Redesigning the BSD - Callout and Time Facilities,
WUSC 95-23, November 2, 1995 (“Costello”). See also, Costello, Adam,

et al., Presentation - Redesigning the BSD Unix Callout and Time
Facilities, January 10, 1996 (“Costello Presentation”).

dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in

EXHIBIT C-14

Joint Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Costello, Adam, et al., Redesigning the BSD - Callout and Time Facilities,
WUSC 95-23, November 2, 1995 (“Costello”). See also, Costello, Adam,

et al., Presentation - Redesigning the BSD Unix Callout and Time
Facilities, January 10, 1996 (“Costello Presentation”).

the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the

EXHIBIT C-14

Joint Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Costello, Adam, et al., Redesigning the BSD - Callout and Time Facilities,
WUSC 95-23, November 2, 1995 (“Costello”). See also, Costello, Adam,

et al., Presentation - Redesigning the BSD Unix Callout and Time
Facilities, January 10, 1996 (“Costello Presentation”).

function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an

To the extent the preamble is a limitation, Costello discloses a method for
storing and retrieving information records using a linked list to store and
provide access to the records, at least some of the records automatically
expiring. Costello also discloses a method for storing and retrieving
information records using a hashing technique to provide access to the records

EXHIBIT C-14

Joint Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Costello, Adam, et al., Redesigning the BSD - Callout and Time Facilities,
WUSC 95-23, November 2, 1995 (“Costello”). See also, Costello, Adam,

et al., Presentation - Redesigning the BSD Unix Callout and Time
Facilities, January 10, 1996 (“Costello Presentation”).

some of the records
automatically expiring, the
method comprising the
steps of:

external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

and using an external chaining technique to store the records with same hash
address, at least some of the records automatically expiring.

For example, Costello describes a method and system for storing and retrieving
callouts which expire automatically based on timers. See, e.g., Costello, page 3-
4. See also, Costello Presentation, page 3, 15-18, and 26.

For example, Costello discloses in part: “Instead of a single sorted list of callout
structures, we use a circular array of unsorted lists. The array, called a
callwheel (see Figure 2), contains callwheelsize entries. All callouts
scheduled to expire at time t appear in the list callwheel[t%
callwheelsize], and their c_time members are set to
t/callwheelsize.” See, Costello, page 3.

Costello further discloses: “We could try to find a way, given a function pointer
and argument pointer, to produce a pointer to the matching callout in constant
time. A hash table is the obvious mechanism.” See, Costello, page 4.

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

Costello discloses accessing a linked list of records. Costello also discloses
accessing a linked list of records having same hash address.

For example, Costello describes using both a circular array and a hash table.
See, e.g., Costello, page 3-4, 7. In either case, a search key is utilized to access
the linked list of callouts. Id. at 4. See also, Costello Presentation, page 3, 15-
18, and 26.

For example, Costello discloses in part: “Instead of a single sorted list of callout
structures, we use a circular array of unsorted lists. The array, called a

EXHIBIT C-14

Joint Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Costello, Adam, et al., Redesigning the BSD - Callout and Time Facilities,
WUSC 95-23, November 2, 1995 (“Costello”). See also, Costello, Adam,

et al., Presentation - Redesigning the BSD Unix Callout and Time
Facilities, January 10, 1996 (“Costello Presentation”).

callwheel (see Figure 2), contains callwheelsize entries. All callouts
scheduled to expire at time t appear in the list callwheel[t%
callwheelsize], and their c_time members are set to
t/callwheelsize.” See, Costello, page 3.

Costello further discloses: “We could try to find a way, given a function pointer
and argument pointer, to produce a pointer to the matching callout in constant
time. A hash table is the obvious mechanism.” See, Costello, page 4.

Costello further discloses: “At first, we used a closed-chaining hash table.” See,
Costello, page 4.

Costello further discloses: “We wanted both sorts of calls to have equal costs in
the new implementation as well, so we switched to an open-chaining hash table,
in which only one bucket needs to be searched in any case.” See, Costello, page
7.

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

Costello discloses identifying at least some of the automatically expired ones
of the records.

For example, the entries are removed when the callout is expired. See, e.g.,
Costello, page 3-4, 7. See also, Costello Presentation, page 3, 15-18, and 26.

For example, Costello discloses in part: “All callouts scheduled to expire at time
t appear in the list callwheel[t% callwheelsize], and their c_time
members are set to t/callwheelsize.” See, Costello, page 3.

Costello further discloses: “If the first callout has expired, a software clock

EXHIBIT C-14

Joint Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Costello, Adam, et al., Redesigning the BSD - Callout and Time Facilities,
WUSC 95-23, November 2, 1995 (“Costello”). See also, Costello, Adam,

et al., Presentation - Redesigning the BSD Unix Callout and Time
Facilities, January 10, 1996 (“Costello Presentation”).

interrupt is generated. Its handler, softclock(), repeatedly checks the
callout at the head of the list, and if it is expired (c_time member equal to
zero), removes it and calls its function.” See, Costello, page 3.

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

Costello discloses removing at least some of the automatically expired records
from the linked list when the linked list is accessed.

For example, Costello describes identifying the expired callouts and removing
them from the linked list when it is accessed. See, e.g., Costello, page 3-4. See
also, Costello Presentation, page 3, 15-18, and 26.

For example, Costello discloses in part: “All callouts scheduled to expire at time
t appear in the list callwheel[t% callwheelsize], and their c_time
members are set to t/callwheelsize.” See, Costello, page 3.

Costello further discloses: “If the first callout has expired, a software clock
interrupt is generated. Its handler, softclock(), repeatedly checks the
callout at the head of the list, and if it is expired (c_time member equal to
zero), removes it and calls its function.” See, Costello, page 3.

 [7d] inserting, retrieving
or deleting one of the
records from the system
following the step of
removing.

Costello discloses inserting, retrieving or deleting one of the records from the
system following the step of removing.

For example, Costello describes using the record search means to access the
linked list and insert, retrieving, or delete expired callouts from the linked list
following the step of removing expired callouts See, e.g., Costello, page 3-4,
7. See also, Costello Presentation, page 3, 15-18, and 26.

For example, Costello discloses in part: “Instead of a single sorted list of callout
structures, we use a circular array of unsorted lists. The array, called a

EXHIBIT C-14

Joint Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Costello, Adam, et al., Redesigning the BSD - Callout and Time Facilities,
WUSC 95-23, November 2, 1995 (“Costello”). See also, Costello, Adam,

et al., Presentation - Redesigning the BSD Unix Callout and Time
Facilities, January 10, 1996 (“Costello Presentation”).

callwheel (see Figure 2), contains callwheelsize entries. All callouts
scheduled to expire at time t appear in the list callwheel[t%
callwheelsize], and their c_time members are set to
t/callwheelsize.” See, Costello, page 3.

Costello further discloses: “If the first callout has expired, a software clock
interrupt is generated. Its handler, softclock(), repeatedly checks the
callout at the head of the list, and if it is expired (c_time member equal to
zero), removes it and calls its function.” See, Costell, page 3.

Costello further discloses: “We could try to find a way, given a function pointer
and argument pointer, to produce a pointer to the matching callout in constant
time. A hash table is the obvious mechanism.” See, Costello, page 4.

In addition, Costello discloses: “At first, we used a closed-chaining hash table.”
See, Costello, page 4.

Costello further discloses: “We wanted both sorts of calls to have equal costs in
the new implementation as well, so we switched to an open-chaining hash table,
in which only one bucket needs to be searched in any case.” See, Costello, page
7.

4. The method according to
claim 3 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is

Costello discloses dynamically determining maximum number of expired ones
of the records to remove when the linked list is accessed.

For example, Costello describes limiting the number of records removed from
the linked list during a particular sequence using a max_softclock_steps
variable. See, e.g., Costello, page 8.

EXHIBIT C-14

Joint Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Costello, Adam, et al., Redesigning the BSD - Callout and Time Facilities,
WUSC 95-23, November 2, 1995 (“Costello”). See also, Costello, Adam,

et al., Presentation - Redesigning the BSD Unix Callout and Time
Facilities, January 10, 1996 (“Costello Presentation”).

accessed. accessed. For example, Costello discloses in part: “softclock() keeps track of the

number of steps it has taken since it last enabled interrupts, and whenever the
count reaches MAX_SOFTCLOCK_STEPS, it briefly enables them. Therefore,
softclock() never disables interrupts for more than a constant amount of
time.” See, Costello, page 8.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Costello to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Costello with the fundamental concept of dynamically determining
the maximum number of expired records to remove in an accessed linked list
of records to solve a number of potential problems. For example, the removal
of expired records described in Costello can be burdensome on the system,
adding to the system’s load and slowing down the system’s processing.
Moreover, the removal could also force an interruption in real-time processing
as the processing waits for the removal to complete. Indeed, part of the
motivation for the system disclosed in Costello is avoiding these problems.
One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily

EXHIBIT C-14

Joint Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Costello, Adam, et al., Redesigning the BSD - Callout and Time Facilities,
WUSC 95-23, November 2, 1995 (“Costello”). See also, Costello, Adam,

et al., Presentation - Redesigning the BSD Unix Callout and Time
Facilities, January 10, 1996 (“Costello Presentation”).

all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Costello, Costello combined with Dirks, Thatte, the
’663 patent and/or the Opportunistic Garbage Collection Articles discloses an
information storage and retrieval system further including means for
dynamically determining maximum number for the record search means to
remove in the accessed linked list of records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at

EXHIBIT C-14

Joint Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Costello, Adam, et al., Redesigning the BSD - Callout and Time Facilities,
WUSC 95-23, November 2, 1995 (“Costello”). See also, Costello, Adam,

et al., Presentation - Redesigning the BSD Unix Callout and Time
Facilities, January 10, 1996 (“Costello Presentation”).

once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for

EXHIBIT C-14

Joint Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Costello, Adam, et al., Redesigning the BSD - Callout and Time Facilities,
WUSC 95-23, November 2, 1995 (“Costello”). See also, Costello, Adam,

et al., Presentation - Redesigning the BSD Unix Callout and Time
Facilities, January 10, 1996 (“Costello Presentation”).

each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Costello and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as Costello. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Costello nothing more than
the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Costello and would
have seen the benefits of doing so. One possible benefit, for example, is

EXHIBIT C-14

Joint Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Costello, Adam, et al., Redesigning the BSD - Callout and Time Facilities,
WUSC 95-23, November 2, 1995 (“Costello”). See also, Costello, Adam,

et al., Presentation - Redesigning the BSD Unix Callout and Time
Facilities, January 10, 1996 (“Costello Presentation”).

saving the system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Costello with the means
for dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. For example,
Thatte discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, as both Costello and Thatte teach a system of data storage
and retrieval, one of ordinary skill in the art would recognize that the result of
combining Costello with Thatte would be nothing more than the predictable
use of prior art elements according to their established functions. The resulting
combination would include the capability to determine the maximum number
for the record search means to remove as taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine
Costello with Thatte and recognize the benefits of doing so. For example, the
removal of expired records described in Costello can be burdensome on the
system, adding to the system’s load and slowing down the system’s
processing. One of ordinary skill in the art would recognize that combining
Costello with the teachings of Thatte would solve this problem by dynamically
determining how many records to delete based on, among other things, the

EXHIBIT C-14

Joint Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Costello, Adam, et al., Redesigning the BSD - Callout and Time Facilities,
WUSC 95-23, November 2, 1995 (“Costello”). See also, Costello, Adam,

et al., Presentation - Redesigning the BSD Unix Callout and Time
Facilities, January 10, 1996 (“Costello Presentation”).

system load. Moreover, the '120 patent discloses that "[a] person skilled in the
art will appreciate that the technique of removing all expired records while
searching the linked list can be expanded to include techniques whereby not
necessarily all expired records are removed, and that the decision regarding if
and how many records to delete can be a dynamic one." '120 at 7:10-15. Thus,
the '120 patent provides motivations to combine Costello with Thatte.

Alternatively, it would also be obvious to combine Costello with the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of

EXHIBIT C-14

Joint Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Costello, Adam, et al., Redesigning the BSD - Callout and Time Facilities,
WUSC 95-23, November 2, 1995 (“Costello”). See also, Costello, Adam,

et al., Presentation - Redesigning the BSD Unix Callout and Time
Facilities, January 10, 1996 (“Costello Presentation”).

automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT C-14

Joint Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Costello, Adam, et al., Redesigning the BSD - Callout and Time Facilities,
WUSC 95-23, November 2, 1995 (“Costello”). See also, Costello, Adam,

et al., Presentation - Redesigning the BSD Unix Callout and Time
Facilities, January 10, 1996 (“Costello Presentation”).

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Costello and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in Costello. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily

EXHIBIT C-14

Joint Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Costello, Adam, et al., Redesigning the BSD - Callout and Time Facilities,
WUSC 95-23, November 2, 1995 (“Costello”). See also, Costello, Adam,

et al., Presentation - Redesigning the BSD Unix Callout and Time
Facilities, January 10, 1996 (“Costello Presentation”).

all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with Costello would
be nothing more than the predictable use of prior art elements according to
their established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Costello and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Costello with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to

EXHIBIT C-14

Joint Invalidity Contentions & Production of
Documents

35 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Costello, Adam, et al., Redesigning the BSD - Callout and Time Facilities,
WUSC 95-23, November 2, 1995 (“Costello”). See also, Costello, Adam,

et al., Presentation - Redesigning the BSD Unix Callout and Time
Facilities, January 10, 1996 (“Costello Presentation”).

scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Costello and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood

EXHIBIT C-14

Joint Invalidity Contentions & Production of
Documents

36 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Costello, Adam, et al., Redesigning the BSD - Callout and Time Facilities,
WUSC 95-23, November 2, 1995 (“Costello”). See also, Costello, Adam,

et al., Presentation - Redesigning the BSD Unix Callout and Time
Facilities, January 10, 1996 (“Costello Presentation”).

how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Costello. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Costello would be nothing more than the predictable use of
prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Costello and would
have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Costello to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system

EXHIBIT C-14

Joint Invalidity Contentions & Production of
Documents

37 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Costello, Adam, et al., Redesigning the BSD - Callout and Time Facilities,
WUSC 95-23, November 2, 1995 (“Costello”). See also, Costello, Adam,

et al., Presentation - Redesigning the BSD Unix Callout and Time
Facilities, January 10, 1996 (“Costello Presentation”).

disclosed in Costello with the fundamental concept of dynamically determining
the maximum number of expired records to remove in an accessed linked list
of records to solve a number of potential problems. For example, the removal
of expired records described in Costello can be burdensome on the system,
adding to the system’s load and slowing down the system’s processing.
Moreover, the removal could also force an interruption in real-time processing
as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Costello in combination with Dirks, Thatte, the
‘663 Patent, or the Opportunistic Garbage Collection References, it is
disclosed by Linux 2.0.1, which describes dynamically determining maximum
number of expired ones of the records to remove when the linked list is
accessed. It would have been obvious to combine Linux 2.0.1 with Costello.
For example, both Linux 2.0.1 and Costello describe systems and methods for
performing data storage and retrieval using known programming techniques to
yield a predictable result.

EXHIBIT C-14

Joint Invalidity Contentions & Production of
Documents

38 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Costello, Adam, et al., Redesigning the BSD - Callout and Time Facilities,
WUSC 95-23, November 2, 1995 (“Costello”). See also, Costello, Adam,

et al., Presentation - Redesigning the BSD Unix Callout and Time
Facilities, January 10, 1996 (“Costello Presentation”).

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds

EXHIBIT C-14

Joint Invalidity Contentions & Production of
Documents

39 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Costello, Adam, et al., Redesigning the BSD - Callout and Time Facilities,
WUSC 95-23, November 2, 1995 (“Costello”). See also, Costello, Adam,

et al., Presentation - Redesigning the BSD Unix Callout and Time
Facilities, January 10, 1996 (“Costello Presentation”).

the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves

EXHIBIT C-14

Joint Invalidity Contentions & Production of
Documents

40 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Costello, Adam, et al., Redesigning the BSD - Callout and Time Facilities,
WUSC 95-23, November 2, 1995 (“Costello”). See also, Costello, Adam,

et al., Presentation - Redesigning the BSD Unix Callout and Time
Facilities, January 10, 1996 (“Costello Presentation”).

the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function

EXHIBIT C-14

Joint Invalidity Contentions & Production of
Documents

41 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Costello, Adam, et al., Redesigning the BSD - Callout and Time Facilities,
WUSC 95-23, November 2, 1995 (“Costello”). See also, Costello, Adam,

et al., Presentation - Redesigning the BSD Unix Callout and Time
Facilities, January 10, 1996 (“Costello Presentation”).

rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

EXHIBIT C-15

Joint Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, Foster discloses an information
storage and retrieval system. See, e.g., Foster at 4-12, 24-26, 33-40.

For example, Foster discloses in part: “A very important use of the vector of
lists is in one of the methods for doing ‘hash coding’. The problem is to find
something which has been associated with an object, on being presented with
the object itself.” See Foster at 25.

Foster further discloses: “When a name is read, the appropriate list is selected
and searched. If 26 is a suitable value for n and the unevenness of distribution
of initial letters is not thought to matter, then these could serve as the index for
the lists.” See Foster at 25.

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

Foster discloses a linked list to store and provide access to records stored in a
memory of the system, at least some of the records automatically expiring.
Foster also discloses a hashing means to provide access to records stored in a
memory of the system and using an external chaining technique to store the
records with same hash address, at least some of the records automatically
expiring. See, e.g., Foster at 4-12, 33-40.

For example, Foster discloses in part: “A very important use of the vector of
lists is in one of the methods for doing ‘hash coding’. The problem is to find
something which has been associated with an object, on being presented with
the object itself.” See Foster at 25.

Foster further discloses: “When a name is read, the appropriate list is selected
and searched. If 26 is a suitable value for n and the unevenness of distribution
of initial letters is not thought to matter, then these could serve as the index for
the lists.” See Foster at 25.

EXHIBIT C-15

Joint Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

In addition, Foster discloses for example: “But most list processing problems
will require more store than can be made available in this straightforward
manner, and something has to be done to enable the re-use of stores of which
the contents are no longer needed. . . . All list processing languages provide,
either explicitly in the language or implicitly in the system, some method of
reclaiming the store.” See Foster at 33.

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of
records having the same
hash address,

Foster discloses a record search means utilizing a search key to access the
linked list. Foster also discloses a record search means utilizing a search key
to access a linked list of records having the same hash address. See, e.g.,
Foster at 24-26, 33-38.

For example, Foster discloses in part: “A very important use of the vector of
lists is in one of the methods for doing ‘hash coding’. The problem is to find
something which has been associated with an object, on being presented with
the object itself.” See Foster at 25.

Foster further discloses: “When a name is read, the appropriate list is selected
and searched. If 26 is a suitable value for n and the unevenness of distribution
of initial letters is not thought to matter, then these could serve as the index for
the lists.” See Foster at 25.

[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the
records from the linked list
when the linked list is
accessed, and

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

Foster discloses the record search means including a means for identifying and
removing at least some of the expired ones of the records from the linked list
when the linked list is accessed. Foster also discloses the record search means
including means for identifying and removing at least some expired ones of the
records from the linked list of records when the linked list is accessed. See,
e.g., Foster at 35-38.

For example, Foster discloses in part: “A very important use of the vector of

EXHIBIT C-15

Joint Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

lists is in one of the methods for doing ‘hash coding’. The problem is to find
something which has been associated with an object, on being presented with
the object itself.” See Foster at 25.

Foster further discloses in part: “When a name is read, the appropriate list is
selected and searched. If 26 is a suitable value for n and the unevenness of
distribution of initial letters is not thought to matter, then these could serve as
the index for the lists.” See Foster at 25.

For example, Foster also discloses: “But most list processing problems will
require more store than can be made available in this straightforward manner,
and something has to be done to enable the re-use of stores of which the
contents are no longer needed. . . . All list processing languages provide, either
explicitly in the language or implicitly in the system, some method of
reclaiming the store.” See Foster at 33.

In addition, Foster discloses: “A convention, which has been adopted in order
to make the memory of the wanted cells easier to the user, is to say that a list is
owned in one place only. If it appears in other places it is being borrowed.
The list that is the owner is responsible for declaring that the cells are not
wanted.” See Foster at 35.

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the

Foster discloses means, utilizing the record search means, for accessing the
linked list and, at the same time, removing at least some of the expired ones of
the records in the linked list. Foster also discloses utilizing the record search
means, for inserting, retrieving, and deleting records from the system and, at
the same time, removing at least some expired ones of the records in the
accessed linked list of records. See, e.g., Foster at 33-40.

EXHIBIT C-15

Joint Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

records in the accessed
linked list of records.

For example, Foster discloses in part: “But most list processing problems will
require more store than can be made available in this straightforward manner,
and something has to be done to enable the re-use of stores of which the
contents are no longer needed. . . . All list processing languages provide, either
explicitly in the language or implicitly in the system, some method of
reclaiming the store.” See Foster at 33.

Foster further discloses: “A convention, which has been adopted in order to
make the memory of the wanted cells easier to the user, is to say that a list is
owned in one place only. If it appears in other places it is being borrowed.
The list that is the owner is responsible for declaring that the cells are not
wanted.” See Foster at 35.

Foster also discloses, for example: “Hence the process of garbage collection
has to proceed in two stages, the first of which goes through all of the lists
dependent on the list heads and marks them as wanted. The second then scans
the whole area allotted to lists and returns the unmarked cells to the free list,
simultaneously unmarking the marked cells ready for next time.” See Foster at
35.

2. The information storage
and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

6. The information storage
and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

It would have been obvious to one of ordinary skill in the art to modify the
system disclosed in Foster to dynamically determine the maximum number of
expired records to remove in the accessed linked list of records. It is a
fundamental concept in computer science and the relevant art that any variable
or parameter affecting any aspect of a system can be dynamically determined
based on information available to the system. One of ordinary skill in the art
would have been motivated to combine the system disclosed in Foster with the
fundamental concept of dynamically determining the maximum number of
expired records to remove in an accessed linked list of records to solve a

EXHIBIT C-15

Joint Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

number of potential problems. For example, the removal of expired records
described in Foster can be burdensome on the system, adding to the system’s
load and slowing down the system’s processing. Moreover, the removal could
also force an interruption in real-time processing as the processing waits for
the removal to complete. Indeed, part of the motivation for the system
disclosed in Foster is avoiding these problems. One of ordinary skill in the art
would have known that dynamically determining the maximum number to
remove would limit the burden on the system and bound the length of any real-
time interruption to prevent delays in processing. Indeed, Nemes concedes that
such dynamic determination was obvious when he states in the ‘120 patent that
“[a] person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records are removed, and that
the decision regarding if and how many records to delete can be a dynamic
one.” ‘120 at 7:10-15.

Foster combined with Dirks, Thatte, the ’663 patent and/or the Opportunistic
Garbage Collection Articles discloses an information storage and retrieval
system further including means for dynamically determining maximum
number for the record search means to remove in the accessed linked list of
records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

EXHIBIT C-15

Joint Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

EXHIBIT C-15

Joint Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Foster and Dirks relate to deletion of aged records upon the allocation
of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as Foster. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how

EXHIBIT C-15

Joint Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Foster nothing more than
the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Foster and would have
seen the benefits of doing so. One possible benefit, for example, is saving the
system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Foster with the means for
dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. For example,
Thatte discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, Ass both Foster and Thatte teach a system of data storage
and retrieval, one of ordinary skill in the art would recognize that the result of
combining Foster with Thatte would be nothing more than the predictable use
of prior art elements according to their established functions. The resulting
combination would include the capability to determine the maximum number

EXHIBIT C-15

Joint Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

for the record search means to remove as taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine Foster
with Thatte and recognize the benefits of doing so. For example, the removal
of expired records described in Foster can be burdensome on the system,
adding to the system’s load and slowing down the system’s processing. One of
ordinary skill in the art would recognize that combining Foster with the
teachings of Thatte would solve this problem by dynamically determining how
many records to delete based on, among other things, the system load.
Moreover, the '120 patent discloses that "[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120
patent provides motivations to combine Foster with Thatte.

Alternatively, it would also be obvious to combine Foster with the ’663 patent.
Disclosure of these claim elements in the ’663 patent is clearly shown in the
chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

EXHIBIT C-15

Joint Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT C-15

Joint Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-

EXHIBIT C-15

Joint Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Foster and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in Foster. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with Foster would be
nothing more than the predictable use of prior art elements according to their
established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Foster and

EXHIBIT C-15

Joint Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Foster with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

EXHIBIT C-15

Joint Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Foster and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Foster. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Foster would be nothing more than the predictable use of prior

EXHIBIT C-15

Joint Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Foster and would
have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Foster to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in Foster
with the fundamental concept of dynamically determining the maximum
number of expired records to remove in an accessed linked list of records to
solve a number of potential problems. For example, the removal of expired
records described in Foster can be burdensome on the system, adding to the
system’s load and slowing down the system’s processing. Moreover, the
removal could also force an interruption in real-time processing as the
processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will

EXHIBIT C-15

Joint Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Foster in combination with Dirks, Thatte, the ‘663
Patent, or the Opportunistic Garbage Collection References, it is disclosed by
Linux 2.0.1, which describes dynamically determining maximum number of
expired ones of the records to remove when the linked list is accessed. It
would have been obvious to combine Linux 2.0.1 with Foster. For example,
both Linux 2.0.1 and Foster describe systems and methods for performing data
storage and retrieval using known programming techniques to yield a
predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1

EXHIBIT C-15

Joint Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the

EXHIBIT C-15

Joint Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux

EXHIBIT C-15

Joint Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

To the extent the preamble is a limitation, Foster discloses a method for storing
and retrieving information records using a linked list to store and provide
access to the records, at least some of the records automatically expiring.
Foster also discloses a method for storing and retrieving information records
using a hashing technique to provide access to the records and using an
external chaining technique to store the records with same hash address, at
least some of the records automatically expiring. See, e.g., Foster at 4-12, 24-
26, and 33-40.

For example, Foster discloses in part: “A very important use of the vector of
lists is in one of the methods for doing ‘hash coding’. The problem is to find
something which has been associated with an object, on being presented with
the object itself.” See Foster at 25.

EXHIBIT C-15

Joint Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

Foster further discloses, for example: “When a name is read, the appropriate
list is selected and searched. If 26 is a suitable value for n and the unevenness
of distribution of initial letters is not thought to matter, then these could serve
as the index for the lists.” See Foster at 25.

Additional, Foster discloses in part: “But most list processing problems will
require more store than can be made available in this straightforward manner,
and something has to be done to enable the re-use of stores of which the
contents are no longer needed. . . . All list processing languages provide, either
explicitly in the language or implicitly in the system, some method of
reclaiming the store.” See Foster at 33.

Foster further discloses: “A convention, which has been adopted in order to
make the memory of the wanted cells easier to the user, is to say that a list is
owned in one place only. If it appears in other places it is being borrowed.
The list that is the owner is responsible for declaring that the cells are not
wanted.” See Foster at 35.

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

Foster discloses accessing a linked list of records. Foster also discloses
accessing a linked list of records having same hash address. See, e.g., Foster at
4-12, 24-26.

For example, Foster discloses in part: “A very important use of the vector of
lists is in one of the methods for doing ‘hash coding’. The problem is to find
something which has been associated with an object, on being presented with
the object itself.” See Foster at 25.

Foster further discloses, for example: “When a name is read, the appropriate

EXHIBIT C-15

Joint Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

list is selected and searched. If 26 is a suitable value for n and the unevenness
of distribution of initial letters is not thought to matter, then these could serve
as the index for the lists.” See Foster at 25.

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

Foster discloses identifying at least some of the automatically expired ones of
the records. See Foster at 35-38.

For example, Foster discloses in part: “But most list processing problems will
require more store than can be made available in this straightforward manner,
and something has to be done to enable the re-use of stores of which the
contents are no longer needed. . . . All list processing languages provide, either
explicitly in the language or implicitly in the system, some method of
reclaiming the store.” See Foster at 33.

Foster also discloses for example: “A convention, which has been adopted in
order to make the memory of the wanted cells easier to the user, is to say that a
list is owned in one place only. If it appears in other places it is being
borrowed. The list that is the owner is responsible for declaring that the cells
are not wanted.” See Foster at 35.

Foster also discloses: “Hence the process of garbage collection has to proceed
in two stages, the first of which goes through all of the lists dependent on the
list heads and marks them as wanted. The second then scans the whole area
allotted to lists and returns the unmarked cells to the free list, simultaneously
unmarking the marked cells ready for next time.” See Foster at 35.

[3c] removing at least
some of the automatically
expired records from the

[7c] removing at least
some of the automatically
expired records from the

Foster discloses removing at least some of the automatically expired records
from the linked list when the linked list is accessed. See Foster at 35-38.

EXHIBIT C-15

Joint Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

linked list when the linked
list is accessed.

linked list when the linked
list is accessed, and

For example, Foster discloses in part: “Hence the process of garbage collection
has to proceed in two stages, the first of which goes through all of the lists
dependent on the list heads and marks them as wanted. The second then scans
the whole area allotted to lists and returns the unmarked cells to the free list,
simultaneously unmarking the marked cells ready for next time.” See Foster at
35.

 [7d] inserting, retrieving
or deleting one of the
records from the system
following the step of
removing.

Foster discloses inserting, retrieving or deleting one of the records from the
system following the step of removing. See Foster at 4-12, 22-29, 33-40.

For example, Foster discloses in part: “Hence the process of garbage collection
has to proceed in two stages, the first of which goes through all of the lists
dependent on the list heads and marks them as wanted. The second then scans
the whole area allotted to lists and returns the unmarked cells to the free list,
simultaneously unmarking the marked cells ready for next time.” See Foster at
35.

It would be obvious to a person of skill in the art to perform known functions
such as an insertion, deletion, or retrieval on the linked list after the step of
removing is performed.

4. The method according to
claim 3 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Foster to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in Foster
with the fundamental concept of dynamically determining the maximum

EXHIBIT C-15

Joint Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

number of expired records to remove in an accessed linked list of records to
solve a number of potential problems. For example, the removal of expired
records described in Foster can be burdensome on the system, adding to the
system’s load and slowing down the system’s processing. Moreover, the
removal could also force an interruption in real-time processing as the
processing waits for the removal to complete. Indeed, part of the motivation
for the system disclosed in Foster is avoiding these problems. One of ordinary
skill in the art would have known that dynamically determining the maximum
number to remove would limit the burden on the system and bound the length
of any real-time interruption to prevent delays in processing. Indeed, Nemes
concedes that such dynamic determination was obvious when he states in the
‘120 patent that “[a] person skilled in the art will appreciate that the technique
of removing all expired records while searching the linked list can be expanded
to include techniques whereby not necessarily all expired records are removed,
and that the decision regarding if and how many records to delete can be a
dynamic one.” ‘120 at 7:10-15.

Foster combined with Dirks, Thatte, the ’663 patent and/or the Opportunistic
Garbage Collection Articles discloses dynamically determining maximum
number of expired ones of the records to remove when the linked list is
accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

EXHIBIT C-15

Joint Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

EXHIBIT C-15

Joint Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Foster and Dirks relate to deletion of aged records upon the allocation
of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as Foster. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how

EXHIBIT C-15

Joint Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Foster nothing more than
the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Foster and would have
seen the benefits of doing so. One possible benefit, for example, is saving the
system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Foster with the means for
dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. For example,
Thatte discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, Ass both Foster and Thatte teach a system of data storage
and retrieval, one of ordinary skill in the art would recognize that the result of
combining Foster with Thatte would be nothing more than the predictable use
of prior art elements according to their established functions. The resulting
combination would include the capability to determine the maximum number

EXHIBIT C-15

Joint Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

for the record search means to remove as taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine Foster
with Thatte and recognize the benefits of doing so. For example, the removal
of expired records described in Foster can be burdensome on the system,
adding to the system’s load and slowing down the system’s processing. One of
ordinary skill in the art would recognize that combining Foster with the
teachings of Thatte would solve this problem by dynamically determining how
many records to delete based on, among other things, the system load.
Moreover, the '120 patent discloses that "[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120
patent provides motivations to combine Foster with Thatte.

Alternatively, it would also be obvious to combine Foster with the ’663 patent.
Disclosure of these claim elements in the ’663 patent is clearly shown in the
chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

EXHIBIT C-15

Joint Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT C-15

Joint Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-

EXHIBIT C-15

Joint Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Foster and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in Foster. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with Foster would be
nothing more than the predictable use of prior art elements according to their
established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Foster and

EXHIBIT C-15

Joint Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Foster with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

EXHIBIT C-15

Joint Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Foster and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Foster. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Foster would be nothing more than the predictable use of prior

EXHIBIT C-15

Joint Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Foster and would
have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Foster to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in Foster
with the fundamental concept of dynamically determining the maximum
number of expired records to remove in an accessed linked list of records to
solve a number of potential problems. For example, the removal of expired
records described in Foster can be burdensome on the system, adding to the
system’s load and slowing down the system’s processing. Moreover, the
removal could also force an interruption in real-time processing as the
processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will

EXHIBIT C-15

Joint Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Foster in combination with Dirks, Thatte, the ‘663
Patent, or the Opportunistic Garbage Collection References, it is disclosed by
Linux 2.0.1, which describes dynamically determining maximum number of
expired ones of the records to remove when the linked list is accessed. It
would have been obvious to combine Linux 2.0.1 with Foster. For example,
both Linux 2.0.1 and Foster describe systems and methods for performing data
storage and retrieval using known programming techniques to yield a
predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1

EXHIBIT C-15

Joint Invalidity Contentions & Production of
Documents

35 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the

EXHIBIT C-15

Joint Invalidity Contentions & Production of
Documents

36 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux

EXHIBIT C-15

Joint Invalidity Contentions & Production of
Documents

37 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

EXHIBIT C-16

Joint Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation Keshav discloses an information
storage and retrieval system.

For example, Keshav discloses in part:

“The algorithm is implemented at the server that schedules packets on the
output trunk of a router or switch in a store-and-forward network.” Srinivasan
Keshav, On the Efficient Implementation of Fair Queuing (hereinafter
“Keshav”) at 2.

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

Keshav discloses a linked list to store and provide access to records stored in a
memory of the system, at least some of the records automatically expiring.
Keshav also discloses a hashing means to provide access to records stored in a
memory of the system and using an external chaining technique to store the
records with same hash address, at least some of the records automatically
expiring.

For example, Keshav discloses in part:

“Buffering Alternatives
We considered four buffering schemes: an ordered linked list (LINK), a binary
tree (TREE), a double heap (HEAP), and a combination of per-conversation
queuing and heaps (PERC). We expect that the reader is familiar with details
of the list, tree and heap data structures. They are also described in standard
texts such as References [10, 11].

Ordered List
Tag values usually increase with time, since bid numbers are strictly
monotonic within each conversation. This suggests that packets should be

EXHIBIT C-16

Joint Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
buffered in a ordered linked list, inserting incoming packets by linearly
scanning from the largest tag value.” Keshav at 8.

“If all the buffers are full, the server drops the packet with the largest bid
number (unlike the algorithm in Reference [1], this buffer allocation policy
accounts for differences in packet lengths). The abstract data structure
required for packet buffering is a bounded heap. A bounded heap is named by
its root, and contains a set of packets that are tagged by their bid number.”
Keshav at 7.

“The conversation ID is used to access a data structure for storing state. Since
IDs could span large address spaces, the standard solution is to hash the ID
onto a index, and the technology for this is well known [9]. Recently, a simple
and efficient hashing scheme that ignores hash collections has been proposed
[5]. In this approach, some conversations could share the same state, leading
to unfair service, since these conversations are served first-come-first-served.
However, this is attenuated by occasionally perturbing the hash function.”
Keshav at 5.

“Assume for the moment that data from each source destination pair (a
conversation) can be distinguished, and is stored in a logically distinct per-
conversation queue.” Keshav at 2.

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of
records having the same
hash address,

Keshav discloses a record search means utilizing a search key to access the
linked list. Keshav also discloses a record search means utilizing a search key
to access a linked list of records having the same hash address.

For example, Keshav discloses in part:

EXHIBIT C-16

Joint Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
“Assume for the moment that data from each source destination pair (a
conversation) can be distinguished, and is stored in a logically distinct per-
conversation queue.” Keshav at 2.

The paper discloses in detail how to generate this key in a unique and coherent
manner. See page 4:

“The choice of the conversation ID depends on the entity to whom fair service
is granted (see the discussion in Reference [1]), and the naming space of the
network. For example, if the unit is a transport connection in the IP Internet,
one such unique identifier is the tuple (source address, destination address,
source port number, destination port number, protocol type).” Keshav at 4.

“The conversation ID is used to access a data structure for storing state. Since
IDs could span large address spaces, the standard solution is to hash the ID
onto a index, and the technology for this is well known [9]. Recently, a simple
and efficient hashing scheme that ignores hash collections has been proposed
[5]. In this approach, some conversations could share the same state, leading
to unfair service, since these conversations are served first-come-first-served.
However, this is attenuated by occasionally perturbing the hash function.”
Keshav at 5.

[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the
records from the linked list
when the linked list is
accessed, and

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

Keshav discloses the record search means including a means for identifying
and removing at least some of the expired ones of the records from the linked
list when the linked list is accessed. Keshav also discloses the record search
means including means for identifying and removing at least some expired
ones of the records from the linked list of records when the linked list is
accessed.

For example, Keshav discloses in part:

EXHIBIT C-16

Joint Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination

“Assume for the moment that data from each source destination pair (a
conversation) can be distinguished, and is stored in a logically distinct per-
conversation queue.” Keshav at 2.

“The choice of the conversation ID depends on the entity to whom fair service
is granted (see the discussion in Reference [1]), and the naming space of the
network. For example, if the unit is a transport connection in the IP Internet,
one such unique identifier is the tuple (source address, destination address,
source port number, destination port number, protocol type).” Keshav at 4.

“The conversation ID is used to access a data structure for storing state.”
Keshav at 5.

“insert () first places an item in the bounded heap. While the heap size exceeds
MAX, it repeatedly discards the item with the largest tag value. We insert an
item before removing the largest item since the inserted packet itself may be
deleted, and it is easier to handle this case if the item is already in the heap. To
allow this, we always keep enough free apace in the buffer to accommodate a
maximum sized packet.” Keshav at 7.

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

Keshav discloses means, utilizing the record search means, for accessing the
linked list and, at the same time, removing at least some of the expired ones of
the records in the linked list. Keshav also discloses utilizing the record search
means, for inserting, retrieving, and deleting records from the system and, at
the same time, removing at least some expired ones of the records in the
accessed linked list of records.

For example, Keshav discloses in part:

EXHIBIT C-16

Joint Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
“insert () first places an item in the bounded heap. While the heap size exceeds
MAX, it repeatedly discards the item with the largest tag value. We insert an
item before removing the largest item since the inserted packet itself may be
deleted, and it is easier to handle this case if the item is already in the heap. To
allow this, we always keep enough free [s]pace in the buffer to accommodate a
maximum sized packet.” Keshav at 7.

2. The information storage
and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

6. The information storage
and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

Keshav discloses an information storage and retrieval system further including
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records.

For example, Keshav discloses in part:

“insert () first places an item in the bounded heap. While the heap size exceeds
MAX, it repeatedly discards the item with the largest tag value. We insert an
item before removing the largest item since the inserted packet itself may be
deleted, and it is easier to hand this case if the item is already in the heap. To
allow this, we always keep enough free [s]pace in the buffer to accommodate a
maximum sized packet, get_min () returns a pointer to the item with the
smallest tag value and deletes it.” Keshav at 7.

It would have been obvious to one of ordinary skill in the art to modify the
system disclosed in Keshav to dynamically determine the maximum number of
expired records to remove in the accessed linked list of records. It is a
fundamental concept in computer science and the relevant art that any variable
or parameter affecting any aspect of a system can be dynamically determined
based on information available to the system. One of ordinary skill in the art
would have been motivated to combine the system disclosed in Keshav with
the fundamental concept of dynamically determining the maximum number of

EXHIBIT C-16

Joint Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
expired records to remove in an accessed linked list of records to solve a
number of potential problems. For example, the removal of expired records
described in Keshav can be burdensome on the system, adding to the system’s
load and slowing down the system’s processing. Moreover, the removal could
also force an interruption in real-time processing as the processing waits for
the removal to complete. Indeed, part of the motivation for the system
disclosed in Keshav is avoiding these problems. One of ordinary skill in the
art would have known that dynamically determining the maximum number to
remove would limit the burden on the system and bound the length of any real-
time interruption to prevent delays in processing. Indeed, Nemes concedes that
such dynamic determination was obvious when he states in the ‘120 patent that
“[a] person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records are removed, and that
the decision regarding if and how many records to delete can be a dynamic
one.” ‘120 at 7:10-15.

Keshav combined with Dirks, Thatte, the ’663 patent and/or the Opportunistic
Garbage Collection Articles discloses an information storage and retrieval
system further including means for dynamically determining maximum
number for the record search means to remove in the accessed linked list of
records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

EXHIBIT C-16

Joint Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

EXHIBIT C-16

Joint Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Keshav and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as Keshav. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily

EXHIBIT C-16

Joint Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Keshav nothing more than
the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Keshav and would
have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Keshav with the means for
dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. For example,
Thatte discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, Ass both Keshav and Thatte teach a system of data storage
and retrieval, one of ordinary skill in the art would recognize that the result of
combining Keshav with Thatte would be nothing more than the predictable use
of prior art elements according to their established functions. The resulting

EXHIBIT C-16

Joint Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
combination would include the capability to determine the maximum number
for the record search means to remove as taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine Keshav
with Thatte and recognize the benefits of doing so. For example, the removal
of expired records described in Keshav can be burdensome on the system,
adding to the system’s load and slowing down the system’s processing. One of
ordinary skill in the art would recognize that combining Keshav with the
teachings of Thatte would solve this problem by dynamically determining how
many records to delete based on, among other things, the system load.
Moreover, the '120 patent discloses that "[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120
patent provides motivations to combine Keshav with Thatte.

Alternatively, it would also be obvious to combine Keshav with the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent

EXHIBIT C-16

Joint Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT C-16

Joint Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,

EXHIBIT C-16

Joint Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Keshav and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in Keshav. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with Keshav would be
nothing more than the predictable use of prior art elements according to their
established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion

EXHIBIT C-16

Joint Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
based on a systems load as taught by the ’663 patent and with Keshav and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Keshav with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

EXHIBIT C-16

Joint Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Keshav and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Keshav. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision

EXHIBIT C-16

Joint Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
procedure with Keshav would be nothing more than the predictable use of
prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Keshav and would
have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Keshav to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Keshav with the fundamental concept of dynamically determining
the maximum number of expired records to remove in an accessed linked list
of records to solve a number of potential problems. For example, the removal
of expired records described in Keshav can be burdensome on the system,
adding to the system’s load and slowing down the system’s processing.
Moreover, the removal could also force an interruption in real-time processing
as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was

EXHIBIT C-16

Joint Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Keshav in combination with Dirks, Thatte, the ‘663
Patent, or the Opportunistic Garbage Collection References, it is disclosed by
Linux 2.0.1, which describes dynamically determining maximum number of
expired ones of the records to remove when the linked list is accessed. It
would have been obvious to combine Linux 2.0.1 with Keshav. For example,
both Linux 2.0.1 and Keshav describe systems and methods for performing
data storage and retrieval using known programming techniques to yield a
predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked

EXHIBIT C-16

Joint Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines

EXHIBIT C-16

Joint Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

EXHIBIT C-16

Joint Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the

To the extent the preamble is a limitation, Keshav discloses a method for
storing and retrieving information records using a linked list to store and
provide access to the records, at least some of the records automatically
expiring. Keshav also discloses a method for storing and retrieving
information records using a hashing technique to provide access to the records
and using an external chaining technique to store the records with same hash
address, at least some of the records automatically expiring.

For example, Keshav discloses in part:

EXHIBIT C-16

Joint Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
method comprising the
steps of:

“The algorithm is implemented at the server that schedules packets on the
output trunk of a router or switch in a store-and-forward network.” Keshav at
2.

“Buffering Alternatives
We considered four buffering schemes: an ordered linked list (LINK), a binary
tree (TREE), a double heap (HEAP), and a combination of per-conversation
queuing and heaps (PERC). We expect that the reader is familiar with details
of the list, tree and heap data structures. They are also described in standard
texts such as References [10, 11].

Ordered List
Tag values usually increase with time, since bid numbers are strictly
monotonic within each conversation. This suggests that packets should be
buffered in a ordered linked list, inserting incoming packets by linearly
scanning from the largest tag value.” Keshav at 8.

“If all the buffers are full, the server drops the packet with the largest bid
number (unlike the algorithm in Reference [1], this buffer allocation policy
accounts for differences in packet lengths). The abstract data structure
required for packet buffering is a bounded heap. A bounded heap is named by
its root, and contains a set of packets that are tagged by their bid number.”
Keshav at 7.

“The conversation ID is used to access a data structure for storing state. Since
IDs could span large address spaces, the standard solution is to hash the ID
onto a index, and the technology for this is well known [9]. Recently, a simple
and efficient hashing scheme that ignores hash collections has been proposed
[5]. In this approach, some conversations could share the same state, leading

EXHIBIT C-16

Joint Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
to unfair service, since these conversations are served first-come-first-served.
However, this is attenuated by occasionally perturbing the hash function.”
Keshav at 5.

“Assume for the moment that data from each source destination pair (a
conversation) can be distinguished, and is stored in a logically distinct per-
conversation queue.” Keshav at 2.

“The choice of the conversation ID depends on the entity to whom fair service
is granted (see the discussion in Reference [1]), and the naming space of the
network. For example, if the unit is a transport connection in the IP Internet,
one such unique identifier is the tuple (source address, destination address,
source port number, destination port number, protocol type).” Keshav at 4.

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

Keshav discloses accessing a linked list of records. Keshav also discloses
accessing a linked list of records having same hash address.

For example, Keshav discloses in part:

“Assume for the moment that data from each source destination pair (a
conversation) can be distinguished, and is stored in a logically distinct per-
conversation queue.” Keshav at 2.

“The choice of the conversation ID depends on the entity to whom fair service
is granted (see the discussion in Reference [1]), and the naming space of the
network. For example, if the unit is a transport connection in the IP Internet,
one such unique identifier is the tuple (source address, destination address,
source port number, destination port number, protocol type).” Keshav at 4.

EXHIBIT C-16

Joint Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
The conversation ID is used as hash key to get to the conversation data records
(i.e. having the same hash address). See page 5, line 9:

“The conversation ID is used to access a data structure for storing state. Since
IDs could span large address spaces, the standard solution is to hash the ID
onto a index, and the technology for this is well known [9]. Recently, a simple
and efficient hashing scheme that ignores hash collections has been proposed
[5]. In this approach, some conversations could share the same state, leading
to unfair service, since these conversations are served first-come-first-served.
However, this is attenuated by occasionally perturbing the hash function.”
Keshav at 5.

“Buffering Alternatives
We considered four buffering schemes: an ordered linked list (LINK), a binary
tree (TREE), a double heap (HEAP), and a combination of per-conversation
queuing and heaps (PERC). We expect that the reader is familiar with details
of the list, tree and heap data structures. They are also described in standard
texts such as References [10, 11].

Ordered List
Tag values usually increase with time, since bid numbers are strictly
monotonic within each conversation. This suggests that packets should be
buffered in a ordered linked list, inserting incoming packets by linearly
scanning from the largest tag value.” Keshav at 8.

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

Keshav discloses identifying at least some of the automatically expired ones of
the records. Keshav also discloses identifying at least some of the
automatically expired ones of the records.

For example, Keshav discloses in part:

EXHIBIT C-16

Joint Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination

“insert () first places an item in the bounded heap. While the heap size exceeds
MAX, it repeatedly discards the item with the largest tag value. We insert an
item before removing the largest item since the inserted packet itself may be
deleted, and it is easier to handle this case if the item is already in the heap. To
allow this, we always keep enough free [s]pace in the buffer to accommodate a
maximum sized packet.” Keshav at 7.

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

Keshav discloses removing at least some of the automatically expired records
from the linked list when the linked list is accessed. Keshav also discloses
removing at least some of the automatically expired records from the linked
list when the linked list is accessed.

For example, Keshav discloses in part:

“The abstract data structure required for packet buffering is a bounded heap. A
bounded heap is named by its root, and contains a set of packets that are tagged
by their bid number. It is associated with two operations, insert (root, item,
conversation_ID) and get_min(root), and a parameter, MAX, which is the
maximum size of the heap.

“insert () first places an item in the bounded heap. While the heap size exceeds
MAX, it repeatedly discards the item with the largest tag value. We insert an
item before removing the largest item since the inserted packet itself may be
deleted, and it is easier to handle this case if the item is already in the heap. To
allow this, we always keep enough free space in the buffer to accommodate a
maximum sized packet.” Keshav at 7.

 [7d] inserting, retrieving
or deleting one of the
records from the system

Keshav discloses inserting, retrieving or deleting one of the records from the
system following the step of removing.

EXHIBIT C-16

Joint Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
following the step of
removing.

For example, Keshav discloses in part:
“insert () first places an item in the bounded heap. While the heap size exceeds
MAX, it repeatedly discards the item with the largest tag value. We insert an
item before removing the largest item since the inserted packet itself may be
deleted, and it is easier to handle this case if the item is already in the heap. To
allow this, we always keep enough free apace in the buffer to accommodate a
maximum sized packet get_min () returns a pointer to the item with the
smallest tag value and deletes.” Keshav at 7.

EXHIBIT C-16

Joint Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
4. The method according to
claim 3 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

Keshav discloses dynamically determining maximum number of expired ones
of the records to remove when the linked list is accessed.

For example,

“insert () first places an item in the bounded heap. While the heap size exceeds
MAX, it repeatedly discards the item with the largest tag value. We insert an
item before removing the largest item since the inserted packet itself may be
deleted, and it is easier to hand this case if the item is already in the heap. To
allow this, we always keep enough free [s]pace in the buffer to accommodate a
maximum sized packet, get_min () returns a pointer to the item with the
smallest tag value and deletes it.” Keshav at 7.

It would have been obvious to one of ordinary skill in the art to modify the
system disclosed in Keshav to dynamically determine the maximum number of
expired records to remove in the accessed linked list of records. It is a
fundamental concept in computer science and the relevant art that any variable
or parameter affecting any aspect of a system can be dynamically determined
based on information available to the system. One of ordinary skill in the art
would have been motivated to combine the system disclosed in Keshav with
the fundamental concept of dynamically determining the maximum number of
expired records to remove in an accessed linked list of records to solve a
number of potential problems. For example, the removal of expired records
described in Keshav can be burdensome on the system, adding to the system’s
load and slowing down the system’s processing. Moreover, the removal could
also force an interruption in real-time processing as the processing waits for
the removal to complete. Indeed, part of the motivation for the system
disclosed in Keshav is avoiding these problems. One of ordinary skill in the
art would have known that dynamically determining the maximum number to

EXHIBIT C-16

Joint Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
remove would limit the burden on the system and bound the length of any real-
time interruption to prevent delays in processing. Indeed, Nemes concedes that
such dynamic determination was obvious when he states in the ‘120 patent that
“[a] person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records are removed, and that
the decision regarding if and how many records to delete can be a dynamic
one.” ‘120 at 7:10-15.

Keshav combined with Dirks, Thatte, the ’663 patent and/or the Opportunistic
Garbage Collection Articles discloses dynamically determining maximum
number of expired ones of the records to remove when the linked list is
accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries

EXHIBIT C-16

Joint Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of

EXHIBIT C-16

Joint Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Keshav and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as Keshav. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Keshav nothing more than
the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Keshav and would

EXHIBIT C-16

Joint Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Keshav with the means for
dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. For example,
Thatte discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, Ass both Keshav and Thatte teach a system of data storage
and retrieval, one of ordinary skill in the art would recognize that the result of
combining Keshav with Thatte would be nothing more than the predictable use
of prior art elements according to their established functions. The resulting
combination would include the capability to determine the maximum number
for the record search means to remove as taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine Keshav
with Thatte and recognize the benefits of doing so. For example, the removal
of expired records described in Keshav can be burdensome on the system,
adding to the system’s load and slowing down the system’s processing. One of
ordinary skill in the art would recognize that combining Keshav with the
teachings of Thatte would solve this problem by dynamically determining how
many records to delete based on, among other things, the system load.

EXHIBIT C-16

Joint Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
Moreover, the '120 patent discloses that "[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120
patent provides motivations to combine Keshav with Thatte.

Alternatively, it would also be obvious to combine Keshav with the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of

EXHIBIT C-16

Joint Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT C-16

Joint Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Keshav and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in Keshav. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how

EXHIBIT C-16

Joint Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with Keshav would be
nothing more than the predictable use of prior art elements according to their
established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Keshav and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Keshav with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the

EXHIBIT C-16

Joint Invalidity Contentions & Production of
Documents

35 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Keshav and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Keshav. Moreover, one of ordinary skill in the art

EXHIBIT C-16

Joint Invalidity Contentions & Production of
Documents

36 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Keshav would be nothing more than the predictable use of
prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Keshav and would
have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Keshav to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Keshav with the fundamental concept of dynamically determining
the maximum number of expired records to remove in an accessed linked list
of records to solve a number of potential problems. For example, the removal
of expired records described in Keshav can be burdensome on the system,

EXHIBIT C-16

Joint Invalidity Contentions & Production of
Documents

37 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
adding to the system’s load and slowing down the system’s processing.
Moreover, the removal could also force an interruption in real-time processing
as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Keshav in combination with Dirks, Thatte, the ‘663
Patent, or the Opportunistic Garbage Collection References, it is disclosed by
Linux 2.0.1, which describes dynamically determining maximum number of
expired ones of the records to remove when the linked list is accessed. It
would have been obvious to combine Linux 2.0.1 with Keshav. For example,
both Linux 2.0.1 and Keshav describe systems and methods for performing
data storage and retrieval using known programming techniques to yield a
predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux

EXHIBIT C-16

Joint Invalidity Contentions & Production of
Documents

38 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at

EXHIBIT C-16

Joint Invalidity Contentions & Production of
Documents

39 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the

EXHIBIT C-16

Joint Invalidity Contentions & Production of
Documents

40 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

EXHIBIT C-16

Joint Invalidity Contentions & Production of
Documents

41 Case No. 6:09-CV-549-LED

EXHIBIT C-17

Joint Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

George Varghese and Tony Lauck, Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer

Facility, ACM SIGOPS OPERATING SYSTEMS REVIEW, Vol. 21, Issue 5,
p. 25-38 (November 1987) (hereinafter “Varghese and Lauck”)

1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, Varghese and Lauck discloses an
information storage and retrieval system. See, e.g., George Varghese and Tony
Lauck, Hashed and Hierarchical Timing Wheels: Data Structures for the
Efficient Implementation of a Timer Facility, ACM SIGOPS OPERATING
SYSTEMS REVIEW, Vol. 21, Issue 5, p. 25-38 (November 1987) (hereinafter
“Varghese and Lauck”) at p. 25-27, 29-31, and Figs. 8-9.

For example, Varghese and Lauck disclose in part:
“The previous scheme has an obvious analogy to inserting an element in an
array using the element value as an index. If there is insufficient memory we
can hash the element value to yield an index.” See Varghese and Lauck at p.
30.

“For example, if the table size is a power of 2, an arbitrary size timer can easily
be divided by the table size; the remainder (low order bits) is added to the
current time pointer to yield the index within the array. The result of the
division (high order bits) is stored in a list pointed to by the index.” See
Varghese and Lauck at p. 30.

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

Varghese and Lauck discloses a linked list to store and provide access to
records stored in a memory of the system, at least some of the records
automatically expiring.
Varghese and Lauck also discloses a hashing means to provide access to
records stored in a memory of the system and using an external chaining
technique to store the records with same hash address, at least some of the
records automatically expiring. See, e.g., Varghese and Lauck at p. 25-27,
29-31, and Figs. 8-9.

EXHIBIT C-17

Joint Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

George Varghese and Tony Lauck, Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer

Facility, ACM SIGOPS OPERATING SYSTEMS REVIEW, Vol. 21, Issue 5,
p. 25-38 (November 1987) (hereinafter “Varghese and Lauck”)

For example, Varghese and Lauck disclose in part:

“6.1.1 Scheme 5: Hash Table with Sorted Lists in each Bucket” See Varghese
and Lauck at p. 30.

“6.1.2 Scheme 6: Hash Table with Unsorted Lists in each Bucket” See
Varghese and Lauck at p. 30.

“For example, if the table size is a power of 2, an arbitrary size timer can easily
be divided by the table size; the remainder (low order bits) is added to the
current time pointer to yield the index within the array. The result of the
division (high order bits) is stored in a list pointed to by the index.” See
Varghese and Lauck at p. 30.

“The previous scheme has an obvious analogy to inserting an element in an
array using the element value as an index. If there is insufficient memory we
can hash the element value to yield an index.” See Varghese and Lauck at p.
30.

“PER_TICK_BOOKKEEPING increments the current time pointer. If the
value stored in the array element being pointed to is zero, there is no more
work. Otherwise, as in Scheme 2, the top of the list is decremented. If it
expires, EXPIRY_PROCESSING is called and the top list element is deleted.”
See Varghese and Lauck at p. 30.

“Thus the hash distribution in Scheme 6 only controls the “burstiness”
(variance) of the latency of PER_TICK_BOOKEEPING, and not the average
latency. Since the worst-case latency of PER_TICK_BOOKEEPING is

EXHIBIT C-17

Joint Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

George Varghese and Tony Lauck, Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer

Facility, ACM SIGOPS OPERATING SYSTEMS REVIEW, Vol. 21, Issue 5,
p. 25-38 (November 1987) (hereinafter “Varghese and Lauck”)

always O(n) (all timers expire at the same time), we believe that the choice of
hash function for Scheme 6 is insignificant.” See Varghese and Lauck at p. 31.

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of
records having the same
hash address,

Varghese and Lauck discloses a record search means utilizing a search key to
access the linked list. Varghese and Lauck also discloses a record search
means utilizing a search key to access a linked list of records having the same
hash address. See, e.g., Varghese and Lauck at p. 25-27, 29-31, and Figs. 8-9.

For example, Varghese and Lauck disclose in part:
“6.1.1 Scheme 5: Hash Table with Sorted Lists in each Bucket” See Varghese
and Lauck at p. 30.

“6.1.2 Scheme 6: Hash Table with Unsorted Lists in each Bucket” See
Varghese and Lauck at p. 30.

“For example, if the table size is a power of 2, an arbitrary size timer can easily
be divided by the table size; the remainder (low order bits) is added to the
current time pointer to yield the index within the array. The result of the
division (high order bits) is stored in a list pointed to by the index.” See
Varghese and Lauck at p. 30.

“The previous scheme has an obvious analogy to inserting an element in an
array using the element value as an index. If there is insufficient memory we
can hash the element value to yield an index.” See Varghese and Lauck at p.
30.

[1c] the record search
means including a means

[5c] the record search
means including means for

Varghese and Lauck discloses the record search means including a means
for identifying and removing at least some of the expired ones of the records

EXHIBIT C-17

Joint Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

George Varghese and Tony Lauck, Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer

Facility, ACM SIGOPS OPERATING SYSTEMS REVIEW, Vol. 21, Issue 5,
p. 25-38 (November 1987) (hereinafter “Varghese and Lauck”)

for identifying and
removing at least some of
the expired ones of the
records from the linked list
when the linked list is
accessed, and

identifying and removing
at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

from the linked list when the linked list is accessed. Varghese and Lauck
also discloses the record search means including means for identifying and
removing at least some expired ones of the records from the linked list of
records when the linked list is accessed. See, e.g., Varghese and Lauck at p.
25-27, 29-31, and Figs. 8-9.

For example, Varghese and Lauck disclose in part:

“6.1.1 Scheme 5: Hash Table with Sorted Lists in each Bucket” See
Varghese and Lauck at p. 30.

“6.1.2 Scheme 6: Hash Table with Unsorted Lists in each Bucket” See
Varghese and Lauck at p. 30.

“For example, if the table size is a power of 2, an arbitrary size timer can easily
be divided by the table size; the remainder (low order bits) is added to the
current time pointer to yield the index within the array. The result of the
division (high order bits) is stored in a list pointed to by the index.” See
Varghese and Lauck at p. 30.

“The previous scheme has an obvious analogy to inserting an element in an
array using the element value as an index. If there is insufficient memory we
can hash the element value to yield an index.” See Varghese and Lauck at p.
30.

EXHIBIT C-17

Joint Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

George Varghese and Tony Lauck, Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer

Facility, ACM SIGOPS OPERATING SYSTEMS REVIEW, Vol. 21, Issue 5,
p. 25-38 (November 1987) (hereinafter “Varghese and Lauck”)

“PER_TICK_BOOKKEEPING increments the current time pointer. If the
value stored in the array element being pointed to is zero, there is no more
work. Otherwise, as in Scheme 2, the top of the list is decremented. If it
expires, EXPIRY_PROCESSING is called and the top list element is deleted.”
See Varghese and Lauck at p. 30.

“Thus the hash distribution in Scheme 6 only controls the “burstiness”
(variance) of the latency of PER_TICK_BOOKEEPING, and not the average
latency. Since the worst-case latency of PER_TICK_BOOKEEPING is
always O(n) (all timers expire at the same time), we believe that the choice of
hash function for Scheme 6 is insignificant.” See Varghese and Lauck at p. 31.

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

Varghese and Lauck discloses means, utilizing the record search means, for
accessing the linked list and, at the same time, removing at least some of the
expired ones of the records in the linked list. Varghese and Lauck also
discloses utilizing the record search means, for inserting, retrieving, and
deleting records from the system and, at the same time, removing at least
some expired ones of the records in the accessed linked list of records. See,
e.g., Varghese and Lauck at p. 25-27, 29-31, and Figs. 8-9.

For example, Varghese and Lauck disclose in part:

“6.1.1 Scheme 5: Hash Table with Sorted Lists in each Bucket” See Varghese
and Lauck at p. 30.

“6.1.2 Scheme 6: Hash Table with Unsorted Lists in each Bucket” See
Varghese and Lauck at p. 30.

EXHIBIT C-17

Joint Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

George Varghese and Tony Lauck, Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer

Facility, ACM SIGOPS OPERATING SYSTEMS REVIEW, Vol. 21, Issue 5,
p. 25-38 (November 1987) (hereinafter “Varghese and Lauck”)

“For example, if the table size is a power of 2, an arbitrary size timer can easily
be divided by the table size; the remainder (low order bits) is added to the
current time pointer to yield the index within the array. The result of the
division (high order bits) is stored in a list pointed to by the index.” See
Varghese and Lauck at p. 30.

“The previous scheme has an obvious analogy to inserting an element in an
array using the element value as an index. If there is insufficient memory we
can hash the element value to yield an index.” See Varghese and Lauck at p.
30.

“PER_TICK_BOOKKEEPING increments the current time pointer. If the
value stored in the array element being pointed to is zero, there is no more
work. Otherwise, as in Scheme 2, the top of the list is decremented. If it
expires, EXPIRY_PROCESSING is called and the top list element is deleted.”
See Varghese and Lauck at p. 30.

“Thus the hash distribution in Scheme 6 only controls the “burstiness”
(variance) of the latency of PER_TICK_BOOKEEPING, and not the average
latency. Since the worst-case latency of PER_TICK_BOOKEEPING is
always O(n) (all timers expire at the same time), we believe that the choice of
hash function for Scheme 6 is insignificant.” See Varghese and Lauck at p. 31.

2. The information storage
and retrieval system
according to claim 1
further including means for
dynamically determining

6. The information storage
and retrieval system
according to claim 5
further including means for
dynamically determining

Varghese and Lauck discloses an information storage and retrieval system
further including means for dynamically determining maximum number for
the record search means to remove in the accessed linked list of records.
See, e.g., Varghese and Lauck at p. 28.

EXHIBIT C-17

Joint Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

George Varghese and Tony Lauck, Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer

Facility, ACM SIGOPS OPERATING SYSTEMS REVIEW, Vol. 21, Issue 5,
p. 25-38 (November 1987) (hereinafter “Varghese and Lauck”)

maximum number for the
record search means to
remove in the accessed
linked list of records.

maximum number for the
record search means to
remove in the accessed
linked list of records.

For example, Varghese and Lauck disclose in part:

“The simulation proceeds by processing the earliest event, which in turn may
schedule further events. The simulation continues until the event list is empty
or some condition (e.g. clock > MAX-SIMULATION-TIME} holds.” See,
Varghese and Lauck at p. 28.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Varghese and Lauck to dynamically determine
the maximum number of expired records to remove in the accessed linked list
of records. It is a fundamental concept in computer science and the relevant
art that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Varghese and Lauck with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in Varghese and Lauck can be
burdensome on the system, adding to the system’s load and slowing down the
system’s processing. Moreover, the removal could also force an interruption in
real-time processing as the processing waits for the removal to complete.
Indeed, part of the motivation for the system disclosed in Varghese and Lauck
is avoiding these problems. One of ordinary skill in the art would have known
that dynamically determining the maximum number to remove would limit the
burden on the system and bound the length of any real-time interruption to
prevent delays in processing. Indeed, Nemes concedes that such dynamic
determination was obvious when he states in the ‘120 patent that “[a] person
skilled in the art will appreciate that the technique of removing all expired

EXHIBIT C-17

Joint Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

George Varghese and Tony Lauck, Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer

Facility, ACM SIGOPS OPERATING SYSTEMS REVIEW, Vol. 21, Issue 5,
p. 25-38 (November 1987) (hereinafter “Varghese and Lauck”)

records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one.” ‘120 at
7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Varghese and Lauck, Varghese and Lauck
combined with Dirks, Thatte, the ’663 patent and/or the Opportunistic Garbage
Collection Articles discloses an information storage and retrieval system
further including means for dynamically determining maximum number for the
record search means to remove in the accessed linked list of records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries

EXHIBIT C-17

Joint Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

George Varghese and Tony Lauck, Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer

Facility, ACM SIGOPS OPERATING SYSTEMS REVIEW, Vol. 21, Issue 5,
p. 25-38 (November 1987) (hereinafter “Varghese and Lauck”)

will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

EXHIBIT C-17

Joint Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

George Varghese and Tony Lauck, Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer

Facility, ACM SIGOPS OPERATING SYSTEMS REVIEW, Vol. 21, Issue 5,
p. 25-38 (November 1987) (hereinafter “Varghese and Lauck”)

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Varghese and Lauck and Dirks relate to deletion of aged records upon
the allocation of a new incoming record, one of ordinary skill in the art would
have understood how to use Dirks’ dynamic decision making process of
determining the maximum number of records to sweep/remove in other hash
tables implementations such as Varghese and Lauck. Moreover, one of
ordinary skill in the art would recognize that it would improve similar systems
and methods in the same way. As the ’120 patent states “[a] person skilled in
the art will appreciate that the technique of removing all expired records while
searching the linked list can be expanded to include techniques whereby not
necessarily all expired records are removed, and that the decision regarding if
and how many records to delete can be a dynamic one.” The ’120 patent at
7:10-15. Additionally, one of ordinary skill in the art would recognize that the
result of combining Dirks’ deletion decision procedure with Varghese and
Lauck nothing more than the predictable use of prior art elements according to
their established functions.

EXHIBIT C-17

Joint Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

George Varghese and Tony Lauck, Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer

Facility, ACM SIGOPS OPERATING SYSTEMS REVIEW, Vol. 21, Issue 5,
p. 25-38 (November 1987) (hereinafter “Varghese and Lauck”)

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Varghese and Lauck
and would have seen the benefits of doing so. One possible benefit, for
example, is saving the system from performing sometimes time-consuming
sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Varghese and Lauck with
the means for dynamically determining maximum number for the record
search means to remove in the accessed linked list of records disclosed by
Thatte. For example, Thatte discloses a system and method using hash tables
and/or linked lists and further discloses means for dynamically determining the
maximum number for the record search means to remove in the accessed
linked list of records. The disclosure of these claim elements in Thatte is
clearly shown in the chart of Thatte, which is hereby incorporated by reference
in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, as both Varghese and Lauck and Thatte teach a system of
data storage and retrieval, one of ordinary skill in the art would recognize that
the result of combining Varghese and Lauck with Thatte would be nothing
more than the predictable use of prior art elements according to their
established functions. The resulting combination would include the capability
to determine the maximum number for the record search means to remove as
taught by Thatte.

EXHIBIT C-17

Joint Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

George Varghese and Tony Lauck, Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer

Facility, ACM SIGOPS OPERATING SYSTEMS REVIEW, Vol. 21, Issue 5,
p. 25-38 (November 1987) (hereinafter “Varghese and Lauck”)

Further, one of ordinary skill in the art would be motivated to combine
Varghese and Lauck with Thatte and recognize the benefits of doing so. For
example, the removal of expired records described in Varghese and Lauck can
be burdensome on the system, adding to the system’s load and slowing down
the system’s processing. One of ordinary skill in the art would recognize that
combining Varghese and Lauck with the teachings of Thatte would solve this
problem by dynamically determining how many records to delete based on,
among other things, the system load. Moreover, the '120 patent discloses that
"[a] person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records are removed, and that
the decision regarding if and how many records to delete can be a dynamic
one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine
Varghese and Lauck with Thatte.

Alternatively, it would also be obvious to combine Varghese and Lauck with
the ’663 patent. Disclosure of these claim elements in the ’663 patent is
clearly shown in the chart of the ‘663 patent, which is hereby incorporated by
reference in its entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the

EXHIBIT C-17

Joint Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

George Varghese and Tony Lauck, Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer

Facility, ACM SIGOPS OPERATING SYSTEMS REVIEW, Vol. 21, Issue 5,
p. 25-38 (November 1987) (hereinafter “Varghese and Lauck”)

storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT C-17

Joint Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

George Varghese and Tony Lauck, Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer

Facility, ACM SIGOPS OPERATING SYSTEMS REVIEW, Vol. 21, Issue 5,
p. 25-38 (November 1987) (hereinafter “Varghese and Lauck”)

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does

EXHIBIT C-17

Joint Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

George Varghese and Tony Lauck, Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer

Facility, ACM SIGOPS OPERATING SYSTEMS REVIEW, Vol. 21, Issue 5,
p. 25-38 (November 1987) (hereinafter “Varghese and Lauck”)

not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Varghese and Lauck and the ’663 patent relate to deletion of records
from hash tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in Varghese and Lauck. Moreover, one of ordinary skill
in the art would recognize that it would improve similar systems and methods
in the same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with Varghese and
Lauck would be nothing more than the predictable use of prior art elements
according to their established functions.

EXHIBIT C-17

Joint Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

George Varghese and Tony Lauck, Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer

Facility, ACM SIGOPS OPERATING SYSTEMS REVIEW, Vol. 21, Issue 5,
p. 25-38 (November 1987) (hereinafter “Varghese and Lauck”)

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Varghese and
Lauck and would have seen the benefits of doing so. One such benefit, for
example, is that the system would avoid performing deletions when the system
load exceeded a threshold.

Alternatively, it would also be obvious to combine Varghese and Lauck with
the Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

EXHIBIT C-17

Joint Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

George Varghese and Tony Lauck, Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer

Facility, ACM SIGOPS OPERATING SYSTEMS REVIEW, Vol. 21, Issue 5,
p. 25-38 (November 1987) (hereinafter “Varghese and Lauck”)

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Varghese and Lauck and the Opportunistic Garbage Collection
Articles relate to deletion of aged records, one of ordinary skill in the art would
have understood how to use the Opportunistic Garbage Collection Articles’
dynamic decision on whether to perform a deletion based on a system load in
other hash table implementations such as Varghese and Lauck. Moreover, one
of ordinary skill in the art would recognize that it would improve similar

EXHIBIT C-17

Joint Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

George Varghese and Tony Lauck, Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer

Facility, ACM SIGOPS OPERATING SYSTEMS REVIEW, Vol. 21, Issue 5,
p. 25-38 (November 1987) (hereinafter “Varghese and Lauck”)

systems and methods in the same way. As the ’120 patent states “[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one.” The ’120
patent at 7:10-15. Additionally, one of ordinary skill in the art would
recognize that the result of combining the Opportunistic Garbage Collection
Articles’ deletion decision procedure with Varghese and Lauck would be
nothing more than the predictable use of prior art elements according to their
established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Varghese and
Lauck and would have seen the benefits of doing so. One such benefit, for
example, is preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Varghese and Lauck to dynamically determine
the maximum number of expired records to remove in the accessed linked list
of records. It is a fundamental concept in computer science and the relevant
art that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Varghese and Lauck with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed

EXHIBIT C-17

Joint Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

George Varghese and Tony Lauck, Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer

Facility, ACM SIGOPS OPERATING SYSTEMS REVIEW, Vol. 21, Issue 5,
p. 25-38 (November 1987) (hereinafter “Varghese and Lauck”)

linked list of records to solve a number of potential problems. For example,
the removal of expired records described in Varghese and Lauck can be
burdensome on the system, adding to the system’s load and slowing down the
system’s processing. Moreover, the removal could also force an interruption in
real-time processing as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Varghese and Lauck in combination with Dirks,
Thatte, the ‘663 Patent, or the Opportunistic Garbage Collection References, it
is disclosed by Linux 2.0.1, which describes dynamically determining
maximum number of expired ones of the records to remove when the linked
list is accessed. It would have been obvious to combine Linux 2.0.1
with Varghese and Lauck. For example, both Linux 2.0.1 and Varghese and
Lauck describe systems and methods for performing data storage and retrieval
using known programming techniques to yield a predictable result.

When invoked, the function rt_cache_add automatically increments an

EXHIBIT C-17

Joint Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

George Varghese and Tony Lauck, Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer

Facility, ACM SIGOPS OPERATING SYSTEMS REVIEW, Vol. 21, Issue 5,
p. 25-38 (November 1987) (hereinafter “Varghese and Lauck”)

integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds

EXHIBIT C-17

Joint Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

George Varghese and Tony Lauck, Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer

Facility, ACM SIGOPS OPERATING SYSTEMS REVIEW, Vol. 21, Issue 5,
p. 25-38 (November 1987) (hereinafter “Varghese and Lauck”)

the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold

EXHIBIT C-17

Joint Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

George Varghese and Tony Lauck, Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer

Facility, ACM SIGOPS OPERATING SYSTEMS REVIEW, Vol. 21, Issue 5,
p. 25-38 (November 1987) (hereinafter “Varghese and Lauck”)

RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

EXHIBIT C-17

Joint Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

George Varghese and Tony Lauck, Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer

Facility, ACM SIGOPS OPERATING SYSTEMS REVIEW, Vol. 21, Issue 5,
p. 25-38 (November 1987) (hereinafter “Varghese and Lauck”)

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

To the extent the preamble is a limitation, Varghese and Lauck discloses a
method for storing and retrieving information records using a linked list to
store and provide access to the records, at least some of the records
automatically expiring. Varghese and Lauck also discloses a method for
storing and retrieving information records using a hashing technique to
provide access to the records and using an external chaining technique to
store the records with same hash address, at least some of the records
automatically expiring. See, e.g., Varghese and Lauck at p. 25-27, 29-31,
and Figs. 8-9.

For example, Varghese and Lauck disclose in part:

“6.1.1 Scheme 5: Hash Table with Sorted Lists in each Bucket” See Varghese
and Lauck at p. 30.

“6.1.2 Scheme 6: Hash Table with Unsorted Lists in each Bucket” See
Varghese and Lauck at p. 30.

“For example, if the table size is a power of 2, an arbitrary size timer can easily
be divided by the table size; the remainder (low order bits) is added to the
current time pointer to yield the index within the array. The result of the
division (high order bits) is stored in a list pointed to by the index.” See
Varghese and Lauck at p. 30.

EXHIBIT C-17

Joint Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

George Varghese and Tony Lauck, Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer

Facility, ACM SIGOPS OPERATING SYSTEMS REVIEW, Vol. 21, Issue 5,
p. 25-38 (November 1987) (hereinafter “Varghese and Lauck”)

“The previous scheme has an obvious analogy to inserting an element in an
array using the element value as an index. If there is insufficient memory we
can hash the element value to yield an index.” See Varghese and Lauck at p.
30.

“PER_TICK_BOOKKEEPING increments the current time pointer. If the
value stored in the array element being pointed to is zero, there is no more
work. Otherwise, as in Scheme 2, the top of the list is decremented. If it
expires, EXPIRY_PROCESSING is called and the top list element is deleted.”
See Varghese and Lauck at p. 30.

“Thus the hash distribution in Scheme 6 only controls the “burstiness”
(variance) of the latency of PER_TICK_BOOKEEPING, and not the average
latency. Since the worst-case latency of PER_TICK_BOOKEEPING is
always O(n) (all timers expire at the same time), we believe that the choice of
hash function for Scheme 6 is insignificant.” See Varghese and Lauck at p. 31.

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

Varghese and Lauck discloses accessing a linked list of records. Varghese and
Lauck also discloses accessing a linked list of records having same hash
address. See, e.g., Varghese and Lauck at p. 29-31, and Figs. 8-9.

For example, Varghese and Lauck disclose in part:

“6.1.1 Scheme 5: Hash Table with Sorted Lists in each Bucket” See Varghese
and Lauck at p. 30.

“6.1.2 Scheme 6: Hash Table with Unsorted Lists in each Bucket” See

EXHIBIT C-17

Joint Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

George Varghese and Tony Lauck, Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer

Facility, ACM SIGOPS OPERATING SYSTEMS REVIEW, Vol. 21, Issue 5,
p. 25-38 (November 1987) (hereinafter “Varghese and Lauck”)

Varghese and Lauck at p. 30.

“For example, if the table size is a power of 2, an arbitrary size timer can easily
be divided by the table size; the remainder (low order bits) is added to the
current time pointer to yield the index within the array. The result of the
division (high order bits) is stored in a list pointed to by the index.” See
Varghese and Lauck at p. 30.

“The previous scheme has an obvious analogy to inserting an element in an
array using the element value as an index. If there is insufficient memory we
can hash the element value to yield an index.” See Varghese and Lauck at p.
30.

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

Varghese and Lauck discloses identifying at least some of the automatically
expired ones of the records. See, e.g., Varghese and Lauck at p. 25-27, 29-
31, and Figs. 8-9.

For example, Varghese and Lauck disclose in part:

“PER_TICK_BOOKKEEPING increments the current time pointer. If the
value stored in the array element being pointed to is zero, there is no more
work. Otherwise, as in Scheme 2, the top of the list is decremented. If it
expires, EXPIRY_PROCESSING is called and the top list element is deleted.”
See Varghese and Lauck at p. 30.

“Thus the hash distribution in Scheme 6 only controls the “burstiness”
(variance) of the latency of PER_TICK_BOOKEEPING, and not the average
latency. Since the worst-case latency of PER_TICK_BOOKEEPING is
always O(n) (all timers expire at the same time), we believe that the choice of

EXHIBIT C-17

Joint Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

George Varghese and Tony Lauck, Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer

Facility, ACM SIGOPS OPERATING SYSTEMS REVIEW, Vol. 21, Issue 5,
p. 25-38 (November 1987) (hereinafter “Varghese and Lauck”)

hash function for Scheme 6 is insignificant.” See Varghese and Lauck at p. 31.

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

Varghese and Lauck discloses removing at least some of the automatically
expired records from the linked list when the linked list is accessed. See,
e.g., Varghese and Lauck at p. 25-27, 29-31, and Figs. 8-9.

For example, Varghese and Lauck disclose in part:

“PER_TICK_BOOKKEEPING increments the current time pointer. If the
value stored in the array element being pointed to is zero, there is no more
work. Otherwise, as in Scheme 2, the top of the list is decremented. If it
expires, EXPIRY_PROCESSING is called and the top list element is deleted.”
See Varghese and Lauck at p. 30.

“Thus the hash distribution in Scheme 6 only controls the “burstiness”
(variance) of the latency of PER_TICK_BOOKEEPING, and not the average
latency. Since the worst-case latency of PER_TICK_BOOKEEPING is
always O(n) (all timers expire at the same time), we believe that the choice of
hash function for Scheme 6 is insignificant. ” See Varghese and Lauck at p.
31.

 [7d] inserting, retrieving
or deleting one of the
records from the system
following the step of
removing.

Varghese and Lauck discloses inserting, retrieving or deleting one of the
records from the system following the step of removing. See, e.g., Varghese
and Lauck at p. 25-27, 29-31, and Figs. 8-9.

For example, Varghese and Lauck disclose in part:

“PER_TICK_BOOKKEEPING increments the current time pointer. If the
value stored in the array element being pointed to is zero, there is no more
work. Otherwise, as in Scheme 2, the top of the list is decremented. If it

EXHIBIT C-17

Joint Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

George Varghese and Tony Lauck, Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer

Facility, ACM SIGOPS OPERATING SYSTEMS REVIEW, Vol. 21, Issue 5,
p. 25-38 (November 1987) (hereinafter “Varghese and Lauck”)

expires, EXPIRY_PROCESSING is called and the top list element is deleted.”
See Varghese and Lauck at p. 30.

“Thus the hash distribution in Scheme 6 only controls the “burstiness”
(variance) of the latency of PER_TICK_BOOKEEPING, and not the average
latency. Since the worst-case latency of PER_TICK_BOOKEEPING is
always O(n) (all timers expire at the same time), we believe that the choice of
hash function for Scheme 6 is insignificant. ” See Varghese and Lauck at p.
31.

It would be obvious to one of skill in the art to perform a known function such
as inserteing, retrieving, or deleting, following the step of calling
EXPIRY_PROCESSING to remove an element from the list.

4. The method according to
claim 3 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

Varghese and Lauck discloses dynamically determining maximum number
of expired ones of the records to remove when the linked list is accessed.
See, e.g., Varghese and Lauck at p. 28.

“The simulation proceeds by processing the earliest event, which in turn may
schedule further events. The simulation continues until the event list is empty
or some condition (e.g. clock > MAX-SIMULATION-TIME} holds.” See,
Varghese and Lauck at p. 28.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Varghese and Lauck to dynamically determine
the maximum number of expired records to remove in the accessed linked list
of records. It is a fundamental concept in computer science and the relevant
art that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of

EXHIBIT C-17

Joint Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

George Varghese and Tony Lauck, Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer

Facility, ACM SIGOPS OPERATING SYSTEMS REVIEW, Vol. 21, Issue 5,
p. 25-38 (November 1987) (hereinafter “Varghese and Lauck”)

ordinary skill in the art would have been motivated to combine the system
disclosed in Varghese and Lauck with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in Varghese and Lauck can be
burdensome on the system, adding to the system’s load and slowing down the
system’s processing. Moreover, the removal could also force an interruption in
real-time processing as the processing waits for the removal to complete.
Indeed, part of the motivation for the system disclosed in Varghese and Lauck
is avoiding these problems. One of ordinary skill in the art would have known
that dynamically determining the maximum number to remove would limit the
burden on the system and bound the length of any real-time interruption to
prevent delays in processing. Indeed, Nemes concedes that such dynamic
determination was obvious when he states in the ‘120 patent that “[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one.” ‘120 at
7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Varghese and Lauck, Varghese and Lauck
combined with Dirks, Thatte, the ’663 patent and/or the Opportunistic Garbage
Collection Articles discloses an information storage and retrieval system
further including means for dynamically determining maximum number for the
record search means to remove in the accessed linked list of records.

EXHIBIT C-17

Joint Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

George Varghese and Tony Lauck, Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer

Facility, ACM SIGOPS OPERATING SYSTEMS REVIEW, Vol. 21, Issue 5,
p. 25-38 (November 1987) (hereinafter “Varghese and Lauck”)

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the

EXHIBIT C-17

Joint Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

George Varghese and Tony Lauck, Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer

Facility, ACM SIGOPS OPERATING SYSTEMS REVIEW, Vol. 21, Issue 5,
p. 25-38 (November 1987) (hereinafter “Varghese and Lauck”)

operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Varghese and Lauck and Dirks relate to deletion of aged records upon

EXHIBIT C-17

Joint Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

George Varghese and Tony Lauck, Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer

Facility, ACM SIGOPS OPERATING SYSTEMS REVIEW, Vol. 21, Issue 5,
p. 25-38 (November 1987) (hereinafter “Varghese and Lauck”)

the allocation of a new incoming record, one of ordinary skill in the art would
have understood how to use Dirks’ dynamic decision making process of
determining the maximum number of records to sweep/remove in other hash
tables implementations such as Varghese and Lauck. Moreover, one of
ordinary skill in the art would recognize that it would improve similar systems
and methods in the same way. As the ’120 patent states “[a] person skilled in
the art will appreciate that the technique of removing all expired records while
searching the linked list can be expanded to include techniques whereby not
necessarily all expired records are removed, and that the decision regarding if
and how many records to delete can be a dynamic one.” The ’120 patent at
7:10-15. Additionally, one of ordinary skill in the art would recognize that the
result of combining Dirks’ deletion decision procedure with Varghese and
Lauck nothing more than the predictable use of prior art elements according to
their established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Varghese and Lauck
and would have seen the benefits of doing so. One possible benefit, for
example, is saving the system from performing sometimes time-consuming
sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Varghese and Lauck with
the means for dynamically determining maximum number for the record
search means to remove in the accessed linked list of records disclosed by
Thatte. For example, Thatte discloses a system and method using hash tables

EXHIBIT C-17

Joint Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

George Varghese and Tony Lauck, Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer

Facility, ACM SIGOPS OPERATING SYSTEMS REVIEW, Vol. 21, Issue 5,
p. 25-38 (November 1987) (hereinafter “Varghese and Lauck”)

and/or linked lists and further discloses means for dynamically determining the
maximum number for the record search means to remove in the accessed
linked list of records. The disclosure of these claim elements in Thatte is
clearly shown in the chart of Thatte, which is hereby incorporated by reference
in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, as both Varghese and Lauck and Thatte teach a system of
data storage and retrieval, one of ordinary skill in the art would recognize that
the result of combining Varghese and Lauck with Thatte would be nothing
more than the predictable use of prior art elements according to their
established functions. The resulting combination would include the capability
to determine the maximum number for the record search means to remove as
taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine
Varghese and Lauck with Thatte and recognize the benefits of doing so. For
example, the removal of expired records described in Varghese and Lauck can
be burdensome on the system, adding to the system’s load and slowing down
the system’s processing. One of ordinary skill in the art would recognize that
combining Varghese and Lauck with the teachings of Thatte would solve this
problem by dynamically determining how many records to delete based on,
among other things, the system load. Moreover, the '120 patent discloses that
"[a] person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records are removed, and that

EXHIBIT C-17

Joint Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

George Varghese and Tony Lauck, Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer

Facility, ACM SIGOPS OPERATING SYSTEMS REVIEW, Vol. 21, Issue 5,
p. 25-38 (November 1987) (hereinafter “Varghese and Lauck”)

the decision regarding if and how many records to delete can be a dynamic
one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine
Varghese and Lauck with Thatte.

Alternatively, it would also be obvious to combine Varghese and Lauck with
the ’663 patent. Disclosure of these claim elements in the ’663 patent is
clearly shown in the chart of the ‘663 patent, which is hereby incorporated by
reference in its entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating

EXHIBIT C-17

Joint Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

George Varghese and Tony Lauck, Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer

Facility, ACM SIGOPS OPERATING SYSTEMS REVIEW, Vol. 21, Issue 5,
p. 25-38 (November 1987) (hereinafter “Varghese and Lauck”)

deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

Id. at Figure 5.

EXHIBIT C-17

Joint Invalidity Contentions & Production of
Documents

35 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

George Varghese and Tony Lauck, Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer

Facility, ACM SIGOPS OPERATING SYSTEMS REVIEW, Vol. 21, Issue 5,
p. 25-38 (November 1987) (hereinafter “Varghese and Lauck”)

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Varghese and Lauck and the ’663 patent relate to deletion of records
from hash tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in Varghese and Lauck. Moreover, one of ordinary skill
in the art would recognize that it would improve similar systems and methods
in the same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how

EXHIBIT C-17

Joint Invalidity Contentions & Production of
Documents

36 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

George Varghese and Tony Lauck, Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer

Facility, ACM SIGOPS OPERATING SYSTEMS REVIEW, Vol. 21, Issue 5,
p. 25-38 (November 1987) (hereinafter “Varghese and Lauck”)

many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with Varghese and
Lauck would be nothing more than the predictable use of prior art elements
according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Varghese and
Lauck and would have seen the benefits of doing so. One such benefit, for
example, is that the system would avoid performing deletions when the system
load exceeded a threshold.

Alternatively, it would also be obvious to combine Varghese and Lauck with
the Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to

EXHIBIT C-17

Joint Invalidity Contentions & Production of
Documents

37 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

George Varghese and Tony Lauck, Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer

Facility, ACM SIGOPS OPERATING SYSTEMS REVIEW, Vol. 21, Issue 5,
p. 25-38 (November 1987) (hereinafter “Varghese and Lauck”)

scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Varghese and Lauck and the Opportunistic Garbage Collection

EXHIBIT C-17

Joint Invalidity Contentions & Production of
Documents

38 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

George Varghese and Tony Lauck, Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer

Facility, ACM SIGOPS OPERATING SYSTEMS REVIEW, Vol. 21, Issue 5,
p. 25-38 (November 1987) (hereinafter “Varghese and Lauck”)

Articles relate to deletion of aged records, one of ordinary skill in the art would
have understood how to use the Opportunistic Garbage Collection Articles’
dynamic decision on whether to perform a deletion based on a system load in
other hash table implementations such as Varghese and Lauck. Moreover, one
of ordinary skill in the art would recognize that it would improve similar
systems and methods in the same way. As the ’120 patent states “[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one.” The ’120
patent at 7:10-15. Additionally, one of ordinary skill in the art would
recognize that the result of combining the Opportunistic Garbage Collection
Articles’ deletion decision procedure with Varghese and Lauck would be
nothing more than the predictable use of prior art elements according to their
established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Varghese and
Lauck and would have seen the benefits of doing so. One such benefit, for
example, is preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Varghese and Lauck to dynamically determine
the maximum number of expired records to remove in the accessed linked list
of records. It is a fundamental concept in computer science and the relevant

EXHIBIT C-17

Joint Invalidity Contentions & Production of
Documents

39 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

George Varghese and Tony Lauck, Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer

Facility, ACM SIGOPS OPERATING SYSTEMS REVIEW, Vol. 21, Issue 5,
p. 25-38 (November 1987) (hereinafter “Varghese and Lauck”)

art that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Varghese and Lauck with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in Varghese and Lauck can be
burdensome on the system, adding to the system’s load and slowing down the
system’s processing. Moreover, the removal could also force an interruption in
real-time processing as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Varghese and Lauck in combination with Dirks,
Thatte, the ‘663 Patent, or the Opportunistic Garbage Collection References, it
is disclosed by Linux 2.0.1, which describes dynamically determining
maximum number of expired ones of the records to remove when the linked
list is accessed. It would have been obvious to combine Linux 2.0.1

EXHIBIT C-17

Joint Invalidity Contentions & Production of
Documents

40 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

George Varghese and Tony Lauck, Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer

Facility, ACM SIGOPS OPERATING SYSTEMS REVIEW, Vol. 21, Issue 5,
p. 25-38 (November 1987) (hereinafter “Varghese and Lauck”)

with Varghese and Lauck. For example, both Linux 2.0.1 and Varghese and
Lauck describe systems and methods for performing data storage and retrieval
using known programming techniques to yield a predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to

EXHIBIT C-17

Joint Invalidity Contentions & Production of
Documents

41 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

George Varghese and Tony Lauck, Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer

Facility, ACM SIGOPS OPERATING SYSTEMS REVIEW, Vol. 21, Issue 5,
p. 25-38 (November 1987) (hereinafter “Varghese and Lauck”)

remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

EXHIBIT C-17

Joint Invalidity Contentions & Production of
Documents

42 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

George Varghese and Tony Lauck, Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer

Facility, ACM SIGOPS OPERATING SYSTEMS REVIEW, Vol. 21, Issue 5,
p. 25-38 (November 1987) (hereinafter “Varghese and Lauck”)

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function

EXHIBIT C-17

Joint Invalidity Contentions & Production of
Documents

43 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

George Varghese and Tony Lauck, Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer

Facility, ACM SIGOPS OPERATING SYSTEMS REVIEW, Vol. 21, Issue 5,
p. 25-38 (November 1987) (hereinafter “Varghese and Lauck”)

rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

EXHIBIT C-18

Joint Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, Kruse discloses an information
storage and retrieval system.

For example, Kruse discloses “[w]hen writing a program, we have had to
decide on the maximum amount of memory that would be needed for our
arrays and set this aside in the declarations.” Kruse at 105.

Kruse also discloses “First, and array must be declared that will hold the hash
table. … To insert a record into the hash table, the hash function for the key is
first calculated. … To retrieve the record with a given key is entirely similar.”
Kruse at 200.

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

Kruse discloses a linked list to store and provide access to records stored in a
memory of the system, at least some of the records automatically expiring.
Kruse also discloses a hashing means to provide access to records stored in a
memory of the system and using an external chaining technique to store the
records with same hash address, at least some of the records automatically
expiring.

For example, Kruse discloses that “[t]he idea we use is that of a pointer. A
pointer, also called a link or a reference, is defined to be a variable that gives
the location of some other variable, typically of a record containing data that
we wish to use. If we use pointers to locate all the records in which we are
interested, then we need not be concerned about where the records themselves
are actually stored, since by using a pointer, we can let the computer system
itself locate the record when required.” Kruse at 105. Kruse also discloses
that the “idea of a linked list is, for every record in the list, to put a pointer into
the record giving the location of the next record in the list.” Kruse at 106.

EXHIBIT C-18

Joint Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

Additionally, Kruse states that “when an item is no longer needed, its space
can be returned to the system, which can then assign it to another user.” Kruse
at 107. “If our program is one that continually sets up new nodes and disposes
of others, then we shall often find it necessary to set up our own procedures to
keep track of nodes that are no longer needed, and to reuse the space when new
nodes are later required.” Kruse at 117.

Moreover, Kruse discloses “[w]e have already decided to represent our sparse
array of cells as a hash table, but we have not yet decided between open
addressing and chaining. … Do we need to make deletions, and, if so, when?
We could keep track of all cells until the memory is full, and then delete those
that are not needed. But this would require rehashing the full array, which
would be slow and painful. With chaining we can easily dispose of cells as
soon as they are not needed, and thereby reduce the number of cells in the hash
table as much as possible.” Kruse at 216. Kruse also discloses, “[i]f we use
chaining, then we can add a cell to a list either by inserting the cell itself or a
pointer to it, rather than by inserting its coordinates as before. In this way we
can locate the cell directly with no need for any search.” … “For reasons both
of flexibility and time saving, therefore, let us decide to use dynamic memory
allocation, a chained hash table, and linked lists.” Kruse at 217.

Finally, Kruse discloses that “[i]n using a hash table, let the nature of the data
and the required operations help you decide between chaining and open
addressing. Chaining is generally preferable if deletions are required, if the
records are relatively large, or if overflow might be a problem.” Kruse at 223.

[1b] a record search means
utilizing a search key to

[5b] a record search means
utilizing a search key to

Kruse discloses a record search means utilizing a search key to access the
linked list. Kruse also discloses a record search means utilizing a search key to

EXHIBIT C-18

Joint Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

access the linked list, access a linked list of
records having the same
hash address,

access a linked list of records having the same hash address.

For example, Kruse discloses “[t]he idea of a hash table (such as the one
shown in Figure 6.10) is to allow many of the different possible keys that
might occur to be mapped to the same location in an array under the action of
the index function.” Kruse at 199.

Kruse also discloses “[t]he task of the procedure is first to look in the hash
table for the cell with the given coordinates. If the search is successful, then
the procedure returns a pointer to the cell; otherwise, it must create a new cell,
assign it the given coordinates, initialize its other fields to the default values,
and put it in the hash table as well as return a pointer to it.” Kruse at 220-21.

[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the
records from the linked list
when the linked list is
accessed, and

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

Kruse discloses the record search means including a means for identifying and
removing at least some of the expired ones of the records from the linked list
when the linked list is accessed. Kruse also discloses the record search means
including means for identifying and removing at least some expired ones of the
records from the linked list of records when the linked list is accessed.

For example, Kruse discloses “[t]he task of the procedure Vivify is to traverse
the list live, determine whether each cell on it satisfies the conditions to
become alive, and vivify it if so, else delete it from the list. The usual way to
facilitate deletion from a linked list is to keep two pointers in lock step, one
position apart, while traversing the list.” … “Let us take advantage of the
indirect linkage of our lists, and when we wish to delete an entry form the list,
let us leave the node in place, but set its entry field to nil. In this way, the node
will be flagged as empty when it is again encountered in the procedure
AddNeighbors.” Kruse at 219.

EXHIBIT C-18

Joint Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

Kruse also discloses an exercise where the reader “rewrite(s) the procedure
Vivify to use two pointers in traversing the list live, and dispose of redundant
nodes when they are encountered. Also make the accompanying
simplifications in the procedures AddNeighbors and SubtractNeighbors.”
Kruse at 222.

By way of further example, one of ordinary skill in the art would have
combined linked lists as taught by this reference and one of ordinary skill in
the art to the system disclosed in the admitted prior and would have seen the
benefits of doing so. One such benefit, for example, is hash table collision
resolution.

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

Kruse discloses means, utilizing the record search means, for accessing the
linked list and, at the same time, removing at least some of the expired ones of
the records in the linked list. Kruse also discloses utilizing the record search
means, for inserting, retrieving, and deleting records from the system and, at
the same time, removing at least some expired ones of the records in the
accessed linked list of records.

For example, Kruse discloses “[t]he task of the procedure Vivify is to traverse
the list live, determine whether each cell on it satisfies the conditions to
become alive, and vivify it if so, else delete it from the list. The usual way to
facilitate deletion from a linked list is to keep two pointers in lock step, one
position apart, while traversing the list.” … “Let us take advantage of the
indirect linkage of our lists, and when we wish to delete an entry form the list,
let us leave the node in place, but set its entry field to nil. In this way, the node
will be flagged as empty when it is again encountered in the procedure

EXHIBIT C-18

Joint Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

AddNeighbors.” Kruse at 219.

Kruse also discloses an exercise where the reader “rewrite(s) the procedure
Vivify to use two pointers in traversing the list live, and dispose of redundant
nodes when they are encountered. Also make the accompanying
simplifications in the procedures AddNeighbors and SubtractNeighbors.”
Kruse at 222.

Finally, Kruse discloses inserting and retrieving records from the system:

EXHIBIT C-18

Joint Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

Kruse at 208.

EXHIBIT C-18

Joint Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

By way of further example, one of ordinary skill in the art would have
combined linked lists as taught by this reference and one of ordinary skill in
the art to the system disclosed in the admitted prior and would have seen the
benefits of doing so. One such benefit, for example, is hash table collision
resolution.

2. The information storage
and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

6. The information storage
and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

Kruse discloses an information storage and retrieval system further including
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Kruse to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in Kruse
with the fundamental concept of dynamically determining the maximum
number of expired records to remove in an accessed linked list of records to
solve a number of potential problems. For example, the removal of expired
records described in Kruse can be burdensome on the system, adding to the
system’s load and slowing down the system’s processing. Moreover, the
removal could also force an interruption in real-time processing as the
processing waits for the removal to complete. Indeed, part of the motivation
for the system disclosed in Kruse is avoiding these problems. One of ordinary
skill in the art would have known that dynamically determining the maximum
number to remove would limit the burden on the system and bound the length
of any real-time interruption to prevent delays in processing. Indeed, Nemes

EXHIBIT C-18

Joint Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

concedes that such dynamic determination was obvious when he states in the
‘120 patent that “[a] person skilled in the art will appreciate that the technique
of removing all expired records while searching the linked list can be expanded
to include techniques whereby not necessarily all expired records are removed,
and that the decision regarding if and how many records to delete can be a
dynamic one.” ‘120 at 7:10-15.

Kruse combined with Dirks, Thatte, the ’663 patent and/or the Opportunistic
Garbage Collection Articles discloses an information storage and retrieval
system further including means for dynamically determining maximum
number for the record search means to remove in the accessed linked list of
records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries

EXHIBIT C-18

Joint Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

EXHIBIT C-18

Joint Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Kruse and Dirks relate to deletion of aged records upon the allocation
of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as Kruse. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Kruse nothing more than
the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have

EXHIBIT C-18

Joint Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Kruse and would have
seen the benefits of doing so. One possible benefit, for example, is saving the
system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Kruse with the means for
dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. For example,
Thatte discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, Ass both Kruse and Thatte teach a system of data storage
and retrieval, one of ordinary skill in the art would recognize that the result of
combining Kruse with Thatte would be nothing more than the predictable use
of prior art elements according to their established functions. The resulting
combination would include the capability to determine the maximum number
for the record search means to remove as taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine Kruse
with Thatte and recognize the benefits of doing so. For example, the removal
of expired records described in Kruse can be burdensome on the system,
adding to the system’s load and slowing down the system’s processing. One of

EXHIBIT C-18

Joint Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

ordinary skill in the art would recognize that combining Kruse with the
teachings of Thatte would solve this problem by dynamically determining how
many records to delete based on, among other things, the system load.
Moreover, the '120 patent discloses that "[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120
patent provides motivations to combine Kruse with Thatte.

Alternatively, it would also be obvious to combine Kruse with the ’663 patent.
Disclosure of these claim elements in the ’663 patent is clearly shown in the
chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations

EXHIBIT C-18

Joint Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT C-18

Joint Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does

EXHIBIT C-18

Joint Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Kruse and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in Kruse. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with Kruse would be
nothing more than the predictable use of prior art elements according to their
established functions.

EXHIBIT C-18

Joint Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Kruse and would
have seen the benefits of doing so. One such benefit, for example, is that the
system would avoid performing deletions when the system load exceeded a
threshold.

Alternatively, it would also be obvious to combine Kruse with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more

EXHIBIT C-18

Joint Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Kruse and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Kruse. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily

EXHIBIT C-18

Joint Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Kruse would be nothing more than the predictable use of prior
art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Kruse and would
have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Kruse to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in Kruse
with the fundamental concept of dynamically determining the maximum
number of expired records to remove in an accessed linked list of records to
solve a number of potential problems. For example, the removal of expired
records described in Kruse can be burdensome on the system, adding to the
system’s load and slowing down the system’s processing. Moreover, the
removal could also force an interruption in real-time processing as the
processing waits for the removal to complete.

EXHIBIT C-18

Joint Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

Thus, the ’120 patent provides motivations to combine Kruse with Thatte,
Dirks, the '663 patent, and/or the Opportunistic Garbage Collection Articles in
addition to motivations within the text of Kruse, such as “[s]imilarly, when an
item is no longer needed, its space can be returned to the system, which can
then assign it to another user. In this way a program can start small and grow
only as necessary, so that when it is small, it can run more efficiently, and
when necessary, it can grow to the limits of the computer system.” Kruse at
107. Kruse further provides motivations within the text by posing the question
“[d]o we need to make deletions, and, if so, when? We could keep track of all
cells until the memory is full, and then delete those that are not needed.”
Kruse at 216.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Kruse in combination with Dirks, Thatte, the ‘663
Patent, or the Opportunistic Garbage Collection References, it is disclosed by
Linux 2.0.1, which describes dynamically determining maximum number of
expired ones of the records to remove when the linked list is accessed. It

EXHIBIT C-18

Joint Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

would have been obvious to combine Linux 2.0.1 with Kruse. For example,
both Linux 2.0.1 and Kruse describe systems and methods for performing data
storage and retrieval using known programming techniques to yield a
predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to

EXHIBIT C-18

Joint Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function

EXHIBIT C-18

Joint Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not

EXHIBIT C-18

Joint Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

To the extent the preamble is a limitation, Kruse discloses a method for storing
and retrieving information records using a linked list to store and provide
access to the records, at least some of the records automatically expiring.
Kruse also discloses a method for storing and retrieving information records
using a hashing technique to provide access to the records and using an
external chaining technique to store the records with same hash address, at
least some of the records automatically expiring.

For example, Kruse discloses “[w]hen writing a program, we have had to
decide on the maximum amount of memory that would be needed for our
arrays and set this aside in the declarations.” Kruse at 105.

Kruse also discloses “First, and array must be declared that will hold the hash
table. … To insert a record into the hash table, the hash function for the key is
first calculated. … To retrieve the record with a given key is entirely similar.”
Kruse at 200.

Furthermore, Kruse discloses that “[t]he idea we use is that of a pointer. A

EXHIBIT C-18

Joint Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

pointer, also called a link or a reference, is defined to be a variable that gives
the location of some other variable, typically of a record containing data that
we wish to use. If we use pointers to locate all the records in which we are
interested, then we need not be concerned about where the records themselves
are actually stored, since by using a pointer, we can let the computer system
itself locate the record when required.” Kruse at 105. Kruse also discloses
that the “idea of a linked list is, for every record in the list, to put a pointer into
the record giving the location of the next record in the list.” Kruse at 106.

Additionally, Kruse states that “when an item is no longer needed, its space
can be returned to the system, which can then assign it to another user.” Kruse
at 107. “If our program is one that continually sets up new nodes and disposes
of others, then we shall often find it necessary to set up our own procedures to
keep track of nodes that are no longer needed, and to reuse the space when new
nodes are later required.” Kruse at 117.

Moreover, Kruse discloses “[w]e have already decided to represent our sparse
array of cells as a hash table, but we have not yet decided between open
addressing and chaining. … Do we need to make deletions, and, if so, when?
We could keep track of all cells until the memory is full, and then delete those
that are not needed. But this would require rehashing the full array, which
would be slow and painful. With chaining we can easily dispose of cells as
soon as they are not needed, and thereby reduce the number of cells in the hash
table as much as possible.” Kruse at 216. Kruse also discloses, “[i]f we use
chaining, then we can add a cell to a list either by inserting the cell itself or a
pointer to it, rather than by inserting its coordinates as before. In this way we
can locate the cell directly with no need for any search.” … “For reasons both
of flexibility and time saving, therefore, let us decide to use dynamic memory

EXHIBIT C-18

Joint Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

allocation, a chained hash table, and linked lists.” Kruse at 217.

Finally, Kruse discloses that “[i]n using a hash table, let the nature of the data
and the required operations help you decide between chaining and open
addressing. Chaining is generally preferable if deletions are required, if the
records are relatively large, or if overflow might be a problem.” Kruse at 223.

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

Kruse discloses accessing a linked list of records. Kruse also discloses
accessing a linked list of records having same hash address.

For example, Kruse discloses “[t]he idea of a hash table (such as the one
shown in Figure 6.10) is to allow many of the different possible keys that
might occur to be mapped to the same location in an array under the action of
the index function.” Kruse at 199.

Kruse also discloses “[t]he task of the procedure is first to look in the hash
table for the cell with the given coordinates. If the search is successful, then
the procedure returns a pointer to the cell; otherwise, it must create a new cell,
assign it the given coordinates, initialize its other fields to the default values,
and put it in the hash table as well as return a pointer to it.” Kruse at 220-21.

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

Kruse discloses identifying at least some of the automatically expired ones of
the records. Kruse also discloses identifying at least some of the automatically
expired ones of the records.

For example, Kruse discloses “[t]he task of the procedure Vivify is to traverse
the list live, determine whether each cell on it satisfies the conditions to
become alive, and vivify it if so, else delete it from the list. The usual way to
facilitate deletion from a linked list is to keep two pointers in lock step, one
position apart, while traversing the list.” … “Let us take advantage of the

EXHIBIT C-18

Joint Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

indirect linkage of our lists, and when we wish to delete an entry form the list,
let us leave the node in place, but set its entry field to nil. In this way, the node
will be flagged as empty when it is again encountered in the procedure
AddNeighbors.” Kruse at 219.

Kruse also discloses an exercise where the reader “rewrite(s) the procedure
Vivify to use two pointers in traversing the list live, and dispose of redundant
nodes when they are encountered. Also make the accompanying
simplifications in the procedures AddNeighbors and SubtractNeighbors.”
Kruse at 222.

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

Kruse discloses removing at least some of the automatically expired records
from the linked list when the linked list is accessed. Kruse also discloses
removing at least some of the automatically expired records from the linked
list when the linked list is accessed.

For example, Kruse discloses “[t]he task of the procedure Vivify is to traverse
the list live, determine whether each cell on it satisfies the conditions to
become alive, and vivify it if so, else delete it from the list. The usual way to
facilitate deletion from a linked list is to keep two pointers in lock step, one
position apart, while traversing the list.” … “Let us take advantage of the
indirect linkage of our lists, and when we wish to delete an entry form the list,
let us leave the node in place, but set its entry field to nil. In this way, the node
will be flagged as empty when it is again encountered in the procedure
AddNeighbors.” Kruse at 219.

Kruse also discloses an exercise where the reader “rewrite(s) the procedure
Vivify to use two pointers in traversing the list live, and dispose of redundant

EXHIBIT C-18

Joint Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

nodes when they are encountered. Also make the accompanying
simplifications in the procedures AddNeighbors and SubtractNeighbors.”
Kruse at 222.

By way of further example, one of ordinary skill in the art would have
combined linked lists as taught by this reference and one of ordinary skill in
the art to the system disclosed in the admitted prior and would have seen the
benefits of doing so. One such benefit, for example, is hash table collision
resolution.

 [7d] inserting, retrieving
or deleting one of the
records from the system
following the step of
removing.

Kruse discloses inserting, retrieving or deleting one of the records from the
system following the step of removing.

For example, Kruse discloses “[t]he task of the procedure Vivify is to traverse
the list live, determine whether each cell on it satisfies the conditions to
become alive, and vivify it if so, else delete it from the list. The usual way to
facilitate deletion from a linked list is to keep two pointers in lock step, one
position apart, while traversing the list.” … “Let us take advantage of the
indirect linkage of our lists, and when we wish to delete an entry form the list,
let us leave the node in place, but set its entry field to nil. In this way, the node
will be flagged as empty when it is again encountered in the procedure
AddNeighbors.” Kruse at 219.

Kruse also discloses an exercise where the reader “rewrite(s) the procedure
Vivify to use two pointers in traversing the list live, and dispose of redundant
nodes when they are encountered. Also make the accompanying

EXHIBIT C-18

Joint Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

simplifications in the procedures AddNeighbors and SubtractNeighbors.”
Kruse at 222.

Finally, Kruse discloses inserting and retrieving records from the system:

EXHIBIT C-18

Joint Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

Kruse at 208.

EXHIBIT C-18

Joint Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

By way of further example, one of ordinary skill in the art would have
combined linked lists as taught by this reference and one of ordinary skill in
the art to the system disclosed in the admitted prior and would have seen the
benefits of doing so. One such benefit, for example, is hash table collision
resolution.

4. The method according to
claim 3 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

Kruse discloses dynamically determining maximum number of expired ones of
the records to remove when the linked list is accessed.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Kruse to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in Kruse
with the fundamental concept of dynamically determining the maximum
number of expired records to remove in an accessed linked list of records to
solve a number of potential problems. For example, the removal of expired
records described in Kruse can be burdensome on the system, adding to the
system’s load and slowing down the system’s processing. Moreover, the
removal could also force an interruption in real-time processing as the
processing waits for the removal to complete. Indeed, part of the motivation
for the system disclosed in Kruse is avoiding these problems. One of ordinary
skill in the art would have known that dynamically determining the maximum
number to remove would limit the burden on the system and bound the length
of any real-time interruption to prevent delays in processing. Indeed, Nemes
concedes that such dynamic determination was obvious when he states in the

EXHIBIT C-18

Joint Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

‘120 patent that “[a] person skilled in the art will appreciate that the technique
of removing all expired records while searching the linked list can be expanded
to include techniques whereby not necessarily all expired records are removed,
and that the decision regarding if and how many records to delete can be a
dynamic one.” ‘120 at 7:10-15.

Kruse combined with Dirks, Thatte, the ’663 patent, and/or the Opportunistic
Garbage Collection Articles discloses dynamically determining maximum
number of expired ones of the records to remove when the linked list is
accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list

EXHIBIT C-18

Joint Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this

EXHIBIT C-18

Joint Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Kruse and Dirks relate to deletion of aged records upon the allocation
of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as Kruse. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Kruse nothing more than
the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Kruse and would have

EXHIBIT C-18

Joint Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

seen the benefits of doing so. One possible benefit, for example, is saving the
system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Kruse with the means for
dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. For example,
Thatte discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, Ass both Kruse and Thatte teach a system of data storage
and retrieval, one of ordinary skill in the art would recognize that the result of
combining Kruse with Thatte would be nothing more than the predictable use
of prior art elements according to their established functions. The resulting
combination would include the capability to determine the maximum number
for the record search means to remove as taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine Kruse
with Thatte and recognize the benefits of doing so. For example, the removal
of expired records described in Kruse can be burdensome on the system,
adding to the system’s load and slowing down the system’s processing. One of
ordinary skill in the art would recognize that combining Kruse with the
teachings of Thatte would solve this problem by dynamically determining how

EXHIBIT C-18

Joint Invalidity Contentions & Production of
Documents

35 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

many records to delete based on, among other things, the system load.
Moreover, the '120 patent discloses that "[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120
patent provides motivations to combine Kruse with Thatte.

Alternatively, it would also be obvious to combine Kruse with the ’663 patent.
Disclosure of these claim elements in the ’663 patent is clearly shown in the
chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by

EXHIBIT C-18

Joint Invalidity Contentions & Production of
Documents

36 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT C-18

Joint Invalidity Contentions & Production of
Documents

37 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does

EXHIBIT C-18

Joint Invalidity Contentions & Production of
Documents

38 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Kruse and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in Kruse. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with Kruse would be
nothing more than the predictable use of prior art elements according to their
established functions.

EXHIBIT C-18

Joint Invalidity Contentions & Production of
Documents

39 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Kruse and would
have seen the benefits of doing so. One such benefit, for example, is that the
system would avoid performing deletions when the system load exceeded a
threshold.

Alternatively, it would also be obvious to combine Kruse with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more

EXHIBIT C-18

Joint Invalidity Contentions & Production of
Documents

40 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Kruse and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Kruse. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily

EXHIBIT C-18

Joint Invalidity Contentions & Production of
Documents

41 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Kruse would be nothing more than the predictable use of prior
art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Kruse and would
have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Kruse to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in Kruse
with the fundamental concept of dynamically determining the maximum
number of expired records to remove in an accessed linked list of records to
solve a number of potential problems. For example, the removal of expired
records described in Kruse can be burdensome on the system, adding to the
system’s load and slowing down the system’s processing. Moreover, the
removal could also force an interruption in real-time processing as the
processing waits for the removal to complete.

EXHIBIT C-18

Joint Invalidity Contentions & Production of
Documents

42 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

Thus, the ’120 patent provides motivations to combine Kruse with Thatte,
Dirks, the '663 patent, and/or the Opportunistic Garbage Collection Articles in
addition to motivations within the text of Kruse, such as “[s]imilarly, when an
item is no longer needed, its space can be returned to the system, which can
then assign it to another user. In this way a program can start small and grow
only as necessary, so that when it is small, it can run more efficiently, and
when necessary, it can grow to the limits of the computer system.” Kruse at
107. Kruse further provides motivations within the text by posing the question
“[d]o we need to make deletions, and, if so, when? We could keep track of all
cells until the memory is full, and then delete those that are not needed.”
Kruse at 216.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Kruse in combination with Dirks, Thatte, the ‘663
Patent, or the Opportunistic Garbage Collection References, it is disclosed by
Linux 2.0.1, which describes dynamically determining maximum number of
expired ones of the records to remove when the linked list is accessed. It

EXHIBIT C-18

Joint Invalidity Contentions & Production of
Documents

43 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

would have been obvious to combine Linux 2.0.1 with Kruse. For example,
both Linux 2.0.1 and Kruse describe systems and methods for performing data
storage and retrieval using known programming techniques to yield a
predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to

EXHIBIT C-18

Joint Invalidity Contentions & Production of
Documents

44 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function

EXHIBIT C-18

Joint Invalidity Contentions & Production of
Documents

45 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not

EXHIBIT C-18

Joint Invalidity Contentions & Production of
Documents

46 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

EXHIBIT C-19

Joint Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

US2008 1661639.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, Dixon and Calvert disclose an
information storage and retrieval system.

For example, Dixon and Calvert disclose a system for demultiplexing using a
hash table of linked lists:

“McKenney and Dove first introduced a demultiplexing algorithm that
combines software caching and multiple hash chains. The algorithm maintains
a linear list of PCBs for each of several hash chains. Each hash chain has an
associated cache that points to the last PCB found on that chain.” See Calvert
and Dixon at 6.

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

Dixon and Calvert disclose a linked list to store and provide access to records
stored in a memory of the system, at least some of the records automatically
expiring.

Dixon and Calvert also disclose a hashing means to provide access to records
stored in a memory of the system and using an external chaining technique to
store the records with same hash address, at least some of the records
automatically expiring.

For example, Dixon and Calvert disclose a system for demultiplexing using a
hash table of linked lists:

“McKenney and Dove first introduced a demultiplexing algorithm that
combines software caching and multiple hash chains. The algorithm maintains
a linear list of PCBs for each of several hash chains. Each hash chain has an

EXHIBIT C-19

Joint Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

US2008 1661639.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

associated cache that points to the last PCB found on that chain.” See Calvert
and Dixon at 6.

“The next logical step in our investigation was to characterize the performance
gains obtained by dividing the conventional single TCP PCB list into multiple
shorter lists (hash chains) and use a single cache per hash chain to avoid
lookups.” See Calvert and Dixon at 13.

In addition, Dixon and Calvert disclose some of the records automatically

EXHIBIT C-19

Joint Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

US2008 1661639.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

expiring:

See, e.g., Dixon and Calvert at 8: “In addition, the TCP implementation of all
four servers had a maximum segment lifetime value of 60 seconds. We used
this same value in our simulations. This value is important because a TCP
connection remains in the PCB list for twice this length of time after it is
closed.”

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of
records having the same
hash address,

Dixon and Calvert disclose a record search means utilizing a search key to
access the linked list. Dixon and Calvert also disclose a record search means
utilizing a search key to access a linked list of records having the same hash
address.

For example, Dixon and Calvert disclose using a hash key comprising
connection information is used in conjunction with a hash function to access
the appropriate hash chain:

“When the connection is first created, a hash function uses some part of the
connection’s information (e. g., IP address) to generate a hash value. The PCB
is then added to the hash chain that corresponds to the generated hash value.
Subsequently, the hash function will route any incoming packets destined for
that PCB to the appropriate hash chain. Note that the same hash key (i. e., same
connection information) must be present in the arriving packet in order to
assure proper routing.” See Dixon and Calvert at 6.

[1c] the record search
means including a means
for identifying and

[5c] the record search
means including means for
identifying and removing

Dixon and Calvert directly or inherently disclose the record search means
including a means for identifying and removing at least some of the expired
ones of the records from the linked list when the linked list is accessed. Dixon

EXHIBIT C-19

Joint Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

US2008 1661639.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

removing at least some of
the expired ones of the
records from the linked list
when the linked list is
accessed, and

at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

and Calvert also directly or inherently disclose the record search means
including means for identifying and removing at least some expired ones of the
records from the linked list of records when the linked list is accessed.

For example, Dixon and Calvert disclose a time a limit for a record remaining
in the list of PCBs:

“In addition, the TCP implementation of all four servers had a maximum
segment lifetime value of 60 seconds. We used this same value in our
simulations. This value is important because a TCP connection remains in the
PCB list for twice this length of time after it is closed.” See Dixon and Calvert
at 7.

The existence of a limit on the time a record remains in the list requires
removal at some point. Removal inherently requires the step of identification.
Furthermore, because removal of a record from a linked list requires updating
the links of other entries in the list, it inherently includes accessing the linked
list of records.

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed

Dixon and Calvert directly or inherently disclose means, utilizing the record
search means, for accessing the linked list and, at the same time, removing at
least some of the expired ones of the records in the linked list. Dixon and
Calvert also directly or inherently disclose utilizing the record search means,
for inserting, retrieving, and deleting records from the system and, at the same
time, removing at least some expired ones of the records in the accessed linked
list of records.

EXHIBIT C-19

Joint Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

US2008 1661639.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

linked list of records. For example, Dixon and Calvert disclose a system for demultiplexing using a
hash table of linked lists:

“McKenney and Dove first introduced a demultiplexing algorithm that
combines software caching and multiple hash chains. The algorithm maintains
a linear list of PCBs for each of several hash chains. Each hash chain has an
associated cache that points to the last PCB found on that chain. When the
connection is first created, a hash function uses some part of the connection’s
information (e. g., IP address) to generate a hash value. The PCB is then added
to the hash chain that corresponds to the generated hash value. Subsequently,
the hash function will route any incoming packets destined for that PCB to the
appropriate hash chain. Note that the same hash key (i. e., same connection
information) must be present in the arriving packet in order to assure proper
routing. The packet is assigned to its PCB via a BSD 4.3-Reno type search of
the list.” See Calvert and Dixon at 6.

As described in the citation above, Calvert and Dixon disclose a search
means—the combination of using a hash key and hash function to select a hash
bucket and a “BSD 4.3-Reno type search” of the linked list chained to the hash
bucket. As further disclosed in the citation above, insertion and retrieval when
a new packet incoming packets arrive utilize the search means.

In addition, Dixon and Calvert disclose some of the records automatically
expiring:

See, e.g., Dixon and Calvert at 8: “In addition, the TCP implementation of all
four servers had a maximum segment lifetime value of 60 seconds. We used

EXHIBIT C-19

Joint Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

US2008 1661639.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

this same value in our simulations. This value is important because a TCP
connection remains in the PCB list for twice this length of time after it is
closed.”

The existence of a limit on the time a record remains in the list requires
removal at some point. Furthermore, because removal of a record from a
linked list requires updating the links of other entries in the list, it inherently
includes accessing the linked list of records. Where the linked list is chained to
a hash table, accessing the item to remove inherently requires use of the search
means discussed above. Consequently, where a system maintains a list of
PCBs using a hash table with external chaining and where said system inserts,
retrieves and deletes using a record search means, then such a system is a
means for inserting, retrieving, and deleting records, that utilizes a record
search means and at the same time removes an expired entry from the system.

2. The information storage
and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

6. The information storage
and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

Dixon and Calvert combined with Dirks, Thatte, the ’663 patent and/or the
Opportunistic Garbage Collection Articles discloses an information storage
and retrieval system further including means for dynamically determining
maximum number for the record search means to remove in the accessed
linked list of records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

EXHIBIT C-19

Joint Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

US2008 1661639.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined

EXHIBIT C-19

Joint Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

US2008 1661639.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Dixon and Calvert and Dirks relate to deletion of aged records upon
the allocation of a new incoming record, one of ordinary skill in the art would
have understood how to use Dirks’ dynamic decision making process of
determining the maximum number of records to sweep/remove in other hash
tables implementations such as Dixon and Calvert. Moreover, one of ordinary
skill in the art would recognize that it would improve similar systems and

EXHIBIT C-19

Joint Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

US2008 1661639.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

methods in the same way. As the ’120 patent states “[a] person skilled in the
art will appreciate that the technique of removing all expired records while
searching the linked list can be expanded to include techniques whereby not
necessarily all expired records are removed, and that the decision regarding if
and how many records to delete can be a dynamic one.” The ’120 patent at
7:10-15. Additionally, one of ordinary skill in the art would recognize that the
result of combining Dirks’ deletion decision procedure with Dixon and Calvert
nothing more than the predictable use of prior art elements according to their
established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Dixon and Calvert and
would have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Dixon and Calvert with
the means for dynamically determining maximum number for the record
search means to remove in the accessed linked list of records disclosed by
Thatte. For example, Thatte discloses a system and method using hash tables
and/or linked lists and further discloses means for dynamically determining the
maximum number for the record search means to remove in the accessed
linked list of records. The disclosure of these claim elements in Thatte is
clearly shown in the chart of Thatte, which is hereby incorporated by reference
in its entirety.

EXHIBIT C-19

Joint Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

US2008 1661639.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, Ass both Dixon and Calvert and Thatte teach a system of
data storage and retrieval, one of ordinary skill in the art would recognize that
the result of combining Dixon and Calvert with Thatte would be nothing more
than the predictable use of prior art elements according to their established
functions. The resulting combination would include the capability to
determine the maximum number for the record search means to remove as
taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine Dixon
and Calvert with Thatte and recognize the benefits of doing so. For example,
the removal of expired records described in Dixon and Calvert can be
burdensome on the system, adding to the system’s load and slowing down the
system’s processing. One of ordinary skill in the art would recognize that
combining Dixon and Calvert with the teachings of Thatte would solve this
problem by dynamically determining how many records to delete based on,
among other things, the system load. Moreover, the '120 patent discloses that
"[a] person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records are removed, and that
the decision regarding if and how many records to delete can be a dynamic
one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine
Dixon and Calvert with Thatte.

Alternatively, it would also be obvious to combine Dixon and Calvert with the
’663 patent. Disclosure of these claim elements in the ’663 patent is clearly

EXHIBIT C-19

Joint Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

US2008 1661639.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

shown in the chart of the ‘663 patent, which is hereby incorporated by
reference in its entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT C-19

Joint Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

US2008 1661639.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a

EXHIBIT C-19

Joint Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

US2008 1661639.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Dixon and Calvert and the ’663 patent relate to deletion of records
from hash tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in Dixon and Calvert. Moreover, one of ordinary skill in
the art would recognize that it would improve similar systems and methods in
the same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with Dixon and
Calvert would be nothing more than the predictable use of prior art elements

EXHIBIT C-19

Joint Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

US2008 1661639.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Dixon and
Calvert and would have seen the benefits of doing so. One such benefit, for
example, is that the system would avoid performing deletions when the system
load exceeded a threshold.

Alternatively, it would also be obvious to combine Dixon and Calvert with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

EXHIBIT C-19

Joint Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

US2008 1661639.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Dixon and Calvert and the Opportunistic Garbage Collection Articles
relate to deletion of aged records, one of ordinary skill in the art would have
understood how to use the Opportunistic Garbage Collection Articles’ dynamic
decision on whether to perform a deletion based on a system load in other hash
table implementations such as Dixon and Calvert. Moreover, one of ordinary

EXHIBIT C-19

Joint Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

US2008 1661639.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

skill in the art would recognize that it would improve similar systems and
methods in the same way. As the ’120 patent states “[a] person skilled in the
art will appreciate that the technique of removing all expired records while
searching the linked list can be expanded to include techniques whereby not
necessarily all expired records are removed, and that the decision regarding if
and how many records to delete can be a dynamic one.” The ’120 patent at
7:10-15. Additionally, one of ordinary skill in the art would recognize that the
result of combining the Opportunistic Garbage Collection Articles’ deletion
decision procedure with Dixon and Calvert would be nothing more than the
predictable use of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Dixon and Calvert
and would have seen the benefits of doing so. One such benefit, for example,
is preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Dixon and Calvert to dynamically determine
the maximum number of expired records to remove in the accessed linked list
of records. It is a fundamental concept in computer science and the relevant
art that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Dixon and Calvert with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed

EXHIBIT C-19

Joint Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

US2008 1661639.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

linked list of records to solve a number of potential problems. For example,
the removal of expired records described in Dixon and Calvert can be
burdensome on the system, adding to the system’s load and slowing down the
system’s processing. Moreover, the removal could also force an interruption in
real-time processing as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Dixon and Calvert in combination with Dirks,
Thatte, the ‘663 Patent, or the Opportunistic Garbage Collection References, it
is disclosed by Linux 2.0.1, which describes dynamically determining
maximum number of expired ones of the records to remove when the linked
list is accessed. It would have been obvious to combine Linux 2.0.1
with Dixon and Calvert. For example, both Linux 2.0.1 and Dixon and
Calvert describe systems and methods for performing data storage and retrieval
using known programming techniques to yield a predictable result.

When invoked, the function rt_cache_add automatically increments an

EXHIBIT C-19

Joint Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

US2008 1661639.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds

EXHIBIT C-19

Joint Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

US2008 1661639.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold

EXHIBIT C-19

Joint Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

US2008 1661639.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference

EXHIBIT C-19

Joint Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

US2008 1661639.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

To the extent the preamble is a limitation, Dixon and Calvert disclose a method
for storing and retrieving information records using a linked list to store and
provide access to the records, at least some of the records automatically
expiring. Dixon and Calvert also disclose a method for storing and retrieving
information records using a hashing technique to provide access to the records
and using an external chaining technique to store the records with same hash
address, at least some of the records automatically expiring.

For example, Dixon and Calvert disclose a system for demultiplexing using a
hash table of linked lists:

“McKenney and Dove first introduced a demultiplexing algorithm that
combines software caching and multiple hash chains. The algorithm maintains
a linear list of PCBs for each of several hash chains. Each hash chain has an
associated cache that points to the last PCB found on that chain.” See Calvert
and Dixon at 6.

“The next logical step in our investigation was to characterize the performance
gains obtained by dividing the conventional single TCP PCB list into multiple
shorter lists (hash chains) and use a single cache per hash chain to avoid

EXHIBIT C-19

Joint Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

US2008 1661639.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

lookups.” See Calvert and Dixon at 13.

In addition, Dixon and Calvert disclose some of the records automatically
expiring:

See, e.g., Dixon and Calvert at 8: “In addition, the TCP implementation of all
four servers had a maximum segment lifetime value of 60 seconds. We used
this same value in our simulations. This value is important because a TCP
connection remains in the PCB list for twice this length of time after it is

EXHIBIT C-19

Joint Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

US2008 1661639.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

closed.”
[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

Dixon and Calvert disclose accessing a linked list of records. Dixon and
Calvert also disclose accessing a linked list of records having same hash
address.

For example, Dixon and Calvert disclose using a hash key comprising
connection information in conjunction with a hash function to access the
appropriate hash chain:

“When the connection is first created, a hash function uses some part of the
connection’s information (e. g., IP address) to generate a hash value. The PCB
is then added to the hash chain that corresponds to the generated hash value.
Subsequently, the hash function will route any incoming packets destined for
that PCB to the appropriate hash chain. Note that the same hash key (i. e., same
connection information) must be present in the arriving packet in order to
assure proper routing.” See Dixon and Calvert at 6.

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

Dixon and Calvert directly or inherently disclose identifying at least some of
the automatically expired ones of the records.

For example, Dixon and Calvert disclose a time a limit for a record remaining
in the list of PCBs:

“In addition, the TCP implementation of all four servers had a maximum
segment lifetime value of 60 seconds. We used this same value in our
simulations. This value is important because a TCP connection remains in the
PCB list for twice this length of time after it is closed.” See Dixon and Calvert

EXHIBIT C-19

Joint Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

US2008 1661639.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

at 7.

The existence of a limit on the time a record remains in the list requires
removal at some point. Removal inherently requires the step of identifying
records to be removed.

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

Dixon and Calvert directly or inherently disclose removing at least some of the
automatically expired records from the linked list when the linked list is
accessed.

For example, Dixon and Calvert disclose a time a limit for a record remaining
in the list of PCBs:

“In addition, the TCP implementation of all four servers had a maximum
segment lifetime value of 60 seconds. We used this same value in our
simulations. This value is important because a TCP connection remains in the
PCB list for twice this length of time after it is closed.” See Dixon and Calvert
at 7.

The existence of a limit on the time a record remains in the list requires
removal at some point. Removal inherently requires the step of identification.
Furthermore, because removal of a record from a linked list requires updating
the links of other entries in the list, it inherently includes accessing the linked
list of records.

 [7d] inserting, retrieving
or deleting one of the

Dixon and Calvert directly or inherently disclose inserting, retrieving or
deleting one of the records from the system following the step of removing.

EXHIBIT C-19

Joint Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

US2008 1661639.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

records from the system
following the step of
removing.

For example, Dixon and Calvert disclose a system for demultiplexing using a
hash table of linked lists:

“McKenney and Dove first introduced a demultiplexing algorithm that
combines software caching and multiple hash chains. The algorithm maintains
a linear list of PCBs for each of several hash chains. Each hash chain has an
associated cache that points to the last PCB found on that chain. When the
connection is first created, a hash function uses some part of the connection’s
information (e. g., IP address) to generate a hash value. The PCB is then added
to the hash chain that corresponds to the generated hash value. Subsequently,
the hash function will route any incoming packets destined for that PCB to the
appropriate hash chain. Note that the same hash key (i. e., same connection
information) must be present in the arriving packet in order to assure proper
routing. The packet is assigned to its PCB via a BSD 4.3-Reno type search of
the list.” See Calvert and Dixon at 6.

As disclosed in the citation above, insertion and retrieval when a new packet
incoming packets arrive utilize the search means.

In addition, Dixon and Calvert disclose some of the records automatically
expiring:

See, e.g., Dixon and Calvert at 8: “In addition, the TCP implementation of all
four servers had a maximum segment lifetime value of 60 seconds. We used
this same value in our simulations. This value is important because a TCP
connection remains in the PCB list for twice this length of time after it is

EXHIBIT C-19

Joint Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

US2008 1661639.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

closed.”

The existence of a limit on the time a record remains in the list requires
removal. Furthermore, as mentioned above, Calvert and Dixon disclose using
a chained hash table in the context of demultiplexing. Demultiplexing is “the
process of decomposing” a packet stream, such as a TCP/IP packet stream, to
provide delivery to destination processes. See Calvert and Dixon at 2. A server
employing a system for demultiplexing, such as the system disclosed by
Calvert and Dixon, typically would receive a significant number of packets.
For example, in an experiment Calvert and Dixon observed millions of
incoming packets on four servers in under two hours. See Calvert and Dixon at
3-4, Table 3.1. As such, even with the use of a caching mechanism to avoid
having to perform a lookup into a PCB list for each incoming packet, it is
inherent that the disclosed system, after removing an expired entry from the
PCB list, will insert a new entry or retrieve an entry in response to subsequent
incoming packets.

4. The method according to
claim 3 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

Dixon and Calvert combined with Dirks, Thatte, the ’663 patent, and/or the
Opportunistic Garbage Collection Articles discloses dynamically determining
maximum number of expired ones of the records to remove when the linked
list is accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each

EXHIBIT C-19

Joint Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

US2008 1661639.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The

EXHIBIT C-19

Joint Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

US2008 1661639.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Dixon and Calvert and Dirks relate to deletion of aged records upon
the allocation of a new incoming record, one of ordinary skill in the art would
have understood how to use Dirks’ dynamic decision making process of

EXHIBIT C-19

Joint Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

US2008 1661639.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

determining the maximum number of records to sweep/remove in other hash
tables implementations such as Dixon and Calvert. Moreover, one of ordinary
skill in the art would recognize that it would improve similar systems and
methods in the same way. As the ’120 patent states “[a] person skilled in the
art will appreciate that the technique of removing all expired records while
searching the linked list can be expanded to include techniques whereby not
necessarily all expired records are removed, and that the decision regarding if
and how many records to delete can be a dynamic one.” The ’120 patent at
7:10-15. Additionally, one of ordinary skill in the art would recognize that the
result of combining Dirks’ deletion decision procedure with Dixon and Calvert
nothing more than the predictable use of prior art elements according to their
established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Dixon and Calvert and
would have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Dixon and Calvert with
the means for dynamically determining maximum number for the record
search means to remove in the accessed linked list of records disclosed by
Thatte. For example, Thatte discloses a system and method using hash tables
and/or linked lists and further discloses means for dynamically determining the
maximum number for the record search means to remove in the accessed
linked list of records. The disclosure of these claim elements in Thatte is

EXHIBIT C-19

Joint Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

US2008 1661639.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

clearly shown in the chart of Thatte, which is hereby incorporated by reference
in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, Ass both Dixon and Calvert and Thatte teach a system of
data storage and retrieval, one of ordinary skill in the art would recognize that
the result of combining Dixon and Calvert with Thatte would be nothing more
than the predictable use of prior art elements according to their established
functions. The resulting combination would include the capability to
determine the maximum number for the record search means to remove as
taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine Dixon
and Calvert with Thatte and recognize the benefits of doing so. For example,
the removal of expired records described in Dixon and Calvert can be
burdensome on the system, adding to the system’s load and slowing down the
system’s processing. One of ordinary skill in the art would recognize that
combining Dixon and Calvert with the teachings of Thatte would solve this
problem by dynamically determining how many records to delete based on,
among other things, the system load. Moreover, the '120 patent discloses that
"[a] person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records are removed, and that
the decision regarding if and how many records to delete can be a dynamic
one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine
Dixon and Calvert with Thatte.

EXHIBIT C-19

Joint Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

US2008 1661639.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

Alternatively, it would also be obvious to combine Dixon and Calvert with the
’663 patent. Disclosure of these claim elements in the ’663 patent is clearly
shown in the chart of the ‘663 patent, which is hereby incorporated by
reference in its entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.

EXHIBIT C-19

Joint Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

US2008 1661639.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load

EXHIBIT C-19

Joint Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

US2008 1661639.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Dixon and Calvert and the ’663 patent relate to deletion of records
from hash tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in Dixon and Calvert. Moreover, one of ordinary skill in
the art would recognize that it would improve similar systems and methods in
the same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.

EXHIBIT C-19

Joint Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

US2008 1661639.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with Dixon and
Calvert would be nothing more than the predictable use of prior art elements
according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Dixon and
Calvert and would have seen the benefits of doing so. One such benefit, for
example, is that the system would avoid performing deletions when the system
load exceeded a threshold.

Alternatively, it would also be obvious to combine Dixon and Calvert with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;

EXHIBIT C-19

Joint Invalidity Contentions & Production of
Documents

35 Case No. 6:09-CV-549-LED

US2008 1661639.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Dixon and Calvert and the Opportunistic Garbage Collection Articles
relate to deletion of aged records, one of ordinary skill in the art would have

EXHIBIT C-19

Joint Invalidity Contentions & Production of
Documents

36 Case No. 6:09-CV-549-LED

US2008 1661639.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

understood how to use the Opportunistic Garbage Collection Articles’ dynamic
decision on whether to perform a deletion based on a system load in other hash
table implementations such as Dixon and Calvert. Moreover, one of ordinary
skill in the art would recognize that it would improve similar systems and
methods in the same way. As the ’120 patent states “[a] person skilled in the
art will appreciate that the technique of removing all expired records while
searching the linked list can be expanded to include techniques whereby not
necessarily all expired records are removed, and that the decision regarding if
and how many records to delete can be a dynamic one.” The ’120 patent at
7:10-15. Additionally, one of ordinary skill in the art would recognize that the
result of combining the Opportunistic Garbage Collection Articles’ deletion
decision procedure with Dixon and Calvert would be nothing more than the
predictable use of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Dixon and Calvert
and would have seen the benefits of doing so. One such benefit, for example,
is preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Dixon and Calvert to dynamically determine
the maximum number of expired records to remove in the accessed linked list
of records. It is a fundamental concept in computer science and the relevant
art that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of

EXHIBIT C-19

Joint Invalidity Contentions & Production of
Documents

37 Case No. 6:09-CV-549-LED

US2008 1661639.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

ordinary skill in the art would have been motivated to combine the system
disclosed in Dixon and Calvert with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in Dixon and Calvert can be
burdensome on the system, adding to the system’s load and slowing down the
system’s processing. Moreover, the removal could also force an interruption in
real-time processing as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by Dixon and Calvert in combination with Dirks,
Thatte, the ‘663 Patent, or the Opportunistic Garbage Collection References, it
is disclosed by Linux 2.0.1, which describes dynamically determining
maximum number of expired ones of the records to remove when the linked
list is accessed. It would have been obvious to combine Linux 2.0.1
with Dixon and Calvert. For example, both Linux 2.0.1 and Dixon and
Calvert describe systems and methods for performing data storage and retrieval

EXHIBIT C-19

Joint Invalidity Contentions & Production of
Documents

38 Case No. 6:09-CV-549-LED

US2008 1661639.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

using known programming techniques to yield a predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

EXHIBIT C-19

Joint Invalidity Contentions & Production of
Documents

39 Case No. 6:09-CV-549-LED

US2008 1661639.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records

EXHIBIT C-19

Joint Invalidity Contentions & Production of
Documents

40 Case No. 6:09-CV-549-LED

US2008 1661639.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not

EXHIBIT C-19

Joint Invalidity Contentions & Production of
Documents

41 Case No. 6:09-CV-549-LED

US2008 1661639.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

EXHIBIT D-1

Joint Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

US2008 1661491.5

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, LINUX 1.3.52 discloses an
information storage and retrieval system.

For example, LINUX 1.3.52 includes the ip_rt_hash_table global variable,
which is an information storage and retrieval system.

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

LINUX 1.3.52 discloses a linked list to store and provide access to records
stored in a memory of the system, at least some of the records automatically
expiring. LINUX 1.3.52 also discloses a hashing means to provide access to
records stored in a memory of the system and using an external chaining
technique to store the records with same hash address, at least some of the
records automatically expiring.

For example, LINUX 1.3.52 includes the ip_rt_hash_table global variable,
which is composed of an array of pointers to struct rtables. See line 144.
Each struct rtable contains an rt_next field, which is a pointer to another
struct rtable. See /include/net/route.h, line 124. Accordingly, struct
rtable defines (among other things) a linked list. As suggested by its name,
the ip_rt_hash_table global variable uses a hashing means to provide access
to its stored linked lists. The access is described below; the hash address itself
is computed at lines 1109 and 1467, which call the function
ip_rt_hash_code.

The records in the system LINUX 1.3.52 discloses includes records, at least
some of which automatically expire.

struct rtable also includes the rt_lastuse field, which is used to
determine whether the record has automatically expired. See

EXHIBIT D-1

Joint Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

US2008 1661491.5

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
/include/net/route.h, line 131 and analysis below.

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of
records having the same
hash address,

LINUX 1.3.52 discloses a record search means utilizing a search key to access
the linked list. LINUX 1.3.52 also discloses a record search means utilizing a
search key to access a linked list of records having the same hash address.

For example, as detailed in part [1a/5a], the ip_rt_hash_table global
variable contains an array of linked lists of type struct rtable.

As suggested by its name, the ip_rt_hash_table global variable is accessed
using a search key. Specifically, the function rt_cache_add uses the search
key hash to access the linked list at the “hash” index of the
ip_rt_hash_table array. See lines 1415 and 1426.

[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the
records from the linked list
when the linked list is
accessed, and

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

LINUX 1.3.52 discloses the record search means including a means for
identifying and removing at least some of the expired ones of the records from
the linked list when the linked list is accessed.

For example, as detailed in step [1b/5b], the function rt_cache_add accesses a
linked list within the ip_rt_hash_table global variable at line 1415, and
appends a new record to the front of the linked list at line 1426. As detailed in
the comment at line 1432, rt_cache_add then iterates through the same
linked list to remove aged off or “automatically expired” entries. Specifically,
line 1439 determines whether the record has expired, line 1442 removes the
expired record from the linked list, and line 1448 deletes the expired record
from memory.

EXHIBIT D-1

Joint Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

US2008 1661491.5

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
Thus, the linked list at ip_rt_hash_table[hash] is accessed at lines 1415
through 1427, when the rt_cache_add method adds the new record to the
front of the linked list, and from lines 1435 through 1453, when the
rt_cache_add method iterates through the linked list looking for duplicate and
expired entries.

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

LINUX 1.3.52 discloses means, utilizing the record search means, for accessing
the linked list and, at the same time, removing at least some of the expired ones
of the records in the linked list. LINUX 1.3.52 also discloses means, utilizing
the record search means, for inserting, retrieving, and deleting records from the
system and, at the same time, removing at least some expired ones of the
records in the accessed linked list of records.

For example, rt_cache_add discloses a means for inserting a record into
the linked list stored at ip_rt_hash_table[hash] and, at the same time,
removing at least some of the records in that accessed linked list.

rt_cache_add also discloses a means for retrieving records from the linked
list. See, e.g., lines 1415, 1435.

rt_cache_add also discloses a means for deleting records from the linked
list. See, e.g., lines 1442, 1448. Further, the while loop of lines 1435 to
1453 is checking for duplicate entries (deleting entries) at the same time that it
is checking for automatically expired entries. See lines 1439 and 1440.

To the extent that Linux 1.3.52 does not disclose this limitation, gcache.c from
Xinu Operating System for Sparc (1991) (hereinafter “gcache.c”) and Douglas

EXHIBIT D-1

Joint Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

US2008 1661491.5

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
Comer and Shawn Ostermann, GCache: A Generalized Caching Mechanism,
Purdue University (Revised March 1992) (hereinafter “Comer”) (collectively
hereinafter “GCache”) discloses means, utilizing the record search means, for
accessing the linked list and, at the same time, removing at least some of the
expired ones of the records in the linked list, and also discloses utilizing the
record search means, for inserting, retrieving, and deleting records from the
system and, at the same time, removing at least some expired ones of the
records in the accessed linked list of records.
One of ordinary skill in the art would be motivated to, and would understand
how to, combine the system disclosed in Linux 1.3.52 with the a hashing
means to provide access to records stored in a memory of the system and using
an external chaining technique to store the records with same hash address, at
least some of the records automatically expiring disclosed by GCache. See,
e.g., Comer at 3-10. For example, since Linux 1.3.52 utilizes a linked list for
storing records and GCache discloses a system that attaches or chains linked
lists to a hash table for storing records, one of ordinary skill in the art would be
motivated to combine the linked list of Linux 1.3.52 with the system including
a hash table using external chaining of linked lists disclosed by GCache. The
disclosure of these claim elements in GCache is clearly shown in the chart of
GCache, which is hereby incorporated by reference in its entirety.
Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Linux 1.3.52 with GCache would be nothing more than the
predictable use of prior art elements according to their established functions.

For example, Comer discloses means for inserting, retrieving, and deleting

EXHIBIT D-1

Joint Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

US2008 1661491.5

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
records:

“Cainsert() inserts a new mapping, key => res, into the cache.” See Comer at
4.

See also, gcache.c at lines 246-304, defining cainsert().

“Calookup() searches for a cached entry matching the key passed as an
argument.” See Comer at 4.

See also, gcache.c at lines 312-347 and 643-678, defining calookup() and
cagetindex().

“Caremove() removes the cached entry whose key is given, if one exists.” See
Comer at 4.

See also, gcache.c at lines 355-376, defining caremove().

Each of the means for inserting, retrieving, and deleting, utilizes a record
search means, the function cagetindex(), which removes an expired record
from the list as described below. The individual calls of cagetindex() are listed
here:

In cainsert():
275 if ((ixnew = cagetindex(pcb,pkey,keylen,hash)) !=
NULL_IX) {

In calookup():

EXHIBIT D-1

Joint Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

US2008 1661491.5

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
333 if ((ix = cagetindex(pcb,pkey,keylen,hash)) !=
NULL_IX) {

In caremove():
370 if ((ix = cagetindex(pcb,pkey,keylen,hash)) !=
NULL_IX) {

“In a simpler and cleaner design chosen for GCache, each cached entry
contains a timestamp encoding the insertion time. If a lookup matches an entry
with an expired timestamp, that entry is removed rather than being returned.”
See Comer at 10.

At lines 655-670 of gcache.c, cagetindex() executes a while loop to traverse a
linked list attached to a bucket of the hash table, accessing records stored
therein. In the subset of that code listed below, cagetindex() utilizes caisold()
to identify if a matching record is expired and removes the expired record from
the linked list using caunlink():

666 if (caisold(pcb,pce)) {
667 ++pcb->cb_tos;
668 caunlink(pcb,ix);
669 return(NULL_IX);
670 } else {

2. The information storage
and retrieval system
according to claim 1
further including means for
dynamically determining

6. The information storage
and retrieval system
according to claim 5
further including means for
dynamically determining

LINUX 1.3.52 combined with Dirks, Thatte, the ’663 patent and/or the
Opportunistic Garbage Collection Articles discloses an information storage
and retrieval system further including means for dynamically determining
maximum number for the record search means to remove in the accessed
linked list of records.

EXHIBIT D-1

Joint Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

US2008 1661491.5

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
maximum number for the
record search means to
remove in the accessed
linked list of records.

maximum number for the
record search means to
remove in the accessed
linked list of records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the

EXHIBIT D-1

Joint Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

US2008 1661491.5

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Linux 1.3.52 and Dirks relate to deletion of aged records upon the

EXHIBIT D-1

Joint Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

US2008 1661491.5

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as Linux 1.3.52. Moreover, one of ordinary skill in the
art would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Linux 1.3.52 nothing more
than the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Linux 1.3.52 and
would have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Linux 1.3.52 with the
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records disclosed by Thatte. For
example, Thatte discloses a system and method using hash tables and/or linked
lists and further discloses means for dynamically determining the maximum
number for the record search means to remove in the accessed linked list of

EXHIBIT D-1

Joint Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

US2008 1661491.5

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
records. The disclosure of these claim elements in Thatte is clearly shown in
the chart of Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, Ass both Linux 1.3.52 and Thatte teach a system of data
storage and retrieval, one of ordinary skill in the art would recognize that the
result of combining Linux 1.3.52 with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove as taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine Linux
1.3.52 with Thatte and recognize the benefits of doing so. For example, the
removal of expired records described in Linux 1.3.52 can be burdensome on
the system, adding to the system’s load and slowing down the system’s
processing. One of ordinary skill in the art would recognize that combining
Linux 1.3.52 with the teachings of Thatte would solve this problem by
dynamically determining how many records to delete based on, among other
things, the system load. Moreover, the '120 patent discloses that "[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one." '120 at
7:10-15. Thus, the '120 patent provides motivations to combine Linux 1.3.52
with Thatte.

Alternatively, it would also be obvious to combine Linux 1.3.52 with the ’663

EXHIBIT D-1

Joint Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

US2008 1661491.5

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT D-1

Joint Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

US2008 1661491.5

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does

EXHIBIT D-1

Joint Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

US2008 1661491.5

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Linux 1.3.52 and the ’663 patent relate to deletion of records from
hash tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in Linux 1.3.52. Moreover, one of ordinary skill in the
art would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with Linux 1.3.52
would be nothing more than the predictable use of prior art elements according
to their established functions.

EXHIBIT D-1

Joint Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

US2008 1661491.5

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Linux 1.3.52 and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Linux 1.3.52 with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more

EXHIBIT D-1

Joint Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

US2008 1661491.5

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Linux 1.3.52 and the Opportunistic Garbage Collection Articles relate
to deletion of aged records, one of ordinary skill in the art would have
understood how to use the Opportunistic Garbage Collection Articles’ dynamic
decision on whether to perform a deletion based on a system load in other hash
table implementations such as Linux 1.3.52. Moreover, one of ordinary skill in
the art would recognize that it would improve similar systems and methods in
the same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily

EXHIBIT D-1

Joint Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

US2008 1661491.5

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Linux 1.3.52 would be nothing more than the predictable use of
prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Linux 1.3.52 and
would have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Linux 1.3.52 to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Linux 1.3.52 with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in Linux 1.3.52 can be burdensome
on the system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.

EXHIBIT D-1

Joint Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

US2008 1661491.5

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by LINUX 1.3.52 in combination with Dirks, Thatte,
the ‘663 Patent, or the Opportunistic Garbage Collection References, it is
disclosed by Linux 2.0.1, which describes dynamically determining maximum
number of expired ones of the records to remove when the linked list is
accessed. It would have been obvious to combine Linux 2.0.1 with LINUX
1.3.52 . For example, both Linux 2.0.1 and LINUX 1.3.52 describe
systems and methods for performing data storage and retrieval using known
programming techniques to yield a predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because

EXHIBIT D-1

Joint Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

US2008 1661491.5

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function

EXHIBIT D-1

Joint Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

US2008 1661491.5

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the

EXHIBIT D-1

Joint Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

US2008 1661491.5

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

EXHIBIT D-1

Joint Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

US2008 1661491.5

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

To the extent the preamble is a limitation, LINUX 1.3.52 discloses a method for
storing and retrieving information records using a linked list to store and
provide access to the records, at least some of the records automatically
expiring. LINUX 1.3.52 also discloses a method for storing and retrieving
information records using a hashing technique to provide access to the records
and using an external chaining technique to store the records with same hash
address, at least some of the records automatically expiring.

For example, LINUX 1.3.52 includes the ip_rt_hash_table global variable,
which is composed of an array of pointers to struct rtables. See line 144.
Each struct rtable contains an rt_next field, which is a pointer to another
struct rtable. See /include/net/route.h, line 124. Accordingly, struct
rtable defines (among other things) a linked list.

struct rtable also includes the rt_lastuse field, which is used to
determine whether the record has automatically expired. See
/include/net/route.h, line 131 and analysis below.

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

LINUX 1.3.52 discloses accessing a linked list of records. Linux 1.3.52 also
discloses accessing a linked list of records having same hash address.

For example, the function rt_cache_add accesses the linked list at the “hash”
index of the ip_rt_hash_table array. See lines 1415 and 1426. In addition,
the linked list at ip_rt_hash_table[hash] is accessed from lines 1435
through 1453, when the rt_cache_add method iterates through the linked list.

[3b] identifying at least [7b] identifying at least LINUX 1.3.52 discloses identifying at least some of the automatically expired

EXHIBIT D-1

Joint Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

US2008 1661491.5

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
some of the automatically
expired ones of the records,
and

some of the automatically
expired ones of the records,

ones of the records.

For example, the function rt_cache_add accesses a linked list within the
ip_rt_hash_table global variable at line 1415, and appends a new record to
the front of the linked list at line 1426. As detailed in the comment at line
1432, rt_cache_add then iterates through the same linked list to remove aged
off or “automatically expired” entries. Specifically, the loop beginning at line
1435 iterates through the records in the previously-accessed linked list, and
line 1439 identifies whether a particular record has expired.

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

LINUX 1.3.52 discloses removing at least some of the automatically expired
records from the linked list when the linked list is accessed.

For example, the loop beginning at line 1435 iterates through the records in the
previously-accessed linked list, and line 1439 identifies whether a particular
record has expired. Line 1442 removes the expired record from the linked list,
and line 1448 deletes the expired record from memory.

 [7d] inserting, retrieving
or deleting one of the
records from the system
following the step of
removing.

LINUX 1.3.52 discloses inserting, retrieving or deleting one of the records from
the system following the step of removing.

For example, the loop beginning at line 1435 iterates through the records in the
previously-accessed linked list, and line 1439 identifies whether a particular
record has expired. Line 1442 removes the expired record from the linked list,
and line 1448 deletes the expired record from memory. Further, the while
loop of lines 1435 to 1453 is checking for duplicate entries (deleting entries) at
the same time that it is checking for automatically expired entries. See lines

EXHIBIT D-1

Joint Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

US2008 1661491.5

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
1439 and 1440. A duplicate entry may be deleted following the removal of at
least some of the automatically expired records from the linked list.

4. The method according to
claim 3 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

LINUX 1.3.52 combined with Dirks, Thatte, the ’663 patent, and/or the
Opportunistic Garbage Collection Articles discloses dynamically determining
maximum number of expired ones of the records to remove when the linked
list is accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

EXHIBIT D-1

Joint Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

US2008 1661491.5

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in

EXHIBIT D-1

Joint Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

US2008 1661491.5

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Linux 1.3.52 and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as Linux 1.3.52. Moreover, one of ordinary skill in the
art would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Linux 1.3.52 nothing more
than the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Linux 1.3.52 and
would have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.`

EXHIBIT D-1

Joint Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

US2008 1661491.5

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Linux 1.3.52 with the
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records disclosed by Thatte. For
example, Thatte discloses a system and method using hash tables and/or linked
lists and further discloses means for dynamically determining the maximum
number for the record search means to remove in the accessed linked list of
records. The disclosure of these claim elements in Thatte is clearly shown in
the chart of Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, Ass both Linux 1.3.52 and Thatte teach a system of data
storage and retrieval, one of ordinary skill in the art would recognize that the
result of combining Linux 1.3.52 with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove as taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine Linux
1.3.52 with Thatte and recognize the benefits of doing so. For example, the
removal of expired records described in Linux 1.3.52 can be burdensome on
the system, adding to the system’s load and slowing down the system’s
processing. One of ordinary skill in the art would recognize that combining
Linux 1.3.52 with the teachings of Thatte would solve this problem by
dynamically determining how many records to delete based on, among other
things, the system load. Moreover, the '120 patent discloses that "[a] person
skilled in the art will appreciate that the technique of removing all expired

EXHIBIT D-1

Joint Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

US2008 1661491.5

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one." '120 at
7:10-15. Thus, the '120 patent provides motivations to combine Linux 1.3.52
with Thatte.

Alternatively, it would also be obvious to combine Linux 1.3.52 with the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of

EXHIBIT D-1

Joint Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

US2008 1661491.5

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT D-1

Joint Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

US2008 1661491.5

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Linux 1.3.52 and the ’663 patent relate to deletion of records from
hash tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in Linux 1.3.52. Moreover, one of ordinary skill in the
art would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily

EXHIBIT D-1

Joint Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

US2008 1661491.5

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with Linux 1.3.52
would be nothing more than the predictable use of prior art elements according
to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Linux 1.3.52 and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Linux 1.3.52 with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to

EXHIBIT D-1

Joint Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

US2008 1661491.5

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Linux 1.3.52 and the Opportunistic Garbage Collection Articles relate
to deletion of aged records, one of ordinary skill in the art would have

EXHIBIT D-1

Joint Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

US2008 1661491.5

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
understood how to use the Opportunistic Garbage Collection Articles’ dynamic
decision on whether to perform a deletion based on a system load in other hash
table implementations such as Linux 1.3.52. Moreover, one of ordinary skill in
the art would recognize that it would improve similar systems and methods in
the same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Linux 1.3.52 would be nothing more than the predictable use of
prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Linux 1.3.52 and
would have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Linux 1.3.52 to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system

EXHIBIT D-1

Joint Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

US2008 1661491.5

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
disclosed in Linux 1.3.52 with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in Linux 1.3.52 can be burdensome
on the system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by LINUX 1.3.52 in combination with Dirks, Thatte,
the ‘663 Patent, or the Opportunistic Garbage Collection References, it is
disclosed by Linux 2.0.1, which describes dynamically determining maximum
number of expired ones of the records to remove when the linked list is
accessed. It would have been obvious to combine Linux 2.0.1 with LINUX
1.3.52 . For example, both Linux 2.0.1 and LINUX 1.3.52 describe
systems and methods for performing data storage and retrieval using known
programming techniques to yield a predictable result.

EXHIBIT D-1

Joint Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

US2008 1661491.5

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold

EXHIBIT D-1

Joint Invalidity Contentions & Production of
Documents

35 Case No. 6:09-CV-549-LED

US2008 1661491.5

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold

EXHIBIT D-1

Joint Invalidity Contentions & Production of
Documents

36 Case No. 6:09-CV-549-LED

US2008 1661491.5

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

EXHIBIT D-1

Joint Invalidity Contentions & Production of
Documents

37 Case No. 6:09-CV-549-LED

US2008 1661491.5

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

EXHIBIT D-2

Joint Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

US2008 1661492.1

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination
1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, if_ether.c discloses an
information storage and retrieval system.

For example, the implementation of the Address Resolution Protocol in
if_ether.c in BSD 4.2 includes an information storage and retrieval
system that stores and retrieves records used by the protocol.

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

if_ether.c discloses a hash table (arptab) which resolves collisions
through arrays. See, e.g., lines 42-49. It would have been obvious to one of
ordinary skill in the art that arptab could resolve collisions with linked lists
rather than arrays, as both linked lists and arrays are fundamental data
structures used to store multiple data items. See below.

if_ether.c also discloses a hashing means to provide access to records
stored in a memory of the system and using an external chaining technique to
store the records with same hash address, at least some of the records
automatically expiring.

For example, the structure if_ether.c describes the use of a hash table,
arptab, with external chaining to resolve collisions. See, e.g., lines 42-49.
Though the external chaining involves the use of an array rather than a linked
list, it would have been obvious to a person skilled in the art that a linked list
could be used instead of an array. The use of linked lists for external chaining
in hash tables was well known in the art. Indeed, according to Knuth, “the
most obvious way to solve this problem [of collisions] is to maintain M linked
lists, one for each possible hash code.” See “The Art of Computer
Programming”, Sorting and Searching, D.E. Knuth, Addison-Wesley Series in

EXHIBIT D-2

Joint Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

US2008 1661492.1

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination
Computer Science and Information Processing, pp. 513, 1973. See also Mark
A. Weiss, Data Structures and Algorithm Analysis, p. 152-157, 1993 (using
linked lists to resolve collisions in external chaining but noting that any
scheme besides linked lists could be used). One of ordinary skill in the art
would have been motivated to try using “the most obvious” solution to external
chaining, linked lists, instead of the array taught in if_ether.c.

The records in the system if_ether.c discloses includes records, at least
some of which automatically expire.

For example, the arptab table in if_ether.c includes within each entry
an at_timer variable which keeps track of the minutes since the last
reference. That at_time variable is used to expire the entry when the time
since the last reference exceeds a given amount. See function arptimer(),
lines 126-130.

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of
records having the same
hash address,

if_ether.c discloses a record search means utilizing a search key to access
an array. Similarly, if_ether.c discloses a record search means utilizing a
search key to access an array of records having the same hash address.

For example, the arptab structure in if_ether.c can be accessed with a
search key. That search key provides access to a series of entries within the
arptab structure that have the same hash address. See, e.g., function
arptnew(), lines 376-384. As discussed in [1a/5a], it would have been
obvious to one of ordinary skill in the art that a linked list could be used
instead of an array to resolve the collisions in arptab, in which case the
access in this element would occur on a linked list.

EXHIBIT D-2

Joint Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

US2008 1661492.1

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination

[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the
records from the linked list
when the linked list is
accessed, and

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

if_ether.c discloses the record search means including a means for
identifying and removing at least some of the expired ones of the records from
the linked list when the linked list is accessed.

For example, the function arptimer() accesses the arptab structure and
removes all entries that have expired when that access occurs. The function
arptnew() also accesses the arptab structure in order to add an entry, and
if the structure is full, arptnew() removes the oldest entry in the table and
inserts the new entry in its place. Though this removal of expired records
occurs in an array, as discussed above in [1a/5a], it would have been obvious
to one of ordinary skill in the art that a linked list could be used to resolve
collisions in the hash table, in which case the removal taught in this element
would occur in the linked list.

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

if_ether.c discloses means, utilizing the record search means, for
accessing an array and, at the same time, removing at least some of the expired
ones of the records in the array. if_ether.c also discloses means, utilizing
the record search means, for inserting, retrieving, and deleting records from the
system and, at the same time, removing at least some expired ones of the
records in the accessed array of records. As discussed in [1a/5a], it would have
been obvious to one of ordinary skill in the art that a linked list could be used
instead of an array.

For example, arptfree() utilizes the record search means to insert a new
entry in the arptab structure and, at the same time, remove one of the
expired records from the structure when the structure is full. It would have

EXHIBIT D-2

Joint Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

US2008 1661492.1

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination
been obvious to one skilled in the art that retrieval or deletion could have been
done as well as the insert, since these are all basic functions that can be
performed on a hash table. See, e.g., “The Art of Computer Programming”,
Sorting and Searching, D.E. Knuth, Addison-Wesley Series in Computer
Science and Information Processing, pp. 506-549; “Data Structures and
Program Design”, R.L. Kruse, Prentice-Hall, Inc. 1984, pp. 104-148.

Though these actions occur in an array, as discussed above in [1a/5a], it would
have been obvious to one of ordinary skill in the art that a linked list could be
used to resolve collisions in the hash table, in which case the actions taught in
this element would occur in the linked list.

To the extent that if_ether.c does not disclose this limitation, gcache.c from Xinu
Operating System for Sparc (1991) (hereinafter “gcache.c”) and Douglas Comer and
Shawn Ostermann, GCache: A Generalized Caching Mechanism, Purdue University
(Revised March 1992) (hereinafter “Comer”) (collectively hereinafter “GCache”)
discloses means, utilizing the record search means, for accessing the linked list and, at
the same time, removing at least some of the expired ones of the records in the linked
list, and also discloses utilizing the record search means, for inserting, retrieving, and
deleting records from the system and, at the same time, removing at least some
expired ones of the records in the accessed linked list of records.
One of ordinary skill in the art would be motivated to, and would understand how to,
combine the system disclosed in if_ether.c with the a hashing means to provide access
to records stored in a memory of the system and using an external chaining technique
to store the records with same hash address, at least some of the records automatically
expiring disclosed by GCache. See, e.g., Comer at 3-10. For example, since if_ether.c
utilizes a linked list for storing records and GCache discloses a system that attaches or
chains linked lists to a hash table for storing records, one of ordinary skill in the art
would be motivated to combine the linked list of if_ether.c with the system including

EXHIBIT D-2

Joint Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

US2008 1661492.1

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination
a hash table using external chaining of linked lists disclosed by GCache. The
disclosure of these claim elements in GCache is clearly shown in the chart of GCache,
which is hereby incorporated by reference in its entirety.
Moreover, one of ordinary skill in the art would recognize that these combinations
would improve the similar systems and methods in the same way. Additionally, one
of ordinary skill in the art would recognize that the result of combining if_ether.c with
GCache would be nothing more than the predictable use of prior art elements
according to their established functions.

For example, Comer discloses means for inserting, retrieving, and deleting records:

“Cainsert() inserts a new mapping, key => res, into the cache.” See Comer at 4.

See also, gcache.c at lines 246-304, defining cainsert().

“Calookup() searches for a cached entry matching the key passed as an argument.”
See Comer at 4.

See also, gcache.c at lines 312-347 and 643-678, defining calookup() and
cagetindex().

“Caremove() removes the cached entry whose key is given, if one exists.” See Comer
at 4.

See also, gcache.c at lines 355-376, defining caremove().

Each of the means for inserting, retrieving, and deleting, utilizes a record search
means, the function cagetindex(), which removes an expired record from the list as
described below. The individual calls of cagetindex() are listed here:

EXHIBIT D-2

Joint Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

US2008 1661492.1

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination
In cainsert():
275 if ((ixnew = cagetindex(pcb,pkey,keylen,hash)) !=
NULL_IX) {

In calookup():
333 if ((ix = cagetindex(pcb,pkey,keylen,hash)) !=
NULL_IX) {

In caremove():
370 if ((ix = cagetindex(pcb,pkey,keylen,hash)) !=
NULL_IX) {

“In a simpler and cleaner design chosen for GCache, each cached entry contains a
timestamp encoding the insertion time. If a lookup matches an entry with an expired
timestamp, that entry is removed rather than being returned.” See Comer at 10.

At lines 655-670 of gcache.c, cagetindex() executes a while loop to traverse a linked
list attached to a bucket of the hash table, accessing records stored therein. In the
subset of that code listed below, cagetindex() utilizes caisold() to identify if a
matching record is expired and removes the expired record from the linked list using
caunlink():

666 if (caisold(pcb,pce)) {
667 ++pcb->cb_tos;
668 caunlink(pcb,ix);
669 return(NULL_IX);
670 } else {

2. The information storage
and retrieval system
according to claim 1

6. The information storage
and retrieval system
according to claim 5

if_ether.c discloses dynamically determining maximum number of
expired ones of the records to remove when the array is accessed.

EXHIBIT D-2

Joint Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

US2008 1661492.1

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

For example, the function arptfree() only removes an expired element
when the arptab structure is full. In this way, the function dynamically
determines the maximum number of elements to remove by computing
whether to remove some or none of the expired elements.
Though these removals of expired records occur in an array, as discussed
above in [1a/5a], it would have been obvious to one of ordinary skill in the art
that a linked list could be used to resolve collisions in the hash table, in which
case the removals taught in this claim would occur in the linked list.

To the extent if_ether.c does not disclose this element, it would have
been obvious to one of ordinary skill in the art.

if_ether.c combined with Dirks, Thatte, the ’663 patent and/or the
Opportunistic Garbage Collection Articles discloses an information storage
and retrieval system further including means for dynamically determining
maximum number for the record search means to remove in the accessed
linked list of records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or

EXHIBIT D-2

Joint Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

US2008 1661492.1

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

EXHIBIT D-2

Joint Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

US2008 1661492.1

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both if_ether.c and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as if_ether.c. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching

EXHIBIT D-2

Joint Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

US2008 1661492.1

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with if_ether.c nothing more
than the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with if_ether.c and would
have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in if_ether.c with the means
for dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. For example,
Thatte discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, Ass both if_ether.c and Thatte teach a system of data
storage and retrieval, one of ordinary skill in the art would recognize that the

EXHIBIT D-2

Joint Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

US2008 1661492.1

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination
result of combining if_ether.c with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove as taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine
if_ether.c with Thatte and recognize the benefits of doing so. For example, the
removal of expired records described in if_ether.c can be burdensome on the
system, adding to the system’s load and slowing down the system’s
processing. One of ordinary skill in the art would recognize that combining
if_ether.c with the teachings of Thatte would solve this problem by
dynamically determining how many records to delete based on, among other
things, the system load. Moreover, the '120 patent discloses that "[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one." '120 at
7:10-15. Thus, the '120 patent provides motivations to combine if_ether.c with
Thatte.

Alternatively, it would also be obvious to combine if_ether.c with the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing

EXHIBIT D-2

Joint Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

US2008 1661492.1

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT D-2

Joint Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

US2008 1661492.1

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does

EXHIBIT D-2

Joint Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

US2008 1661492.1

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both if_ether.c and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in if_ether.c. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with if_ether.c would
be nothing more than the predictable use of prior art elements according to
their established functions.

EXHIBIT D-2

Joint Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

US2008 1661492.1

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination
By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with if_ether.c and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine if_ether.c with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more

EXHIBIT D-2

Joint Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

US2008 1661492.1

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both if_ether.c and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as if_ether.c. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily

EXHIBIT D-2

Joint Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

US2008 1661492.1

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with if_ether.c would be nothing more than the predictable use of
prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with if_ether.c and
would have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in if_ether.c to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in if_ether.c with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in if_ether.c can be burdensome on
the system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.

EXHIBIT D-2

Joint Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

US2008 1661492.1

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by if_ether.c in combination with Dirks, Thatte, the
‘663 Patent, or the Opportunistic Garbage Collection References, it is
disclosed by Linux 2.0.1, which describes dynamically determining maximum
number of expired ones of the records to remove when the linked list is
accessed. It would have been obvious to combine Linux 2.0.1 with if_ether.c.
For example, both Linux 2.0.1 and if_ether.c describe systems and methods for
performing data storage and retrieval using known programming techniques to
yield a predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the

EXHIBIT D-2

Joint Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

US2008 1661492.1

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at

EXHIBIT D-2

Joint Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

US2008 1661492.1

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this

EXHIBIT D-2

Joint Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

US2008 1661492.1

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

EXHIBIT D-2

Joint Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

US2008 1661492.1

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

To the extent the preamble is a limitation, if_ether.c discloses a method
for storing and retrieving information records using a chain of records to store
and provide access to the records, at least some of the records automatically
expiring. if_ether.c also discloses a method for storing and retrieving
information records using a hashing technique to provide access to the records
and using an external chaining technique to store the records with same hash
address, at least some of the records automatically expiring.

For example, the arptab structure defined in if_ether.c is a hash table
that uses external chaining with arrays to resolve collisions between entries
with the same hash address. As discussed in [1a/5a], it would have been
obvious to one of ordinary skill in the art that a linked list could have been
utilized instead of an array to resolve collisions.

The records in the system if_ether.c discloses includes records, at least
some of which automatically expire.

For example, the arptab table in if_ether.c includes within each entry
an at_timer variable which keeps track of the minutes since the last
reference. That at_time variable is used to expire the entry when the time
since the last reference exceeds a given amount. See function arptimer(),
lines 126-130.

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same

if_ether.c discloses accessing an array of records. Similarly,
if_ether.c discloses accessing an array of records having the same hash

EXHIBIT D-2

Joint Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

US2008 1661492.1

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination
hash address, address. As discussed in [1b/5b], it would have been obvious to one or

ordinary skill in the art that the access could occur in a linked list rather than
an array.

For example, both the arptimer() and arptnew() functions in
if_ether.c access the array that stores records having the same hash
address. See lines 123-32, 376-84.

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

if_ether.c discloses identifying at least some of the automatically expired
ones of the records.

For example, arptimer() identifies whether any of the entries in arptab
have expired on lines 126-29. The function arptnew() identifies
automatically expired records on lines 380-83.

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

if_ether.c discloses removing at least some of the automatically expired
records from the array when the array is accessed. As discussed in [1c/5c], it
would have been obvious to one of ordinary skill in the art that the same step
could be performed on a linked list where the records were stored in a linked
list.

For example, the function arptimer() accesses the arptab structure and
removes all entries that have expired when that access occurs. The function
arptnew() also accesses the arptab structure in order to add an entry, and
if the structure is full, arptnew() identifies an expired entry in the table and
removes the entry by calling the function arptfree(). Lines 385-86.

 [7d] inserting, retrieving if_ether.c discloses inserting, retrieving or deleting one of the records

EXHIBIT D-2

Joint Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

US2008 1661492.1

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination
or deleting one of the
records from the system
following the step of
removing.

from the system following the step of removing.

For example, function arptnew() inserts a new entry into the arptab
structure after the expired element is removed. Lines 388-89.

4. The method according to
claim 3 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

if_ether.c discloses dynamically determining maximum number of
expired ones of the records to remove when the array is accessed.

For example, the function arptfree() only removes an expired element
when the arptab structure is full. In this way, the function dynamically
determines the maximum number of elements to remove by computing
whether to remove some or none of the expired elements.
Though these removals of expired records occur in an array, as discussed
above in [1a/5a], it would have been obvious to one of ordinary skill in the art
that a linked list could be used to resolve collisions in the hash table, in which
case the removals taught in this claim would occur in the linked list.

To the extent if_ether.c does not disclose this element, it would have
been obvious to one of ordinary skill in the art.

if_ether.c combined with Dirks, Thatte, the ’663 patent, and/or the
Opportunistic Garbage Collection Articles discloses dynamically determining
maximum number of expired ones of the records to remove when the linked
list is accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each

EXHIBIT D-2

Joint Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

US2008 1661492.1

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on

EXHIBIT D-2

Joint Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

US2008 1661492.1

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both if_ether.c and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as if_ether.c. Moreover, one of ordinary skill in the art

EXHIBIT D-2

Joint Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

US2008 1661492.1

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with if_ether.c nothing more
than the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with if_ether.c and would
have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in if_ether.c with the means
for dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. For example,
Thatte discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these

EXHIBIT D-2

Joint Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

US2008 1661492.1

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination
combinations would improve the similar systems and methods in the same
way. Additionally, Ass both if_ether.c and Thatte teach a system of data
storage and retrieval, one of ordinary skill in the art would recognize that the
result of combining if_ether.c with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove as taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine
if_ether.c with Thatte and recognize the benefits of doing so. For example, the
removal of expired records described in if_ether.c can be burdensome on the
system, adding to the system’s load and slowing down the system’s
processing. One of ordinary skill in the art would recognize that combining
if_ether.c with the teachings of Thatte would solve this problem by
dynamically determining how many records to delete based on, among other
things, the system load. Moreover, the '120 patent discloses that "[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one." '120 at
7:10-15. Thus, the '120 patent provides motivations to combine if_ether.c with
Thatte.

Alternatively, it would also be obvious to combine if_ether.c with the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

EXHIBIT D-2

Joint Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

US2008 1661492.1

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination
during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT D-2

Joint Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

US2008 1661492.1

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does

EXHIBIT D-2

Joint Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

US2008 1661492.1

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both if_ether.c and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in if_ether.c. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with if_ether.c would
be nothing more than the predictable use of prior art elements according to
their established functions.

EXHIBIT D-2

Joint Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

US2008 1661492.1

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination
By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with if_ether.c and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine if_ether.c with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more

EXHIBIT D-2

Joint Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

US2008 1661492.1

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both if_ether.c and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as if_ether.c. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily

EXHIBIT D-2

Joint Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

US2008 1661492.1

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with if_ether.c would be nothing more than the predictable use of
prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with if_ether.c and
would have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in if_ether.c to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in if_ether.c with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in if_ether.c can be burdensome on
the system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.

EXHIBIT D-2

Joint Invalidity Contentions & Production of
Documents

35 Case No. 6:09-CV-549-LED

US2008 1661492.1

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by if_ether.c in combination with Dirks, Thatte, the
‘663 Patent, or the Opportunistic Garbage Collection References, it is
disclosed by Linux 2.0.1, which describes dynamically determining maximum
number of expired ones of the records to remove when the linked list is
accessed. It would have been obvious to combine Linux 2.0.1 with if_ether.c.
For example, both Linux 2.0.1 and if_ether.c describe systems and methods for
performing data storage and retrieval using known programming techniques to
yield a predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the

EXHIBIT D-2

Joint Invalidity Contentions & Production of
Documents

36 Case No. 6:09-CV-549-LED

US2008 1661492.1

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at

EXHIBIT D-2

Joint Invalidity Contentions & Production of
Documents

37 Case No. 6:09-CV-549-LED

US2008 1661492.1

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this

EXHIBIT D-2

Joint Invalidity Contentions & Production of
Documents

38 Case No. 6:09-CV-549-LED

US2008 1661492.1

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

EXHIBIT D-2

Joint Invalidity Contentions & Production of
Documents

39 Case No. 6:09-CV-549-LED

US2008 1661492.1

EXHIBIT D-3

Joint Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

US2008 1661494.1

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination
1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, vfs_cache.c discloses an
information storage and retrieval system.

For example, the implementation of the name cache in vfs_cache.c in
FreeBSD includes an information storage and retrieval system that stores and
retrieves names found by directory scans.

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

vfs_cache.c discloses a linked list to store and provide access to records
stored in a memory of the system, at least some of the records automatically
expiring. vfs_cache.c also discloses a hashing means to provide access to
records stored in a memory of the system and using an external chaining
technique to store the records with same hash address, at least some of the
records automatically expiring.

For example, vfs_cache.c describes the use of a hash table, nchashtbl,
with external chaining using linked lists to resolve collisions. See lines 75-84.

The records in the system vfs_cache.c discloses includes records, at least
some of which automatically expire. See, e.g., lines 51-69, 214-226.

For example, vfs_cache.c maintains a list of least recently used entries in
the hash table in the structure nclruhead. Line 76. An entry automatically
expires when (1) it is the least recently used entry, (2) the function
cache_enter() tries to insert another entry into nchashtbl and (3)
nchashtbl is already full. See lines 51-69, 214-226.

EXHIBIT D-3

Joint Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

US2008 1661494.1

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination
[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of
records having the same
hash address,

vfs_cache.c discloses a record search means utilizing a search key to
access the linked list. vfs_cache.c also discloses a record search means
utilizing a search key to access a linked list of records having the same hash
address.

For example, the function cache_enter() utilizes a search key to access a
linked list of records having the same hash address. See lines 193-246.

[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the
records from the linked list
when the linked list is
accessed, and

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

vfs_cache.c discloses the record search means including a means for
identifying and removing at least some of the expired ones of the records from
the linked list when the linked list is accessed.

For example, the function cache_enter() accesses the nchashtbl
structure and identifies an expired entry, which it removes from the linked list
of records when it adds another entry to the hash table. See lines 214-245.

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

vfs_cache.c discloses means, utilizing the record search means, for
accessing the linked list and, at the same time, removing at least some of the
expired ones of the records in the linked list. vfs_cache.c also discloses
means, utilizing the record search means, for inserting records from the system
and, at the same time, removing at least some expired ones of the records in the
accessed linked list of records.

For example, the function cache_enter() accesses the nchashtbl
structure and identifies an expired entry, which it removes from the linked list
of records when it adds another entry to the hash table. See lines 193-245.

EXHIBIT D-3

Joint Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

US2008 1661494.1

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination

To the extent cache_enter() does not include means for retrieving and
deleting records utilizing the record search means, it would have been obvious
to one skilled in the art that retrieval or deletion could have been done as well
as the insert, since these are all basic functions that can be performed on a hash
table or a linked list in similar ways. See, e.g., “The Art of Computer
Programming”, Sorting and Searching, D.E. Knuth, Addison-Wesley Series in
Computer Science and Information Processing, pp. 506-549; “Data Structures
and Program Design”, R.L. Kruse, Prentice-Hall, Inc. 1984, pp. 104-148.

To the extent that vfs_cache.c does not disclose this limitation, gcache.c from
Xinu Operating System for Sparc (1991) (hereinafter “gcache.c”) and Douglas
Comer and Shawn Ostermann, GCache: A Generalized Caching Mechanism,
Purdue University (Revised March 1992) (hereinafter “Comer”) (collectively
hereinafter “GCache”) discloses means, utilizing the record search means, for
accessing the linked list and, at the same time, removing at least some of the
expired ones of the records in the linked list, and also discloses utilizing the
record search means, for inserting, retrieving, and deleting records from the
system and, at the same time, removing at least some expired ones of the
records in the accessed linked list of records.
One of ordinary skill in the art would be motivated to, and would understand
how to, combine the system disclosed in vfs_cache.c with the a hashing means
to provide access to records stored in a memory of the system and using an
external chaining technique to store the records with same hash address, at
least some of the records automatically expiring disclosed by GCache. See,

EXHIBIT D-3

Joint Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

US2008 1661494.1

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination
e.g., Comer at 3-10. For example, since vfs_cache.c utilizes a linked list for
storing records and GCache discloses a system that attaches or chains linked
lists to a hash table for storing records, one of ordinary skill in the art would be
motivated to combine the linked list of vfs_cache.c with the system including a
hash table using external chaining of linked lists disclosed by GCache. The
disclosure of these claim elements in GCache is clearly shown in the chart of
GCache, which is hereby incorporated by reference in its entirety.
Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining vfs_cache.c with GCache would be nothing more than the
predictable use of prior art elements according to their established functions.

For example, Comer discloses means for inserting, retrieving, and deleting
records:

“Cainsert() inserts a new mapping, key => res, into the cache.” See Comer at
4.

See also, gcache.c at lines 246-304, defining cainsert().

“Calookup() searches for a cached entry matching the key passed as an
argument.” See Comer at 4.

See also, gcache.c at lines 312-347 and 643-678, defining calookup() and
cagetindex().

EXHIBIT D-3

Joint Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

US2008 1661494.1

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination

“Caremove() removes the cached entry whose key is given, if one exists.” See
Comer at 4.

See also, gcache.c at lines 355-376, defining caremove().

Each of the means for inserting, retrieving, and deleting, utilizes a record
search means, the function cagetindex(), which removes an expired record
from the list as described below. The individual calls of cagetindex() are listed
here:

In cainsert():
275 if ((ixnew = cagetindex(pcb,pkey,keylen,hash)) !=
NULL_IX) {

In calookup():
333 if ((ix = cagetindex(pcb,pkey,keylen,hash)) !=
NULL_IX) {

In caremove():
370 if ((ix = cagetindex(pcb,pkey,keylen,hash)) !=
NULL_IX) {

“In a simpler and cleaner design chosen for GCache, each cached entry
contains a timestamp encoding the insertion time. If a lookup matches an entry
with an expired timestamp, that entry is removed rather than being returned.”

EXHIBIT D-3

Joint Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

US2008 1661494.1

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination
See Comer at 10.

At lines 655-670 of gcache.c, cagetindex() executes a while loop to traverse a
linked list attached to a bucket of the hash table, accessing records stored
therein. In the subset of that code listed below, cagetindex() utilizes caisold()
to identify if a matching record is expired and removes the expired record from
the linked list using caunlink():

666 if (caisold(pcb,pce)) {
667 ++pcb->cb_tos;
668 caunlink(pcb,ix);
669 return(NULL_IX);
670 } else {

2. The information storage
and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

6. The information storage
and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

vfs_cache.c discloses dynamically determining maximum number of
expired ones of the records to remove when the linked list is accessed.

For example, the function cache_enter() only removes an expired
element when the arptab structure is full. In this way, the function
dynamically determines the maximum number of elements to remove by
computing whether to remove some or none of the expired elements. See lines
193-245.

To the extent vfs_cache.c does not disclose this element, it would have
been obvious to one of ordinary skill in the art.

EXHIBIT D-3

Joint Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

US2008 1661494.1

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination
vfs_cache.c combined with Dirks, Thatte, the ’663 patent and/or the
Opportunistic Garbage Collection Articles discloses an information storage
and retrieval system further including means for dynamically determining
maximum number for the record search means to remove in the accessed
linked list of records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG

EXHIBIT D-3

Joint Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

US2008 1661494.1

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in

EXHIBIT D-3

Joint Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

US2008 1661494.1

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both vfs_cache.c and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as vfs_cache.c. Moreover, one of ordinary skill in the
art would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with vfs_cache.c nothing more
than the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with vfs_cache.c and would
have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.`

EXHIBIT D-3

Joint Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

US2008 1661494.1

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in vfs_cache.c with the
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records disclosed by Thatte. For
example, Thatte discloses a system and method using hash tables and/or linked
lists and further discloses means for dynamically determining the maximum
number for the record search means to remove in the accessed linked list of
records. The disclosure of these claim elements in Thatte is clearly shown in
the chart of Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, Ass both vfs_cache.c and Thatte teach a system of data
storage and retrieval, one of ordinary skill in the art would recognize that the
result of combining vfs_cache.c with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove as taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine
vfs_cache.c with Thatte and recognize the benefits of doing so. For example,
the removal of expired records described in vfs_cache.c can be burdensome on
the system, adding to the system’s load and slowing down the system’s
processing. One of ordinary skill in the art would recognize that combining
vfs_cache.c with the teachings of Thatte would solve this problem by
dynamically determining how many records to delete based on, among other

EXHIBIT D-3

Joint Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

US2008 1661494.1

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination
things, the system load. Moreover, the '120 patent discloses that "[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one." '120 at
7:10-15. Thus, the '120 patent provides motivations to combine vfs_cache.c
with Thatte.

Alternatively, it would also be obvious to combine vfs_cache.c with the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by

EXHIBIT D-3

Joint Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

US2008 1661494.1

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT D-3

Joint Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

US2008 1661494.1

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a

EXHIBIT D-3

Joint Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

US2008 1661494.1

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both vfs_cache.c and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in vfs_cache.c. Moreover, one of ordinary skill in the
art would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with vfs_cache.c
would be nothing more than the predictable use of prior art elements according

EXHIBIT D-3

Joint Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

US2008 1661494.1

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination
to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with vfs_cache.c and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine vfs_cache.c with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

EXHIBIT D-3

Joint Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

US2008 1661494.1

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both vfs_cache.c and the Opportunistic Garbage Collection Articles relate
to deletion of aged records, one of ordinary skill in the art would have
understood how to use the Opportunistic Garbage Collection Articles’ dynamic
decision on whether to perform a deletion based on a system load in other hash
table implementations such as vfs_cache.c. Moreover, one of ordinary skill in

EXHIBIT D-3

Joint Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

US2008 1661494.1

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination
the art would recognize that it would improve similar systems and methods in
the same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with vfs_cache.c would be nothing more than the predictable use of
prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with vfs_cache.c and
would have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in vfs_cache.c to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in vfs_cache.c with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed

EXHIBIT D-3

Joint Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

US2008 1661494.1

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in vfs_cache.c can be burdensome on
the system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by vfs_cache.c in combination with Dirks, Thatte, the
‘663 Patent, or the Opportunistic Garbage Collection References, it is
disclosed by Linux 2.0.1, which describes dynamically determining maximum
number of expired ones of the records to remove when the linked list is
accessed. It would have been obvious to combine Linux 2.0.1
with vfs_cache.c . For example, both Linux 2.0.1 and vfs_cache.c describe
systems and methods for performing data storage and retrieval using known
programming techniques to yield a predictable result.

When invoked, the function rt_cache_add automatically increments an

EXHIBIT D-3

Joint Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

US2008 1661494.1

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold

EXHIBIT D-3

Joint Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

US2008 1661494.1

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold

EXHIBIT D-3

Joint Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

US2008 1661494.1

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,

EXHIBIT D-3

Joint Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

US2008 1661494.1

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

To the extent the preamble is a limitation, vfs_cache.c discloses a method
for storing and retrieving information records using a linked list to store and
provide access to the records, at least some of the records automatically
expiring. vfs_cache.c also discloses a method for storing and retrieving
information records using a hashing technique to provide access to the records
and using an external chaining technique to store the records with same hash
address, at least some of the records automatically expiring.

For example, vfs_cache.c describes the use of a hash table, nchashtbl,
with external chaining using linked lists to resolve collisions. See lines 75-84.

The records in the system vfs_cache.c discloses includes records, at least
some of which automatically expire. See, e.g., lines 51-69, 214-226.

For example, vfs_cache.c maintains a list of least recently used entries in
the hash table in the structure nclruhead. Line 76. An entry automatically
expires when (1) it is the least recently used entry, (2) the function

EXHIBIT D-3

Joint Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

US2008 1661494.1

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination
cache_enter() tries to insert another entry into nchashtbl and (3)
nchashtbl is already full. See, lines 51-69, 214-226.

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

vfs_cache.c discloses accessing the linked list of records. vfs_cache.c
also discloses accessing a linked list of records having same hash address

For example, the cache_enter()function in vfs_cache.c accesses the
linked list that stores records having the same hash address. See lines 193-245.

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

vfs_cache.c discloses identifying at least some of the automatically
expired ones of the records.

For example, the function cache_enter() accesses the nchashtbl
structure and identifies an expired entry. See lines 193-245.

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

vfs_cache.c discloses removing at least some of the automatically expired
records from the linked list when the linked list is accessed.

For example, the function cache_enter()removes the previously identified
expired record from the linked list of records when it adds another entry to the
hash table. See lines 193-245.

 [7d] inserting, retrieving
or deleting one of the
records from the system
following the step of
removing.

vfs_cache.c discloses inserting, retrieving or deleting one of the records
from the system following the step of removing.

For example, function cache_enter() inserts a new entry into the
nchashtbl structure after the expired element is removed. See lines 236-45.

EXHIBIT D-3

Joint Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

US2008 1661494.1

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination
4. The method according to
claim 3 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

vfs_cache.c discloses dynamically determining maximum number of
expired ones of the records to remove when the linked list is accessed.

For example, the function cache_enter() only removes an expired
element when the arptab structure is full. In this way, the function
dynamically determines the maximum number of elements to remove. See
lines 193-245.

To the extent vfs_cache.c does not disclose this element, it would have
been obvious to one of ordinary skill in the art.

vfs_cache.c combined with Dirks, Thatte, the ’663 patent, and/or the
Opportunistic Garbage Collection Articles discloses dynamically determining
maximum number of expired ones of the records to remove when the linked
list is accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine

EXHIBIT D-3

Joint Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

US2008 1661494.1

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

EXHIBIT D-3

Joint Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

US2008 1661494.1

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both vfs_cache.c and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as vfs_cache.c. Moreover, one of ordinary skill in the
art would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will

EXHIBIT D-3

Joint Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

US2008 1661494.1

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with vfs_cache.c nothing more
than the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with vfs_cache.c and would
have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in vfs_cache.c with the
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records disclosed by Thatte. For
example, Thatte discloses a system and method using hash tables and/or linked
lists and further discloses means for dynamically determining the maximum
number for the record search means to remove in the accessed linked list of
records. The disclosure of these claim elements in Thatte is clearly shown in
the chart of Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same

EXHIBIT D-3

Joint Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

US2008 1661494.1

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination
way. Additionally, Ass both vfs_cache.c and Thatte teach a system of data
storage and retrieval, one of ordinary skill in the art would recognize that the
result of combining vfs_cache.c with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove as taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine
vfs_cache.c with Thatte and recognize the benefits of doing so. For example,
the removal of expired records described in vfs_cache.c can be burdensome on
the system, adding to the system’s load and slowing down the system’s
processing. One of ordinary skill in the art would recognize that combining
vfs_cache.c with the teachings of Thatte would solve this problem by
dynamically determining how many records to delete based on, among other
things, the system load. Moreover, the '120 patent discloses that "[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one." '120 at
7:10-15. Thus, the '120 patent provides motivations to combine vfs_cache.c
with Thatte.

Alternatively, it would also be obvious to combine vfs_cache.c with the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

EXHIBIT D-3

Joint Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

US2008 1661494.1

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination
during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT D-3

Joint Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

US2008 1661494.1

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a

EXHIBIT D-3

Joint Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

US2008 1661494.1

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both vfs_cache.c and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in vfs_cache.c. Moreover, one of ordinary skill in the
art would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with vfs_cache.c
would be nothing more than the predictable use of prior art elements according

EXHIBIT D-3

Joint Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

US2008 1661494.1

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination
to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with vfs_cache.c and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine vfs_cache.c with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

EXHIBIT D-3

Joint Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

US2008 1661494.1

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both vfs_cache.c and the Opportunistic Garbage Collection Articles relate
to deletion of aged records, one of ordinary skill in the art would have
understood how to use the Opportunistic Garbage Collection Articles’ dynamic
decision on whether to perform a deletion based on a system load in other hash
table implementations such as vfs_cache.c. Moreover, one of ordinary skill in

EXHIBIT D-3

Joint Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

US2008 1661494.1

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination
the art would recognize that it would improve similar systems and methods in
the same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with vfs_cache.c would be nothing more than the predictable use of
prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with vfs_cache.c and
would have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in vfs_cache.c to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in vfs_cache.c with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed

EXHIBIT D-3

Joint Invalidity Contentions & Production of
Documents

35 Case No. 6:09-CV-549-LED

US2008 1661494.1

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in vfs_cache.c can be burdensome on
the system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by vfs_cache.c in combination with Dirks, Thatte, the
‘663 Patent, or the Opportunistic Garbage Collection References, it is
disclosed by Linux 2.0.1, which describes dynamically determining maximum
number of expired ones of the records to remove when the linked list is
accessed. It would have been obvious to combine Linux 2.0.1
with vfs_cache.c . For example, both Linux 2.0.1 and vfs_cache.c describe
systems and methods for performing data storage and retrieval using known
programming techniques to yield a predictable result.

When invoked, the function rt_cache_add automatically increments an

EXHIBIT D-3

Joint Invalidity Contentions & Production of
Documents

36 Case No. 6:09-CV-549-LED

US2008 1661494.1

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold

EXHIBIT D-3

Joint Invalidity Contentions & Production of
Documents

37 Case No. 6:09-CV-549-LED

US2008 1661494.1

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold

EXHIBIT D-3

Joint Invalidity Contentions & Production of
Documents

38 Case No. 6:09-CV-549-LED

US2008 1661494.1

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,

EXHIBIT D-3

Joint Invalidity Contentions & Production of
Documents

39 Case No. 6:09-CV-549-LED

US2008 1661494.1

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

EXHIBIT D-4

Joint Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, arp.c discloses an information
storage and retrieval system.

For example, in arp.c, discloses a hash table of linked lists of automatically
expiring data. See, arp.c from FreeBSD (1994) (hereinafter “arp.c”) at Lines
360-448.

In arp.c, the “entry” data structure is a linked list *pentry = entry->next; /*
delete from linked list */
See arp.c at line 416.

See also, arp.c at Lines 360-448. See also, arp.c from Linux 1.1.20 (1994).

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

arp.c discloses a linked list to store and provide access to records stored in a
memory of the system, at least some of the records automatically expiring.
arp.c also discloses a hashing means to provide access to records stored in a
memory of the system and using an external chaining technique to store the
records with same hash address, at least some of the records automatically
expiring.

For example, in arp.c, the “entry” data structure is a linked list *pentry =
entry->next; /* delete from linked list */
See, e.g., arp.c at line 416.

arp.c includes a function that uses a hash to determine which linked to

traverse:
hash = HASH(entry >ip);
pentry = &arp_tables[hash];
while (_pentry != NULL){

EXHIBIT D-4

Joint Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

if (_pentry == entry){
entry = entry >next; / delete from linked list */
del_timer(&entry >timer);
restore_flags(flags);
arp_release_entry(entry);
return;
420 }
pentry = &(_pentry) >next;
}

See, e.g., arp.c at Lines 195-210.

If the entry is not resolved within a specific amount of time, the entry (which is
a linked list element) is automatically freed (expired).

/*
 * This function is called, if an entry is not
resolved in ARP_RES_TIME.
 * Either resend a request, or give it up and
free the entry.
 */
See, arp.c at lines 361-362.

See also, arp.c at Lines 360-448. See also, arp.c from Linux 1.1.20 (1994).

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of
records having the same
hash address,

arp.c discloses a record search means utilizing a search key to access the linked
list. arp.c also discloses a record search means utilizing a search key to access
a linked list of records having the same hash address.

For example, arp.c includes a function that uses a hash to determine which

linked to traverse:

EXHIBIT D-4

Joint Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

hash = HASH(entry >ip);
pentry = &arp_tables[hash];
while (_pentry != NULL){
if (_pentry == entry){
entry = entry >next; / delete from linked list */
del_timer(&entry >timer);
restore_flags(flags);
arp_release_entry(entry);
return;
420 }
pentry = &(_pentry) >next;
}

See, e.g., arp.c at Lines 195-210.

See also, arp.c at Lines 360-448. See also, arp.c from Linux 1.1.20 (1994).
[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the
records from the linked list
when the linked list is
accessed, and

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

arp.c discloses the record search means including a means for identifying and
removing at least some of the expired ones of the records from the linked list
when the linked list is accessed. arp.c also discloses the record search means
including means for identifying and removing at least some expired ones of the
records from the linked list of records when the linked list is accessed

For example, arp.c deletes an entry that meets specified criteria:

while (*pentry != NULL)
 {
 if (*pentry == entry)
 {
 pentry = entry->next; /
delete from linked list */

EXHIBIT D-4

Joint Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

 del_timer(&entry->timer);
 restore_flags(flags);
 arp_release_entry(entry);
 arp_cache_stamp++;
 return;
 }
 pentry = &(*pentry)->next;

 }
See, e.g., arp.c at Lines 195-210.

See also, arp.c at Lines 360-448. See also, arp.c from Linux 1.1.20 (1994).
[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

arp.c discloses means, utilizing the record search means, for accessing the
linked list and, at the same time, removing at least some of the expired ones of
the records in the linked list. arp.c also discloses utilizing the record search
means, for inserting, retrieving, and deleting records from the system and, at
the same time, removing at least some expired ones of the records in the
accessed linked list of records.

For example, arp.c includes a function that uses a hash to determine which
linked to traverse:
hash = HASH(entry >ip);
pentry = &arp_tables[hash];
while (_pentry != NULL){
if (_pentry == entry){
entry = entry >next; / delete from linked list */
del_timer(&entry >timer);
restore_flags(flags);
arp_release_entry(entry);
return;
420 }

EXHIBIT D-4

Joint Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

pentry = &(_pentry) >next;
}

See, e.g., arp.c at Lines 195-210.

arp.c also includes a function that deletes an entry that meets specified

criteria:

while (*pentry != NULL)
 {
 if (*pentry == entry)
 {
 pentry = entry->next; /
delete from linked list */
 del_timer(&entry->timer);
 restore_flags(flags);
 arp_release_entry(entry);
 arp_cache_stamp++;
 return;
 }
 pentry = &(*pentry)->next;

 }
See, e.g., arp.c at Lines 195-210.

Any code that calls this function would meet this limitation because it is
“utilizing the record search mean . . .”i.e., this function.

See also, arp.c at Lines 360-448. See also, arp.c from Linux 1.1.20 (1994).

EXHIBIT D-4

Joint Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

To the extent that arp.c does not disclose this limitation, gcache.c from Xinu
Operating System for Sparc (1991) (hereinafter “gcache.c”) and Douglas
Comer and Shawn Ostermann, GCache: A Generalized Caching Mechanism,
Purdue University (Revised March 1992) (hereinafter “Comer”) (collectively
hereinafter “GCache”) discloses means, utilizing the record search means, for
accessing the linked list and, at the same time, removing at least some of the
expired ones of the records in the linked list, and also discloses utilizing the
record search means, for inserting, retrieving, and deleting records from the
system and, at the same time, removing at least some expired ones of the
records in the accessed linked list of records.
One of ordinary skill in the art would be motivated to, and would understand
how to, combine the system disclosed in arp.c with the a hashing means to
provide access to records stored in a memory of the system and using an
external chaining technique to store the records with same hash address, at
least some of the records automatically expiring disclosed by GCache. See,
e.g., Comer at 3-10. For example, since arp.c utilizes a linked list for storing
records and GCache discloses a system that attaches or chains linked lists to a
hash table for storing records, one of ordinary skill in the art would be
motivated to combine the linked list of arp.c with the system including a hash
table using external chaining of linked lists disclosed by GCache. The
disclosure of these claim elements in GCache is clearly shown in the chart of
GCache, which is hereby incorporated by reference in its entirety.
Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining arp.c with GCache would be nothing more than the
predictable use of prior art elements according to their established functions.

For example, Comer discloses means for inserting, retrieving, and deleting

EXHIBIT D-4

Joint Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

records:

“Cainsert() inserts a new mapping, key => res, into the cache.” See Comer at
4.

See also, gcache.c at lines 246-304, defining cainsert().

“Calookup() searches for a cached entry matching the key passed as an
argument.” See Comer at 4.

See also, gcache.c at lines 312-347 and 643-678, defining calookup() and
cagetindex().

“Caremove() removes the cached entry whose key is given, if one exists.” See
Comer at 4.

See also, gcache.c at lines 355-376, defining caremove().

Each of the means for inserting, retrieving, and deleting, utilizes a record
search means, the function cagetindex(), which removes an expired record
from the list as described below. The individual calls of cagetindex() are listed
here:

In cainsert():
275 if ((ixnew = cagetindex(pcb,pkey,keylen,hash)) !=
NULL_IX) {

In calookup():
333 if ((ix = cagetindex(pcb,pkey,keylen,hash)) !=
NULL_IX) {

EXHIBIT D-4

Joint Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

In caremove():
370 if ((ix = cagetindex(pcb,pkey,keylen,hash)) !=
NULL_IX) {

“In a simpler and cleaner design chosen for GCache, each cached entry
contains a timestamp encoding the insertion time. If a lookup matches an entry
with an expired timestamp, that entry is removed rather than being returned.”
See Comer at 10.

At lines 655-670 of gcache.c, cagetindex() executes a while loop to traverse a
linked list attached to a bucket of the hash table, accessing records stored
therein. In the subset of that code listed below, cagetindex() utilizes caisold()
to identify if a matching record is expired and removes the expired record from
the linked list using caunlink():

666 if (caisold(pcb,pce)) {
667 ++pcb->cb_tos;
668 caunlink(pcb,ix);
669 return(NULL_IX);
670 } else {

2. The information storage
and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to

6. The information storage
and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to

arp.c combined with Dirks, Thatte, the ’663 patent and/or the Opportunistic
Garbage Collection Articles discloses an information storage and retrieval
system further including means for dynamically determining maximum
number for the record search means to remove in the accessed linked list of
records.

Dirks discloses the management of memory in a computer system and more

EXHIBIT D-4

Joint Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

remove in the accessed
linked list of records.

remove in the accessed
linked list of records.

particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The

EXHIBIT D-4

Joint Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both arp.c and Dirks relate to deletion of aged records upon the allocation
of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as arp.c. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the

EXHIBIT D-4

Joint Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with arp.c nothing more than the
predictable use of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with arp.c and would have
seen the benefits of doing so. One possible benefit, for example, is saving the
system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in arp.c with the means for
dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. For example,
Thatte discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, Ass both arp.c and Thatte teach a system of data storage
and retrieval, one of ordinary skill in the art would recognize that the result of

EXHIBIT D-4

Joint Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

combining arp.c with Thatte would be nothing more than the predictable use of
prior art elements according to their established functions. The resulting
combination would include the capability to determine the maximum number
for the record search means to remove as taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine arp.c
with Thatte and recognize the benefits of doing so. For example, the removal
of expired records described in arp.c can be burdensome on the system, adding
to the system’s load and slowing down the system’s processing. One of
ordinary skill in the art would recognize that combining arp.c with the
teachings of Thatte would solve this problem by dynamically determining how
many records to delete based on, among other things, the system load.
Moreover, the '120 patent discloses that "[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120
patent provides motivations to combine arp.c with Thatte.

Alternatively, it would also be obvious to combine arp.c with the ’663 patent.
Disclosure of these claim elements in the ’663 patent is clearly shown in the
chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record

EXHIBIT D-4

Joint Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT D-4

Joint Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-

EXHIBIT D-4

Joint Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both arp.c and the ’663 patent relate to deletion of records from hash tables
using external chaining, one of ordinary skill in the art would understood how
to use the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load in other hash table implementations such as that
described in arp.c. Moreover, one of ordinary skill in the art would recognize
that it would improve similar systems and methods in the same way. As the
’120 patent states “[a] person skilled in the art will appreciate that the
technique of removing all expired records while searching the linked list can
be expanded to include techniques whereby not necessarily all expired records
are removed, and that the decision regarding if and how many records to delete
can be a dynamic one.” The ’120 patent at 7:10-15. Additionally, one of
ordinary skill in the art would recognize that the result of combining the ’663
patent’s deletion decision procedure with arp.c would be nothing more than the
predictable use of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with arp.c and would
have seen the benefits of doing so. One such benefit, for example, is that the

EXHIBIT D-4

Joint Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

system would avoid performing deletions when the system load exceeded a
threshold.

Alternatively, it would also be obvious to combine arp.c with the Opportunistic
Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume

EXHIBIT D-4

Joint Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both arp.c and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as arp.c. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with arp.c would be nothing more than the predictable use of prior
art elements according to their established functions.

EXHIBIT D-4

Joint Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with arp.c and would
have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in arp.c to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in arp.c
with the fundamental concept of dynamically determining the maximum
number of expired records to remove in an accessed linked list of records to
solve a number of potential problems. For example, the removal of expired
records described in arp.c can be burdensome on the system, adding to the
system’s load and slowing down the system’s processing. Moreover, the
removal could also force an interruption in real-time processing as the
processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching

EXHIBIT D-4

Joint Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

See e.g., arp.c at Lines 360-448. See also, arp.c from Linux 1.1.20 (1994).

To the extent that dynamically determining a maximum number of expired
records is not disclosed by arp.c in combination with Dirks, Thatte, the ‘663
Patent, or the Opportunistic Garbage Collection References, it is disclosed by
Linux 2.0.1, which describes dynamically determining maximum number of
expired ones of the records to remove when the linked list is accessed. It
would have been obvious to combine Linux 2.0.1 with arp.c. For example,
both Linux 2.0.1 and arp.c describe systems and methods for performing data
storage and retrieval using known programming techniques to yield a
predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at

EXHIBIT D-4

Joint Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last

EXHIBIT D-4

Joint Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT

EXHIBIT D-4

Joint Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

To the extent the preamble is a limitation, arp.c discloses a method for storing
and retrieving information records using a linked list to store and provide
access to the records, at least some of the records automatically expiring. arp.c
also discloses a method for storing and retrieving information records using a
hashing technique to provide access to the records and using an external
chaining technique to store the records with same hash address, at least some
of the records automatically expiring.

For example, in arp.c, the “entry” data structure is a linked list *pentry =
entry->next; /* delete from linked list */
See, e.g., arp.c at line 416.

EXHIBIT D-4

Joint Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

arp.c includes a function that uses a hash to determine which linked to traverse:
hash = HASH(entry >ip);
pentry = &arp_tables[hash];
while (_pentry != NULL){
if (_pentry == entry){
entry = entry >next; / delete from linked list */
del_timer(&entry >timer);
restore_flags(flags);
arp_release_entry(entry);
return;
420 }
pentry = &(_pentry) >next;
}

If the entry is not resolved within a specific amount of time, the entry (which is
a linked list element) is automatically freed (expired).

/*
 * This function is called, if an entry is not
resolved in ARP_RES_TIME.
 * Either resend a request, or give it up and
free the entry.
 */
See, e.g., arp.c at lines 361-362.

See also, arp.c at Lines 360-448. See also, arp.c from Linux 1.1.20 (1994).

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

arp.c discloses accessing a linked list of records. arp.c also discloses accessing
a linked list of records having same hash address.

EXHIBIT D-4

Joint Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

In arp.c, the “entry” data structure is a linked list *pentry = entry->next; /*
delete from linked list */
See arp.c at line 416.

See also, arp.c at Lines 360-448. See also, arp.c at Lines 360-448. See also,
arp.c from Linux 1.1.20 (1994).

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

arp.c discloses identifying at least some of the automatically expired ones of
the records.

For example, arp.c includes a function that uses a hash to determine which
linked to traverse:
hash = HASH(entry >ip);
pentry = &arp_tables[hash];
while (_pentry != NULL){
if (_pentry == entry){
entry = entry >next; / delete from linked list */
del_timer(&entry >timer);
restore_flags(flags);
arp_release_entry(entry);
return;
420 }
pentry = &(_pentry) >next;
}

See, e.g., arp.c at Lines 195-210.

See also, arp.c at Lines 360-448. See also, arp.c at Lines 360-448. See also,
arp.c from Linux 1.1.20 (1994).

[3c] removing at least
some of the automatically

[7c] removing at least
some of the automatically

arp.c discloses removing at least some of the automatically expired records
from the linked list when the linked list is accessed.

EXHIBIT D-4

Joint Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

expired records from the
linked list when the linked
list is accessed.

expired records from the
linked list when the linked
list is accessed, and

For example, arp. deletes an entry that meets specified criteria:

while (*pentry != NULL)
 {
 if (*pentry == entry)
 {
 pentry = entry->next; /
delete from linked list */
 del_timer(&entry->timer);
 restore_flags(flags);
 arp_release_entry(entry);
 arp_cache_stamp++;
 return;
 }
 pentry = &(*pentry)->next;

 }
See, e.g., arp.c at Lines 195-210.

See also, arp.c at Lines 360-448. See also, arp.c from Linux 1.1.20 (1994).
 [7d] inserting, retrieving

or deleting one of the
records from the system
following the step of
removing.

arp.c discloses inserting, retrieving or deleting one of the records from the
system following the step of removing.

For example, arp.c deletes an entry that meets specified criteria after arp.c
traverses the linked list searching for the record of that criteria:

while (*pentry != NULL)
 {
 if (*pentry == entry)
 {

EXHIBIT D-4

Joint Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

 pentry = entry->next; /
delete from linked list */
 del_timer(&entry->timer);
 restore_flags(flags);
 arp_release_entry(entry);
 arp_cache_stamp++;
 return;
 }
 pentry = &(*pentry)->next;

 }
See, e.g., arp.c at Lines 195-210.

See also, arp.c at Lines 360-448. See also, arp.c from Linux 1.1.20 (1994).

4. The method according to
claim 3 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

arp.c combined with Dirks, Thatte, the ’663 patent, and/or the Opportunistic
Garbage Collection Articles discloses dynamically determining maximum
number of expired ones of the records to remove when the linked list is
accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs

EXHIBIT D-4

Joint Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-

EXHIBIT D-4

Joint Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both arp.c and Dirks relate to deletion of aged records upon the allocation
of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as arp.c. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with arp.c nothing more than the
predictable use of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have

EXHIBIT D-4

Joint Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with arp.c and would have
seen the benefits of doing so. One possible benefit, for example, is saving the
system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in arp.c with the means for
dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. For example,
Thatte discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, Ass both arp.c and Thatte teach a system of data storage
and retrieval, one of ordinary skill in the art would recognize that the result of
combining arp.c with Thatte would be nothing more than the predictable use of
prior art elements according to their established functions. The resulting
combination would include the capability to determine the maximum number
for the record search means to remove as taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine arp.c
with Thatte and recognize the benefits of doing so. For example, the removal
of expired records described in arp.c can be burdensome on the system, adding
to the system’s load and slowing down the system’s processing. One of
ordinary skill in the art would recognize that combining arp.c with the

EXHIBIT D-4

Joint Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

teachings of Thatte would solve this problem by dynamically determining how
many records to delete based on, among other things, the system load.
Moreover, the '120 patent discloses that "[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120
patent provides motivations to combine arp.c with Thatte.

Alternatively, it would also be obvious to combine arp.c with the ’663 patent.
Disclosure of these claim elements in the ’663 patent is clearly shown in the
chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

EXHIBIT D-4

Joint Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT D-4

Joint Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both arp.c and the ’663 patent relate to deletion of records from hash tables
using external chaining, one of ordinary skill in the art would understood how
to use the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load in other hash table implementations such as that
described in arp.c. Moreover, one of ordinary skill in the art would recognize
that it would improve similar systems and methods in the same way. As the
’120 patent states “[a] person skilled in the art will appreciate that the
technique of removing all expired records while searching the linked list can
be expanded to include techniques whereby not necessarily all expired records
are removed, and that the decision regarding if and how many records to delete

EXHIBIT D-4

Joint Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

can be a dynamic one.” The ’120 patent at 7:10-15. Additionally, one of
ordinary skill in the art would recognize that the result of combining the ’663
patent’s deletion decision procedure with arp.c would be nothing more than the
predictable use of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with arp.c and would
have seen the benefits of doing so. One such benefit, for example, is that the
system would avoid performing deletions when the system load exceeded a
threshold.

Alternatively, it would also be obvious to combine arp.c with the Opportunistic
Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage

EXHIBIT D-4

Joint Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both arp.c and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as arp.c. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the

EXHIBIT D-4

Joint Invalidity Contentions & Production of
Documents

35 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with arp.c would be nothing more than the predictable use of prior
art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with arp.c and would
have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in arp.c to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in arp.c
with the fundamental concept of dynamically determining the maximum
number of expired records to remove in an accessed linked list of records to
solve a number of potential problems. For example, the removal of expired
records described in arp.c can be burdensome on the system, adding to the
system’s load and slowing down the system’s processing. Moreover, the

EXHIBIT D-4

Joint Invalidity Contentions & Production of
Documents

36 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

removal could also force an interruption in real-time processing as the
processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

See e.g., arp.c at Lines 360-448. See also, arp.c from Linux 1.1.20 (1994).

To the extent that dynamically determining a maximum number of expired
records is not disclosed by arp.c in combination with Dirks, Thatte, the ‘663
Patent, or the Opportunistic Garbage Collection References, it is disclosed by
Linux 2.0.1, which describes dynamically determining maximum number of
expired ones of the records to remove when the linked list is accessed. It
would have been obvious to combine Linux 2.0.1 with arp.c. For example,
both Linux 2.0.1 and arp.c describe systems and methods for performing data
storage and retrieval using known programming techniques to yield a
predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux

EXHIBIT D-4

Joint Invalidity Contentions & Production of
Documents

37 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function

EXHIBIT D-4

Joint Invalidity Contentions & Production of
Documents

38 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

EXHIBIT D-4

Joint Invalidity Contentions & Production of
Documents

39 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

EXHIBIT D-5

Joint Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, wavelan_cs.c discloses an
information storage and retrieval system.

For example, an information storage and retrieval system disclosed by
wavelan_cs.c is a linked list:
 /* Remove the interface data from the linked list
*/
 if(dev_list == link)
 dev_list = link->next;

See, wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) at
Lines 4630-4635. See also, wavelan_cs.c from Linux 2.4.26.

See also, wavelan_cs.c at Lines 4596-4678. See also, wavelan_cs.c from
Linux 2.4.26.

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

wavelan_cs.c discloses a linked list to store and provide access to records
stored in a memory of the system, at least some of the records
automatically expiring. wavelan_cs.c also discloses a hashing means to
provide access to records stored in a memory of the system and using an
external chaining technique to store the records with same hash address, at
least some of the records automatically expiring.

For example, wavelan_cs.c includes a function that deletes an instance of a
driver from the linked list if the device is released. Thus, releasing the
device causes the device to automatically expire.

/*
 * This deletes a driver "instance". The device is

EXHIBIT D-5

Joint Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

de-registered with
 * Card Services. If it has been released, all
local data structures
 * are freed. Otherwise, the structures will be
freed when the device
 * is released.
 */
See, e.g., wavelan_cs.c at Lines 4595-4600.

The data structure is a linked list:
 /* Remove the interface data from the linked list
*/
 if(dev_list == link)
 dev_list = link->next;
See wavelan_cs.c at Lines 4630-4635.

See also, wavelan_cs.c at Lines 4596-4678. See also, wavelan_cs.c from
Linux 2.4.26.

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of
records having the same
hash address,

wavelan_cs.c discloses a record search means utilizing a search key to access
the linked list. wavelan_cs.c also discloses a record search means utilizing a
search key to access a linked list of records having the same hash address.

For example, wavelan_cs.c includes functionality to use a pointer to traverse a
linked list.
/* Remove the interface data from the linked list */
 if(dev_list == link)
 dev_list = link->next;
 else
 {
 dev_link_t * prev = dev_list;

EXHIBIT D-5

Joint Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

 while((prev != (dev_link_t *) NULL) && (prev-
>next != link))
 prev = prev->next;

 if(prev == (dev_link_t *) NULL)
 {
#ifdef DEBUG_CONFIG_ERRORS
 printk(KERN_WARNING "wavelan_detach :
Attempting to remove a nonexistent device.\n");
#endif
 return;
 }

 prev->next = link->next
See, e.g., wavelan_cs.c at Lines 4632-4644.

See also, wavelan_cs.c at Lines 4596-4678. See also, wavelan_cs.c from
Linux 2.4.26.

[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the
records from the linked list
when the linked list is
accessed, and

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

wavelan_cs.c discloses the record search means including a means for
identifying and removing at least some of the expired ones of the records from
the linked list when the linked list is accessed. wavelan_cs.c also discloses the
record search means including means for identifying and removing at least
some expired ones of the records from the linked list of records when the
linked list is accessed.

For example, wavelan_cs.c includes the functionality to remove expired
records from the linked list:
/* Remove the interface data from the linked list */
 if(dev_list == link)

EXHIBIT D-5

Joint Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

 dev_list = link->next;

See, e.g., wavelan_cs.c at Lines 4632-4644.

See also, wavelan_cs.c at Lines 4596-4678. See also, wavelan_cs.c from
Linux 2.4.26.

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

wavelan_cs.c discloses means, utilizing the record search means, for accessing
the linked list and, at the same time, removing at least some of the expired ones
of the records in the linked list. wavelan_cs.c also discloses utilizing the
record search means, for inserting, retrieving, and deleting records from the
system and, at the same time, removing at least some expired ones of the
records in the accessed linked list of records.

For example, wavelan_cs.c includes functionality to use a pointer to traverse a
linked list. Further, wavelan_cs.c will remove records from the linked list as it
traverses the linked list. Any code that calls this function would “utilize the
record search means.”

/* Remove the interface data from the linked list */
 if(dev_list == link)
 dev_list = link->next;
 else
 {
 dev_link_t * prev = dev_list;

 while((prev != (dev_link_t *) NULL) && (prev-
>next != link))
 prev = prev->next;

 if(prev == (dev_link_t *) NULL)

EXHIBIT D-5

Joint Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

 {
#ifdef DEBUG_CONFIG_ERRORS
 printk(KERN_WARNING "wavelan_detach :
Attempting to remove a nonexistent device.\n");
#endif
 return;
 }

 prev->next = link->next
See, e.g., wavelan_cs.c at Lines 4632-4644.

See, e.g., wavelan_cs.c at Lines 4596-4678.

To the extent that wavelan_cs.c does not disclose this limitation, gcache.c from
Xinu Operating System for Sparc (1991) (hereinafter “gcache.c”) and Douglas
Comer and Shawn Ostermann, GCache: A Generalized Caching Mechanism,
Purdue University (Revised March 1992) (hereinafter “Comer”) (collectively
hereinafter “GCache”) discloses means, utilizing the record search means, for
accessing the linked list and, at the same time, removing at least some of the
expired ones of the records in the linked list, and also discloses utilizing the
record search means, for inserting, retrieving, and deleting records from the
system and, at the same time, removing at least some expired ones of the
records in the accessed linked list of records.
One of ordinary skill in the art would be motivated to, and would understand
how to, combine the system disclosed in wavelan_cs.c with the a hashing
means to provide access to records stored in a memory of the system and using
an external chaining technique to store the records with same hash address, at
least some of the records automatically expiring disclosed by GCache. See,
e.g., Comer at 3-10. For example, since wavelan_cs.c utilizes a linked list for

EXHIBIT D-5

Joint Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

storing records and GCache discloses a system that attaches or chains linked
lists to a hash table for storing records, one of ordinary skill in the art would be
motivated to combine the linked list of wavelan_cs.c with the system including
a hash table using external chaining of linked lists disclosed by GCache. The
disclosure of these claim elements in GCache is clearly shown in the chart of
GCache, which is hereby incorporated by reference in its entirety.
Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining wavelan_cs.c with GCache would be nothing more than
the predictable use of prior art elements according to their established
functions.

For example, Comer discloses means for inserting, retrieving, and deleting
records:

“Cainsert() inserts a new mapping, key => res, into the cache.” See Comer at
4.

See also, gcache.c at lines 246-304, defining cainsert().

“Calookup() searches for a cached entry matching the key passed as an
argument.” See Comer at 4.

See also, gcache.c at lines 312-347 and 643-678, defining calookup() and
cagetindex().

“Caremove() removes the cached entry whose key is given, if one exists.” See
Comer at 4.

EXHIBIT D-5

Joint Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

See also, gcache.c at lines 355-376, defining caremove().

Each of the means for inserting, retrieving, and deleting, utilizes a record
search means, the function cagetindex(), which removes an expired record
from the list as described below. The individual calls of cagetindex() are listed
here:

In cainsert():
275 if ((ixnew = cagetindex(pcb,pkey,keylen,hash)) !=
NULL_IX) {

In calookup():
333 if ((ix = cagetindex(pcb,pkey,keylen,hash)) !=
NULL_IX) {

In caremove():
370 if ((ix = cagetindex(pcb,pkey,keylen,hash)) !=
NULL_IX) {

“In a simpler and cleaner design chosen for GCache, each cached entry
contains a timestamp encoding the insertion time. If a lookup matches an entry
with an expired timestamp, that entry is removed rather than being returned.”
See Comer at 10.

At lines 655-670 of gcache.c, cagetindex() executes a while loop to traverse a
linked list attached to a bucket of the hash table, accessing records stored
therein. In the subset of that code listed below, cagetindex() utilizes caisold()
to identify if a matching record is expired and removes the expired record from
the linked list using caunlink():

EXHIBIT D-5

Joint Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

666 if (caisold(pcb,pce)) {
667 ++pcb->cb_tos;
668 caunlink(pcb,ix);
669 return(NULL_IX);
670 } else {

2. The information storage
and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

6. The information storage
and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

wavelan_cs.c combined with Dirks, Thatte, the ’663 patent and/or the
Opportunistic Garbage Collection Articles discloses an information storage
and retrieval system further including means for dynamically determining
maximum number for the record search means to remove in the accessed
linked list of records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list

EXHIBIT D-5

Joint Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion

EXHIBIT D-5

Joint Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both wavelan_cs.c and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as wavelan_cs.c. Moreover, one of ordinary skill in the
art would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with wavelan_cs.c nothing more
than the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with wavelan_cs.c and
would have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.`

EXHIBIT D-5

Joint Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in wavelan_cs.c with the
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records disclosed by Thatte. For
example, Thatte discloses a system and method using hash tables and/or linked
lists and further discloses means for dynamically determining the maximum
number for the record search means to remove in the accessed linked list of
records. The disclosure of these claim elements in Thatte is clearly shown in
the chart of Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, Ass both wavelan_cs.c and Thatte teach a system of data
storage and retrieval, one of ordinary skill in the art would recognize that the
result of combining wavelan_cs.c with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove as taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine
wavelan_cs.c with Thatte and recognize the benefits of doing so. For example,
the removal of expired records described in wavelan_cs.c can be burdensome
on the system, adding to the system’s load and slowing down the system’s
processing. One of ordinary skill in the art would recognize that combining
wavelan_cs.c with the teachings of Thatte would solve this problem by
dynamically determining how many records to delete based on, among other
things, the system load. Moreover, the '120 patent discloses that "[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques

EXHIBIT D-5

Joint Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one." '120 at
7:10-15. Thus, the '120 patent provides motivations to combine wavelan_cs.c
with Thatte.

Alternatively, it would also be obvious to combine wavelan_cs.c with the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.

EXHIBIT D-5

Joint Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,

EXHIBIT D-5

Joint Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both wavelan_cs.c and the ’663 patent relate to deletion of records from
hash tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in wavelan_cs.c. Moreover, one of ordinary skill in the
art would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with wavelan_cs.c
would be nothing more than the predictable use of prior art elements according
to their established functions.

EXHIBIT D-5

Joint Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with wavelan_cs.c
and would have seen the benefits of doing so. One such benefit, for example,
is that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine wavelan_cs.c with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more

EXHIBIT D-5

Joint Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both wavelan_cs.c and the Opportunistic Garbage Collection Articles relate
to deletion of aged records, one of ordinary skill in the art would have
understood how to use the Opportunistic Garbage Collection Articles’ dynamic
decision on whether to perform a deletion based on a system load in other hash
table implementations such as wavelan_cs.c. Moreover, one of ordinary skill
in the art would recognize that it would improve similar systems and methods
in the same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how

EXHIBIT D-5

Joint Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with wavelan_cs.c would be nothing more than the predictable use
of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with wavelan_cs.c and
would have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in wavelan_cs.c to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in wavelan_cs.c with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in wavelan_cs.c can be burdensome
on the system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically

EXHIBIT D-5

Joint Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by wavelan_cs.c in combination with Dirks, Thatte, the
‘663 Patent, or the Opportunistic Garbage Collection References, it is
disclosed by Linux 2.0.1, which describes dynamically determining maximum
number of expired ones of the records to remove when the linked list is
accessed. It would have been obvious to combine Linux 2.0.1
with wavelan_cs.c. For example, both Linux 2.0.1 and wavelan_cs.c describe
systems and methods for performing data storage and retrieval using known
programming techniques to yield a predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

EXHIBIT D-5

Joint Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each

EXHIBIT D-5

Joint Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

EXHIBIT D-5

Joint Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the

To the extent the preamble is a limitation, wavelan_cs.c discloses a method for
storing and retrieving information records using a linked list to store and
provide access to the records, at least some of the records automatically
expiring. wavelan_cs.c also discloses a method for storing and retrieving
information records using a hashing technique to provide access to the records
and using an external chaining technique to store the records with same hash
address, at least some of the records automatically expiring.

For example, wavelan_cs.c includes a function that deletes an instance of a
driver from the linked list if the device is released. Thus, releasing the

EXHIBIT D-5

Joint Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

method comprising the
steps of:

device causes the record to automatically expire.

/*
 * This deletes a driver "instance". The device is
de-registered with
 * Card Services. If it has been released, all
local data structures
 * are freed. Otherwise, the structures will be
freed when the device
 * is released.
 */
See, e.g., wavelan_cs.c at Lines 4595-4600.

The data structure is a linked list:
 /* Remove the interface data from the linked list
*/
 if(dev_list == link)
 dev_list = link->next;
See, e.g., wavelan_cs.c at Lines 4630-4635.

See also, wavelan_cs.c at Lines 4596-4678. See also, wavelan_cs.c from
Linux 2.4.26.

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

wavelan_cs.c discloses accessing a linked list of records. wavelan_cs.c also
discloses accessing a linked list of records having same hash address.

For example, wavelan_cs.c includes functionality to use a pointer to traverse a
linked list.
/* Remove the interface data from the linked list */
 if(dev_list == link)
 dev_list = link->next;

EXHIBIT D-5

Joint Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

 else
 {
 dev_link_t * prev = dev_list;

 while((prev != (dev_link_t *) NULL) && (prev-
>next != link))
 prev = prev->next;

 if(prev == (dev_link_t *) NULL)
 {
#ifdef DEBUG_CONFIG_ERRORS
 printk(KERN_WARNING "wavelan_detach :
Attempting to remove a nonexistent device.\n");
#endif
 return;
 }

 prev->next = link->next
See, e.g., wavelan_cs.c at Lines 4632-4644.

See also, wavelan_cs.c at Lines 4596-4678. See also, wavelan_cs.c from
Linux 2.4.26.

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

wavelan_cs.c discloses identifying at least some of the automatically expired
ones of the records.

For example, wavelan_cs.c includes functionality to use a pointer to traverse a
linked list.
/* Remove the interface data from the linked list */
 if(dev_list == link)

EXHIBIT D-5

Joint Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

 dev_list = link->next;
 else
 {
 dev_link_t * prev = dev_list;

 while((prev != (dev_link_t *) NULL) && (prev-
>next != link))
 prev = prev->next;

 if(prev == (dev_link_t *) NULL)
 {
#ifdef DEBUG_CONFIG_ERRORS
 printk(KERN_WARNING "wavelan_detach :
Attempting to remove a nonexistent device.\n");
#endif
 return;
 }

 prev->next = link->next
See, e.g., wavelan_cs.c at Lines 4632-4644.

For example, wavelan_cs.c includes a function that deletes an instance of a
driver from the linked list if the device is released. Thus, releasing the
device causes the record to automatically expire.

/*
 * This deletes a driver "instance". The device is
de-registered with
 * Card Services. If it has been released, all
local data structures

EXHIBIT D-5

Joint Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

 * are freed. Otherwise, the structures will be
freed when the device
 * is released.
 */
See, e.g., wavelan_cs.c at Lines 4595-4600.

See also, wavelan_cs.c at Lines 4596-4678. See also, wavelan_cs.c from
Linux 2.4.26.

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

wavelan_cs.c discloses removing at least some of the automatically expired
records from the linked list when the linked list is accessed.

For example, wavelan_cs.c includes functionality to use a pointer to traverse a
linked list. Further, wavelan_cs.c will remove records from the linked list as it
traverses the linked list.

/* Remove the interface data from the linked list */
 if(dev_list == link)
 dev_list = link->next;
 else
 {
 dev_link_t * prev = dev_list;

 while((prev != (dev_link_t *) NULL) && (prev-
>next != link))
 prev = prev->next;

 if(prev == (dev_link_t *) NULL)
 {
#ifdef DEBUG_CONFIG_ERRORS
 printk(KERN_WARNING "wavelan_detach :

EXHIBIT D-5

Joint Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

Attempting to remove a nonexistent device.\n");
#endif
 return;
 }

 prev->next = link->next
See, e.g., wavelan_cs.c at Lines 4632-4644.

See also, wavelan_cs.c at Lines 4596-4678. See also, wavelan_cs.c from
Linux 2.4.26.

 [7d] inserting, retrieving
or deleting one of the
records from the system
following the step of
removing.

wavelan_cs.c discloses inserting, retrieving or deleting one of the records from
the system following the step of removing.

For example, wavelan_cs.c includes functionality to use a pointer to traverse a
linked list. Further, wavelan_cs.c will remove records from the linked list as it
traverses the linked list. The deletion will occur after wavelan_cs.c traverses
through the element.

/* Remove the interface data from the linked list */
 if(dev_list == link)
 dev_list = link->next;
 else
 {
 dev_link_t * prev = dev_list;

 while((prev != (dev_link_t *) NULL) && (prev-
>next != link))
 prev = prev->next;

 if(prev == (dev_link_t *) NULL)

EXHIBIT D-5

Joint Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

 {
#ifdef DEBUG_CONFIG_ERRORS
 printk(KERN_WARNING "wavelan_detach :
Attempting to remove a nonexistent device.\n");
#endif
 return;
 }

 prev->next = link->next
See, e.g., wavelan_cs.c at Lines 4632-4644.

See also, wavelan_cs.c at Lines 4596-4678. See also, wavelan_cs.c from
Linux 2.4.26

4. The method according to
claim 3 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

wavelan_cs.c combined with Dirks, Thatte, the ’663 patent, and/or the
Opportunistic Garbage Collection Articles discloses dynamically determining
maximum number of expired ones of the records to remove when the linked
list is accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is

EXHIBIT D-5

Joint Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

EXHIBIT D-5

Joint Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both wavelan_cs.c and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as wavelan_cs.c. Moreover, one of ordinary skill in the
art would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with wavelan_cs.c nothing more
than the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have

EXHIBIT D-5

Joint Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with wavelan_cs.c and
would have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in wavelan_cs.c with the
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records disclosed by Thatte. For
example, Thatte discloses a system and method using hash tables and/or linked
lists and further discloses means for dynamically determining the maximum
number for the record search means to remove in the accessed linked list of
records. The disclosure of these claim elements in Thatte is clearly shown in
the chart of Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, Ass both wavelan_cs.c and Thatte teach a system of data
storage and retrieval, one of ordinary skill in the art would recognize that the
result of combining wavelan_cs.c with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove as taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine
wavelan_cs.c with Thatte and recognize the benefits of doing so. For example,
the removal of expired records described in wavelan_cs.c can be burdensome
on the system, adding to the system’s load and slowing down the system’s
processing. One of ordinary skill in the art would recognize that combining

EXHIBIT D-5

Joint Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

wavelan_cs.c with the teachings of Thatte would solve this problem by
dynamically determining how many records to delete based on, among other
things, the system load. Moreover, the '120 patent discloses that "[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one." '120 at
7:10-15. Thus, the '120 patent provides motivations to combine wavelan_cs.c
with Thatte.

Alternatively, it would also be obvious to combine wavelan_cs.c with the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by

EXHIBIT D-5

Joint Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT D-5

Joint Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-

EXHIBIT D-5

Joint Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both wavelan_cs.c and the ’663 patent relate to deletion of records from
hash tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in wavelan_cs.c. Moreover, one of ordinary skill in the
art would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with wavelan_cs.c
would be nothing more than the predictable use of prior art elements according
to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with wavelan_cs.c

EXHIBIT D-5

Joint Invalidity Contentions & Production of
Documents

35 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

and would have seen the benefits of doing so. One such benefit, for example,
is that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine wavelan_cs.c with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

EXHIBIT D-5

Joint Invalidity Contentions & Production of
Documents

36 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both wavelan_cs.c and the Opportunistic Garbage Collection Articles relate
to deletion of aged records, one of ordinary skill in the art would have
understood how to use the Opportunistic Garbage Collection Articles’ dynamic
decision on whether to perform a deletion based on a system load in other hash
table implementations such as wavelan_cs.c. Moreover, one of ordinary skill
in the art would recognize that it would improve similar systems and methods
in the same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with wavelan_cs.c would be nothing more than the predictable use

EXHIBIT D-5

Joint Invalidity Contentions & Production of
Documents

37 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with wavelan_cs.c and
would have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in wavelan_cs.c to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in wavelan_cs.c with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in wavelan_cs.c can be burdensome
on the system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will

EXHIBIT D-5

Joint Invalidity Contentions & Production of
Documents

38 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by wavelan_cs.c in combination with Dirks, Thatte, the
‘663 Patent, or the Opportunistic Garbage Collection References, it is
disclosed by Linux 2.0.1, which describes dynamically determining maximum
number of expired ones of the records to remove when the linked list is
accessed. It would have been obvious to combine Linux 2.0.1
with wavelan_cs.c. For example, both Linux 2.0.1 and wavelan_cs.c describe
systems and methods for performing data storage and retrieval using known
programming techniques to yield a predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1

EXHIBIT D-5

Joint Invalidity Contentions & Production of
Documents

39 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the

EXHIBIT D-5

Joint Invalidity Contentions & Production of
Documents

40 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux

EXHIBIT D-5

Joint Invalidity Contentions & Production of
Documents

41 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

EXHIBIT D-6

Joint Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

US2008 1661497.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, LISP discloses an information
storage and retrieval system.

For example,

“This paper should be useful to readers interested in data structures and their
applications in compiler construction, language design, and database
management.” Jacques Cohen, Garbage Collection of Linked Data Structures,
Computing Surveys, 341, 342 (hereinafter “Cohen”).

“This model consists of a memory, i.e. a one-dimensional array of words, each
of which is large enough to hold (at least) the representation of a nonnegative
integer which is an index into that array.” Henry G. Baker, List Processing in
Real Time on a Serial Computer, Communications of the ACM 21, 280,
second page, (April 1978) (hereinafter “Baker”).

“There are two fundamental kinds of data in LISP: list cells and atoms . . .
CAR(x) and CDR(x) return the car and cdr components of the list cell x,
respectively.” Baker at 2.

“If the method is used for the management of a large database residing on
secondary storage.” Baker at 6.

“We conceive of a huge database having millions of records, which may
contain pointers to other records, being managed by our algorithm.” Baker at
12.

[1a] a linked list to store [5a] a hashing means to LISP discloses a linked list to store and provide access to records stored in a

EXHIBIT D-6

Joint Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

US2008 1661497.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

memory of the system, at least some of the records automatically expiring.
LISP also discloses a hashing means to provide access to records stored in a
memory of the system and using an external chaining technique to store the
records with same hash address, at least some of the records automatically
expiring.

For example,

“Of the hundreds of thousands of computer languages which have been
invented, there is one particular family of languages whose common ancestor
was the original LISP, developed by McCarthy and others in the late 1950's.
[LISP History] These languages are generally characterized by a simple, fully
parenthesized ("Cambridge Polish") syntax; the ability to manipulate general,
linked-list data structures; a standard representation for programs of the
language in terms of these structures; and an interactive programming system
based on an interpreter for the standard representation. Examples of such
languages are LISP 1.5 [LISP 1.5M], MacLISP [Moon], InterLISP
[Teiteiman], CONNIVER UIcDermott and Sussman], QM [Rul1fson],
PLASNA [Smith and Hewitt] [Hewitt and Smith], and SCHUIE [SCHEME]
[Revised Report]. We will call this family the LISP-like languages.” Guy
Lewis Steele, Jr., The Art of the Interpreter or The Modularity Complex (Parts
Zero, One, and Two), Massachusetts Institute of Technology AI Memo No.
453 at 2 (May 1978). (Hereinafter “Steele”).
“A concise and unified view of the numerous existing algorithms for
performing garbage collection of linked data structures is presented.” Cohen
Abstract.

EXHIBIT D-6

Joint Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

US2008 1661497.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

“The primary list processing language in use today is LISP.” Baker at 2.

“We conceive of a huge database having millions of records, which may
contain pointers to other records, being managed by our algorithm.” Baker at
12.
”A cell becomes unused, or garbage, when it can no longer be accessed
through any pointer fields of any reachable cell.” Cohen at 342.

“the property list can be found by looking in a hash table, using the address of
the list cell as the key.” Baker at 10.

“Our copying scheme gives each semispace its own hash table, and when a cell
is copied over into to space, its property list pointer is entered in the "to" table
under the cell's new address. Then when the copied cell is encountered by the
"scan" pointer, its property list pointer is updated along with its normal
components.” Baker at 10.

There are two well-known approaches to solving the problem of collisions
within a hash table, which occur whenever two entries “hash” or are assigned
to the same “bucket” within the hash table. The computer programmer may
store the records external to the hash table—that is, using memory separate
from the memory allocated to the hash table—or he may store the records
internal to the hash table—that is, using memory that is allocated to other
buckets within the hash table. Using external memory is termed “external
chaining,” while using internal memory is termed “open addressing.” The
applicant has conceded that both forms of collision resolution are known to
those of ordinary skill in the art. See, e.g., ‘120 patent at 1:53-57 (describing

EXHIBIT D-6

Joint Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

US2008 1661497.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

linear probing—a type of open addressing—as being “often used” for
“collision resolution”); 1:58-2:6 (citing to several prior art resources that
describe external chaining as using linked lists). Double hashing is another
form of open addressing.

It would have been obvious to one skilled in the art to apply the teachings in
LISP to a hash table which resolves collisions using external chaining with
linked lists. The method of LISP is a method for processing and garbage
collecting on linked structures generally, which includes externally chained
records. Externally chained records would still need a method of memory
management, so it would be obvious to use LISP as a method of memory
management and list processing on externally chained records with the same
hash address.

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of
records having the same
hash address,

LISP discloses a record search means utilizing a search key to access the
linked list. LISP also discloses a record search means utilizing a search key to
access a linked list of records having the same hash address.

For example,

“This model consists of a memory, i.e. a one-dimensional array of words, each
of which is large enough to hold (at least) the representation of a nonnegative
integer which is an index into that array.” Baker at 2.

“the property list can be found by looking in a hash table, using the address of
the list cell as the key.” Baker at 10.

As discussed in [1a/5a], it would have been obvious to one of ordinary skill in

EXHIBIT D-6

Joint Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

US2008 1661497.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

the art to use LISP for list processing and memory management on externally
chained structures. As such, the search means utilizing the search key would
be accessing a linked list of records beginning at the same hash address.

[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the
records from the linked list
when the linked list is
accessed, and

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

LISP discloses the record search means including a means for identifying and
removing at least some of the expired ones of the records from the linked list
when the linked list is accessed. LISP also discloses the record search means
including means for identifying and removing at least some expired ones of the
records from the linked list of records when the linked list is accessed.

For example,

“For example, in LISP, the function cons also calls the garbage collector.”
Cohen at 342.

“Baker’s modification is such that each time a cell is requested (i.e., a cons is
requested), a fixed number of cells, k, are moved from one semispace to the
other.” Cohen at 355.

“The amount of storage and time used by a real-time list processing system can
be compared with that used by a classical list processing system using garbage
collection on tasks not requiring bounded response times.” Baker at 11.

As discussed in [1a/5a], it would have been obvious to one of ordinary skill in
the art to use LISP for list processing and memory management on externally
chained structures. In such a system, the probe that resulted from a collision
would occur on the linked list used to resolve the collision. As such, the
expired records from the linked list would be removed when the linked list is
accessed.

EXHIBIT D-6

Joint Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

US2008 1661497.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

LISP discloses means, utilizing the record search means, for accessing the
linked list and, at the same time, removing at least some of the expired ones of
the records in the linked list. LISP also discloses utilizing the record search
means, for inserting, retrieving, and deleting records from the system and, at
the same time, removing at least some expired ones of the records in the
accessed linked list of records.

For example,

“The moving of k cells during a cons corresponds to the tracing of that many
cells in classical garbage collection. By distributing some of the garbage
collection tasks during list processing, Baker’s method provides a guarantee
that actual garbage collection cannot last more than a fixed (tolerable) amount
of time.” Cohen at 355.

“A real-time list processing system is presented which continuously reclaims
garbage.” Baker Abstract.

“In order to convert MFYCA into a real-time algorithm, we force the mark
ratio m to be constant by changing CONS so that it does k iterations of garbage
collection before performing each allocation.” Baker at 4.

“There is another problem caused by interleaving garbage collection with
normal list processing.” Baker at 4.

“garbage collection in our real-time system is almost identical to that in the

EXHIBIT D-6

Joint Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

US2008 1661497.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

MFYCA system, except that it is done incrementally during calls to CONS. In
other words, the user program pays for the cost of cell’s reclamation at the time
the cell is created by tracing some other cell.” Baker at 11.

“We have exhibited a method for doing list-processing on a serial computer in
a real-time environment . . . Our real time scheme is strikingly similar to the
incremental garbage collector proposed independently by Barbacci.” Baker at
13.

As discussed in [1a/5a], it would have been obvious to one of ordinary skill in
the art to use LISP for list processing and memory management on externally
chained structures. In such a system, the probe that resulted from a collision
would occur on the linked list used to resolve the collision. As such, the
expired records from the linked list would be removed when the linked list is
accessed.

To the extent that LISP does not disclose this limitation, gcache.c from Xinu
Operating System for Sparc (1991) (hereinafter “gcache.c”) and Douglas
Comer and Shawn Ostermann, GCache: A Generalized Caching Mechanism,
Purdue University (Revised March 1992) (hereinafter “Comer”) (collectively
hereinafter “GCache”) discloses means, utilizing the record search means, for
accessing the linked list and, at the same time, removing at least some of the
expired ones of the records in the linked list, and also discloses utilizing the
record search means, for inserting, retrieving, and deleting records from the
system and, at the same time, removing at least some expired ones of the
records in the accessed linked list of records.
One of ordinary skill in the art would be motivated to, and would understand

EXHIBIT D-6

Joint Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

US2008 1661497.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

how to, combine the system disclosed in LISP with the a hashing means to
provide access to records stored in a memory of the system and using an
external chaining technique to store the records with same hash address, at
least some of the records automatically expiring disclosed by GCache. See,
e.g., Comer at 3-10. For example, since LISP utilizes a linked list for storing
records and GCache discloses a system that attaches or chains linked lists to a
hash table for storing records, one of ordinary skill in the art would be
motivated to combine the linked list of LISP with the system including a hash
table using external chaining of linked lists disclosed by GCache. The
disclosure of these claim elements in GCache is clearly shown in the chart of
GCache, which is hereby incorporated by reference in its entirety.
Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining LISP with GCache would be nothing more than the
predictable use of prior art elements according to their established functions.

For example, Comer discloses means for inserting, retrieving, and deleting
records:

“Cainsert() inserts a new mapping, key => res, into the cache.” See Comer at
4.

See also, gcache.c at lines 246-304, defining cainsert().

“Calookup() searches for a cached entry matching the key passed as an
argument.” See Comer at 4.

EXHIBIT D-6

Joint Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

US2008 1661497.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

See also, gcache.c at lines 312-347 and 643-678, defining calookup() and
cagetindex().

“Caremove() removes the cached entry whose key is given, if one exists.” See
Comer at 4.

See also, gcache.c at lines 355-376, defining caremove().

Each of the means for inserting, retrieving, and deleting, utilizes a record
search means, the function cagetindex(), which removes an expired record
from the list as described below. The individual calls of cagetindex() are listed
here:

In cainsert():
275 if ((ixnew = cagetindex(pcb,pkey,keylen,hash)) !=
NULL_IX) {

In calookup():
333 if ((ix = cagetindex(pcb,pkey,keylen,hash)) !=
NULL_IX) {

In caremove():
370 if ((ix = cagetindex(pcb,pkey,keylen,hash)) !=
NULL_IX) {

“In a simpler and cleaner design chosen for GCache, each cached entry
contains a timestamp encoding the insertion time. If a lookup matches an entry
with an expired timestamp, that entry is removed rather than being returned.”

EXHIBIT D-6

Joint Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

US2008 1661497.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

See Comer at 10.

At lines 655-670 of gcache.c, cagetindex() executes a while loop to traverse a
linked list attached to a bucket of the hash table, accessing records stored
therein. In the subset of that code listed below, cagetindex() utilizes caisold()
to identify if a matching record is expired and removes the expired record from
the linked list using caunlink():

666 if (caisold(pcb,pce)) {
667 ++pcb->cb_tos;
668 caunlink(pcb,ix);
669 return(NULL_IX);
670 } else {

2. The information storage
and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

6. The information storage
and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

LISP discloses an information storage and retrieval system further including
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records.

For example,

“Baker’s modification is such that each time a cell is requested (i.e., a cons is
requested), a fixed number of cells, k, are moved from one semispace to the
other.” Cohen at 355.

“With a little more effort, k can even be made variable in our method, thus
allowing the program to dynamically optimize its space-time tradeoff.” Baker
at 6.

EXHIBIT D-6

Joint Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

US2008 1661497.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

Lisp combined with Dirks, Thatte, the ’663 patent and/or the Opportunistic
Garbage Collection Articles discloses an information storage and retrieval
system further including means for dynamically determining maximum
number for the record search means to remove in the accessed linked list of
records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).

EXHIBIT D-6

Joint Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

US2008 1661497.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

EXHIBIT D-6

Joint Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

US2008 1661497.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both LISP and Dirks relate to deletion of aged records upon the allocation
of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as LISP. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with LISP nothing more than the
predictable use of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with LISP and would have
seen the benefits of doing so. One possible benefit, for example, is saving the
system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in LISP with the means for
dynamically determining maximum number for the record search means to

EXHIBIT D-6

Joint Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

US2008 1661497.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

remove in the accessed linked list of records disclosed by Thatte. For example,
Thatte discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, Ass both LISP and Thatte teach a system of data storage
and retrieval, one of ordinary skill in the art would recognize that the result of
combining LISP with Thatte would be nothing more than the predictable use of
prior art elements according to their established functions. The resulting
combination would include the capability to determine the maximum number
for the record search means to remove as taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine LISP
with Thatte and recognize the benefits of doing so. For example, the removal
of expired records described in LISP can be burdensome on the system, adding
to the system’s load and slowing down the system’s processing. One of
ordinary skill in the art would recognize that combining LISP with the
teachings of Thatte would solve this problem by dynamically determining how
many records to delete based on, among other things, the system load.
Moreover, the '120 patent discloses that "[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120

EXHIBIT D-6

Joint Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

US2008 1661497.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

patent provides motivations to combine LISP with Thatte.

Alternatively, it would also be obvious to combine LISP with the ’663 patent.
Disclosure of these claim elements in the ’663 patent is clearly shown in the
chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.

EXHIBIT D-6

Joint Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

US2008 1661497.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load

EXHIBIT D-6

Joint Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

US2008 1661497.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both LISP and the ’663 patent relate to deletion of records from hash tables
using external chaining, one of ordinary skill in the art would understood how
to use the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load in other hash table implementations such as that
described in LISP. Moreover, one of ordinary skill in the art would recognize
that it would improve similar systems and methods in the same way. As the
’120 patent states “[a] person skilled in the art will appreciate that the
technique of removing all expired records while searching the linked list can
be expanded to include techniques whereby not necessarily all expired records
are removed, and that the decision regarding if and how many records to delete
can be a dynamic one.” The ’120 patent at 7:10-15. Additionally, one of
ordinary skill in the art would recognize that the result of combining the ’663

EXHIBIT D-6

Joint Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

US2008 1661497.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

patent’s deletion decision procedure with LISP would be nothing more than
the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with LISP and would
have seen the benefits of doing so. One such benefit, for example, is that the
system would avoid performing deletions when the system load exceeded a
threshold.

Alternatively, it would also be obvious to combine LISP with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage

EXHIBIT D-6

Joint Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

US2008 1661497.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both LISP and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as LISP. Moreover, one of ordinary skill in the art

EXHIBIT D-6

Joint Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

US2008 1661497.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with LISP would be nothing more than the predictable use of prior
art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with LISP and would
have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in LISP to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in LISP
with the fundamental concept of dynamically determining the maximum
number of expired records to remove in an accessed linked list of records to
solve a number of potential problems. For example, the removal of expired

EXHIBIT D-6

Joint Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

US2008 1661497.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

records described in LISP can be burdensome on the system, adding to the
system’s load and slowing down the system’s processing. Moreover, the
removal could also force an interruption in real-time processing as the
processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

Thus, the ’120 patent provides motivations to combine LISP (e.g. the system
disclosed in Baker or Cohen) with Thatte, Dirks, the '663 patent, and/or the
Opportunistic Garbage Collection Articles, in addition to motivations within
the text of Baker or Cohen. Baker at 1 (“Third, processing had to be halted
periodically to reclaim storage by a long process know as garbage collection,
which laboriously traced every accessible cell so that those inaccessible cells
could be recycled. . . . This paper presents a solution to the third problem . . .
and removes the roadblock to their more general use.”); Cohen at 342 (“A
most vexing aspect of garbage collection is that program execution comes to a
halt while the collector attempts to reclaim storage space.”).

To the extent that dynamically determining a maximum number of expired
records is not disclosed by LISP in combination with Dirks, Thatte, the ‘663

EXHIBIT D-6

Joint Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

US2008 1661497.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

Patent, or the Opportunistic Garbage Collection References, it is disclosed by
Linux 2.0.1, which describes dynamically determining maximum number of
expired ones of the records to remove when the linked list is accessed. It
would have been obvious to combine Linux 2.0.1 with LISP. For example,
both Linux 2.0.1 and LISP describe systems and methods for performing data
storage and retrieval using known programming techniques to yield a
predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

EXHIBIT D-6

Joint Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

US2008 1661497.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed

EXHIBIT D-6

Joint Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

US2008 1661497.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

EXHIBIT D-6

Joint Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

US2008 1661497.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

To the extent the preamble is a limitation, LISP discloses a method for storing
and retrieving information records using a linked list to store and provide
access to the records, at least some of the records automatically expiring. LISP
also discloses a method for storing and retrieving information records using a
hashing technique to provide access to the records and using an external
chaining technique to store the records with same hash address, at least some
of the records automatically expiring.

For example,

“This paper should be useful to readers interested in data structures and their
applications in compiler construction, language design, and database
management.” Cohen at 342.

“This model consists of a memory, i.e. a one-dimensional array of words, each

EXHIBIT D-6

Joint Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

US2008 1661497.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

of which is large enough to hold (at least) the representation of a nonnegative
integer which is an index into that array.” Baker at 2.

“There are two fundamental kinds of data in LISP: list cells and atoms
CAR(x) and CDR(x) return the car and cdr components of the list cell x,
respectively.” Baker at 2.

“If the method is used for the management of a large database residing on
secondary storage.” Baker at 6.

“We conceive of a huge database having millions of records, which may
contain pointers to other records, being managed by our algorithm.” Baker at
12.

“the property list can be found by looking in a hash table, using the address of
the list cell as the key.” Baker at 10.

“Our copying scheme gives each semispace its own hash table, and when a cell
is copied over into to space, its property list pointer is entered in the "to" table
under the cell's new address. Then when the copied cell is encountered by the
"scan" pointer, its property list pointer is updated along with its normal
components.” Baker at 10.

“Of the hundreds of thousands of computer languages which have been
invented, there is one particular family of languages whose common ancestor
was the original LISP, developed by McCarthy and others in the late 1950's.
[LISP History] These languages are generally characterized by a simple, fully

EXHIBIT D-6

Joint Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

US2008 1661497.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

parenthesized ("Cambridge Polish") syntax; the ability to manipulate general,
linked-list data structures; a standard representation for programs of the
language in terms of these structures; and an interactive programming system
based on an interpreter for the standard representation. Examples of such
languages are LISP 1.5 [LISP 1.5M], MacLISP [Moon], InterLISP
[Teiteiman], CONNIVER McDermott and Sussman], QM [Rulfson], PLASNA
[Smith and Hewitt] [Hewitt and Smith], and SCHUIE [SCHEME] [Revised
Report]. We will call this family the LISP-like languages.” Steele at 2.

“A cell becomes unused, or garbage, when it can no longer be accessed
through any pointer fields of any reachable cell.” Cohen at 342.

It would have been obvious to one skilled in the art to apply the teachings in
LISP to a hash table which resolves collisions using external chaining with
linked lists. The method of LISP is a method for processing and garbage
collecting on linked structures generally, which includes externally chained
records. Externally chained records would still need a method of memory
management, so it would be obvious to use LISP as a method of memory
management and list processing on externally chained records with the same
hash address.

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

LISP discloses accessing a linked list of records. LISP also discloses accessing
a linked list of records having same hash address.

For example,

“For example, in LISP, the function cons also calls the garbage collector.”
Cohen at 342.

EXHIBIT D-6

Joint Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

US2008 1661497.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

“The amount of storage and time used by a real-time list processing system can
be compared with that used by a classical list processing system using garbage
collection on tasks not requiring bounded response times.” Baker at 11.

“the property list can be found by looking in a hash table, using the address of
the list cell as the key.” Baker at 10.

“This model consists of a memory, i.e. a one-dimensional array of words, each
of which is large enough to hold (at least) the representation of a nonnegative
integer which is an index into that array.” Baker at 2.

As discussed in [3/7], it would have been obvious to one of ordinary skill in
the art to use LISP for list processing and memory management on externally
chained structures having the same hash address.

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

LISP discloses identifying at least some of the automatically expired ones of
the records. LISP also discloses identifying at least some of the automatically
expired ones of the records.

For example,

“For example, in LISP, the function cons also calls the garbage collector.”
Cohen at 342.

“Baker’s modification is such that each time a cell is requested (i.e., a cons is
requested), a fixed number of cells, k, are moved from one semispace to the
other.” Cohen at 355.

EXHIBIT D-6

Joint Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

US2008 1661497.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

“The amount of storage and time used by a real-time list processing system can
be compared with that used by a classical list processing system using garbage
collection on tasks not requiring bounded response times.” Baker at 11.

“A cell becomes unused, or garbage, when it can no longer be accessed
through any pointer fields of any reachable cell.” Cohen at 342.

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

LISP discloses removing at least some of the automatically expired records
from the linked list when the linked list is accessed. LISP also discloses
removing at least some of the automatically expired records from the linked
list when the linked list is accessed.

For example,

“For example, in LISP, the function cons also calls the garbage collector.”
Cohen at 342.

“In order to convert MFYCA into a real-time algorithm, we force the mark
ratio m to be constant by changing CONS so that it does k iterations of garbage
collection before performing each allocation.” Baker at 4.

“There is another problem caused by interleaving garbage collection with
normal list processing.” Baker at 4.

“garbage collection in our real-time system is almost identical to that in the
MFYCA system, except that it is done incrementally during calls to CONS. In

EXHIBIT D-6

Joint Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

US2008 1661497.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

other words, the user program pays for the cost of cell’s reclamation at the time
the cell is created by tracing some other cell.” Baker at 11.

“We have exhibited a method for doing list-processing on a serial computer in
a real-time environment Our real time scheme is strikingly similar to the
incremental garbage collector proposed independently by Barbacci.” Baker at
13.

 [7d] inserting, retrieving
or deleting one of the
records from the system
following the step of
removing.

LISP discloses inserting, retrieving or deleting one of the records from the
system following the step of removing.

For example,

“For example, in LISP, the function cons also calls the garbage collector.”
Cohen at 342.

“In order to convert MFYCA into a real-time algorithm, we force the mark
ratio m to be constant by changing CONS so that it does k iterations of garbage
collection before performing each allocation.” Baker at 4.

“There is another problem caused by interleaving garbage collection with
normal list processing.” Baker at 4.

“garbage collection in our real-time system is almost identical to that in the
MFYCA system, except that it is done incrementally during calls to CONS. In
other words, the user program pays for the cost of cell’s reclamation at the time
the cell is created by tracing some other cell.” Baker at 11.

EXHIBIT D-6

Joint Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

US2008 1661497.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

“We have exhibited a method for doing list-processing on a serial computer in
a real-time environment Our real time scheme is strikingly similar to the
incremental garbage collector proposed independently by Barbacci.” Baker at
13.

4. The method according
to claim 3 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

LISP discloses dynamically determining maximum number of expired ones of
the records to remove when the linked list is accessed.

For example,

“Baker’s modification is such that each time a cell is requested (i.e., a cons is
requested), a fixed number of cells, k, are moved from one semispace to the
other.” Cohen at 355.

“With a little more effort, k can even be made variable in our method, thus
allowing the program to dynamically optimize its space-time tradeoff.” Baker
at 6.

Lisp combined with Dirks, Thatte, the ’663 patent, and/or the Opportunistic
Garbage Collection Articles discloses dynamically determining maximum
number of expired ones of the records to remove when the linked list is
accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

EXHIBIT D-6

Joint Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

US2008 1661497.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

EXHIBIT D-6

Joint Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

US2008 1661497.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both LISP and Dirks relate to deletion of aged records upon the allocation
of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as LISP. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching

EXHIBIT D-6

Joint Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

US2008 1661497.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with LISP nothing more than the
predictable use of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with LISP and would have
seen the benefits of doing so. One possible benefit, for example, is saving the
system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in LISP with the means for
dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. For example,
Thatte discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, Ass both LISP and Thatte teach a system of data storage
and retrieval, one of ordinary skill in the art would recognize that the result of
combining LISP with Thatte would be nothing more than the predictable use of

EXHIBIT D-6

Joint Invalidity Contentions & Production of
Documents

35 Case No. 6:09-CV-549-LED

US2008 1661497.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

prior art elements according to their established functions. The resulting
combination would include the capability to determine the maximum number
for the record search means to remove as taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine LISP
with Thatte and recognize the benefits of doing so. For example, the removal
of expired records described in LISP can be burdensome on the system, adding
to the system’s load and slowing down the system’s processing. One of
ordinary skill in the art would recognize that combining LISP with the
teachings of Thatte would solve this problem by dynamically determining how
many records to delete based on, among other things, the system load.
Moreover, the '120 patent discloses that "[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120
patent provides motivations to combine LISP with Thatte.

Alternatively, it would also be obvious to combine LISP with the ’663 patent.
Disclosure of these claim elements in the ’663 patent is clearly shown in the
chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record

EXHIBIT D-6

Joint Invalidity Contentions & Production of
Documents

36 Case No. 6:09-CV-549-LED

US2008 1661497.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT D-6

Joint Invalidity Contentions & Production of
Documents

37 Case No. 6:09-CV-549-LED

US2008 1661497.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does

EXHIBIT D-6

Joint Invalidity Contentions & Production of
Documents

38 Case No. 6:09-CV-549-LED

US2008 1661497.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both LISP and the ’663 patent relate to deletion of records from hash tables
using external chaining, one of ordinary skill in the art would understood how
to use the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load in other hash table implementations such as that
described in LISP. Moreover, one of ordinary skill in the art would recognize
that it would improve similar systems and methods in the same way. As the
’120 patent states “[a] person skilled in the art will appreciate that the
technique of removing all expired records while searching the linked list can
be expanded to include techniques whereby not necessarily all expired records
are removed, and that the decision regarding if and how many records to delete
can be a dynamic one.” The ’120 patent at 7:10-15. Additionally, one of
ordinary skill in the art would recognize that the result of combining the ’663
patent’s deletion decision procedure with LISP would be nothing more than
the predictable use of prior art elements according to their established
functions.

EXHIBIT D-6

Joint Invalidity Contentions & Production of
Documents

39 Case No. 6:09-CV-549-LED

US2008 1661497.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with LISP and would
have seen the benefits of doing so. One such benefit, for example, is that the
system would avoid performing deletions when the system load exceeded a
threshold.

Alternatively, it would also be obvious to combine LISP with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more

EXHIBIT D-6

Joint Invalidity Contentions & Production of
Documents

40 Case No. 6:09-CV-549-LED

US2008 1661497.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both LISP and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as LISP. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily

EXHIBIT D-6

Joint Invalidity Contentions & Production of
Documents

41 Case No. 6:09-CV-549-LED

US2008 1661497.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with LISP would be nothing more than the predictable use of prior
art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with LISP and would
have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in LISP to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in LISP
with the fundamental concept of dynamically determining the maximum
number of expired records to remove in an accessed linked list of records to
solve a number of potential problems. For example, the removal of expired
records described in LISP can be burdensome on the system, adding to the
system’s load and slowing down the system’s processing. Moreover, the
removal could also force an interruption in real-time processing as the
processing waits for the removal to complete.

EXHIBIT D-6

Joint Invalidity Contentions & Production of
Documents

42 Case No. 6:09-CV-549-LED

US2008 1661497.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

Thus, the ’120 patent provides motivations to combine LISP (e.g. Baker or
Cohen) with Thatte, Dirks, the '663 patent, and/or the Opportunistic Garbage
Collection Articles, in addition to motivations within the text of Baker or
Cohen. Baker at 1 (“Third, processing had to be halted periodically to reclaim
storage by a long process know as garbage collection, which laboriously traced
every accessible cell so that those inaccessible cells could be recycled. . . . This
paper presents a solution to the third problem . . . and removes the roadblock to
their more general use.”); Cohen at 342 (“A most vexing aspect of garbage
collection is that program execution comes to a halt while the collector
attempts to reclaim storage space.”).

To the extent that dynamically determining a maximum number of expired
records is not disclosed by LISP in combination with Dirks, Thatte, the ‘663
Patent, or the Opportunistic Garbage Collection References, it is disclosed by
Linux 2.0.1, which describes dynamically determining maximum number of
expired ones of the records to remove when the linked list is accessed. It
would have been obvious to combine Linux 2.0.1 with LISP. For example,

EXHIBIT D-6

Joint Invalidity Contentions & Production of
Documents

43 Case No. 6:09-CV-549-LED

US2008 1661497.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

both Linux 2.0.1 and LISP describe systems and methods for performing data
storage and retrieval using known programming techniques to yield a
predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to

EXHIBIT D-6

Joint Invalidity Contentions & Production of
Documents

44 Case No. 6:09-CV-549-LED

US2008 1661497.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function

EXHIBIT D-6

Joint Invalidity Contentions & Production of
Documents

45 Case No. 6:09-CV-549-LED

US2008 1661497.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not

EXHIBIT D-6

Joint Invalidity Contentions & Production of
Documents

46 Case No. 6:09-CV-549-LED

US2008 1661497.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

EXHIBIT D-7

Joint Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

US2008 1661621.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

1. An information storage and
retrieval system, the system
comprising:

5. An information storage and
retrieval system, the system
comprising:

To the extent the preamble is a limitation, FreeBSD 2.0.5 discloses an information
storage and retrieval system.

For example, in kern_proc.c and proc.h, FreeBSD 2.0.5 discloses a hash table of
linked lists of automatically expiring data. See, e.g., struct pgrp defined at lines 61-70
of proc.h and struct proc defined at lines 72-172 of proc.h. Excerpts are below:

61 /*
62 * One structure allocated per process group.
63 */
64 struct pgrp {
65 struct pgrp *pg_hforw; /* Forward link in hash bucket. */
66 struct proc *pg_mem; /* Pointer to pgrp members. */
67 struct session *pg_session; /* Pointer to session. */
68 pid_t pg_id; /* Pgrp id. */
69 int pg_jobc; /* # procs qualifying pgrp for job control */
70 };

72 /*
73 * Description of a process.
74 *
75 * This structure contains the information needed to manage a thread of
76 * control, known in UN*X as a process; it has references to substructures
77 * containing descriptions of things that the process uses, but may share
78 * with related processes. The process structure and the substructures
79 * are always addressible except for those marked "(PROC ONLY)" below,
80 * which might be addressible only on a processor on which the process

1 Publicly available as of June 10, 1995; available at ftp://ftp-archive.freebsd.org/pub/FreeBSD-Archive/old-releases/i386/2.0.5-RELEASE/src/.

EXHIBIT D-7

Joint Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

US2008 1661621.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

81 * is running.
82 */
83 struct proc {
84 struct proc *p_forw; /* Doubly-linked run/sleep queue. */
85 struct proc *p_back;
86 struct proc *p_next; /* Linked list of active procs */
87 struct proc **p_prev; /* and zombies. */

[1a] a linked list to store and
provide access to records
stored in a memory of the
system, at least some of the
records automatically
expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an external
chaining technique to store
the records with same hash
address, at least some of the
records automatically
expiring,

FreeBSD discloses “a linked list to store and provide access to records stored in a
memory of the system, at least some of the records automatically expiring” and “a
hashing means to provide access to records stored in a memory of the system and
using an external chaining technique to store the records with same hash address, at
least some of the records automatically expiring.” For example, the pidhash[] and
pgrphash[] structures defined in param.c meet the “hashing means” limitation.

206 struct proc *pidhash[PIDHSZ];
207 struct pgrp *pgrphash[PIDHSZ];

Also, FreeBSD defines the pgrp structure as including a forward link in the hash
bucket as well as a pointer to a linked list of proc structures. This is an example of
how FreeBSD meets the “linked list” and “external chaining” limitations, as shown in
the excerpts from proc.h below.

64 struct pgrp {
65 struct pgrp *pg_hforw; /* Forward link in hash bucket. */
66 struct proc *pg_mem; /* Pointer to pgrp members. */
67 struct session *pg_session; /* Pointer to session. */
68 pid_t pg_id; /* Pgrp id. */
69 int pg_jobc; /* # procs qualifying pgrp for job control */
70 };

EXHIBIT D-7

Joint Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

US2008 1661621.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

83 struct proc {
84 struct proc *p_forw; /* Doubly-linked run/sleep queue. */
85 struct proc *p_back;
86 struct proc *p_next; /* Linked list of active procs */
87 struct proc **p_prev; /* and zombies. */

Examples of how FreeBSD uses the hashing technique with external chaining can be
found in the enterpgrp() function in kern_proc.c, such as the following:

230 pgrp->pg_hforw = pgrphash[n = PIDHASH(pgid)];
231 pgrphash[n] = pgrp;

The function that calls enterpgrp() passes in a proc structure, as shown in lines 175-
79.

175 int
176 enterpgrp(p, pgid, mksess)
177 register struct proc *p;
178 pid_t pgid;
179 int mksess;

Code within the enterpgrp() structure unlinks the proc from its old process group, as
shown below in lines 248-53 of kern_proc.c. Also, enterpgrp() calls pgdelete() if the
process group is empty, as shown in lines 261-62. Depending on claim construction,
these are two examples of automatic expiration.

245 /*
246 * unlink p from old process group
247 */

EXHIBIT D-7

Joint Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

US2008 1661621.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

248 for (pp = &p->p_pgrp->pg_mem; *pp; pp = &(*pp)->p_pgrpnxt) {
249 if (*pp == p) {
250 *pp = p->p_pgrpnxt;
251 break;
252 }
253 }

258 /*
259 * delete old if empty
260 */
261 if (p->p_pgrp->pg_mem == 0)
262 pgdelete(p->p_pgrp);

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of records
having the same hash address,

FreeBSD discloses “a record search means utilizing a search key to access the linked
list” and “a record search means utilizing a search key to access a linked list of
records having the same hash address.”

The following code from the enterpgrp() function in kern_proc.c is an example of
accessing a linked list of records having the same hash address and using a search key
to access a linked list. The [n] index is an example of a search key. The enterpgrp()
function is an example of a “record search means” as claimed.

230 pgrp->pg_hforw = pgrphash[n = PIDHASH(pgid)];
231 pgrphash[n] = pgrp;

[1c] the record search means
including a means for
identifying and removing at
least some of the expired ones
of the records from the linked

[5c] the record search means
including means for
identifying and removing at
least some expired ones of the
records from the linked list of

FreeBSD discloses “the record search means including a means for identifying and
removing at least some of the expired ones of the records from the linked list when
the linked list is accessed” and “the record search means including means for
identifying and removing at least some expired ones of the records from the linked
list of records when the linked list is accessed,” as claimed.

EXHIBIT D-7

Joint Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

US2008 1661621.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

list when the linked list is
accessed, and

records when the linked list is
accessed, and

For example, code within the enterpgrp() structure unlinks the proc from its old
process group, as shown below in lines 248-53 of kern_proc.c. Also, enterpgrp() calls
pgdelete() if the process group is empty, as shown in lines 261-62. These are two
examples of automatic expiration.

245 /*
246 * unlink p from old process group
247 */
248 for (pp = &p->p_pgrp->pg_mem; *pp; pp = &(*pp)->p_pgrpnxt) {
249 if (*pp == p) {
250 *pp = p->p_pgrpnxt;
251 break;
252 }
253 }

258 /*
259 * delete old if empty
260 */
261 if (p->p_pgrp->pg_mem == 0)
262 pgdelete(p->p_pgrp);

[1d] means, utilizing the
record search means, for
accessing the linked list and,
at the same time, removing at
least some of the expired ones
of the records in the linked
list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same time,
removing at least some
expired ones of the records in
the accessed linked list of

FreeBSD discloses “means, utilizing the record search means, for accessing the
linked list and, at the same time, removing at least some of the expired ones of the
records in the linked list “ and “meals [sic “means”], utilizing the record search
means, for inserting, retrieving, and deleting records from the system and, at the
same time, removing at least some expired ones of the records in the accessed linked
list of records,” as claimed. An example of a “means utilizing the record search
means” can be found in kern_prot.c. For example, the setsid() function calls
enterpgrp(), as shown below at line 196.

EXHIBIT D-7

Joint Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

US2008 1661621.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

records.

186 int
187 setsid(p, uap, retval)
188 register struct proc *p;
189 struct args *uap;
190 int *retval;
191 {
192
193 if (p->p_pgid == p->p_pid || pgfind(p->p_pid)) {
194 return (EPERM);
195 } else {
196 (void)enterpgrp(p, p->p_pid, 1);
197 *retval = p->p_pid;
198 return (0);
199 }
200 }

An example of “retrieving” can be found in enterpgrp(), in the for loop found at lines
248-53. Depending on claim construction, an example of “removing” and “deleting”
can be found in the call to pgdelete() at line 262, and the operation of pgdelete() at
lines 300-22. An example of “inserting” can be found at lines 266-68. Each of these
steps is performed within enterpgrp() and “at the same time,” as recited in the claims.

245 /*
246 * unlink p from old process group
247 */
248 for (pp = &p->p_pgrp->pg_mem; *pp; pp = &(*pp)->p_pgrpnxt) {
249 if (*pp == p) {
250 *pp = p->p_pgrpnxt;
251 break;

EXHIBIT D-7

Joint Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

US2008 1661621.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

252 }
253 }

258 /*
259 * delete old if empty
260 */
261 if (p->p_pgrp->pg_mem == 0)
262 pgdelete(p->p_pgrp);
263 /*
264 * link into new one
265 */
266 p->p_pgrp = pgrp;
267 p->p_pgrpnxt = pgrp->pg_mem;
268 pgrp->pg_mem = p;
269 return (0);

297 /*
298 * delete a process group
299 */
300 void
301 pgdelete(pgrp)
302 register struct pgrp *pgrp;
303 {
304 register struct pgrp **pgp = &pgrphash[PIDHASH(pgrp->pg_id)];
305
306 if (pgrp->pg_session->s_ttyp != NULL &&
307 pgrp->pg_session->s_ttyp->t_pgrp == pgrp)
308 pgrp->pg_session->s_ttyp->t_pgrp = NULL;
309 for (; *pgp; pgp = &(*pgp)->pg_hforw) {
310 if (*pgp == pgrp) {

EXHIBIT D-7

Joint Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

US2008 1661621.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

311 *pgp = pgrp->pg_hforw;
312 break;
313 }
314 }
315 #ifdef DIAGNOSTIC
316 if (pgp == NULL)
317 panic("pgdelete: can't find pgrp on hash chain");
318 #endif
319 if (--pgrp->pg_session->s_count == 0)
320 FREE(pgrp->pg_session, M_SESSION);
321 FREE(pgrp, M_PGRP);
322 }

FreeBSD 2.0.5 defines FREE() as used in lines 320-21 of kern_proc.c in malloc.h, as
shown below. Depending on whether KMEMSTATS or DIAGNOSTIC is defined,
FREE() is either set to free() in line 288 or defined as in lines 304-20.

283 /*
284 * Macro versions for the usual cases of malloc/free
285 */
286 #if defined(KMEMSTATS) || defined(DIAGNOSTIC)
287 #define MALLOC(space, cast, size, type, flags) \
288 (space) = (cast)malloc((u_long)(size), type, flags)
289 #define FREE(addr, type) free((caddr_t)(addr), type)
290
291 #else /* do not collect statistics */
292 #define MALLOC(space, cast, size, type, flags) { \
293 register struct kmembuckets *kbp = &bucket[BUCKETINDX(size)]; \
294 long s = splimp(); \
295 if (kbp->kb_next == NULL) { \

EXHIBIT D-7

Joint Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

US2008 1661621.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

296 (space) = (cast)malloc((u_long)(size), type, flags); \
297 } else { \
298 (space) = (cast)kbp->kb_next; \
299 kbp->kb_next = *(caddr_t *)(space); \
300 } \
301 splx(s); \
302 }
303
304 #define FREE(addr, type) { \
305 register struct kmembuckets *kbp; \
306 register struct kmemusage *kup = btokup(addr); \
307 long s = splimp(); \
308 if (1 << kup->ku_indx > MAXALLOCSAVE) { \
309 free((caddr_t)(addr), type); \
310 } else { \
311 kbp = &bucket[kup->ku_indx]; \
312 if (kbp->kb_next == NULL) \
313 kbp->kb_next = (caddr_t)(addr); \
314 else \
315 *(caddr_t *)(kbp->kb_last) = (caddr_t)(addr); \
316 *(caddr_t *)(addr) = NULL; \
317 kbp->kb_last = (caddr_t)(addr); \
318 } \
319 splx(s); \
320 }
321 #endif /* do not collect statistics */

The free() function, as defined in kern_malloc.c, is as follows.

248 void

EXHIBIT D-7

Joint Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

US2008 1661621.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

249 free(addr, type)
250 void *addr;
251 int type;
252 {
253 register struct kmembuckets *kbp;
254 register struct kmemusage *kup;
255 register struct freelist *freep;
256 long size;
257 int s;
258 #ifdef DIAGNOSTIC
259 caddr_t cp;
260 long *end, *lp, alloc, copysize;
261 #endif
262 #ifdef KMEMSTATS
263 register struct kmemstats *ksp = &kmemstats[type];
264 #endif
265
266 #ifdef DIAGNOSTIC
267 if ((char *)addr < kmembase || (char *)addr >= kmemlimit) {
268 panic("free: address 0x%x out of range", addr);
269 }
270 if ((u_long)type > M_LAST) {
271 panic("free: type %d out of range", type);
272 }
273 #endif
274 kup = btokup(addr);
275 size = 1 << kup->ku_indx;
276 kbp = &bucket[kup->ku_indx];
277 s = splhigh();
278 #ifdef DIAGNOSTIC

EXHIBIT D-7

Joint Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

US2008 1661621.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

279 /*
280 * Check for returns of data that do not point to the
281 * beginning of the allocation.
282 */
283 if (size > NBPG * CLSIZE)
284 alloc = addrmask[BUCKETINDX(NBPG * CLSIZE)];
285 else
286 alloc = addrmask[kup->ku_indx];
287 if (((u_long)addr & alloc) != 0)
288 panic("free: unaligned addr 0x%x, size %d, type %s, mask %d",
289 addr, size, memname[type], alloc);
290 #endif /* DIAGNOSTIC */
291 if (size > MAXALLOCSAVE) {
292 kmem_free(kmem_map, (vm_offset_t)addr, ctob(kup-
>ku_pagecnt));
293 #ifdef KMEMSTATS
294 size = kup->ku_pagecnt << PGSHIFT;
295 ksp->ks_memuse -= size;
296 kup->ku_indx = 0;
297 kup->ku_pagecnt = 0;
298 if (ksp->ks_memuse + size >= ksp->ks_limit &&
299 ksp->ks_memuse < ksp->ks_limit)
300 wakeup((caddr_t)ksp);
301 ksp->ks_inuse--;
302 kbp->kb_total -= 1;
303 #endif
304 splx(s);
305 return;
306 }

EXHIBIT D-7

Joint Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

US2008 1661621.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

To the extent that FreeBSD does not disclose this limitation, gcache.c from Xinu
Operating System for Sparc (1991) (hereinafter “gcache.c”) and Douglas Comer and
Shawn Ostermann, GCache: A Generalized Caching Mechanism, Purdue University
(Revised March 1992) (hereinafter “Comer”) (collectively hereinafter “GCache”)
discloses means, utilizing the record search means, for accessing the linked list and, at
the same time, removing at least some of the expired ones of the records in the linked
list, and also discloses utilizing the record search means, for inserting, retrieving, and
deleting records from the system and, at the same time, removing at least some
expired ones of the records in the accessed linked list of records.
One of ordinary skill in the art would be motivated to, and would understand how to,
combine the system disclosed in FreeBSD with the a hashing means to provide access
to records stored in a memory of the system and using an external chaining technique
to store the records with same hash address, at least some of the records automatically
expiring disclosed by GCache. See, e.g., Comer at 3-10. For example, since FreeBSD
utilizes a linked list for storing records and GCache discloses a system that attaches or
chains linked lists to a hash table for storing records, one of ordinary skill in the art
would be motivated to combine the linked list of FreeBSD with the system including a
hash table using external chaining of linked lists disclosed by GCache. The disclosure
of these claim elements in GCache is clearly shown in the chart of GCache, which is
hereby incorporated by reference in its entirety.
Moreover, one of ordinary skill in the art would recognize that these combinations
would improve the similar systems and methods in the same way. Additionally, one
of ordinary skill in the art would recognize that the result of combining FreeBSD with
GCache would be nothing more than the predictable use of prior art elements
according to their established functions.

For example, Comer discloses means for inserting, retrieving, and deleting records:

“Cainsert() inserts a new mapping, key => res, into the cache.” See Comer at 4.

EXHIBIT D-7

Joint Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

US2008 1661621.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

See also, gcache.c at lines 246-304, defining cainsert().

“Calookup() searches for a cached entry matching the key passed as an argument.”
See Comer at 4.

See also, gcache.c at lines 312-347 and 643-678, defining calookup() and
cagetindex().

“Caremove() removes the cached entry whose key is given, if one exists.” See Comer
at 4.

See also, gcache.c at lines 355-376, defining caremove().

Each of the means for inserting, retrieving, and deleting, utilizes a record search
means, the function cagetindex(), which removes an expired record from the list as
described below. The individual calls of cagetindex() are listed here:

In cainsert():
275 if ((ixnew = cagetindex(pcb,pkey,keylen,hash)) !=
NULL_IX) {

In calookup():
333 if ((ix = cagetindex(pcb,pkey,keylen,hash)) !=
NULL_IX) {

In caremove():
370 if ((ix = cagetindex(pcb,pkey,keylen,hash)) !=
NULL_IX) {

“In a simpler and cleaner design chosen for GCache, each cached entry contains a

EXHIBIT D-7

Joint Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

US2008 1661621.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

timestamp encoding the insertion time. If a lookup matches an entry with an expired
timestamp, that entry is removed rather than being returned.” See Comer at 10.

At lines 655-670 of gcache.c, cagetindex() executes a while loop to traverse a linked
list attached to a bucket of the hash table, accessing records stored therein. In the
subset of that code listed below, cagetindex() utilizes caisold() to identify if a
matching record is expired and removes the expired record from the linked list using
caunlink():

666 if (caisold(pcb,pce)) {
667 ++pcb->cb_tos;
668 caunlink(pcb,ix);
669 return(NULL_IX);
670 } else {

2. The information storage
and retrieval system
according to claim 1 further
including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed linked
list of records.

6. The information storage
and retrieval system
according to claim 5 further
including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed linked
list of records.

FreeBSD includes code that meets the “dynamically determining maximum number
for the record search means to remove in the accessed linked list of records” claim
limitation.

For example, in lines 248-53 of kern_proc.c this first piece of code, the if and for
statements dynamically determine whether the maximum number to remove is 0 or 1.
If the if statement evaluates TRUE, then the maximum number to remove 1. If the if
statement is FALSE and the for loop is not reached the last record, then the maximum
number to remove is 1. If the for loop has reached the last record, and the if is
FALSE, then it’s 0.

245 /*
246 * unlink p from old process group
247 */
248 for (pp = &p->p_pgrp->pg_mem; *pp; pp = &(*pp)->p_pgrpnxt) {
249 if (*pp == p) {

EXHIBIT D-7

Joint Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

US2008 1661621.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

250 *pp = p->p_pgrpnxt;
251 break;
252 }
253 }

Another example of the “dynamically determining” limitation can be found at lines
261-62 of kern_proc.c. The if statement dynamically determines the maximum
number to remove. If the if statement evaluates TRUE, then the maximum number to
remove is 1; if the if statement evaluates FALSE, then the maximum number to
remove is 0.

258 /*
259 * delete old if empty
260 */
261 if (p->p_pgrp->pg_mem == 0)
262 pgdelete(p->p_pgrp);

Further, FreeBSD 2.0.5 combined with Dirks, Thatte, the ’663 patent and/or the
Opportunistic Garbage Collection Articles discloses an information storage and
retrieval system further including means for dynamically determining maximum
number for the record search means to remove in the accessed linked list of records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

EXHIBIT D-7

Joint Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

US2008 1661621.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

EXHIBIT D-7

Joint Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

US2008 1661621.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both FreeBSD 2.05 and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as FreeBSD 2.05. Moreover, one of ordinary skill in the
art would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching

EXHIBIT D-7

Joint Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

US2008 1661621.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with FreeBSD 2.05 nothing
more than the predictable use of prior art elements according to their
established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with FreeBSD 2.05 and
would have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in FreeBSD 2.05 with the
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records disclosed by Thatte. For
example, Thatte discloses a system and method using hash tables and/or linked
lists and further discloses means for dynamically determining the maximum
number for the record search means to remove in the accessed linked list of
records. The disclosure of these claim elements in Thatte is clearly shown in
the chart of Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, Ass both FreeBSD 2.05 and Thatte teach a system of data
storage and retrieval, one of ordinary skill in the art would recognize that the

EXHIBIT D-7

Joint Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

US2008 1661621.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

result of combining FreeBSD 2.05 with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove as taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine
FreeBSD 2.05 with Thatte and recognize the benefits of doing so. For
example, the removal of expired records described in FreeBSD 2.05 can be
burdensome on the system, adding to the system’s load and slowing down the
system’s processing. One of ordinary skill in the art would recognize that
combining FreeBSD 2.05 with the teachings of Thatte would solve this
problem by dynamically determining how many records to delete based on,
among other things, the system load. Moreover, the '120 patent discloses that
"[a] person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records are removed, and that
the decision regarding if and how many records to delete can be a dynamic
one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine
FreeBSD 2.05 with Thatte.

Alternatively, it would also be obvious to combine FreeBSD 2.05 with the
’663 patent. Disclosure of these claim elements in the ’663 patent is clearly
shown in the chart of the ‘663 patent, which is hereby incorporated by
reference in its entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing

EXHIBIT D-7

Joint Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

US2008 1661621.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT D-7

Joint Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

US2008 1661621.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does

EXHIBIT D-7

Joint Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

US2008 1661621.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both FreeBSD 2.05 and the ’663 patent relate to deletion of records from
hash tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in FreeBSD 2.05. Moreover, one of ordinary skill in the
art would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with FreeBSD 2.05
would be nothing more than the predictable use of prior art elements according
to their established functions.

EXHIBIT D-7

Joint Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

US2008 1661621.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with FreeBSD 2.05
and would have seen the benefits of doing so. One such benefit, for example,
is that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine FreeBSD 2.05 with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more

EXHIBIT D-7

Joint Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

US2008 1661621.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both FreeBSD 2.05 and the Opportunistic Garbage Collection Articles
relate to deletion of aged records, one of ordinary skill in the art would have
understood how to use the Opportunistic Garbage Collection Articles’ dynamic
decision on whether to perform a deletion based on a system load in other hash
table implementations such as FreeBSD 2.05. Moreover, one of ordinary skill
in the art would recognize that it would improve similar systems and methods
in the same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily

EXHIBIT D-7

Joint Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

US2008 1661621.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with FreeBSD 2.05 would be nothing more than the predictable use
of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with FreeBSD 2.05 and
would have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in FreeBSD 2.05 to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in FreeBSD 2.05 with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in FreeBSD 2.05 can be burdensome
on the system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.

EXHIBIT D-7

Joint Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

US2008 1661621.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired records is
not disclosed by FreeBSD 2.0.5 in combination with Dirks, Thatte, the ‘663 Patent, or
the Opportunistic Garbage Collection References, it is disclosed by Linux 2.0.1,
which describes dynamically determining maximum number of expired ones of the
records to remove when the linked list is accessed. It would have been obvious to
combine Linux 2.0.1 with FreeBSD 2.0.5. For example, both Linux 2.0.1 and
FreeBSD 2.0.5 describe systems and methods for performing data storage and
retrieval using known programming techniques to yield a predictable result.

When invoked, the function rt_cache_add automatically increments an integer
variable rt_cache_size. See Linux 2.0.1, route.c at line 1359. When the
function rt_cache_add removes an expired record, the function rt_cache_add
decrements the variable rt_cache_size. See Linux 2.0.1, route.c at line 1373.
Thus, the variable rt_cache_size indicates the number of records in the hash
table (i.e., ip_rt_hash_table). Because the function rt_cache_add
automatically increments and decrements the variable rt_cache_size, the
variable rt_cache_size is determined dynamically.

EXHIBIT D-7

Joint Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

US2008 1661621.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1. The
function rt_garbage_collect_1 loops through each of the linked lists in the
ip_rt_hash_table global variable. See Linux 2.0.1, route.c at lines 1122-1138.
In this way, the function rt_garbage_collect_1 accesses the linked list. When
the function rt_garbage_collect_1 identifies a record that is expired, the
function rt_garbage_collect_1 decrements the variable rt_cache_size
and frees the record. See Linux 2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash table
can be in the linked list, the variable rt_cache_size can represent a dynamically
determined maximum number of expired ones of the records to remove when function
rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold RT_CACHE_SIZE_MAX.
If the number of records in the hash table exceeds the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_cache_add invokes a function
rt_garbage_collect. See Linux 2.0.1, route.c at lines 1341-1342. The function
rt_garbage_collect invokes a function rt_garbage_collect_1. See
Linux 2.0.1, route.c at line 1293. The function rt_garbage_collect invokes a
function rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in the hash
table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked list in the hash
table, the function rt_garbage_collect_1 looks at each record in the linked
list. See Linux 2.0.1, route.c at lines 1120-1131. For each record in a linked list, the
function rt_garbage_collect_1 determines whether the record’s last use time
plus the record’s expiration factor is later than the current time. See Linux 2.0.1,
route.c at line 1122. If the record’s last use time plus the record’s expiration factor is

EXHIBIT D-7

Joint Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

US2008 1661621.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

less than the current time, the function rt_garbage_collect_1 removes the
record from the linked list. See Linux 2.0.1, route.c at lines 1124-1130. The record’s
expiration factor is based on a variable expire and the record’s reference count. See
Linux 2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records in the
hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX. See
Linux 2.0.1, route.c at line 1133. If the number of items in the hash table is still
greater than the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_garbage_collect_1 halves the variable expire and loops through each of
the linked lists in the hash table. See Linux 2.0.1, route.c at line 1135. In this way,
the function rt_garbage_collect_1 can remove additional records from the
linked lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the function
rt_garbage_collect_1 are “expired” records. That is, the records removed by
the function rt_garbage_collect_1 are data items which after a limited time or after the
occurrence of some event become obsolete, such that their presence in the storage
system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when the
record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT is less than
the current time and the record’s reference count is zero. See Linux 2.0.1, route.c at
line 1369. Thus, the maximum number of records that the function rt_cache_add
can remove from a given linked list is limited to those records whose reference counts

EXHIBIT D-7

Joint Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

US2008 1661621.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not limited to
those records whose reference counts are zero. See Linux 2.0.1, route.c at line 1122.
Rather, the function rt_garbage_collect_1 can remove records whose
reference counts are zero and records whose reference counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than the
maximum number of records that the function rt_cache_add can remove from a
linked list.

3. A method for storing and
retrieving information records
using a linked list to store and
provide access to the records,
at least some of the records
automatically expiring, the
method comprising the steps
of:

7. A method for storing and
retrieving information records
using a hashing technique to
provide access to the records
and using an external
chaining technique to store
the records with same hash
address, at least some of the
records automatically
expiring, the method
comprising the steps of:

To the extent the preamble is a limitation, FreeBSD 2.0.5 discloses a “method for
storing and retrieving information records using a linked list to store and provide
access to the records, at least some of the records automatically expiring” and a
“method for storing and retrieving information records using a hashing technique to
provide access to the records and using an external chaining technique to store the
records with same hash address, at least some of the records automatically expiring,”
as claimed.

For example, in kern_proc.c and proc.h, FreeBSD 2.0.5 discloses a hash table of
linked lists of automatically expiring data. See, e.g., struct pgrp defined at lines 61-70
of proc.h and struct proc defined at lines 72-172 of proc.h. Excerpts are below:

61 /*
62 * One structure allocated per process group.
63 */
64 struct pgrp {
65 struct pgrp *pg_hforw; /* Forward link in hash bucket. */

EXHIBIT D-7

Joint Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

US2008 1661621.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

66 struct proc *pg_mem; /* Pointer to pgrp members. */
67 struct session *pg_session; /* Pointer to session. */
68 pid_t pg_id; /* Pgrp id. */
69 int pg_jobc; /* # procs qualifying pgrp for job control */
70 };

72 /*
73 * Description of a process.
74 *
75 * This structure contains the information needed to manage a thread of
76 * control, known in UN*X as a process; it has references to substructures
77 * containing descriptions of things that the process uses, but may share
78 * with related processes. The process structure and the substructures
79 * are always addressible except for those marked "(PROC ONLY)" below,
80 * which might be addressible only on a processor on which the process
81 * is running.
82 */
83 struct proc {
84 struct proc *p_forw; /* Doubly-linked run/sleep queue. */
85 struct proc *p_back;
86 struct proc *p_next; /* Linked list of active procs */
87 struct proc **p_prev; /* and zombies. */

FreeBSD discloses a hashing means in connection with a linked list using an external
chaining technique to store records with the same hash address. For example, the
pidhash[] and pgrphash[] structures defined in param.c meet the “hashing means”
limitation.

206 struct proc *pidhash[PIDHSZ];

EXHIBIT D-7

Joint Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

US2008 1661621.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

207 struct pgrp *pgrphash[PIDHSZ];

As shown in lines 61-70 and 72-172 of proc.h (portions of which are excerpted
above), FreeBSD defines the pgrp structure as including a forward link in the hash
bucket as well as a pointer to a linked list of proc structures. This is an example of
how FreeBSD meets the “linked list” and “external chaining” limitations.

Examples of how FreeBSD uses the hashing technique with external chaining can be
found in the enterpgrp() function in kern_proc.c, such as the following:

230 pgrp->pg_hforw = pgrphash[n = PIDHASH(pgid)];
231 pgrphash[n] = pgrp;

The function that calls enterpgrp() passes in a proc structure, as shown in lines 175-
79.

175 int
176 enterpgrp(p, pgid, mksess)
177 register struct proc *p;
178 pid_t pgid;
179 int mksess;

Code within the enterpgrp() structure unlinks the proc from its old process group, as
shown below in lines 248-53 of kern_proc.c. Also, enterpgrp() calls pgdelete() if the
process group is empty, as shown in lines 261-62. Depending on claim construction,
these are two examples of automatic expiration.

245 /*
246 * unlink p from old process group
247 */

EXHIBIT D-7

Joint Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

US2008 1661621.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

248 for (pp = &p->p_pgrp->pg_mem; *pp; pp = &(*pp)->p_pgrpnxt) {
249 if (*pp == p) {
250 *pp = p->p_pgrpnxt;
251 break;
252 }
253 }

258 /*
259 * delete old if empty
260 */
261 if (p->p_pgrp->pg_mem == 0)
262 pgdelete(p->p_pgrp);

[3a] accessing the linked list
of records,

[7a] accessing a linked list of
records having same hash
address,

FreeBSD discloses “accessing the linked list of records” and “accessing a linked list
of records having same hash address,” as claimed. For example, the following code
from the enterpgrp() function in kern_proc.c is an example of accessing a linked list of
records having the same hash address. The [n] index is an example of a search key.
The enterpgrp() function is an example of a “record search means” as claimed.

230 pgrp->pg_hforw = pgrphash[n = PIDHASH(pgid)];
231 pgrphash[n] = pgrp;

[3b] identifying at least some
of the automatically expired
ones of the records, and

[7b] identifying at least some
of the automatically expired
ones of the records,

FreeBSD includes the step of “identifying at least some of the automatically expired
ones of the records,” as claimed. For example, code from enterpgrp() in kern_proc.c
discloses these limitations. One such example is the if statement at line 249 which
identifies an automatically-expired record. Another example is the if statement at line
261 which identifies an empty record, which is an automatically-expired record.

245 /*

EXHIBIT D-7

Joint Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

US2008 1661621.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

246 * unlink p from old process group
247 */
248 for (pp = &p->p_pgrp->pg_mem; *pp; pp = &(*pp)->p_pgrpnxt) {
249 if (*pp == p) {
250 *pp = p->p_pgrpnxt;
251 break;
252 }
253 }

258 /*
259 * delete old if empty
260 */
261 if (p->p_pgrp->pg_mem == 0)
262 pgdelete(p->p_pgrp);

[3c] removing at least some
of the automatically expired
records from the linked list
when the linked list is
accessed.

[7c] removing at least some
of the automatically expired
records from the linked list
when the linked list is
accessed, and

FreeBSD includes the step of “removing at least some of the automatically expired
records from the linked list when the linked list is accessed,” as claimed. For
example, code from enterpgrp() in kern_proc.c discloses these limitations. One such
example is the call to pgdelete() at line 262. The operation of pgdelete() is discussed
in more detail herein at the discussion of elements 1d and 5d, herein.

Depending on claim construction, the code at line 250 also meets the “removing”
limitation.

245 /*
246 * unlink p from old process group
247 */
248 for (pp = &p->p_pgrp->pg_mem; *pp; pp = &(*pp)->p_pgrpnxt) {
249 if (*pp == p) {
250 *pp = p->p_pgrpnxt;

EXHIBIT D-7

Joint Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

US2008 1661621.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

251 break;
252 }
253 }

258 /*
259 * delete old if empty
260 */
261 if (p->p_pgrp->pg_mem == 0)
262 pgdelete(p->p_pgrp);

 [7d] inserting, retrieving or
deleting one of the records
from the system following the
step of removing.

FreeBSD includes the step of “inserting, retrieving or deleting one of the records
from the system following the step of removing,” as claimed. For example, the code
at lines 266-68 of kern_proc.c inserts records into the system, immediately following
the call to pgdelete() at line 262, which is an example of FreeBSD code that meets
the “deleting” limitation.

263 /*
264 * link into new one
265 */
266 p->p_pgrp = pgrp;
267 p->p_pgrpnxt = pgrp->pg_mem;
268 pgrp->pg_mem = p;
269 return (0);

4. The method according to
claim 3 further including the
step of dynamically
determining maximum
number of expired ones of the
records to remove when the

8. The method according to
claim 7 further including the
step of dynamically
determining maximum
number of expired ones of the
records to remove when the

FreeBSD includes code that meets the “dynamically determining maximum number
for the record search means to remove in the accessed linked list of records” claim
limitation.

For example, in lines 248-53 of kern_proc.c this first piece of code, the if and for
statements dynamically determine whether the maximum number to remove is 0 or 1.

EXHIBIT D-7

Joint Invalidity Contentions & Production of
Documents

35 Case No. 6:09-CV-549-LED

US2008 1661621.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

linked list is accessed. linked list is accessed. If the if statement evaluates TRUE, then the maximum number to remove 1. If the if

statement is FALSE and the for loop is not reached the last record, then the maximum
number to remove is 1. If the for loop has reached the last record, and the if is
FALSE, then it’s 0.

245 /*
246 * unlink p from old process group
247 */
248 for (pp = &p->p_pgrp->pg_mem; *pp; pp = &(*pp)->p_pgrpnxt) {
249 if (*pp == p) {
250 *pp = p->p_pgrpnxt;
251 break;
252 }
253 }

Another example of the “dynamically determining” limitation can be found at lines
261-62 of kern_proc.c. The if statement dynamically determines the maximum
number to remove. If the if statement evaluates TRUE, then the maximum number to
remove is 1; if the if statement evaluates FALSE, then the maximum number to
remove is 0.

258 /*
259 * delete old if empty
260 */
261 if (p->p_pgrp->pg_mem == 0)
262 pgdelete(p->p_pgrp);

Further, FreeBSD 2.0.5 combined with Dirks, Thatte, the ’663 patent, and/or the
Opportunistic Garbage Collection Articles discloses dynamically determining
maximum number of expired ones of the records to remove when the linked list is

EXHIBIT D-7

Joint Invalidity Contentions & Production of
Documents

36 Case No. 6:09-CV-549-LED

US2008 1661621.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than

EXHIBIT D-7

Joint Invalidity Contentions & Production of
Documents

37 Case No. 6:09-CV-549-LED

US2008 1661621.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

EXHIBIT D-7

Joint Invalidity Contentions & Production of
Documents

38 Case No. 6:09-CV-549-LED

US2008 1661621.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

As both FreeBSD 2.05 and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as FreeBSD 2.05. Moreover, one of ordinary skill in the
art would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with FreeBSD 2.05 nothing
more than the predictable use of prior art elements according to their
established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with FreeBSD 2.05 and
would have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in FreeBSD 2.05 with the
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records disclosed by Thatte. For
example, Thatte discloses a system and method using hash tables and/or linked
lists and further discloses means for dynamically determining the maximum

EXHIBIT D-7

Joint Invalidity Contentions & Production of
Documents

39 Case No. 6:09-CV-549-LED

US2008 1661621.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

number for the record search means to remove in the accessed linked list of
records. The disclosure of these claim elements in Thatte is clearly shown in
the chart of Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, Ass both FreeBSD 2.05 and Thatte teach a system of data
storage and retrieval, one of ordinary skill in the art would recognize that the
result of combining FreeBSD 2.05 with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove as taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine
FreeBSD 2.05 with Thatte and recognize the benefits of doing so. For
example, the removal of expired records described in FreeBSD 2.05 can be
burdensome on the system, adding to the system’s load and slowing down the
system’s processing. One of ordinary skill in the art would recognize that
combining FreeBSD 2.05 with the teachings of Thatte would solve this
problem by dynamically determining how many records to delete based on,
among other things, the system load. Moreover, the '120 patent discloses that
"[a] person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records are removed, and that
the decision regarding if and how many records to delete can be a dynamic
one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine
FreeBSD 2.05 with Thatte.

EXHIBIT D-7

Joint Invalidity Contentions & Production of
Documents

40 Case No. 6:09-CV-549-LED

US2008 1661621.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

Alternatively, it would also be obvious to combine FreeBSD 2.05 with the
’663 patent. Disclosure of these claim elements in the ’663 patent is clearly
shown in the chart of the ‘663 patent, which is hereby incorporated by
reference in its entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

EXHIBIT D-7

Joint Invalidity Contentions & Production of
Documents

41 Case No. 6:09-CV-549-LED

US2008 1661621.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

This hybrid deletion is shown in Figure 5.

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,

EXHIBIT D-7

Joint Invalidity Contentions & Production of
Documents

42 Case No. 6:09-CV-549-LED

US2008 1661621.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both FreeBSD 2.05 and the ’663 patent relate to deletion of records from
hash tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in FreeBSD 2.05. Moreover, one of ordinary skill in the
art would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with FreeBSD 2.05
would be nothing more than the predictable use of prior art elements according

EXHIBIT D-7

Joint Invalidity Contentions & Production of
Documents

43 Case No. 6:09-CV-549-LED

US2008 1661621.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with FreeBSD 2.05
and would have seen the benefits of doing so. One such benefit, for example,
is that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine FreeBSD 2.05 with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

EXHIBIT D-7

Joint Invalidity Contentions & Production of
Documents

44 Case No. 6:09-CV-549-LED

US2008 1661621.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both FreeBSD 2.05 and the Opportunistic Garbage Collection Articles
relate to deletion of aged records, one of ordinary skill in the art would have
understood how to use the Opportunistic Garbage Collection Articles’ dynamic
decision on whether to perform a deletion based on a system load in other hash
table implementations such as FreeBSD 2.05. Moreover, one of ordinary skill
in the art would recognize that it would improve similar systems and methods
in the same way. As the ’120 patent states “[a] person skilled in the art will

EXHIBIT D-7

Joint Invalidity Contentions & Production of
Documents

45 Case No. 6:09-CV-549-LED

US2008 1661621.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with FreeBSD 2.05 would be nothing more than the predictable use
of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with FreeBSD 2.05 and
would have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in FreeBSD 2.05 to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in FreeBSD 2.05 with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in FreeBSD 2.05 can be burdensome
on the system, adding to the system’s load and slowing down the system’s

EXHIBIT D-7

Joint Invalidity Contentions & Production of
Documents

46 Case No. 6:09-CV-549-LED

US2008 1661621.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired records is
not disclosed by FreeBSD 2.0.5 in combination with Dirks, Thatte, the ‘663 Patent, or
the Opportunistic Garbage Collection References, it is disclosed by Linux 2.0.1,
which describes dynamically determining maximum number of expired ones of the
records to remove when the linked list is accessed. It would have been obvious to
combine Linux 2.0.1 with FreeBSD 2.0.5. For example, both Linux 2.0.1 and
FreeBSD 2.0.5 describe systems and methods for performing data storage and
retrieval using known programming techniques to yield a predictable result.

When invoked, the function rt_cache_add automatically increments an integer
variable rt_cache_size. See Linux 2.0.1, route.c at line 1359. When the
function rt_cache_add removes an expired record, the function rt_cache_add
decrements the variable rt_cache_size. See Linux 2.0.1, route.c at line 1373.
Thus, the variable rt_cache_size indicates the number of records in the hash
table (i.e., ip_rt_hash_table). Because the function rt_cache_add
automatically increments and decrements the variable rt_cache_size, the

EXHIBIT D-7

Joint Invalidity Contentions & Production of
Documents

47 Case No. 6:09-CV-549-LED

US2008 1661621.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

variable rt_cache_size is determined dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1. The
function rt_garbage_collect_1 loops through each of the linked lists in the
ip_rt_hash_table global variable. See Linux 2.0.1, route.c at lines 1122-1138.
In this way, the function rt_garbage_collect_1 accesses the linked list. When
the function rt_garbage_collect_1 identifies a record that is expired, the
function rt_garbage_collect_1 decrements the variable rt_cache_size
and frees the record. See Linux 2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash table
can be in the linked list, the variable rt_cache_size can represent a dynamically
determined maximum number of expired ones of the records to remove when function
rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold RT_CACHE_SIZE_MAX.
If the number of records in the hash table exceeds the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_cache_add invokes a function
rt_garbage_collect. See Linux 2.0.1, route.c at lines 1341-1342. The function
rt_garbage_collect invokes a function rt_garbage_collect_1. See
Linux 2.0.1, route.c at line 1293. The function rt_garbage_collect invokes a
function rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in the hash
table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked list in the hash
table, the function rt_garbage_collect_1 looks at each record in the linked
list. See Linux 2.0.1, route.c at lines 1120-1131. For each record in a linked list, the
function rt_garbage_collect_1 determines whether the record’s last use time

EXHIBIT D-7

Joint Invalidity Contentions & Production of
Documents

48 Case No. 6:09-CV-549-LED

US2008 1661621.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

plus the record’s expiration factor is later than the current time. See Linux 2.0.1,
route.c at line 1122. If the record’s last use time plus the record’s expiration factor is
less than the current time, the function rt_garbage_collect_1 removes the
record from the linked list. See Linux 2.0.1, route.c at lines 1124-1130. The record’s
expiration factor is based on a variable expire and the record’s reference count. See
Linux 2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records in the
hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX. See
Linux 2.0.1, route.c at line 1133. If the number of items in the hash table is still
greater than the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_garbage_collect_1 halves the variable expire and loops through each of
the linked lists in the hash table. See Linux 2.0.1, route.c at line 1135. In this way,
the function rt_garbage_collect_1 can remove additional records from the
linked lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the function
rt_garbage_collect_1 are “expired” records. That is, the records removed by
the function rt_garbage_collect_1 are data items which after a limited time or after the
occurrence of some event become obsolete, such that their presence in the storage
system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when the
record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT is less than
the current time and the record’s reference count is zero. See Linux 2.0.1, route.c at

EXHIBIT D-7

Joint Invalidity Contentions & Production of
Documents

49 Case No. 6:09-CV-549-LED

US2008 1661621.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

line 1369. Thus, the maximum number of records that the function rt_cache_add
can remove from a given linked list is limited to those records whose reference counts
are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not limited to
those records whose reference counts are zero. See Linux 2.0.1, route.c at line 1122.
Rather, the function rt_garbage_collect_1 can remove records whose
reference counts are zero and records whose reference counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than the
maximum number of records that the function rt_cache_add can remove from a
linked list.

EXHIBIT D-8

Joint Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

US2008 1661623.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

1. An information storage and
retrieval system, the system
comprising:

5. An information storage and
retrieval system, the system
comprising:

To the extent the preamble is a limitation, Linux 1.2.13 discloses an “information
storage and retrieval system,” as claimed.

For example, in arp.c, discloses a hash table of linked lists of automatically expiring
data. See, e.g., struct arp_table defined at lines 79-98.

[1a] a linked list to store and
provide access to records
stored in a memory of the
system, at least some of the
records automatically
expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an external
chaining technique to store
the records with same hash
address, at least some of the
records automatically
expiring,

Linux 1.2.13 discloses “a linked list to store and provide access to records stored in a
memory of the system, at least some of the records automatically expiring” and “a
hashing means to provide access to records stored in a memory of the system and
using an external chaining technique to store the records with same hash address, at
least some of the records automatically expiring.”

For example, the arp_table structure is a linked list, as shown in the code below.

 72/*
 73 * This structure defines the ARP mapping cache. As long as we make changes
 74 * in this structure, we keep interrupts of. But normally we can copy the
 75 * hardware address and the device pointer in a local variable and then make
 76 * any "long calls" to send a packet out.
 77 */
 78
 79 struct arp_table
 80 {
 81 struct arp_table *next; /* Linked entry list */
 82 unsigned long last_used; /* For expiry */
 83 unsigned int flags; /* Control status */
 84 unsigned long ip; /* ip address of entry */
 85 unsigned long mask; /* netmask - used for generalised proxy arps (tridge) */

1 Publicly available as of August 2, 1995; available at http://www.kernel.org/pub/linux/kernel/v1.2/linux-1.2.13.tar.gz.

EXHIBIT D-8

Joint Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

US2008 1661623.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

 86 unsigned char ha[MAX_ADDR_LEN];/* Hardware address */
 87 unsigned char hlen; /* Length of hardware address */
 88 unsigned short htype; /* Type of hardware in use */
 89 struct device *dev; /* Device the entry is tied to */
 90
 91 /*
 92 * The following entries are only used for unresolved hw addresses.
 93 */
 94
 95 struct timer_list timer; /* expire timer */
 96 int retries; /* remaining retries */
 97 struct sk_buff_head skb; /* list of queued packets */

The arp_table structure is also used in the context of hashing and external chaining.
An example of this is shown in the following code from arp.c.

 156/*
 157 * The size of the hash table. Must be a power of two.
 158 * Maybe we should remove hashing in the future for arp and concentrate
 159 * on Patrick Schaaf's Host-Cache-Lookup...
 160 */
 161
 162
 163 #define ARP_TABLE_SIZE 16
 164
 165 /* The ugly +1 here is to cater for proxy entries. They are put in their
 166 own list for efficiency of lookup. If you don't want to find a proxy
 167 entry then don't look in the last entry, otherwise do
 168 */
 169

EXHIBIT D-8

Joint Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

US2008 1661623.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

 170 #define FULL_ARP_TABLE_SIZE (ARP_TABLE_SIZE+1)
 171
 172 struct arp_table *arp_tables[FULL_ARP_TABLE_SIZE] =
 173 {
 174 NULL,
 175 };

Also, functions such as arp_expire_request() deals with automatically-expiring
records in the linked list.

 367 /*
 368 * This function is called, if an entry is not resolved in ARP_RES_TIME.
 369 * Either resend a request, or give it up and free the entry.
 370 */
 371
 372 static void arp_expire_request (unsigned long arg)

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of records
having the same hash address,

Linux 1.2.13 discloses “a record search means utilizing a search key to access the
linked list” and “a record search means utilizing a search key to access a linked list
of records having the same hash address.” For example, the following code from
arp_expire_request() in arp.c meets the “record search means” limitation. An
example of using a search key to access a linked list of records having the same hash
address is the hash value set at line 416 and used as at line 424. As discussed herein,
the arp_tables [] structure is a hash table that uses linked lists to perform external
chaining.

 409 /*
 410 * Arp request timed out. Delete entry and all waiting packets.
 411 * If we give each entry a pointer to itself, we don't have to

EXHIBIT D-8

Joint Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

US2008 1661623.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

 412 * loop through everything again. Maybe hash is good enough, but
 413 * I will look at it later.
 414 */
 415
 416 hash = HASH(entry->ip);
 417
 418 /* proxy entries shouldn't really time out so this is really
 419 only here for completeness
 420 */
 421 if (entry->flags & ATF_PUBL)
 422 pentry = &arp_tables[PROXY_HASH];
 423 else
 424 pentry = &arp_tables[hash];

[1c] the record search means
including a means for
identifying and removing at
least some of the expired ones
of the records from the linked
list when the linked list is
accessed, and

[5c] the record search means
including means for
identifying and removing at
least some expired ones of the
records from the linked list of
records when the linked list is
accessed, and

Linux 1.2.13 discloses “the record search means including a means for identifying
and removing at least some of the expired ones of the records from the linked list
when the linked list is accessed” and “the record search means including means for
identifying and removing at least some expired ones of the records from the linked
list of records when the linked list is accessed,” as claimed.

For example, in arp_expire_request() in arp.c, the while loop beginning at line 425
accesses the linked list as claimed. The if statement at line 427 identifies an expired
record. Depending on claim construction, the “removing” limitation is met at, for
example, line 429 and/or 432.

 425 while (*pentry != NULL)
 426 {
 427 if (*pentry == entry)
 428 {
 429 *pentry = entry->next; /* delete from linked list */

EXHIBIT D-8

Joint Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

US2008 1661623.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

 430 del_timer(&entry->timer);
 431 restore_flags(flags);
 432 arp_release_entry(entry);
 433 return;
 434 }
 435 pentry = &(*pentry)->next;
 436 }

[1d] means, utilizing the
record search means, for
accessing the linked list and,
at the same time, removing at
least some of the expired ones
of the records in the linked
list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same time,
removing at least some
expired ones of the records in
the accessed linked list of
records.

Linux 1.2.13 discloses “means, utilizing the record search means, for accessing the
linked list and, at the same time, removing at least some of the expired ones of the
records in the linked list “ and “meals [sic “means”], utilizing the record search
means, for inserting, retrieving, and deleting records from the system and, at the
same time, removing at least some expired ones of the records in the accessed
linked list of records,” as claimed.

The “means, utilizing the record search means” limitation is met, for example, by a
function that calls arp_expire_request(). As shown in the comments below, other
code calls arp_expire_request().

 367/ *
 368 * This function is called, if an entry is not resolved in ARP_RES_TIME.
 369 * Either resend a request, or give it up and free the entry.
 370 */
 371
 372 static void arp_expire_request (unsigned long arg)

For example, depending on claim construction, lines 429 and 432 in
arp_expire_request() meet the “deleting” and “removing” limitations. An example of
the “retrieving” step is line 435. Also, line 435 provides an example of “inserting.”
These operations take place within a single while loop and “at the same time,” as
claimed.

EXHIBIT D-8

Joint Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

US2008 1661623.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

 425 while (*pentry != NULL)
 426 {
 427 if (*pentry == entry)
 428 {
 429 *pentry = entry->next; /* delete from linked list */
 430 del_timer(&entry->timer);
 431 restore_flags(flags);
 432 arp_release_entry(entry);
 433 return;
 434 }
 435 pentry = &(*pentry)->next;

 436 }

To the extent that Linux 1.2.13 does not disclose this limitation, gcache.c from Xinu
Operating System for Sparc (1991) (hereinafter “gcache.c”) and Douglas Comer and
Shawn Ostermann, GCache: A Generalized Caching Mechanism, Purdue University
(Revised March 1992) (hereinafter “Comer”) (collectively hereinafter “GCache”)
discloses means, utilizing the record search means, for accessing the linked list and, at
the same time, removing at least some of the expired ones of the records in the linked
list, and also discloses utilizing the record search means, for inserting, retrieving, and
deleting records from the system and, at the same time, removing at least some
expired ones of the records in the accessed linked list of records.
One of ordinary skill in the art would be motivated to, and would understand how to,
combine the system disclosed in Linux 1.2.13 with the a hashing means to provide
access to records stored in a memory of the system and using an external chaining
technique to store the records with same hash address, at least some of the records
automatically expiring disclosed by GCache. See, e.g., Comer at 3-10. For example,
since Linux 1.2.13 utilizes a linked list for storing records and GCache discloses a
system that attaches or chains linked lists to a hash table for storing records, one of

EXHIBIT D-8

Joint Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

US2008 1661623.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

ordinary skill in the art would be motivated to combine the linked list of Linux 1.2.13
with the system including a hash table using external chaining of linked lists disclosed
by GCache. The disclosure of these claim elements in GCache is clearly shown in the
chart of GCache, which is hereby incorporated by reference in its entirety.
Moreover, one of ordinary skill in the art would recognize that these combinations
would improve the similar systems and methods in the same way. Additionally, one
of ordinary skill in the art would recognize that the result of combining Linux 1.2.13
with GCache would be nothing more than the predictable use of prior art elements
according to their established functions.

For example, Comer discloses means for inserting, retrieving, and deleting records:

“Cainsert() inserts a new mapping, key => res, into the cache.” See Comer at 4.

See also, gcache.c at lines 246-304, defining cainsert().

“Calookup() searches for a cached entry matching the key passed as an argument.”
See Comer at 4.

See also, gcache.c at lines 312-347 and 643-678, defining calookup() and
cagetindex().

“Caremove() removes the cached entry whose key is given, if one exists.” See Comer
at 4.

See also, gcache.c at lines 355-376, defining caremove().

Each of the means for inserting, retrieving, and deleting, utilizes a record search
means, the function cagetindex(), which removes an expired record from the list as
described below. The individual calls of cagetindex() are listed here:

EXHIBIT D-8

Joint Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

US2008 1661623.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

In cainsert():
275 if ((ixnew = cagetindex(pcb,pkey,keylen,hash)) !=
NULL_IX) {

In calookup():
333 if ((ix = cagetindex(pcb,pkey,keylen,hash)) !=
NULL_IX) {

In caremove():
370 if ((ix = cagetindex(pcb,pkey,keylen,hash)) !=
NULL_IX) {

“In a simpler and cleaner design chosen for GCache, each cached entry contains a
timestamp encoding the insertion time. If a lookup matches an entry with an expired
timestamp, that entry is removed rather than being returned.” See Comer at 10.

At lines 655-670 of gcache.c, cagetindex() executes a while loop to traverse a linked
list attached to a bucket of the hash table, accessing records stored therein. In the
subset of that code listed below, cagetindex() utilizes caisold() to identify if a
matching record is expired and removes the expired record from the linked list using
caunlink():

666 if (caisold(pcb,pce)) {
667 ++pcb->cb_tos;
668 caunlink(pcb,ix);
669 return(NULL_IX);
670 } else {

2. The information storage
and retrieval system
according to claim 1 further

6. The information storage
and retrieval system
according to claim 5 further

Linux 1.2.13 includes code that meets the “dynamically determining maximum
number for the record search means to remove in the accessed linked list of
records” claim limitation.

EXHIBIT D-8

Joint Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

US2008 1661623.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed linked
list of records.

including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed linked
list of records.

For example, lines each time the if statement at line 427 in arp_expire_request() is
executed, it dynamically determines the maximum number of records to remove—it
is either 1 or 0. If the if statement evaluates TRUE, then it’s 1; if FALSE, then it’s
0.

 425 while (*pentry != NULL)
 426 {
 427 if (*pentry == entry)
 428 {
 429 *pentry = entry->next; /* delete from linked list */
 430 del_timer(&entry->timer);
 431 restore_flags(flags);
 432 arp_release_entry(entry);
 433 return;
 434 }
 435 pentry = &(*pentry)->next;

 436 }

Further, Linux 1.2.13 combined with Dirks, Thatte, the ’663 patent and/or the
Opportunistic Garbage Collection Articles discloses an information storage and
retrieval system further including means for dynamically determining maximum
number for the record search means to remove in the accessed linked list of records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

EXHIBIT D-8

Joint Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

US2008 1661623.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

EXHIBIT D-8

Joint Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

US2008 1661623.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Linux 1.2.13 and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as Linux 1.2.13. Moreover, one of ordinary skill in the
art would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching

EXHIBIT D-8

Joint Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

US2008 1661623.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Linux 1.2.13 nothing more
than the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Linux 1.2.13 and
would have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Linux 1.2.13 with the
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records disclosed by Thatte. For
example, Thatte discloses a system and method using hash tables and/or linked
lists and further discloses means for dynamically determining the maximum
number for the record search means to remove in the accessed linked list of
records. The disclosure of these claim elements in Thatte is clearly shown in
the chart of Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, Ass both Linux 1.2.13 and Thatte teach a system of data
storage and retrieval, one of ordinary skill in the art would recognize that the

EXHIBIT D-8

Joint Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

US2008 1661623.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

result of combining Linux 1.2.13 with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove as taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine Linux
1.2.13 with Thatte and recognize the benefits of doing so. For example, the
removal of expired records described in Linux 1.2.13 can be burdensome on
the system, adding to the system’s load and slowing down the system’s
processing. One of ordinary skill in the art would recognize that combining
Linux 1.2.13 with the teachings of Thatte would solve this problem by
dynamically determining how many records to delete based on, among other
things, the system load. Moreover, the '120 patent discloses that "[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one." '120 at
7:10-15. Thus, the '120 patent provides motivations to combine Linux 1.2.13
with Thatte.

Alternatively, it would also be obvious to combine Linux 1.2.13 with the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing

EXHIBIT D-8

Joint Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

US2008 1661623.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT D-8

Joint Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

US2008 1661623.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does

EXHIBIT D-8

Joint Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

US2008 1661623.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Linux 1.2.13 and the ’663 patent relate to deletion of records from
hash tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in Linux 1.2.13. Moreover, one of ordinary skill in the
art would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with Linux 1.2.13
would be nothing more than the predictable use of prior art elements according
to their established functions.

EXHIBIT D-8

Joint Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

US2008 1661623.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Linux 1.2.13 and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Linux 1.2.13 with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more

EXHIBIT D-8

Joint Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

US2008 1661623.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Linux 1.2.13 and the Opportunistic Garbage Collection Articles relate
to deletion of aged records, one of ordinary skill in the art would have
understood how to use the Opportunistic Garbage Collection Articles’ dynamic
decision on whether to perform a deletion based on a system load in other hash
table implementations such as Linux 1.2.13. Moreover, one of ordinary skill in
the art would recognize that it would improve similar systems and methods in
the same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily

EXHIBIT D-8

Joint Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

US2008 1661623.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Linux 1.2.13 would be nothing more than the predictable use of
prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Linux 1.2.13 and
would have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Linux 1.2.13 to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Linux 1.2.13 with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in Linux 1.2.13 can be burdensome
on the system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.

EXHIBIT D-8

Joint Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

US2008 1661623.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired records is
not disclosed by Linux 1.2.13 in combination with Dirks, Thatte, the ‘663 Patent, or
the Opportunistic Garbage Collection References, it is disclosed by Linux 2.0.1,
which describes dynamically determining maximum number of expired ones of the
records to remove when the linked list is accessed. It would have been obvious to
combine Linux 2.0.1 with Linux 1.2.13. For example, both Linux 2.0.1 and Linux
1.2.13 describe systems and methods for performing data storage and retrieval using
known programming techniques to yield a predictable result.

When invoked, the function rt_cache_add automatically increments an integer
variable rt_cache_size. See Linux 2.0.1, route.c at line 1359. When the
function rt_cache_add removes an expired record, the function rt_cache_add
decrements the variable rt_cache_size. See Linux 2.0.1, route.c at line 1373.
Thus, the variable rt_cache_size indicates the number of records in the hash
table (i.e., ip_rt_hash_table). Because the function rt_cache_add
automatically increments and decrements the variable rt_cache_size, the
variable rt_cache_size is determined dynamically.

EXHIBIT D-8

Joint Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

US2008 1661623.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1. The
function rt_garbage_collect_1 loops through each of the linked lists in the
ip_rt_hash_table global variable. See Linux 2.0.1, route.c at lines 1122-1138.
In this way, the function rt_garbage_collect_1 accesses the linked list. When
the function rt_garbage_collect_1 identifies a record that is expired, the
function rt_garbage_collect_1 decrements the variable rt_cache_size
and frees the record. See Linux 2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash table
can be in the linked list, the variable rt_cache_size can represent a dynamically
determined maximum number of expired ones of the records to remove when function
rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold RT_CACHE_SIZE_MAX.
If the number of records in the hash table exceeds the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_cache_add invokes a function
rt_garbage_collect. See Linux 2.0.1, route.c at lines 1341-1342. The function
rt_garbage_collect invokes a function rt_garbage_collect_1. See
Linux 2.0.1, route.c at line 1293. The function rt_garbage_collect invokes a
function rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in the hash
table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked list in the hash
table, the function rt_garbage_collect_1 looks at each record in the linked
list. See Linux 2.0.1, route.c at lines 1120-1131. For each record in a linked list, the
function rt_garbage_collect_1 determines whether the record’s last use time
plus the record’s expiration factor is later than the current time. See Linux 2.0.1,
route.c at line 1122. If the record’s last use time plus the record’s expiration factor is

EXHIBIT D-8

Joint Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

US2008 1661623.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

less than the current time, the function rt_garbage_collect_1 removes the
record from the linked list. See Linux 2.0.1, route.c at lines 1124-1130. The record’s
expiration factor is based on a variable expire and the record’s reference count. See
Linux 2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records in the
hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX. See
Linux 2.0.1, route.c at line 1133. If the number of items in the hash table is still
greater than the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_garbage_collect_1 halves the variable expire and loops through each of
the linked lists in the hash table. See Linux 2.0.1, route.c at line 1135. In this way,
the function rt_garbage_collect_1 can remove additional records from the
linked lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the function
rt_garbage_collect_1 are “expired” records. That is, the records removed by
the function rt_garbage_collect_1 are data items which after a limited time or after the
occurrence of some event become obsolete, such that their presence in the storage
system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when the
record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT is less than
the current time and the record’s reference count is zero. See Linux 2.0.1, route.c at
line 1369. Thus, the maximum number of records that the function rt_cache_add
can remove from a given linked list is limited to those records whose reference counts

EXHIBIT D-8

Joint Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

US2008 1661623.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not limited to
those records whose reference counts are zero. See Linux 2.0.1, route.c at line 1122.
Rather, the function rt_garbage_collect_1 can remove records whose
reference counts are zero and records whose reference counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than the
maximum number of records that the function rt_cache_add can remove from a
linked list.

3. A method for storing and
retrieving information records
using a linked list to store and
provide access to the records,
at least some of the records
automatically expiring, the
method comprising the steps
of:

7. A method for storing and
retrieving information records
using a hashing technique to
provide access to the records
and using an external
chaining technique to store
the records with same hash
address, at least some of the
records automatically
expiring, the method
comprising the steps of:

To the extent the preamble is a limitation, Linux 1.2.13 discloses a “method for
storing and retrieving information records using a linked list to store and provide
access to the records, at least some of the records automatically expiring” and a
“method for storing and retrieving information records using a hashing technique to
provide access to the records and using an external chaining technique to store the
records with same hash address, at least some of the records automatically expiring,”
as claimed.

For exmaple, the arp_table structure defined in arp.c is an example of a linked list
used to store and provide access to records, some of which are automatically expiring.

 72 /*
 73 * This structure defines the ARP mapping cache. As long as we make changes
 74 * in this structure, we keep interrupts of. But normally we can copy the
 75 * hardware address and the device pointer in a local variable and then make
 76 * any "long calls" to send a packet out.
 77 */
 78

EXHIBIT D-8

Joint Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

US2008 1661623.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

 79 struct arp_table
 80 {
 81 struct arp_table *next; /* Linked entry list */
 82 unsigned long last_used; /* For expiry */
 83 unsigned int flags; /* Control status */
 84 unsigned long ip; /* ip address of entry */
 85 unsigned long mask; /* netmask - used for generalised proxy arps (tridge) */
 86 unsigned char ha[MAX_ADDR_LEN];/* Hardware address */
 87 unsigned char hlen; /* Length of hardware address */
 88 unsigned short htype; /* Type of hardware in use */
 89 struct device *dev; /* Device the entry is tied to */
 90
 91 /*
 92 * The following entries are only used for unresolved hw addresses.
 93 */
 94
 95 struct timer_list timer; /* expire timer */
 96 int retries; /* remaining retries */
 97 struct sk_buff_head skb; /* list of queued packets */
 98 };

The arp_table structure is also used in the context of hashing and external chaining.
An example of this is shown in the following code from arp.c.

 156 /*
 157 * The size of the hash table. Must be a power of two.
 158 * Maybe we should remove hashing in the future for arp and concentrate
 159 * on Patrick Schaaf's Host-Cache-Lookup...
 160 */
 161

EXHIBIT D-8

Joint Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

US2008 1661623.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

 162
 163 #define ARP_TABLE_SIZE 16
 164
 165 /* The ugly +1 here is to cater for proxy entries. They are put in their
 166 own list for efficiency of lookup. If you don't want to find a proxy
 167 entry then don't look in the last entry, otherwise do
 168 */
 169
 170 #define FULL_ARP_TABLE_SIZE (ARP_TABLE_SIZE+1)
 171
 172 struct arp_table *arp_tables[FULL_ARP_TABLE_SIZE] =
 173 {
 174 NULL,
 175 };

Also, functions such as arp_check_expire() deal with automatically-expiring records
in the linked list. For example, the comments at lines 187-91 discuss records that
automatically expire.

 186/*
 187 * Check if there are too old entries and remove them. If the ATF_PERM
 188 * flag is set, they are always left in the arp cache (permanent entry).
 189 * Note: Only fully resolved entries, which don't have any packets in
 190 * the queue, can be deleted, since ARP_TIMEOUT is much greater than
 191 * ARP_MAX_TRIES*ARP_RES_TIME.
 192 */
 193
 194 static void arp_check_expire(unsigned long dummy)
 195 {
 196 int i;

EXHIBIT D-8

Joint Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

US2008 1661623.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

 197 unsigned long now = jiffies;
 198 unsigned long flags;
 199 save_flags(flags);
 200 cli();
 201
 202 for (i = 0; i < FULL_ARP_TABLE_SIZE; i++)
 203 {
 204 struct arp_table *entry;
 205 struct arp_table **pentry = &arp_tables[i];
 206
 207 while ((entry = *pentry) != NULL)
 208 {
 209 if ((now - entry->last_used) > ARP_TIMEOUT
 210 && !(entry->flags & ATF_PERM))
 211 {
 212 *pentry = entry->next; /* remove from list */
 213 del_timer(&entry->timer); /* Paranoia */
 214 kfree_s(entry, sizeof(struct arp_table));
 215 }
 216 else
 217 pentry = &entry->next; /* go to next entry */
 218 }
 219 }
 220 restore_flags(flags);
 221
 222 /*
 223 * Set the timer again.
 224 */
 225
 226 del_timer(&arp_timer);

EXHIBIT D-8

Joint Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

US2008 1661623.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

 227 arp_timer.expires = ARP_CHECK_INTERVAL;
 228 add_timer(&arp_timer);
 229 }

Also, functions such as arp_expire_request() deal with automatically-expiring records
in the linked list.

 367 /*
 368 * This function is called, if an entry is not resolved in ARP_RES_TIME.
 369 * Either resend a request, or give it up and free the entry.
 370 */
 371
 372 static void arp_expire_request (unsigned long arg)

art.

[3a] accessing the linked list
of records,

[7a] accessing a linked list of
records having same hash
address,

Linux 1.2.13 discloses “accessing the linked list of records” and “accessing a linked
list of records having same hash address,” as claimed. For example, as discussed
herein, the arp_tables[] structure is a hash table, and each linked list to which it points
contains records having the same hash address. For example, the for loop at line 202
iterates through each hash value, and the while loop at line 207 iterates through the
linked list associated with each has value. Thus, the while loop accesses the linked list
of records having the same hash address, as claimed.

 202 for (i = 0; i < FULL_ARP_TABLE_SIZE; i++)
 203 {
 204 struct arp_table *entry;
 205 struct arp_table **pentry = &arp_tables[i];
 206

EXHIBIT D-8

Joint Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

US2008 1661623.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

 207 while ((entry = *pentry) != NULL)
 208 {
 209 if ((now - entry->last_used) > ARP_TIMEOUT
 210 && !(entry->flags & ATF_PERM))
 211 {
 212 *pentry = entry->next; /* remove from list */
 213 del_timer(&entry->timer); /* Paranoia */
 214 kfree_s(entry, sizeof(struct arp_table));
 215 }
 216 else
 217 pentry = &entry->next; /* go to next entry */
 218 }
 219 }

As another example, the following code from arp_expire_request() in arp.c meets the
“accessing a linked list of records” and “accessing a linked list of records having
same hash address” limitation. An example is the hash value set at line 416 and used
as at line 424. As discussed herein, the arp_tables [] structure is a hash table that uses
linked lists to perform external chaining.

 409 /*
 410 * Arp request timed out. Delete entry and all waiting packets.
 411 * If we give each entry a pointer to itself, we don't have to
 412 * loop through everything again. Maybe hash is good enough, but
 413 * I will look at it later.
 414 */
 415
 416 hash = HASH(entry->ip);
 417

EXHIBIT D-8

Joint Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

US2008 1661623.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

 418 /* proxy entries shouldn't really time out so this is really
 419 only here for completeness
 420 */
 421 if (entry->flags & ATF_PUBL)
 422 pentry = &arp_tables[PROXY_HASH];
 423 else
 424 pentry = &arp_tables[hash];

[3b] identifying at least some
of the automatically expired
ones of the records, and

[7b] identifying at least some
of the automatically expired
ones of the records,

Linux 1.2.13 includes the step of “identifying at least some of the automatically
expired ones of the records,” as claimed. For example, the if statement at line 209-10
identifies expired records by comparing the last_used element to ARP_TIMEOUT. If
last_used is greater than ARP_TIMEOUT, then that entry has expired.

 207 while ((entry = *pentry) != NULL)
 208 {
 209 if ((now - entry->last_used) > ARP_TIMEOUT
 210 && !(entry->flags & ATF_PERM))
 211 {
 212 *pentry = entry->next; /* remove from list */
 213 del_timer(&entry->timer); /* Paranoia */
 214 kfree_s(entry, sizeof(struct arp_table));
 215 }
 216 else
 217 pentry = &entry->next; /* go to next entry */
 218 }

Another example is arp_expire_request() in arp.c, the while loop beginning at line
425 accesses the linked list as claimed. The if statement at line 427 identifies an
expired record.

EXHIBIT D-8

Joint Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

US2008 1661623.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

 425 while (*pentry != NULL)
 426 {
 427 if (*pentry == entry)
 428 {
 429 *pentry = entry->next; /* delete from linked list */
 430 del_timer(&entry->timer);
 431 restore_flags(flags);
 432 arp_release_entry(entry);
 433 return;
 434 }
 435 pentry = &(*pentry)->next;

 436 }

[3c] removing at least some
of the automatically expired
records from the linked list
when the linked list is
accessed.

[7c] removing at least some
of the automatically expired
records from the linked list
when the linked list is
accessed, and

Linux 1.2.13 includes the step of “removing at least some of the automatically
expired records from the linked list when the linked list is accessed,” as claimed. For
example, line 212 moves the pointer so that the entry is no longer in the linked list.
Also, line 214 calls the kfree_s() function (found in kmalloc.c), which removes the
expired element by marking the memory that it occupied as free. Depending on claim
construction, at least one of these actions is an example of “removing,” as claimed.

 209 if ((now - entry->last_used) > ARP_TIMEOUT
 210 && !(entry->flags & ATF_PERM))
 211 {
 212 *pentry = entry->next; /* remove from list */
 213 del_timer(&entry->timer); /* Paranoia */
 214 kfree_s(entry, sizeof(struct arp_table));
 215 }

Another example is arp_expire_request() in arp.c, the while loop beginning at line
425 accesses the linked list as claimed. The if statement at line 427 identifies an

EXHIBIT D-8

Joint Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

US2008 1661623.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

expired record. Depending on claim construction, the “removing” limitation is met
at, for example, line 429 and/or 432.

 425 while (*pentry != NULL)
 426 {
 427 if (*pentry == entry)
 428 {
 429 *pentry = entry->next; /* delete from linked list */
 430 del_timer(&entry->timer);
 431 restore_flags(flags);
 432 arp_release_entry(entry);
 433 return;
 434 }
 435 pentry = &(*pentry)->next;

 436 }

 [7d] inserting, retrieving or
deleting one of the records
from the system following the
step of removing.

Linux 1.2.13 includes the step of “inserting, retrieving or deleting one of the records
from the system following the step of removing,” as claimed. For example, the
function arp_check_expire() from arp.c is an example of code from Linux 1.2.13 that
meets this element. Note that the code at line 212 moves the pointer so that the
element is no longer in the linked list, then at line 214, kfree_s() is called which frees
the memory associated with the element.

After kfree_s() is called, control passes back to the while loop at line 207 and the next
record is retrieved. If that record is NULL, control passes back to the for loop at line
202 and, unless the end of the hash table has been reached, the linked list associated
with the next hash entry is retrieved.

Thus, this is an example of inserting, retrieving, or deleing one of the records from the
system following the step of removing.

EXHIBIT D-8

Joint Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

US2008 1661623.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

 202 for (i = 0; i < FULL_ARP_TABLE_SIZE; i++)
 203 {
 204 struct arp_table *entry;
 205 struct arp_table **pentry = &arp_tables[i];
 206
 207 while ((entry = *pentry) != NULL)
 208 {
 209 if ((now - entry->last_used) > ARP_TIMEOUT
 210 && !(entry->flags & ATF_PERM))
 211 {
 212 *pentry = entry->next; /* remove from list */
 213 del_timer(&entry->timer); /* Paranoia */
 214 kfree_s(entry, sizeof(struct arp_table));
 215 }
 216 else
 217 pentry = &entry->next; /* go to next entry */
 218 }
 219 }

Another example is arp_expire_request() in arp.c, the while loop beginning at line
425 accesses the linked list as claimed. Depending on claim construction, the
“removing” limitation is met at, for example, line 429 and/or 432. Also, an example
of the “deleting” following removing step is found in the call to arp_release_entry()
and its operations.

 425 while (*pentry != NULL)
 426 {
 427 if (*pentry == entry)
 428 {

EXHIBIT D-8

Joint Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

US2008 1661623.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

 429 *pentry = entry->next; /* delete from linked list */
 430 del_timer(&entry->timer);
 431 restore_flags(flags);
 432 arp_release_entry(entry);
 433 return;
 434 }
 435 pentry = &(*pentry)->next;

 436 }

The code for arp_release_entry() can be found at lines 236-254 of arp.c.

232 /*
233 * Release all linked skb's and the memory for this entry.
234 */
235
236 static void arp_release_entry(struct arp_table *entry)
237 {
238 struct sk_buff *skb;
239 unsigned long flags;
240
241 save_flags(flags);
242 cli();
243 /* Release the list of `skb' pointers. */
244 while ((skb = skb_dequeue(&entry->skb)) != NULL)
245 {
246 skb_device_lock(skb);
247 restore_flags(flags);
248 dev_kfree_skb(skb, FREE_WRITE);
249 }

EXHIBIT D-8

Joint Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

US2008 1661623.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

250 restore_flags(flags);
251 del_timer(&entry->timer);
252 kfree_s(entry, sizeof(struct arp_table));
253 return;
254 }

4. The method according to
claim 3 further including the
step of dynamically
determining maximum
number of expired ones of the
records to remove when the
linked list is accessed.

8. The method according to
claim 7 further including the
step of dynamically
determining maximum
number of expired ones of the
records to remove when the
linked list is accessed.

Linux 1.2.13 includes code that meets the “dynamically determining maximum
number for the record search means to remove in the accessed linked list of records”
claim limitation. For example, the following code from arp_check_expire() in arp.c
is an example of dynamically determining maximum number of expired ones of the
records to remove when the linked list is accessed.

This code meets this limitation in at least two ways. First, when the list is first
accessed by the while loop beginning at line 207, the maximum number of records to
remove is equal to the number of records in the list. But each time the while loop
iterates and the if statement evaluates FALSE, that number decreases by one. Hence,
it is dynamic.

Second, each time the if statement at line 209-10 is called, the maximum number of
records to remove is either 1 or 0, depending on whether the if statement evaluates to
TRUE or FALSE. If the if statement evaluates TRUE, then the maximum number to
remove is 1; if the if statement evaluates FALSE, the maximum number to remove is
0.

 207 while ((entry = *pentry) != NULL)
 208 {
 209 if ((now - entry->last_used) > ARP_TIMEOUT
 210 && !(entry->flags & ATF_PERM))
 211 {
 212 *pentry = entry->next; /* remove from list */

EXHIBIT D-8

Joint Invalidity Contentions & Production of
Documents

35 Case No. 6:09-CV-549-LED

US2008 1661623.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

 213 del_timer(&entry->timer); /* Paranoia */
 214 kfree_s(entry, sizeof(struct arp_table));
 215 }
 216 else
 217 pentry = &entry->next; /* go to next entry */
 218 }

Further, Linux 1.2.13 combined with Dirks, Thatte, the ’663 patent, and/or the
Opportunistic Garbage Collection Articles discloses dynamically determining
maximum number of expired ones of the records to remove when the linked list is
accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list

EXHIBIT D-8

Joint Invalidity Contentions & Production of
Documents

36 Case No. 6:09-CV-549-LED

US2008 1661623.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this

EXHIBIT D-8

Joint Invalidity Contentions & Production of
Documents

37 Case No. 6:09-CV-549-LED

US2008 1661623.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Linux 1.2.13 and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as Linux 1.2.13. Moreover, one of ordinary skill in the
art would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Linux 1.2.13 nothing more
than the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Linux 1.2.13 and

EXHIBIT D-8

Joint Invalidity Contentions & Production of
Documents

38 Case No. 6:09-CV-549-LED

US2008 1661623.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

would have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Linux 1.2.13 with the
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records disclosed by Thatte. For
example, Thatte discloses a system and method using hash tables and/or linked
lists and further discloses means for dynamically determining the maximum
number for the record search means to remove in the accessed linked list of
records. The disclosure of these claim elements in Thatte is clearly shown in
the chart of Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, Ass both Linux 1.2.13 and Thatte teach a system of data
storage and retrieval, one of ordinary skill in the art would recognize that the
result of combining Linux 1.2.13 with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove as taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine Linux
1.2.13 with Thatte and recognize the benefits of doing so. For example, the
removal of expired records described in Linux 1.2.13 can be burdensome on
the system, adding to the system’s load and slowing down the system’s
processing. One of ordinary skill in the art would recognize that combining
Linux 1.2.13 with the teachings of Thatte would solve this problem by

EXHIBIT D-8

Joint Invalidity Contentions & Production of
Documents

39 Case No. 6:09-CV-549-LED

US2008 1661623.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

dynamically determining how many records to delete based on, among other
things, the system load. Moreover, the '120 patent discloses that "[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one." '120 at
7:10-15. Thus, the '120 patent provides motivations to combine Linux 1.2.13
with Thatte.

Alternatively, it would also be obvious to combine Linux 1.2.13 with the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by

EXHIBIT D-8

Joint Invalidity Contentions & Production of
Documents

40 Case No. 6:09-CV-549-LED

US2008 1661623.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT D-8

Joint Invalidity Contentions & Production of
Documents

41 Case No. 6:09-CV-549-LED

US2008 1661623.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does

EXHIBIT D-8

Joint Invalidity Contentions & Production of
Documents

42 Case No. 6:09-CV-549-LED

US2008 1661623.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Linux 1.2.13 and the ’663 patent relate to deletion of records from
hash tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in Linux 1.2.13. Moreover, one of ordinary skill in the
art would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with Linux 1.2.13
would be nothing more than the predictable use of prior art elements according
to their established functions.

EXHIBIT D-8

Joint Invalidity Contentions & Production of
Documents

43 Case No. 6:09-CV-549-LED

US2008 1661623.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Linux 1.2.13 and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Linux 1.2.13 with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more

EXHIBIT D-8

Joint Invalidity Contentions & Production of
Documents

44 Case No. 6:09-CV-549-LED

US2008 1661623.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Linux 1.2.13 and the Opportunistic Garbage Collection Articles relate
to deletion of aged records, one of ordinary skill in the art would have
understood how to use the Opportunistic Garbage Collection Articles’ dynamic
decision on whether to perform a deletion based on a system load in other hash
table implementations such as Linux 1.2.13. Moreover, one of ordinary skill in
the art would recognize that it would improve similar systems and methods in
the same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily

EXHIBIT D-8

Joint Invalidity Contentions & Production of
Documents

45 Case No. 6:09-CV-549-LED

US2008 1661623.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Linux 1.2.13 would be nothing more than the predictable use of
prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Linux 1.2.13 and
would have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Linux 1.2.13 to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Linux 1.2.13 with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in Linux 1.2.13 can be burdensome
on the system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.

EXHIBIT D-8

Joint Invalidity Contentions & Production of
Documents

46 Case No. 6:09-CV-549-LED

US2008 1661623.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired records is
not disclosed by Linux 1.2.13 in combination with Dirks, Thatte, the ‘663 Patent, or
the Opportunistic Garbage Collection References, it is disclosed by Linux 2.0.1,
which describes dynamically determining maximum number of expired ones of the
records to remove when the linked list is accessed. It would have been obvious to
combine Linux 2.0.1 with Linux 1.2.13. For example, both Linux 2.0.1 and Linux
1.2.13 describe systems and methods for performing data storage and retrieval using
known programming techniques to yield a predictable result.

When invoked, the function rt_cache_add automatically increments an integer
variable rt_cache_size. See Linux 2.0.1, route.c at line 1359. When the
function rt_cache_add removes an expired record, the function rt_cache_add
decrements the variable rt_cache_size. See Linux 2.0.1, route.c at line 1373.
Thus, the variable rt_cache_size indicates the number of records in the hash
table (i.e., ip_rt_hash_table). Because the function rt_cache_add
automatically increments and decrements the variable rt_cache_size, the
variable rt_cache_size is determined dynamically.

EXHIBIT D-8

Joint Invalidity Contentions & Production of
Documents

47 Case No. 6:09-CV-549-LED

US2008 1661623.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1. The
function rt_garbage_collect_1 loops through each of the linked lists in the
ip_rt_hash_table global variable. See Linux 2.0.1, route.c at lines 1122-1138.
In this way, the function rt_garbage_collect_1 accesses the linked list. When
the function rt_garbage_collect_1 identifies a record that is expired, the
function rt_garbage_collect_1 decrements the variable rt_cache_size
and frees the record. See Linux 2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash table
can be in the linked list, the variable rt_cache_size can represent a dynamically
determined maximum number of expired ones of the records to remove when function
rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold RT_CACHE_SIZE_MAX.
If the number of records in the hash table exceeds the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_cache_add invokes a function
rt_garbage_collect. See Linux 2.0.1, route.c at lines 1341-1342. The function
rt_garbage_collect invokes a function rt_garbage_collect_1. See
Linux 2.0.1, route.c at line 1293. The function rt_garbage_collect invokes a
function rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in the hash
table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked list in the hash
table, the function rt_garbage_collect_1 looks at each record in the linked
list. See Linux 2.0.1, route.c at lines 1120-1131. For each record in a linked list, the
function rt_garbage_collect_1 determines whether the record’s last use time
plus the record’s expiration factor is later than the current time. See Linux 2.0.1,
route.c at line 1122. If the record’s last use time plus the record’s expiration factor is

EXHIBIT D-8

Joint Invalidity Contentions & Production of
Documents

48 Case No. 6:09-CV-549-LED

US2008 1661623.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

less than the current time, the function rt_garbage_collect_1 removes the
record from the linked list. See Linux 2.0.1, route.c at lines 1124-1130. The record’s
expiration factor is based on a variable expire and the record’s reference count. See
Linux 2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records in the
hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX. See
Linux 2.0.1, route.c at line 1133. If the number of items in the hash table is still
greater than the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_garbage_collect_1 halves the variable expire and loops through each of
the linked lists in the hash table. See Linux 2.0.1, route.c at line 1135. In this way,
the function rt_garbage_collect_1 can remove additional records from the
linked lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the function
rt_garbage_collect_1 are “expired” records. That is, the records removed by
the function rt_garbage_collect_1 are data items which after a limited time or after the
occurrence of some event become obsolete, such that their presence in the storage
system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when the
record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT is less than
the current time and the record’s reference count is zero. See Linux 2.0.1, route.c at
line 1369. Thus, the maximum number of records that the function rt_cache_add
can remove from a given linked list is limited to those records whose reference counts

EXHIBIT D-8

Joint Invalidity Contentions & Production of
Documents

49 Case No. 6:09-CV-549-LED

US2008 1661623.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not limited to
those records whose reference counts are zero. See Linux 2.0.1, route.c at line 1122.
Rather, the function rt_garbage_collect_1 can remove records whose
reference counts are zero and records whose reference counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than the
maximum number of records that the function rt_cache_add can remove from a
linked list.

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

1. An information storage and
retrieval system, the system
comprising:

5. An information storage and
retrieval system, the system
comprising:

To the extent the preamble is limiting, Linux 1.3.51 discloses an “information storage
and retrieval system,” as claimed.

For example, route.c in Linux 1.3.51 includes fib_node and fib_zone structures that
are used to provide hashing with external chaining using one or more linked lists.
These structures are defined at lines 77-85, 104-112, and 114-117.

73 /*
74 * Forwarding Information Base definitions.
75 */
76
77 struct fib_node
78 {
79 struct fib_node *fib_next;
80 __u32 fib_dst;
81 unsigned long fib_use;
82 struct fib_info *fib_info;
83 short fib_metric;
84 unsigned char fib_tos;
85 };
86
87 /*
88 * This structure contains data shared by many of routes.
89 */
90
91 struct fib_info
92 {
93 struct fib_info *fib_next;

1 Publicly available as of December 27, 1995; available at http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.51.tar.gz.

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

94 struct fib_info *fib_prev;
95 __u32 fib_gateway;
96 struct device *fib_dev;
97 int fib_refcnt;
98 unsigned long fib_window;
99 unsigned short fib_flags;
100 unsigned short fib_mtu;
101 unsigned short fib_irtt;
102 };
103
104 struct fib_zone
105 {
106 struct fib_zone *fz_next;
107 struct fib_node **fz_hash_table;
108 struct fib_node *fz_list;
109 int fz_nent;
110 int fz_logmask;
111 __u32 fz_mask;
112 };
113
114 static struct fib_zone *fib_zones[33];
115 static struct fib_zone *fib_zone_list;
116 static struct fib_node *fib_loopback = NULL;
117 static struct fib_info *fib_info_list;

[1a] a linked list to store and
provide access to records
stored in a memory of the
system, at least some of the
records automatically

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an external
chaining technique to store

Linux 1.3.51 discloses “a linked list to store and provide access to records stored in a
memory of the system, at least some of the records automatically expiring” and “a
hashing means to provide access to records stored in a memory of the system and
using an external chaining technique to store the records with same hash address, at
least some of the records automatically expiring.”

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

expiring, the records with same hash

address, at least some of the
records automatically
expiring,

For example, the fib_node structure defined at lines 77-85 of route.c includes a pointer
to the next fib_node structure in a linked list (see line 79), which is used in the context
of hashing with external chaining.

The fib_zone structure can contain a pointer to a hash table (see line 107), which uses
external chaining.

An example of how these structures operate can be seen in the fib_add_1() function in
route.c, which creates a hash table. The fz variable (e.g., at line 624) represents a
fib_zone structure, which, as described above, includes a hash table, which is a pointer
to a pointer to a fig_node element. The fib_node structure is a linked list, as shown by
the fact that each element contains a pointer to the next element in the list (i.e.,
fib_next).

620 /*
621 * If zone overgrows RTZ_HASHING_LIMIT, create hash table.
622 */
623
624 if (fz->fz_nent >= RTZ_HASHING_LIMIT && !fz->fz_hash_table &&
logmask<32)
625 {
626 struct fib_node ** ht;
627 #if RT_CACHE_DEBUG
628 printk("fib_add_1: hashing for zone %d started\n", logmask);
629 #endif
630 ht = kmalloc(RTZ_HASH_DIVISOR*sizeof(struct rtable*), GFP_KERNEL);
631
632 if (ht)
633 {

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

634 memset(ht, 0, RTZ_HASH_DIVISOR*sizeof(struct fib_node*));
635 cli();
636 f1 = fz->fz_list;
637 while (f1)
638 {
639 struct fib_node * next;
640 unsigned hash = fz_hash_code(f1->fib_dst, logmask);
641 next = f1->fib_next;
642 f1->fib_next = ht[hash];
643 ht[hash] = f1;
644 f1 = next;
645 }
646 fz->fz_list = NULL;
647 fz->fz_hash_table = ht;
648 sti();
649 }
650 }
651
652 if (fz->fz_hash_table)
653 fp = &fz->fz_hash_table[fz_hash_code(dst, logmask)];
654 else
655 fp = &fz->fz_list;
656
657 /*
658 * Scan list to find the first route with the same destination
659 */
660 while ((f1 = *fp) != NULL)
661 {
662 if (f1->fib_dst == dst)
663 break;

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

664 fp = &f1->fib_next;
665 }
666

An example of code that meets the “automatically expiring” limitation can be found at
lines 670-82. For example, a route with the same destination and less than or equal
metric value has automatically expired, and, according to the comment at lines 675-
77, is purged.

667 /*
668 * Find route with the same destination and less (or equal) metric.
669 */
670 while ((f1 = *fp) != NULL && f1->fib_dst == dst)
671 {
672 if (f1->fib_metric >= metric)
673 break;
674 /*
675 * Record route with the same destination and gateway,
676 * but less metric. We'll delete it
677 * after instantiation of new route.
678 */
679 if (f1->fib_info->fib_gateway == gw)
680 dup_fp = fp;
681 fp = &f1->fib_next;
682 }

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of records
having the same hash address,

Linux 1.3.51 discloses “a record search means utilizing a search key to access the
linked list” and “a record search means utilizing a search key to access a linked list
of records having the same hash address.”

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

For example, the fib_add_1() function is an example of a record search means, as
claimed. An example of how this uses a “search key” can be found at lines 652-53.
This code uses a hash value to find the address of the first element of a linked list
associated with a particular hash value.

652 if (fz->fz_hash_table)
653 fp = &fz->fz_hash_table[fz_hash_code(dst, logmask)];

[1c] the record search means
including a means for
identifying and removing at
least some of the expired ones
of the records from the linked
list when the linked list is
accessed, and

[5c] the record search means
including means for
identifying and removing at
least some expired ones of the
records from the linked list of
records when the linked list is
accessed, and

Linux 1.3.51 discloses “the record search means including a means for identifying
and removing at least some of the expired ones of the records from the linked list
when the linked list is accessed” and “the record search means including means for
identifying and removing at least some expired ones of the records from the linked
list of records when the linked list is accessed,” as claimed.

For example, the code at lines 670-82 of route.c identifies a record in the linked list
corresponding to a route with the same destination and less or equal metric. Thus,
it accesses the linked list and identifies automatically expiring records.

667 /*
668 * Find route with the same destination and less (or equal) metric.
669 */
670 while ((f1 = *fp) != NULL && f1->fib_dst == dst)
671 {
672 if (f1->fib_metric >= metric)
673 break;
674 /*
675 * Record route with the same destination and gateway,
676 * but less metric. We'll delete it
677 * after instantiation of new route.
678 */

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

679 if (f1->fib_info->fib_gateway == gw)
680 dup_fp = fp;
681 fp = &f1->fib_next;
682 }

Code within Linux 1.3.51 also performs the “removing” step when the list is accessed.
An example of this can be found at lines 707-732 of route.c. For example, the if
statement at line 718 identifies expired records, and if an expired record is found then
line 721 moves the pointer so that record is no longer in the list. Depending on claim
construction, this is the “removing” step. Also, the call to fib_free_node() at line 727
frees the memory used by the record. Depending on claim construction, this is the
“removing” step. Both steps “identifying and removing” are performed within the
while loop that starts at line 716 which accesses the list.

707 /*
708 * Delete route with the same destination and gateway.
709 * Note that we should have at most one such route.
710 */
711 if (dup_fp)
712 fp = dup_fp;
713 else
714 fp = &f->fib_next;
715
716 while ((f1 = *fp) != NULL && f1->fib_dst == dst)
717 {
718 if (f1->fib_info->fib_gateway == gw)
719 {
720 cli();
721 *fp = f1->fib_next;
722 if (fib_loopback == f1)

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

723 fib_loopback = NULL;
724 sti();
725 ip_netlink_msg(RTMSG_DELROUTE, dst, gw, mask, flags,
726 metric, f1->fib_info->fib_dev->name);
727 fib_free_node(f1);
728 fz->fz_nent--;
729 break;
730 }
731 fp = &f1->fib_next;
732 }

The fib_free_node() function is found at lines 185-203 in route.c. As shown below,
fib_free_node() moves pointers (lines 193-98) and calls kfree_s() to mark the memory
as available (line 200).

181 /*
182 * Free FIB node.
183 */
184
185 static void fib_free_node(struct fib_node * f)
186 {
187 struct fib_info * fi = f->fib_info;
188 if (!--fi->fib_refcnt)
189 {
190 #if RT_CACHE_DEBUG >= 2
191 printk("fib_free_node: fi %08x/%s is free\n", fi-
>fib_gateway, fi->fib_dev->name);
192 #endif
193 if (fi->fib_next)
194 fi->fib_next->fib_prev = fi->fib_prev;

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

195 if (fi->fib_prev)
196 fi->fib_prev->fib_next = fi->fib_next;
197 if (fi == fib_info_list)
198 fib_info_list = fi->fib_next;
199 }
200 kfree_s(f, sizeof(struct fib_node));
201 }

The malloc.h file in Linux 1.3.51 defines kfree_s() as follows:

9 #define kfree_s(a,b) kfree(a)

The kmalloc.c file in Linux 1.3.51 defines kfree() as follows:

276 void kfree(void *ptr)
277 {
278 int size;
279 unsigned long flags;
280 int order;
281 register struct block_header *p;
282 struct page_descriptor *page, **pg;
283
284 if (!ptr)
285 return;
286 p = ((struct block_header *) ptr) - 1;
287 page = PAGE_DESC(p);
288 order = page->order;
289 pg = &sizes[order].firstfree;
290 if (p->bh_flags == MF_DMA) {
291 p->bh_flags = MF_USED;

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

292 pg = &sizes[order].dmafree;
293 }
294
295 if ((order < 0) ||
296 (order >= sizeof(sizes) / sizeof(sizes[0])) ||
297 (((long) (page->next)) & ~PAGE_MASK) ||
298 (p->bh_flags != MF_USED)) {
299 printk("kfree of non-kmalloced memory: %p, next= %p,
order=%d\n",
300 p, page->next, page->order);
301 return;
302 }
303 size = p->bh_length;
304 p->bh_flags = MF_FREE; /* As of now this block is officially free */
305 save_flags(flags);
306 cli();
307 p->bh_next = page->firstfree;
308 page->firstfree = p;
309 page->nfree++;
310
311 if (page->nfree == 1) {
312 /* Page went from full to one free block: put it on the freelist. */
313 page->next = *pg;
314 *pg = page;
315 }
316 /* If page is completely free, free it */
317 if (page->nfree == NBLOCKS(order)) {
318 for (;;) {
319 struct page_descriptor *tmp = *pg;
320 if (!tmp) {

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

321 printk("Ooops. page %p doesn't show on freelist.\n",
page);
322 break;
323 }
324 if (tmp == page) {
325 *pg = page->next;
326 break;
327 }
328 pg = &tmp->next;
329 }
330 sizes[order].npages--;
331 free_pages((long) page, sizes[order].gfporder);
332 }
333 sizes[order].nfrees++;
334 sizes[order].nbytesmalloced -= size;
335 restore_flags(flags);
336 }

[1d] means, utilizing the
record search means, for
accessing the linked list and,
at the same time, removing at
least some of the expired ones
of the records in the linked
list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same time,
removing at least some
expired ones of the records in
the accessed linked list of
records.

Linux 1.3.51 discloses “means, utilizing the record search means, for accessing the
linked list and, at the same time, removing at least some of the expired ones of the
records in the linked list “ and “meals [sic “means”], utilizing the record search
means, for inserting, retrieving, and deleting records from the system and, at the
same time, removing at least some expired ones of the records in the accessed linked
list of records,” as claimed.

For example, functions such as rt_add() call fib_add_1()—e.g., at line 1310 of
route.c below. Such functions are examples of “means utilizing the record search
means,” as claimed.

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

1303 static void rt_add(short flags, __u32 dst, __u32 mask,
1304 __u32 gw, struct device *dev, unsigned short mss,
1305 unsigned long window, unsigned short irtt, short metric)
1306 {
1307 while (ip_rt_lock)
1308 sleep_on(&rt_wait);
1309 ip_rt_fast_lock();
1310 fib_add_1(flags, dst, mask, gw, dev, mss, window, irtt, metric);
1311 ip_rt_unlock();
1312 wake_up(&rt_wait);
1313 }

The fib_add_1() function is an example of code that meets the “inserting” limitations.
For example, see the code below from route.c.

694 /*
695 * Insert new entry to the list.
696 */
697
698 cli();
699 f->fib_next = f1;
700 *fp = f;
701 if (!fib_loopback && (fi->fib_dev->flags & IFF_LOOPBACK))
702 fib_loopback = f;
703 sti();
704 fz->fz_nent++;
705 ip_netlink_msg(RTMSG_NEWROUTE, dst, gw, mask, flags, metric, fi-
>fib_dev->name);

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

The fib_add_l() function also is an example of code that meets the “accessing,”
“retrieving” and “deleting” limitations at the same time as “removing.” The while
loop beginning at line 716 is an example of code that meets the “retrieving” and
“accessing” claim limitations. In order to iterate through the linked list, the while loop
must retrieve and access each element of the list.

Examples of code meeting the “removing” and “deleting” limitations can be found at
lines 721 and 727. Line 721 moves the pointer to the next element. Depending on
claim construction, this is the “removing” step. Alternatively, depending on claim
construction, this is the “deleting” step, and the call to fib_free_node() is the
“removing” step. The if statement at line 718 is an example of identifying expired
records.

Both of these steps (identifying and removing) take place when the list is accessed.
For example, the while loops above iterate through the elements of the list in order to
test each element to determine whether it should be removed. In order to identify the
elements, the list must be accessed

707 /*
708 * Delete route with the same destination and gateway.
709 * Note that we should have at most one such route.
710 */
711 if (dup_fp)
712 fp = dup_fp;
713 else
714 fp = &f->fib_next;
715
716 while ((f1 = *fp) != NULL && f1->fib_dst == dst)
717 {

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

718 if (f1->fib_info->fib_gateway == gw)
719 {
720 cli();
721 *fp = f1->fib_next;
722 if (fib_loopback == f1)
723 fib_loopback = NULL;
724 sti();
725 ip_netlink_msg(RTMSG_DELROUTE, dst, gw, mask, flags,
726 metric, f1->fib_info->fib_dev->name);
727 fib_free_node(f1);
728 fz->fz_nent--;
729 break;
730 }
731 fp = &f1->fib_next;
732 }

To the extent that Linux 1.3.51 does not disclose this limitation, gcache.c from Xinu
Operating System for Sparc (1991) (hereinafter “gcache.c”) and Douglas Comer and
Shawn Ostermann, GCache: A Generalized Caching Mechanism, Purdue University
(Revised March 1992) (hereinafter “Comer”) (collectively hereinafter “GCache”)
discloses means, utilizing the record search means, for accessing the linked list and, at
the same time, removing at least some of the expired ones of the records in the linked
list, and also discloses utilizing the record search means, for inserting, retrieving, and
deleting records from the system and, at the same time, removing at least some
expired ones of the records in the accessed linked list of records.
One of ordinary skill in the art would be motivated to, and would understand how to,
combine the system disclosed in Linux 1.3.51 with the a hashing means to provide
access to records stored in a memory of the system and using an external chaining
technique to store the records with same hash address, at least some of the records
automatically expiring disclosed by GCache. See, e.g., Comer at 3-10. For example,

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

since Linux 1.3.51 utilizes a linked list for storing records and GCache discloses a
system that attaches or chains linked lists to a hash table for storing records, one of
ordinary skill in the art would be motivated to combine the linked list of Linux 1.3.51
with the system including a hash table using external chaining of linked lists disclosed
by GCache. The disclosure of these claim elements in GCache is clearly shown in the
chart of GCache, which is hereby incorporated by reference in its entirety.
Moreover, one of ordinary skill in the art would recognize that these combinations
would improve the similar systems and methods in the same way. Additionally, one
of ordinary skill in the art would recognize that the result of combining Linux 1.3.51
with GCache would be nothing more than the predictable use of prior art elements
according to their established functions.

For example, Comer discloses means for inserting, retrieving, and deleting records:

“Cainsert() inserts a new mapping, key => res, into the cache.” See Comer at 4.

See also, gcache.c at lines 246-304, defining cainsert().

“Calookup() searches for a cached entry matching the key passed as an argument.”
See Comer at 4.

See also, gcache.c at lines 312-347 and 643-678, defining calookup() and
cagetindex().

“Caremove() removes the cached entry whose key is given, if one exists.” See Comer
at 4.

See also, gcache.c at lines 355-376, defining caremove().

Each of the means for inserting, retrieving, and deleting, utilizes a record search

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

means, the function cagetindex(), which removes an expired record from the list as
described below. The individual calls of cagetindex() are listed here:

In cainsert():
275 if ((ixnew = cagetindex(pcb,pkey,keylen,hash)) !=
NULL_IX) {

In calookup():
333 if ((ix = cagetindex(pcb,pkey,keylen,hash)) !=
NULL_IX) {

In caremove():
370 if ((ix = cagetindex(pcb,pkey,keylen,hash)) !=
NULL_IX) {

“In a simpler and cleaner design chosen for GCache, each cached entry contains a
timestamp encoding the insertion time. If a lookup matches an entry with an expired
timestamp, that entry is removed rather than being returned.” See Comer at 10.

At lines 655-670 of gcache.c, cagetindex() executes a while loop to traverse a linked
list attached to a bucket of the hash table, accessing records stored therein. In the
subset of that code listed below, cagetindex() utilizes caisold() to identify if a
matching record is expired and removes the expired record from the linked list using
caunlink():

666 if (caisold(pcb,pce)) {
667 ++pcb->cb_tos;
668 caunlink(pcb,ix);
669 return(NULL_IX);
670 } else {

2. The information storage 6. The information storage Linux 1.3.51 includes code that meets the “dynamically determining maximum

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

and retrieval system
according to claim 1 further
including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed linked
list of records.

and retrieval system
according to claim 5 further
including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed linked
list of records.

number for the record search means to remove in the accessed linked list of records”
claim limitation.

For example, code in the fib_add_1() function in route.c determines the maximum
number of records to remove. As the comment at lines 708-09 states, there should be
no more than one route removed. Thus, the maximum number to remove is either 0 or
1. The if statement at line 718 dynamically determines whether that number is 0 or 1.
707 /*
708 * Delete route with the same destination and gateway.
709 * Note that we should have at most one such route.
710 */
711 if (dup_fp)
712 fp = dup_fp;
713 else
714 fp = &f->fib_next;
715
716 while ((f1 = *fp) != NULL && f1->fib_dst == dst)
717 {
718 if (f1->fib_info->fib_gateway == gw)
719 {
720 cli();
721 *fp = f1->fib_next;
722 if (fib_loopback == f1)
723 fib_loopback = NULL;
724 sti();
725 ip_netlink_msg(RTMSG_DELROUTE, dst, gw, mask, flags,
726 metric, f1->fib_info->fib_dev->name);
727 fib_free_node(f1);
728 fz->fz_nent--;
729 break;

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

730 }
731 fp = &f1->fib_next;
732 }

Further, Linux 1.3.51 combined with Dirks, Thatte, the ’663 patent and/or the
Opportunistic Garbage Collection Articles discloses an information storage and
retrieval system further including means for dynamically determining maximum
number for the record search means to remove in the accessed linked list of records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Linux 1.3.51 and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as Linux 1.3.51. Moreover, one of ordinary skill in the
art would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Linux 1.3.51 nothing more
than the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Linux 1.3.51 and
would have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.`

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Linux 1.3.51 with the
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records disclosed by Thatte. For
example, Thatte discloses a system and method using hash tables and/or linked
lists and further discloses means for dynamically determining the maximum
number for the record search means to remove in the accessed linked list of
records. The disclosure of these claim elements in Thatte is clearly shown in
the chart of Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, Ass both Linux 1.3.51 and Thatte teach a system of data
storage and retrieval, one of ordinary skill in the art would recognize that the
result of combining Linux 1.3.51 with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove as taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine Linux
1.3.51 with Thatte and recognize the benefits of doing so. For example, the
removal of expired records described in Linux 1.3.51 can be burdensome on
the system, adding to the system’s load and slowing down the system’s
processing. One of ordinary skill in the art would recognize that combining
Linux 1.3.51 with the teachings of Thatte would solve this problem by
dynamically determining how many records to delete based on, among other
things, the system load. Moreover, the '120 patent discloses that "[a] person
skilled in the art will appreciate that the technique of removing all expired

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one." '120 at
7:10-15. Thus, the '120 patent provides motivations to combine Linux 1.3.51
with Thatte.

Alternatively, it would also be obvious to combine Linux 1.3.51 with the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Linux 1.3.51 and the ’663 patent relate to deletion of records from
hash tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in Linux 1.3.51. Moreover, one of ordinary skill in the
art would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with Linux 1.3.51
would be nothing more than the predictable use of prior art elements according
to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Linux 1.3.51 and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Linux 1.3.51 with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Linux 1.3.51 and the Opportunistic Garbage Collection Articles relate
to deletion of aged records, one of ordinary skill in the art would have

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

understood how to use the Opportunistic Garbage Collection Articles’ dynamic
decision on whether to perform a deletion based on a system load in other hash
table implementations such as Linux 1.3.51. Moreover, one of ordinary skill in
the art would recognize that it would improve similar systems and methods in
the same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Linux 1.3.51 would be nothing more than the predictable use of
prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Linux 1.3.51 and
would have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Linux 1.3.51 to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

disclosed in Linux 1.3.51 with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in Linux 1.3.51 can be burdensome
on the system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired records is
not disclosed by Linux 1.3.51 in combination with Dirks, Thatte, the ‘663 Patent, or
the Opportunistic Garbage Collection References, it is disclosed by Linux 2.0.1,
which describes dynamically determining maximum number of expired ones of the
records to remove when the linked list is accessed. It would have been obvious to
combine Linux 2.0.1 with Linux 1.3.51. For example, both Linux 2.0.1 and Linux
1.3.51 describe systems and methods for performing data storage and retrieval using
known programming techniques to yield a predictable result.

When invoked, the function rt_cache_add automatically increments an integer
variable rt_cache_size. See Linux 2.0.1, route.c at line 1359. When the

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

function rt_cache_add removes an expired record, the function rt_cache_add
decrements the variable rt_cache_size. See Linux 2.0.1, route.c at line 1373.
Thus, the variable rt_cache_size indicates the number of records in the hash
table (i.e., ip_rt_hash_table). Because the function rt_cache_add
automatically increments and decrements the variable rt_cache_size, the
variable rt_cache_size is determined dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1. The
function rt_garbage_collect_1 loops through each of the linked lists in the
ip_rt_hash_table global variable. See Linux 2.0.1, route.c at lines 1122-1138.
In this way, the function rt_garbage_collect_1 accesses the linked list. When
the function rt_garbage_collect_1 identifies a record that is expired, the
function rt_garbage_collect_1 decrements the variable rt_cache_size
and frees the record. See Linux 2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash table
can be in the linked list, the variable rt_cache_size can represent a dynamically
determined maximum number of expired ones of the records to remove when function
rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold RT_CACHE_SIZE_MAX.
If the number of records in the hash table exceeds the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_cache_add invokes a function
rt_garbage_collect. See Linux 2.0.1, route.c at lines 1341-1342. The function
rt_garbage_collect invokes a function rt_garbage_collect_1. See
Linux 2.0.1, route.c at line 1293. The function rt_garbage_collect invokes a
function rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

The function rt_garbage_collect_1 loops through each linked list in the hash
table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked list in the hash
table, the function rt_garbage_collect_1 looks at each record in the linked
list. See Linux 2.0.1, route.c at lines 1120-1131. For each record in a linked list, the
function rt_garbage_collect_1 determines whether the record’s last use time
plus the record’s expiration factor is later than the current time. See Linux 2.0.1,
route.c at line 1122. If the record’s last use time plus the record’s expiration factor is
less than the current time, the function rt_garbage_collect_1 removes the
record from the linked list. See Linux 2.0.1, route.c at lines 1124-1130. The record’s
expiration factor is based on a variable expire and the record’s reference count. See
Linux 2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records in the
hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX. See
Linux 2.0.1, route.c at line 1133. If the number of items in the hash table is still
greater than the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_garbage_collect_1 halves the variable expire and loops through each of
the linked lists in the hash table. See Linux 2.0.1, route.c at line 1135. In this way,
the function rt_garbage_collect_1 can remove additional records from the
linked lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the function
rt_garbage_collect_1 are “expired” records. That is, the records removed by
the function rt_garbage_collect_1 are data items which after a limited time or after the
occurrence of some event become obsolete, such that their presence in the storage

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when the
record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT is less than
the current time and the record’s reference count is zero. See Linux 2.0.1, route.c at
line 1369. Thus, the maximum number of records that the function rt_cache_add
can remove from a given linked list is limited to those records whose reference counts
are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not limited to
those records whose reference counts are zero. See Linux 2.0.1, route.c at line 1122.
Rather, the function rt_garbage_collect_1 can remove records whose
reference counts are zero and records whose reference counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than the
maximum number of records that the function rt_cache_add can remove from a
linked list.

3. A method for storing and
retrieving information records
using a linked list to store and
provide access to the records,
at least some of the records
automatically expiring, the
method comprising the steps
of:

7. A method for storing and
retrieving information records
using a hashing technique to
provide access to the records
and using an external
chaining technique to store
the records with same hash
address, at least some of the
records automatically
expiring, the method

To the extent the preamble is a limitation, Linux 1.3.51 discloses a “method for
storing and retrieving information records using a linked list to store and provide
access to the records, at least some of the records automatically expiring” and a
“method for storing and retrieving information records using a hashing technique to
provide access to the records and using an external chaining technique to store the
records with same hash address, at least some of the records automatically expiring,”
as claimed.

For example, route.c in Linux 1.3.51 includes fib_node and fib_zone structures that
are used to provide hashing with external chaining using one or more linked lists.

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

comprising the steps of: These structures are defined at lines 77-85, 104-112, and 114-117.

73 /*
74 * Forwarding Information Base definitions.
75 */
76
77 struct fib_node
78 {
79 struct fib_node *fib_next;
80 __u32 fib_dst;
81 unsigned long fib_use;
82 struct fib_info *fib_info;
83 short fib_metric;
84 unsigned char fib_tos;
85 };
86
87 /*
88 * This structure contains data shared by many of routes.
89 */
90
91 struct fib_info
92 {
93 struct fib_info *fib_next;
94 struct fib_info *fib_prev;
95 __u32 fib_gateway;
96 struct device *fib_dev;
97 int fib_refcnt;
98 unsigned long fib_window;
99 unsigned short fib_flags;
100 unsigned short fib_mtu;

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

101 unsigned short fib_irtt;
102 };
103
104 struct fib_zone
105 {
106 struct fib_zone *fz_next;
107 struct fib_node **fz_hash_table;
108 struct fib_node *fz_list;
109 int fz_nent;
110 int fz_logmask;
111 __u32 fz_mask;
112 };
113
114 static struct fib_zone *fib_zones[33];
115 static struct fib_zone *fib_zone_list;
116 static struct fib_node *fib_loopback = NULL;
117 static struct fib_info *fib_info_list;

An example of code disclosing a hashing technique as claimed can be found in
fib_del_1() in route.c, such as at lines 415 and 429. As shown in the discussion of the
fib_node and fib_zone structures, this hashing technique uses external chaining,
wherein a linked list is associated with elements having the same hash value.

409 if (!mask)
410 {
411 for (fz=fib_zone_list; fz; fz = fz->fz_next)
412 {
413 int tmp;
414 if (fz->fz_hash_table)
415 fp = &fz->fz_hash_table[fz_hash_code(dst, fz-

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

>fz_logmask)];
416 else
417 fp = &fz->fz_list;
418
419 tmp = fib_del_list(fp, dst, dev, gtw, flags, metric, mask);
420 fz->fz_nent -= tmp;
421 found += tmp;
422 }
423 }
424 else
425 {
426 if ((fz = fib_zones[rt_logmask(mask)]) != NULL)
427 {
428 if (fz->fz_hash_table)
429 fp = &fz->fz_hash_table[fz_hash_code(dst, fz-
>fz_logmask)];
430 else
431 fp = &fz->fz_list;
432
433 found = fib_del_list(fp, dst, dev, gtw, flags, metric, mask);
434 fz->fz_nent -= found;
435 }
436 }

Linux 1.3.51 also includes examples of automatically expiring records. For example,
as shown in the comments at line 1286, rt_del() is only called by user processes. The
condition that triggers the user process to call rt_del is an external condition. Note
that in line 1297, rt_del() calls fib_del_1() to delete the expired records passed to it by

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

35 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

the user program that called rt_del().

1286 * rt_{del|add|flush} called only from USER process. Waiting is OK.
1287 */
1288
1289 static int rt_del(__u32 dst, __u32 mask,
1290 struct device * dev, __u32 gtw, short rt_flags, short metric)
1291 {
1292 int retval;
1293
1294 while (ip_rt_lock)
1295 sleep_on(&rt_wait);
1296 ip_rt_fast_lock();
1297 retval = fib_del_1(dst, mask, dev, gtw, rt_flags, metric);
1298 ip_rt_unlock();
1299 wake_up(&rt_wait);
1300 return retval;
1301 }

Another example of how these structures operate can be seen in the fib_add_1()
function in route.c, which creates a hash table. The fz variable (e.g., at line 624)
represents a fib_zone structure, which, as described above, includes a hash table,
which is a pointer to a pointer to a fig_node element. The fib_node structure is a
linked list, as shown by the fact that each element contains a pointer to the next
element in the list (i.e., fib_next).

620 /*
621 * If zone overgrows RTZ_HASHING_LIMIT, create hash table.
622 */

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

36 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

623
624 if (fz->fz_nent >= RTZ_HASHING_LIMIT && !fz->fz_hash_table &&
logmask<32)
625 {
626 struct fib_node ** ht;
627 #if RT_CACHE_DEBUG
628 printk("fib_add_1: hashing for zone %d started\n", logmask);
629 #endif
630 ht = kmalloc(RTZ_HASH_DIVISOR*sizeof(struct rtable*), GFP_KERNEL);
631
632 if (ht)
633 {
634 memset(ht, 0, RTZ_HASH_DIVISOR*sizeof(struct fib_node*));
635 cli();
636 f1 = fz->fz_list;
637 while (f1)
638 {
639 struct fib_node * next;
640 unsigned hash = fz_hash_code(f1->fib_dst, logmask);
641 next = f1->fib_next;
642 f1->fib_next = ht[hash];
643 ht[hash] = f1;
644 f1 = next;
645 }
646 fz->fz_list = NULL;
647 fz->fz_hash_table = ht;
648 sti();
649 }
650 }
651

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

37 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

652 if (fz->fz_hash_table)
653 fp = &fz->fz_hash_table[fz_hash_code(dst, logmask)];
654 else
655 fp = &fz->fz_list;
656
657 /*
658 * Scan list to find the first route with the same destination
659 */
660 while ((f1 = *fp) != NULL)
661 {
662 if (f1->fib_dst == dst)
663 break;
664 fp = &f1->fib_next;
665 }
666

An example of code that meets the “automatically expiring” limitation can be found at
lines 670-82. For example, a route with the same destination and less than or equal
metric value has automatically expired, and, according to the comment at lines 675-
77, is purged.

667 /*
668 * Find route with the same destination and less (or equal) metric.
669 */
670 while ((f1 = *fp) != NULL && f1->fib_dst == dst)
671 {
672 if (f1->fib_metric >= metric)
673 break;
674 /*
675 * Record route with the same destination and gateway,

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

38 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

676 * but less metric. We'll delete it
677 * after instantiation of new route.
678 */
679 if (f1->fib_info->fib_gateway == gw)
680 dup_fp = fp;
681 fp = &f1->fib_next;
682 }

[3a] accessing the linked list
of records,

[7a] accessing a linked list of
records having same hash
address,

Linux 1.3.51 discloses “accessing the linked list of records” and “accessing a linked
list of records having same hash address,” as claimed. For example, line 415 and 429
each identify the location of a linked list of records pointed to by the hash table by
calling the fz_hash_code() function.

409 if (!mask)
410 {
411 for (fz=fib_zone_list; fz; fz = fz->fz_next)
412 {
413 int tmp;
414 if (fz->fz_hash_table)
415 fp = &fz->fz_hash_table[fz_hash_code(dst, fz-
>fz_logmask)];
416 else
417 fp = &fz->fz_list;
418
419 tmp = fib_del_list(fp, dst, dev, gtw, flags, metric, mask);
420 fz->fz_nent -= tmp;
421 found += tmp;
422 }
423 }
424 else

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

39 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

425 {
426 if ((fz = fib_zones[rt_logmask(mask)]) != NULL)
427 {
428 if (fz->fz_hash_table)
429 fp = &fz->fz_hash_table[fz_hash_code(dst, fz-
>fz_logmask)];
430 else
431 fp = &fz->fz_list;
432
433 found = fib_del_list(fp, dst, dev, gtw, flags, metric, mask);
434 fz->fz_nent -= found;
435 }
436 }

As another example, the fib_add_1() function is an example of a accessing a linked
list of records and accessing a linked list of records having the same hash address, as
claimed. Lines 652-53 of route.c use a hash value to find the address of the first
element of a linked list associated with a particular hash value.

652 if (fz->fz_hash_table)
653 fp = &fz->fz_hash_table[fz_hash_code(dst, logmask)];

[3b] identifying at least some
of the automatically expired
ones of the records, and

[7b] identifying at least some
of the automatically expired
ones of the records,

Linux 1.3.51 includes the step of “identifying at least some of the automatically
expired ones of the records,” as claimed. For example, fib_del_1() function calls
fib_del_list() at lines 419 and 433 to perform the identifying, removing, retrieving,
and deleting functions.

409 if (!mask)
410 {
411 for (fz=fib_zone_list; fz; fz = fz->fz_next)

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

40 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

412 {
413 int tmp;
414 if (fz->fz_hash_table)
415 fp = &fz->fz_hash_table[fz_hash_code(dst, fz-
>fz_logmask)];
416 else
417 fp = &fz->fz_list;
418
419 tmp = fib_del_list(fp, dst, dev, gtw, flags, metric, mask);
420 fz->fz_nent -= tmp;
421 found += tmp;
422 }
423 }
424 else
425 {
426 if ((fz = fib_zones[rt_logmask(mask)]) != NULL)
427 {
428 if (fz->fz_hash_table)
429 fp = &fz->fz_hash_table[fz_hash_code(dst, fz-
>fz_logmask)];
430 else
431 fp = &fz->fz_list;
432
433 found = fib_del_list(fp, dst, dev, gtw, flags, metric, mask);
434 fz->fz_nent -= found;
435 }
436 }

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

41 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

The fib_del_list() function is also found in route.c in Linux 1.3.51. The while loop
beginning at line 373 in fib_del_list() iterates through the linked list and identifies the
elements. The elements are “automatically expired” because, for example, the user
program that called rt_del() determined that the elements needed to be removed.
Then, rt_del() called fib_del_1(), which in turn called fib_del_list() to remove the
automatically expired records.

367 static int fib_del_list(struct fib_node **fp, __u32 dst,
368 struct device * dev, __u32 gtw, short flags, short metric, __u32 mask)
369 {
370 struct fib_node *f;
371 int found=0;
372
373 while((f = *fp) != NULL)
374 {
375 struct fib_info * fi = f->fib_info;
376
377 /*
378 * Make sure the destination and netmask match.
379 * metric, gateway and device are also checked
380 * if they were specified.
381 */
382 if (f->fib_dst != dst ||
383 (gtw && fi->fib_gateway != gtw) ||
384 (metric >= 0 && f->fib_metric != metric) ||
385 (dev && fi->fib_dev != dev))
386 {
387 fp = &f->fib_next;

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

42 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

388 continue;
389 }
390 cli();
391 *fp = f->fib_next;
392 if (fib_loopback == f)
393 fib_loopback = NULL;
394 sti();
395 ip_netlink_msg(RTMSG_DELROUTE, dst, gtw, mask, flags, metric,
fi->fib_dev->name);
396 fib_free_node(f);
397 found++;
398 }
399 return found;
400 }

As another example, the code at lines 670-82 of route.c identifies a record in the
linked list corresponding to a route with the same destination and less or equal
metric. Thus, it accesses the linked list and identifies automatically expiring
records.

667 /*
668 * Find route with the same destination and less (or equal) metric.
669 */
670 while ((f1 = *fp) != NULL && f1->fib_dst == dst)
671 {
672 if (f1->fib_metric >= metric)
673 break;
674 /*
675 * Record route with the same destination and gateway,

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

43 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

676 * but less metric. We'll delete it
677 * after instantiation of new route.
678 */
679 if (f1->fib_info->fib_gateway == gw)
680 dup_fp = fp;
681 fp = &f1->fib_next;
682 }

Code within Linux 1.3.51 also performs the “removing” step when the list is accessed.
An example of this can be found at lines 707-732 of route.c. For example, the if
statement at line 718 identifies expired records, and if an expired record is found then
line 721 moves the pointer so that record is no longer in the list. Depending on claim
construction, this is the “removing” step. Also, the call to fib_free_node() at line 727
frees the memory used by the record. Depending on claim construction, this is the
“removing” step. Both steps “identifying and removing” are performed within the
while loop that starts at line 716 which accesses the list.

707 /*
708 * Delete route with the same destination and gateway.
709 * Note that we should have at most one such route.
710 */
711 if (dup_fp)
712 fp = dup_fp;
713 else
714 fp = &f->fib_next;
715
716 while ((f1 = *fp) != NULL && f1->fib_dst == dst)
717 {
718 if (f1->fib_info->fib_gateway == gw)
719 {

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

44 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

720 cli();
721 *fp = f1->fib_next;
722 if (fib_loopback == f1)
723 fib_loopback = NULL;
724 sti();
725 ip_netlink_msg(RTMSG_DELROUTE, dst, gw, mask, flags,
726 metric, f1->fib_info->fib_dev->name);
727 fib_free_node(f1);
728 fz->fz_nent--;
729 break;
730 }
731 fp = &f1->fib_next;
732 }

The fib_free_node() function is found at lines 185-203 in route.c. As shown below,
fib_free_node() moves pointers (lines 193-98) and calls kfree_s() to mark the memory
as available (line 200).

181 /*
182 * Free FIB node.
183 */
184
185 static void fib_free_node(struct fib_node * f)
186 {
187 struct fib_info * fi = f->fib_info;
188 if (!--fi->fib_refcnt)
189 {
190 #if RT_CACHE_DEBUG >= 2
191 printk("fib_free_node: fi %08x/%s is free\n", fi-
>fib_gateway, fi->fib_dev->name);

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

45 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

192 #endif
193 if (fi->fib_next)
194 fi->fib_next->fib_prev = fi->fib_prev;
195 if (fi->fib_prev)
196 fi->fib_prev->fib_next = fi->fib_next;
197 if (fi == fib_info_list)
198 fib_info_list = fi->fib_next;
199 }
200 kfree_s(f, sizeof(struct fib_node));
201 }

The malloc.h file in Linux 1.3.51 defines kfree_s() as follows:

9 #define kfree_s(a,b) kfree(a)

The kmalloc.c file in Linux 1.3.51 defines kfree() as follows:

276 void kfree(void *ptr)
277 {
278 int size;
279 unsigned long flags;
280 int order;
281 register struct block_header *p;
282 struct page_descriptor *page, **pg;
283
284 if (!ptr)
285 return;
286 p = ((struct block_header *) ptr) - 1;
287 page = PAGE_DESC(p);
288 order = page->order;

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

46 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

289 pg = &sizes[order].firstfree;
290 if (p->bh_flags == MF_DMA) {
291 p->bh_flags = MF_USED;
292 pg = &sizes[order].dmafree;
293 }
294
295 if ((order < 0) ||
296 (order >= sizeof(sizes) / sizeof(sizes[0])) ||
297 (((long) (page->next)) & ~PAGE_MASK) ||
298 (p->bh_flags != MF_USED)) {
299 printk("kfree of non-kmalloced memory: %p, next= %p,
order=%d\n",
300 p, page->next, page->order);
301 return;
302 }
303 size = p->bh_length;
304 p->bh_flags = MF_FREE; /* As of now this block is officially free */
305 save_flags(flags);
306 cli();
307 p->bh_next = page->firstfree;
308 page->firstfree = p;
309 page->nfree++;
310
311 if (page->nfree == 1) {
312 /* Page went from full to one free block: put it on the freelist. */
313 page->next = *pg;
314 *pg = page;
315 }
316 /* If page is completely free, free it */
317 if (page->nfree == NBLOCKS(order)) {

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

47 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

318 for (;;) {
319 struct page_descriptor *tmp = *pg;
320 if (!tmp) {
321 printk("Ooops. page %p doesn't show on freelist.\n",
page);
322 break;
323 }
324 if (tmp == page) {
325 *pg = page->next;
326 break;
327 }
328 pg = &tmp->next;
329 }
330 sizes[order].npages--;
331 free_pages((long) page, sizes[order].gfporder);
332 }
333 sizes[order].nfrees++;
334 sizes[order].nbytesmalloced -= size;
335 restore_flags(flags);
336 }

[3c] removing at least some
of the automatically expired
records from the linked list
when the linked list is
accessed.

[7c] removing at least some
of the automatically expired
records from the linked list
when the linked list is
accessed, and

Linux 1.3.51 includes the step of “removing at least some of the automatically
expired records from the linked list when the linked list is accessed,” as claimed. For
example, the while loop beginning at line 373 access the linked list. The if statement
at lines 382-89 causes the loop to move to the next element if there is no match. If
there is a match, lines 391 and/or 396 meet the “removing” limitation, depending on
claim construction. The “removing” takes place when the linked list is accessed. For
example, the commands are executed within a while loop in the fib_del_list()
function.

367 static int fib_del_list(struct fib_node **fp, __u32 dst,

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

48 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

368 struct device * dev, __u32 gtw, short flags, short metric, __u32 mask)
369 {
370 struct fib_node *f;
371 int found=0;
372
373 while((f = *fp) != NULL)
374 {
375 struct fib_info * fi = f->fib_info;
376
377 /*
378 * Make sure the destination and netmask match.
379 * metric, gateway and device are also checked
380 * if they were specified.
381 */
382 if (f->fib_dst != dst ||
383 (gtw && fi->fib_gateway != gtw) ||
384 (metric >= 0 && f->fib_metric != metric) ||
385 (dev && fi->fib_dev != dev))
386 {
387 fp = &f->fib_next;
388 continue;
389 }
390 cli();
391 *fp = f->fib_next;
392 if (fib_loopback == f)
393 fib_loopback = NULL;
394 sti();
395 ip_netlink_msg(RTMSG_DELROUTE, dst, gtw, mask, flags, metric,

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

49 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

fi->fib_dev->name);
396 fib_free_node(f);
397 found++;
398 }
399 return found;
400 }

The fib_add_l() function also is another example of code that provides the step of
removing at least some of the expired records when the list is accessed. For example,
the while loop below iterates through the elements of the list in order to test each
element to determine whether it should be removed. In order to identify the elements,
the list must be accessed.

707 /*
708 * Delete route with the same destination and gateway.
709 * Note that we should have at most one such route.
710 */
711 if (dup_fp)
712 fp = dup_fp;
713 else
714 fp = &f->fib_next;
715
716 while ((f1 = *fp) != NULL && f1->fib_dst == dst)
717 {
718 if (f1->fib_info->fib_gateway == gw)
719 {
720 cli();
721 *fp = f1->fib_next;
722 if (fib_loopback == f1)

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

50 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

723 fib_loopback = NULL;
724 sti();
725 ip_netlink_msg(RTMSG_DELROUTE, dst, gw, mask, flags,
726 metric, f1->fib_info->fib_dev->name);
727 fib_free_node(f1);
728 fz->fz_nent--;
729 break;
730 }
731 fp = &f1->fib_next;
732 }

 [7d] inserting, retrieving or
deleting one of the records
from the system following the
step of removing.

Linux 1.3.51 includes the step of “inserting, retrieving or deleting one of the records
from the system following the step of removing,” as claimed.

For example, depending on claim construction, the code at line 391 meets the
“removing” limitation, and the code at 396 meets the “deleting” limitation. And
because line 396 follows line 391, the deleting takes place “following the step of
removing” as claimed.

As another example, depending on claim construction, line 396 constitutes
“removing,” then when control passes back to the while loop at line 373, that code
performs the “retrieving” step. Because this takes place after line 396 is executed, the
“retrieving” step takes place “following the step of removing,” as claimed.

367 static int fib_del_list(struct fib_node **fp, __u32 dst,
368 struct device * dev, __u32 gtw, short flags, short metric, __u32 mask)
369 {
370 struct fib_node *f;
371 int found=0;
372
373 while((f = *fp) != NULL)

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

51 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

374 {
375 struct fib_info * fi = f->fib_info;
376
377 /*
378 * Make sure the destination and netmask match.
379 * metric, gateway and device are also checked
380 * if they were specified.
381 */
382 if (f->fib_dst != dst ||
383 (gtw && fi->fib_gateway != gtw) ||
384 (metric >= 0 && f->fib_metric != metric) ||
385 (dev && fi->fib_dev != dev))
386 {
387 fp = &f->fib_next;
388 continue;
389 }
390 cli();
391 *fp = f->fib_next;
392 if (fib_loopback == f)
393 fib_loopback = NULL;
394 sti();
395 ip_netlink_msg(RTMSG_DELROUTE, dst, gtw, mask, flags, metric,
fi->fib_dev->name);
396 fib_free_node(f);
397 found++;
398 }
399 return found;
400 }

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

52 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

The fib_free_node() function called by fib_del_list() is found at lines 185-203 in
route.c. As shown below, fib_free_node() moves pointers (lines 193-98) and calls
kfree_s() to mark the memory as available (line 200). For example, depending on
claim construction, code in fib_free_node() meets the “removing” limitation and the
code in kfree() meets the “deleting” limitation.

181 /*
182 * Free FIB node.
183 */
184
185 static void fib_free_node(struct fib_node * f)
186 {
187 struct fib_info * fi = f->fib_info;
188 if (!--fi->fib_refcnt)
189 {
190 #if RT_CACHE_DEBUG >= 2
191 printk("fib_free_node: fi %08x/%s is free\n", fi-
>fib_gateway, fi->fib_dev->name);
192 #endif
193 if (fi->fib_next)
194 fi->fib_next->fib_prev = fi->fib_prev;
195 if (fi->fib_prev)
196 fi->fib_prev->fib_next = fi->fib_next;
197 if (fi == fib_info_list)
198 fib_info_list = fi->fib_next;
199 }
200 kfree_s(f, sizeof(struct fib_node));
201 }

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

53 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

The malloc.h file in Linux 1.3.51 defines kfree_s() as follows:

9 #define kfree_s(a,b) kfree(a)

The kmalloc.c file in Linux 1.3.51 defines kfree() as follows:

276 void kfree(void *ptr)
277 {
278 int size;
279 unsigned long flags;
280 int order;
281 register struct block_header *p;
282 struct page_descriptor *page, **pg;
283
284 if (!ptr)
285 return;
286 p = ((struct block_header *) ptr) - 1;
287 page = PAGE_DESC(p);
288 order = page->order;
289 pg = &sizes[order].firstfree;
290 if (p->bh_flags == MF_DMA) {
291 p->bh_flags = MF_USED;
292 pg = &sizes[order].dmafree;
293 }
294
295 if ((order < 0) ||
296 (order >= sizeof(sizes) / sizeof(sizes[0])) ||
297 (((long) (page->next)) & ~PAGE_MASK) ||
298 (p->bh_flags != MF_USED)) {
299 printk("kfree of non-kmalloced memory: %p, next= %p,

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

54 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

order=%d\n",
300 p, page->next, page->order);
301 return;
302 }
303 size = p->bh_length;
304 p->bh_flags = MF_FREE; /* As of now this block is officially free */
305 save_flags(flags);
306 cli();
307 p->bh_next = page->firstfree;
308 page->firstfree = p;
309 page->nfree++;
310
311 if (page->nfree == 1) {
312 /* Page went from full to one free block: put it on the freelist. */
313 page->next = *pg;
314 *pg = page;
315 }
316 /* If page is completely free, free it */
317 if (page->nfree == NBLOCKS(order)) {
318 for (;;) {
319 struct page_descriptor *tmp = *pg;
320 if (!tmp) {
321 printk("Ooops. page %p doesn't show on freelist.\n",
page);
322 break;
323 }
324 if (tmp == page) {
325 *pg = page->next;
326 break;
327 }

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

55 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

328 pg = &tmp->next;
329 }
330 sizes[order].npages--;
331 free_pages((long) page, sizes[order].gfporder);
332 }
333 sizes[order].nfrees++;
334 sizes[order].nbytesmalloced -= size;
335 restore_flags(flags);
336 }

Another example, depending on claim construction the step of removing is disclosed
at lines 721 and/or 727. Also, an example of the step of deleting one of the records
from the system can be found at line 733 with the call to rt_cache_flush().

716 while ((f1 = *fp) != NULL && f1->fib_dst == dst)
717 {
718 if (f1->fib_info->fib_gateway == gw)
719 {
720 cli();
721 *fp = f1->fib_next;
722 if (fib_loopback == f1)
723 fib_loopback = NULL;
724 sti();
725 ip_netlink_msg(RTMSG_DELROUTE, dst, gw, mask, flags,
726 metric, f1->fib_info->fib_dev->name);
727 fib_free_node(f1);
728 fz->fz_nent--;
729 break;
730 }
731 fp = &f1->fib_next;

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

56 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

732 }
733 rt_cache_flush();
734 return;

The rt_cache_flush() function is found at lines 1146-1185 of route.c:

1146 static void rt_cache_flush(void)
1147 {
1148 int i;
1149 struct rtable * rth, * next;
1150
1151 for (i=0; i<RT_HASH_DIVISOR; i++)
1152 {
1153 int nr=0;
1154
1155 cli();
1156 if (!(rth = ip_rt_hash_table[i]))
1157 {
1158 sti();
1159 continue;
1160 }
1161
1162 ip_rt_hash_table[i] = NULL;
1163 sti();
1164
1165 for (; rth; rth=next)
1166 {
1167 next = rth->rt_next;
1168 rt_cache_size--;
1169 nr++;

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

57 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

1170 rth->rt_next = NULL;
1171 rt_free(rth);
1172 }
1173 #if RT_CACHE_DEBUG >= 2
1174 if (nr > 0)
1175 printk("rt_cache_flush: %d@%02x\n", nr, i);
1176 #endif
1177 }
1178 #if RT_CACHE_DEBUG >= 1
1179 if (rt_cache_size)
1180 {
1181 printk("rt_cache_flush: bug rt_cache_size=%d\n", rt_cache_size);
1182 rt_cache_size = 0;
1183 }
1184 #endif
1185 }

4. The method according to
claim 3 further including the
step of dynamically
determining maximum
number of expired ones of the
records to remove when the
linked list is accessed.

8. The method according to
claim 7 further including the
step of dynamically
determining maximum
number of expired ones of the
records to remove when the
linked list is accessed.

Linux 1.3.51 includes code that meets the “dynamically determining maximum
number for the record search means to remove in the accessed linked list of records”
claim limitation.

For example, the while loop beginning at line 373 of route.c iterates through the
linked list passed in as **fp at line 367. Thus, when the fib_del_list() function is
called, the maximum number of expired records to remove is the length of the **fp
linked list. This number is dynamic because, if the if statement
beginning at line 382 evaluates TRUE for an element, the maximum number to delete
decreases by one.

367 static int fib_del_list(struct fib_node **fp, __u32 dst,
368 struct device * dev, __u32 gtw, short flags, short metric, __u32 mask)

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

58 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

369 {
370 struct fib_node *f;
371 int found=0;
372
373 while((f = *fp) != NULL)
374 {
375 struct fib_info * fi = f->fib_info;
376
377 /*
378 * Make sure the destination and netmask match.
379 * metric, gateway and device are also checked
380 * if they were specified.
381 */
382 if (f->fib_dst != dst ||
383 (gtw && fi->fib_gateway != gtw) ||
384 (metric >= 0 && f->fib_metric != metric) ||
385 (dev && fi->fib_dev != dev))
386 {
387 fp = &f->fib_next;
388 continue;
389 }
390 cli();
391 *fp = f->fib_next;
392 if (fib_loopback == f)
393 fib_loopback = NULL;
394 sti();
395 ip_netlink_msg(RTMSG_DELROUTE, dst, gtw, mask, flags, metric,
fi->fib_dev->name);

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

59 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

396 fib_free_node(f);
397 found++;
398 }
399 return found;
400 }

Further, Linux 1.3.51 combined with Dirks, Thatte, the ’663 patent, and/or the
Opportunistic Garbage Collection Articles discloses dynamically determining
maximum number of expired ones of the records to remove when the linked
list is accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

60 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

61 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Linux 1.3.51 and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as Linux 1.3.51. Moreover, one of ordinary skill in the
art would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Linux 1.3.51 nothing more
than the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Linux 1.3.51 and

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

62 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

would have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Linux 1.3.51 with the
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records disclosed by Thatte. For
example, Thatte discloses a system and method using hash tables and/or linked
lists and further discloses means for dynamically determining the maximum
number for the record search means to remove in the accessed linked list of
records. The disclosure of these claim elements in Thatte is clearly shown in
the chart of Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, Ass both Linux 1.3.51 and Thatte teach a system of data
storage and retrieval, one of ordinary skill in the art would recognize that the
result of combining Linux 1.3.51 with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove as taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine Linux
1.3.51 with Thatte and recognize the benefits of doing so. For example, the
removal of expired records described in Linux 1.3.51 can be burdensome on
the system, adding to the system’s load and slowing down the system’s
processing. One of ordinary skill in the art would recognize that combining
Linux 1.3.51 with the teachings of Thatte would solve this problem by

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

63 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

dynamically determining how many records to delete based on, among other
things, the system load. Moreover, the '120 patent discloses that "[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one." '120 at
7:10-15. Thus, the '120 patent provides motivations to combine Linux 1.3.51
with Thatte.

Alternatively, it would also be obvious to combine Linux 1.3.51 with the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

64 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

65 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

66 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Linux 1.3.51 and the ’663 patent relate to deletion of records from
hash tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in Linux 1.3.51. Moreover, one of ordinary skill in the
art would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with Linux 1.3.51
would be nothing more than the predictable use of prior art elements according
to their established functions.

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

67 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Linux 1.3.51 and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Linux 1.3.51 with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

68 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Linux 1.3.51 and the Opportunistic Garbage Collection Articles relate
to deletion of aged records, one of ordinary skill in the art would have
understood how to use the Opportunistic Garbage Collection Articles’ dynamic
decision on whether to perform a deletion based on a system load in other hash
table implementations such as Linux 1.3.51. Moreover, one of ordinary skill in
the art would recognize that it would improve similar systems and methods in
the same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

69 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Linux 1.3.51 would be nothing more than the predictable use of
prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Linux 1.3.51 and
would have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Linux 1.3.51 to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Linux 1.3.51 with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in Linux 1.3.51 can be burdensome
on the system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

70 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired records is
not disclosed by Linux 1.3.51 in combination with Dirks, Thatte, the ‘663 Patent, or
the Opportunistic Garbage Collection References, it is disclosed by Linux 2.0.1,
which describes dynamically determining maximum number of expired ones of the
records to remove when the linked list is accessed. It would have been obvious to
combine Linux 2.0.1 with Linux 1.3.51. For example, both Linux 2.0.1 and Linux
1.3.51 describe systems and methods for performing data storage and retrieval using
known programming techniques to yield a predictable result.

When invoked, the function rt_cache_add automatically increments an integer
variable rt_cache_size. See Linux 2.0.1, route.c at line 1359. When the
function rt_cache_add removes an expired record, the function rt_cache_add
decrements the variable rt_cache_size. See Linux 2.0.1, route.c at line 1373.
Thus, the variable rt_cache_size indicates the number of records in the hash
table (i.e., ip_rt_hash_table). Because the function rt_cache_add
automatically increments and decrements the variable rt_cache_size, the
variable rt_cache_size is determined dynamically.

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

71 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1. The
function rt_garbage_collect_1 loops through each of the linked lists in the
ip_rt_hash_table global variable. See Linux 2.0.1, route.c at lines 1122-1138.
In this way, the function rt_garbage_collect_1 accesses the linked list. When
the function rt_garbage_collect_1 identifies a record that is expired, the
function rt_garbage_collect_1 decrements the variable rt_cache_size
and frees the record. See Linux 2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash table
can be in the linked list, the variable rt_cache_size can represent a dynamically
determined maximum number of expired ones of the records to remove when function
rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold RT_CACHE_SIZE_MAX.
If the number of records in the hash table exceeds the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_cache_add invokes a function
rt_garbage_collect. See Linux 2.0.1, route.c at lines 1341-1342. The function
rt_garbage_collect invokes a function rt_garbage_collect_1. See
Linux 2.0.1, route.c at line 1293. The function rt_garbage_collect invokes a
function rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in the hash
table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked list in the hash
table, the function rt_garbage_collect_1 looks at each record in the linked
list. See Linux 2.0.1, route.c at lines 1120-1131. For each record in a linked list, the
function rt_garbage_collect_1 determines whether the record’s last use time
plus the record’s expiration factor is later than the current time. See Linux 2.0.1,
route.c at line 1122. If the record’s last use time plus the record’s expiration factor is

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

72 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

less than the current time, the function rt_garbage_collect_1 removes the
record from the linked list. See Linux 2.0.1, route.c at lines 1124-1130. The record’s
expiration factor is based on a variable expire and the record’s reference count. See
Linux 2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records in the
hash table is less than the predetermined threshold RT_CACHE_SIZE_MAX. See
Linux 2.0.1, route.c at line 1133. If the number of items in the hash table is still
greater than the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_garbage_collect_1 halves the variable expire and loops through each of
the linked lists in the hash table. See Linux 2.0.1, route.c at line 1135. In this way,
the function rt_garbage_collect_1 can remove additional records from the
linked lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the function
rt_garbage_collect_1 are “expired” records. That is, the records removed by
the function rt_garbage_collect_1 are data items which after a limited time or after the
occurrence of some event become obsolete, such that their presence in the storage
system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when the
record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT is less than
the current time and the record’s reference count is zero. See Linux 2.0.1, route.c at
line 1369. Thus, the maximum number of records that the function rt_cache_add
can remove from a given linked list is limited to those records whose reference counts

EXHIBIT D-9

Joint Invalidity Contentions & Production of
Documents

73 Case No. 6:09-CV-549-LED

US2008 1661613.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not limited to
those records whose reference counts are zero. See Linux 2.0.1, route.c at line 1122.
Rather, the function rt_garbage_collect_1 can remove records whose
reference counts are zero and records whose reference counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than the
maximum number of records that the function rt_cache_add can remove from a
linked list.

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, GCache discloses an information
storage and retrieval system.

For example, Comer discloses an information storage and retrieval system
using hash tables of linked lists. See, e.g., Comer at 2-11, Fig. 1.

“This section describes our implementation of a generalized caching system.”
See Comer at 2.

See also, gcache.c which implements the generalized caching mechanism as
described in Comer.

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

GCache discloses a linked list to store and provide access to records stored in a
memory of the system, at least some of the records automatically expiring.
GCache also discloses a hashing means to provide access to records stored in a
memory of the system and using an external chaining technique to store the
records with same hash address, at least some of the records automatically
expiring.

For example, Comer discloses using linked lists to store records, the linked
lists chained to a hash table using an external chaining technique:

“GCache implements each cache as a separate hash table of buckets. Buckets
are implemented as doubly linked lists of cache entry headers for easy
insertion and deletion.” See Comer at 3.

“GCache keeps all cacheentry structures for an active cache either on the free

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

list or, when they are in use, on a doubly linked list attached to a hash table
slot. GCache computes a hash value as a function of the sum of bytes in the
key buffer. GCache then computes the hash table slot as the hash value modulo
the size of the hash table” See Comer at 5.

“GCache implements the hash table as an array of structures representing
buckets, each containing the head of a (possibly empty) doubly linked cache
entry chain.” See Comer at 6.

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

See also, gcache.c at lines 53-64, defining cacheentry as a linked list, as shown
in the code below:

53 struct cacheentry {
54 ce_status ce_status; /* INUSE or FREE */
55 char *ce_keyptr; /* pointer to the key */
56 tcelen ce_keylen; /* length of the key */
57 char *ce_resptr; /* pointer to the result */
58 tcelen ce_reslen; /* length of the result */

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

59 thval ce hash; /* value that was hashed in */
60 ttstamp ce_tsinsert; /* timestamp - time inserted */
61 ttstamp ce_tsaccess; /* timestamp - last access */
62 tceix ce_prev; /* next entry on list */
63 tceix ce_next; /* prev entry on list */
64 };

Comer discloses storing records in a linked list, for example:

“Cainsert() inserts a new mapping, key => res, into the cache.” See Comer at
4.

See also, gache.c at lines 241-304, defining cainsert().

Comer discloses providing access to records stored in a linked list, for
example:

“Calookup() searches for a cached entry matching the key passed as an
argument.” See Comer at 4.

See also, gcache.c at lines 307-347 and 637-678, defining calookup() and
cagetindex().

Comer discloses at least some of the records automatically expiring, for
example:

“In a simpler and cleaner design chosen for GCache, each cached entry
contains a timestamp encoding the insertion time. If a lookup matches an entry

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

with an expired timestamp, that entry is removed rather than being returned.”
See Comer at 10.

See also, gcache.c at lines 617-634, defining caisold() which determines if the
record has expired:

617 /*
618 *
===
=====
619 * caisold - return TRUE if the given entry is "too old"
620 *
===
=====
621 */
622 LOCAL int caisold(pcb,pce)
623 struct cacheblk *pcb;
624 struct cacheentry *pce;
625 {
626 unsigned now;
627
628 if (pcb->cb_maxlife == 0)
629 return(FALSE);
630
631 gettime(&now);
632
633 return ((now - pce->ce_tsaccess) > pcb->cb_maxlife);
634 }

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of
records having the same

GCache discloses a record search means utilizing a search key to access the
linked list. GCache also discloses a record search means utilizing a search key
to access a linked list of records having the same hash address.

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

hash address, For example, Comer discloses utilizing a search key to access a linked list of
records having the same hash address. In the quoted text below, the use of
hash value to determine a hash table with an attached linked list of records
having the same hash address is an example of “utilizing a search key to access
a linked list.”

“GCache implements each cache as a separate hash table of buckets. Buckets
are implemented as doubly linked lists of cache entry headers for easy
insertion and deletion.” See Comer at 3.

“GCache keeps all cacheentry structures for an active cache either on the free
list or, when they are in use, on a doubly linked list attached to a hash table
slot. GCache computes a hash value as a function of the sum of bytes in the
key buffer. GCache then computes the hash table slot as the hash value modulo
the size of the hash table” See Comer at 5.

“GCache implements the hash table as an array of structures representing
buckets, each containing the head of a (possibly empty) doubly linked cache
entry chain.” See Comer at 6.

See also, gcache.c at lines 637-677, defining cagetindex(), which contains code
constituting a “record search means” that uses a hash value to access and
traverse a linked list of records having the same hash address:

637 /*
638 *
===
=====

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

639 * cagetindex - return the index of a matching entry, or
SYSERR
640 * N.B. assumes MUTEX is already held
641 *
===
=====
642 */
643 LOCAL tceix cagetindex(pcb,pkey,keylen,hash)
644 struct cacheblk *pcb;
645 char *pkey;
646 tcelen keylen;
647 thval hash;
648 {
649 struct cacheentry *pce;
650 tceix ix;
651 tceix nextix;
652
653 ++pcb->cb_lookups;
654
655 ix = pcb->cb_hash[HASHTOIX(hash,pcb)].he_ix;
656
657 while (ix != NULL_IX) {
658 pce = &pcb->cb_cache[ix];
659 nextix = pce->ce_next;
660
661 if ((pce->ce_hash == hash) &&
662 (pce->ce_keylen == keylen) &&
663 (blkequ(pkey,pce->ce_keyptr,keylen))) {
664 /* this is a match */
665 ++pcb->cb_hits;
666 if (caisold(pcb,pce)) {
667 ++pcb->cb_tos;
668 caunlink(pcb,ix);
669 return(NULL_IX);
670 } else {
671 return(ix);
672 }

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

673 }
674 ix = nextix;
675 }
676
677 return(NULL_IX);
678 }

[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the
records from the linked list
when the linked list is
accessed, and

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

GCache discloses the record search means including a means for identifying
and removing at least some of the expired ones of the records from the linked
list when the linked list is accessed. GCache also discloses the record search
means including means for identifying and removing at least some expired
ones of the records from the linked list of records when the linked list is
accessed.

For example, Comer discloses that “Calookup() searches for a cached entry
matching the key passed as an argument.” See Comer at 4.

At line 333 of gcache.c, calookup() calls the function cagetindex():

333 if ((ix = cagetindex(pcb,pkey,keylen,hash)) != NULL_IX) {

In addition Comer discloses a means for identifying and removing expired
records from the linked list of records:

“In a simpler and cleaner design chosen for GCache, each cached entry
contains a timestamp encoding the insertion time. If a lookup matches an entry
with an expired timestamp, that entry is removed rather than being returned.”
See Comer at 10.

At lines 655-670 of gcache.c, cagetindex() executes a while loop to traverse a

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

linked list attached to a bucket of the hash table, accessing records stored
therein. In the subset of that code listed below, cagetindex() utilizes caisold()
to identify if a matching record is expired and removes the expired record from
the linked list:

666 if (caisold(pcb,pce)) {
667 ++pcb->cb_tos;
668 caunlink(pcb,ix);
669 return(NULL_IX);
670 } else {

To the extent that GCache does not disclose this limitation, GCache in
combination with Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL IPv6”)
discloses record search means including a means for identifying and removing
at least some of the expired ones of the records from the linked list when the
linked list is accessed and also discloses the record search means including
means for identifying and removing at least some expired ones of the records
from the linked list of records when the linked list is accessed.

One of ordinary skill in the art would be motivated to, and would understand how to,
combine the system disclosed in GCache with the means for identifying and
removing at least some of the expired ones of the records from the linked list
when the linked list is accessed disclosed by NRL IPv6. See, e.g., key.c at
lines 1396-1563. For example, since NRL IPv6 utilizes a linked list for storing
records and GCache discloses a system that attaches or chains linked lists to a
hash table for storing records, one of ordinary skill in the art would be
motivated to combine the linked list of NRL IPv6 with the system including a

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

hash table using external chaining of linked lists disclosed by GCache. The
disclosure of these claim elements in NRL IPv6 is clearly shown in the chart of
NRL IPv6, which is hereby incorporated by reference in its entirety.
Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining NRL IPv6 with GCache would be nothing more than the
predictable use of prior art elements according to their established functions.

For example, as defined in key.h and shown in the code below, the
key_acquirelist structure is a linked list:

188 struct key_acquirelist {
189 u_int8 type; /* secassoc type to acquire */
190 struct sockaddr_in6 target; /* destination address of
secassoc */
191 u_int32 count; /* number of acquire messages sent */
192 u_long expiretime; /* expiration time for acquire message
*/
193 struct key_acquirelist *next;
194 };

In addition, key.c, within the function key_acquire(), discloses traversing
key_acquirelist and accessing entries stored therein. See, e.g., key.c at lines
1411, 1430-1459.

Also, key.c and key.h disclose automatically expiring records. For example,
the key_acquirelist structure defined in key.h contains the following code:

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

192 u_long expiretime; /* expiration time for acquire message
*/

Furthermore, key.c discloses a means for identifying and removing at
least some of the expired ones of the records from the linked list when the
linked list is accessed, as shown in the code below:

1445 } else if (ap->expiretime < time.tv_sec) {
1446 /*
1447 * Since we're already looking at the list, we may as
1448 * well delete expired entries as we scan through the list.
1449 * This should really be done by a function like
key_reaper()
1450 * but until we code key_reaper(), this is a quick and
dirty
1451 * hack.
1452 */
1453 DPRINTF(IDL_MAJOR_EVENT,("found an expired
entry...deleting
it!\n"));
1454 prevap->next = ap->next;
1455 KFree(ap);
1456 ap = prevap;
1457 }

See also, key.c at lines 1396-1563, 1768-1845; key.h at lines 188-194.

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least

GCache discloses means, utilizing the record search means, for accessing the
linked list and, at the same time, removing at least some of the expired ones of
the records in the linked list. GCache also discloses utilizing the record search
means, for inserting, retrieving, and deleting records from the system and, at
the same time, removing at least some expired ones of the records in the
accessed linked list of records.

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

records in the linked list. some expired ones of the
records in the accessed
linked list of records.

For example, Comer discloses means for inserting, retrieving, and deleting
records:

“Cainsert() inserts a new mapping, key => res, into the cache.” See Comer at
4.

See also, gcache.c at lines 246-304, defining cainsert().

“Calookup() searches for a cached entry matching the key passed as an
argument.” See Comer at 4.

See also, gcache.c at lines 312-347 and 643-678, defining calookup() and
cagetindex().

“Caremove() removes the cached entry whose key is given, if one exists.” See
Comer at 4.

See also, gcache.c at lines 355-376, defining caremove().

Each of the means for inserting, retrieving, and deleting, utilizes a record
search means, the function cagetindex(), which removes an expired record
from the list as described below. The individual calls of cagetindex() are listed
here:

In cainsert():
275 if ((ixnew = cagetindex(pcb,pkey,keylen,hash)) != NULL_IX)

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

{

In calookup():
333 if ((ix = cagetindex(pcb,pkey,keylen,hash)) != NULL_IX) {

In caremove():
370 if ((ix = cagetindex(pcb,pkey,keylen,hash)) != NULL_IX) {

“In a simpler and cleaner design chosen for GCache, each cached entry
contains a timestamp encoding the insertion time. If a lookup matches an entry
with an expired timestamp, that entry is removed rather than being returned.”
See Comer at 10.

At lines 655-670 of gcache.c, cagetindex() executes a while loop to traverse a
linked list attached to a bucket of the hash table, accessing records stored
therein. In the subset of that code listed below, cagetindex() utilizes caisold()
to identify if a matching record is expired and removes the expired record from
the linked list using caunlink():

666 if (caisold(pcb,pce)) {
667 ++pcb->cb_tos;
668 caunlink(pcb,ix);
669 return(NULL_IX);
670 } else {

To the extent that GCache does not entirely disclose this limitation, GCache in
combination with Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL IPv6”)
discloses record search means including a means for identifying and removing

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

at least some of the expired ones of the records from the linked list when the
linked list is accessed and also discloses the record search means including
means for identifying and removing at least some expired ones of the records
from the linked list of records when the linked list is accessed.

One of ordinary skill in the art would be motivated to, and would understand how to,
combine the system disclosed in GCache with the means for identifying and
removing at least some of the expired ones of the records from the linked list
when the linked list is accessed disclosed by NRL IPv6. See, e.g., key.c at
lines 1396-1563. For example, since NRL IPv6 utilizes a linked list for storing
records and GCache discloses a system that attaches or chains linked lists to a
hash table for storing records, one of ordinary skill in the art would be
motivated to combine the linked list of NRL IPv6 with the system including a
hash table using external chaining of linked lists disclosed by GCache. The
disclosure of these claim elements in NRL IPv6 is clearly shown in the chart of
NRL IPv6, which is hereby incorporated by reference in its entirety.
Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining NRL IPv6 with GCache would be nothing more than the
predictable use of prior art elements according to their established functions.

For example, as defined in key.h and shown in the code below, the
key_acquirelist structure is a linked list:

188 struct key_acquirelist {
189 u_int8 type; /* secassoc type to acquire */

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

190 struct sockaddr in6 target; /* destination address of
secassoc */
191 u_int32 count; /* number of acquire messages sent */
192 u_long expiretime; /* expiration time for acquire message
*/
193 struct key_acquirelist *next;
194 };

In addition, key.c, within the function key_acquire(), discloses traversing
key_acquirelist and accessing entries stored therein. See, e.g., key.c at lines
1411, 1430-1459.

Also, key.c and key.h disclose automatically expiring records. For example,
the key_acquirelist structure defined in key.h contains the following code:

192 u_long expiretime; /* expiration time for acquire message
*/

Furthermore, key.c discloses a means for identifying and removing at
least some of the expired ones of the records from the linked list when the
linked list is accessed, as shown in the code below:

1445 } else if (ap->expiretime < time.tv_sec) {
1446 /*
1447 * Since we're already looking at the list, we may as
1448 * well delete expired entries as we scan through the list.
1449 * This should really be done by a function like
key_reaper()
1450 * but until we code key_reaper(), this is a quick and
dirty
1451 * hack.
1452 */
1453 DPRINTF(IDL_MAJOR_EVENT,("found an expired

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

entry...deleting
it!\n"));
1454 prevap->next = ap->next;
1455 KFree(ap);
1456 ap = prevap;
1457 }

See also, key.c at lines 1396-1563, 1768-1845; key.h at lines 188-194.

2. The information storage
and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

6. The information storage
and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

GCache discloses an information storage and retrieval system further including
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records.

For example, Comer discloses dynamically determining whether to delete one
record or zero records from the accessed linked list of records:

“In a simpler and cleaner design chosen for GCache, each cached entry
contains a timestamp encoding the insertion time. If a lookup matches an entry
with an expired timestamp, that entry is removed rather than being returned.”
See Comer at 10.

At lines 655-670 of gcache.c, cagetindex() executes a while loop to traverse a
linked list attached to a bucket of the hash table, accessing records stored
therein. In the subset of that code listed below, cagetindex() utilizes caisold()
to identify if a matching record is expired and removes the expired record from
the linked list using caunlink() and returns. If the matching record is not
expired, the code returns the index of the matched record:

666 if (caisold(pcb,pce)) {
667 ++pcb->cb_tos;

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

668 caunlink(pcb,ix);
669 return(NULL_IX);
670 } else {
671 return(ix);
672 }

In a second example, Comer discloses dynamically determining whether to
delete one record or zero records from an accessed list of records:

“Insertion of a new entry into a full cache forces the deletion of the entry that
was looked up the least recently.” See Comer at 3.

At line 275 of gcache.c, cainsert() calls cagetindex() to access a linked list of
records and see if a matching entry already exists. If a matching entry does not
exist, cainset() calls cagetfree() at line 281 to get a free entry. In cagetfree(),
the following code dynamically determines whether to delete one record or
zero records:

719 /* if the free list is empty, delete the oldest entry */
720 if (pcb->cb_freelist == NULL_IX) {
721 cadeleteold(pcb);
722 ++pcb->cb_fulls;
723 }

In addition, GCache combined with Dirks, Thatte, the ’663 patent and/or the
Opportunistic Garbage Collection Articles discloses an information storage
and retrieval system further including means for dynamically determining
maximum number for the record search means to remove in the accessed
linked list of records.

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

As both GCache and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as GCache. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with GCache nothing more than
the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with GCache and would
have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in GCache with the means
for dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. For example,

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

Thatte discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, Ass both GCache and Thatte teach a system of data storage
and retrieval, one of ordinary skill in the art would recognize that the result of
combining GCache with Thatte would be nothing more than the predictable
use of prior art elements according to their established functions. The resulting
combination would include the capability to determine the maximum number
for the record search means to remove as taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine GCache
with Thatte and recognize the benefits of doing so. For example, the removal
of expired records described in GCache can be burdensome on the system,
adding to the system’s load and slowing down the system’s processing. One of
ordinary skill in the art would recognize that combining GCache with the
teachings of Thatte would solve this problem by dynamically determining how
many records to delete based on, among other things, the system load.
Moreover, the '120 patent discloses that "[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

patent provides motivations to combine GCache with Thatte.

Alternatively, it would also be obvious to combine GCache with the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

Id. at Figure 5.

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both GCache and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in GCache. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with GCache would
be nothing more than the predictable use of prior art elements according to
their established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with GCache and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine GCache with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both GCache and the Opportunistic Garbage Collection Articles relate to

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as GCache. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with GCache would be nothing more than the predictable use of
prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with GCache and would
have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in GCache to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in GCache with the fundamental concept of dynamically determining
the maximum number of expired records to remove in an accessed linked list
of records to solve a number of potential problems. For example, the removal
of expired records described in GCache can be burdensome on the system,
adding to the system’s load and slowing down the system’s processing.
Moreover, the removal could also force an interruption in real-time processing
as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by GCache in combination with Dirks, Thatte, the ‘663
Patent, or the Opportunistic Garbage Collection References, it is disclosed by
Linux 2.0.1, which describes dynamically determining maximum number of
expired ones of the records to remove when the linked list is accessed. It
would have been obvious to combine Linux 2.0.1 with GCache. For example,
both Linux 2.0.1 and GCache describe systems and methods for performing

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

data storage and retrieval using known programming techniques to yield a
predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

To the extent the preamble is a limitation, GCache discloses a method for
storing and retrieving information records using a linked list to store and
provide access to the records, at least some of the records automatically
expiring. GCache also discloses a method for storing and retrieving
information records using a hashing technique to provide access to the records
and using an external chaining technique to store the records with same hash
address, at least some of the records automatically expiring.

For example, Comer discloses using linked lists to store records, the linked
lists chained to a hash table using an external chaining technique:

“GCache implements each cache as a separate hash table of buckets. Buckets
are implemented as doubly linked lists of cache entry headers for easy

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

insertion and deletion.” See Comer at 3.

“GCache keeps all cacheentry structures for an active cache either on the free
list or, when they are in use, on a doubly linked list attached to a hash table
slot. GCache computes a hash value as a function of the sum of bytes in the
key buffer. GCache then computes the hash table slot as the hash value modulo
the size of the hash table” See Comer at 5.

“GCache implements the hash table as an array of structures representing
buckets, each containing the head of a (possibly empty) doubly linked cache
entry chain.” See Comer at 6.

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

See also, gcache.c at lines 53-64, defining cacheentry as a linked list, as shown
in the code below:

53 struct cacheentry {
54 ce_status ce_status; /* INUSE or FREE */
55 char *ce_keyptr; /* pointer to the key */
56 tcelen ce_keylen; /* length of the key */
57 char *ce_resptr; /* pointer to the result */
58 tcelen ce_reslen; /* length of the result */

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

35 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

59 thval ce hash; /* value that was hashed in */
60 ttstamp ce_tsinsert; /* timestamp - time inserted */
61 ttstamp ce_tsaccess; /* timestamp - last access */
62 tceix ce_prev; /* next entry on list */
63 tceix ce_next; /* prev entry on list */
64 };

Comer discloses storing records in a linked list, for example:

“Cainsert() inserts a new mapping, key => res, into the cache.” See Comer at
4.

See also, gache.c at lines 241-304, defining cainsert().

Comer discloses providing access to records stored in a linked list, for
example:

“Calookup() searches for a cached entry matching the key passed as an
argument.” See Comer at 4.

See also, gcache.c at lines 307-347 and 637-678, defining calookup() and
cagetindex().

Comer discloses at least some of the records automatically expiring, for
example:

“In a simpler and cleaner design chosen for GCache, each cached entry

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

36 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

contains a timestamp encoding the insertion time. If a lookup matches an entry
with an expired timestamp, that entry is removed rather than being returned.”
See Comer at 10.

See also, gcache.c at lines 617-634, defining caisold() which determines if the
record has expired:

617 /*
618 *
===
=====
619 * caisold - return TRUE if the given entry is "too old"
620 *
===
=====
621 */
622 LOCAL int caisold(pcb,pce)
623 struct cacheblk *pcb;
624 struct cacheentry *pce;
625 {
626 unsigned now;
627
628 if (pcb->cb_maxlife == 0)
629 return(FALSE);
630
631 gettime(&now);
632
633 return ((now - pce->ce_tsaccess) > pcb->cb_maxlife);
634 }

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

GCache discloses accessing a linked list of records. GCache also discloses
accessing a linked list of records having same hash address.

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

37 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

For example, Comer discloses accessing a linked list of records having the
same hash address:

“GCache implements each cache as a separate hash table of buckets. Buckets
are implemented as doubly linked lists of cache entry headers for easy
insertion and deletion.” See Comer at 3.

“GCache keeps all cacheentry structures for an active cache either on the free
list or, when they are in use, on a doubly linked list attached to a hash table
slot. GCache computes a hash value as a function of the sum of bytes in the
key buffer. GCache then computes the hash table slot as the hash value modulo
the size of the hash table” See Comer at 5.

“GCache implements the hash table as an array of structures representing
buckets, each containing the head of a (possibly empty) doubly linked cache
entry chain.” See Comer at 6.

See also, gcache.c at lines 637-677, defining cagetindex(), which contains code
constituting a “record search means” that uses a hash value to access and
traverse a linked list of records having the same hash address:

637 /*
638 *
===
=====
639 * cagetindex - return the index of a matching entry, or
SYSERR
640 * N.B. assumes MUTEX is already held
641 *

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

38 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

===
=====
642 */
643 LOCAL tceix cagetindex(pcb,pkey,keylen,hash)
644 struct cacheblk *pcb;
645 char *pkey;
646 tcelen keylen;
647 thval hash;
648 {
649 struct cacheentry *pce;
650 tceix ix;
651 tceix nextix;
652
653 ++pcb->cb_lookups;
654
655 ix = pcb->cb_hash[HASHTOIX(hash,pcb)].he_ix;
656
657 while (ix != NULL_IX) {
658 pce = &pcb->cb_cache[ix];
659 nextix = pce->ce_next;
660
661 if ((pce->ce_hash == hash) &&
662 (pce->ce_keylen == keylen) &&
663 (blkequ(pkey,pce->ce_keyptr,keylen))) {
664 /* this is a match */
665 ++pcb->cb_hits;
666 if (caisold(pcb,pce)) {
667 ++pcb->cb_tos;
668 caunlink(pcb,ix);
669 return(NULL_IX);
670 } else {
671 return(ix);
672 }
673 }
674 ix = nextix;
675 }
676

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

39 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

677 return(NULL_IX);
678 }

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

GCache discloses identifying at least some of the automatically expired ones of
the records.

For example, Comer discloses a means for identifying and removing expired
records from the linked list of records:

“In a simpler and cleaner design chosen for GCache, each cached entry
contains a timestamp encoding the insertion time. If a lookup matches an entry
with an expired timestamp, that entry is removed rather than being returned.”
See Comer at 10.

At lines 655-670 of gcache.c, cagetindex() executes a while loop to traverse a
linked list attached to a bucket of the hash table, accessing records stored
therein. In the subset of that code listed below, cagetindex() utilizes caisold()
to identify if a matching record is expired and removes the expired record from
the linked list:

666 if (caisold(pcb,pce)) {
667 ++pcb->cb_tos;
668 caunlink(pcb,ix);
669 return(NULL_IX);
670 } else {

To the extent that GCache does not disclose this limitation, GCache in
combination with Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL IPv6”)
discloses identifying at least some of the automatically expired ones of the

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

40 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

records.

One of ordinary skill in the art would be motivated to, and would understand how to,
combine the method disclosed in GCache with the techniques for identifying at least
some of the automatically expired ones of the records disclosed by NRL IPv6.
See, e.g., key.c at lines 1396-1563. For example, since NRL IPv6 utilizes a
linked list for storing records and GCache discloses a method that attaches or
chains linked lists to a hash table for storing records, one of ordinary skill in
the art would be motivated to combine the linked list of NRL IPv6 with the
method utilizing a hash table using external chaining of linked lists disclosed
by GCache. The disclosure of these claim elements in NRL IPv6 is clearly
shown in the chart of NRL IPv6, which is hereby incorporated by reference in
its entirety.
Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining NRL IPv6 with GCache would be nothing more than the
predictable use of prior art elements according to their established functions.

For example, as defined in key.h and shown in the code below, the
key_acquirelist structure is a linked list:

188 struct key_acquirelist {
189 u_int8 type; /* secassoc type to acquire */
190 struct sockaddr_in6 target; /* destination address of
secassoc */
191 u_int32 count; /* number of acquire messages sent */
192 u_long expiretime; /* expiration time for acquire message

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

41 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

*/
193 struct key_acquirelist *next;
194 };

In addition, key.c, within the function key_acquire(), discloses traversing
key_acquirelist and accessing entries stored therein. See, e.g., key.c at lines
1411, 1430-1459.

Also, key.c and key.h disclose automatically expiring records. For example,
the key_acquirelist structure defined in key.h contains the following code:

192 u_long expiretime; /* expiration time for acquire message
*/

Furthermore, key.c discloses a means for identifying at least some of the
expired ones of the records, as shown in the code below:

1445 } else if (ap->expiretime < time.tv_sec) {
1446 /*
1447 * Since we're already looking at the list, we may as
1448 * well delete expired entries as we scan through the list.
1449 * This should really be done by a function like
key_reaper()
1450 * but until we code key_reaper(), this is a quick and
dirty
1451 * hack.
1452 */
1453 DPRINTF(IDL_MAJOR_EVENT,("found an expired
entry...deleting
it!\n"));
1454 prevap->next = ap->next;
1455 KFree(ap);
1456 ap = prevap;
1457 }

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

42 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

See also, key.c at lines 1396-1563, 1768-1845; key.h at lines 188-194.

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

GCache discloses removing at least some of the automatically expired records
from the linked list when the linked list is accessed.

For example:

“In a simpler and cleaner design chosen for GCache, each cached entry
contains a timestamp encoding the insertion time. If a lookup matches an entry
with an expired timestamp, that entry is removed rather than being returned.”
See Comer at 10.

At lines 655-670 of gcache.c, cagetindex() executes a while loop to traverse a
linked list attached to a bucket of the hash table, accessing records stored
therein. In the subset of that code listed below, cagetindex() utilizes caisold()
to identify if a matching record is expired and removes the expired record from
the linked list:

666 if (caisold(pcb,pce)) {
667 ++pcb->cb_tos;
668 caunlink(pcb,ix);
669 return(NULL_IX);
670 } else {

To the extent that GCache does not disclose this limitation, GCache in
combination with Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL IPv6”)
discloses removing at least some of the automatically expired records from the

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

43 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

linked list when the linked list is accessed.

One of ordinary skill in the art would be motivated to, and would understand how to,
combine the method disclosed in GCache with the techniques for removing at least
some of the automatically expired records from the linked list when the linked
list is accessed disclosed by NRL IPv6. See, e.g., key.c at lines 1396-1563. For
example, since NRL IPv6 utilizes a linked list for storing records and GCache
discloses a method that attaches or chains linked lists to a hash table for storing
records, one of ordinary skill in the art would be motivated to combine the
linked list of NRL IPv6 with the method utilizing a hash table using external
chaining of linked lists disclosed by GCache. The disclosure of these claim
elements in NRL IPv6 is clearly shown in the chart of NRL IPv6, which is
hereby incorporated by reference in its entirety.
Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining NRL IPv6 with GCache would be nothing more than the
predictable use of prior art elements according to their established functions.

For example, as defined in key.h and shown in the code below, the
key_acquirelist structure is a linked list:

188 struct key_acquirelist {
189 u_int8 type; /* secassoc type to acquire */
190 struct sockaddr_in6 target; /* destination address of
secassoc */
191 u_int32 count; /* number of acquire messages sent */
192 u_long expiretime; /* expiration time for acquire message

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

44 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

*/
193 struct key_acquirelist *next;
194 };

In addition, key.c, within the function key_acquire(), discloses traversing
key_acquirelist and accessing entries stored therein. See, e.g., key.c at lines
1411, 1430-1459.

Also, key.c and key.h disclose automatically expiring records. For example,
the key_acquirelist structure defined in key.h contains the following code:

192 u_long expiretime; /* expiration time for acquire message
*/

Furthermore, key.c discloses a means for identifying at least some of the
expired ones of the records, as shown in the code below:

1445 } else if (ap->expiretime < time.tv_sec) {
1446 /*
1447 * Since we're already looking at the list, we may as
1448 * well delete expired entries as we scan through the list.
1449 * This should really be done by a function like
key_reaper()
1450 * but until we code key_reaper(), this is a quick and
dirty
1451 * hack.
1452 */
1453 DPRINTF(IDL_MAJOR_EVENT,("found an expired
entry...deleting
it!\n"));
1454 prevap->next = ap->next;
1455 KFree(ap);
1456 ap = prevap;
1457 }

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

45 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

See also, key.c at lines 1396-1563, 1768-1845; key.h at lines 188-194.

 [7d] inserting, retrieving
or deleting one of the
records from the system
following the step of
removing.

GCache discloses inserting, retrieving or deleting one of the records from the
system following the step of removing.

For example, Comer discloses means for inserting records:

“Cainsert() inserts a new mapping, key => res, into the cache.” See Comer at
4.

At line 275 of gcache.c, cainsert() utilizes a record search means, the function
cagetindex(), which removes an expired record from the list as described
below.

“In a simpler and cleaner design chosen for GCache, each cached entry
contains a timestamp encoding the insertion time. If a lookup matches an entry
with an expired timestamp, that entry is removed rather than being returned.”
See Comer at 10.

At lines 655-670 of gcache.c, cagetindex() executes a while loop to traverse a
linked list attached to a bucket of the hash table, accessing records stored
therein. In the subset of that code listed below, cagetindex() utilizes caisold()
to identify if a matching record is expired and if so, removes the expired record
from the linked list using caunlink():

666 if (caisold(pcb,pce)) {
667 ++pcb->cb_tos;
668 caunlink(pcb,ix);

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

46 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

669 return(NULL_IX);
670 } else {

After the call to cagetindex() returns, through which the expired entry was
removed, cainsert() proceeds to insert a new entry at the head of the list and
populates the fields of the structure, as shown in the code below:

275 if ((ixnew = cagetindex(pcb,pkey,keylen,hash)) != NULL_IX)
{
276 /* use the old one */
277 caclear(pcb,ixnew);
278 pce = &pcb->cb_cache[ixnew];
279 } else {
280 /* get a free cacheentry */
281 ixnew = cagetfree(pcb);
282 pce = &pcb->cb_cache[ixnew];
283
284 /* ... and put it at the head of the list */
285 pce->ce_prev = 0;
286 pce->ce_next = phe->he_ix;
287 pcb->cb_cache[phe->he_ix].ce_prev = ixnew;
288 phe->he_ix = ixnew;
289 }
290
291 pce->ce_status = CE_INUSE;
292 pce->ce_hash = hash;
293 pce->ce_keyptr = cagetmem(keylen);
294 pce->ce_keylen = keylen;
295 blkcopy(pce->ce_keyptr,pkey,keylen);
296 pce->ce_resptr = cagetmem(reslen);
297 pce->ce_reslen = reslen;
298 blkcopy(pce->ce_resptr,pres,reslen);
299 gettime(&pce->ce_tsinsert);
300 pce->ce_tsaccess = pce->ce_tsinsert;

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

47 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

In a second example, caunlink(), which is called by other functions including
caremove() and cagetindex(), removes a record from the linked list by
modifying the values of ce_next and ce_prev in the records to which it was
linked and then deletes the data stored in a record and frees memory by calling
caclear(), as shown in the code below:

750 pce = &pcb->cb_cache[ix];
751 hash = pce->ce_hash;
752 phe = &pcb->cb_hash[HASHTOIX(hash,pcb)];
753
754 if (pce->ce_prev == NULL_IX)
755 phe->he_ix = pce->ce_next;
756 else
757 pcb->cb_cache[pce->ce_prev].ce_next = pce->ce_next;
758
759 pcb->cb_cache[pce->ce_next].ce_prev = pce->ce_prev;
760
761 caclear(pcb,ix);

To the extent that GCache does not disclose this limitation, GCache in
combination with Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL IPv6”)
discloses removing at least some of the automatically expired records from the
linked list when the linked list is accessed.
One of ordinary skill in the art would be motivated to, and would understand how to,
combine the method disclosed in GCache with the identifying at least some of the
automatically expired ones of the records disclosed by NRL IPv6. See, e.g.,
key.c at lines 1396-1563. For example, since NRL IPv6 utilizes a linked list for
storing records and GCache discloses a method that attaches or chains linked
lists to a hash table for storing records, one of ordinary skill in the art would be

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

48 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

motivated to combine the linked list of NRL IPv6 with the method utilizing a
hash table using external chaining of linked lists disclosed by GCache. The
disclosure of these claim elements in NRL IPv6 is clearly shown in the chart of
NRL IPv6, which is hereby incorporated by reference in its entirety.
Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining NRL IPv6 with GCache would be nothing more than the
predictable use of prior art elements according to their established functions.

For example, as defined in key.h and shown in the code below, the
key_acquirelist structure is a linked list:

188 struct key_acquirelist {
189 u_int8 type; /* secassoc type to acquire */
190 struct sockaddr_in6 target; /* destination address of
secassoc */
191 u_int32 count; /* number of acquire messages sent */
192 u_long expiretime; /* expiration time for acquire message
*/
193 struct key_acquirelist *next;
194 };

In addition, key.c, within the function key_acquire(), discloses traversing
key_acquirelist and accessing entries stored therein. See, e.g., key.c at lines
1411, 1430-1459.

Also, key.c and key.h disclose automatically expiring records. For example,
the key_acquirelist structure defined in key.h contains the following code:

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

49 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

192 u_long expiretime; /* expiration time for acquire message
*/

Furthermore, key.c discloses a means for identifying and removing at
least some of the expired ones of the records from the linked list when the
linked list is accessed, as shown in the code below:

1445 } else if (ap->expiretime < time.tv_sec) {
1446 /*
1447 * Since we're already looking at the list, we may as
1448 * well delete expired entries as we scan through the list.
1449 * This should really be done by a function like
key_reaper()
1450 * but until we code key_reaper(), this is a quick and
dirty
1451 * hack.
1452 */
1453 DPRINTF(IDL_MAJOR_EVENT,("found an expired
entry...deleting
it!\n"));
1454 prevap->next = ap->next;
1455 KFree(ap);
1456 ap = prevap;
1457 }

See also, key.c at lines 1396-1563, 1768-1845; key.h at lines 188-194.

4. The method according to
claim 3 further including
the step of dynamically
determining maximum
number of expired ones of

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of

GCache discloses dynamically determining maximum number of expired ones
of the records to remove when the linked list is accessed.

For example, Comer discloses dynamically determining whether to delete one
record or zero records from the accessed linked list of records:

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

50 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

the records to remove
when the linked list is
accessed.

the records to remove
when the linked list is
accessed.

“In a simpler and cleaner design chosen for GCache, each cached entry
contains a timestamp encoding the insertion time. If a lookup matches an entry
with an expired timestamp, that entry is removed rather than being returned.”
See Comer at 10.

At lines 655-670 of gcache.c, cagetindex() executes a while loop to traverse a
linked list attached to a bucket of the hash table, accessing records stored
therein. In the subset of that code listed below, cagetindex() utilizes caisold()
to identify if a matching record is expired and removes the expired record from
the linked list using caunlink() and returns. If the matching record is not
expired, the code returns the index of the matched record:

666 if (caisold(pcb,pce)) {
667 ++pcb->cb_tos;
668 caunlink(pcb,ix);
669 return(NULL_IX);
670 } else {
671 return(ix);
672 }

In a second example, Comer discloses dynamically determining whether to
delete one record or zero records from an accessed linked list of records:

“Insertion of a new entry into a full cache forces the deletion of the entry that
was looked up the least recently.” See Comer at 3.

At line 275 of gcache.c, cainsert() calls cagetindex() to access a linked list of
records and see if a matching entry already exists. If a matching entry does not

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

51 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

exist, cainset() calls cagetfree() at line 281 to get a free entry. In cagetfree(),
the following code dynamically determines whether to delete one record or
zero records:

719 /* if the free list is empty, delete the oldest entry */
720 if (pcb->cb_freelist == NULL_IX) {
721 cadeleteold(pcb);
722 ++pcb->cb_fulls;
723 }

In addition, GCache combined with Dirks, Thatte, the ’663 patent, and/or the
Opportunistic Garbage Collection Articles discloses dynamically determining
maximum number of expired ones of the records to remove when the linked
list is accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

52 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

53 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both GCache and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as GCache. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with GCache nothing more than

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

54 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with GCache and would
have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in GCache with the means
for dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. For example,
Thatte discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, Ass both GCache and Thatte teach a system of data storage
and retrieval, one of ordinary skill in the art would recognize that the result of
combining GCache with Thatte would be nothing more than the predictable
use of prior art elements according to their established functions. The resulting
combination would include the capability to determine the maximum number
for the record search means to remove as taught by Thatte.

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

55 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

Further, one of ordinary skill in the art would be motivated to combine GCache
with Thatte and recognize the benefits of doing so. For example, the removal
of expired records described in GCache can be burdensome on the system,
adding to the system’s load and slowing down the system’s processing. One of
ordinary skill in the art would recognize that combining GCache with the
teachings of Thatte would solve this problem by dynamically determining how
many records to delete based on, among other things, the system load.
Moreover, the '120 patent discloses that "[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120
patent provides motivations to combine GCache with Thatte.

Alternatively, it would also be obvious to combine GCache with the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

56 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

57 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

58 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both GCache and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in GCache. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with GCache would
be nothing more than the predictable use of prior art elements according to

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

59 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

their established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with GCache and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine GCache with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

60 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both GCache and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as GCache. Moreover, one of ordinary skill in the art

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

61 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with GCache would be nothing more than the predictable use of
prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with GCache and would
have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in GCache to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in GCache with the fundamental concept of dynamically determining
the maximum number of expired records to remove in an accessed linked list

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

62 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

of records to solve a number of potential problems. For example, the removal
of expired records described in GCache can be burdensome on the system,
adding to the system’s load and slowing down the system’s processing.
Moreover, the removal could also force an interruption in real-time processing
as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by GCache in combination with Dirks, Thatte, the ‘663
Patent, or the Opportunistic Garbage Collection References, it is disclosed by
Linux 2.0.1, which describes dynamically determining maximum number of
expired ones of the records to remove when the linked list is accessed. It
would have been obvious to combine Linux 2.0.1 with GCache. For example,
both Linux 2.0.1 and GCache describe systems and methods for performing
data storage and retrieval using known programming techniques to yield a
predictable result.

When invoked, the function rt_cache_add automatically increments an

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

63 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

64 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

65 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can

EXHIBIT D-10

Joint Invalidity Contentions & Production of
Documents

66 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, NRL IPv6 discloses an information
storage and retrieval system.

For example, NRL IPv6 discloses a linked list of automatically expiring data.
See, e.g., struct_keyacquirelist defined in key.h at lines 188-194.

See also, key.c at lines 1396-1563, 1768-1845; key.h at lines 188-194.

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

NRL IPv6 discloses a linked list to store and provide access to records stored
in a memory of the system, at least some of the records automatically expiring.

NRL IPv6 in combination with Robert L. Kruse, Data Structures & Program
Design (Prentice Hall 1987) (hereinafter “Kruse”) discloses a hashing means to
provide access to records stored in a memory of the system and using an
external chaining technique to store the records with same hash address, at
least some of the records automatically expiring.

One of ordinary skill in the art would be motivated to, and would understand how to,
combine the system disclosed in NRL IPv6 with the hashing means to provide
access to records stored in a memory of the system and using an external
chaining technique to store the records with same hash address disclosed by
Kruse. See, e.g., Kruse at 206-208. For example, since NRL IPv6, as discussed
below, utilizes a linked list for storing records and Kruse discloses attaching or
chaining linked lists to a hash table for storing records, one of ordinary skill in
the art would be motivated to combine the linked list of NRL IPv6 with the

1 Available as of August 1995.

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

hash table using external chaining of linked lists disclosed by Kruse. Also, it is
common practice among those of skill in the art to utilize techniques disclosed
in textbooks such as Kruse in order to design and implement systems. The
disclosure of these claim elements in Kruse is clearly shown in the chart of
Kruse, which is hereby incorporated by reference in its entirety.
Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining NRL IPv6 with Kruse would be nothing more than the
predictable use of prior art elements according to their established functions.

For example, as defined in key.h and shown in the code below, the
key_acquirelist structure is a linked list:

188 struct key_acquirelist {
189 u_int8 type; /* secassoc type to acquire */
190 struct sockaddr_in6 target; /* destination address of
secassoc */
191 u_int32 count; /* number of acquire messages sent */
192 u_long expiretime; /* expiration time for acquire message
*/
193 struct key_acquirelist *next;
194 };

In addition, key.c discloses traversing key_acquirelist and accessing entries
stored therein. See, e.g., key.c at lines 1411, 1430-1459.

Also, key.c and key.h disclose automatically expiring records. For example,

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

the key_acquirelist structure defined in key.h contains the following code:

192 u_long expiretime; /* expiration time for acquire message
*/

For example, key.c checks to see if a record has expired using the above-
described field in key_acquirelist, as shown in the code below:

1445 } else if (ap->expiretime < time.tv_sec) {
1446 /*
1447 * Since we're already looking at the list, we may as
1448 * well delete expired entries as we scan through the list.
1449 * This should really be done by a function like
key_reaper()
1450 * but until we code key_reaper(), this is a quick and
dirty
1451 * hack.
1452 */
1453 DPRINTF(IDL_MAJOR_EVENT,("found an expired
entry...deleting
it!\n"));
1454 prevap->next = ap->next;
1455 KFree(ap);
1456 ap = prevap;
1457 }

Further, Kruse discloses hash tables with external chaining. See, e.g., Kruse at
206-208. One of ordinary skill in the art would be motivated to, and would
understand how to, combine the systems and methods of NRL IPv6 with the
systems and methods of using hash tables with external chaining disclosed by
Kruse.

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

See also, key.c at lines 1396-1563, 1768-1845; key.h at lines 188-194.

To the extent that NRL IPv6 does not disclose this limitation, gcache.c from
Xinu Operating System for Sparc (1991) (hereinafter “gcache.c”) and Douglas
Comer and Shawn Ostermann, GCache: A Generalized Caching Mechanism,
Purdue University (Revised March 1992) (hereinafter “Comer”) (collectively
hereinafter “GCache”) discloses a linked list to store and provide access to
records stored in a memory of the system, at least some of the records
automatically expiring and also discloses a hashing means to provide access to
records stored in a memory of the system and using an external chaining
technique to store the records with same hash address, at least some of the
records automatically expiring.

One of ordinary skill in the art would be motivated to, and would understand how to,
combine the system disclosed in NRL IPv6 with the a hashing means to provide
access to records stored in a memory of the system and using an external
chaining technique to store the records with same hash address, at least some
of the records automatically expiring disclosed by GCache. See, e.g., Comer at
3-10. For example, since NRL IPv6 utilizes a linked list for storing records and
GCache discloses a system that attaches or chains linked lists to a hash table
for storing records, one of ordinary skill in the art would be motivated to
combine the linked list of NRL IPv6 with the system including a hash table
using external chaining of linked lists disclosed by GCache. The disclosure of
these claim elements in GCache is clearly shown in the chart of GCache,

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

which is hereby incorporated by reference in its entirety.
Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining NRL IPv6 with GCache would be nothing more than the
predictable use of prior art elements according to their established functions.

For example, Comer discloses using linked lists to store records, the linked
lists chained to a hash table using an external chaining technique:

“GCache implements each cache as a separate hash table of buckets. Buckets
are implemented as doubly linked lists of cache entry headers for easy
insertion and deletion.” See Comer at 3.

“GCache keeps all cacheentry structures for an active cache either on the free
list or, when they are in use, on a doubly linked list attached to a hash table
slot. GCache computes a hash value as a function of the sum of bytes in the
key buffer. GCache then computes the hash table slot as the hash value modulo
the size of the hash table” See Comer at 5.

“GCache implements the hash table as an array of structures representing
buckets, each containing the head of a (possibly empty) doubly linked cache
entry chain.” See Comer at 6.

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

See also, gcache.c at lines 53-64, defining cacheentry as a linked list, as shown
in the code below:

53 struct cacheentry {
54 ce_status ce_status; /* INUSE or FREE */
55 char *ce_keyptr; /* pointer to the key */
56 tcelen ce_keylen; /* length of the key */
57 char *ce_resptr; /* pointer to the result */

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

58 tcelen ce_reslen; /* length of the result */
59 thval ce_hash; /* value that was hashed in */
60 ttstamp ce_tsinsert; /* timestamp - time inserted */
61 ttstamp ce_tsaccess; /* timestamp - last access */
62 tceix ce_prev; /* next entry on list */
63 tceix ce_next; /* prev entry on list */
64 };

Comer discloses storing records in a linked list, for example:

“Cainsert() inserts a new mapping, key => res, into the cache.” See Comer at
4.

See also, gache.c at lines 241-304, defining cainsert().

Comer discloses providing access to records stored in a linked list, for
example:

“Calookup() searches for a cached entry matching the key passed as an
argument.” See Comer at 4.

See also, gcache.c at lines 307-347 and 637-678, defining calookup() and
cagetindex().

Comer discloses at least some of the records automatically expiring, for
example:

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

“In a simpler and cleaner design chosen for GCache, each cached entry
contains a timestamp encoding the insertion time. If a lookup matches an entry
with an expired timestamp, that entry is removed rather than being returned.”
See Comer at 10.

See also, gcache.c at lines 617-634, defining caisold() which determines if the
record has expired:

617 /*
618 *
===
=====
619 * caisold - return TRUE if the given entry is "too old"
620 *
===
=====
621 */
622 LOCAL int caisold(pcb,pce)
623 struct cacheblk *pcb;
624 struct cacheentry *pce;
625 {
626 unsigned now;
627
628 if (pcb->cb_maxlife == 0)
629 return(FALSE);
630
631 gettime(&now);
632
633 return ((now - pce->ce_tsaccess) > pcb->cb_maxlife);
634 }

[1b] a record search means [5b] a record search means The combination of NRL IPv6 and Kruse discloses a record search means

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

utilizing a search key to
access the linked list,

utilizing a search key to
access a linked list of
records having the same
hash address,

utilizing a search key to access the linked list. The combination NRL IPv6 and
Kruse also discloses a record search means utilizing a search key to access a
linked list of records having the same hash address.

For example, as defined in key.h and shown in the code below, the
key_acquirelist structure is a linked list:

188 struct key_acquirelist {
189 u_int8 type; /* secassoc type to acquire */
190 struct sockaddr_in6 target; /* destination address of
secassoc */
191 u_int32 count; /* number of acquire messages sent */
192 u_long expiretime; /* expiration time for acquire message
*/
193 struct key_acquirelist *next;
194 };

In addition, key.c discloses traversing key_acquirelist—accessing records
stored therein--to search for matching record., as shown in the code below:

1411 struct key_acquirelist *ap, *prevap;
.
.
.
1430 prevap = key_acquirelist;
1431 for(ap = key_acquirelist->next; ap; ap = ap->next) {
1432 if (addrpart_equal(dst, (struct sockaddr *)&(ap->target))
&&
1433 (etype == ap->type)) {
1434 DPRINTF(IDL_MAJOR_EVENT,("acquire message previously
sent!\n"));
1435 if (ap->expiretime < time.tv_sec) {

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

1436 DPRINTF(IDL_MAJOR_EVENT,("acquire message has
expired!\n"));
1437 ap->count = 0;
1438 break;
1439 }

Further, Kruse discloses hash tables and hash tables with external chaining.
See, e.g., Kruse at 198-208. One of ordinary skill in the art would be
motivated to, and would understand how to, combine the systems and methods
of NRL IPv6 with the systems and methods of using hash tables with external
chaining disclosed by Kruse. In such a combination, one of ordinary skill in
the art would recognize that a hash key is used to access a list of records
having the same hash address (a linked list chained to a hash bucket).

See also, key.c at lines 1396-1563, 1768-1845; key.h at lines 188-194.

To the extent that NRL IPv6 does not disclose this limitation, gcache.c from
Xinu Operating System for Sparc (1991) (hereinafter “gcache.c”) and Douglas
Comer and Shawn Ostermann, GCache: A Generalized Caching Mechanism,
Purdue University (Revised March 1992) (hereinafter “Comer”) (collectively
hereinafter “GCache”) discloses a record search means utilizing a search key
to access the linked list, and also discloses a record search means utilizing a
search key to access a linked list of records having the same hash address.

One of ordinary skill in the art would be motivated to, and would understand how to,
combine the system disclosed in NRL IPv6 with the a hashing means to provide
access to records stored in a memory of the system and using an external

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

chaining technique to store the records with same hash address, at least some
of the records automatically expiring disclosed by GCache. See, e.g., Comer at
3-10. For example, since NRL IPv6 utilizes a linked list for storing records and
GCache discloses a system that attaches or chains linked lists to a hash table
for storing records, one of ordinary skill in the art would be motivated to
combine the linked list of NRL IPv6 with the system including a hash table
using external chaining of linked lists disclosed by GCache. The disclosure of
these claim elements in GCache is clearly shown in the chart of GCache,
which is hereby incorporated by reference in its entirety.
Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining NRL IPv6 with GCache would be nothing more than the
predictable use of prior art elements according to their established functions.

For example, Comer discloses utilizing a search key to access a linked list of
records having the same hash address. In the quoted text below, the use of
hash value to determine a hash table with an attached linked list of records
having the same hash address is an example of “utilizing a search key to access
a linked list.”

“GCache implements each cache as a separate hash table of buckets. Buckets
are implemented as doubly linked lists of cache entry headers for easy
insertion and deletion.” See Comer at 3.

“GCache keeps all cacheentry structures for an active cache either on the free

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

list or, when they are in use, on a doubly linked list attached to a hash table
slot. GCache computes a hash value as a function of the sum of bytes in the
key buffer. GCache then computes the hash table slot as the hash value modulo
the size of the hash table” See Comer at 5.

“GCache implements the hash table as an array of structures representing
buckets, each containing the head of a (possibly empty) doubly linked cache
entry chain.” See Comer at 6.

See also, gcache.c at lines 637-677, defining cagetindex(), which contains code
constituting a “record search means” that uses a hash value to access and
traverse a linked list of records having the same hash address:

637 /*
638 *
===
=====
639 * cagetindex - return the index of a matching entry, or
SYSERR
640 * N.B. assumes MUTEX is already held
641 *
===
=====
642 */
643 LOCAL tceix cagetindex(pcb,pkey,keylen,hash)
644 struct cacheblk *pcb;
645 char *pkey;
646 tcelen keylen;
647 thval hash;
648 {
649 struct cacheentry *pce;

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

650 tceix ix;
651 tceix nextix;
652
653 ++pcb->cb_lookups;
654
655 ix = pcb->cb_hash[HASHTOIX(hash,pcb)].he_ix;
656
657 while (ix != NULL_IX) {
658 pce = &pcb->cb_cache[ix];
659 nextix = pce->ce_next;
660
661 if ((pce->ce_hash == hash) &&
662 (pce->ce_keylen == keylen) &&
663 (blkequ(pkey,pce->ce_keyptr,keylen))) {
664 /* this is a match */
665 ++pcb->cb_hits;
666 if (caisold(pcb,pce)) {
667 ++pcb->cb_tos;
668 caunlink(pcb,ix);
669 return(NULL_IX);
670 } else {
671 return(ix);
672 }
673 }
674 ix = nextix;
675 }
676
677 return(NULL_IX);
678 }

[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the

NRL IPv6 discloses the record search means including a means for identifying
and removing at least some of the expired ones of the records from the linked
list when the linked list is accessed. NRL IPv6 also discloses the record search
means including means for identifying and removing at least some expired
ones of the records from the linked list of records when the linked list is

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

records from the linked list
when the linked list is
accessed, and

linked list of records when
the linked list is accessed,
and

accessed.

For example, as defined in key.h and shown in the code below, the
key_acquirelist structure is a linked list:

188 struct key_acquirelist {
189 u_int8 type; /* secassoc type to acquire */
190 struct sockaddr_in6 target; /* destination address of
secassoc */
191 u_int32 count; /* number of acquire messages sent */
192 u_long expiretime; /* expiration time for acquire message
*/
193 struct key_acquirelist *next;
194 };

In addition, key.c, within the function key_acquire(), discloses traversing
key_acquirelist and accessing entries stored therein. See, e.g., key.c at lines
1411, 1430-1459.

Also, key.c and key.h disclose automatically expiring records. For example,
the key_acquirelist structure defined in key.h contains the following code:

192 u_long expiretime; /* expiration time for acquire message
*/

Furthermore, key.c discloses a means for identifying and removing at
least some of the expired ones of the records from the linked list when the
linked list is accessed, as shown in the code below:

1445 } else if (ap->expiretime < time.tv_sec) {

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

1446 /*
1447 * Since we're already looking at the list, we may as
1448 * well delete expired entries as we scan through the list.
1449 * This should really be done by a function like
key_reaper()
1450 * but until we code key_reaper(), this is a quick and
dirty
1451 * hack.
1452 */
1453 DPRINTF(IDL_MAJOR_EVENT,("found an expired
entry...deleting
it!\n"));
1454 prevap->next = ap->next;
1455 KFree(ap);
1456 ap = prevap;
1457 }

See also, key.c at lines 1396-1563, 1768-1845; key.h at lines 188-194.

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

NRL IPv6 discloses means, utilizing the record search means, for accessing the
linked list and, at the same time, removing at least some of the expired ones of
the records in the linked list. NRL IPv6 also discloses utilizing the record
search means, for inserting, retrieving, and deleting records from the system
and, at the same time, removing at least some expired ones of the records in the
accessed linked list of records.

The “means, utilizing the record search means” limitation is met, for example,
by a function that calls key_acquire(). At line 1835 of key.c, for example,
key_acquire() is called by the function getassocbysocket().

In addition, the function key_acquire() in key.c contains a for loop beginning

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

at line 1431. Within the for loop, the code starting at the elseif at line 1445 and
ending at line 1457, modifies a pointer in an element of the linked list such that
it removes the expired item from the linked list and then calls KFree(). After
KFree() is called, control returns to the for loop which, unless it has reached
the end of the linked list, will access the next record in the list. If the record has
not been previously sent and has expired, it will be removed and deleted in the
code starting at the elseif at line 1445 and ending at line 1457. Finally, after the
loop described above completes, key_acquire() contains the following code to
insert an entry into key_acquirelist:

1542 /*
1543 * Update the acquirelist
1544 */
1545 if (success) {
1546 if (!ap) {
1547 DPRINTF(IDL_MAJOR_EVENT,("Adding new entry in
acquirelist\n"));
1548 K_Malloc(ap, struct key_acquirelist *, sizeof(struct
key_acquirelist));
1549 if (ap == 0)
1550 return(success ? 0 : -1);
1551 bzero((char *)ap, sizeof(struct key_acquirelist));
1552 bcopy((char *)dst, (char *)&(ap->target), dst->sa_len);
1553 ap->type = etype;
1554 ap->next = key_acquirelist->next;
1555 key_acquirelist->next = ap;
1556 }
1557 DPRINTF(IDL_EVENT,("Updating acquire counter and
expiration
time\n"));
1558 ap->count++;
1559 ap->expiretime = time.tv_sec + maxacquiretime;

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

1560 }

See also, key.c at lines 1396-1563, 1768-1845; key.h at lines 188-194.

To the extent that NRL IPv6 does not disclose this limitation, gcache.c from
Xinu Operating System for Sparc (1991) (hereinafter “gcache.c”) and Douglas
Comer and Shawn Ostermann, GCache: A Generalized Caching Mechanism,
Purdue University (Revised March 1992) (hereinafter “Comer”) (collectively
hereinafter “GCache”) discloses means, utilizing the record search means, for
accessing the linked list and, at the same time, removing at least some of the
expired ones of the records in the linked list, and also discloses utilizing the
record search means, for inserting, retrieving, and deleting records from the
system and, at the same time, removing at least some expired ones of the
records in the accessed linked list of records.
One of ordinary skill in the art would be motivated to, and would understand how to,
combine the system disclosed in NRL IPv6 with the a hashing means to provide
access to records stored in a memory of the system and using an external
chaining technique to store the records with same hash address, at least some
of the records automatically expiring disclosed by GCache. See, e.g., Comer at
3-10. For example, since NRL IPv6 utilizes a linked list for storing records and
GCache discloses a system that attaches or chains linked lists to a hash table
for storing records, one of ordinary skill in the art would be motivated to
combine the linked list of NRL IPv6 with the system including a hash table
using external chaining of linked lists disclosed by GCache. The disclosure of
these claim elements in GCache is clearly shown in the chart of GCache,

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

which is hereby incorporated by reference in its entirety.
Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining NRL IPv6 with GCache would be nothing more than the
predictable use of prior art elements according to their established functions.

For example, Comer discloses means for inserting, retrieving, and deleting
records:

“Cainsert() inserts a new mapping, key => res, into the cache.” See Comer at
4.

See also, gcache.c at lines 246-304, defining cainsert().

“Calookup() searches for a cached entry matching the key passed as an
argument.” See Comer at 4.

See also, gcache.c at lines 312-347 and 643-678, defining calookup() and
cagetindex().

“Caremove() removes the cached entry whose key is given, if one exists.” See
Comer at 4.

See also, gcache.c at lines 355-376, defining caremove().

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

Each of the means for inserting, retrieving, and deleting, utilizes a record
search means, the function cagetindex(), which removes an expired record
from the list as described below. The individual calls of cagetindex() are listed
here:

In cainsert():
275 if ((ixnew = cagetindex(pcb,pkey,keylen,hash)) != NULL_IX)
{

In calookup():
333 if ((ix = cagetindex(pcb,pkey,keylen,hash)) != NULL_IX) {

In caremove():
370 if ((ix = cagetindex(pcb,pkey,keylen,hash)) != NULL_IX) {

“In a simpler and cleaner design chosen for GCache, each cached entry
contains a timestamp encoding the insertion time. If a lookup matches an entry
with an expired timestamp, that entry is removed rather than being returned.”
See Comer at 10.

At lines 655-670 of gcache.c, cagetindex() executes a while loop to traverse a
linked list attached to a bucket of the hash table, accessing records stored
therein. In the subset of that code listed below, cagetindex() utilizes caisold()
to identify if a matching record is expired and removes the expired record from
the linked list using caunlink():

666 if (caisold(pcb,pce)) {
667 ++pcb->cb_tos;

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

668 caunlink(pcb,ix);
669 return(NULL_IX);
670 } else {

2. The information storage
and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

6. The information storage
and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

NRL IPv6 discloses an information storage and retrieval system further
including means for dynamically determining maximum number for the record
search means to remove in the accessed linked list of records.

For example, in key.c each time the else if statement at line 1445 is executed, it
dynamically determines the maximum number of records to remove—one or
zero—based on whether the record has expired.

1445 } else if (ap->expiretime < time.tv_sec) {
1446 /*
1447 * Since we're already looking at the list, we may as
1448 * well delete expired entries as we scan through the list.
1449 * This should really be done by a function like
key_reaper()
1450 * but until we code key_reaper(), this is a quick and
dirty
1451 * hack.
1452 */
1453 DPRINTF(IDL_MAJOR_EVENT,("found an expired
entry...deleting
it!\n"));
1454 prevap->next = ap->next;
1455 KFree(ap);
1456 ap = prevap;
1457 }

Further, NRL IPv6 combined with Dirks, Thatte, the ’663 patent and/or the

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

Opportunistic Garbage Collection Articles discloses an information storage
and retrieval system further including means for dynamically determining
maximum number for the record search means to remove in the accessed
linked list of records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both NRL IPv6 and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as NRL IPv6. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with NRL IPv6 nothing more
than the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with NRL IPv6 and would

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in NRL IPv6 with the means
for dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. For example,
Thatte discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, Ass both NRL IPv6 and Thatte teach a system of data
storage and retrieval, one of ordinary skill in the art would recognize that the
result of combining NRL IPv6 with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove as taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine NRL
IPv6 with Thatte and recognize the benefits of doing so. For example, the
removal of expired records described in NRL IPv6 can be burdensome on the
system, adding to the system’s load and slowing down the system’s

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

processing. One of ordinary skill in the art would recognize that combining
NRL IPv6 with the teachings of Thatte would solve this problem by
dynamically determining how many records to delete based on, among other
things, the system load. Moreover, the '120 patent discloses that "[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one." '120 at
7:10-15. Thus, the '120 patent provides motivations to combine NRL IPv6
with Thatte.

Alternatively, it would also be obvious to combine NRL IPv6 with the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both NRL IPv6 and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in NRL IPv6. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

combining the ’663 patent’s deletion decision procedure with NRL IPv6 would
be nothing more than the predictable use of prior art elements according to
their established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with NRL IPv6 and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine NRL IPv6 with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both NRL IPv6 and the Opportunistic Garbage Collection Articles relate to

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as NRL IPv6. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with NRL IPv6 would be nothing more than the predictable use of
prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with NRL IPv6 and
would have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in NRL IPv6 to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in NRL IPv6 with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in NRL IPv6 can be burdensome on
the system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

See also, key.c at lines 1396-1563, 1768-1845; key.h at lines 188-194.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by NRL IPv6 in combination with Dirks, Thatte, the
‘663 Patent, or the Opportunistic Garbage Collection References, it is

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

disclosed by Linux 2.0.1, which describes dynamically determining maximum
number of expired ones of the records to remove when the linked list is
accessed. It would have been obvious to combine Linux 2.0.1 with NRL IPv6.
For example, both Linux 2.0.1 and NRL IPv6 describe systems and
methods for performing data storage and retrieval using known programming
techniques to yield a predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

35 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

36 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least

To the extent the preamble is a limitation, NRL IPv6 discloses a method for
storing and retrieving information records using a linked list to store and
provide access to the records, at least some of the records automatically
expiring. The combination of NRL IPv6 and Kruse discloses a method for
storing and retrieving information records using a hashing technique to provide
access to the records and using an external chaining technique to store the
records with same hash address, at least some of the records automatically
expiring.

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

37 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

steps of: some of the records
automatically expiring, the
method comprising the
steps of:

One of ordinary skill in the art would be motivated to, and would understand how to,
combine the system disclosed in NRL IPv6 with hashing technique to provide
access to the records and using an external chaining technique to store the
records with same hash address as disclosed by Kruse. See, e.g., Kruse at 206-
208. For example, since NRL IPv6, as discussed below, utilizes a linked list for
storing records and Kruse discloses attaching or chaining linked lists to a hash table
for storing records, one of ordinary skill in the art would be motivated to combine the
linked list of NRL IPv6 with the hash table using external chaining of linked lists
disclosed by Kruse. Also, it is common practice among those of skill in the art
to utilize techniques disclosed in textbooks such as Kruse in order to design
and implement systems. The disclosure of these claim elements in Kruse is clearly
shown in the chart of Kruse, which is hereby incorporated by reference in its entirety.
Moreover, one of ordinary skill in the art would recognize that these combinations
would improve the similar systems and methods in the same way. Additionally, one
of ordinary skill in the art would recognize that the result of combining NRL IPv6
with Kruse would be nothing more than the predictable use of prior art elements
according to their established functions.

For example, as defined in key.h and shown in the code below, the
key_acquirelist structure is a linked list:

188 struct key_acquirelist {
189 u_int8 type; /* secassoc type to acquire */
190 struct sockaddr_in6 target; /* destination address of
secassoc */
191 u_int32 count; /* number of acquire messages sent */
192 u_long expiretime; /* expiration time for acquire message

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

38 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

*/
193 struct key_acquirelist *next;
194 };

In addition, key.c discloses traversing key_acquirelist and accessing entries
stored therein. See, e.g., key.c at lines 1411, 1430-1459.

Also, key.c and key.h disclose automatically expiring records. For example,
the key_acquirelist structure defined in key.h contains the following code:

192 u_long expiretime; /* expiration time for acquire message
*/

For example, key.c checks to see if a record has expired using
the above-described field in key_acquirelist, as shown in the
code below:

1445 } else if (ap->expiretime < time.tv_sec) {
1446 /*
1447 * Since we're already looking at the list, we may as
1448 * well delete expired entries as we scan through the list.
1449 * This should really be done by a function like
key_reaper()
1450 * but until we code key_reaper(), this is a quick and
dirty
1451 * hack.
1452 */
1453 DPRINTF(IDL_MAJOR_EVENT,("found an expired
entry...deleting
it!\n"));
1454 prevap->next = ap->next;
1455 KFree(ap);
1456 ap = prevap;
1457 }

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

39 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

Further, Kruse discloses hash tables with external chaining. See, e.g., Kruse at
206-208. One of ordinary skill in the art would be motivated to, and would
understand how to, combine the systems and methods of NRL IPv6 with the
systems and methods of using hash tables with external chaining disclosed by
Kruse.

See also, key.c at lines 1396-1563, 1768-1845; key.h at lines 188-194.

To the extent that the preamble is a limitation and to the extent that NRL IPv6
does not disclose this limitation, gcache.c from Xinu Operating System for
Sparc (1991) (hereinafter “gcache.c”) and Douglas Comer and Shawn
Ostermann, GCache: A Generalized Caching Mechanism, Purdue University
(Revised March 1992) (hereinafter “Comer”) (collectively hereinafter
“GCache”) discloses a method for storing and retrieving information records
using a linked list to store and provide access to the records, at least some of
the records automatically expiring, and discloses a method for storing and
retrieving information records using a hashing technique to provide access to
the records and using an external chaining technique to store the records with
same hash address, at least some of the records automatically expiring.

One of ordinary skill in the art would be motivated to, and would understand how to,
combine the method disclosed in NRL IPv6 with the method for storing and
retrieving information records using a hashing technique to provide access to
the records and using an external chaining technique to store the records with
same hash address, at least some of the records automatically expiring

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

40 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

disclosed by GCache. See, e.g., Comer at 3-10. For example, since NRL IPv6
utilizes a linked list for storing records and GCache discloses a method that
attaches or chains linked lists to a hash table for storing records, one of
ordinary skill in the art would be motivated to combine the linked list of NRL
IPv6 with the method utilizing a hash table using external chaining of linked
lists disclosed by GCache. The disclosure of these claim elements in GCache is
clearly shown in the chart of GCache, which is hereby incorporated by
reference in its entirety.
Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining NRL IPv6 with GCache would be nothing more than the
predictable use of prior art elements according to their established functions.

For example, Comer discloses using linked lists to store records, the linked
lists chained to a hash table using an external chaining technique:

“GCache implements each cache as a separate hash table of buckets. Buckets
are implemented as doubly linked lists of cache entry headers for easy
insertion and deletion.” See Comer at 3.

“GCache keeps all cacheentry structures for an active cache either on the free
list or, when they are in use, on a doubly linked list attached to a hash table
slot. GCache computes a hash value as a function of the sum of bytes in the
key buffer. GCache then computes the hash table slot as the hash value modulo
the size of the hash table” See Comer at 5.

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

41 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

“GCache implements the hash table as an array of structures representing
buckets, each containing the head of a (possibly empty) doubly linked cache
entry chain.” See Comer at 6.

See also, gcache.c at lines 53-64, defining cacheentry as a linked list, as shown
in the code below:

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

42 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

53 struct cacheentry {
54 ce_status ce_status; /* INUSE or FREE */
55 char *ce_keyptr; /* pointer to the key */
56 tcelen ce_keylen; /* length of the key */
57 char *ce_resptr; /* pointer to the result */
58 tcelen ce_reslen; /* length of the result */
59 thval ce_hash; /* value that was hashed in */
60 ttstamp ce_tsinsert; /* timestamp - time inserted */
61 ttstamp ce_tsaccess; /* timestamp - last access */
62 tceix ce_prev; /* next entry on list */
63 tceix ce_next; /* prev entry on list */
64 };

Comer discloses storing records in a linked list, for example:

“Cainsert() inserts a new mapping, key => res, into the cache.” See Comer at
4.

See also, gache.c at lines 241-304, defining cainsert().

Comer discloses providing access to records stored in a linked list, for
example:

“Calookup() searches for a cached entry matching the key passed as an
argument.” See Comer at 4.

See also, gcache.c at lines 307-347 and 637-678, defining calookup() and

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

43 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

cagetindex().

Comer discloses at least some of the records automatically expiring, for
example:

“In a simpler and cleaner design chosen for GCache, each cached entry
contains a timestamp encoding the insertion time. If a lookup matches an entry
with an expired timestamp, that entry is removed rather than being returned.”
See Comer at 10.

See also, gcache.c at lines 617-634, defining caisold() which determines if the
record has expired:

617 /*
618 *
===
=====
619 * caisold - return TRUE if the given entry is "too old"
620 *
===
=====
621 */
622 LOCAL int caisold(pcb,pce)
623 struct cacheblk *pcb;
624 struct cacheentry *pce;
625 {
626 unsigned now;
627
628 if (pcb->cb_maxlife == 0)
629 return(FALSE);
630

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

44 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

631 gettime(&now);
632
633 return ((now - pce->ce_tsaccess) > pcb->cb_maxlife);
634 }

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

NRL IPv6 discloses accessing a linked list of records. The combination of
NRL IPv6 and Kruse discloses accessing a linked list of records having same
hash address.

For example, as defined in key.h and shown in the code below, the
key_acquirelist structure is a linked list:

188 struct key_acquirelist {
189 u_int8 type; /* secassoc type to acquire */
190 struct sockaddr_in6 target; /* destination address of
secassoc */
191 u_int32 count; /* number of acquire messages sent */
192 u_long expiretime; /* expiration time for acquire message
*/
193 struct key_acquirelist *next;
194 };

In addition, key.c discloses traversing key_acquirelist—accessing records
stored therein--to search for matching record, as shown in the code below:

1411 struct key_acquirelist *ap, *prevap;
.
.
.
1430 prevap = key_acquirelist;
1431 for(ap = key_acquirelist->next; ap; ap = ap->next) {
1432 if (addrpart_equal(dst, (struct sockaddr *)&(ap->target))

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

45 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

&&
1433 (etype == ap->type)) {
1434 DPRINTF(IDL_MAJOR_EVENT,("acquire message previously
sent!\n"));
1435 if (ap->expiretime < time.tv_sec) {
1436 DPRINTF(IDL_MAJOR_EVENT,("acquire message has
expired!\n"));
1437 ap->count = 0;
1438 break;
1439 }

Further, Kruse discloses hash tables and hash tables with external chaining.
See, e.g., Kruse at 198-208. One of ordinary skill in the art would be
motivated to, and would understand how to, combine the systems and methods
of NRL IPv6 with the systems and methods of using hash tables with external
chaining disclosed by Kruse. In such a combination, one of ordinary skill in
the art would recognize that a hash key is used to access a list of records
having the same hash address (a linked list chained to a hash bucket).

See also, key.c at lines 1396-1563, 1768-1845; key.h at lines 188-194.

To the extent that NRL IPv6 does not disclose this limitation, gcache.c from
Xinu Operating System for Sparc (1991) (hereinafter “gcache.c”) and Douglas
Comer and Shawn Ostermann, GCache: A Generalized Caching Mechanism,
Purdue University (Revised March 1992) (hereinafter “Comer”) (collectively
hereinafter “GCache”) discloses accessing a linked list of records, and also
discloses accessing a linked list of records having same hash address.

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

46 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

One of ordinary skill in the art would be motivated to, and would understand how to,
combine the method disclosed in NRL IPv6 with the method for storing and
retrieving information records using a hashing technique to provide access to
the records and using an external chaining technique to store the records with
same hash address, at least some of the records automatically expiring
disclosed by GCache. See, e.g., Comer at 3-10. For example, since NRL IPv6
utilizes a linked list for storing records and GCache discloses a method that
attaches or chains linked lists to a hash table for storing records, one of
ordinary skill in the art would be motivated to combine the linked list of NRL
IPv6 with the method utilizing a hash table using external chaining of linked
lists disclosed by GCache. The disclosure of these claim elements in GCache is
clearly shown in the chart of GCache, which is hereby incorporated by
reference in its entirety.
Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining NRL IPv6 with GCache would be nothing more than the
predictable use of prior art elements according to their established functions.

For example, Comer discloses accessing a linked list of records having the
same hash address:

“GCache implements each cache as a separate hash table of buckets. Buckets
are implemented as doubly linked lists of cache entry headers for easy
insertion and deletion.” See Comer at 3.

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

47 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

“GCache keeps all cacheentry structures for an active cache either on the free
list or, when they are in use, on a doubly linked list attached to a hash table
slot. GCache computes a hash value as a function of the sum of bytes in the
key buffer. GCache then computes the hash table slot as the hash value modulo
the size of the hash table” See Comer at 5.

“GCache implements the hash table as an array of structures representing
buckets, each containing the head of a (possibly empty) doubly linked cache
entry chain.” See Comer at 6.

See also, gcache.c at lines 637-677, defining cagetindex(), which contains code
constituting a “record search means” that uses a hash value to access and
traverse a linked list of records having the same hash address:

637 /*
638 *
===
=====
639 * cagetindex - return the index of a matching entry, or
SYSERR
640 * N.B. assumes MUTEX is already held
641 *
===
=====
642 */
643 LOCAL tceix cagetindex(pcb,pkey,keylen,hash)
644 struct cacheblk *pcb;
645 char *pkey;
646 tcelen keylen;

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

48 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

647 thval hash;
648 {
649 struct cacheentry *pce;
650 tceix ix;
651 tceix nextix;
652
653 ++pcb->cb_lookups;
654
655 ix = pcb->cb_hash[HASHTOIX(hash,pcb)].he_ix;
656
657 while (ix != NULL_IX) {
658 pce = &pcb->cb_cache[ix];
659 nextix = pce->ce_next;
660
661 if ((pce->ce_hash == hash) &&
662 (pce->ce_keylen == keylen) &&
663 (blkequ(pkey,pce->ce_keyptr,keylen))) {
664 /* this is a match */
665 ++pcb->cb_hits;
666 if (caisold(pcb,pce)) {
667 ++pcb->cb_tos;
668 caunlink(pcb,ix);
669 return(NULL_IX);
670 } else {
671 return(ix);
672 }
673 }
674 ix = nextix;
675 }
676
677 return(NULL_IX);
678 }

[3b] identifying at least
some of the automatically
expired ones of the records,

[7b] identifying at least
some of the automatically
expired ones of the records,

NRL IPv6 discloses identifying at least some of the automatically expired ones
of the records.

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

49 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

and For example, as defined in key.h and shown in the code below, the
key_acquirelist structure is a linked list:

188 struct key_acquirelist {
189 u_int8 type; /* secassoc type to acquire */
190 struct sockaddr_in6 target; /* destination address of
secassoc */
191 u_int32 count; /* number of acquire messages sent */
192 u_long expiretime; /* expiration time for acquire message
*/
193 struct key_acquirelist *next;
194 };

In addition, key.c, within the function key_acquire(), discloses traversing
key_acquirelist and accessing entries stored therein. See, e.g., key.c at lines
1411, 1430-1459.

Also, key.c and key.h disclose automatically expiring records. For example,
the key_acquirelist structure defined in key.h contains the following code:

192 u_long expiretime; /* expiration time for acquire message
*/

Furthermore, key.c discloses a means for identifying and removing at
least some of the expired ones of the records from the linked list when the
linked list is accessed, as shown in the code below:

1445 } else if (ap->expiretime < time.tv_sec) {
1446 /*
1447 * Since we're already looking at the list, we may as
1448 * well delete expired entries as we scan through the list.

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

50 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

1449 * This should really be done by a function like
key_reaper()
1450 * but until we code key_reaper(), this is a quick and
dirty
1451 * hack.
1452 */
1453 DPRINTF(IDL_MAJOR_EVENT,("found an expired
entry...deleting
it!\n"));
1454 prevap->next = ap->next;
1455 KFree(ap);
1456 ap = prevap;
1457 }

See also, key.c at lines 1396-1563, 1768-1845; key.h at lines 188-194.

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

NRL IPv6 discloses removing at least some of the automatically expired
records from the linked list when the linked list is accessed.

For example, as defined in key.h and shown in the code below, the
key_acquirelist structure is a linked list:

188 struct key_acquirelist {
189 u_int8 type; /* secassoc type to acquire */
190 struct sockaddr_in6 target; /* destination address of
secassoc */
191 u_int32 count; /* number of acquire messages sent */
192 u_long expiretime; /* expiration time for acquire message
*/
193 struct key_acquirelist *next;
194 };

In addition, key.c, within the function key_acquire(), discloses traversing

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

51 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

key_acquirelist and accessing entries stored therein. See, e.g., key.c at lines
1411, 1430-1459.

Also, key.c and key.h disclose automatically expiring records. For example,
the key_acquirelist structure defined in key.h contains the following code:

192 u_long expiretime; /* expiration time for acquire message
*/

Furthermore, key.c discloses a means for identifying and removing at
least some of the expired ones of the records from the linked list when the
linked list is accessed, as shown in the code below:

1445 } else if (ap->expiretime < time.tv_sec) {
1446 /*
1447 * Since we're already looking at the list, we may as
1448 * well delete expired entries as we scan through the list.
1449 * This should really be done by a function like
key_reaper()
1450 * but until we code key_reaper(), this is a quick and
dirty
1451 * hack.
1452 */
1453 DPRINTF(IDL_MAJOR_EVENT,("found an expired
entry...deleting
it!\n"));
1454 prevap->next = ap->next;
1455 KFree(ap);
1456 ap = prevap;
1457 }

See also, key.c at lines 1396-1563, 1768-1845; key.h at lines 188-194.

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

52 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

 [7d] inserting, retrieving
or deleting one of the
records from the system
following the step of
removing.

NRL IPv6 discloses inserting, retrieving or deleting one of the records from the
system following the step of removing.

For example, the function key_acquire() in key.c contains a for loop beginning
at line 1431. Within the for loop, the code starting at the elseif at line 1445 and
ending at line 1457, modifies a pointer in an element of the linked list such that
it removes the expired item from the linked list and then calls KFree(). After
KFree() is called, control returns to the for loop which, unless it has reached
the end of the linked list, will retrieve the next record in the list. If the record
has not been previously sent and has expired, it will be removed and deleted in
the code starting at the elseif at line 1445 and ending at line 1457. Finally, after
the loop described above completes, key_acquire() contains the following code
to insert an entry into key_acquirelist:

1542 /*
1543 * Update the acquirelist
1544 */
1545 if (success) {
1546 if (!ap) {
1547 DPRINTF(IDL_MAJOR_EVENT,("Adding new entry in
acquirelist\n"));
1548 K_Malloc(ap, struct key_acquirelist *, sizeof(struct
key_acquirelist));
1549 if (ap == 0)
1550 return(success ? 0 : -1);
1551 bzero((char *)ap, sizeof(struct key_acquirelist));
1552 bcopy((char *)dst, (char *)&(ap->target), dst->sa_len);
1553 ap->type = etype;
1554 ap->next = key_acquirelist->next;
1555 key_acquirelist->next = ap;
1556 }

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

53 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

1557 DPRINTF(IDL EVENT,("Updating acquire counter and
expiration
time\n"));
1558 ap->count++;
1559 ap->expiretime = time.tv_sec + maxacquiretime;
1560 }

See also, key.c at lines 1396-1563, 1768-1845; key.h at lines 188-194.

To the extent that NRL IPv6 does not disclose this limitation, gcache.c from
Xinu Operating System for Sparc (1991) (hereinafter “gcache.c”) and Douglas
Comer and Shawn Ostermann, GCache: A Generalized Caching Mechanism,
Purdue University (Revised March 1992) (hereinafter “Comer”) (collectively
hereinafter “GCache”) discloses discloses inserting, retrieving or deleting one
of the records from the system following the step of removing.

One of ordinary skill in the art would be motivated to, and would understand how to,
combine the method disclosed in NRL IPv6 with the method for storing and
retrieving information records using a hashing technique to provide access to
the records and using an external chaining technique to store the records with
same hash address, at least some of the records automatically expiring
disclosed by GCache. See, e.g., Comer at 3-10. For example, since NRL IPv6
utilizes a linked list for storing records and GCache discloses a method that
attaches or chains linked lists to a hash table for storing records, one of
ordinary skill in the art would be motivated to combine the linked list of NRL
IPv6 with the method utilizing a hash table using external chaining of linked
lists disclosed by GCache. The disclosure of these claim elements in GCache is

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

54 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

clearly shown in the chart of GCache, which is hereby incorporated by
reference in its entirety.
Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining NRL IPv6 with GCache would be nothing more than the
predictable use of prior art elements according to their established functions.

For example, Comer discloses means for inserting records:

“Cainsert() inserts a new mapping, key => res, into the cache.” See Comer at
4.

At line 275 of gcache.c, cainsert() utilizes a record search means, the function
cagetindex(), which removes an expired record from the list as described
below.

“In a simpler and cleaner design chosen for GCache, each cached entry
contains a timestamp encoding the insertion time. If a lookup matches an entry
with an expired timestamp, that entry is removed rather than being returned.”
See Comer at 10.

At lines 655-670 of gcache.c, cagetindex() executes a while loop to traverse a
linked list attached to a bucket of the hash table, accessing records stored
therein. In the subset of that code listed below, cagetindex() utilizes caisold()
to identify if a matching record is expired and if so, removes the expired record

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

55 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

from the linked list using caunlink():

666 if (caisold(pcb,pce)) {
667 ++pcb->cb_tos;
668 caunlink(pcb,ix);
669 return(NULL_IX);
670 } else {

After the call to cagetindex() returns, through which the expired entry was
removed, cainsert() proceeds to insert a new entry at the head of the list and
populates the fields of the structure, as shown in the code below:

275 if ((ixnew = cagetindex(pcb,pkey,keylen,hash)) != NULL_IX)
{
276 /* use the old one */
277 caclear(pcb,ixnew);
278 pce = &pcb->cb_cache[ixnew];
279 } else {
280 /* get a free cacheentry */
281 ixnew = cagetfree(pcb);
282 pce = &pcb->cb_cache[ixnew];
283
284 /* ... and put it at the head of the list */
285 pce->ce_prev = 0;
286 pce->ce_next = phe->he_ix;
287 pcb->cb_cache[phe->he_ix].ce_prev = ixnew;
288 phe->he_ix = ixnew;
289 }
290
291 pce->ce_status = CE_INUSE;
292 pce->ce_hash = hash;
293 pce->ce_keyptr = cagetmem(keylen);
294 pce->ce_keylen = keylen;

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

56 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

295 blkcopy(pce->ce_keyptr,pkey,keylen);
296 pce->ce_resptr = cagetmem(reslen);
297 pce->ce_reslen = reslen;
298 blkcopy(pce->ce_resptr,pres,reslen);
299 gettime(&pce->ce_tsinsert);
300 pce->ce_tsaccess = pce->ce_tsinsert;

In a second example, caunlink(), which is called by other functions including
caremove() and cagetindex(), removes a record from the linked list by
modifying the values of ce_next and ce_prev in the records to which it was
linked and then deletes the data stored in a record and frees memory by calling
caclear(), as shown in the code below:

750 pce = &pcb->cb_cache[ix];
751 hash = pce->ce_hash;
752 phe = &pcb->cb_hash[HASHTOIX(hash,pcb)];
753
754 if (pce->ce_prev == NULL_IX)
755 phe->he_ix = pce->ce_next;
756 else
757 pcb->cb_cache[pce->ce_prev].ce_next = pce->ce_next;
758
759 pcb->cb_cache[pce->ce_next].ce_prev = pce->ce_prev;
760
761 caclear(pcb,ix);

4. The method according to
claim 3 further including
the step of dynamically
determining maximum
number of expired ones of

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of

NRL IPv6 discloses dynamically determining maximum number of expired
ones of the records to remove when the linked list is accessed.

For example, in key.c each time the else if statement at line 1445 is executed, it
dynamically determines the maximum number of records to remove—one or

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

57 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

the records to remove
when the linked list is
accessed.

the records to remove
when the linked list is
accessed.

zero—based on whether the record has expired.

1445 } else if (ap->expiretime < time.tv_sec) {
1446 /*
1447 * Since we're already looking at the list, we may as
1448 * well delete expired entries as we scan through the list.
1449 * This should really be done by a function like
key_reaper()
1450 * but until we code key_reaper(), this is a quick and
dirty
1451 * hack.
1452 */
1453 DPRINTF(IDL_MAJOR_EVENT,("found an expired
entry...deleting
it!\n"));
1454 prevap->next = ap->next;
1455 KFree(ap);
1456 ap = prevap;
1457 }

In addition, NRL IPv6 combined with Dirks, Thatte, the ’663 patent, and/or the
Opportunistic Garbage Collection Articles discloses dynamically determining
maximum number of expired ones of the records to remove when the linked
list is accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

58 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

59 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both NRL IPv6 and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

60 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

implementations such as NRL IPv6. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with NRL IPv6 nothing more
than the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with NRL IPv6 and would
have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in NRL IPv6 with the means
for dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. For example,
Thatte discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

61 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, Ass both NRL IPv6 and Thatte teach a system of data
storage and retrieval, one of ordinary skill in the art would recognize that the
result of combining NRL IPv6 with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove as taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine NRL
IPv6 with Thatte and recognize the benefits of doing so. For example, the
removal of expired records described in NRL IPv6 can be burdensome on the
system, adding to the system’s load and slowing down the system’s
processing. One of ordinary skill in the art would recognize that combining
NRL IPv6 with the teachings of Thatte would solve this problem by
dynamically determining how many records to delete based on, among other
things, the system load. Moreover, the '120 patent discloses that "[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one." '120 at
7:10-15. Thus, the '120 patent provides motivations to combine NRL IPv6
with Thatte.

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

62 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

Alternatively, it would also be obvious to combine NRL IPv6 with the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

63 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

Id. at Figure 5.

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

64 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both NRL IPv6 and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in NRL IPv6. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

65 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with NRL IPv6 would
be nothing more than the predictable use of prior art elements according to
their established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with NRL IPv6 and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine NRL IPv6 with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

66 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

67 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both NRL IPv6 and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as NRL IPv6. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with NRL IPv6 would be nothing more than the predictable use of
prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with NRL IPv6 and
would have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

68 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

modify the system disclosed in NRL IPv6 to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in NRL IPv6 with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in NRL IPv6 can be burdensome on
the system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

See also, key.c at lines 1396-1563, 1768-1845; key.h at lines 188-194.

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

69 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

To the extent that dynamically determining a maximum number of expired
records is not disclosed by NRL IPv6 in combination with Dirks, Thatte, the
‘663 Patent, or the Opportunistic Garbage Collection References, it is
disclosed by Linux 2.0.1, which describes dynamically determining maximum
number of expired ones of the records to remove when the linked list is
accessed. It would have been obvious to combine Linux 2.0.1 with NRL IPv6.
For example, both Linux 2.0.1 and NRL IPv6 describe systems and
methods for performing data storage and retrieval using known programming
techniques to yield a predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

70 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

71 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,

EXHIBIT D-11

Joint Invalidity Contentions & Production of
Documents

72 Case No. 6:09-CV-549-LED

US2008 1661616.4

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

Joint Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

US2008 1663881.5

EXHIBIT D-12

Asserted Claims from
U.S. Pat. No. 5,893,120

LINUX 2.0.1 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v2.0/linux-2.0.1.tar.gz (“LINUX

2.0.1”) alone and in combination
1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, LINUX 2.0.1 discloses an
information storage and retrieval system.

For example, LINUX 2.0.1 includes a hash table ip_rt_hash_table. The
hash table is an information storage and retrieval system.

[1a] a linked list to store
and provide access to
records stored in a
memory of the system, at
least some of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

LINUX 2.0.1 discloses a linked list to store and provide access to records
stored in a memory of the system. LINUX 2.0.1 also discloses a hashing
means to provide access to records stored in a memory of the system and
using an external chaining technique to store the records with same hash
address, at least some of the records automatically expiring.

For example, the hash table is an array of pointers to rtable structures
(i.e., records). See line 151. Each rtable structure contains an rt_next
field, which is a pointer to another rtable structure. See
/include/net/route.h, line 67. Accordingly, rtable structures can be linked
to form linked lists.

LINUX 2.0.1 discloses that at least some of the records automatically expire.

The rtable structure includes an rt_lastuse field. Functions in route.c
use a record’s rt_lastuse field to determine whether the record has
automatically expired. See /include/net/route.h, line 74 and analysis below.

Joint Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

US2008 1663881.5

Asserted Claims from
U.S. Pat. No. 5,893,120

LINUX 2.0.1 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v2.0/linux-2.0.1.tar.gz (“LINUX

2.0.1”) alone and in combination
[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of
records having the same
hash address,

LINUX 2.0.1 discloses a record search means utilizing a search key to
access the linked list. LINUX 2.0.1 also discloses a record search means
utilizing a search key to access a linked list of records having the same
hash address.

For example, the hash table contains an array of linked lists of rtable
structures. The hash table is accessed using a search key. Specifically,
route.c includes a function rt_cache_add. Lines 1299-1385. The
function rt_cache_add includes a first code set (line 1356 and lines 1365-
1383). The first code set uses the search key hash to access a linked list at
the hash index of the hash table. See lines 1345 and 1356.

[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the
records from the linked
list when the linked list is
accessed, and

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

LINUX 2.0.1 discloses the record search means including a means for
identifying and removing at least some of the expired ones of the records
from the linked list when the linked list is accessed. LINUX 2.0.1 also
discloses the record search means including means for identifying and
removing at least some expired ones of the records from the linked list of
records when the linked list is accessed.

For example, the function rt_cache_add includes a first code set, as
described above. The first code set includes a second code set (lines 1365-
1383). The second code set defines a loop that iterates through a linked list
to remove “automatically expired” records. Specifically, line 1369
determines whether the record has expired when more than a particular
amount of time has passed since the record was last used.

Joint Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

US2008 1663881.5

Asserted Claims from
U.S. Pat. No. 5,893,120

LINUX 2.0.1 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v2.0/linux-2.0.1.tar.gz (“LINUX

2.0.1”) alone and in combination
Also, LINUX 2.0.1 removes expired records from the linked list, as claimed.
For example, line 1372 adjusts the pointers to de-link the expired record
from the linked list. And line 1378 invokes the rt_free function. The
rt_free function frees the memory allocated to the expired record. See
lines 881-905.

The function rt_cache_add includes code that inserts a new record into
the linked list. Lines 1356-1357. Inserting a new record into the linked list
is one way of accessing the linked list.

The code to insert the new record into the linked list and the second code
set are executed in the same invocation of the function rt_cache_add.

Hence, the first code set includes means (i.e., the second code set) for
identifying and removing expired records from a linked list when the
function rt_cache_add accesses the linked list.

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] meals[sic], utilizing
the record search means,
for inserting, retrieving,
and deleting records from
the system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

LINUX 2.0.1 discloses means, utilizing the record search means, for
accessing the linked list and, at the same time, removing at least some of
the expired ones of the records in the linked list. LINUX 2.0.1 also discloses
meals[sic], utilizing the record search means, for inserting, retrieving, and
deleting records from the system and, at the same time, removing at least
some expired ones of the records in the accessed linked list of records.

For example, the function rt_cache_add utilizes the first code set (i.e., the
record search means) as described above. Furthermore, the function

Joint Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

US2008 1663881.5

Asserted Claims from
U.S. Pat. No. 5,893,120

LINUX 2.0.1 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v2.0/linux-2.0.1.tar.gz (“LINUX

2.0.1”) alone and in combination
rt_cache_add accesses the linked list. See lines 1356-1359 (inserting a
record into the linked list). In the same invocation (i.e., at the same time),
the function rt_cache_add performs the first code set to remove at least
some of the expired ones of the records in the linked list as described
above.

The function rt_cache_add also retrieves records from the system. See
lines 1347-1354 (looping through and printing the rt_dst element of each
record in the linked list).

In addition, the function rt_cache_add deletes records from the system
(i.e., hash table). The function rt_cache_add invokes the function
rt_garbage_collect. Line 1432. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. Line 1293. The function
rt_garbage_collect_1 loops through each of the linked lists in the hash
table and removes records from the linked lists. See lines 1122-1138. The
function rt_garbage_collect_1 can remove expired ones of the records
in the linked list plus other records in the hash table. See lines 1122-1138.
Hence, by invoking the function rt_garbage_collect, the function
rt_cache_add deletes records from the system.

Because the function rt_cache_add utilizes the first code set, inserts
records into the system, retrieves records from the system, and deletes
records from the system, the function rt_cache_add is a means utilizing
the record search means, for inserting, retrieving, and deleting records from
the system and, at the same time (i.e., in the same invocation of the

Joint Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

US2008 1663881.5

Asserted Claims from
U.S. Pat. No. 5,893,120

LINUX 2.0.1 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v2.0/linux-2.0.1.tar.gz (“LINUX

2.0.1”) alone and in combination
function rt_cache_add), removes at least some expired ones of the records
in the accessed linked list of records.

To the extent that Linux 2.0.1 does not disclose this limitation, gcache.c
from Xinu Operating System for Sparc (1991) (hereinafter “gcache.c”) and
Douglas Comer and Shawn Ostermann, GCache: A Generalized Caching
Mechanism, Purdue University (Revised March 1992) (hereinafter
“Comer”) (collectively hereinafter “GCache”) discloses means, utilizing
the record search means, for accessing the linked list and, at the same time,
removing at least some of the expired ones of the records in the linked list,
and also discloses utilizing the record search means, for inserting,
retrieving, and deleting records from the system and, at the same time,
removing at least some expired ones of the records in the accessed linked
list of records.

One of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Linux 2.0.1 with the a
hashing means to provide access to records stored in a memory of the
system and using an external chaining technique to store the records with
same hash address, at least some of the records automatically expiring
disclosed by GCache. See, e.g., Comer at 3-10. For example, since Linux
2.0.1 utilizes a linked list for storing records and GCache discloses a
system that attaches or chains linked lists to a hash table for storing
records, one of ordinary skill in the art would be motivated to combine the
linked list of Linux 2.0.1 with the system including a hash table using
external chaining of linked lists disclosed by GCache. The disclosure of

Joint Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

US2008 1663881.5

Asserted Claims from
U.S. Pat. No. 5,893,120

LINUX 2.0.1 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v2.0/linux-2.0.1.tar.gz (“LINUX

2.0.1”) alone and in combination
these claim elements in GCache is clearly shown in the chart of GCache,
which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Linux 2.0.1 with GCache would be nothing more than
the predictable use of prior art elements according to their established
functions.

For example, Comer discloses means for inserting, retrieving, and deleting
records:

“Cainsert() inserts a new mapping, key => res, into the cache.” See Comer
at 4.

See also, gcache.c at lines 246-304, defining cainsert().

“Calookup() searches for a cached entry matching the key passed as an
argument.” See Comer at 4.

See also, gcache.c at lines 312-347 and 643-678, defining calookup() and
cagetindex().

“Caremove() removes the cached entry whose key is given, if one exists.”
See Comer at 4.

Joint Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

US2008 1663881.5

Asserted Claims from
U.S. Pat. No. 5,893,120

LINUX 2.0.1 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v2.0/linux-2.0.1.tar.gz (“LINUX

2.0.1”) alone and in combination
See also, gcache.c at lines 355-376, defining caremove().

Each of the means for inserting, retrieving, and deleting, utilizes a record
search means, the function cagetindex(), which removes an expired record
from the list as described below. The individual calls of cagetindex() are
listed here:

In cainsert():
275 if ((ixnew = cagetindex(pcb,pkey,keylen,hash))
!= NULL_IX) {

In calookup():
333 if ((ix = cagetindex(pcb,pkey,keylen,hash)) !=
NULL_IX) {

In caremove():
370 if ((ix = cagetindex(pcb,pkey,keylen,hash)) !=
NULL_IX) {

“In a simpler and cleaner design chosen for GCache, each cached entry
contains a timestamp encoding the insertion time. If a lookup matches an
entry with an expired timestamp, that entry is removed rather than being
returned.” See Comer at 10.

At lines 655-670 of gcache.c, cagetindex() executes a while loop to traverse
a linked list attached to a bucket of the hash table, accessing records stored
therein. In the subset of that code listed below, cagetindex() utilizes

Joint Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

US2008 1663881.5

Asserted Claims from
U.S. Pat. No. 5,893,120

LINUX 2.0.1 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v2.0/linux-2.0.1.tar.gz (“LINUX

2.0.1”) alone and in combination
caisold() to identify if a matching record is expired and removes the
expired record from the linked list using caunlink():

666 if (caisold(pcb,pce)) {
667 ++pcb->cb_tos;
668 caunlink(pcb,ix);
669 return(NULL_IX);
670 } else {

2. The information storage
and retrieval system
according to claim 1,
further including means
for dynamically
determining maximum
number for the record
search means to remove in
the accessed linked list of
records.

6. The information storage
and retrieval system
according to claim 5,
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

LINUX 2.0.1 discloses means for dynamically determining maximum
number of expired ones of the records to remove in the accessed linked list
of records.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. Line 1359. When the function
rt_cache_add removes an expired record from a linked list in the hash
table, the function rt_cache_add decrements the variable rt_cache_size.
Line 1373. Thus, the variable rt_cache_size indicates the number of
records in the hash table. Because the function rt_cache_add
automatically increments and decrements the variable rt_cache_size, the
variable rt_cache_size is determined dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1 in
route.c. The function rt_garbage_collect_1 loops through each of the
linked lists in the hash table ip_rt_hash_table. See lines 1122-1138. In
this way, the function rt_garbage_collect_1 accesses the linked list.
When the function rt_garbage_collect_1 identifies a record that is

Joint Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

US2008 1663881.5

Asserted Claims from
U.S. Pat. No. 5,893,120

LINUX 2.0.1 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v2.0/linux-2.0.1.tar.gz (“LINUX

2.0.1”) alone and in combination
expired, the function rt_garbage_collect_1 decrements the variable
rt_cache_size and frees the record. See lines 1128-1135.

Because all records in the linked list can be expired and all records in the
hash table can be in the linked list, the variable rt_cache_size can
represent a dynamically determined maximum number of expired records
for the function rt_garbage_collect_1 to remove from the linked list.

Furthermore, the function rt_cache_add determines whether the number
of records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See lines 1341-
1342. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. Line 1293.

The function rt_garbage_collect_1 loops through each linked list in the
hash table. See lines 1116-1132. For each linked list in the hash table, the
function rt_garbage_collect_1 looks at each record in the linked list.
See lines 1120-1131. For each record in a linked list, the function
rt_garbage_collect_1 determines whether the record’s last use time plus
the record’s expiration factor is later than the current time. See line 1122.
If the record’s last use time plus the record’s expiration factor is less than
the current time, the function rt_garbage_collect_1 removes the record
from the linked list. See lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. Line 1122.

Joint Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

US2008 1663881.5

Asserted Claims from
U.S. Pat. No. 5,893,120

LINUX 2.0.1 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v2.0/linux-2.0.1.tar.gz (“LINUX

2.0.1”) alone and in combination
The variable expire is initially one half of a fixed timeout value
RT_CACHE_TIMEOUT. Line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. Line 1133. If the number of items in the hash table
is still greater than the predetermined threshold RT_CACHE_SIZE_MAX, the
function rt_garbage_collect_1 halves the variable expire and loops
through each of the linked lists in the hash table. See line 1135. In this
way, the function rt_garbage_collect_1 can remove additional records
from the linked lists in the hash table. The function
rt_garbage_collect_1 repeats this process until the total number of
records in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. Line
1369. Thus, the maximum number of records that the function
rt_cache_add can remove from a given linked list is limited to those
records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not limited
to those records whose reference counts are zero. Line 1122. Rather, the

Joint Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

US2008 1663881.5

Asserted Claims from
U.S. Pat. No. 5,893,120

LINUX 2.0.1 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v2.0/linux-2.0.1.tar.gz (“LINUX

2.0.1”) alone and in combination
function rt_garbage_collect_1 can remove records whose reference
counts are zero and records whose reference counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than the
maximum number of records that the function rt_cache_add can remove
from a linked list.

Thus, by determining at line 1341 whether to invoke the function
rt_garbage_collect, the function rt_cache_add dynamically
determines the maximum number of records that can be removed from a
linked list in the hash table.

Bedrock’s proposed claim constructions assert that this element
corresponds to portions of application software, user access software, or
operating system software… that perform the function of determining,
based upon one or more factors existing at the time the record search
means is invoked, maximum number of record for the search means to
remove in the linked list of records. Furthermore, Bedrock points to col. 6,
line 56 – col. 7, line 15 of the ‘120 Patent which “describe code that
chooses among removal options at the time the record search means is
invoked by the caller, thus sometimes removing all expired records, at
other times removing some but not all of them, and yet at other times
choosing to remove none of them, or the equivalent thereof.” (Emphasis
added).

Joint Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

US2008 1663881.5

Asserted Claims from
U.S. Pat. No. 5,893,120

LINUX 2.0.1 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v2.0/linux-2.0.1.tar.gz (“LINUX

2.0.1”) alone and in combination
The total number of records in the hash table is a factor existing at the time
the function rt_cache_add is invoked. See lines 1299-1340 (not changing
the variable rt_cache_size). By determining at line 1341 whether to
invoke the function rt_garbage_collect, the function rt_cache_add
chooses among removal options at the time the function rt_cache_add is
invoked by a caller of the function rt_cache_add. The different removal
options (i.e., using the function rt_garbage_collect_1 or not using the
function rt_garbage_collect_1) can remove different numbers of
records from a linked list in the hash table.

Further, Linux 2.0.1 combined with Dirks, Thatte, the ’663 patent and/or
the Opportunistic Garbage Collection Articles discloses an information
storage and retrieval system further including means for dynamically
determining maximum number for the record search means to remove in
the accessed linked list of records.

Dirks discloses the management of memory in a computer system and
more particularly to the allocation of address space in a virtual memory
system, which dynamically determines how many records to sweep/remove
upon each allocation. Disclosure of these claim elements in Dirks is
clearly shown in Exhibit B-2, which is hereby incorporated by reference in
its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or

Joint Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

US2008 1663881.5

Asserted Claims from
U.S. Pat. No. 5,893,120

LINUX 2.0.1 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v2.0/linux-2.0.1.tar.gz (“LINUX

2.0.1”) alone and in combination
thread, a fixed number of entries in the page table are scanned to
determine whether they have become inactive, by checking them
against the VSIDs on the recycle list. Each entry which is identified as
being inactive is removed from the page table. After all of the entries in
the page table have been examined in this manner, the VSIDs in the
recycle list can be transferred to the free list, since all of their
associated page table entries will have been removed. This approach
thereby guarantees that a predetermined number of VSIDs are always
available in the free list without requiring a time-consuming scan of the
complete page table at once. U.S. Patent No. 6,119,214 to Dirks at 7:2-
14.

After [a] new VSID has been allocated, the system checks a flag
RFLG to determine whether a recycle sweep is currently in progress
(Step 20). If there is no sweep in progress, i.e. RFLG is not equal to
one, a determination is made whether a sweep should be initiated.
This is done by checking whether the inactive list is full, i.e. whether
it contains x entries (Step 22). If the number of entries I on the
inactive list is less than x, no further action is taken, and processing
control returns to the operating system (Step 24). If, however, the
inactive list is full at this time, the flag RFLG is set (Step 26), the
VSIDs on the inactive list are transferred to the recycle list, and an
index n is reset to 1 (Step 28). The system then sweeps a
predetermined number of page table entries PTi on the page table, to
detect whether any of them are inactive, i.e. their associated VSID is
on the recycle list (Step 30). The predetermined number of entries
that are swept is identified as k, where:

Joint Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

US2008 1663881.5

Asserted Claims from
U.S. Pat. No. 5,893,120

LINUX 2.0.1 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v2.0/linux-2.0.1.tar.gz (“LINUX

2.0.1”) alone and in combination

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the
number of entries to be examined during each step of the sweeping process.
Id. at 7:37-40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed
for each step. Rather, it might vary from one step to the next. The only
criterion is that the number of entries examined on each step be such that
all entries in the page table are examined in a determinable amount of
time or by the occurrence of a certain event, e.g. by the time the list of
free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number
of records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-
8:56.

As both Linux 2.0.1 and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would
have understood how to use Dirks’ dynamic decision making process of
determining the maximum number of records to sweep/remove in other
hash tables implementations such as Linux 2.0.1. Moreover, one of

Joint Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

US2008 1663881.5

Asserted Claims from
U.S. Pat. No. 5,893,120

LINUX 2.0.1 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v2.0/linux-2.0.1.tar.gz (“LINUX

2.0.1”) alone and in combination
ordinary skill in the art would recognize that it would improve similar
systems and methods in the same way. As the ’120 patent states “[a]
person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records are removed, and
that the decision regarding if and how many records to delete can be a
dynamic one.” The ’120 patent at 7:10-15. Additionally, one of ordinary
skill in the art would recognize that the result of combining Dirks’ deletion
decision procedure with Linux 2.0.1 nothing more than the predictable use
of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries
to examine during each step of the sweeping process with Linux 2.0.1 and
would have seen the benefits of doing so. One possible benefit, for
example, is saving the system from performing sometimes time-consuming
sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and
would understand how to, combine the system disclosed in Linux 2.0.1
with the means for dynamically determining maximum number for the
record search means to remove in the accessed linked list of records
disclosed by Thatte. For example, Thatte discloses a system and method
using hash tables and/or linked lists and further discloses means for
dynamically determining the maximum number for the record search
means to remove in the accessed linked list of records. The disclosure of
these claim elements in Thatte is clearly shown in the chart of Thatte,

Joint Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

US2008 1663881.5

Asserted Claims from
U.S. Pat. No. 5,893,120

LINUX 2.0.1 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v2.0/linux-2.0.1.tar.gz (“LINUX

2.0.1”) alone and in combination
which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, Ass both Linux 2.0.1 and Thatte teach a system of data
storage and retrieval, one of ordinary skill in the art would recognize that
the result of combining Linux 2.0.1 with Thatte would be nothing more
than the predictable use of prior art elements according to their established
functions. The resulting combination would include the capability to
determine the maximum number for the record search means to remove as
taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine
Linux 2.0.1 with Thatte and recognize the benefits of doing so. For
example, the removal of expired records described in Linux 2.0.1 can be
burdensome on the system, adding to the system’s load and slowing down
the system’s processing. One of ordinary skill in the art would recognize
that combining Linux 2.0.1 with the teachings of Thatte would solve this
problem by dynamically determining how many records to delete based on,
among other things, the system load. Moreover, the '120 patent discloses
that "[a] person skilled in the art will appreciate that the technique of
removing all expired records while searching the linked list can be
expanded to include techniques whereby not necessarily all expired records
are removed, and that the decision regarding if and how many records to
delete can be a dynamic one." '120 at 7:10-15. Thus, the '120 patent
provides motivations to combine Linux 2.0.1 with Thatte.

Joint Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

US2008 1663881.5

Asserted Claims from
U.S. Pat. No. 5,893,120

LINUX 2.0.1 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v2.0/linux-2.0.1.tar.gz (“LINUX

2.0.1”) alone and in combination
Alternatively, it would also be obvious to combine Linux 2.0.1 with the
’663 patent. Disclosure of these claim elements in the ’663 patent is
clearly shown in the chart of the ‘663 patent, which is hereby incorporated
by reference in its entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is
not excessive, a non-contaminating but slow deletion of
records is used. This slow, non-contaminating deletion
involves closing the collision-resolution chain of locations
by moving a record from a later position in the chain into
the position of the record to be deleted. This leaves no
deleted record locations in the storage space to slow down
future searches. U.S. Patent 4,996,663 to Nemes at 2:24-34
(“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly
and no time is available for decontamination, the record is
simply marked as “deleted” and left in place. Later non-
contaminating probes in the vicinity of such deleted record
locations automatically remove the contaminating deleted
records by moving records in the chain as described above.
Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-
contaminating deletion is used when the load on the system

Joint Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

US2008 1663881.5

Asserted Claims from
U.S. Pat. No. 5,893,120

LINUX 2.0.1 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v2.0/linux-2.0.1.tar.gz (“LINUX

2.0.1”) alone and in combination
is at lower levels. Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

Id. at Figure 5.

Joint Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

US2008 1663881.5

Asserted Claims from
U.S. Pat. No. 5,893,120

LINUX 2.0.1 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v2.0/linux-2.0.1.tar.gz (“LINUX

2.0.1”) alone and in combination
During the hybrid deletion procedure decision block 51 checks the system
load to determine if the system load is greater than a threshold. If the
system load is greater than the threshold, then a fast-secure delete 52 is
used. Id. at 6:40-64, Figure 5. On the other hand, if the system load is less
than the threshold, then a slow-non-contaminating delete 53 is used. Id.
The fast-secure delete 52 does not actually delete records, rather it marks
records as deleted. Id. at 8:1-33, Figure 7. These records are then actually
deleted by a subsequent slow-non-contaminating delete 53. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically
determines a maximum number of records to remove. See id. at 6:40-64,
Figure 5. If the fast-secure delete 52 is used, then maximum number of
records is zero because records are not deleted they are only marked. Id. at
8:1-33, Figure 7. If the slow-non-contaminating delete 53 is used, then the
maximum number of records to remove is all of the contaminated records
in the bucket. Id. at 6:65-7:68, Figures 6, 6A, 6B.

As both Linux 2.0.1 and the ’663 patent relate to deletion of records from
hash tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table
implementations such as that described in Linux 2.0.1. Moreover, one of
ordinary skill in the art would recognize that it would improve similar
systems and methods in the same way. As the ’120 patent states “[a]
person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include

Joint Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

US2008 1663881.5

Asserted Claims from
U.S. Pat. No. 5,893,120

LINUX 2.0.1 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v2.0/linux-2.0.1.tar.gz (“LINUX

2.0.1”) alone and in combination
techniques whereby not necessarily all expired records are removed, and
that the decision regarding if and how many records to delete can be a
dynamic one.” The ’120 patent at 7:10-15. Additionally, one of ordinary
skill in the art would recognize that the result of combining the ’663
patent’s deletion decision procedure with Linux 2.0.1 would be nothing
more than the predictable use of prior art elements according to their
established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a
deletion based on a systems load as taught by the ’663 patent and with
Linux 2.0.1 and would have seen the benefits of doing so. One such
benefit, for example, is that the system would avoid performing deletions
when the system load exceeded a threshold.

Alternatively, it would also be obvious to combine Linux 2.0.1 with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational
based garbage collection which dynamically determines how much garbage
to collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of
the Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October
1-6, 1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM
SIGPLAN Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in
part:

Joint Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

US2008 1663881.5

Asserted Claims from
U.S. Pat. No. 5,893,120

LINUX 2.0.1 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v2.0/linux-2.0.1.tar.gz (“LINUX

2.0.1”) alone and in combination

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many
generations to scavenge. The fuller a generation is, the more likely it is
to be scavenged; also, the longer the pause that has been detected, the
larger the scope of the garbage collection is likely to be. Design of the
Opportunistic Garbage Collector at 32.

Every time a user-input routine is invoked, a decision routine can
decide whether to garbage collect. As long as the decision routine takes
no more than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not
incur a continual run-time overhead. Opportunistic Garbage
Collection at 100.

This decision routine should take several things into account: 1) the
volume of data allocated since the last scavenge, 2) how long it has
been since the user has had an opportunity to interact, and 3) the height
of the stack relative to its average height at reads since the last
scavenge. If the product of the allocation and the compute time is high,
and if the stack is low, the scavenge favorability measure is high. If it is
especially high, a multi-generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of
a generation’s space, it is likely to happen during a significant
compute-bound pause--the one that has just allocated the data that
forced the collection. When the opportunistic mechanism fails to find

Joint Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

US2008 1663881.5

Asserted Claims from
U.S. Pat. No. 5,893,120

LINUX 2.0.1 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v2.0/linux-2.0.1.tar.gz (“LINUX

2.0.1”) alone and in combination
the end of a pause, it may still succeed by default, embedding a
scavenge pause within a larger pause. Design of the Opportunistic
Garbage Collector at 32.

As both Linux 2.0.1 and the Opportunistic Garbage Collection Articles
relate to deletion of aged records, one of ordinary skill in the art would
have understood how to use the Opportunistic Garbage Collection Articles’
dynamic decision on whether to perform a deletion based on a system load
in other hash table implementations such as Linux 2.0.1. Moreover, one of
ordinary skill in the art would recognize that it would improve similar
systems and methods in the same way. As the ’120 patent states “[a]
person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records are removed, and
that the decision regarding if and how many records to delete can be a
dynamic one.” The ’120 patent at 7:10-15. Additionally, one of ordinary
skill in the art would recognize that the result of combining the
Opportunistic Garbage Collection Articles’ deletion decision procedure
with Linux 2.0.1 would be nothing more than the predictable use of prior
art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion and how many generations to scavenge as
taught by the Opportunistic Garbage Collection Articles and with Linux
2.0.1 and would have seen the benefits of doing so. One such benefit, for
example, is preventing slowdown of the system.

Joint Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

US2008 1663881.5

Asserted Claims from
U.S. Pat. No. 5,893,120

LINUX 2.0.1 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v2.0/linux-2.0.1.tar.gz (“LINUX

2.0.1”) alone and in combination

Additionally, it would have been obvious to one of ordinary skill in the art
to modify the system disclosed in Linux 2.0.1 to dynamically determine the
maximum number of expired records to remove in the accessed linked list
of records. It is a fundamental concept in computer science and the
relevant art that any variable or parameter affecting any aspect of a system
can be dynamically determined based on information available to the
system. One of ordinary skill in the art would have been motivated to
combine the system disclosed in Linux 2.0.1 with the fundamental concept
of dynamically determining the maximum number of expired records to
remove in an accessed linked list of records to solve a number of potential
problems. For example, the removal of expired records described in Linux
2.0.1 can be burdensome on the system, adding to the system’s load and
slowing down the system’s processing. Moreover, the removal could also
force an interruption in real-time processing as the processing waits for the
removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays
in processing. Indeed, Nemes concedes that such dynamic determination
was obvious when he states in the ‘120 patent that “[a] person skilled in the
art will appreciate that the technique of removing all expired records while
searching the linked list can be expanded to include techniques whereby
not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one.” ‘120
at 7:10-15.

Joint Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

US2008 1663881.5

Asserted Claims from
U.S. Pat. No. 5,893,120

LINUX 2.0.1 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v2.0/linux-2.0.1.tar.gz (“LINUX

2.0.1”) alone and in combination

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

To the extent the preamble is a limitation, LINUX 2.0.1 discloses a method
for storing and retrieving information records using a linked list to store
and provide access to the records, at least some of the records
automatically expiring. To the extent the preamble is a limitation, LINUX
2.0.1 also discloses a method for storing and retrieving information records
using a hashing technique to provide access to the records and using an
external chaining technique to store the records with same hash address, at
least some of the records automatically expiring.

For example, LINUX 2.0.1 includes a hash table ip_rt_hash_table. The
hash table is an information storage and retrieval system.

The hash table uses linked lists to store and provide access to records. The
hash table is an array of pointers to rtable structures. See line 151. Each
rtable structure includes an rt_next element that can point to another
rtable element. See /include/net/route.h, line 67. In this way, linked lists
of rtable structures are formed by setting the rt_next elements to point
to other rtable structures.

Route.c includes a function rt_cache_add. Lines 1299-1385. The
function rt_cache_add accesses the route table using a search key hash.
See lines 1345 and 1356.

The function rt_cache_add uses an external chaining technique to store
records with the same hash address. See lines 1345, 1356, and 1357.

Joint Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

US2008 1663881.5

Asserted Claims from
U.S. Pat. No. 5,893,120

LINUX 2.0.1 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v2.0/linux-2.0.1.tar.gz (“LINUX

2.0.1”) alone and in combination

Each rtable structure includes an rt_lastuse field. Functions in route.c,
such as the function rt_cache_add, use a record’s rt_lastuse field to
determine whether the record has automatically expired. See
/include/net/route.h, line 74 and route.c, line 1369.

accessing the linked list of
records,

accessing a linked list of
records having same hash
address,

LINUX 2.0.1 discloses accessing the linked list of records. LINUX 2.0.1 also
discloses accessing a linked list of records having same hash address.

For example, the hash table is an array of linked lists of rtable structures.
The function rt_cache_add accesses the route table using a search key
hash. See lines 1345 and 1356.

The function rt_cache_add includes code that inserts a new record into
the linked list. Lines 1356-1357. Inserting a record into a linked list is one
possible way to access the linked list.

identifying at least some
of the automatically
expired ones of the
records, and

identifying at least some of
the automatically expired
ones of the records,

LINUX 2.0.1 discloses identifying at least some of the automatically expired
ones of the records.

For example, the function rt_cache_add iterates through the linked list to
identifying “automatically expired” records in the linked list. Lines 1365-
1383.

removing at least some of
the automatically expired

removing at least some of
the automatically expired

LINUX 2.0.1 discloses removing at least some of the automatically expired
records from the linked list when the linked list is accessed.

Joint Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

US2008 1663881.5

Asserted Claims from
U.S. Pat. No. 5,893,120

LINUX 2.0.1 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v2.0/linux-2.0.1.tar.gz (“LINUX

2.0.1”) alone and in combination
records from the linked
list when the linked list is
accessed.

records from the linked list
when the linked list is
accessed, and

For example, the function rt_cache_add includes a while loop. Lines
1365-1383. The while loop iterates through a linked list to remove
“automatically expired” records. Specifically, line 1369 determines
whether the record has expired when more than a particular amount of time
has passed since the record was last used.

Also, LINUX 2.0.1 removes expired records from the linked list, as claimed.
For example, line 1372 adjusts the pointers to de-link the expired record
from the linked list. And line 1378 invokes the rt_free function. The
rt_free function frees the memory allocated to the expired record. See
lines 881-905.

The function rt_cache_add includes code that inserts a new record into
the linked list. Lines 1356-1357. Inserting a record into a linked list is one
possible way to access the linked list.

The code to insert the new record into the linked list and the while loop are
executed in the same invocation of the function rt_cache_add.

Hence, the function rt_cache_add includes means (i.e., the while loop) for
removing expired records from a linked list when the function
rt_cache_add inserts a new record into (i.e., accesses) the linked list.

 inserting, retrieving or
deleting one of the records

LINUX 2.0.1 discloses inserting, retrieving or deleting one of the records
from the system following the step of removing.

Joint Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

US2008 1663881.5

Asserted Claims from
U.S. Pat. No. 5,893,120

LINUX 2.0.1 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v2.0/linux-2.0.1.tar.gz (“LINUX

2.0.1”) alone and in combination
from the system following
the step of removing.

For example, the loop beginning at line 1365 iterates through the records in
the previously-accessed linked list, and line 1369 identifies whether a
particular record has expired. Depending on claim construction, line 1372
and/or line 1378 removes the expired record from the linked list, and line
894 deletes the expired record from memory. Further, the while loop of
lines 1365 to 1383 is checking for duplicate records at the same time that it
is checking for automatically expired records. See lines 1370 and 1378.
The while loop may delete a duplicate record following the removal of at
least one of the automatically expired records from the linked list because
the while loop of lines 1365 to 1383 does not break after an automatically
expired record is removed.

4. The method according
to claim 3 further
including the step of
dynamically determining
maximum number of
expired ones of the
records to remove when
the linked list is accessed.

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

LINUX 2.0.1 discloses dynamically determining maximum number of
expired ones of the records to remove when the linked list is accessed.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. Line 1359. When the function
rt_cache_add removes an expired record, the function rt_cache_add
decrements the variable rt_cache_size. Line 1373. Thus, the variable
rt_cache_size indicates the number of records in the hash table (i.e.,
ip_rt_hash_table). Because the function rt_cache_add automatically
increments and decrements the variable rt_cache_size, the variable
rt_cache_size is determined dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.

Joint Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

US2008 1663881.5

Asserted Claims from
U.S. Pat. No. 5,893,120

LINUX 2.0.1 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v2.0/linux-2.0.1.tar.gz (“LINUX

2.0.1”) alone and in combination
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See lines 1122-1138. In
this way, the function rt_garbage_collect_1 accesses the linked list.
When the function rt_garbage_collect_1 identifies a record that is
expired, the function rt_garbage_collect_1 decrements the variable
rt_cache_size and frees the record. See lines 1128-1135.

Because all records in the linked list can be expired and all records in the
hash table can be in the linked list, the variable rt_cache_size can
represent a dynamically determined maximum number of expired ones of
the records to remove when function rt_garbage_collect_1 accesses the
linked list.

Furthermore, the function rt_cache_add determines whether the number
of records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See lines 1341-
1342. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. Line 1293. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. Line 1293.

The function rt_garbage_collect_1 loops through each linked list in the
hash table. See lines 1116-1132. For each linked list in the hash table, the
function rt_garbage_collect_1 looks at each record in the linked list.
See lines 1120-1131. For each record in a linked list, the function

Joint Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

US2008 1663881.5

Asserted Claims from
U.S. Pat. No. 5,893,120

LINUX 2.0.1 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v2.0/linux-2.0.1.tar.gz (“LINUX

2.0.1”) alone and in combination
rt_garbage_collect_1 determines whether the record’s last use time plus
the record’s expiration factor is later than the current time. See line 1122.
If the record’s last use time plus the record’s expiration factor is less than
the current time, the function rt_garbage_collect_1 removes the record
from the linked list. See lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. Line 1122.
The variable expire is initially one half of the fixed timeout value
RT_CACHE_TIMEOUT. Line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. Line 1133. If the number of items in the hash table
is still greater than the predetermined threshold RT_CACHE_SIZE_MAX, the
function rt_garbage_collect_1 halves the variable expire and loops
through each of the linked lists in the hash table. See line 1135. In this
way, the function rt_garbage_collect_1 can remove additional records
from the linked lists in the hash table. The function
rt_garbage_collect_1 repeats this process until the total number of
records in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items
which after a limited time or after the occurrence of some event become

Joint Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

US2008 1663881.5

Asserted Claims from
U.S. Pat. No. 5,893,120

LINUX 2.0.1 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v2.0/linux-2.0.1.tar.gz (“LINUX

2.0.1”) alone and in combination
obsolete, such that their presence in the storage system is no longer needed
or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. Line
1369. Thus, the maximum number of records that the function
rt_cache_add can remove from a given linked list is limited to those
records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not limited
to those records whose reference counts are zero. Line 1122. Rather, the
function rt_garbage_collect_1 can remove records whose reference
counts are zero and records whose reference counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than the
maximum number of records that the function rt_cache_add can remove
from a linked list.

Thus, by determining at line 1341 whether to invoke the function
rt_garbage_collect, the function rt_cache_add dynamically
determines the maximum number of records that can be removed from a
linked list in the hash table.

Joint Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

US2008 1663881.5

Asserted Claims from
U.S. Pat. No. 5,893,120

LINUX 2.0.1 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v2.0/linux-2.0.1.tar.gz (“LINUX

2.0.1”) alone and in combination
Bedrock’s proposed claim constructions assert that this element
corresponds to portions of application software, user access software, or
operating system software… that perform the function of determining,
based upon one or more factors existing at the time the record search
means is invoked, maximum number of record for the search means to
remove in the linked list of records. Furthermore, Bedrock points to col. 6,
line 56 – col. 7, line 15 of the ‘120 Patent which “describe code that
chooses among removal options at the time the record search means is
invoked by the caller, thus sometimes removing all expired records, at
other times removing some but not all of them, and yet at other times
choosing to remove none of them, or the equivalent thereof.” (Emphasis
added).

The total number of records in the hash table is a factor existing at the time
the function rt_cache_add is invoked. See lines 1299-1340 (not changing
the variable rt_cache_size). By determining at line 1341 whether to
invoke the function rt_garbage_collect, the function rt_cache_add
chooses among removal options at the time the function rt_cache_add is
invoked by a caller of the function rt_cache_add. The different removal
options (i.e., using the function rt_garbage_collect_1 or not using the
function rt_garbage_collect_1) can remove different numbers of
records from a linked list in the hash table.

Further, Linux 2.0.1 combined with Dirks, Thatte, the ’663 patent and/or
the Opportunistic Garbage Collection Articles discloses an information
storage and retrieval system further including means for dynamically

Joint Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

US2008 1663881.5

Asserted Claims from
U.S. Pat. No. 5,893,120

LINUX 2.0.1 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v2.0/linux-2.0.1.tar.gz (“LINUX

2.0.1”) alone and in combination
determining maximum number for the record search means to remove in
the accessed linked list of records.

Dirks discloses the management of memory in a computer system and
more particularly to the allocation of address space in a virtual memory
system, which dynamically determines how many records to sweep/remove
upon each allocation. Disclosure of these claim elements in Dirks is
clearly shown in Exhibit B-2, which is hereby incorporated by reference in
its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to
determine whether they have become inactive, by checking them
against the VSIDs on the recycle list. Each entry which is identified as
being inactive is removed from the page table. After all of the entries in
the page table have been examined in this manner, the VSIDs in the
recycle list can be transferred to the free list, since all of their
associated page table entries will have been removed. This approach
thereby guarantees that a predetermined number of VSIDs are always
available in the free list without requiring a time-consuming scan of the
complete page table at once. U.S. Patent No. 6,119,214 to Dirks at 7:2-
14.

After [a] new VSID has been allocated, the system checks a flag
RFLG to determine whether a recycle sweep is currently in progress

Joint Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

US2008 1663881.5

Asserted Claims from
U.S. Pat. No. 5,893,120

LINUX 2.0.1 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v2.0/linux-2.0.1.tar.gz (“LINUX

2.0.1”) alone and in combination
(Step 20). If there is no sweep in progress, i.e. RFLG is not equal to
one, a determination is made whether a sweep should be initiated.
This is done by checking whether the inactive list is full, i.e. whether
it contains x entries (Step 22). If the number of entries I on the
inactive list is less than x, no further action is taken, and processing
control returns to the operating system (Step 24). If, however, the
inactive list is full at this time, the flag RFLG is set (Step 26), the
VSIDs on the inactive list are transferred to the recycle list, and an
index n is reset to 1 (Step 28). The system then sweeps a
predetermined number of page table entries PTi on the page table, to
detect whether any of them are inactive, i.e. their associated VSID is
on the recycle list (Step 30). The predetermined number of entries
that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the
number of entries to be examined during each step of the sweeping process.
Id. at 7:37-40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed
for each step. Rather, it might vary from one step to the next. The only
criterion is that the number of entries examined on each step be such that

Joint Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

US2008 1663881.5

Asserted Claims from
U.S. Pat. No. 5,893,120

LINUX 2.0.1 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v2.0/linux-2.0.1.tar.gz (“LINUX

2.0.1”) alone and in combination
all entries in the page table are examined in a determinable amount of
time or by the occurrence of a certain event, e.g. by the time the list of
free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number
of records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-
8:56.

As both Linux 2.0.1 and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would
have understood how to use Dirks’ dynamic decision making process of
determining the maximum number of records to sweep/remove in other
hash tables implementations such as Linux 2.0.1. Moreover, one of
ordinary skill in the art would recognize that it would improve similar
systems and methods in the same way. As the ’120 patent states “[a]
person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records are removed, and
that the decision regarding if and how many records to delete can be a
dynamic one.” The ’120 patent at 7:10-15. Additionally, one of ordinary
skill in the art would recognize that the result of combining Dirks’ deletion
decision procedure with Linux 2.0.1 nothing more than the predictable use
of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries
to examine during each step of the sweeping process with Linux 2.0.1 and

Joint Invalidity Contentions & Production of
Documents

35 Case No. 6:09-CV-549-LED

US2008 1663881.5

Asserted Claims from
U.S. Pat. No. 5,893,120

LINUX 2.0.1 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v2.0/linux-2.0.1.tar.gz (“LINUX

2.0.1”) alone and in combination
would have seen the benefits of doing so. One possible benefit, for
example, is saving the system from performing sometimes time-consuming
sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and
would understand how to, combine the system disclosed in Linux 2.0.1
with the means for dynamically determining maximum number for the
record search means to remove in the accessed linked list of records
disclosed by Thatte. For example, Thatte discloses a system and method
using hash tables and/or linked lists and further discloses means for
dynamically determining the maximum number for the record search
means to remove in the accessed linked list of records. The disclosure of
these claim elements in Thatte is clearly shown in the chart of Thatte,
which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, Ass both Linux 2.0.1 and Thatte teach a system of data
storage and retrieval, one of ordinary skill in the art would recognize that
the result of combining Linux 2.0.1 with Thatte would be nothing more
than the predictable use of prior art elements according to their established
functions. The resulting combination would include the capability to
determine the maximum number for the record search means to remove as
taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine
Linux 2.0.1 with Thatte and recognize the benefits of doing so. For

Joint Invalidity Contentions & Production of
Documents

36 Case No. 6:09-CV-549-LED

US2008 1663881.5

Asserted Claims from
U.S. Pat. No. 5,893,120

LINUX 2.0.1 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v2.0/linux-2.0.1.tar.gz (“LINUX

2.0.1”) alone and in combination
example, the removal of expired records described in Linux 2.0.1 can be
burdensome on the system, adding to the system’s load and slowing down
the system’s processing. One of ordinary skill in the art would recognize
that combining Linux 2.0.1 with the teachings of Thatte would solve this
problem by dynamically determining how many records to delete based on,
among other things, the system load. Moreover, the '120 patent discloses
that "[a] person skilled in the art will appreciate that the technique of
removing all expired records while searching the linked list can be
expanded to include techniques whereby not necessarily all expired records
are removed, and that the decision regarding if and how many records to
delete can be a dynamic one." '120 at 7:10-15. Thus, the '120 patent
provides motivations to combine Linux 2.0.1 with Thatte.

Alternatively, it would also be obvious to combine Linux 2.0.1 with the
’663 patent. Disclosure of these claim elements in the ’663 patent is
clearly shown in the chart of the ‘663 patent, which is hereby incorporated
by reference in its entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is
not excessive, a non-contaminating but slow deletion of
records is used. This slow, non-contaminating deletion
involves closing the collision-resolution chain of locations
by moving a record from a later position in the chain into
the position of the record to be deleted. This leaves no
deleted record locations in the storage space to slow down
future searches. U.S. Patent 4,996,663 to Nemes at 2:24-34

Joint Invalidity Contentions & Production of
Documents

37 Case No. 6:09-CV-549-LED

US2008 1663881.5

Asserted Claims from
U.S. Pat. No. 5,893,120

LINUX 2.0.1 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v2.0/linux-2.0.1.tar.gz (“LINUX

2.0.1”) alone and in combination
(“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly
and no time is available for decontamination, the record is
simply marked as “deleted” and left in place. Later non-
contaminating probes in the vicinity of such deleted record
locations automatically remove the contaminating deleted
records by moving records in the chain as described above.
Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-
contaminating deletion is used when the load on the system
is at lower levels. Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

Joint Invalidity Contentions & Production of
Documents

38 Case No. 6:09-CV-549-LED

US2008 1663881.5

Asserted Claims from
U.S. Pat. No. 5,893,120

LINUX 2.0.1 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v2.0/linux-2.0.1.tar.gz (“LINUX

2.0.1”) alone and in combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system
load to determine if the system load is greater than a threshold. If the
system load is greater than the threshold, then a fast-secure delete 52 is
used. Id. at 6:40-64, Figure 5. On the other hand, if the system load is less

Joint Invalidity Contentions & Production of
Documents

39 Case No. 6:09-CV-549-LED

US2008 1663881.5

Asserted Claims from
U.S. Pat. No. 5,893,120

LINUX 2.0.1 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v2.0/linux-2.0.1.tar.gz (“LINUX

2.0.1”) alone and in combination
than the threshold, then a slow-non-contaminating delete 53 is used. Id.
The fast-secure delete 52 does not actually delete records, rather it marks
records as deleted. Id. at 8:1-33, Figure 7. These records are then actually
deleted by a subsequent slow-non-contaminating delete 53. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically
determines a maximum number of records to remove. See id. at 6:40-64,
Figure 5. If the fast-secure delete 52 is used, then maximum number of
records is zero because records are not deleted they are only marked. Id. at
8:1-33, Figure 7. If the slow-non-contaminating delete 53 is used, then the
maximum number of records to remove is all of the contaminated records
in the bucket. Id. at 6:65-7:68, Figures 6, 6A, 6B.

As both Linux 2.0.1 and the ’663 patent relate to deletion of records from
hash tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table
implementations such as that described in Linux 2.0.1. Moreover, one of
ordinary skill in the art would recognize that it would improve similar
systems and methods in the same way. As the ’120 patent states “[a]
person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records are removed, and
that the decision regarding if and how many records to delete can be a
dynamic one.” The ’120 patent at 7:10-15. Additionally, one of ordinary
skill in the art would recognize that the result of combining the ’663

Joint Invalidity Contentions & Production of
Documents

40 Case No. 6:09-CV-549-LED

US2008 1663881.5

Asserted Claims from
U.S. Pat. No. 5,893,120

LINUX 2.0.1 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v2.0/linux-2.0.1.tar.gz (“LINUX

2.0.1”) alone and in combination
patent’s deletion decision procedure with Linux 2.0.1 would be nothing
more than the predictable use of prior art elements according to their
established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a
deletion based on a systems load as taught by the ’663 patent and with
Linux 2.0.1 and would have seen the benefits of doing so. One such
benefit, for example, is that the system would avoid performing deletions
when the system load exceeded a threshold.

Alternatively, it would also be obvious to combine Linux 2.0.1 with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational
based garbage collection which dynamically determines how much garbage
to collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of
the Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October
1-6, 1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM
SIGPLAN Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in
part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many
generations to scavenge. The fuller a generation is, the more likely it is

Joint Invalidity Contentions & Production of
Documents

41 Case No. 6:09-CV-549-LED

US2008 1663881.5

Asserted Claims from
U.S. Pat. No. 5,893,120

LINUX 2.0.1 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v2.0/linux-2.0.1.tar.gz (“LINUX

2.0.1”) alone and in combination
to be scavenged; also, the longer the pause that has been detected, the
larger the scope of the garbage collection is likely to be. Design of the
Opportunistic Garbage Collector at 32.

Every time a user-input routine is invoked, a decision routine can
decide whether to garbage collect. As long as the decision routine takes
no more than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not
incur a continual run-time overhead. Opportunistic Garbage
Collection at 100.

This decision routine should take several things into account: 1) the
volume of data allocated since the last scavenge, 2) how long it has
been since the user has had an opportunity to interact, and 3) the height
of the stack relative to its average height at reads since the last
scavenge. If the product of the allocation and the compute time is high,
and if the stack is low, the scavenge favorability measure is high. If it is
especially high, a multi-generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of
a generation’s space, it is likely to happen during a significant
compute-bound pause--the one that has just allocated the data that
forced the collection. When the opportunistic mechanism fails to find
the end of a pause, it may still succeed by default, embedding a
scavenge pause within a larger pause. Design of the Opportunistic
Garbage Collector at 32.

Joint Invalidity Contentions & Production of
Documents

42 Case No. 6:09-CV-549-LED

US2008 1663881.5

Asserted Claims from
U.S. Pat. No. 5,893,120

LINUX 2.0.1 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v2.0/linux-2.0.1.tar.gz (“LINUX

2.0.1”) alone and in combination
As both Linux 2.0.1 and the Opportunistic Garbage Collection Articles
relate to deletion of aged records, one of ordinary skill in the art would
have understood how to use the Opportunistic Garbage Collection Articles’
dynamic decision on whether to perform a deletion based on a system load
in other hash table implementations such as Linux 2.0.1. Moreover, one of
ordinary skill in the art would recognize that it would improve similar
systems and methods in the same way. As the ’120 patent states “[a]
person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records are removed, and
that the decision regarding if and how many records to delete can be a
dynamic one.” The ’120 patent at 7:10-15. Additionally, one of ordinary
skill in the art would recognize that the result of combining the
Opportunistic Garbage Collection Articles’ deletion decision procedure
with Linux 2.0.1 would be nothing more than the predictable use of prior
art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion and how many generations to scavenge as
taught by the Opportunistic Garbage Collection Articles and with Linux
2.0.1 and would have seen the benefits of doing so. One such benefit, for
example, is preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art
to modify the system disclosed in Linux 2.0.1 to dynamically determine the
maximum number of expired records to remove in the accessed linked list

Joint Invalidity Contentions & Production of
Documents

43 Case No. 6:09-CV-549-LED

US2008 1663881.5

Asserted Claims from
U.S. Pat. No. 5,893,120

LINUX 2.0.1 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v2.0/linux-2.0.1.tar.gz (“LINUX

2.0.1”) alone and in combination
of records. It is a fundamental concept in computer science and the
relevant art that any variable or parameter affecting any aspect of a system
can be dynamically determined based on information available to the
system. One of ordinary skill in the art would have been motivated to
combine the system disclosed in Linux 2.0.1 with the fundamental concept
of dynamically determining the maximum number of expired records to
remove in an accessed linked list of records to solve a number of potential
problems. For example, the removal of expired records described in Linux
2.0.1 can be burdensome on the system, adding to the system’s load and
slowing down the system’s processing. Moreover, the removal could also
force an interruption in real-time processing as the processing waits for the
removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays
in processing. Indeed, Nemes concedes that such dynamic determination
was obvious when he states in the ‘120 patent that “[a] person skilled in the
art will appreciate that the technique of removing all expired records while
searching the linked list can be expanded to include techniques whereby
not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one.” ‘120
at 7:10-15.

Joint Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

US2008 1671902.2

EXHIBIT D-13

Asserted Claims from U.S. Pat. No. 5,893,120 GCC 2.7.2.1, available at http://gcc-uk.internet.bs/old-releases/gcc-2/
(“GCC 2.7.2.1”) alone and in combination

1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, GCC 2.7.2.1 discloses an
information storage and retrieval system.

For example, GCC 2.7.2.1 includes a file “alloca.c”. “alloca.c” is “an
implementation of the PWB library alloca function, which is used to
allocate space off the run-time stack so that it is automatically reclaimed
upon procedure exit…” alloca.c, lines 4-6.

The run-time stack is an information storage and retrieval system.

[1a] a linked list to store
and provide access to
records stored in a
memory of the system, at
least some of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

GCC 2.7.2.1 discloses a linked list to store and provide access to records
stored in a memory of the system. GCC 2.7.2.1 also discloses a hashing
means to provide access to records stored in a memory of the system and
using an external chaining technique to store the records with same hash
address, at least some of the records automatically expiring.

For example, GCC 2.7.2.1 includes a header structure. alloca, lines 142-
150. The header structure includes a pointer to a next header structure.
alloca.c, line 147. The pointer in the header structure is used to chain
together (i.e., form a linked list of) header structures. See alloca.c, lines
131-132.

GCC 2.7.2.1 discloses that at least some of the blocks automatically expire.

For example, GCC 2.7.2.1 provides that “garbage” is reclaimed. In GCC

Joint Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

US2008 1671902.2

Asserted Claims from U.S. Pat. No. 5,893,120 GCC 2.7.2.1, available at http://gcc-uk.internet.bs/old-releases/gcc-2/
(“GCC 2.7.2.1”) alone and in combination

2.7.2.1, “garbage” is “defined as all alloca’d storage that was allocated
from deeper in the stack than currently (sic).” alloca.c, lines 173-174.

Bedrock’s proposed construction of the term “automatically expiring” is
“data items which, after a limited period of time or after the occurrence of
some event, become obsolete, such that their presence is no longer needed
or desired.”

Under Bedrock’s proposed construction, “alloca’d storage” can become
“expired” if the “alloca’d storage” is no longer needed or desired after the
occurrence of some event. In GCC 2.7.2.1, “alloca’d storage” is no longer
needed or desired after the “alloca’d storage” becomes deeper in the stack
that the current depth.

GCC 2.7.2.1 includes a file “genattrtab.c.” Genattrtab.c provides for “a
hash table for sharing RTL and strings.” See genattrtab.c, lines 456 and
481. Genattrtab.c further provides that each hash table slot is a bucket
containing a chain of attr_hash structures. See genattrtab.c, line 458 and
lines 462-471. Each attr_hash structure includes a pointer to a next
attr_hash structure in a bucket. genattrtab.c, line 464.

Genattrtab.c further provides for using an external chaining technique to
store the records with same hash address. See, e.g., genattrtab.c, line 500.
It would have been obvious to one of skill in the art to combine genattrtab.c
with alloca.c. For example, both source files are within the GCC software
package and disclose using a known technique to a known system to yield
a predictable result.

Joint Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

US2008 1671902.2

Asserted Claims from U.S. Pat. No. 5,893,120 GCC 2.7.2.1, available at http://gcc-uk.internet.bs/old-releases/gcc-2/
(“GCC 2.7.2.1”) alone and in combination

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of
records having the same
hash address,

GCC 2.7.2.1 discloses a record search means utilizing a search key to
access the linked list.

GCC 2.7.2.1 includes a file “genattrtab.c.” Genattrtab.c provides for “a
hash table for sharing RTL and strings.” See genattrtab.c, lines 456 and
481. Genattrtab.c further provides that each hash table slot is a bucket
containing a chain of attr_hash structures. See genattrtab.c, line 458 and
lines 462-471. Each attr_hash structure includes a pointer to a next
attr_hash structure in a bucket. genattrtab.c, line 464.

Genattrtab.c further provides for using a hash code to access a linked list in
the hash table. genattrtab.c, line 500.

Under Bedrock’s proposed construction, the “record search means” is
“corresponding portions of the application software, user access software
or operating system software… that perform the function of record
searching utilizing a search key to access the linked list.”

Under Bedrock’s proposed construction, the “search key” can be a hash
code.

Thus, GCC 2.7.2.1 discloses utilizing a record search means (i.e., software
in the genattrtab.c file) that utilizes a search key (i.e., the hash code) to
access a linked list of records (i.e., the chain of attr_hash structures)
having the same hash address (i.e., being in the same bucket of the hash
table).

Joint Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

US2008 1671902.2

Asserted Claims from U.S. Pat. No. 5,893,120 GCC 2.7.2.1, available at http://gcc-uk.internet.bs/old-releases/gcc-2/
(“GCC 2.7.2.1”) alone and in combination

[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the
records from the linked
list when the linked list is
accessed, and

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

CGG 2.7.21 discloses the record search means including a means for
identifying and removing at least some of the expired ones of the records
from the linked list when the linked list is accessed.

For example, the alloca.c file in GCC 2.7.2.1 includes a function alloca.
When invoked, the function alloca creates a new header structure and
adds the new header structure to a linked list of header structures.
alloca.c, lines 206-215. In this way, the function alloca accesses the
linked list of header structures.

When invoked, the function alloca also performs a loop. The loop scans
through the linked list of header structures to identify and remove
“expired” header structures from the linked list of header structures.
alloca.c, lines 183-201. As described above, header structures can be
considered to be “expired” when the header structures have depths that are
greater than the current depth.

Hence, GCC 2.7.2.1 discloses a means (i.e., the loop) for identifying and
removing at least some of the expired ones of the records (i.e., the header
structures having depths that are greater than the current depth) from the
linked list (i.e., the linked list of header structures) when the linked list is
accessed.

GCC 2.7.2.1 does not disclose the function alloca uses a search key to
access the linked list of header structures. As described above, the portion
of GCC 2.7.2.1 in genattrtab.c discloses the use of a search key to access a

Joint Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

US2008 1671902.2

Asserted Claims from U.S. Pat. No. 5,893,120 GCC 2.7.2.1, available at http://gcc-uk.internet.bs/old-releases/gcc-2/
(“GCC 2.7.2.1”) alone and in combination

linked list of attr_hash structures. Thus, one could take the concept of
using of a search key to access a linked list, as taught in the genattrtab.c
portion of GCC 2.7.2.1, and place it into the function alloca in the
alloca.c portion of GCC 2.7.2.1. The result would be a record search
means that utilizes a search key to access the linked list and that includes a
means for identifying and removing at least some of the expired ones of the
records form the linked list when the linked list is accessed.

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] meals[sic], utilizing
the record search means,
for inserting, retrieving,
and deleting records from
the system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

GCC 2.7.2.1 discloses means, utilizing the record search means, for
accessing the linked list and, at the same time, removing at least some of
the expired ones of the records in the linked list. GCC 2.7.2.1 also
discloses meals[sic], utilizing the record search means, for inserting,
retrieving, and deleting records from the system and, at the same time,
removing at least some expired ones of the records in the accessed linked
list of records.

As described above, the function alloca utilizes the loop (i.e., a means for
identifying and removing at least some of the expired ones of the records in
the linked list). This loop could easily be modified to access the linked list
from a hash table.

The function alloca also inserts header structures into the linked list.
alloca.c, lines 212-213. Inserting the header structure into the linked list is
one possible way of accessing the linked list.

When invoked, the function alloca inserts the header structure into the
linked list and also executes the loop. Hence, the function alloca is a

Joint Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

US2008 1671902.2

Asserted Claims from U.S. Pat. No. 5,893,120 GCC 2.7.2.1, available at http://gcc-uk.internet.bs/old-releases/gcc-2/
(“GCC 2.7.2.1”) alone and in combination

means, utilizing the loop, for accessing the linked list and, at the same time,
removing at least some of the expired ones of the records from the linked
list.

The function alloca could be augmented with the teachings of LINUX
2.0.1 to derive a means that utilizes the loop, inserts records into the linked
list, and also retrieves and deletes records from the linked list.

LINUX 2.0.1 includes a file route.c. The file route.c includes a function
rt_cache_add. The function rt_cache_add retrieves records from a
linked list. See route.c, lines 1347-1354 (looping through and printing the
rt_dst element of each record in the linked list). One could easily adapt
the loop described in lines 1347-1354 of route.c for use in the function
alloca. Debugging the function alloca might be one possible motivation
for adapting the loop described in lines 1347-1354 of route.c for use in the
function alloca. This example motivation is provided in line 1346 of
route.c (“#if RT_CACHE_DEBUG >= 2”).

The function rt_cache_add also deletes records from a linked list. The
function rt_cache_add invokes the function rt_garbage_collect.
route.c, line 1432. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. route.c, line 1293. The function
rt_garbage_collect_1 removes records from a linked list. See route.c,
lines 1122-1138. The function rt_garbage_collect_1 can remove
expired records in the linked list plus other records in the linked list. See
route.c, lines 1122-1138. Hence, by invoking the function
rt_garbage_collect, the function rt_cache_add deletes records and

Joint Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

US2008 1671902.2

Asserted Claims from U.S. Pat. No. 5,893,120 GCC 2.7.2.1, available at http://gcc-uk.internet.bs/old-releases/gcc-2/
(“GCC 2.7.2.1”) alone and in combination

removes expired records. One could add this functionality to the function
alloca to remove other records from the linked list that are not in use.

To the extent that GCC 2.7.2.1 does not disclose this limitation, gcache.c
from Xinu Operating System for Sparc (1991) (hereinafter “gcache.c”) and
Douglas Comer and Shawn Ostermann, GCache: A Generalized Caching
Mechanism, Purdue University (Revised March 1992) (hereinafter
“Comer”) (collectively hereinafter “GCache”) discloses means, utilizing
the record search means, for accessing the linked list and, at the same time,
removing at least some of the expired ones of the records in the linked list,
and also discloses utilizing the record search means, for inserting,
retrieving, and deleting records from the system and, at the same time,
removing at least some expired ones of the records in the accessed linked
list of records.

One of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in GCC 2.7.2.1 with the
a hashing means to provide access to records stored in a memory of the
system and using an external chaining technique to store the records with
same hash address, at least some of the records automatically expiring
disclosed by GCache. See, e.g., Comer at 3-10. For example, since GCC
2.7.2.1 utilizes a linked list for storing records and GCache discloses a
system that attaches or chains linked lists to a hash table for storing
records, one of ordinary skill in the art would be motivated to combine the
linked list of GCC 2.7.2.1 with the system including a hash table using
external chaining of linked lists disclosed by GCache. The disclosure of
these claim elements in GCache is clearly shown in the chart of GCache,

Joint Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

US2008 1671902.2

Asserted Claims from U.S. Pat. No. 5,893,120 GCC 2.7.2.1, available at http://gcc-uk.internet.bs/old-releases/gcc-2/
(“GCC 2.7.2.1”) alone and in combination

which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining GCC 2.7.2.1 with GCache would be nothing more than
the predictable use of prior art elements according to their established
functions.

For example, Comer discloses means for inserting, retrieving, and deleting
records:

“Cainsert() inserts a new mapping, key => res, into the cache.” See Comer
at 4.

See also, gcache.c at lines 246-304, defining cainsert().

“Calookup() searches for a cached entry matching the key passed as an
argument.” See Comer at 4.

See also, gcache.c at lines 312-347 and 643-678, defining calookup() and
cagetindex().

“Caremove() removes the cached entry whose key is given, if one exists.”
See Comer at 4.

See also, gcache.c at lines 355-376, defining caremove().

Joint Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

US2008 1671902.2

Asserted Claims from U.S. Pat. No. 5,893,120 GCC 2.7.2.1, available at http://gcc-uk.internet.bs/old-releases/gcc-2/
(“GCC 2.7.2.1”) alone and in combination

Each of the means for inserting, retrieving, and deleting, utilizes a record
search means, the function cagetindex(), which removes an expired record
from the list as described below. The individual calls of cagetindex() are
listed here:

In cainsert():
275 if ((ixnew = cagetindex(pcb,pkey,keylen,hash))
!= NULL_IX) {

In calookup():
333 if ((ix = cagetindex(pcb,pkey,keylen,hash)) !=
NULL_IX) {

In caremove():
370 if ((ix = cagetindex(pcb,pkey,keylen,hash)) !=
NULL_IX) {

“In a simpler and cleaner design chosen for GCache, each cached entry
contains a timestamp encoding the insertion time. If a lookup matches an
entry with an expired timestamp, that entry is removed rather than being
returned.” See Comer at 10.

At lines 655-670 of gcache.c, cagetindex() executes a while loop to traverse
a linked list attached to a bucket of the hash table, accessing records stored
therein. In the subset of that code listed below, cagetindex() utilizes
caisold() to identify if a matching record is expired and removes the
expired record from the linked list using caunlink():

666 if (caisold(pcb,pce)) {

Joint Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

US2008 1671902.2

Asserted Claims from U.S. Pat. No. 5,893,120 GCC 2.7.2.1, available at http://gcc-uk.internet.bs/old-releases/gcc-2/
(“GCC 2.7.2.1”) alone and in combination

667 ++pcb->cb_tos;
668 caunlink(pcb,ix);
669 return(NULL_IX);
670 } else {

2. The information storage
and retrieval system
according to claim 1,
further including means
for dynamically
determining maximum
number for the record
search means to remove in
the accessed linked list of
records.

6. The information storage
and retrieval system
according to claim 5,
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

GCC 2.7.2.1 combined with Dirks, Thatte, the ’663 patent and/or the
Opportunistic Garbage Collection Articles discloses an information
storage and retrieval system further including means for dynamically
determining maximum number for the record search means to remove in
the accessed linked list of records.

Dirks discloses the management of memory in a computer system and
more particularly to the allocation of address space in a virtual memory
system, which dynamically determines how many records to sweep/remove
upon each allocation. Disclosure of these claim elements in Dirks is
clearly shown in Exhibit B-2, which is hereby incorporated by reference in
its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to
determine whether they have become inactive, by checking them
against the VSIDs on the recycle list. Each entry which is identified as
being inactive is removed from the page table. After all of the entries in
the page table have been examined in this manner, the VSIDs in the
recycle list can be transferred to the free list, since all of their
associated page table entries will have been removed. This approach

Joint Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

US2008 1671902.2

Asserted Claims from U.S. Pat. No. 5,893,120 GCC 2.7.2.1, available at http://gcc-uk.internet.bs/old-releases/gcc-2/
(“GCC 2.7.2.1”) alone and in combination

thereby guarantees that a predetermined number of VSIDs are always
available in the free list without requiring a time-consuming scan of the
complete page table at once. U.S. Patent No. 6,119,214 to Dirks at 7:2-
14.

After [a] new VSID has been allocated, the system checks a flag
RFLG to determine whether a recycle sweep is currently in progress
(Step 20). If there is no sweep in progress, i.e. RFLG is not equal to
one, a determination is made whether a sweep should be initiated.
This is done by checking whether the inactive list is full, i.e. whether
it contains x entries (Step 22). If the number of entries I on the
inactive list is less than x, no further action is taken, and processing
control returns to the operating system (Step 24). If, however, the
inactive list is full at this time, the flag RFLG is set (Step 26), the
VSIDs on the inactive list are transferred to the recycle list, and an
index n is reset to 1 (Step 28). The system then sweeps a
predetermined number of page table entries PTi on the page table, to
detect whether any of them are inactive, i.e. their associated VSID is
on the recycle list (Step 30). The predetermined number of entries
that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the
number of entries to be examined during each step of the sweeping process.
Id. at 7:37-40. As stated in Dirks:

Joint Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

US2008 1671902.2

Asserted Claims from U.S. Pat. No. 5,893,120 GCC 2.7.2.1, available at http://gcc-uk.internet.bs/old-releases/gcc-2/
(“GCC 2.7.2.1”) alone and in combination

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed
for each step. Rather, it might vary from one step to the next. The only
criterion is that the number of entries examined on each step be such that
all entries in the page table are examined in a determinable amount of
time or by the occurrence of a certain event, e.g. by the time the list of
free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number
of records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-
8:56.

As both GCC 2.7.2.1 and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would
have understood how to use Dirks’ dynamic decision making process of
determining the maximum number of records to sweep/remove in other
hash tables implementations such as GCC 2.7.2.1. Moreover, one of
ordinary skill in the art would recognize that it would improve similar
systems and methods in the same way. As the ’120 patent states “[a]
person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records are removed, and
that the decision regarding if and how many records to delete can be a
dynamic one.” The ’120 patent at 7:10-15. Additionally, one of ordinary
skill in the art would recognize that the result of combining Dirks’ deletion
decision procedure with GCC 2.7.2.1 nothing more than the predictable use

Joint Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

US2008 1671902.2

Asserted Claims from U.S. Pat. No. 5,893,120 GCC 2.7.2.1, available at http://gcc-uk.internet.bs/old-releases/gcc-2/
(“GCC 2.7.2.1”) alone and in combination

of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries
to examine during each step of the sweeping process with GCC 2.7.2.1 and
would have seen the benefits of doing so. One possible benefit, for
example, is saving the system from performing sometimes time-consuming
sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and
would understand how to, combine the system disclosed in GCC 2.7.2.1
with the means for dynamically determining maximum number for the
record search means to remove in the accessed linked list of records
disclosed by Thatte. For example, Thatte discloses a system and method
using hash tables and/or linked lists and further discloses means for
dynamically determining the maximum number for the record search
means to remove in the accessed linked list of records. The disclosure of
these claim elements in Thatte is clearly shown in the chart of Thatte,
which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, Ass both GCC 2.7.2.1 and Thatte teach a system of
data storage and retrieval, one of ordinary skill in the art would recognize
that the result of combining GCC 2.7.2.1 with Thatte would be nothing
more than the predictable use of prior art elements according to their
established functions. The resulting combination would include the
capability to determine the maximum number for the record search means

Joint Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

US2008 1671902.2

Asserted Claims from U.S. Pat. No. 5,893,120 GCC 2.7.2.1, available at http://gcc-uk.internet.bs/old-releases/gcc-2/
(“GCC 2.7.2.1”) alone and in combination

to remove as taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine
GCC 2.7.2.1 with Thatte and recognize the benefits of doing so. For
example, the removal of expired records described in GCC 2.7.2.1 can be
burdensome on the system, adding to the system’s load and slowing down
the system’s processing. One of ordinary skill in the art would recognize
that combining GCC 2.7.2.1 with the teachings of Thatte would solve this
problem by dynamically determining how many records to delete based on,
among other things, the system load. Moreover, the '120 patent discloses
that "[a] person skilled in the art will appreciate that the technique of
removing all expired records while searching the linked list can be
expanded to include techniques whereby not necessarily all expired records
are removed, and that the decision regarding if and how many records to
delete can be a dynamic one." '120 at 7:10-15. Thus, the '120 patent
provides motivations to combine GCC 2.7.2.1 with Thatte.

Alternatively, it would also be obvious to combine GCC 2.7.2.1 with the
’663 patent. Disclosure of these claim elements in the ’663 patent is
clearly shown in the chart of the ‘663 patent, which is hereby incorporated
by reference in its entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is
not excessive, a non-contaminating but slow deletion of
records is used. This slow, non-contaminating deletion
involves closing the collision-resolution chain of locations
by moving a record from a later position in the chain into
the position of the record to be deleted. This leaves no

Joint Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

US2008 1671902.2

Asserted Claims from U.S. Pat. No. 5,893,120 GCC 2.7.2.1, available at http://gcc-uk.internet.bs/old-releases/gcc-2/
(“GCC 2.7.2.1”) alone and in combination

deleted record locations in the storage space to slow down
future searches. U.S. Patent 4,996,663 to Nemes at 2:24-34
(“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly
and no time is available for decontamination, the record is
simply marked as “deleted” and left in place. Later non-
contaminating probes in the vicinity of such deleted record
locations automatically remove the contaminating deleted
records by moving records in the chain as described above.
Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-
contaminating deletion is used when the load on the system
is at lower levels. Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

Joint Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

US2008 1671902.2

Asserted Claims from U.S. Pat. No. 5,893,120 GCC 2.7.2.1, available at http://gcc-uk.internet.bs/old-releases/gcc-2/
(“GCC 2.7.2.1”) alone and in combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system
load to determine if the system load is greater than a threshold. If the
system load is greater than the threshold, then a fast-secure delete 52 is
used. Id. at 6:40-64, Figure 5. On the other hand, if the system load is less
than the threshold, then a slow-non-contaminating delete 53 is used. Id.

Joint Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

US2008 1671902.2

Asserted Claims from U.S. Pat. No. 5,893,120 GCC 2.7.2.1, available at http://gcc-uk.internet.bs/old-releases/gcc-2/
(“GCC 2.7.2.1”) alone and in combination

The fast-secure delete 52 does not actually delete records, rather it marks
records as deleted. Id. at 8:1-33, Figure 7. These records are then actually
deleted by a subsequent slow-non-contaminating delete 53. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically
determines a maximum number of records to remove. See id. at 6:40-64,
Figure 5. If the fast-secure delete 52 is used, then maximum number of
records is zero because records are not deleted they are only marked. Id. at
8:1-33, Figure 7. If the slow-non-contaminating delete 53 is used, then the
maximum number of records to remove is all of the contaminated records
in the bucket. Id. at 6:65-7:68, Figures 6, 6A, 6B.

As both GCC 2.7.2.1 and the ’663 patent relate to deletion of records from
hash tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table
implementations such as that described in GCC 2.7.2.1. Moreover, one of
ordinary skill in the art would recognize that it would improve similar
systems and methods in the same way. As the ’120 patent states “[a]
person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records are removed, and
that the decision regarding if and how many records to delete can be a
dynamic one.” The ’120 patent at 7:10-15. Additionally, one of ordinary
skill in the art would recognize that the result of combining the ’663
patent’s deletion decision procedure with GCC 2.7.2.1 would be nothing
more than the predictable use of prior art elements according to their

Joint Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

US2008 1671902.2

Asserted Claims from U.S. Pat. No. 5,893,120 GCC 2.7.2.1, available at http://gcc-uk.internet.bs/old-releases/gcc-2/
(“GCC 2.7.2.1”) alone and in combination

established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a
deletion based on a systems load as taught by the ’663 patent and with
GCC 2.7.2.1 and would have seen the benefits of doing so. One such
benefit, for example, is that the system would avoid performing deletions
when the system load exceeded a threshold.

Alternatively, it would also be obvious to combine GCC 2.7.2.1 with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational
based garbage collection which dynamically determines how much garbage
to collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of
the Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October
1-6, 1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM
SIGPLAN Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in
part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many
generations to scavenge. The fuller a generation is, the more likely it is
to be scavenged; also, the longer the pause that has been detected, the
larger the scope of the garbage collection is likely to be. Design of the
Opportunistic Garbage Collector at 32.

Joint Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

US2008 1671902.2

Asserted Claims from U.S. Pat. No. 5,893,120 GCC 2.7.2.1, available at http://gcc-uk.internet.bs/old-releases/gcc-2/
(“GCC 2.7.2.1”) alone and in combination

Every time a user-input routine is invoked, a decision routine can
decide whether to garbage collect. As long as the decision routine takes
no more than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not
incur a continual run-time overhead. Opportunistic Garbage
Collection at 100.

This decision routine should take several things into account: 1) the
volume of data allocated since the last scavenge, 2) how long it has
been since the user has had an opportunity to interact, and 3) the height
of the stack relative to its average height at reads since the last
scavenge. If the product of the allocation and the compute time is high,
and if the stack is low, the scavenge favorability measure is high. If it is
especially high, a multi-generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of
a generation’s space, it is likely to happen during a significant
compute-bound pause--the one that has just allocated the data that
forced the collection. When the opportunistic mechanism fails to find
the end of a pause, it may still succeed by default, embedding a
scavenge pause within a larger pause. Design of the Opportunistic
Garbage Collector at 32.

As both GCC 2.7.2.1 and the Opportunistic Garbage Collection Articles
relate to deletion of aged records, one of ordinary skill in the art would
have understood how to use the Opportunistic Garbage Collection Articles’
dynamic decision on whether to perform a deletion based on a system load

Joint Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

US2008 1671902.2

Asserted Claims from U.S. Pat. No. 5,893,120 GCC 2.7.2.1, available at http://gcc-uk.internet.bs/old-releases/gcc-2/
(“GCC 2.7.2.1”) alone and in combination

in other hash table implementations such as GCC 2.7.2.1. Moreover, one
of ordinary skill in the art would recognize that it would improve similar
systems and methods in the same way. As the ’120 patent states “[a]
person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records are removed, and
that the decision regarding if and how many records to delete can be a
dynamic one.” The ’120 patent at 7:10-15. Additionally, one of ordinary
skill in the art would recognize that the result of combining the
Opportunistic Garbage Collection Articles’ deletion decision procedure
with GCC 2.7.2.1 would be nothing more than the predictable use of prior
art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion and how many generations to scavenge as
taught by the Opportunistic Garbage Collection Articles and with GCC
2.7.2.1 and would have seen the benefits of doing so. One such benefit, for
example, is preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art
to modify the system disclosed in GCC 2.7.2.1 to dynamically determine
the maximum number of expired records to remove in the accessed linked
list of records. It is a fundamental concept in computer science and the
relevant art that any variable or parameter affecting any aspect of a system
can be dynamically determined based on information available to the
system. One of ordinary skill in the art would have been motivated to
combine the system disclosed in GCC 2.7.2.1 with the fundamental

Joint Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

US2008 1671902.2

Asserted Claims from U.S. Pat. No. 5,893,120 GCC 2.7.2.1, available at http://gcc-uk.internet.bs/old-releases/gcc-2/
(“GCC 2.7.2.1”) alone and in combination

concept of dynamically determining the maximum number of expired
records to remove in an accessed linked list of records to solve a number of
potential problems. For example, the removal of expired records described
in GCC 2.7.2.1 can be burdensome on the system, adding to the system’s
load and slowing down the system’s processing. Moreover, the removal
could also force an interruption in real-time processing as the processing
waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays
in processing. Indeed, Nemes concedes that such dynamic determination
was obvious when he states in the ‘120 patent that “[a] person skilled in the
art will appreciate that the technique of removing all expired records while
searching the linked list can be expanded to include techniques whereby
not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one.” ‘120
at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by GCC 2.7.2.1 in combination with Dirks, Thatte,
the ‘663 Patent, or the Opportunistic Garbage Collection References, it is
disclosed by Linux 2.0.1, which describes dynamically determining
maximum number of expired ones of the records to remove when the
linked list is accessed. It would have been obvious to combine Linux 2.0.1
with GCC 2.7.2.1. For example, both Linux 2.0.1 and GCC
2.7.2.1 describe systems and methods for performing data storage and
retrieval using known programming techniques to yield a predictable

Joint Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

US2008 1671902.2

Asserted Claims from U.S. Pat. No. 5,893,120 GCC 2.7.2.1, available at http://gcc-uk.internet.bs/old-releases/gcc-2/
(“GCC 2.7.2.1”) alone and in combination

result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the
function rt_cache_add decrements the variable rt_cache_size.
See Linux 2.0.1, route.c at line 1373. Thus, the variable
rt_cache_size indicates the number of records in the hash table (i.e.,
ip_rt_hash_table). Because the function rt_cache_add
automatically increments and decrements the variable rt_cache_size,
the variable rt_cache_size is determined dynamically.

Furthermore, LINUX 2.0.1 includes the function
rt_garbage_collect_1. The function rt_garbage_collect_1
loops through each of the linked lists in the ip_rt_hash_table global
variable. See Linux 2.0.1, route.c at lines 1122-1138. In this way, the
function rt_garbage_collect_1 accesses the linked list. When the
function rt_garbage_collect_1 identifies a record that is expired,
the function rt_garbage_collect_1 decrements the variable
rt_cache_size and frees the record. See Linux 2.0.1, route.c at lines
1128-1135.

Because all records in the linked list can be expired and all records in the
hash table can be in the linked list, the variable rt_cache_size can
represent a dynamically determined maximum number of expired ones of
the records to remove when function rt_garbage_collect_1

Joint Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

US2008 1671902.2

Asserted Claims from U.S. Pat. No. 5,893,120 GCC 2.7.2.1, available at http://gcc-uk.internet.bs/old-releases/gcc-2/
(“GCC 2.7.2.1”) alone and in combination

accesses the linked list.

Furthermore, the function rt_cache_add determines whether the
number of records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table
exceeds the predetermined threshold RT_CACHE_SIZE_MAX, the
function rt_cache_add invokes a function rt_garbage_collect.
See Linux 2.0.1, route.c at lines 1341-1342. The function
rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293. The
function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list
in the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each
linked list in the hash table, the function rt_garbage_collect_1
looks at each record in the linked list. See Linux 2.0.1, route.c at lines
1120-1131. For each record in a linked list, the function
rt_garbage_collect_1 determines whether the record’s last use
time plus the record’s expiration factor is later than the current time. See
Linux 2.0.1, route.c at line 1122. If the record’s last use time plus the
record’s expiration factor is less than the current time, the function
rt_garbage_collect_1 removes the record from the linked list. See
Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the
fixed timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at

Joint Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

US2008 1671902.2

Asserted Claims from U.S. Pat. No. 5,893,120 GCC 2.7.2.1, available at http://gcc-uk.internet.bs/old-releases/gcc-2/
(“GCC 2.7.2.1”) alone and in combination

line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of
records in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the
number of items in the hash table is still greater than the predetermined
threshold RT_CACHE_SIZE_MAX, the function
rt_garbage_collect_1 halves the variable expire and loops
through each of the linked lists in the hash table. See Linux 2.0.1, route.c
at line 1135. In this way, the function rt_garbage_collect_1 can
remove additional records from the linked lists in the hash table. The
function rt_garbage_collect_1 repeats this process until the total
number of records in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or
desired.

The function rt_cache_add only removes a record from a linked list
when the record’s last use time plus the fixed timeout value
RT_CACHE_TIMEOUT is less than the current time and the record’s
reference count is zero. See Linux 2.0.1, route.c at line 1369. Thus, the

Joint Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

US2008 1671902.2

Asserted Claims from U.S. Pat. No. 5,893,120 GCC 2.7.2.1, available at http://gcc-uk.internet.bs/old-releases/gcc-2/
(“GCC 2.7.2.1”) alone and in combination

maximum number of records that the function rt_cache_add can
remove from a given linked list is limited to those records whose reference
counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1
can remove records whose reference counts are zero and records whose
reference counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different
than the maximum number of records that the function rt_cache_add
can remove from a linked list.

GCC 2.7.2.1

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least

To the extent the preamble is a limitation, GCC 2.7.2.1 discloses a method
for storing and retrieving information records using a linked list to store
and provide access to the records, at least some of the records
automatically expiring. To the extent the preamble is a limitation, GCC
2.7.2.1d also discloses a method for storing and retrieving information
records using a hashing technique to provide access to the records and
using an external chaining technique to store the records with same hash
address, at least some of the records automatically expiring.

Joint Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

US2008 1671902.2

Asserted Claims from U.S. Pat. No. 5,893,120 GCC 2.7.2.1, available at http://gcc-uk.internet.bs/old-releases/gcc-2/
(“GCC 2.7.2.1”) alone and in combination

steps of: some of the records
automatically expiring, the
method comprising the
steps of:

For example, GCC 2.7.2.1 includes a file “alloca.c”. “alloca.c” is “an
implementation of the PWB library alloca function, which is used to
allocate space off the run-time stack so that it is automatically reclaimed
upon procedure exit…” alloca.c, lines 4-6.

The run-time stack is an information storage and retrieval system.

GCC 2.7.2.1 discloses a linked list to store and provide access to records
stored in a memory of the system.

For example, GCC 2.7.2.1 includes a header structure. alloca, lines 142-
150. The header structure includes a pointer to a next header structure.
alloca.c, line 147. The pointer in the header structure is used to chain
together (i.e., form a linked list of) header structures. See alloca.c, lines
131-132.

GCC 2.7.2.1 discloses that at least some of the blocks automatically expire.

For example, GCC 2.7.2.1 provides that “garbage” is reclaimed. In GCC
2.7.2.1, “garbage” is “defined as all alloca’d storage that was allocated
from deeper in the stack than currently.” alloca.c, lines 173-174.

Bedrock’s proposed construction of the term “automatically expiring” is
“data items which, after a limited period of time or after the occurrence of
some event, become obsolete, such that their presence is no longer needed
or desired.”

Joint Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

US2008 1671902.2

Asserted Claims from U.S. Pat. No. 5,893,120 GCC 2.7.2.1, available at http://gcc-uk.internet.bs/old-releases/gcc-2/
(“GCC 2.7.2.1”) alone and in combination

Under Bedrock’s proposed construction, “alloca’d storage” can become
“expired” if the “alloca’d storage” is no longer needed or desired after the
occurrence of some event. In GCC 2.7.2.1, “alloca’d storage” is no longer
needed or desired after the “alloca’d storage” becomes deeper in the stack
that the current depth.

GCC 2.7.2.1 includes a file “genattrtab.c.” Genattrtab.c provides for “a
hash table for sharing RTL and strings.” See genattrtab.c, lines 456 and
481. Genattrtab.c further provides that each hash table slot is a bucket
containing a chain of attr_hash structures. See genattrtab.c, line 458 and
lines 462-471. Each attr_hash structure includes a pointer to a next
attr_hash structure in a bucket. genattrtab.c, line 464.

Genattrtab.c further provides for using an external chaining technique to
store the records with same hash address. See, e.g., genattrtab.c, line 500.
It would have been obvious to one of skill in the art to combine genattrtab.c
with alloca.c. For example, both source files are within the GCC software
package and disclose using a known technique to a known system to yield
a predictable result.

accessing the linked list of
records,

accessing a linked list of
records having same hash
address,

GCC 2.7.2.1 discloses accessing the linked list of records. GCC 2.7.2.1
also discloses accessing a linked list of records having same hash address.

For example, alloca.c includes a function alloca. alloca.c, lines 162-221.
The function alloca adds a header structure to a linked list of header
structures. alloca.c, lines 212-213. Adding a header structure to a linked

Joint Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

US2008 1671902.2

Asserted Claims from U.S. Pat. No. 5,893,120 GCC 2.7.2.1, available at http://gcc-uk.internet.bs/old-releases/gcc-2/
(“GCC 2.7.2.1”) alone and in combination

list is one way of accessing the linked list.

Bedrock’s proposed claim constructions provide that “means for accessing
the linked list” correspond to software which provides the insert, retrieve,
or delete record capability illustrated in the flowchart of FIG. 5, FIG. 6, or
FIG. 7…” (emphasis added). Hence, under Bedrock’s proposed claim
constructions, the function alloca is software that “accesses” a linked list.

GCC 2.7.2.1 includes a file “genattrtab.c.” Genattrtab.c provides for “a
hash table for sharing RTL and strings.” See genattrtab.c, lines 456 and
481. Genattrtab.c further provides that each hash table slot is a bucket
containing a chain of attr_hash structures. See genattrtab.c, line 458 and
lines 462-471. Each attr_hash structure includes a pointer to a next
attr_hash structure in a bucket. genattrtab.c, line 464.

Genattrtab.c further provides for using an external chaining technique to
store the records with same hash address. See, e.g., genattrtab.c, line 500.
It would have been obvious to one of skill in the art to combine genattrtab.c
with alloca.c. For example, both source files are within the GCC software
package and disclose using a known technique to a known system to yield
a predictable result.

identifying at least some
of the automatically
expired ones of the
records, and

identifying at least some of
the automatically expired
ones of the records,

GCC 2.7.2.1 identifies at least some of the automatically expired ones of
the records.

When invoked, the function alloca performs a loop. The loop scans
through the linked list of header structures to identify “expired” header

Joint Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

US2008 1671902.2

Asserted Claims from U.S. Pat. No. 5,893,120 GCC 2.7.2.1, available at http://gcc-uk.internet.bs/old-releases/gcc-2/
(“GCC 2.7.2.1”) alone and in combination

structures from the linked list of header structures. alloca.c, lines 183-201.
As described above, header structures can be considered to be “expired”
when the header structures have depths that are greater than the current
depth.

removing at least some of
the automatically expired
records from the linked
list when the linked list is
accessed.

removing at least some of
the automatically expired
records from the linked list
when the linked list is
accessed, and

GCC 2.7.2.1 removes at least some of the automatically expired records
from the linked list when the linked list is accessed.

As mentioned above, the function alloca performs a loop. The loop scans
through the linked list of header structures to remove “expired” header
structures from the linked list of header structures. alloca.c, lines 183-201.

Bedrock’s proposed claim construction provides that at least some of the
expired ones of the records from the linked list when the linked list is
accessed for a purpose other than garbage collection.

The function alloca performs the loop when invoked. The function
alloca does not insert a header structure in the linked list of header
structures for the purpose of garbage collection. Rather, the function
alloca is used to allocate space off the run-time stack so that it is
automatically reclaimed upon procedure exit. See alloca.c, lines 4-6.

 inserting, retrieving or
deleting one of the records
from the system following
the step of removing.

GCC 2.7.2.1 discloses inserting, retrieving or deleting one of the records
from the system following the step of removing.

For example, the function alloca removes header structures from the
linked list in lines 183-194.

Joint Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

US2008 1671902.2

Asserted Claims from U.S. Pat. No. 5,893,120 GCC 2.7.2.1, available at http://gcc-uk.internet.bs/old-releases/gcc-2/
(“GCC 2.7.2.1”) alone and in combination

The function alloca inserts a header structure into the linked list in lines
212-213.

Hence, the function alloca inserts the header structure into the linked list
following the step of removing header structures from the linked list.

4. The method according
to claim 3 further
including the step of
dynamically determining
maximum number of
expired ones of the
records to remove when
the linked list is accessed.

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

GCC 2.7.2.1 combined with Dirks, Thatte, the ’663 patent and/or the
Opportunistic Garbage Collection Articles discloses an information
storage and retrieval system further including means for dynamically
determining maximum number for the record search means to remove in
the accessed linked list of records.

Dirks discloses the management of memory in a computer system and
more particularly to the allocation of address space in a virtual memory
system, which dynamically determines how many records to sweep/remove
upon each allocation. Disclosure of these claim elements in Dirks is
clearly shown in Exhibit B-2, which is hereby incorporated by reference in
its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to
determine whether they have become inactive, by checking them
against the VSIDs on the recycle list. Each entry which is identified as
being inactive is removed from the page table. After all of the entries in

Joint Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

US2008 1671902.2

Asserted Claims from U.S. Pat. No. 5,893,120 GCC 2.7.2.1, available at http://gcc-uk.internet.bs/old-releases/gcc-2/
(“GCC 2.7.2.1”) alone and in combination

the page table have been examined in this manner, the VSIDs in the
recycle list can be transferred to the free list, since all of their
associated page table entries will have been removed. This approach
thereby guarantees that a predetermined number of VSIDs are always
available in the free list without requiring a time-consuming scan of the
complete page table at once. U.S. Patent No. 6,119,214 to Dirks at 7:2-
14.

After [a] new VSID has been allocated, the system checks a flag
RFLG to determine whether a recycle sweep is currently in progress
(Step 20). If there is no sweep in progress, i.e. RFLG is not equal to
one, a determination is made whether a sweep should be initiated.
This is done by checking whether the inactive list is full, i.e. whether
it contains x entries (Step 22). If the number of entries I on the
inactive list is less than x, no further action is taken, and processing
control returns to the operating system (Step 24). If, however, the
inactive list is full at this time, the flag RFLG is set (Step 26), the
VSIDs on the inactive list are transferred to the recycle list, and an
index n is reset to 1 (Step 28). The system then sweeps a
predetermined number of page table entries PTi on the page table, to
detect whether any of them are inactive, i.e. their associated VSID is
on the recycle list (Step 30). The predetermined number of entries
that are swept is identified as k, where:

 Id. at 8:12-30.

Joint Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

US2008 1671902.2

Asserted Claims from U.S. Pat. No. 5,893,120 GCC 2.7.2.1, available at http://gcc-uk.internet.bs/old-releases/gcc-2/
(“GCC 2.7.2.1”) alone and in combination

Dirks discloses that any approach can be employed to determine the
number of entries to be examined during each step of the sweeping process.
Id. at 7:37-40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed
for each step. Rather, it might vary from one step to the next. The only
criterion is that the number of entries examined on each step be such that
all entries in the page table are examined in a determinable amount of
time or by the occurrence of a certain event, e.g. by the time the list of
free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number
of records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-
8:56.

As both GCC 2.7.2.1 and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would
have understood how to use Dirks’ dynamic decision making process of
determining the maximum number of records to sweep/remove in other
hash tables implementations such as GCC 2.7.2.1. Moreover, one of
ordinary skill in the art would recognize that it would improve similar
systems and methods in the same way. As the ’120 patent states “[a]
person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records are removed, and
that the decision regarding if and how many records to delete can be a

Joint Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

US2008 1671902.2

Asserted Claims from U.S. Pat. No. 5,893,120 GCC 2.7.2.1, available at http://gcc-uk.internet.bs/old-releases/gcc-2/
(“GCC 2.7.2.1”) alone and in combination

dynamic one.” The ’120 patent at 7:10-15. Additionally, one of ordinary
skill in the art would recognize that the result of combining Dirks’ deletion
decision procedure with GCC 2.7.2.1 nothing more than the predictable use
of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries
to examine during each step of the sweeping process with GCC 2.7.2.1 and
would have seen the benefits of doing so. One possible benefit, for
example, is saving the system from performing sometimes time-consuming
sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and
would understand how to, combine the system disclosed in GCC 2.7.2.1
with the means for dynamically determining maximum number for the
record search means to remove in the accessed linked list of records
disclosed by Thatte. For example, Thatte discloses a system and method
using hash tables and/or linked lists and further discloses means for
dynamically determining the maximum number for the record search
means to remove in the accessed linked list of records. The disclosure of
these claim elements in Thatte is clearly shown in the chart of Thatte,
which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, Ass both GCC 2.7.2.1 and Thatte teach a system of
data storage and retrieval, one of ordinary skill in the art would recognize
that the result of combining GCC 2.7.2.1 with Thatte would be nothing

Joint Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

US2008 1671902.2

Asserted Claims from U.S. Pat. No. 5,893,120 GCC 2.7.2.1, available at http://gcc-uk.internet.bs/old-releases/gcc-2/
(“GCC 2.7.2.1”) alone and in combination

more than the predictable use of prior art elements according to their
established functions. The resulting combination would include the
capability to determine the maximum number for the record search means
to remove as taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine
GCC 2.7.2.1 with Thatte and recognize the benefits of doing so. For
example, the removal of expired records described in GCC 2.7.2.1 can be
burdensome on the system, adding to the system’s load and slowing down
the system’s processing. One of ordinary skill in the art would recognize
that combining GCC 2.7.2.1 with the teachings of Thatte would solve this
problem by dynamically determining how many records to delete based on,
among other things, the system load. Moreover, the '120 patent discloses
that "[a] person skilled in the art will appreciate that the technique of
removing all expired records while searching the linked list can be
expanded to include techniques whereby not necessarily all expired records
are removed, and that the decision regarding if and how many records to
delete can be a dynamic one." '120 at 7:10-15. Thus, the '120 patent
provides motivations to combine GCC 2.7.2.1 with Thatte.

Alternatively, it would also be obvious to combine GCC 2.7.2.1 with the
’663 patent. Disclosure of these claim elements in the ’663 patent is
clearly shown in the chart of the ‘663 patent, which is hereby incorporated
by reference in its entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is
not excessive, a non-contaminating but slow deletion of
records is used. This slow, non-contaminating deletion

Joint Invalidity Contentions & Production of
Documents

35 Case No. 6:09-CV-549-LED

US2008 1671902.2

Asserted Claims from U.S. Pat. No. 5,893,120 GCC 2.7.2.1, available at http://gcc-uk.internet.bs/old-releases/gcc-2/
(“GCC 2.7.2.1”) alone and in combination

involves closing the collision-resolution chain of locations
by moving a record from a later position in the chain into
the position of the record to be deleted. This leaves no
deleted record locations in the storage space to slow down
future searches. U.S. Patent 4,996,663 to Nemes at 2:24-34
(“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly
and no time is available for decontamination, the record is
simply marked as “deleted” and left in place. Later non-
contaminating probes in the vicinity of such deleted record
locations automatically remove the contaminating deleted
records by moving records in the chain as described above.
Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-
contaminating deletion is used when the load on the system
is at lower levels. Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

Joint Invalidity Contentions & Production of
Documents

36 Case No. 6:09-CV-549-LED

US2008 1671902.2

Asserted Claims from U.S. Pat. No. 5,893,120 GCC 2.7.2.1, available at http://gcc-uk.internet.bs/old-releases/gcc-2/
(“GCC 2.7.2.1”) alone and in combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system
load to determine if the system load is greater than a threshold. If the
system load is greater than the threshold, then a fast-secure delete 52 is
used. Id. at 6:40-64, Figure 5. On the other hand, if the system load is less
than the threshold, then a slow-non-contaminating delete 53 is used. Id.

Joint Invalidity Contentions & Production of
Documents

37 Case No. 6:09-CV-549-LED

US2008 1671902.2

Asserted Claims from U.S. Pat. No. 5,893,120 GCC 2.7.2.1, available at http://gcc-uk.internet.bs/old-releases/gcc-2/
(“GCC 2.7.2.1”) alone and in combination

The fast-secure delete 52 does not actually delete records, rather it marks
records as deleted. Id. at 8:1-33, Figure 7. These records are then actually
deleted by a subsequent slow-non-contaminating delete 53. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically
determines a maximum number of records to remove. See id. at 6:40-64,
Figure 5. If the fast-secure delete 52 is used, then maximum number of
records is zero because records are not deleted they are only marked. Id. at
8:1-33, Figure 7. If the slow-non-contaminating delete 53 is used, then the
maximum number of records to remove is all of the contaminated records
in the bucket. Id. at 6:65-7:68, Figures 6, 6A, 6B.

As both GCC 2.7.2.1 and the ’663 patent relate to deletion of records from
hash tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table
implementations such as that described in GCC 2.7.2.1. Moreover, one of
ordinary skill in the art would recognize that it would improve similar
systems and methods in the same way. As the ’120 patent states “[a]
person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records are removed, and
that the decision regarding if and how many records to delete can be a
dynamic one.” The ’120 patent at 7:10-15. Additionally, one of ordinary
skill in the art would recognize that the result of combining the ’663
patent’s deletion decision procedure with GCC 2.7.2.1 would be nothing
more than the predictable use of prior art elements according to their

Joint Invalidity Contentions & Production of
Documents

38 Case No. 6:09-CV-549-LED

US2008 1671902.2

Asserted Claims from U.S. Pat. No. 5,893,120 GCC 2.7.2.1, available at http://gcc-uk.internet.bs/old-releases/gcc-2/
(“GCC 2.7.2.1”) alone and in combination

established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a
deletion based on a systems load as taught by the ’663 patent and with
GCC 2.7.2.1 and would have seen the benefits of doing so. One such
benefit, for example, is that the system would avoid performing deletions
when the system load exceeded a threshold.

Alternatively, it would also be obvious to combine GCC 2.7.2.1 with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational
based garbage collection which dynamically determines how much garbage
to collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of
the Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October
1-6, 1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM
SIGPLAN Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in
part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many
generations to scavenge. The fuller a generation is, the more likely it is
to be scavenged; also, the longer the pause that has been detected, the
larger the scope of the garbage collection is likely to be. Design of the
Opportunistic Garbage Collector at 32.

Joint Invalidity Contentions & Production of
Documents

39 Case No. 6:09-CV-549-LED

US2008 1671902.2

Asserted Claims from U.S. Pat. No. 5,893,120 GCC 2.7.2.1, available at http://gcc-uk.internet.bs/old-releases/gcc-2/
(“GCC 2.7.2.1”) alone and in combination

Every time a user-input routine is invoked, a decision routine can
decide whether to garbage collect. As long as the decision routine takes
no more than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not
incur a continual run-time overhead. Opportunistic Garbage
Collection at 100.

This decision routine should take several things into account: 1) the
volume of data allocated since the last scavenge, 2) how long it has
been since the user has had an opportunity to interact, and 3) the height
of the stack relative to its average height at reads since the last
scavenge. If the product of the allocation and the compute time is high,
and if the stack is low, the scavenge favorability measure is high. If it is
especially high, a multi-generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of
a generation’s space, it is likely to happen during a significant
compute-bound pause--the one that has just allocated the data that
forced the collection. When the opportunistic mechanism fails to find
the end of a pause, it may still succeed by default, embedding a
scavenge pause within a larger pause. Design of the Opportunistic
Garbage Collector at 32.

As both GCC 2.7.2.1 and the Opportunistic Garbage Collection Articles
relate to deletion of aged records, one of ordinary skill in the art would
have understood how to use the Opportunistic Garbage Collection Articles’
dynamic decision on whether to perform a deletion based on a system load

Joint Invalidity Contentions & Production of
Documents

40 Case No. 6:09-CV-549-LED

US2008 1671902.2

Asserted Claims from U.S. Pat. No. 5,893,120 GCC 2.7.2.1, available at http://gcc-uk.internet.bs/old-releases/gcc-2/
(“GCC 2.7.2.1”) alone and in combination

in other hash table implementations such as GCC 2.7.2.1. Moreover, one
of ordinary skill in the art would recognize that it would improve similar
systems and methods in the same way. As the ’120 patent states “[a]
person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records are removed, and
that the decision regarding if and how many records to delete can be a
dynamic one.” The ’120 patent at 7:10-15. Additionally, one of ordinary
skill in the art would recognize that the result of combining the
Opportunistic Garbage Collection Articles’ deletion decision procedure
with GCC 2.7.2.1 would be nothing more than the predictable use of prior
art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion and how many generations to scavenge as
taught by the Opportunistic Garbage Collection Articles and with GCC
2.7.2.1 and would have seen the benefits of doing so. One such benefit, for
example, is preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art
to modify the system disclosed in GCC 2.7.2.1 to dynamically determine
the maximum number of expired records to remove in the accessed linked
list of records. It is a fundamental concept in computer science and the
relevant art that any variable or parameter affecting any aspect of a system
can be dynamically determined based on information available to the
system. One of ordinary skill in the art would have been motivated to
combine the system disclosed in GCC 2.7.2.1 with the fundamental

Joint Invalidity Contentions & Production of
Documents

41 Case No. 6:09-CV-549-LED

US2008 1671902.2

Asserted Claims from U.S. Pat. No. 5,893,120 GCC 2.7.2.1, available at http://gcc-uk.internet.bs/old-releases/gcc-2/
(“GCC 2.7.2.1”) alone and in combination

concept of dynamically determining the maximum number of expired
records to remove in an accessed linked list of records to solve a number of
potential problems. For example, the removal of expired records described
in GCC 2.7.2.1 can be burdensome on the system, adding to the system’s
load and slowing down the system’s processing. Moreover, the removal
could also force an interruption in real-time processing as the processing
waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays
in processing. Indeed, Nemes concedes that such dynamic determination
was obvious when he states in the ‘120 patent that “[a] person skilled in the
art will appreciate that the technique of removing all expired records while
searching the linked list can be expanded to include techniques whereby
not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one.” ‘120
at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by GCC 2.7.2.1 in combination with Dirks, Thatte,
the ‘663 Patent, or the Opportunistic Garbage Collection References, it is
disclosed by Linux 2.0.1, which describes dynamically determining
maximum number of expired ones of the records to remove when the
linked list is accessed. It would have been obvious to combine Linux 2.0.1
with GCC 2.7.2.1. For example, both Linux 2.0.1 and GCC
2.7.2.1 describe systems and methods for performing data storage and
retrieval using known programming techniques to yield a predictable

Joint Invalidity Contentions & Production of
Documents

42 Case No. 6:09-CV-549-LED

US2008 1671902.2

Asserted Claims from U.S. Pat. No. 5,893,120 GCC 2.7.2.1, available at http://gcc-uk.internet.bs/old-releases/gcc-2/
(“GCC 2.7.2.1”) alone and in combination

result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the
function rt_cache_add decrements the variable rt_cache_size.
See Linux 2.0.1, route.c at line 1373. Thus, the variable
rt_cache_size indicates the number of records in the hash table (i.e.,
ip_rt_hash_table). Because the function rt_cache_add
automatically increments and decrements the variable rt_cache_size,
the variable rt_cache_size is determined dynamically.

Furthermore, LINUX 2.0.1 includes the function
rt_garbage_collect_1. The function rt_garbage_collect_1
loops through each of the linked lists in the ip_rt_hash_table global
variable. See Linux 2.0.1, route.c at lines 1122-1138. In this way, the
function rt_garbage_collect_1 accesses the linked list. When the
function rt_garbage_collect_1 identifies a record that is expired,
the function rt_garbage_collect_1 decrements the variable
rt_cache_size and frees the record. See Linux 2.0.1, route.c at lines
1128-1135.

Because all records in the linked list can be expired and all records in the
hash table can be in the linked list, the variable rt_cache_size can
represent a dynamically determined maximum number of expired ones of
the records to remove when function rt_garbage_collect_1

Joint Invalidity Contentions & Production of
Documents

43 Case No. 6:09-CV-549-LED

US2008 1671902.2

Asserted Claims from U.S. Pat. No. 5,893,120 GCC 2.7.2.1, available at http://gcc-uk.internet.bs/old-releases/gcc-2/
(“GCC 2.7.2.1”) alone and in combination

accesses the linked list.

Furthermore, the function rt_cache_add determines whether the
number of records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table
exceeds the predetermined threshold RT_CACHE_SIZE_MAX, the
function rt_cache_add invokes a function rt_garbage_collect.
See Linux 2.0.1, route.c at lines 1341-1342. The function
rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293. The
function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list
in the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each
linked list in the hash table, the function rt_garbage_collect_1
looks at each record in the linked list. See Linux 2.0.1, route.c at lines
1120-1131. For each record in a linked list, the function
rt_garbage_collect_1 determines whether the record’s last use
time plus the record’s expiration factor is later than the current time. See
Linux 2.0.1, route.c at line 1122. If the record’s last use time plus the
record’s expiration factor is less than the current time, the function
rt_garbage_collect_1 removes the record from the linked list. See
Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the
fixed timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at

Joint Invalidity Contentions & Production of
Documents

44 Case No. 6:09-CV-549-LED

US2008 1671902.2

Asserted Claims from U.S. Pat. No. 5,893,120 GCC 2.7.2.1, available at http://gcc-uk.internet.bs/old-releases/gcc-2/
(“GCC 2.7.2.1”) alone and in combination

line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of
records in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the
number of items in the hash table is still greater than the predetermined
threshold RT_CACHE_SIZE_MAX, the function
rt_garbage_collect_1 halves the variable expire and loops
through each of the linked lists in the hash table. See Linux 2.0.1, route.c
at line 1135. In this way, the function rt_garbage_collect_1 can
remove additional records from the linked lists in the hash table. The
function rt_garbage_collect_1 repeats this process until the total
number of records in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or
desired.

The function rt_cache_add only removes a record from a linked list
when the record’s last use time plus the fixed timeout value
RT_CACHE_TIMEOUT is less than the current time and the record’s
reference count is zero. See Linux 2.0.1, route.c at line 1369. Thus, the

Joint Invalidity Contentions & Production of
Documents

45 Case No. 6:09-CV-549-LED

US2008 1671902.2

Asserted Claims from U.S. Pat. No. 5,893,120 GCC 2.7.2.1, available at http://gcc-uk.internet.bs/old-releases/gcc-2/
(“GCC 2.7.2.1”) alone and in combination

maximum number of records that the function rt_cache_add can
remove from a given linked list is limited to those records whose reference
counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1
can remove records whose reference counts are zero and records whose
reference counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different
than the maximum number of records that the function rt_cache_add
can remove from a linked list.

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, MK84 discloses an information
storage and retrieval system.

For example, MK84 discloses a hash table with queues, which are doubly-
linked lists, of automatically-expiring records. See, e.g., net_io.c, at 479-87:

 479 struct net_hash_entry {
 480 queue_chain_t chain; /* list of entries with same hval */
 481 #define he_next chain.next
 482 #define he_prev chain.prev
 483 ipc_port_t rcv_port; /* destination port */
 484 int rcv_qlimit; /* qlimit for the port */
 485 unsigned int keys[N_NET_HASH_KEYS];
 486 };
 487 typedef struct net_hash_entry *net_hash_entry_t;

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

MK84 discloses a linked list to store and provide access to records stored in
a memory of the system, at least some of the records automatically
expiring. MK84 also discloses a hashing means to provide access to
records stored in a memory of the system and using an external chaining
technique to store the records with same hash address, at least some of the
records automatically expiring.

For example, MK84 discloses using a queue, which is a doubly-linked list, as
well as an external chaining technique to store the records with same hash
address. See, e.g., net_io.c, at 479-87:

 479 struct net_hash_entry {
 480 queue_chain_t chain; /* list of entries with same hval */
 481 #define he_next chain.next

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

 482 #define he_prev chain.prev
 483 ipc_port_t rcv_port; /* destination port */
 484 int rcv_qlimit; /* qlimit for the port */
 485 unsigned int keys[N_NET_HASH_KEYS];
 486 };
 487 typedef struct net_hash_entry *net_hash_entry_t;

MK84 also discloses records automatically expiring. For example, the
net_filter() function in net_io.c deals with records corresponding to filters that
have died. See, e.g., net_io.c, at 969-89:

 969 /*
 970 * This filter is dead. We remove it from the
 971 * filter list and set it aside for deallocation.
 972 */
 973
 974 if (entp == (net_hash_entry_t) 0) {
 975 queue_remove(&ifp->if_rcv_port_list, infp,
 976 net_rcv_port_t, chain);
 977 ENQUEUE_DEAD(dead_infp, infp);
 978 continue;
 979 } else {
 980 (void) hash_ent_remove (
 981 ifp,
 982 (net_hash_header_t)infp,
 983 FALSE, /* no longer used */
 984 hash_headp,
 985 entp,
 986 &dead_entp);

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

 987 continue;
 988 }
 989 }

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of
records having the same
hash address,

MK84 discloses a record search means utilizing a search key to access the
linked list. MK84 also discloses a record search means utilizing a search key
to access a linked list of records having the same hash address.

For example, MK84 includes functionality to use a pointer to traverse a linked
list having the same hash address. Examples of utilizing a search key to access
the linked list and utilizing a search key to access a linked list of records
having the same address can be found at the queue_remove(),
hash_ent_remove(), and remqueue() calls. See, e.g., net_io.c, at 969-89:

 969 /*
 970 * This filter is dead. We remove it from the
 971 * filter list and set it aside for deallocation.
 972 */
 973
 974 if (entp == (net_hash_entry_t) 0) {
 975 queue_remove(&ifp->if_rcv_port_list, infp,
 976 net_rcv_port_t, chain);
 977 ENQUEUE_DEAD(dead_infp, infp);
 978 continue;
 979 } else {
 980 (void) hash_ent_remove (
 981 ifp,
 982 (net_hash_header_t)infp,
 983 FALSE, /* no longer used */
 984 hash_headp,

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

 985 entp,
 986 &dead_entp);
 987 continue;
 988 }
 989 }

The queue_remove() macro is defined at lines 320-44 in queue.h:

 320 /*
 321 * Macro: queue_remove
 322 * Function:
 323 * Remove an arbitrary item from the queue.
 324 * Header:
 325 * void queue_remove(q, qe, type, field)
 326 * arguments as in queue_enter
 327 */
 328 #define queue_remove(head, elt, type, field) \
 329 MACRO_BEGIN \
 330 register queue_entry_t next, prev; \
 331 \
 332 next = (elt)->field.next; \
 333 prev = (elt)->field.prev; \
 334 \
 335 if ((head) == next) \
 336 (head)->prev = prev; \
 337 else \
 338 ((type)next)->field.prev = prev; \
 339 \
 340 if ((head) == prev) \

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

 341 (head)->next = next; \
 342 else \
 343 ((type)prev)->field.next = next; \
 344 MACRO_END

The hash_ent_remove() function is defined at lines 2222-53 in net_io.c:

 2216 /*
 2217 * Removes a hash entry (ENTP) from its queue (HEAD).
 2218 * If the reference count of filter (HP) becomes zero and not USED,
 2219 * HP is removed from ifp->if_rcv_port_list and is freed.
 2220 */
 2221
 2222 boolean_t
 2223 hash_ent_remove (
 2224 struct ifnet *ifp,
 2225 net_hash_header_t hp,
 2226 int used,
 2227 net_hash_entry_t *head,
 2228 net_hash_entry_t entp,
 2229 queue_entry_t *dead_p)
 2230 {
 2231 hp->ref_count--;
 2232
 2233 if (*head == entp) {
 2234
 2235 if (queue_empty((queue_t) entp)) {
 2236 *head = 0;
 2237 ENQUEUE_DEAD(*dead_p, entp);

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

 2238 if (hp->ref_count == 0 && !used) {
 2239 remqueue((queue_t) &ifp->if_rcv_port_list,
 2240 (queue_entry_t)hp);
 2241 hp->n_keys = 0;
 2242 return TRUE;
 2243 }
 2244 return FALSE;
 2245 } else {
 2246 *head = (net_hash_entry_t)queue_next((queue_t) entp);
 2247 }
 2248 }
 2249
 2250 remqueue((queue_t)*head, (queue_entry_t)entp);
 2251 ENQUEUE_DEAD(*dead_p, entp);
 2252 return FALSE;
 2253 }

The remqueue() function is defined in queue.c at lines 139-45:

 132 /*
 133 * Remove arbitrary element from queue.
 134 * Does not check whether element is on queue - the world
 135 * will go haywire if it isn't.
 136 */
 137
 138 /*ARGSUSED*/
 139 void remqueue(
 140 queue_t que,
 141 register queue_entry_t elt)

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

 142 {
 143 elt->next->prev = elt->prev;
 144 elt->prev->next = elt->next;
 145 }

[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the
records from the linked list
when the linked list is
accessed, and

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

MK84 discloses the record search means including a means for identifying and
removing at least some of the expired ones of the records from the linked list
when the linked list is accessed. MK84 also discloses the record search means
including means for identifying and removing at least some expired ones of the
records from the linked list of records when the linked list is accessed.

For example, MK84 includes the functionality to identify and remove expired
records from the linked list when the linked list is accessed. For example, in
the net_filter() function in net_io.c, the linked list is accessed for a purpose
other than garbage collection. See, e.g., net_io.c, at 942-67:

 942 FILTER_ITERATE(ifp, infp, nextfp)
 943 {
 944 entp = (net_hash_entry_t) 0;
 945 if (infp->filter[0] == NETF_BPF) {
 946 ret_count = bpf_do_filter(infp, net_kmsg(kmsg)->packet,
count,
 947 net_kmsg(kmsg)->header,
 948 &hash_headp, &entp);
 949 if (entp == (net_hash_entry_t) 0)
 950 dest = infp->rcv_port;
 951 else
 952 dest = entp->rcv_port;
 953 } else {
 954 ret_count = net_do_filter(infp, net_kmsg(kmsg)->packet,

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

count,
 955 net_kmsg(kmsg)->header);
 956 if (ret_count)
 957 ret_count = count;
 958 dest = infp->rcv_port;
 959 }
 960
 961 if (ret_count) {
 962
 963 /*
 964 * Make a send right for the destination.
 965 */
 966
 967 dest = ipc_port_copy_send(dest);

The FILTER_ITERATE() macro used at line 942 is defined in net_io.c at lines
516-21:

 516 #define FILTER_ITERATE(ifp, fp, nextfp) \
 517 for ((fp) = (net_rcv_port_t) queue_first(&(ifp)->if_rcv_port_list);\
 518 !queue_end(&(ifp)->if_rcv_port_list, (queue_entry_t)(fp)); \
 519 (fp) = (nextfp)) { \
 520 (nextfp) = (net_rcv_port_t) queue_next(&(fp)->chain);
 521 #define FILTER_ITERATE_END }

Also, at line 946, the bpf_do_filter() function is called. The bpf_do_filter()
function is in net_io.c at 1760-2064. This function performs various
operations, depending on the code associated with the packet. One example of
is found at lines 1817-23:

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

 1817 case BPF_RET|BPF_MATCH_IMM:
 1818 if (bpf_match ((net_hash_header_t)infp, pc->jt, mem,
 1819 hash_headpp, entpp)) {
 1820 return ((unsigned int)pc->k <= wirelen) ?
 1821 pc->k : wirelen;
 1822 }
 1823 return 0;

At line 1818, the bpf_match() function is called. The bpf_match() function
iterates through the hash table and associated linked lists searching for a match.
Thus, this is an example of accessing the linked list for a purpose other than
garbage collection. See, e.g., net_io.c at 2180-2213:

 2180 boolean_t
 2181 bpf_match (
 2182 net_hash_header_t hash,
 2183 register int n_keys,
 2184 register unsigned int *keys,
 2185 net_hash_entry_t **hash_headpp,
 2186 net_hash_entry_t *entpp)
 2187 {
 2188 register net_hash_entry_t head, entp;
 2189 register int i;
 2190
 2191 if (n_keys != hash->n_keys)
 2192 return FALSE;
 2193
 2194 *hash_headpp = &hash->table[bpf_hash(n_keys, keys)];

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

 2195 head = **hash_headpp;
 2196
 2197 if (head == 0)
 2198 return FALSE;
 2199
 2200 HASH_ITERATE (head, entp)
 2201 {
 2202 for (i = 0; i < n_keys; i++) {
 2203 if (keys[i] != entp->keys[i])
 2204 break;
 2205 }
 2206 if (i == n_keys) {
 2207 *entpp = entp;
 2208 return TRUE;
 2209 }
 2210 }
 2211 HASH_ITERATE_END (head, entp)
 2212 return FALSE;
 2213 }

The HASH_ITERATE() and HASH_ITERATE_END() macros are defined at
lines 510-513 of net_io.c:

 510 #define HASH_ITERATE(head, elt) (elt) = (net_hash_entry_t) (head);
do {
 511 #define HASH_ITERATE_END(head, elt) \
 512 (elt) = (net_hash_entry_t) queue_next((queue_entry_t) (elt)); \
 513 } while ((elt) != (head));

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

As shown in the example above, MK84 accesses the linked list of records.
MK84 also identifies and removes expired ones of the records when the linked
list is accessed. An example of this is in the net_filter() function in MK84. If
the filter is dead, then the record in the linked list associated with that record is
removed. See, e.g., net_io.c at 961-89:

 961 if (ret_count) {
 962
 963 /*
 964 * Make a send right for the destination.
 965 */
 966
 967 dest = ipc_port_copy_send(dest);
 968 if (!IP_VALID(dest)) {
 969 /*
 970 * This filter is dead. We remove it from the
 971 * filter list and set it aside for deallocation.
 972 */
 973
 974 if (entp == (net_hash_entry_t) 0) {
 975 queue_remove(&ifp->if_rcv_port_list, infp,
 976 net_rcv_port_t, chain);
 977 ENQUEUE_DEAD(dead_infp, infp);
 978 continue;
 979 } else {
 980 (void) hash_ent_remove (
 981 ifp,
 982 (net_hash_header_t)infp,
 983 FALSE, /* no longer used */

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

 984 hash_headp,
 985 entp,
 986 &dead_entp);
 987 continue;
 988 }
 989 }

MK84 also discloses deallocating the memory used by the expired records.
See, e.g., net_io.c at 1058-64:

 1058 /*
 1059 * Deallocate dead filters.
 1060 */
 1061 if (dead_infp != 0)
 1062 net_free_dead_infp(dead_infp);
 1063 if (dead_entp != 0)
 1064 net_free_dead_entp(dead_entp);

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

MK84 discloses means, utilizing the record search means, for accessing the
linked list and, at the same time, removing at least some of the expired ones of
the records in the linked list. MK84 also discloses utilizing the record search
means, for inserting, retrieving, and deleting records from the system and, at
the same time, removing at least some expired ones of the records in the
accessed linked list of records.

The “means, utilizing the record search means . . .” limitation is met, for
example, by any function calling the net_filter() function. For example,
net_deliver() calls net_filter() at net_io.c, line 646:

 642 /*

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

 643 * Run the packet through the filters,
 644 * getting back a queue of packets to send.
 645 */
 646 net_filter(kmsg, &send_list);

Further, depending on claim construction, lines 2239-40 in net_io.c provide
examples of the “deleting” and/or “removing” limitations. This code is called
from line 980 in net_io.c in the net_filter() function. An example of the
“retrieving” step is line 942. These operations take place within a single
function and “at the same time,” as claimed.

 2233 if (*head == entp) {
 2234
 2235 if (queue_empty((queue_t) entp)) {
 2236 *head = 0;
 2237 ENQUEUE_DEAD(*dead_p, entp);
 2238 if (hp->ref_count == 0 && !used) {
 2239 remqueue((queue_t) &ifp->if_rcv_port_list,
 2240 (queue_entry_t)hp);
 2241 hp->n_keys = 0;
 2242 return TRUE;
 2243 }
 2244 return FALSE;
 2245 } else {
 2246 *head = (net_hash_entry_t)queue_next((queue_t) entp);
 2247 }

Further, it would be obvious for one of skill in the art to modify this code to
include a means for inserting records at the same time as removal. For

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

example, the net_set_filter() function in net_io.c includes code for inserting
records into the linked list. One of skill in the art would have known to
combine this known technique disclosed in the same source code file to a
known system, such as the net_filter() function in the MK84 kernel disclosed
herein, in order to implement the claim limitation. See, e.g., net_io.c at 1477-
1492:

 1477 /* Insert my_infp according to priority */
 1478 queue_iterate(&ifp->if_rcv_port_list, infp, net_rcv_port_t, chain)
 1479 if (priority > infp->priority)
 1480 break;
 1481 enqueue_tail((queue_t)&infp->chain, (queue_entry_t)my_infp);
 1482 }
 1483
 1484 if (match != 0)
 1485 { /* Insert to hash list */
 1486 net_hash_entry_t *p;
 1487
 1488 hash_entp->rcv_port = rcv_port;
 1489 for (i = 0; i < match->jt; i++) /* match->jt is n_keys */
 1490 hash_entp->keys[i] = match[i+1].k;
 1491 p = &((net_hash_header_t)my_infp)->
 1492 table[bpf_hash(match->jt, hash_entp->keys)];

To the extent that MK84 does not disclose this limitation, gcache.c from Xinu
Operating System for Sparc (1991) (hereinafter “gcache.c”) and Douglas
Comer and Shawn Ostermann, GCache: A Generalized Caching Mechanism,
Purdue University (Revised March 1992) (hereinafter “Comer”) (collectively
hereinafter “GCache”) discloses means, utilizing the record search means, for

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

accessing the linked list and, at the same time, removing at least some of the
expired ones of the records in the linked list, and also discloses utilizing the
record search means, for inserting, retrieving, and deleting records from the
system and, at the same time, removing at least some expired ones of the
records in the accessed linked list of records.
One of ordinary skill in the art would be motivated to, and would understand how to,
combine the system disclosed in MK84 with the a hashing means to provide access
to records stored in a memory of the system and using an external chaining
technique to store the records with same hash address, at least some of the
records automatically expiring disclosed by GCache. See, e.g., Comer at 3-10.
For example, since MK84 utilizes a linked list for storing records and GCache
discloses a system that attaches or chains linked lists to a hash table for storing
records, one of ordinary skill in the art would be motivated to combine the
linked list of MK84 with the system including a hash table using external
chaining of linked lists disclosed by GCache. The disclosure of these claim
elements in GCache is clearly shown in the chart of GCache, which is hereby
incorporated by reference in its entirety.
Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining MK84 with GCache would be nothing more than the
predictable use of prior art elements according to their established functions.

For example, Comer discloses means for inserting, retrieving, and deleting
records:

“Cainsert() inserts a new mapping, key => res, into the cache.” See Comer at
4.

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

See also, gcache.c at lines 246-304, defining cainsert().

“Calookup() searches for a cached entry matching the key passed as an
argument.” See Comer at 4.

See also, gcache.c at lines 312-347 and 643-678, defining calookup() and
cagetindex().

“Caremove() removes the cached entry whose key is given, if one exists.” See
Comer at 4.

See also, gcache.c at lines 355-376, defining caremove().

Each of the means for inserting, retrieving, and deleting, utilizes a record
search means, the function cagetindex(), which removes an expired record
from the list as described below. The individual calls of cagetindex() are listed
here:

In cainsert():
275 if ((ixnew = cagetindex(pcb,pkey,keylen,hash)) != NULL_IX)
{

In calookup():
333 if ((ix = cagetindex(pcb,pkey,keylen,hash)) != NULL_IX) {

In caremove():
370 if ((ix = cagetindex(pcb,pkey,keylen,hash)) != NULL_IX) {

“In a simpler and cleaner design chosen for GCache, each cached entry
contains a timestamp encoding the insertion time. If a lookup matches an entry
with an expired timestamp, that entry is removed rather than being returned.”

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

See Comer at 10.

At lines 655-670 of gcache.c, cagetindex() executes a while loop to traverse a
linked list attached to a bucket of the hash table, accessing records stored
therein. In the subset of that code listed below, cagetindex() utilizes caisold()
to identify if a matching record is expired and removes the expired record from
the linked list using caunlink():

666 if (caisold(pcb,pce)) {
667 ++pcb->cb_tos;
668 caunlink(pcb,ix);
669 return(NULL_IX);
670 } else {

2. The information storage
and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

6. The information storage
and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

MK84 discloses a means for dynamically determining maximum number for
the record search means to remove in the accessed linked list of records.

For example, the net_filter() function in net_io.c determines whether to remove
one or zero elements from the linked list of records. For example, the code at
line 968 determines if the filter is dead. If so, then it is to be removed; but if
the filter is not dead then it is not to be removed. See, e.g., net_io.c at 968-89:

 968 if (!IP_VALID(dest)) {
 969 /*
 970 * This filter is dead. We remove it from the
 971 * filter list and set it aside for deallocation.
 972 */
 973
 974 if (entp == (net_hash_entry_t) 0) {
 975 queue_remove(&ifp->if_rcv_port_list, infp,
 976 net_rcv_port_t, chain);

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

 977 ENQUEUE_DEAD(dead_infp, infp);
 978 continue;
 979 } else {
 980 (void) hash_ent_remove (
 981 ifp,
 982 (net_hash_header_t)infp,
 983 FALSE, /* no longer used */
 984 hash_headp,
 985 entp,
 986 &dead_entp);
 987 continue;
 988 }
 989 }

Further, MK84 combined with Linux 2.0.1, Dirks, Thatte, the ’663 patent
and/or the Opportunistic Garbage Collection Articles discloses an information
storage and retrieval system further including means for dynamically
determining maximum number for the record search means to remove in the
accessed linked list of records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both MK84 and Dirks relate to deletion of aged records upon the allocation
of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as MK84. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with MK84 nothing more than
the predictable use of prior art elements according to their established

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with MK84 and would have
seen the benefits of doing so. One possible benefit, for example, is saving the
system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in MK84 with the means for
dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. For example,
Thatte discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, Ass both MK84 and Thatte teach a system of data storage
and retrieval, one of ordinary skill in the art would recognize that the result of
combining MK84 with Thatte would be nothing more than the predictable use
of prior art elements according to their established functions. The resulting
combination would include the capability to determine the maximum number
for the record search means to remove as taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine MK84
with Thatte and recognize the benefits of doing so. For example, the removal

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

of expired records described in MK84 can be burdensome on the system,
adding to the system’s load and slowing down the system’s processing. One of
ordinary skill in the art would recognize that combining MK84 with the
teachings of Thatte would solve this problem by dynamically determining how
many records to delete based on, among other things, the system load.
Moreover, the '120 patent discloses that "[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120
patent provides motivations to combine MK84 with Thatte.

Alternatively, it would also be obvious to combine MK84 with the ’663 patent.
Disclosure of these claim elements in the ’663 patent is clearly shown in the
chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both MK84 and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in MK84. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with MK84 would be
nothing more than the predictable use of prior art elements according to their
established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with MK84 and

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine MK84 with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both MK84 and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as MK84. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with MK84 would be nothing more than the predictable use of prior

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with MK84 and would
have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in MK84 to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in
MK84 with the fundamental concept of dynamically determining the
maximum number of expired records to remove in an accessed linked list of
records to solve a number of potential problems. For example, the removal of
expired records described in MK84 can be burdensome on the system, adding
to the system’s load and slowing down the system’s processing. Moreover, the
removal could also force an interruption in real-time processing as the
processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by MK84 in combination with Dirks, Thatte, the ‘663
Patent, or the Opportunistic Garbage Collection References, it is disclosed by
Linux 2.0.1, which describes dynamically determining maximum number of
expired ones of the records to remove when the linked list is accessed. It
would have been obvious to combine Linux 2.0.1 with MK84. For example,
both Linux 2.0.1 and MK84 describe systems and methods for performing data
storage and retrieval using known programming techniques to yield a
predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

To the extent the preamble is a limitation, MK84 discloses method for storing
and retrieving information records using a linked list to store and provide
access to the records, at least some of the records automatically expiring as
well as a method for storing and retrieving information records using a hashing
technique to provide access to the records and using an external chaining
technique to store the records with same hash address, at least some of the
records automatically expiring.

For example, MK84 discloses a hash table with external chaining using
queues, which are doubly-linked lists, of automatically-expiring records. See,
e.g., net_io.c, at 479-87:

 479 struct net_hash_entry {

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

 480 queue_chain_t chain; /* list of entries with same hval */
 481 #define he_next chain.next
 482 #define he_prev chain.prev
 483 ipc_port_t rcv_port; /* destination port */
 484 int rcv_qlimit; /* qlimit for the port */
 485 unsigned int keys[N_NET_HASH_KEYS];
 486 };
 487 typedef struct net_hash_entry *net_hash_entry_t;

MK84 also discloses records automatically expiring. For example, the
net_filter() function in net_io.c deals with records corresponding to filters that
have died. See, e.g., net_io.c, at 969-89:

 969 /*
 970 * This filter is dead. We remove it from the
 971 * filter list and set it aside for deallocation.
 972 */
 973
 974 if (entp == (net_hash_entry_t) 0) {
 975 queue_remove(&ifp->if_rcv_port_list, infp,
 976 net_rcv_port_t, chain);
 977 ENQUEUE_DEAD(dead_infp, infp);
 978 continue;
 979 } else {
 980 (void) hash_ent_remove (
 981 ifp,
 982 (net_hash_header_t)infp,
 983 FALSE, /* no longer used */

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

 984 hash_headp,
 985 entp,
 986 &dead_entp);
 987 continue;
 988 }
 989 }

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

MK84 discloses accessing the linked list of records. MK84 also discloses
accessing a linked list of records having same hash address.

For example, MK84 includes functionality to use a pointer to traverse a linked
list having the same hash address. Examples of accessing a linked list of
records and accessing a linked list of records having same hash address can be
found at the queue_remove(), hash_ent_remove(), and remqueue() calls. See,
e.g., net_io.c, at 969-89:

 969 /*
 970 * This filter is dead. We remove it from the
 971 * filter list and set it aside for deallocation.
 972 */
 973
 974 if (entp == (net_hash_entry_t) 0) {
 975 queue_remove(&ifp->if_rcv_port_list, infp,
 976 net_rcv_port_t, chain);
 977 ENQUEUE_DEAD(dead_infp, infp);
 978 continue;
 979 } else {
 980 (void) hash_ent_remove (
 981 ifp,
 982 (net_hash_header_t)infp,

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

35 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

 983 FALSE, /* no longer used */
 984 hash_headp,
 985 entp,
 986 &dead_entp);
 987 continue;
 988 }
 989 }

The queue_remove() macro is defined at lines 320-44 in queue.h:

 320 /*
 321 * Macro: queue_remove
 322 * Function:
 323 * Remove an arbitrary item from the queue.
 324 * Header:
 325 * void queue_remove(q, qe, type, field)
 326 * arguments as in queue_enter
 327 */
 328 #define queue_remove(head, elt, type, field) \
 329 MACRO_BEGIN \
 330 register queue_entry_t next, prev; \
 331 \
 332 next = (elt)->field.next; \
 333 prev = (elt)->field.prev; \
 334 \
 335 if ((head) == next) \
 336 (head)->prev = prev; \
 337 else \
 338 ((type)next)->field.prev = prev; \

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

36 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

 339 \
 340 if ((head) == prev) \
 341 (head)->next = next; \
 342 else \
 343 ((type)prev)->field.next = next; \
 344 MACRO_END

The hash_ent_remove() function is defined at lines 2222-53 in net_io.c:

 2216 /*
 2217 * Removes a hash entry (ENTP) from its queue (HEAD).
 2218 * If the reference count of filter (HP) becomes zero and not USED,
 2219 * HP is removed from ifp->if_rcv_port_list and is freed.
 2220 */
 2221
 2222 boolean_t
 2223 hash_ent_remove (
 2224 struct ifnet *ifp,
 2225 net_hash_header_t hp,
 2226 int used,
 2227 net_hash_entry_t *head,
 2228 net_hash_entry_t entp,
 2229 queue_entry_t *dead_p)
 2230 {
 2231 hp->ref_count--;
 2232
 2233 if (*head == entp) {
 2234
 2235 if (queue_empty((queue_t) entp)) {

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

37 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

 2236 *head = 0;
 2237 ENQUEUE_DEAD(*dead_p, entp);
 2238 if (hp->ref_count == 0 && !used) {
 2239 remqueue((queue_t) &ifp->if_rcv_port_list,
 2240 (queue_entry_t)hp);
 2241 hp->n_keys = 0;
 2242 return TRUE;
 2243 }
 2244 return FALSE;
 2245 } else {
 2246 *head = (net_hash_entry_t)queue_next((queue_t) entp);
 2247 }
 2248 }
 2249
 2250 remqueue((queue_t)*head, (queue_entry_t)entp);
 2251 ENQUEUE_DEAD(*dead_p, entp);
 2252 return FALSE;
 2253 }

The remqueue() function is defined in queue.c at lines 139-45:

 132 /*
 133 * Remove arbitrary element from queue.
 134 * Does not check whether element is on queue - the world
 135 * will go haywire if it isn't.
 136 */
 137
 138 /*ARGSUSED*/
 139 void remqueue(

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

38 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

 140 queue_t que,
 141 register queue_entry_t elt)
 142 {
 143 elt->next->prev = elt->prev;
 144 elt->prev->next = elt->next;
 145 }

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

MK84 discloses identifying at least some of the automatically expired ones of
the records.

For example, MK84 accesses the linked list of records and identifies and
removes expired ones of the records when the linked list is accessed. An
example of this is in the net_filter() function in MK84. If the filter is dead,
then the record in the linked list associated with that record is removed. See,
e.g., net_io.c at 961-89:

 961 if (ret_count) {
 962
 963 /*
 964 * Make a send right for the destination.
 965 */
 966
 967 dest = ipc_port_copy_send(dest);
 968 if (!IP_VALID(dest)) {
 969 /*
 970 * This filter is dead. We remove it from the
 971 * filter list and set it aside for deallocation.
 972 */
 973
 974 if (entp == (net_hash_entry_t) 0) {

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

39 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

 975 queue_remove(&ifp->if_rcv_port_list, infp,
 976 net_rcv_port_t, chain);
 977 ENQUEUE_DEAD(dead_infp, infp);
 978 continue;
 979 } else {
 980 (void) hash_ent_remove (
 981 ifp,
 982 (net_hash_header_t)infp,
 983 FALSE, /* no longer used */
 984 hash_headp,
 985 entp,
 986 &dead_entp);
 987 continue;
 988 }
 989 }

Further, the functions called at lines 975 and 980 identify expired ones of the
records.

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

MK84 discloses removing at least some of the automatically expired records
from the linked list when the linked list is accessed.

For example, in the net_filter() function in net_io.c, the linked list is accessed
for a purpose other than garbage collection. See, e.g., net_io.c, at 942-67:

 942 FILTER_ITERATE(ifp, infp, nextfp)
 943 {
 944 entp = (net_hash_entry_t) 0;
 945 if (infp->filter[0] == NETF_BPF) {
 946 ret_count = bpf_do_filter(infp, net_kmsg(kmsg)->packet,

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

40 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

count,
 947 net_kmsg(kmsg)->header,
 948 &hash_headp, &entp);
 949 if (entp == (net_hash_entry_t) 0)
 950 dest = infp->rcv_port;
 951 else
 952 dest = entp->rcv_port;
 953 } else {
 954 ret_count = net_do_filter(infp, net_kmsg(kmsg)->packet,
count,
 955 net_kmsg(kmsg)->header);
 956 if (ret_count)
 957 ret_count = count;
 958 dest = infp->rcv_port;
 959 }
 960
 961 if (ret_count) {
 962
 963 /*
 964 * Make a send right for the destination.
 965 */
 966
 967 dest = ipc_port_copy_send(dest);

The FILTER_ITERATE() macro used at line 942 is defined in net_io.c at lines
516-21:

 516 #define FILTER_ITERATE(ifp, fp, nextfp) \
 517 for ((fp) = (net_rcv_port_t) queue_first(&(ifp)->if_rcv_port_list);\

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

41 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

 518 !queue_end(&(ifp)->if_rcv_port_list, (queue_entry_t)(fp)); \
 519 (fp) = (nextfp)) { \
 520 (nextfp) = (net_rcv_port_t) queue_next(&(fp)->chain);
 521 #define FILTER_ITERATE_END }

Also, at line 946, the bpf_do_filter() function is called. The bpf_do_filter()
function is in net_io.c at 1760-2064. This function performs various
operations, depending on the code associated with the packet. One example of
is found at lines 1817-23:

 1817 case BPF_RET|BPF_MATCH_IMM:
 1818 if (bpf_match ((net_hash_header_t)infp, pc->jt, mem,
 1819 hash_headpp, entpp)) {
 1820 return ((unsigned int)pc->k <= wirelen) ?
 1821 pc->k : wirelen;
 1822 }
 1823 return 0;

At line 1818, the bpf_match() function is called. The bpf_match() function
iterates through the hash table and associated linked lists searching for a match.
Thus, this is an example of accessing the linked list for a purpose other than
garbage collection. See, e.g., net_io.c at 2180-2213:

 2180 boolean_t
 2181 bpf_match (
 2182 net_hash_header_t hash,
 2183 register int n_keys,
 2184 register unsigned int *keys,
 2185 net_hash_entry_t **hash_headpp,

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

42 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

 2186 net_hash_entry_t *entpp)
 2187 {
 2188 register net_hash_entry_t head, entp;
 2189 register int i;
 2190
 2191 if (n_keys != hash->n_keys)
 2192 return FALSE;
 2193
 2194 *hash_headpp = &hash->table[bpf_hash(n_keys, keys)];
 2195 head = **hash_headpp;
 2196
 2197 if (head == 0)
 2198 return FALSE;
 2199
 2200 HASH_ITERATE (head, entp)
 2201 {
 2202 for (i = 0; i < n_keys; i++) {
 2203 if (keys[i] != entp->keys[i])
 2204 break;
 2205 }
 2206 if (i == n_keys) {
 2207 *entpp = entp;
 2208 return TRUE;
 2209 }
 2210 }
 2211 HASH_ITERATE_END (head, entp)
 2212 return FALSE;
 2213 }

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

43 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

The HASH_ITERATE() and HASH_ITERATE_END() macros are defined at
lines 510-513 of net_io.c:

 510 #define HASH_ITERATE(head, elt) (elt) = (net_hash_entry_t) (head);
do {
 511 #define HASH_ITERATE_END(head, elt) \
 512 (elt) = (net_hash_entry_t) queue_next((queue_entry_t) (elt)); \
 513 } while ((elt) != (head));

As shown in the example above, MK84 accesses the linked list of records.
MK84 also identifies and removes expired ones of the records when the linked
list is accessed. An example of this is in the net_filter() function in MK84. If
the filter is dead, then the record in the linked list associated with that record is
removed. See, e.g., net_io.c at 961-89:

 961 if (ret_count) {
 962
 963 /*
 964 * Make a send right for the destination.
 965 */
 966
 967 dest = ipc_port_copy_send(dest);
 968 if (!IP_VALID(dest)) {
 969 /*
 970 * This filter is dead. We remove it from the
 971 * filter list and set it aside for deallocation.
 972 */
 973
 974 if (entp == (net_hash_entry_t) 0) {

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

44 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

 975 queue_remove(&ifp->if_rcv_port_list, infp,
 976 net_rcv_port_t, chain);
 977 ENQUEUE_DEAD(dead_infp, infp);
 978 continue;
 979 } else {
 980 (void) hash_ent_remove (
 981 ifp,
 982 (net_hash_header_t)infp,
 983 FALSE, /* no longer used */
 984 hash_headp,
 985 entp,
 986 &dead_entp);
 987 continue;
 988 }
 989 }

MK84 also discloses deallocating the memory used by the expired records.
See, e.g., net_io.c at 1058-64:

 1058 /*
 1059 * Deallocate dead filters.
 1060 */
 1061 if (dead_infp != 0)
 1062 net_free_dead_infp(dead_infp);
 1063 if (dead_entp != 0)
 1064 net_free_dead_entp(dead_entp);

 [7d] inserting, retrieving
or deleting one of the
records from the system

MK84 discloses inserting, retrieving or deleting one of the records from the
system following the step of removing.

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

45 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

following the step of
removing.

For example, MK84 includes functionality to use retrieve records from the
linked list to determine whether the ordering of the filters is wrong, and to
adjust priority values. Depending on claim construction, this takes place after
the step of removing from the linked list. See, e.g., net_io.c at 1026-45:

 1026 /*
 1027 * See if ordering of filters is wrong
 1028 */
 1029 if (infp->priority >= NET_HI_PRI) {
 1030 prevfp = (net_rcv_port_t) queue_prev(&infp->chain);
 1031 /*
 1032 * If infp is not the first element on the queue,
 1033 * and the previous element is at equal priority
 1034 * but has a lower count, then promote infp to
 1035 * be in front of prevfp.
 1036 */
 1037 if ((queue_t)prevfp != &ifp->if_rcv_port_list &&
 1038 infp->priority == prevfp->priority) {
 1039 /*
 1040 * Threshold difference to prevent thrashing
 1041 */
 1042 if (net_filter_queue_reorder
 1043 && (100 + prevfp->rcv_count < rcount))
 1044 reorder_queue(&prevfp->chain, &infp->chain);
 1045 }

4. The method according to
claim 3 further including
the step of dynamically
determining maximum

8. The method according
to claim 7 further including
the step of dynamically
determining maximum

MK84 discloses dynamically determining maximum number of expired ones
of the records to remove when the linked list is accessed.

For example, the net_filter() function in net_io.c determines whether to remove

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

46 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

number of expired ones of
the records to remove
when the linked list is
accessed.

number of expired ones of
the records to remove
when the linked list is
accessed.

one or zero elements from the linked list of records. For example, the code at
line 968 determines if the filter is dead. If so, then it is to be removed; but if
the filter is not dead then it is not to be removed. See, e.g., net_io.c at 968-89:

 968 if (!IP_VALID(dest)) {
 969 /*
 970 * This filter is dead. We remove it from the
 971 * filter list and set it aside for deallocation.
 972 */
 973
 974 if (entp == (net_hash_entry_t) 0) {
 975 queue_remove(&ifp->if_rcv_port_list, infp,
 976 net_rcv_port_t, chain);
 977 ENQUEUE_DEAD(dead_infp, infp);
 978 continue;
 979 } else {
 980 (void) hash_ent_remove (
 981 ifp,
 982 (net_hash_header_t)infp,
 983 FALSE, /* no longer used */
 984 hash_headp,
 985 entp,
 986 &dead_entp);
 987 continue;
 988 }
 989 }

Further, MK84 combined with Dirks, Thatte, the ’663 patent and/or the
Opportunistic Garbage Collection Articles discloses an information storage

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

47 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

and retrieval system further including means for dynamically determining
maximum number for the record search means to remove in the accessed
linked list of records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

48 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both MK84 and Dirks relate to deletion of aged records upon the allocation

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

49 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as MK84. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with MK84 nothing more than
the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with MK84 and would have
seen the benefits of doing so. One possible benefit, for example, is saving the
system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in MK84 with the means for
dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. For example,
Thatte discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

50 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, Ass both MK84 and Thatte teach a system of data storage
and retrieval, one of ordinary skill in the art would recognize that the result of
combining MK84 with Thatte would be nothing more than the predictable use
of prior art elements according to their established functions. The resulting
combination would include the capability to determine the maximum number
for the record search means to remove as taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine MK84
with Thatte and recognize the benefits of doing so. For example, the removal
of expired records described in MK84 can be burdensome on the system,
adding to the system’s load and slowing down the system’s processing. One of
ordinary skill in the art would recognize that combining MK84 with the
teachings of Thatte would solve this problem by dynamically determining how
many records to delete based on, among other things, the system load.
Moreover, the '120 patent discloses that "[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120
patent provides motivations to combine MK84 with Thatte.

Alternatively, it would also be obvious to combine MK84 with the ’663 patent.
Disclosure of these claim elements in the ’663 patent is clearly shown in the
chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

51 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

52 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

53 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both MK84 and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in MK84. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with MK84 would be
nothing more than the predictable use of prior art elements according to their
established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with MK84 and

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

54 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine MK84 with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

55 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both MK84 and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as MK84. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with MK84 would be nothing more than the predictable use of prior

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

56 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with MK84 and would
have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in MK84 to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in
MK84 with the fundamental concept of dynamically determining the
maximum number of expired records to remove in an accessed linked list of
records to solve a number of potential problems. For example, the removal of
expired records described in MK84 can be burdensome on the system, adding
to the system’s load and slowing down the system’s processing. Moreover, the
removal could also force an interruption in real-time processing as the
processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

57 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by MK84 in combination with Dirks, Thatte, the ‘663
Patent, or the Opportunistic Garbage Collection References, it is disclosed by
Linux 2.0.1, which describes dynamically determining maximum number of
expired ones of the records to remove when the linked list is accessed. It
would have been obvious to combine Linux 2.0.1 with MK84. For example,
both Linux 2.0.1 and MK84 describe systems and methods for performing data
storage and retrieval using known programming techniques to yield a
predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

58 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

59 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux

EXHIBIT D-14

Joint Invalidity Contentions & Production of
Documents

60 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_filter() in net_io.c from version MK84 of the Mach kernel (1993)
(hereinafter “MK84”) alone and in combination

2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, MK84 discloses an information
storage and retrieval system.

For example, MK84 discloses a hash table with queues, which are doubly-
linked lists, of automatically-expiring records. See, e.g., net_io.c, at 479-87:

 479 struct net_hash_entry {
 480 queue_chain_t chain; /* list of entries with same hval */
 481 #define he_next chain.next
 482 #define he_prev chain.prev
 483 ipc_port_t rcv_port; /* destination port */
 484 int rcv_qlimit; /* qlimit for the port */
 485 unsigned int keys[N_NET_HASH_KEYS];
 486 };
 487 typedef struct net_hash_entry *net_hash_entry_t;

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

MK84 discloses a linked list to store and provide access to records stored in
a memory of the system, at least some of the records automatically
expiring. MK84 also discloses a hashing means to provide access to
records stored in a memory of the system and using an external chaining
technique to store the records with same hash address, at least some of the
records automatically expiring.

For example, MK84 discloses using a queue, which is a doubly-linked list, as
well as an external chaining technique. See, e.g., net_io.c, at 479-87:

 479 struct net_hash_entry {
 480 queue_chain_t chain; /* list of entries with same hval */
 481 #define he_next chain.next
 482 #define he_prev chain.prev

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

 483 ipc_port_t rcv_port; /* destination port */
 484 int rcv_qlimit; /* qlimit for the port */
 485 unsigned int keys[N_NET_HASH_KEYS];
 486 };
 487 typedef struct net_hash_entry *net_hash_entry_t;

MK84 also discloses records automatically expiring. For example, the
net_set_filter() function in net_io.c deals with records corresponding to filters
that have invalid ports. See, e.g., net_io.c, at 1381-1416:

 1381 for (i = 0; i < NET_HASH_SIZE; i++) {
 1382 head = &((net_hash_header_t) infp)->table[i];
 1383 if (*head == 0)
 1384 continue;
 1385
 1386 /*
 1387 * Check each hash entry to make sure the
 1388 * destination port is still valid. Remove
 1389 * any invalid entries.
 1390 */
 1391 entp = *head;
 1392 do {
 1393 nextentp = (net_hash_entry_t) entp->he_next;
 1394
 1395 /* checked without
 1396 ip_lock(entp->rcv_port) */
 1397 if (entp->rcv_port == rcv_port
 1398 || !IP_VALID(entp->rcv_port)
 1399 || !ip_active(entp->rcv_port)) {

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

 1400
 1401 ret = hash_ent_remove (ifp,
 1402 (net_hash_header_t)infp,
 1403 (my_infp == infp),
 1404 head,
 1405 entp,
 1406 &dead_entp);
 1407 if (ret)
 1408 goto hash_loop_end;
 1409 }
 1410
 1411 entp = nextentp;
 1412 /* While test checks head since hash_ent_remove
 1413 might modify it.
 1414 */
 1415 } while (*head != 0 && entp != *head);
 1416 }

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of
records having the same
hash address,

MK84 discloses a record search means utilizing a search key to access the
linked list. MK84 also discloses a record search means utilizing a search key
to access a linked list of records having the same hash address.

For example, MK84 includes functionality to use a pointer to traverse a linked
list having the same hash address. See, e.g., net_io.c, at 1381-1428:

 1360 /*
 1361 * Look for an existing filter on the same reply port.
 1362 * Look for filters with dead ports (for GC).
 1363 * Look for a filter with the same code except KEY insns.

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

 1364 */
 1365
 1366 simple_lock(&ifp->if_rcv_port_list_lock);
 1367
 1368 FILTER_ITERATE(ifp, infp, nextfp)
 1369 {
 1370 if (infp->rcv_port == MACH_PORT_NULL) {
 1371 if (match != 0
 1372 && infp->priority == priority
 1373 && my_infp == 0
 1374 && (infp->filter_end - infp->filter) == filter_count
 1375 && bpf_eq((bpf_insn_t)infp->filter,
 1376 (bpf_insn_t)filter, filter_bytes))
 1377 {
 1378 my_infp = infp;
 1379 }
 1380
 1381 for (i = 0; i < NET_HASH_SIZE; i++) {
 1382 head = &((net_hash_header_t) infp)->table[i];
 1383 if (*head == 0)
 1384 continue;
 1385
 1386 /*
 1387 * Check each hash entry to make sure the
 1388 * destination port is still valid. Remove
 1389 * any invalid entries.
 1390 */
 1391 entp = *head;
 1392 do {

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

 1393 nextentp = (net_hash_entry_t) entp->he_next;
 1394
 1395 /* checked without
 1396 ip_lock(entp->rcv_port) */
 1397 if (entp->rcv_port == rcv_port
 1398 || !IP_VALID(entp->rcv_port)
 1399 || !ip_active(entp->rcv_port)) {
 1400
 1401 ret = hash_ent_remove (ifp,
 1402 (net_hash_header_t)infp,
 1403 (my_infp == infp),
 1404 head,
 1405 entp,
 1406 &dead_entp);
 1407 if (ret)
 1408 goto hash_loop_end;
 1409 }
 1410
 1411 entp = nextentp;
 1412 /* While test checks head since hash_ent_remove
 1413 might modify it.
 1414 */
 1415 } while (*head != 0 && entp != *head);
 1416 }
 1417 hash_loop_end:
 1418 ;
 1419
 1420 } else if (infp->rcv_port == rcv_port
 1421 || !IP_VALID(infp->rcv_port)

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

 1422 || !ip_active(infp->rcv_port)) {
 1423 /* Remove the old filter from list */
 1424 remqueue(&ifp->if_rcv_port_list, (queue_entry_t)infp);
 1425 ENQUEUE_DEAD(dead_infp, infp);
 1426 }
 1427 }
 1428 FILTER_ITERATE_END

The FILTER_ITERATE() macro used at line 942 is defined in net_io.c at lines
516-21:

 516 #define FILTER_ITERATE(ifp, fp, nextfp) \
 517 for ((fp) = (net_rcv_port_t) queue_first(&(ifp)->if_rcv_port_list);\
 518 !queue_end(&(ifp)->if_rcv_port_list, (queue_entry_t)(fp)); \
 519 (fp) = (nextfp)) { \
 520 (nextfp) = (net_rcv_port_t) queue_next(&(fp)->chain);
 521 #define FILTER_ITERATE_END }

The hash_ent_remove() function is defined at lines 2222-53 in net_io.c:

 2216 /*
 2217 * Removes a hash entry (ENTP) from its queue (HEAD).
 2218 * If the reference count of filter (HP) becomes zero and not USED,
 2219 * HP is removed from ifp->if_rcv_port_list and is freed.
 2220 */
 2221
 2222 boolean_t
 2223 hash_ent_remove (
 2224 struct ifnet *ifp,

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

 2225 net_hash_header_t hp,
 2226 int used,
 2227 net_hash_entry_t *head,
 2228 net_hash_entry_t entp,
 2229 queue_entry_t *dead_p)
 2230 {
 2231 hp->ref_count--;
 2232
 2233 if (*head == entp) {
 2234
 2235 if (queue_empty((queue_t) entp)) {
 2236 *head = 0;
 2237 ENQUEUE_DEAD(*dead_p, entp);
 2238 if (hp->ref_count == 0 && !used) {
 2239 remqueue((queue_t) &ifp->if_rcv_port_list,
 2240 (queue_entry_t)hp);
 2241 hp->n_keys = 0;
 2242 return TRUE;
 2243 }
 2244 return FALSE;
 2245 } else {
 2246 *head = (net_hash_entry_t)queue_next((queue_t) entp);
 2247 }
 2248 }
 2249
 2250 remqueue((queue_t)*head, (queue_entry_t)entp);
 2251 ENQUEUE_DEAD(*dead_p, entp);
 2252 return FALSE;
 2253 }

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the
records from the linked list
when the linked list is
accessed, and

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

MK84 discloses the record search means including a means for identifying and
removing at least some of the expired ones of the records from the linked list
when the linked list is accessed. MK84 also discloses the record search means
including means for identifying and removing at least some expired ones of the
records from the linked list of records when the linked list is accessed.

For example, MK84 includes the functionality to identify and remove expired
records from the linked list when the linked list is accessed. For example, in
the net_set_filter() function in net_io.c, the linked list is accessed for a purpose
other than garbage collection. See, e.g., net_io.c, at 1360-1428:

 1360 /*
 1361 * Look for an existing filter on the same reply port.
 1362 * Look for filters with dead ports (for GC).
 1363 * Look for a filter with the same code except KEY insns.
 1364 */
 1365
 1366 simple_lock(&ifp->if_rcv_port_list_lock);
 1367
 1368 FILTER_ITERATE(ifp, infp, nextfp)
 1369 {
 1370 if (infp->rcv_port == MACH_PORT_NULL) {
 1371 if (match != 0
 1372 && infp->priority == priority
 1373 && my_infp == 0
 1374 && (infp->filter_end - infp->filter) == filter_count
 1375 && bpf_eq((bpf_insn_t)infp->filter,
 1376 (bpf_insn_t)filter, filter_bytes))

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

 1377 {
 1378 my_infp = infp;
 1379 }
 1380
 1381 for (i = 0; i < NET_HASH_SIZE; i++) {
 1382 head = &((net_hash_header_t) infp)->table[i];
 1383 if (*head == 0)
 1384 continue;
 1385
 1386 /*
 1387 * Check each hash entry to make sure the
 1388 * destination port is still valid. Remove
 1389 * any invalid entries.
 1390 */
 1391 entp = *head;
 1392 do {
 1393 nextentp = (net_hash_entry_t) entp->he_next;
 1394
 1395 /* checked without
 1396 ip_lock(entp->rcv_port) */
 1397 if (entp->rcv_port == rcv_port
 1398 || !IP_VALID(entp->rcv_port)
 1399 || !ip_active(entp->rcv_port)) {
 1400
 1401 ret = hash_ent_remove (ifp,
 1402 (net_hash_header_t)infp,
 1403 (my_infp == infp),
 1404 head,
 1405 entp,

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

 1406 &dead_entp);
 1407 if (ret)
 1408 goto hash_loop_end;
 1409 }
 1410
 1411 entp = nextentp;
 1412 /* While test checks head since hash_ent_remove
 1413 might modify it.
 1414 */
 1415 } while (*head != 0 && entp != *head);
 1416 }
 1417 hash_loop_end:
 1418 ;
 1419
 1420 } else if (infp->rcv_port == rcv_port
 1421 || !IP_VALID(infp->rcv_port)
 1422 || !ip_active(infp->rcv_port)) {
 1423 /* Remove the old filter from list */
 1424 remqueue(&ifp->if_rcv_port_list, (queue_entry_t)infp);
 1425 ENQUEUE_DEAD(dead_infp, infp);
 1426 }
 1427 }
 1428 FILTER_ITERATE_END

The FILTER_ITERATE() macro used at line 942 is defined in net_io.c at lines
516-21:

 516 #define FILTER_ITERATE(ifp, fp, nextfp) \
 517 for ((fp) = (net_rcv_port_t) queue_first(&(ifp)->if_rcv_port_list);\

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

 518 !queue_end(&(ifp)->if_rcv_port_list, (queue_entry_t)(fp)); \
 519 (fp) = (nextfp)) { \
 520 (nextfp) = (net_rcv_port_t) queue_next(&(fp)->chain);
 521 #define FILTER_ITERATE_END }

As shown in the example above, MK84 accesses the linked list of records.
MK84 also identifies and removes expired ones of the records when the linked
list is accessed. An example of this is in the net_set_filter() function in MK84.
If the record’s non-matching rcv_port is invalid or inactive, then the record in
the linked list is removed. See, e.g., net_io.c at 1386-1418:

 1386 /*
 1387 * Check each hash entry to make sure the
 1388 * destination port is still valid. Remove
 1389 * any invalid entries.
 1390 */
 1391 entp = *head;
 1392 do {
 1393 nextentp = (net_hash_entry_t) entp->he_next;
 1394
 1395 /* checked without
 1396 ip_lock(entp->rcv_port) */
 1397 if (entp->rcv_port == rcv_port
 1398 || !IP_VALID(entp->rcv_port)
 1399 || !ip_active(entp->rcv_port)) {
 1400
 1401 ret = hash_ent_remove (ifp,
 1402 (net_hash_header_t)infp,
 1403 (my_infp == infp),

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

 1404 head,
 1405 entp,
 1406 &dead_entp);
 1407 if (ret)
 1408 goto hash_loop_end;
 1409 }
 1410
 1411 entp = nextentp;
 1412 /* While test checks head since hash_ent_remove
 1413 might modify it.
 1414 */
 1415 } while (*head != 0 && entp != *head);
 1416 }
 1417 hash_loop_end:
 1418 ;

The hash_ent_remove() function is defined at lines 2222-53 in net_io.c:

 2216 /*
 2217 * Removes a hash entry (ENTP) from its queue (HEAD).
 2218 * If the reference count of filter (HP) becomes zero and not USED,
 2219 * HP is removed from ifp->if_rcv_port_list and is freed.
 2220 */
 2221
 2222 boolean_t
 2223 hash_ent_remove (
 2224 struct ifnet *ifp,
 2225 net_hash_header_t hp,
 2226 int used,

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

 2227 net_hash_entry_t *head,
 2228 net_hash_entry_t entp,
 2229 queue_entry_t *dead_p)
 2230 {
 2231 hp->ref_count--;
 2232
 2233 if (*head == entp) {
 2234
 2235 if (queue_empty((queue_t) entp)) {
 2236 *head = 0;
 2237 ENQUEUE_DEAD(*dead_p, entp);
 2238 if (hp->ref_count == 0 && !used) {
 2239 remqueue((queue_t) &ifp->if_rcv_port_list,
 2240 (queue_entry_t)hp);
 2241 hp->n_keys = 0;
 2242 return TRUE;
 2243 }
 2244 return FALSE;
 2245 } else {
 2246 *head = (net_hash_entry_t)queue_next((queue_t) entp);
 2247 }
 2248 }
 2249
 2250 remqueue((queue_t)*head, (queue_entry_t)entp);
 2251 ENQUEUE_DEAD(*dead_p, entp);
 2252 return FALSE;
 2253 }

[1d] means, utilizing the [5d] mea[n]s, utilizing the MK84 discloses means, utilizing the record search means, for accessing the

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

linked list and, at the same time, removing at least some of the expired ones of
the records in the linked list. MK84 also discloses utilizing the record search
means, for inserting, retrieving, and deleting records from the system and, at
the same time, removing at least some expired ones of the records in the
accessed linked list of records.

The “means, utilizing the record search means . . .” limitation is met, for
example, by any function calling the net_set_filter() function. For example,
se_setinput() calls net_set_filter() at lance.c, line 1568:

 1556 /*
 1557 * Install new filter.
 1558 * Nothing special needs to be done here.
 1559 */
 1560 io_return_t
 1561 se_setinput(
 1562 int dev,
 1563 ipc_port_t receive_port,
 1564 int priority,
 1565 filter_t *filter,
 1566 natural_t filter_count)
 1567 {
 1568 return net_set_filter(&se_softc[dev]->is_if,
 1569 receive_port, priority,
 1570 filter, filter_count);
 1571 }

For example, depending on claim construction, lines 2250-51 in net_io.c meets
the “deleting” and/or “removing” limitations. Note that this code is called

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

from line 1401 in net_io.c in the net_filter() function.

 2233 if (*head == entp) {
 2234
 2235 if (queue_empty((queue_t) entp)) {
 2236 *head = 0;
 2237 ENQUEUE_DEAD(*dead_p, entp);
 2238 if (hp->ref_count == 0 && !used) {
 2239 remqueue((queue_t) &ifp->if_rcv_port_list,
 2240 (queue_entry_t)hp);
 2241 hp->n_keys = 0;
 2242 return TRUE;
 2243 }
 2244 return FALSE;
 2245 } else {
 2246 *head = (net_hash_entry_t)queue_next((queue_t) entp);
 2247 }
 2248 }
 2249
 2250 remqueue((queue_t)*head, (queue_entry_t)entp);
 2251 ENQUEUE_DEAD(*dead_p, entp);

An example of deleting and removal “at the same time” is the loop at lines
1392-1415. During a single complete execution of all the iterations of the loop,
the code at line 1397 may determine that the rcv_port of a record matches the
rcv_port passed in and delete the record accordingly, and in a second iteration
of the loop, the code at line 1398 or 1399 may determine that a record with a
non-matching rcv_port has expired and then remove the expired record.

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

 1360 /*
 1361 * Look for an existing filter on the same reply port.
 1362 * Look for filters with dead ports (for GC).
 1363 * Look for a filter with the same code except KEY insns.
 1364 */
…
 1386 /*
 1387 * Check each hash entry to make sure the
 1388 * destination port is still valid. Remove
 1389 * any invalid entries.
 1390 */
 1391 entp = *head;
 1392 do {
 1393 nextentp = (net_hash_entry_t) entp->he_next;
 1394
 1395 /* checked without
 1396 ip_lock(entp->rcv_port) */
 1397 if (entp->rcv_port == rcv_port
 1398 || !IP_VALID(entp->rcv_port)
 1399 || !ip_active(entp->rcv_port)) {
 1400
 1401 ret = hash_ent_remove (ifp,
 1402 (net_hash_header_t)infp,
 1403 (my_infp == infp),
 1404 head,
 1405 entp,
 1406 &dead_entp);
 1407 if (ret)
 1408 goto hash_loop_end;

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

 1409 }
 1410
 1411 entp = nextentp;
 1412 /* While test checks head since hash_ent_remove
 1413 might modify it.
 1414 */
 1415 } while (*head != 0 && entp != *head);
 1416 }

An example of the “inserting” step is at net_io.c, lines 1477-1492. This
operation and the example of “deleting” and/or “removal” limitations at lines
2050-51 and discussed above, occur within a single function and “at the same
time” as claimed.

 1477 /* Insert my_infp according to priority */
 1478 queue_iterate(&ifp->if_rcv_port_list, infp, net_rcv_port_t, chain)
 1479 if (priority > infp->priority)
 1480 break;
 1481 enqueue_tail((queue_t)&infp->chain, (queue_entry_t)my_infp);
 1482 }
 1483
 1484 if (match != 0)
 1485 { /* Insert to hash list */
 1486 net_hash_entry_t *p;
 1487
 1488 hash_entp->rcv_port = rcv_port;
 1489 for (i = 0; i < match->jt; i++) /* match->jt is n_keys */
 1490 hash_entp->keys[i] = match[i+1].k;
 1491 p = &((net_hash_header_t)my_infp)->

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

 1492 table[bpf_hash(match->jt, hash_entp->keys)];

As discussed above the code at lines 1392-1416 is an example of deleting and
removal during the same complete execution of a do loop. It would be obvious
to one of ordinary skill in the art to modify the code to retrieve but not delete a
record, thereby retrieving a record, such as a record having a matching
rcv_port, and removing an expired record “at the same time.”

To the extent that MK84 does not disclose this limitation, gcache.c from Xinu
Operating System for Sparc (1991) (hereinafter “gcache.c”) and Douglas
Comer and Shawn Ostermann, GCache: A Generalized Caching Mechanism,
Purdue University (Revised March 1992) (hereinafter “Comer”) (collectively
hereinafter “GCache”) discloses means, utilizing the record search means, for
accessing the linked list and, at the same time, removing at least some of the
expired ones of the records in the linked list, and also discloses utilizing the
record search means, for inserting, retrieving, and deleting records from the
system and, at the same time, removing at least some expired ones of the
records in the accessed linked list of records.
One of ordinary skill in the art would be motivated to, and would understand how to,
combine the system disclosed in MK84 with the a hashing means to provide access
to records stored in a memory of the system and using an external chaining
technique to store the records with same hash address, at least some of the
records automatically expiring disclosed by GCache. See, e.g., Comer at 3-10.
For example, since MK84 utilizes a linked list for storing records and GCache
discloses a system that attaches or chains linked lists to a hash table for storing
records, one of ordinary skill in the art would be motivated to combine the
linked list of MK84 with the system including a hash table using external
chaining of linked lists disclosed by GCache. The disclosure of these claim

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

elements in GCache is clearly shown in the chart of GCache, which is hereby
incorporated by reference in its entirety.
Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining MK84 with GCache would be nothing more than the
predictable use of prior art elements according to their established functions.

For example, Comer discloses means for inserting, retrieving, and deleting
records:

“Cainsert() inserts a new mapping, key => res, into the cache.” See Comer at
4.

See also, gcache.c at lines 246-304, defining cainsert().

“Calookup() searches for a cached entry matching the key passed as an
argument.” See Comer at 4.

See also, gcache.c at lines 312-347 and 643-678, defining calookup() and
cagetindex().

“Caremove() removes the cached entry whose key is given, if one exists.” See
Comer at 4.

See also, gcache.c at lines 355-376, defining caremove().

Each of the means for inserting, retrieving, and deleting, utilizes a record
search means, the function cagetindex(), which removes an expired record

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

from the list as described below. The individual calls of cagetindex() are listed
here:

In cainsert():
275 if ((ixnew = cagetindex(pcb,pkey,keylen,hash)) != NULL_IX)
{

In calookup():
333 if ((ix = cagetindex(pcb,pkey,keylen,hash)) != NULL_IX) {

In caremove():
370 if ((ix = cagetindex(pcb,pkey,keylen,hash)) != NULL_IX) {

“In a simpler and cleaner design chosen for GCache, each cached entry
contains a timestamp encoding the insertion time. If a lookup matches an entry
with an expired timestamp, that entry is removed rather than being returned.”
See Comer at 10.

At lines 655-670 of gcache.c, cagetindex() executes a while loop to traverse a
linked list attached to a bucket of the hash table, accessing records stored
therein. In the subset of that code listed below, cagetindex() utilizes caisold()
to identify if a matching record is expired and removes the expired record from
the linked list using caunlink():

666 if (caisold(pcb,pce)) {
667 ++pcb->cb_tos;
668 caunlink(pcb,ix);
669 return(NULL_IX);
670 } else {

2. The information storage 6. The information storage MK84 discloses a means for dynamically determining maximum number for

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

the record search means to remove in the accessed linked list of records.

For example, the net_set_filter() function in net_io.c determines whether to
remove one or zero elements from the linked list of records. For example, the
code at lines 1398 and 1399 determine if the record has expired. If so, then it
is to be removed; but if the has not expired then it is not to be removed. See,
e.g., net_io.c at 1397-1409:

 1397 if (entp->rcv_port == rcv_port
 1398 || !IP_VALID(entp->rcv_port)
 1399 || !ip_active(entp->rcv_port)) {
 1400
 1401 ret = hash_ent_remove (ifp,
 1402 (net_hash_header_t)infp,
 1403 (my_infp == infp),
 1404 head,
 1405 entp,
 1406 &dead_entp);
 1407 if (ret)
 1408 goto hash_loop_end;
 1409 }

Further, MK84 combined with Dirks, Thatte, the ’663 patent and/or the
Opportunistic Garbage Collection Articles discloses an information storage
and retrieval system further including means for dynamically determining
maximum number for the record search means to remove in the accessed
linked list of records.

Dirks discloses the management of memory in a computer system and more

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both MK84 and Dirks relate to deletion of aged records upon the allocation
of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as MK84. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with MK84 nothing more than
the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with MK84 and would have
seen the benefits of doing so. One possible benefit, for example, is saving the
system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in MK84 with the means for
dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. For example,
Thatte discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, Ass both MK84 and Thatte teach a system of data storage

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

and retrieval, one of ordinary skill in the art would recognize that the result of
combining MK84 with Thatte would be nothing more than the predictable use
of prior art elements according to their established functions. The resulting
combination would include the capability to determine the maximum number
for the record search means to remove as taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine MK84
with Thatte and recognize the benefits of doing so. For example, the removal
of expired records described in MK84 can be burdensome on the system,
adding to the system’s load and slowing down the system’s processing. One of
ordinary skill in the art would recognize that combining MK84 with the
teachings of Thatte would solve this problem by dynamically determining how
many records to delete based on, among other things, the system load.
Moreover, the '120 patent discloses that "[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120
patent provides motivations to combine MK84 with Thatte.

Alternatively, it would also be obvious to combine MK84 with the ’663 patent.
Disclosure of these claim elements in the ’663 patent is clearly shown in the
chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both MK84 and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in MK84. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with MK84 would be
nothing more than the predictable use of prior art elements according to their
established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with MK84 and

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine MK84 with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both MK84 and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as MK84. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with MK84 would be nothing more than the predictable use of prior

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with MK84 and would
have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in MK84 to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in
MK84 with the fundamental concept of dynamically determining the
maximum number of expired records to remove in an accessed linked list of
records to solve a number of potential problems. For example, the removal of
expired records described in MK84 can be burdensome on the system, adding
to the system’s load and slowing down the system’s processing. Moreover, the
removal could also force an interruption in real-time processing as the
processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by MK84 in combination with Dirks, Thatte, the ‘663
Patent, or the Opportunistic Garbage Collection References, it is disclosed by
Linux 2.0.1, which describes dynamically determining maximum number of
expired ones of the records to remove when the linked list is accessed. It
would have been obvious to combine Linux 2.0.1 with MK84. For example,
both Linux 2.0.1 and MK84 describe systems and methods for performing data
storage and retrieval using known programming techniques to yield a
predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

35 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

To the extent the preamble is a limitation, MK84 discloses method for storing
and retrieving information records using a linked list to store and provide
access to the records, at least some of the records automatically expiring as
well as a method for storing and retrieving information records using a hashing
technique to provide access to the records and using an external chaining
technique to store the records with same hash address, at least some of the
records automatically expiring.

For example, MK84 discloses a hash table with external chaining using
queues, which are doubly-linked lists, of automatically-expiring records. See,
e.g., net_io.c, at 479-87:

 479 struct net_hash_entry {

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

36 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

 480 queue_chain_t chain; /* list of entries with same hval */
 481 #define he_next chain.next
 482 #define he_prev chain.prev
 483 ipc_port_t rcv_port; /* destination port */
 484 int rcv_qlimit; /* qlimit for the port */
 485 unsigned int keys[N_NET_HASH_KEYS];
 486 };
 487 typedef struct net_hash_entry *net_hash_entry_t;

MK84 also discloses records automatically expiring. For example, the
net_set_filter() function in net_io.c deals with records corresponding to filters
that have invalid ports. See, e.g., net_io.c, at 1381-1416:

 1381 for (i = 0; i < NET_HASH_SIZE; i++) {
 1382 head = &((net_hash_header_t) infp)->table[i];
 1383 if (*head == 0)
 1384 continue;
 1385
 1386 /*
 1387 * Check each hash entry to make sure the
 1388 * destination port is still valid. Remove
 1389 * any invalid entries.
 1390 */
 1391 entp = *head;
 1392 do {
 1393 nextentp = (net_hash_entry_t) entp->he_next;
 1394
 1395 /* checked without

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

37 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

 1396 ip_lock(entp->rcv_port) */
 1397 if (entp->rcv_port == rcv_port
 1398 || !IP_VALID(entp->rcv_port)
 1399 || !ip_active(entp->rcv_port)) {
 1400
 1401 ret = hash_ent_remove (ifp,
 1402 (net_hash_header_t)infp,
 1403 (my_infp == infp),
 1404 head,
 1405 entp,
 1406 &dead_entp);
 1407 if (ret)
 1408 goto hash_loop_end;
 1409 }
 1410
 1411 entp = nextentp;
 1412 /* While test checks head since hash_ent_remove
 1413 might modify it.
 1414 */
 1415 } while (*head != 0 && entp != *head);
 1416 }

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

MK84 discloses accessing the linked list of records. MK84 also discloses
accessing a linked list of records having same hash address.

For example, MK84 includes functionality to use a pointer to traverse a linked
list having the same hash address. See, e.g., net_io.c, at 1381-1428:

 1360 /*

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

38 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

 1361 * Look for an existing filter on the same reply port.
 1362 * Look for filters with dead ports (for GC).
 1363 * Look for a filter with the same code except KEY insns.
 1364 */
 1365
 1366 simple_lock(&ifp->if_rcv_port_list_lock);
 1367
 1368 FILTER_ITERATE(ifp, infp, nextfp)
 1369 {
 1370 if (infp->rcv_port == MACH_PORT_NULL) {
 1371 if (match != 0
 1372 && infp->priority == priority
 1373 && my_infp == 0
 1374 && (infp->filter_end - infp->filter) == filter_count
 1375 && bpf_eq((bpf_insn_t)infp->filter,
 1376 (bpf_insn_t)filter, filter_bytes))
 1377 {
 1378 my_infp = infp;
 1379 }
 1380
 1381 for (i = 0; i < NET_HASH_SIZE; i++) {
 1382 head = &((net_hash_header_t) infp)->table[i];
 1383 if (*head == 0)
 1384 continue;
 1385
 1386 /*
 1387 * Check each hash entry to make sure the
 1388 * destination port is still valid. Remove
 1389 * any invalid entries.

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

39 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

 1390 */
 1391 entp = *head;
 1392 do {
 1393 nextentp = (net_hash_entry_t) entp->he_next;
 1394
 1395 /* checked without
 1396 ip_lock(entp->rcv_port) */
 1397 if (entp->rcv_port == rcv_port
 1398 || !IP_VALID(entp->rcv_port)
 1399 || !ip_active(entp->rcv_port)) {
 1400
 1401 ret = hash_ent_remove (ifp,
 1402 (net_hash_header_t)infp,
 1403 (my_infp == infp),
 1404 head,
 1405 entp,
 1406 &dead_entp);
 1407 if (ret)
 1408 goto hash_loop_end;
 1409 }
 1410
 1411 entp = nextentp;
 1412 /* While test checks head since hash_ent_remove
 1413 might modify it.
 1414 */
 1415 } while (*head != 0 && entp != *head);
 1416 }
 1417 hash_loop_end:
 1418 ;

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

40 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

 1419
 1420 } else if (infp->rcv_port == rcv_port
 1421 || !IP_VALID(infp->rcv_port)
 1422 || !ip_active(infp->rcv_port)) {
 1423 /* Remove the old filter from list */
 1424 remqueue(&ifp->if_rcv_port_list, (queue_entry_t)infp);
 1425 ENQUEUE_DEAD(dead_infp, infp);
 1426 }
 1427 }
 1428 FILTER_ITERATE_END

The FILTER_ITERATE() macro used at line 942 is defined in net_io.c at lines
516-21:

 516 #define FILTER_ITERATE(ifp, fp, nextfp) \
 517 for ((fp) = (net_rcv_port_t) queue_first(&(ifp)->if_rcv_port_list);\
 518 !queue_end(&(ifp)->if_rcv_port_list, (queue_entry_t)(fp)); \
 519 (fp) = (nextfp)) { \
 520 (nextfp) = (net_rcv_port_t) queue_next(&(fp)->chain);
 521 #define FILTER_ITERATE_END }

The hash_ent_remove() function is defined at lines 2222-53 in net_io.c:

 2216 /*
 2217 * Removes a hash entry (ENTP) from its queue (HEAD).
 2218 * If the reference count of filter (HP) becomes zero and not USED,
 2219 * HP is removed from ifp->if_rcv_port_list and is freed.
 2220 */
 2221

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

41 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

 2222 boolean_t
 2223 hash_ent_remove (
 2224 struct ifnet *ifp,
 2225 net_hash_header_t hp,
 2226 int used,
 2227 net_hash_entry_t *head,
 2228 net_hash_entry_t entp,
 2229 queue_entry_t *dead_p)
 2230 {
 2231 hp->ref_count--;
 2232
 2233 if (*head == entp) {
 2234
 2235 if (queue_empty((queue_t) entp)) {
 2236 *head = 0;
 2237 ENQUEUE_DEAD(*dead_p, entp);
 2238 if (hp->ref_count == 0 && !used) {
 2239 remqueue((queue_t) &ifp->if_rcv_port_list,
 2240 (queue_entry_t)hp);
 2241 hp->n_keys = 0;
 2242 return TRUE;
 2243 }
 2244 return FALSE;
 2245 } else {
 2246 *head = (net_hash_entry_t)queue_next((queue_t) entp);
 2247 }
 2248 }
 2249
 2250 remqueue((queue_t)*head, (queue_entry_t)entp);

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

42 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

 2251 ENQUEUE_DEAD(*dead_p, entp);
 2252 return FALSE;
 2253 }

The remqueue() function is defined in queue.c at lines 139-45:

 132 /*
 133 * Remove arbitrary element from queue.
 134 * Does not check whether element is on queue - the world
 135 * will go haywire if it isn't.
 136 */
 137
 138 /*ARGSUSED*/
 139 void remqueue(
 140 queue_t que,
 141 register queue_entry_t elt)
 142 {
 143 elt->next->prev = elt->prev;
 144 elt->prev->next = elt->next;
 145 }

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

MK84 discloses identifying at least some of the automatically expired ones of
the records.

For example, MK84 accesses the linked list of records and identifies and
removes expired ones of the records when the linked list is accessed. An
example of this is in the net_set_filter() function in MK84. If the record’s non-
matching rcv_port is invalid or inactive, then the record in the linked list is
removed. See, e.g., net_io.c at 1386-1418:

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

43 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

 1386 /*
 1387 * Check each hash entry to make sure the
 1388 * destination port is still valid. Remove
 1389 * any invalid entries.
 1390 */
 1391 entp = *head;
 1392 do {
 1393 nextentp = (net_hash_entry_t) entp->he_next;
 1394
 1395 /* checked without
 1396 ip_lock(entp->rcv_port) */
 1397 if (entp->rcv_port == rcv_port
 1398 || !IP_VALID(entp->rcv_port)
 1399 || !ip_active(entp->rcv_port)) {
 1400
 1401 ret = hash_ent_remove (ifp,
 1402 (net_hash_header_t)infp,
 1403 (my_infp == infp),
 1404 head,
 1405 entp,
 1406 &dead_entp);
 1407 if (ret)
 1408 goto hash_loop_end;
 1409 }
 1410
 1411 entp = nextentp;
 1412 /* While test checks head since hash_ent_remove
 1413 might modify it.
 1414 */

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

44 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

 1415 } while (*head != 0 && entp != *head);
 1416 }
 1417 hash_loop_end:
 1418 ;

The hash_ent_remove() function is defined at lines 2222-53 in net_io.c:

 2216 /*
 2217 * Removes a hash entry (ENTP) from its queue (HEAD).
 2218 * If the reference count of filter (HP) becomes zero and not USED,
 2219 * HP is removed from ifp->if_rcv_port_list and is freed.
 2220 */
 2221
 2222 boolean_t
 2223 hash_ent_remove (
 2224 struct ifnet *ifp,
 2225 net_hash_header_t hp,
 2226 int used,
 2227 net_hash_entry_t *head,
 2228 net_hash_entry_t entp,
 2229 queue_entry_t *dead_p)
 2230 {
 2231 hp->ref_count--;
 2232
 2233 if (*head == entp) {
 2234
 2235 if (queue_empty((queue_t) entp)) {
 2236 *head = 0;
 2237 ENQUEUE_DEAD(*dead_p, entp);

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

45 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

 2238 if (hp->ref_count == 0 && !used) {
 2239 remqueue((queue_t) &ifp->if_rcv_port_list,
 2240 (queue_entry_t)hp);
 2241 hp->n_keys = 0;
 2242 return TRUE;
 2243 }
 2244 return FALSE;
 2245 } else {
 2246 *head = (net_hash_entry_t)queue_next((queue_t) entp);
 2247 }
 2248 }
 2249
 2250 remqueue((queue_t)*head, (queue_entry_t)entp);
 2251 ENQUEUE_DEAD(*dead_p, entp);
 2252 return FALSE;
 2253 }

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

MK84 discloses removing at least some of the automatically expired records
from the linked list when the linked list is accessed.

For example, in the net_set_filter() function in net_io.c, the linked list is
accessed for a purpose other than garbage collection. See, e.g., net_io.c, at
1360-1428:

 1360 /*
 1361 * Look for an existing filter on the same reply port.
 1362 * Look for filters with dead ports (for GC).
 1363 * Look for a filter with the same code except KEY insns.
 1364 */

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

46 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

 1365
 1366 simple_lock(&ifp->if_rcv_port_list_lock);
 1367
 1368 FILTER_ITERATE(ifp, infp, nextfp)
 1369 {
 1370 if (infp->rcv_port == MACH_PORT_NULL) {
 1371 if (match != 0
 1372 && infp->priority == priority
 1373 && my_infp == 0
 1374 && (infp->filter_end - infp->filter) == filter_count
 1375 && bpf_eq((bpf_insn_t)infp->filter,
 1376 (bpf_insn_t)filter, filter_bytes))
 1377 {
 1378 my_infp = infp;
 1379 }
 1380
 1381 for (i = 0; i < NET_HASH_SIZE; i++) {
 1382 head = &((net_hash_header_t) infp)->table[i];
 1383 if (*head == 0)
 1384 continue;
 1385
 1386 /*
 1387 * Check each hash entry to make sure the
 1388 * destination port is still valid. Remove
 1389 * any invalid entries.
 1390 */
 1391 entp = *head;
 1392 do {
 1393 nextentp = (net_hash_entry_t) entp->he_next;

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

47 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

 1394
 1395 /* checked without
 1396 ip_lock(entp->rcv_port) */
 1397 if (entp->rcv_port == rcv_port
 1398 || !IP_VALID(entp->rcv_port)
 1399 || !ip_active(entp->rcv_port)) {
 1400
 1401 ret = hash_ent_remove (ifp,
 1402 (net_hash_header_t)infp,
 1403 (my_infp == infp),
 1404 head,
 1405 entp,
 1406 &dead_entp);
 1407 if (ret)
 1408 goto hash_loop_end;
 1409 }
 1410
 1411 entp = nextentp;
 1412 /* While test checks head since hash_ent_remove
 1413 might modify it.
 1414 */
 1415 } while (*head != 0 && entp != *head);
 1416 }
 1417 hash_loop_end:
 1418 ;
 1419
 1420 } else if (infp->rcv_port == rcv_port
 1421 || !IP_VALID(infp->rcv_port)
 1422 || !ip_active(infp->rcv_port)) {

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

48 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

 1423 /* Remove the old filter from list */
 1424 remqueue(&ifp->if_rcv_port_list, (queue_entry_t)infp);
 1425 ENQUEUE_DEAD(dead_infp, infp);
 1426 }
 1427 }
 1428 FILTER_ITERATE_END

The FILTER_ITERATE() macro used at line 942 is defined in net_io.c at lines
516-21:

 516 #define FILTER_ITERATE(ifp, fp, nextfp) \
 517 for ((fp) = (net_rcv_port_t) queue_first(&(ifp)->if_rcv_port_list);\
 518 !queue_end(&(ifp)->if_rcv_port_list, (queue_entry_t)(fp)); \
 519 (fp) = (nextfp)) { \
 520 (nextfp) = (net_rcv_port_t) queue_next(&(fp)->chain);
 521 #define FILTER_ITERATE_END }

As shown in the example above, MK84 accesses the linked list of records.
MK84 also identifies and removes expired ones of the records when the linked
list is accessed. An example of this is in the net_set_filter() function in MK84.
If the record’s non-matching rcv_port is invalid or inactive, then the record in
the linked list is removed. See, e.g., net_io.c at 1386-1418:

 1386 /*
 1387 * Check each hash entry to make sure the
 1388 * destination port is still valid. Remove
 1389 * any invalid entries.
 1390 */

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

49 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

 1391 entp = *head;
 1392 do {
 1393 nextentp = (net_hash_entry_t) entp->he_next;
 1394
 1395 /* checked without
 1396 ip_lock(entp->rcv_port) */
 1397 if (entp->rcv_port == rcv_port
 1398 || !IP_VALID(entp->rcv_port)
 1399 || !ip_active(entp->rcv_port)) {
 1400
 1401 ret = hash_ent_remove (ifp,
 1402 (net_hash_header_t)infp,
 1403 (my_infp == infp),
 1404 head,
 1405 entp,
 1406 &dead_entp);
 1407 if (ret)
 1408 goto hash_loop_end;
 1409 }
 1410
 1411 entp = nextentp;
 1412 /* While test checks head since hash_ent_remove
 1413 might modify it.
 1414 */
 1415 } while (*head != 0 && entp != *head);
 1416 }
 1417 hash_loop_end:
 1418 ;

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

50 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

The hash_ent_remove() function is defined at lines 2222-53 in net_io.c:

 2216 /*
 2217 * Removes a hash entry (ENTP) from its queue (HEAD).
 2218 * If the reference count of filter (HP) becomes zero and not USED,
 2219 * HP is removed from ifp->if_rcv_port_list and is freed.
 2220 */
 2221
 2222 boolean_t
 2223 hash_ent_remove (
 2224 struct ifnet *ifp,
 2225 net_hash_header_t hp,
 2226 int used,
 2227 net_hash_entry_t *head,
 2228 net_hash_entry_t entp,
 2229 queue_entry_t *dead_p)
 2230 {
 2231 hp->ref_count--;
 2232
 2233 if (*head == entp) {
 2234
 2235 if (queue_empty((queue_t) entp)) {
 2236 *head = 0;
 2237 ENQUEUE_DEAD(*dead_p, entp);
 2238 if (hp->ref_count == 0 && !used) {
 2239 remqueue((queue_t) &ifp->if_rcv_port_list,
 2240 (queue_entry_t)hp);
 2241 hp->n_keys = 0;
 2242 return TRUE;

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

51 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

 2243 }
 2244 return FALSE;
 2245 } else {
 2246 *head = (net_hash_entry_t)queue_next((queue_t) entp);
 2247 }
 2248 }
 2249
 2250 remqueue((queue_t)*head, (queue_entry_t)entp);
 2251 ENQUEUE_DEAD(*dead_p, entp);
 2252 return FALSE;
 2253 }

 [7d] inserting, retrieving
or deleting one of the
records from the system
following the step of
removing.

MK84 discloses inserting, retrieving or deleting one of the records from the
system following the step of removing.

For example, depending on claim construction, MK84 includes functionality to
delete following the step of removing. During a single complete execution of
all the iterations of the loop at lines 1392-1412, the code at line 1398 or 1399
may determine that a record with a non-matching rcv_port has expired and
then remove the expired record by calling hash_ent_remove at line 1401, and
then in a second iteration of the loop, the code at line 1397 may determine that
the rcv_port of a record matches the rcv_port passed into the function and
delete the record accordingly.

 1360 /*
 1361 * Look for an existing filter on the same reply port.
 1362 * Look for filters with dead ports (for GC).
 1363 * Look for a filter with the same code except KEY insns.
 1364 */

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

52 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

…
 1386 /*
 1387 * Check each hash entry to make sure the
 1388 * destination port is still valid. Remove
 1389 * any invalid entries.
 1390 */
 1391 entp = *head;
 1392 do {
 1393 nextentp = (net_hash_entry_t) entp->he_next;
 1394
 1395 /* checked without
 1396 ip_lock(entp->rcv_port) */
 1397 if (entp->rcv_port == rcv_port
 1398 || !IP_VALID(entp->rcv_port)
 1399 || !ip_active(entp->rcv_port)) {
 1400
 1401 ret = hash_ent_remove (ifp,
 1402 (net_hash_header_t)infp,
 1403 (my_infp == infp),
 1404 head,
 1405 entp,
 1406 &dead_entp);
 1407 if (ret)
 1408 goto hash_loop_end;
 1409 }
 1410
 1411 entp = nextentp;
 1412 /* While test checks head since hash_ent_remove
 1413 might modify it.

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

53 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

 1414 */
 1415 } while (*head != 0 && entp != *head);
 1416 }

An example of “inserting” is at net_io.c, lines 1477-1492. This operation
follows the step of removal at lines 1398-1406.

 1477 /* Insert my_infp according to priority */
 1478 queue_iterate(&ifp->if_rcv_port_list, infp, net_rcv_port_t, chain)
 1479 if (priority > infp->priority)
 1480 break;
 1481 enqueue_tail((queue_t)&infp->chain, (queue_entry_t)my_infp);
 1482 }
 1483
 1484 if (match != 0)
 1485 { /* Insert to hash list */
 1486 net_hash_entry_t *p;
 1487
 1488 hash_entp->rcv_port = rcv_port;
 1489 for (i = 0; i < match->jt; i++) /* match->jt is n_keys */
 1490 hash_entp->keys[i] = match[i+1].k;
 1491 p = &((net_hash_header_t)my_infp)->
 1492 table[bpf_hash(match->jt, hash_entp->keys)];

4. The method according to
claim 3 further including
the step of dynamically
determining maximum
number of expired ones of

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of

MK84 discloses dynamically determining maximum number of expired ones
of the records to remove when the linked list is accessed.

For example, the net_set_filter() function in net_io.c determines whether to
remove one or zero elements from the linked list of records. For example, the

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

54 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

the records to remove
when the linked list is
accessed.

the records to remove
when the linked list is
accessed.

code at lines 1398 and 1399 determine if the record has expired. If so, then it
is to be removed; but if the has not expired then it is not to be removed. See,
e.g., net_io.c at 1397-1409:

 1397 if (entp->rcv_port == rcv_port
 1398 || !IP_VALID(entp->rcv_port)
 1399 || !ip_active(entp->rcv_port)) {
 1400
 1401 ret = hash_ent_remove (ifp,
 1402 (net_hash_header_t)infp,
 1403 (my_infp == infp),
 1404 head,
 1405 entp,
 1406 &dead_entp);
 1407 if (ret)
 1408 goto hash_loop_end;
 1409 }

Further, MK84 combined with Dirks, Thatte, the ’663 patent and/or the
Opportunistic Garbage Collection Articles discloses an information storage
and retrieval system further including means for dynamically determining
maximum number for the record search means to remove in the accessed
linked list of records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

55 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

56 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both MK84 and Dirks relate to deletion of aged records upon the allocation
of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as MK84. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

57 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with MK84 nothing more than
the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with MK84 and would have
seen the benefits of doing so. One possible benefit, for example, is saving the
system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in MK84 with the means for
dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. For example,
Thatte discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, Ass both MK84 and Thatte teach a system of data storage
and retrieval, one of ordinary skill in the art would recognize that the result of
combining MK84 with Thatte would be nothing more than the predictable use
of prior art elements according to their established functions. The resulting

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

58 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

combination would include the capability to determine the maximum number
for the record search means to remove as taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine MK84
with Thatte and recognize the benefits of doing so. For example, the removal
of expired records described in MK84 can be burdensome on the system,
adding to the system’s load and slowing down the system’s processing. One of
ordinary skill in the art would recognize that combining MK84 with the
teachings of Thatte would solve this problem by dynamically determining how
many records to delete based on, among other things, the system load.
Moreover, the '120 patent discloses that "[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120
patent provides motivations to combine MK84 with Thatte.

Alternatively, it would also be obvious to combine MK84 with the ’663 patent.
Disclosure of these claim elements in the ’663 patent is clearly shown in the
chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

59 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

60 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

61 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both MK84 and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in MK84. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with MK84 would be
nothing more than the predictable use of prior art elements according to their
established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with MK84 and

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

62 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine MK84 with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

63 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both MK84 and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as MK84. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with MK84 would be nothing more than the predictable use of prior

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

64 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with MK84 and would
have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in MK84 to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in
MK84 with the fundamental concept of dynamically determining the
maximum number of expired records to remove in an accessed linked list of
records to solve a number of potential problems. For example, the removal of
expired records described in MK84 can be burdensome on the system, adding
to the system’s load and slowing down the system’s processing. Moreover, the
removal could also force an interruption in real-time processing as the
processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

65 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by MK84 in combination with Dirks, Thatte, the ‘663
Patent, or the Opportunistic Garbage Collection References, it is disclosed by
Linux 2.0.1, which describes dynamically determining maximum number of
expired ones of the records to remove when the linked list is accessed. It
would have been obvious to combine Linux 2.0.1 with MK84. For example,
both Linux 2.0.1 and MK84 describe systems and methods for performing data
storage and retrieval using known programming techniques to yield a
predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

66 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

67 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux

EXHIBIT D-15

Joint Invalidity Contentions & Production of
Documents

68 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

net_set_filter() in net_io.c from version MK84 of the Mach kernel
(1993) (hereinafter “MK84”) alone and in combination

2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, makepsres.c discloses an
information storage and retrieval system.

For example, makepsres.c includes a hash table of linked lists UPRResources,
of the size HashSize, which is defined as a size of 2048. See ll.75, 442-451.

typedef struct _t_UPRResource {
 char *name;
 char *file;
 char *category;
 int found;
 int noPrefix;
 struct _t_UPRResource *next;
} UPRResource;

UPRResource *UPRresources[HASHSIZE];

ll. 442-451.

Information may be retrieved from a hash table by calculating a hash key,
using the hash key to index a hash table to access a linked list, and by using a
while loop to traverse the linked list and access the information. See, e.g., ll.
502-539:

hash = Hash(resource->file);
 current = previous = UPRresources[hash];

 while (current != NULL) {
 comparison = strcmp (current->file, resource->file);

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

 if (comparison > 0) break;

 if (comparison == 0) {
 if (noPrefix) break;

 if (strcmp(current->name, resource->name) != 0 ||
 strcmp(current->category, resource->category) != 0) { /* Same */
 if (strcmp(current->category, "mkpsresPrivate") == 0 &&
 strcmp(current->name, "NONRESOURCE") == 0) {

 /* Replace "NONRESOURCE" entry with resource one */
 free(current->name);
 current->name = resource->name;
 free(current->category);
 current->category = resource->category;
 free(resource->file);
 free (resource);
 return;
 }
 fprintf(stderr,
 "%s: Warning: file %s identified as different resources\n",
 program, resource->file);
 fprintf(stderr, " Using %s\n", current->category);
 }
 free (resource->name);
 free (resource->file);
 free (resource->category);
 free (resource);

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

 return;
 }
 previous = current;
 current = current->next;
 }

See also, makepsres.c ll. 1-2324.

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

makepsres.c discloses a linked list to store and provide access to records stored
in a memory of the system, at least some of the records automatically expiring.
makepsres.c also discloses a hashing means to provide access to records stored
in a memory of the system and using an external chaining technique to store
the records with same hash address, at least some of the records automatically
expiring.

For example, makepsres.c includes a hash table of linked lists UPRResources,
of the size HashSize, which is defined as a size of 2048. See ll.75, 442-451.

typedef struct _t_UPRResource {
 char *name;
 char *file;
 char *category;
 int found;
 int noPrefix;
 struct _t_UPRResource *next;
} UPRResource;

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

UPRResource *UPRresources[HASHSIZE];
ll. 442-451.

The function AddUPRResource walks through the linked list in the hash table,
to determine if the entries in that linked list are a “NONRESOURCE” entry,
and if so, replaces those entries with a resource entry. See ll.458-561. A
NONRESOURCE entry is an expired entry, which is removed, before it is
replaced with a resource entry.

 while (current != NULL) {
 comparison = strcmp (current->file,
resource->file);
 if (comparison > 0) break;

 if (comparison == 0) {
 if (noPrefix) break;

 if (strcmp(current->name, resource-
>name) != 0 ||
 strcmp(current->category, resource-
>category) != 0) { /* Same */
 if (strcmp(current->category,
"mkpsresPrivate") == 0 &&
 strcmp(current->name,
"NONRESOURCE") == 0) {

 /* Replace "NONRESOURCE" entry with
resource one */

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

 free(current->name);
 current->name = resource->name;
 free(current->category);
 current->category = resource-
>category;
 free(resource->file);
 free (resource);
 return;
 }
 fprintf(stderr,
 "%s: Warning: file %s identified
as different resources\n",
 program, resource->file);
 fprintf(stderr, " Using
%s\n", current->category);
 }
 free (resource->name);
 free (resource->file);
 free (resource->category);
 free (resource);
 return;
 }
 previous = current;
 current = current->next;
 }

 if (UPRresources[hash] == NULL) {
 UPRresources[hash] = resource;

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

 resource->next = NULL;

 } else if (current == NULL) {
 resource->next = NULL;
 previous->next = resource;
 } else {
 resource->next = current;

 if (current == UPRresources[hash]) {
 UPRresources[hash] = resource;
 } else {
 previous->next = resource;
 }
 }
ll. 505-556.

See also, makepsres.c ll. 1-2324.

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of
records having the same
hash address,

makepsres.c discloses a record search means utilizing a search key to access
the linked list. makepsres.c also discloses a record search means utilizing a
search key to access a linked list of records having the same hash address.

For example, makepsres.c includes a hash table of linked lists UPRResources,
of the size HashSize, which is defined as a size of 2048. See ll.75, 442-451.

typedef struct _t_UPRResource {
 char *name;
 char *file;

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

 char *category;
 int found;
 int noPrefix;
 struct _t_UPRResource *next;
} UPRResource;

UPRResource *UPRresources[HASHSIZE];

ll. 442-451.

For example, a hash is calculated and used to index a hash table to access a
linked list. A while loop is then used to traverse the linked list. See ll. 502-539:

hash = Hash(resource->file);
 current = previous = UPRresources[hash];

 while (current != NULL) {
 comparison = strcmp (current->file, resource->file);
 if (comparison > 0) break;

 if (comparison == 0) {
 if (noPrefix) break;

 if (strcmp(current->name, resource->name) != 0 ||
 strcmp(current->category, resource->category) != 0) { /* Same */
 if (strcmp(current->category, "mkpsresPrivate") == 0 &&
 strcmp(current->name, "NONRESOURCE") == 0) {

 /* Replace "NONRESOURCE" entry with resource one */

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

 free(current->name);
 current->name = resource->name;
 free(current->category);
 current->category = resource->category;
 free(resource->file);
 free (resource);
 return;
 }
 fprintf(stderr,
 "%s: Warning: file %s identified as different resources\n",
 program, resource->file);
 fprintf(stderr, " Using %s\n", current->category);
 }
 free (resource->name);
 free (resource->file);
 free (resource->category);
 free (resource);
 return;
 }
 previous = current;
 current = current->next;
 }

See also, makepsres.c ll. 1-2324.

[1c] the record search
means including a means

[5c] the record search
means including means for

makepsres.c discloses the record search means including a means for
identifying and removing at least some of the expired ones of the records from

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

for identifying and
removing at least some of
the expired ones of the
records from the linked list
when the linked list is
accessed, and

identifying and removing
at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

the linked list when the linked list is accessed. makepsres.c also discloses the
record search means including means for identifying and removing at least
some expired ones of the records from the linked list of records when the
linked list is accessed.

For example, makepsres.c includes a hash table of linked lists UPRResources,
of the size HashSize, which is defined as a size of 2048. See ll.75, 442-451.

typedef struct _t_UPRResource {
 char *name;
 char *file;
 char *category;
 int found;
 int noPrefix;
 struct _t_UPRResource *next;
} UPRResource;

UPRResource *UPRresources[HASHSIZE];

ll. 442-451.

A function, Hash(), calculates a hash key:

hash = Hash(resource->file);
current = previous = UPRresources[hash];
ll. 502-503

int Hash(string)
 char *string;

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

{
 int hash = 0;
 unsigned char *ch = (unsigned char *)
string;

 while (1) {
 if (*ch == '\0') return hash % HASHSIZE;
 if (*(ch+1) == '\0') {
 hash += *ch;
 return hash % HASHSIZE;
 }
 hash += *ch++ + (*ch++ << 8);
 }
}
ll.244-258.

The hash key is then used to index a hash table to access a linked list. A while
loop is then used to traverse the linked list. See ll. 502-539:

hash = Hash(resource->file);
 current = previous = UPRresources[hash];

 while (current != NULL) {
 comparison = strcmp (current->file, resource->file);
 if (comparison > 0) break;

 if (comparison == 0) {
 if (noPrefix) break;

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

 if (strcmp(current->name, resource->name) != 0 ||
 strcmp(current->category, resource->category) != 0) { /* Same */
 if (strcmp(current->category, "mkpsresPrivate") == 0 &&
 strcmp(current->name, "NONRESOURCE") == 0) {

 /* Replace "NONRESOURCE" entry with resource one */
 free(current->name);
 current->name = resource->name;
 free(current->category);
 current->category = resource->category;
 free(resource->file);
 free (resource);
 return;
 }
 fprintf(stderr,
 "%s: Warning: file %s identified as different resources\n",
 program, resource->file);
 fprintf(stderr, " Using %s\n", current->category);
 }
 free (resource->name);
 free (resource->file);
 free (resource->category);
 free (resource);
 return;
 }
 previous = current;
 current = current->next;

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

 }

See also, makepsres.c ll. 1-2324.

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

makepsres.c discloses means, utilizing the record search means, for accessing
the linked list and, at the same time, removing at least some of the expired ones
of the records in the linked list. makepsres.c also discloses utilizing the record
search means, for inserting, retrieving, and deleting records from the system
and, at the same time, removing at least some expired ones of the records in the
accessed linked list of records.

For example, makepsres.c includes a hash table of linked lists UPRResources,
of the size HashSize, which is defined as a size of 2048. See ll.75, 442-451.

typedef struct _t_UPRResource {
 char *name;
 char *file;
 char *category;
 int found;
 int noPrefix;
 struct _t_UPRResource *next;
} UPRResource;

UPRResource *UPRresources[HASHSIZE];

ll. 442-451.

A function, Hash(), calculates a hash key:

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

hash = Hash(resource->file);
current = previous = UPRresources[hash];
ll. 502-503

int Hash(string)
 char *string;
{
 int hash = 0;
 unsigned char *ch = (unsigned char *)
string;

 while (1) {
 if (*ch == '\0') return hash % HASHSIZE;
 if (*(ch+1) == '\0') {
 hash += *ch;
 return hash % HASHSIZE;
 }
 hash += *ch++ + (*ch++ << 8);
 }
}
ll.244-258.

The hash key is then used to index a hash table to access a linked list. A while
loop is then used to traverse the linked list. During traversal of the linked list, a
“NONRESOURCE” entry is removed and at the same time a resource entry is
inserted in its place. See ll. 502-539:

hash = Hash(resource->file);

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

 current = previous = UPRresources[hash];

 while (current != NULL) {
 comparison = strcmp (current->file, resource->file);
 if (comparison > 0) break;

 if (comparison == 0) {
 if (noPrefix) break;

 if (strcmp(current->name, resource->name) != 0 ||
 strcmp(current->category, resource->category) != 0) { /* Same */
 if (strcmp(current->category, "mkpsresPrivate") == 0 &&
 strcmp(current->name, "NONRESOURCE") == 0) {

 /* Replace "NONRESOURCE" entry with resource one */
 free(current->name);
 current->name = resource->name;
 free(current->category);
 current->category = resource->category;
 free(resource->file);
 free (resource);
 return;
 }
 fprintf(stderr,
 "%s: Warning: file %s identified as different resources\n",
 program, resource->file);
 fprintf(stderr, " Using %s\n", current->category);
 }

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

 free (resource->name);
 free (resource->file);
 free (resource->category);
 free (resource);
 return;
 }
 previous = current;
 current = current->next;
 }

See also, makepsres.c ll. 1-2324.

To the extent that makepresres.c does not disclose this limitation, gcache.c from Xinu
Operating System for Sparc (1991) (hereinafter “gcache.c”) and Douglas Comer and
Shawn Ostermann, GCache: A Generalized Caching Mechanism, Purdue University
(Revised March 1992) (hereinafter “Comer”) (collectively hereinafter “GCache”)
discloses means, utilizing the record search means, for accessing the linked list and, at
the same time, removing at least some of the expired ones of the records in the linked
list, and also discloses utilizing the record search means, for inserting, retrieving, and
deleting records from the system and, at the same time, removing at least some
expired ones of the records in the accessed linked list of records.
One of ordinary skill in the art would be motivated to, and would understand how to,
combine the system disclosed in makepresres.c with the a hashing means to provide
access to records stored in a memory of the system and using an external chaining
technique to store the records with same hash address, at least some of the records
automatically expiring disclosed by GCache. See, e.g., Comer at 3-10. For example,
since makepresres.c utilizes a linked list for storing records and GCache discloses a
system that attaches or chains linked lists to a hash table for storing records, one of
ordinary skill in the art would be motivated to combine the linked list of

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

makepresres.c with the system including a hash table using external chaining of linked
lists disclosed by GCache. The disclosure of these claim elements in GCache is
clearly shown in the chart of GCache, which is hereby incorporated by reference in its
entirety.
Moreover, one of ordinary skill in the art would recognize that these combinations
would improve the similar systems and methods in the same way. Additionally, one
of ordinary skill in the art would recognize that the result of combining makepresres.c
with GCache would be nothing more than the predictable use of prior art elements
according to their established functions.

For example, Comer discloses means for inserting, retrieving, and deleting records:

“Cainsert() inserts a new mapping, key => res, into the cache.” See Comer at 4.

See also, gcache.c at lines 246-304, defining cainsert().

“Calookup() searches for a cached entry matching the key passed as an argument.”
See Comer at 4.

See also, gcache.c at lines 312-347 and 643-678, defining calookup() and
cagetindex().

“Caremove() removes the cached entry whose key is given, if one exists.” See Comer
at 4.

See also, gcache.c at lines 355-376, defining caremove().

Each of the means for inserting, retrieving, and deleting, utilizes a record search
means, the function cagetindex(), which removes an expired record from the list as
described below. The individual calls of cagetindex() are listed here:

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

In cainsert():
275 if ((ixnew = cagetindex(pcb,pkey,keylen,hash)) !=
NULL_IX) {

In calookup():
333 if ((ix = cagetindex(pcb,pkey,keylen,hash)) !=
NULL_IX) {

In caremove():
370 if ((ix = cagetindex(pcb,pkey,keylen,hash)) !=
NULL_IX) {

“In a simpler and cleaner design chosen for GCache, each cached entry contains a
timestamp encoding the insertion time. If a lookup matches an entry with an expired
timestamp, that entry is removed rather than being returned.” See Comer at 10.

At lines 655-670 of gcache.c, cagetindex() executes a while loop to traverse a linked
list attached to a bucket of the hash table, accessing records stored therein. In the
subset of that code listed below, cagetindex() utilizes caisold() to identify if a
matching record is expired and removes the expired record from the linked list using
caunlink():

666 if (caisold(pcb,pce)) {
667 ++pcb->cb_tos;
668 caunlink(pcb,ix);
669 return(NULL_IX);
670 } else {

2. The information storage
and retrieval system

6. The information storage
and retrieval system

Makepsres.c combined with Dirks, Thatte, the ’663 patent and/or the
Opportunistic Garbage Collection Articles discloses an information storage

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

and retrieval system further including means for dynamically determining
maximum number for the record search means to remove in the accessed
linked list of records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both makepsres.c and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as makepsres.c. Moreover, one of ordinary skill in the
art would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with makepsres.c nothing more
than the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with makepsres.c and would
have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in makepsres.c with the
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records disclosed by Thatte. For

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

example, Thatte discloses a system and method using hash tables and/or linked
lists and further discloses means for dynamically determining the maximum
number for the record search means to remove in the accessed linked list of
records. The disclosure of these claim elements in Thatte is clearly shown in
the chart of Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, Ass both makepsres.c and Thatte teach a system of data
storage and retrieval, one of ordinary skill in the art would recognize that the
result of combining makepsres.c with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove as taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine
makepsres.c with Thatte and recognize the benefits of doing so. For example,
the removal of expired records described in makepsres.c can be burdensome on
the system, adding to the system’s load and slowing down the system’s
processing. One of ordinary skill in the art would recognize that combining
makepsres.c with the teachings of Thatte would solve this problem by
dynamically determining how many records to delete based on, among other
things, the system load. Moreover, the '120 patent discloses that "[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one." '120 at
7:10-15. Thus, the '120 patent provides motivations to combine makepsres.c

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

with Thatte.

Alternatively, it would also be obvious to combine makepsres.c with the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both makepsres.c and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in makepsres.c. Moreover, one of ordinary skill in the
art would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

combining the ’663 patent’s deletion decision procedure with makepsres.c
would be nothing more than the predictable use of prior art elements according
to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with makepsres.c and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine makepsres.c with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both makepsres.c and the Opportunistic Garbage Collection Articles relate
to deletion of aged records, one of ordinary skill in the art would have
understood how to use the Opportunistic Garbage Collection Articles’ dynamic
decision on whether to perform a deletion based on a system load in other hash
table implementations such as makepsres.c. Moreover, one of ordinary skill in

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

the art would recognize that it would improve similar systems and methods in
the same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with makepsres.c would be nothing more than the predictable use of
prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with makepsres.c and
would have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in makepsres.c to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in makepsres.c with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

the removal of expired records described in makepsres.c can be burdensome on
the system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by makepresres.c in combination with Dirks, Thatte,
the ‘663 Patent, or the Opportunistic Garbage Collection References, it is
disclosed by Linux 2.0.1, which describes dynamically determining maximum
number of expired ones of the records to remove when the linked list is
accessed. It would have been obvious to combine Linux 2.0.1
with makepresres.c. For example, both Linux 2.0.1 and
makepresres.c describe systems and methods for performing data storage and
retrieval using known programming techniques to yield a predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

the maximum number of records that the function rt_cache_add can
remove from a linked list.

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

To the extent the preamble is a limitation, makepsres.c discloses a method for
storing and retrieving information records using a linked list to store and
provide access to the records, at least some of the records automatically
expiring. makepsres.c also discloses a method for storing and retrieving
information records using a hashing technique to provide access to the records
and using an external chaining technique to store the records with same hash
address, at least some of the records automatically expiring.

For example, makepsres.c includes a hash table of linked lists UPRResources,
of the size HashSize, which is defined as a size of 2048. See ll.75, 442-451.

typedef struct _t_UPRResource {
 char *name;
 char *file;
 char *category;
 int found;
 int noPrefix;
 struct _t_UPRResource *next;
} UPRResource;

UPRResource *UPRresources[HASHSIZE];

ll. 442-451.

Information may be retrieved from a hash table by calculating a hash key,
using the hash key to index a hash table to access a linked list, and by using a

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

while loop to traverse the linked list and access the information:

For example the hash key is calculated by Hash() and the hash key is then used
to index into the hash table UPRresources. ll. 502-503:

hash = Hash(resource->file);
current = previous = UPRresources[hash];

The function AddUPRResource walks through the linked list in the hash table,
to determine if the entries in that linked list are a “NONRESOURCE” entry,
and if so, replaces those entries with a resource entry. See ll.458-561. A
NONRESOURCE entry is an expired entry, which is removed, before it is
replaced with a resource entry.

 while (current != NULL) {
 comparison = strcmp (current->file,
resource->file);
 if (comparison > 0) break;

 if (comparison == 0) {
 if (noPrefix) break;

 if (strcmp(current->name, resource-
>name) != 0 ||
 strcmp(current->category, resource-
>category) != 0) { /* Same */
 if (strcmp(current->category,
"mkpsresPrivate") == 0 &&

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

 strcmp(current->name,
"NONRESOURCE") == 0) {

 /* Replace "NONRESOURCE" entry with
resource one */
 free(current->name);
 current->name = resource->name;
 free(current->category);
 current->category = resource-
>category;
 free(resource->file);
 free (resource);
 return;
 }
 fprintf(stderr,
 "%s: Warning: file %s identified
as different resources\n",
 program, resource->file);
 fprintf(stderr, " Using
%s\n", current->category);
 }
 free (resource->name);
 free (resource->file);
 free (resource->category);
 free (resource);
 return;
 }
 previous = current;

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

35 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

 current = current->next;
 }

 if (UPRresources[hash] == NULL) {
 UPRresources[hash] = resource;
 resource->next = NULL;

 } else if (current == NULL) {
 resource->next = NULL;
 previous->next = resource;
 } else {
 resource->next = current;

 if (current == UPRresources[hash]) {
 UPRresources[hash] = resource;
 } else {
 previous->next = resource;
 }
 }
ll. 505-556.

See also, makepsres.c ll. 1-2324.

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

makepsres.c discloses accessing a linked list of records. makepsres.c also
discloses accessing a linked list of records having same hash address.

For example, makepsres.c includes a hash table of linked lists UPRResources,
of the size HashSize, which is defined as a size of 2048. See ll.75, 442-451.

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

36 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

typedef struct _t_UPRResource {
 char *name;
 char *file;
 char *category;
 int found;
 int noPrefix;
 struct _t_UPRResource *next;
} UPRResource;

UPRResource *UPRresources[HASHSIZE];

ll. 442-451.

A function, Hash(), calculates a hash key:

hash = Hash(resource->file);
current = previous = UPRresources[hash];
ll. 502-503

int Hash(string)
 char *string;
{
 int hash = 0;
 unsigned char *ch = (unsigned char *)
string;

 while (1) {
 if (*ch == '\0') return hash % HASHSIZE;

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

37 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

 if (*(ch+1) == '\0') {
 hash += *ch;
 return hash % HASHSIZE;
 }
 hash += *ch++ + (*ch++ << 8);
 }
}
ll.244-258.

The hash key is then used to index a hash table to access a linked list. A while
loop is then used to traverse the linked list. See ll. 502-539:

hash = Hash(resource->file);
 current = previous = UPRresources[hash];

 while (current != NULL) {
 comparison = strcmp (current->file, resource->file);
 if (comparison > 0) break;

 if (comparison == 0) {
 if (noPrefix) break;

 if (strcmp(current->name, resource->name) != 0 ||
 strcmp(current->category, resource->category) != 0) { /* Same */
 if (strcmp(current->category, "mkpsresPrivate") == 0 &&
 strcmp(current->name, "NONRESOURCE") == 0) {

 /* Replace "NONRESOURCE" entry with resource one */

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

38 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

 free(current->name);
 current->name = resource->name;
 free(current->category);
 current->category = resource->category;
 free(resource->file);
 free (resource);
 return;
 }
 fprintf(stderr,
 "%s: Warning: file %s identified as different resources\n",
 program, resource->file);
 fprintf(stderr, " Using %s\n", current->category);
 }
 free (resource->name);
 free (resource->file);
 free (resource->category);
 free (resource);
 return;
 }
 previous = current;
 current = current->next;
 }
See also, makepsres.c ll. 1-2324.

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

makepsres.c discloses identifying at least some of the automatically expired
ones of the records.

For example, a hash key is calculated and then used to index a hash table to

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

39 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

access a linked list. A while loop is then used to traverse the linked list. During
traversal of the linked list, checks are performed to identify a
“NONRESOURCE” entry, which is then removed and following the removal a
resource entry is inserted in its place. See ll. 502-539:

hash = Hash(resource->file);
 current = previous = UPRresources[hash];

 while (current != NULL) {
 comparison = strcmp (current->file, resource->file);
 if (comparison > 0) break;

 if (comparison == 0) {
 if (noPrefix) break;

 if (strcmp(current->name, resource->name) != 0 ||
 strcmp(current->category, resource->category) != 0) { /* Same */
 if (strcmp(current->category, "mkpsresPrivate") == 0 &&
 strcmp(current->name, "NONRESOURCE") == 0) {

 /* Replace "NONRESOURCE" entry with resource one */
 free(current->name);
 current->name = resource->name;
 free(current->category);
 current->category = resource->category;
 free(resource->file);
 free (resource);
 return;

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

40 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

 }
 fprintf(stderr,
 "%s: Warning: file %s identified as different resources\n",
 program, resource->file);
 fprintf(stderr, " Using %s\n", current->category);
 }
 free (resource->name);
 free (resource->file);
 free (resource->category);
 free (resource);
 return;
 }
 previous = current;
 current = current->next;
 }

See also, makepsres.c ll. 1-2324.

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

makepsres.c discloses removing at least some of the automatically expired
records from the linked list when the linked list is accessed.

For example, a hash key is calculated and then used to index a hash table to
access a linked list. A while loop is then used to traverse the linked list. During
traversal of the linked list, a “NONRESOURCE” entry is removed and
following the removal a resource entry is inserted in its place. See ll. 502-539:

hash = Hash(resource->file);

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

41 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

 current = previous = UPRresources[hash];

 while (current != NULL) {
 comparison = strcmp (current->file, resource->file);
 if (comparison > 0) break;

 if (comparison == 0) {
 if (noPrefix) break;

 if (strcmp(current->name, resource->name) != 0 ||
 strcmp(current->category, resource->category) != 0) { /* Same */
 if (strcmp(current->category, "mkpsresPrivate") == 0 &&
 strcmp(current->name, "NONRESOURCE") == 0) {

 /* Replace "NONRESOURCE" entry with resource one */
 free(current->name);
 current->name = resource->name;
 free(current->category);
 current->category = resource->category;
 free(resource->file);
 free (resource);
 return;
 }
 fprintf(stderr,
 "%s: Warning: file %s identified as different resources\n",
 program, resource->file);
 fprintf(stderr, " Using %s\n", current->category);
 }

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

42 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

 free (resource->name);
 free (resource->file);
 free (resource->category);
 free (resource);
 return;
 }
 previous = current;
 current = current->next;
 }

See also, makepsres.c ll. 1-2324.

 [7d] inserting, retrieving
or deleting one of the
records from the system
following the step of
removing.

makepsres.c discloses inserting, retrieving or deleting one of the records from
the system following the step of removing.

For example, a hash key is calculated and then used to index a hash table to
access a linked list. A while loop is then used to traverse the linked list. During
traversal of the linked list, a “NONRESOURCE” entry is removed and
following the removal a resource entry is inserted in its place. See ll. 502-539:

hash = Hash(resource->file);
 current = previous = UPRresources[hash];

 while (current != NULL) {
 comparison = strcmp (current->file, resource->file);
 if (comparison > 0) break;

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

43 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

 if (comparison == 0) {
 if (noPrefix) break;

 if (strcmp(current->name, resource->name) != 0 ||
 strcmp(current->category, resource->category) != 0) { /* Same */
 if (strcmp(current->category, "mkpsresPrivate") == 0 &&
 strcmp(current->name, "NONRESOURCE") == 0) {

 /* Replace "NONRESOURCE" entry with resource one */
 free(current->name);
 current->name = resource->name;
 free(current->category);
 current->category = resource->category;
 free(resource->file);
 free (resource);
 return;
 }
 fprintf(stderr,
 "%s: Warning: file %s identified as different resources\n",
 program, resource->file);
 fprintf(stderr, " Using %s\n", current->category);
 }
 free (resource->name);
 free (resource->file);
 free (resource->category);
 free (resource);
 return;
 }

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

44 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

 previous = current;
 current = current->next;
 }

See also, makepsres.c ll. 1-2324.

4. The method according to
claim 3 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

Makepsres.c combined with Dirks, Thatte, the ’663 patent and/or the
Opportunistic Garbage Collection Articles discloses dynamically determining
maximum number of expired ones of the records to remove when the linked
list is accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

45 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

46 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both makepsres.c and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as makepsres.c. Moreover, one of ordinary skill in the
art would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with makepsres.c nothing more
than the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with makepsres.c and would

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

47 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in makepsres.c with the
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records disclosed by Thatte. For
example, Thatte discloses a system and method using hash tables and/or linked
lists and further discloses means for dynamically determining the maximum
number for the record search means to remove in the accessed linked list of
records. The disclosure of these claim elements in Thatte is clearly shown in
the chart of Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, Ass both makepsres.c and Thatte teach a system of data
storage and retrieval, one of ordinary skill in the art would recognize that the
result of combining makepsres.c with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove as taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine
makepsres.c with Thatte and recognize the benefits of doing so. For example,
the removal of expired records described in makepsres.c can be burdensome on
the system, adding to the system’s load and slowing down the system’s
processing. One of ordinary skill in the art would recognize that combining
makepsres.c with the teachings of Thatte would solve this problem by

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

48 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

dynamically determining how many records to delete based on, among other
things, the system load. Moreover, the '120 patent discloses that "[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one." '120 at
7:10-15. Thus, the '120 patent provides motivations to combine makepsres.c
with Thatte.

Alternatively, it would also be obvious to combine makepsres.c with the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

49 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

50 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

51 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both makepsres.c and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in makepsres.c. Moreover, one of ordinary skill in the
art would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with makepsres.c
would be nothing more than the predictable use of prior art elements according
to their established functions.

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

52 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with makepsres.c and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine makepsres.c with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

53 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both makepsres.c and the Opportunistic Garbage Collection Articles relate
to deletion of aged records, one of ordinary skill in the art would have
understood how to use the Opportunistic Garbage Collection Articles’ dynamic
decision on whether to perform a deletion based on a system load in other hash
table implementations such as makepsres.c. Moreover, one of ordinary skill in
the art would recognize that it would improve similar systems and methods in
the same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

54 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with makepsres.c would be nothing more than the predictable use of
prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with makepsres.c and
would have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in makepsres.c to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in makepsres.c with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in makepsres.c can be burdensome on
the system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

55 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by makepresres.c in combination with Dirks, Thatte,
the ‘663 Patent, or the Opportunistic Garbage Collection References, it is
disclosed by Linux 2.0.1, which describes dynamically determining maximum
number of expired ones of the records to remove when the linked list is
accessed. It would have been obvious to combine Linux 2.0.1
with makepresres.c. For example, both Linux 2.0.1 and
makepresres.c describe systems and methods for performing data storage and
retrieval using known programming techniques to yield a predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

56 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

57 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the

EXHIBIT D-16

Joint Invalidity Contentions & Production of
Documents

58 Case No. 6:09-CV-549-LED

US2008 1668424.3

Asserted Claims From
U.S. Pat. No. 5,893,120

makepsres.c, distributed as part of Plug And Play Linux distribution
(1995)

predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

EXHIBIT D-17

Joint Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

 Local Area Transport Protocol (“LAT”) alone and in combination

1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

On information and belief, all of the techniques claimed by the ‘120 patent
were implemented in LAT, which was in public use, sold, and/or offered for
sale prior to the filing date of the ’120 Patent. To the extent the preamble is a
limitation, on information and belief, the source code for LAT discloses an
information storage and retrieval system. Defendants reserve the right to
supplement these contentions once a complete version of the source code for
LAT is produced.

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

On information and belief, all of the techniques claimed by the ‘120 patent
were implemented in LAT, which was in public use, sold, and/or offered for
sale prior to the filing date of the ’120 Patent. On information and belief, the
source code for LAT discloses a linked list to store and provide access to
records stored in a memory of the system, at least some of the records
automatically expiring. On information and belief, the source code for LAT
also discloses a hashing means to provide access to records stored in a memory
of the system and using an external chaining technique to store the records
with same hash address, at least some of the records automatically expiring.
Defendants reserve the right to supplement these contentions once a complete
version of the source code for LAT is produced.

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of
records having the same
hash address,

On information and belief, all of the techniques claimed by the ‘120 patent
were implemented in LAT, which was in public use, sold, and/or offered for
sale prior to the filing date of the ’120 Patent. On information and belief, the
source code for LAT discloses a record search means utilizing a search key to
access the linked list. On information and belief, the source code for LAT also
discloses a record search means utilizing a search key to access a linked list of
records having the same hash address. Defendants reserve the right to
supplement these contentions once a complete version of the source code for
LAT is produced.

EXHIBIT D-17

Joint Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

 Local Area Transport Protocol (“LAT”) alone and in combination

[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the
records from the linked list
when the linked list is
accessed, and

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

On information and belief, all of the techniques claimed by the ‘120 patent
were implemented in LAT, which was in public use, sold, and/or offered for
sale prior to the filing date of the ’120 Patent. On information and belief, the
source code for LAT discloses the record search means including a means for
identifying and removing at least some of the expired ones of the records from
the linked list when the linked list is accessed. On information and belief, the
source code for LAT also discloses the record search means including means
for identifying and removing at least some expired ones of the records from the
linked list of records when the linked list is accessed. Defendants reserve the
right to supplement these contentions once a complete version of the source
code for LAT is produced.

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

On information and belief, all of the techniques claimed by the ‘120 patent
were implemented in LAT, which was in public use, sold, and/or offered for
sale prior to the filing date of the ’120 Patent. On information and belief, the
source code for LAT discloses means, utilizing the record search means, for
accessing the linked list and, at the same time, removing at least some of the
expired ones of the records in the linked list. On information and belief, the
source code for LAT also discloses utilizing the record search means, for
inserting, retrieving, and deleting records from the system and, at the same
time, removing at least some expired ones of the records in the accessed linked
list of records. Defendants reserve the right to supplement these contentions
once a complete version of the source code for LAT is produced.

2. The information storage
and retrieval system
according to claim 1
further including means for

6. The information storage
and retrieval system
according to claim 5
further including means for

On information and belief, all of the techniques claimed by the ‘120 patent
were implemented in LAT, which was in public use, sold, and/or offered for
sale prior to the filing date of the ‘120 Patent. On information and belief, the
source code for LAT discloses, means for dynamically determining maximum

EXHIBIT D-17

Joint Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

 Local Area Transport Protocol (“LAT”) alone and in combination

dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

number for the record search means to remove in the accessed linked list of
records. Defendants reserve the right to supplement these contentions once a
complete version of the source code for LAT is produced.

Furthermore, on information and belief, a person of ordinary skill in the art
would have been motivated to combine LAT with the techniques taught by
Linux 2.0.1, Dirks, Thatte, the ‘663 patent, and/or the Opportunistic Garbage
Collection Articles to disclose means for dynamically determining maximum
number for the record search means to remove in the accessed linked list of
records. Defendants reserve the right to supplement these contentions once a
complete version of the source code for LAT is produced.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a

EXHIBIT D-17

Joint Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

 Local Area Transport Protocol (“LAT”) alone and in combination

predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of

EXHIBIT D-17

Joint Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

 Local Area Transport Protocol (“LAT”) alone and in combination

entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both LAT and Dirks relate to deletion of aged records upon the allocation
of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as LAT. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with LAT nothing more than the
predictable use of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with LAT and would have

EXHIBIT D-17

Joint Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

 Local Area Transport Protocol (“LAT”) alone and in combination

seen the benefits of doing so. One possible benefit, for example, is saving the
system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in LAT with the means for
dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. For example,
Thatte discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, Ass both LAT and Thatte teach a system of data storage
and retrieval, one of ordinary skill in the art would recognize that the result of
combining LAT with Thatte would be nothing more than the predictable use of
prior art elements according to their established functions. The resulting
combination would include the capability to determine the maximum number
for the record search means to remove as taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine LAT
with Thatte and recognize the benefits of doing so. For example, the removal
of expired records described in LAT can be burdensome on the system, adding
to the system’s load and slowing down the system’s processing. One of
ordinary skill in the art would recognize that combining LAT with the
teachings of Thatte would solve this problem by dynamically determining how

EXHIBIT D-17

Joint Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

 Local Area Transport Protocol (“LAT”) alone and in combination

many records to delete based on, among other things, the system load.
Moreover, the '120 patent discloses that "[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120
patent provides motivations to combine LAT with Thatte.

Alternatively, it would also be obvious to combine LAT with the ’663 patent.
Disclosure of these claim elements in the ’663 patent is clearly shown in the
chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by

EXHIBIT D-17

Joint Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

 Local Area Transport Protocol (“LAT”) alone and in combination

moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT D-17

Joint Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

 Local Area Transport Protocol (“LAT”) alone and in combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does

EXHIBIT D-17

Joint Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

 Local Area Transport Protocol (“LAT”) alone and in combination

not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both LAT and the ’663 patent relate to deletion of records from hash tables
using external chaining, one of ordinary skill in the art would understood how
to use the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load in other hash table implementations such as that
described in LAT. Moreover, one of ordinary skill in the art would recognize
that it would improve similar systems and methods in the same way. As the
’120 patent states “[a] person skilled in the art will appreciate that the
technique of removing all expired records while searching the linked list can
be expanded to include techniques whereby not necessarily all expired records
are removed, and that the decision regarding if and how many records to delete
can be a dynamic one.” The ’120 patent at 7:10-15. Additionally, one of
ordinary skill in the art would recognize that the result of combining the ’663
patent’s deletion decision procedure with LAT would be nothing more than the
predictable use of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have

EXHIBIT D-17

Joint Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

 Local Area Transport Protocol (“LAT”) alone and in combination

combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with LAT and would
have seen the benefits of doing so. One such benefit, for example, is that the
system would avoid performing deletions when the system load exceeded a
threshold.

Alternatively, it would also be obvious to combine LAT with the Opportunistic
Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with

EXHIBIT D-17

Joint Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

 Local Area Transport Protocol (“LAT”) alone and in combination

responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both LAT and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as LAT. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how

EXHIBIT D-17

Joint Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

 Local Area Transport Protocol (“LAT”) alone and in combination

many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with LAT would be nothing more than the predictable use of prior
art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with LAT and would
have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in LAT to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in LAT
with the fundamental concept of dynamically determining the maximum
number of expired records to remove in an accessed linked list of records to
solve a number of potential problems. For example, the removal of expired
records described in LAT can be burdensome on the system, adding to the
system’s load and slowing down the system’s processing. Moreover, the
removal could also force an interruption in real-time processing as the
processing waits for the removal to complete.

EXHIBIT D-17

Joint Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

 Local Area Transport Protocol (“LAT”) alone and in combination

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by LAT in combination with Dirks, Thatte, the ‘663
Patent, or the Opportunistic Garbage Collection References, it is disclosed by
Linux 2.0.1, which describes dynamically determining maximum number of
expired ones of the records to remove when the linked list is accessed. It
would have been obvious to combine Linux 2.0.1 with LAT. For example,
both Linux 2.0.1 and LAT describe systems and methods for performing data
storage and retrieval using known programming techniques to yield a
predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function
rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the

EXHIBIT D-17

Joint Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

 Local Area Transport Protocol (“LAT”) alone and in combination

variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux
2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

EXHIBIT D-17

Joint Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

 Local Area Transport Protocol (“LAT”) alone and in combination

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function
rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

EXHIBIT D-17

Joint Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

 Local Area Transport Protocol (“LAT”) alone and in combination

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than
the maximum number of records that the function rt_cache_add can
remove from a linked list.

3. A method for storing 7. A method for storing On information and belief, all of the techniques claimed by the ‘120 patent

EXHIBIT D-17

Joint Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

 Local Area Transport Protocol (“LAT”) alone and in combination

and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

were implemented in LAT, which was in public use, sold, and/or offered for
sale prior to the filing date of the ’120 Patent. To the extent the preamble is a
limitation, on information and belief, the source code for LAT discloses a
method for storing and retrieving information records using a linked list to
store and provide access to the records, at least some of the records
automatically expiring. On information and belief, the source code for LAT
also discloses a method for storing and retrieving information records using a
hashing technique to provide access to the records and using an external
chaining technique to store the records with same hash address, at least some
of the records automatically expiring. Defendants reserve the right to
supplement these contentions once a complete version of the source code for
LAT is produced.

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

On information and belief, all of the techniques claimed by the ‘120 patent
were implemented in LAT, which was in public use, sold, and/or offered for
sale prior to the filing date of the ’120 Patent. On information and belief, the
source code for LAT discloses accessing a linked list of records. On
information and belief, the source code for LAT also discloses accessing a
linked list of records having same hash address. Defendants reserve the right
to supplement these contentions once a complete version of the source code for
LAT is produced.

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

On information and belief, all of the techniques claimed by the ‘120 patent
were implemented in LAT, which was in public use, sold, and/or offered for
sale prior to the filing date of the ’120 Patent. On information and belief, the
source code for LAT discloses identifying at least some of the automatically
expired ones of the records. Defendants reserve the right to supplement these

EXHIBIT D-17

Joint Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

 Local Area Transport Protocol (“LAT”) alone and in combination

contentions once a complete version of the source code for LAT is produced.

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

On information and belief, all of the techniques claimed by the ‘120 patent
were implemented in LAT, which was in public use, sold, and/or offered for
sale prior to the filing date of the ’120 Patent. On information and belief, the
source code for LAT discloses removing at least some of the automatically
expired records from the linked list when the linked list is accessed.
Defendants reserve the right to supplement these contentions once a complete
version of the source code for LAT is produced.

 [7d] inserting, retrieving
or deleting one of the
records from the system
following the step of
removing.

On information and belief, all of the techniques claimed by the ‘120 patent
were implemented in LAT, which was in public use, sold, and/or offered for
sale prior to the filing date of the ’120 Patent. On information and belief, the
source code for LAT discloses inserting, retrieving or deleting one of the
records from the system following the step of removing. Defendants reserve
the right to supplement these contentions once a complete version of the source
code for LAT is produced.

4. The method according to
claim 3 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

On information and belief, all of the techniques claimed by the ‘120 patent
were implemented in LAT, which was in public use, sold, and/or offered for
sale prior to the filing date of the ‘120 Patent. On information and belief, the
source code for LAT discloses dynamically determining maximum number of
expired ones of the records to remove when the linked list is accessed.
Defendants reserve the right to supplement these contentions once a complete
version of the source code for LAT is produced.

Furthermore, on information and belief, a person of ordinary skill in the art

EXHIBIT D-17

Joint Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

 Local Area Transport Protocol (“LAT”) alone and in combination

would have been motivated to combine LAT with the techniques taught by
Linux 2.0.1, Dirks, Thatte, the ‘663 patent, and/or the Opportunistic Garbage
Collection Articles to disclose dynamically determining maximum number of
expired ones of the records to remove when the linked list is accessed.
Defendants reserve the right to supplement these contentions once a complete
version of the source code for LAT is produced.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

For example, as summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG

EXHIBIT D-17

Joint Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

 Local Area Transport Protocol (“LAT”) alone and in combination

to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the

EXHIBIT D-17

Joint Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

 Local Area Transport Protocol (“LAT”) alone and in combination

occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both LAT and Dirks relate to deletion of aged records upon the allocation
of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as LAT. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with LAT nothing more than the
predictable use of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with LAT and would have
seen the benefits of doing so. One possible benefit, for example, is saving the
system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in LAT with the means for

EXHIBIT D-17

Joint Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

 Local Area Transport Protocol (“LAT”) alone and in combination

dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. For example,
Thatte discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, Ass both LAT and Thatte teach a system of data storage
and retrieval, one of ordinary skill in the art would recognize that the result of
combining LAT with Thatte would be nothing more than the predictable use of
prior art elements according to their established functions. The resulting
combination would include the capability to determine the maximum number
for the record search means to remove as taught by Thatte.

Further, one of ordinary skill in the art would be motivated to combine LAT
with Thatte and recognize the benefits of doing so. For example, the removal
of expired records described in LAT can be burdensome on the system, adding
to the system’s load and slowing down the system’s processing. One of
ordinary skill in the art would recognize that combining LAT with the
teachings of Thatte would solve this problem by dynamically determining how
many records to delete based on, among other things, the system load.
Moreover, the '120 patent discloses that "[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how

EXHIBIT D-17

Joint Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

 Local Area Transport Protocol (“LAT”) alone and in combination

many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120
patent provides motivations to combine LAT with Thatte.

Alternatively, it would also be obvious to combine LAT with the ’663 patent.
Disclosure of these claim elements in the ’663 patent is clearly shown in the
chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. For example, as summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.

EXHIBIT D-17

Joint Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

 Local Area Transport Protocol (“LAT”) alone and in combination

Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load

EXHIBIT D-17

Joint Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

 Local Area Transport Protocol (“LAT”) alone and in combination

to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both LAT and the ’663 patent relate to deletion of records from hash tables
using external chaining, one of ordinary skill in the art would understood how
to use the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load in other hash table implementations such as that
described in LAT. Moreover, one of ordinary skill in the art would recognize
that it would improve similar systems and methods in the same way. As the
’120 patent states “[a] person skilled in the art will appreciate that the
technique of removing all expired records while searching the linked list can
be expanded to include techniques whereby not necessarily all expired records
are removed, and that the decision regarding if and how many records to delete
can be a dynamic one.” The ’120 patent at 7:10-15. Additionally, one of
ordinary skill in the art would recognize that the result of combining the ’663

EXHIBIT D-17

Joint Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

 Local Area Transport Protocol (“LAT”) alone and in combination

patent’s deletion decision procedure with LAT would be nothing more than the
predictable use of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with LAT and would
have seen the benefits of doing so. One such benefit, for example, is that the
system would avoid performing deletions when the system load exceeded a
threshold.

Alternatively, it would also be obvious to combine LAT with the Opportunistic
Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

For example, the Opportunistic Garbage Collection Articles disclose in part:

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

EXHIBIT D-17

Joint Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

 Local Area Transport Protocol (“LAT”) alone and in combination

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both LAT and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as LAT. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the

EXHIBIT D-17

Joint Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

 Local Area Transport Protocol (“LAT”) alone and in combination

same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with LAT would be nothing more than the predictable use of prior
art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with LAT and would
have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in LAT to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in LAT
with the fundamental concept of dynamically determining the maximum
number of expired records to remove in an accessed linked list of records to
solve a number of potential problems. For example, the removal of expired
records described in LAT can be burdensome on the system, adding to the

EXHIBIT D-17

Joint Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

 Local Area Transport Protocol (“LAT”) alone and in combination

system’s load and slowing down the system’s processing. Moreover, the
removal could also force an interruption in real-time processing as the
processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

To the extent that dynamically determining a maximum number of expired
records is not disclosed by LAT in combination with Dirks, Thatte, the ‘663
Patent, or the Opportunistic Garbage Collection References, it is disclosed by
Linux 2.0.1, which describes dynamically determining maximum number of
expired ones of the records to remove when the linked list is accessed. It
would have been obvious to combine Linux 2.0.1 with LAT. For example,
both Linux 2.0.1 and LAT describe systems and methods for performing data
storage and retrieval using known programming techniques to yield a
predictable result.

When invoked, the function rt_cache_add automatically increments an
integer variable rt_cache_size. See Linux 2.0.1, route.c at line 1359.
When the function rt_cache_add removes an expired record, the function

EXHIBIT D-17

Joint Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

 Local Area Transport Protocol (“LAT”) alone and in combination

rt_cache_add decrements the variable rt_cache_size. See Linux
2.0.1, route.c at line 1373. Thus, the variable rt_cache_size indicates the
number of records in the hash table (i.e., ip_rt_hash_table). Because
the function rt_cache_add automatically increments and decrements the
variable rt_cache_size, the variable rt_cache_size is determined
dynamically.

Furthermore, LINUX 2.0.1 includes the function rt_garbage_collect_1.
The function rt_garbage_collect_1 loops through each of the linked
lists in the ip_rt_hash_table global variable. See Linux 2.0.1, route.c at
lines 1122-1138. In this way, the function rt_garbage_collect_1
accesses the linked list. When the function rt_garbage_collect_1
identifies a record that is expired, the function rt_garbage_collect_1
decrements the variable rt_cache_size and frees the record. See Linux
2.0.1, route.c at lines 1128-1135.

Because all records in the linked list can be expired and all records in the hash
table can be in the linked list, the variable rt_cache_size can represent a
dynamically determined maximum number of expired ones of the records to
remove when function rt_garbage_collect_1 accesses the linked list.

Furthermore, the function rt_cache_add determines whether the number of
records in the hash table exceeds a predetermined threshold
RT_CACHE_SIZE_MAX. If the number of records in the hash table exceeds
the predetermined threshold RT_CACHE_SIZE_MAX, the function
rt_cache_add invokes a function rt_garbage_collect. See Linux

EXHIBIT D-17

Joint Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

 Local Area Transport Protocol (“LAT”) alone and in combination

2.0.1, route.c at lines 1341-1342. The function rt_garbage_collect
invokes a function rt_garbage_collect_1. See Linux 2.0.1, route.c at
line 1293. The function rt_garbage_collect invokes a function
rt_garbage_collect_1. See Linux 2.0.1, route.c at line 1293.

The function rt_garbage_collect_1 loops through each linked list in
the hash table. See Linux 2.0.1, route.c at lines 1116-1132. For each linked
list in the hash table, the function rt_garbage_collect_1 looks at each
record in the linked list. See Linux 2.0.1, route.c at lines 1120-1131. For each
record in a linked list, the function rt_garbage_collect_1 determines
whether the record’s last use time plus the record’s expiration factor is later
than the current time. See Linux 2.0.1, route.c at line 1122. If the record’s last
use time plus the record’s expiration factor is less than the current time, the
function rt_garbage_collect_1 removes the record from the linked list.
See Linux 2.0.1, route.c at lines 1124-1130. The record’s expiration factor is
based on a variable expire and the record’s reference count. See Linux
2.0.1, route.c at line 1122. The variable expire is initially one half of the fixed
timeout value RT_CACHE_TIMEOUT. See Linux 2.0.1, route.c at line 1110.

After looping through all of the linked lists in this manner, the function
rt_garbage_collect_1 determines again whether the number of records
in the hash table is less than the predetermined threshold
RT_CACHE_SIZE_MAX. See Linux 2.0.1, route.c at line 1133. If the number
of items in the hash table is still greater than the predetermined threshold
RT_CACHE_SIZE_MAX, the function rt_garbage_collect_1 halves
the variable expire and loops through each of the linked lists in the hash
table. See Linux 2.0.1, route.c at line 1135. In this way, the function

EXHIBIT D-17

Joint Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

 Local Area Transport Protocol (“LAT”) alone and in combination

rt_garbage_collect_1 can remove additional records from the linked
lists in the hash table. The function rt_garbage_collect_1 repeats this
process until the total number of records in the hash table is less than the
predetermined threshold RT_CACHE_SIZE_MAX.

Under Bedrock’s proposed claim constructions, the records removed by the
function rt_garbage_collect_1 are “expired” records. That is, the
records removed by the function rt_garbage_collect_1 are data items which
after a limited time or after the occurrence of some event become obsolete,
such that their presence in the storage system is no longer needed or desired.

The function rt_cache_add only removes a record from a linked list when
the record’s last use time plus the fixed timeout value RT_CACHE_TIMEOUT
is less than the current time and the record’s reference count is zero. See Linux
2.0.1, route.c at line 1369. Thus, the maximum number of records that the
function rt_cache_add can remove from a given linked list is limited to
those records whose reference counts are zero.

In contrast, the maximum number of records that the function
rt_garbage_collect_1 can remove from a given linked list is not
limited to those records whose reference counts are zero. See Linux 2.0.1,
route.c at line 1122. Rather, the function rt_garbage_collect_1 can
remove records whose reference counts are zero and records whose reference
counts are greater than zero.

Consequently, the maximum number of records that the function
rt_garbage_collect_1 can remove from a linked list is different than

EXHIBIT D-17

Joint Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

US2008 1290273.1

Asserted Claims From
U.S. Pat. No. 5,893,120

 Local Area Transport Protocol (“LAT”) alone and in combination

the maximum number of records that the function rt_cache_add can
remove from a linked list.

EXHIBIT E

Joint Invalidity Contentions &
Production of Documents

1 Case No. 6:09-CV-549-LED

US2008 1671894.1

ADDITIONAL PRIOR ART

I. ADDITIONAL PRIOR ART PUBLICATIONS

Author, Title, Publisher, (Publication Information, Date of Publication).

Moshe Augenstein and Aaron Tennebaum, Data Structures and pl/I Programming 536-542, 550-
555, 585-604 (Prentice-Hall 1979) (QA76.9.D35 A93)

Robert J. Baron and Linda G. Shapiro, Data Structures and their Implementation 239-253, 303-
314 (Von Nostrand Reinhold 1980) (QA76.9.D35 B37)

A.T. Berztiss, Data Structures Theory and Practice 316-319, 329-339 (Academic Press 1971)
(QA76.6.B745)

A.T. Berztiss, Data Structures Theory and Practice 416-420, 431-460 (Academic Press 2d Edition
1975) (QA 76.6.B475 1975)

David Clark, Van Jacobson, John Romkey, and Howard Salwen, An Analysis of TCP Processing
Overhead, IEEE COMMUNICATIONS MAGAZINE, June 1989, at p. 23-29

Luc Devroye, Lecture Notes on Bucket Algorithms 10-16 (Birkhauser Boston 1986)
(QA76.9.D35 D48)

I. Ganapathy and R.F. Hobson, GPMS, A general Purpose Memory Management System ---
User’s Memory --- That is, Proceedings of the Eighth International Conference on APL, 155-165
(1976)

C.C. Gotlieb and L.R. Gotlieb, Data Types and Structures 341-346 (Prentice-Hall 1978)
(QA76.9.D35 G67)

Patrick A.V. Hal, Computational Structures an Introduction to Non-numerical Computing 119-
134 (Macdonald & Co. 1975) (QA76.9.D35 H34)

Ellis Horowitz and Sartaj Sahni, Fundamentals of Data Structures 456-471 (Computer Science
Press 1983) (QA76.9.D35 H67 1983)

A Klinger, K.S. Fu, T.L. Kunii, Data Structures, Computer Graphics, and Pattern recognition 109-
114 (Academic Press 1977) (QA 76.9.D35 D37)

Robert L. Kruse, Programming with Data Structures, Pascal Version 499-523 (Prentice-Hall
1989) (QA76.6.K774 1989)

James Richard Low, Automatic Coding: Choice of Data Structures 24,25,32(Birkhauser Verlag

EXHIBIT E

Joint Invalidity Contentions &
Production of Documents

2 Case No. 6:09-CV-549-LED

US2008 1671894.1

Author, Title, Publisher, (Publication Information, Date of Publication).

Basel 1976) (QA76.9.D35 L68)

Udi Manber, Introduction to Algorithms a Creative Approach 78-83 (Addison-Wesley 1989) (QA
76.9+.D35 M36 1989)

William G. McArthur and J. Winston Crawley, Structuring Data with PASCAL 604-608
(Prentice Hall 1992) (QA76.9.D35 M39 1992)

Edward M. Reingold and Wilfred J. Hansen, Data Structures in Pascal 268-277, 376-414 (Little,
Brown 1986) (QA76.9.D35 R443 1986)

Edward M. Reingold and Wilfred J. Hansen, Data Structures 246-253, 332-364 (Little, Brown
1983) (QA76.9.D35 R44 1983)

M.J.R. Shave, Data Structures 94-116 (McGraw Hill 1975) (QA 76.9.D35 S47)

Jean-Paul Tremblay and Paul G. Sorenson, An Introduction to data Structures with Applications
518-524, 563-568, 611-623 (McGraw-Hill 2d Edition 1984) (QA76.9.D35 T73 1984)

Steven Wartik, Boolean Operations p.282-292 and Steven Wartik, Edward Fox, Lenwood Heath,
and Qi-fan Chen, Hashing Algorithms p.293-318; both published in Information Retireval Data
Structures & Algorithms, edited by William B. Frakes and Ricardo Baeza-Yates (Prentice Hall
1992) (QA76.9.D35 I543 1992)

