

January 12, 2011

The Honorable John D. Love
William M. Steger Federal Building and Unites States Courthouse
211 W. Ferguson, Room 210
Tyler, Texas 75702

Re: Bedrock Computer Technologies, LLC v. SoftLayer Technologies, Inc., 6:09-CV-00269
– Defendants Letter Brief Requesting Permission to File Motion for Summary Judgment
of Non-Infringement

Dear Judge Love:

Defendants respectfully request the Court’s permission to file a joint motion for summary
judgment of non-infringement of U.S. Patent Number 5,893,120 (“the ’120 patent”).1 The
accused instrumentalities2—servers using versions of the Linux kernel prior to 2.6.253 do not
meet all elements of the ’120 patent because: (1) removal of records does not occur “when the
linked list is accessed” (’120 patent claims 1, 3, 4, 5, 7, and 8); (2) the removed records are not
“expired” (’120 patent claims 1, 3, 5, and 7); (3) there is no “dynamically determining maximum
number” of expired records to remove (’120 patent claims 2, 4, 6, and 8) (for all accused
versions); (4) the accused code does not remove an expired record while using the record search
means to search for a record to delete (for all accused versions); and (5) there is no evidence that
the accused code has ever executed, as required by all asserted claims. Therefore, Defendants
are entitled to summary judgment of noninfringement of the ’120 patent.

A. The accused code does not remove expired records “when the linked list is
accessed.”

All independent claims of the ’120 patent require that both identification and removal of
expired records occur “when the linked list is accessed.” The Court has construed this term to
mean “both identification and removal of the automatically expired record(s) occurs during the
same access of the linked list.” Dkt. No. 369 at 21-22.

In the accused code, the identification and removal does not occur during the “same
access” of the linked list. Specifically, Bedrock accuses code that accesses a linked list and
identifies a “candidate” record (an IP route) that may (or may not) be later removed during a
separate and distinct access. The accused code includes a while-loop that traverses an IP routing
cache to determine whether a particular IP route (the target record) is already present. See, e.g.,

1 “Defendants” refers to all defendants in the litigation, each of which joins in this letter brief.
2 The Accused Instrumentalities are computer equipment configured with specified versions of the Linux operating
system kernel. For convenience, this letter brief refers to “accused code” as a short-hand reference to the pertinent
code identified by Bedrock in the specified versions of the Linux operating system kernel.
3 Except for Google, Defendants are only accused of using versions of Linux prior to 2.6.25. Accordingly, this joint
letter only addresses versions of Linux prior to 2.6.25, and all references to “accused versions” or “accused code” in
this letter means versions of Linux prior to 2.6.25. Google is filing a separate letter requesting permission to file a
motion for summary judgment of non-infringement for its modified 2.6.26 version of Linux.

Bedrock Computer Technologies, LLC v. Softlayer Technologies, Inc. et al Doc. 382

Dockets.Justia.com

http://dockets.justia.com/docket/texas/txedce/6:2009cv00269/116887/
http://docs.justia.com/cases/federal/district-courts/texas/txedce/6:2009cv00269/116887/382/
http://dockets.justia.com/

2

Infringement Contentions for 2.6.18 (“Infring. Cont.”), at 6-7 (accusing the function
rt_intern_hash() in net/ipv4/route.c). The accused code includes conditional logic that identifies
a candidate record (IP route) that may (or may not) be removed from a linked list under certain
circumstances. See id. However, the accused code does not remove the candidate record during
the same while-loop that accesses the linked list to search for a target record. Rather, the code
performs any removal only after the while-loop has completed its access of the linked list.4 See,
e.g., Linux 2.6.18.1, route.c, lines 915-1044. That is, the removal occurs during a separate and
distinct access. Thus, there is no identification and removal of an expired record during the
“same access” of a linked list, and there is no literal infringement of the independent claims in
the ’120 patent, including the means-plus-function claims 1 and 5. Intellectual Sci. & Tech., Inc.
v. Sony Elecs., Inc., 589 F.3d 1179, 1183 (Fed. Cir. 2009) (“For a means-plus-function claim
term, the term literally covers an accused device if the relevant structure in the accused device
performs the identical function recited in the claim and that structure is identical or equivalent to
the corresponding structure in the specification.”).

Bedrock has not alleged infringement under the doctrine of equivalents. Summary
judgment of non-infringement based on the doctrine of equivalents is proper on this basis alone.
Further, identifying the candidate record and removing the record in different accesses is
substantially different than identifying and removing the record during the “same access.” Put
another way, removing a record after the while-loop has completed accessing the linked list and
identifying the candidate record is substantially different from removing a record during the
“same access,” and cannot be held equivalent under the doctrine of equivalents. See Planet
Bingo v. GameTech, Int’l, 472 F.3d 1338, 1344 (Fed. Cir. 2006) (holding that under the doctrine
of equivalents, “before” can never be equivalent to “after”). The same goes for equivalence
under 35 U.S.C. § 112(6). Ishida Co. v. Taylor, 221 F.3d 1310, 1316 (Fed. Cir. 2000) (doctrine
of equivalents and 112(6) equivalence collapse into same analysis for structural equivalents). To
expand the claim limitation to include removal “after” the access to the linked list that identifies
the candidate record would entirely ignore the construction of this Court and the clear intent of
the patentee. Thus, both identification and removal of the candidate record in the accused Linux
versions do not occur when the linked list is accessed, and Defendants are entitled to summary
judgment of non-infringement for those kernels.

B. In the accused code, the record that is removed is not “expired.”

The independent claims of the ’120 patent require the removal of an “expired” record,
which this Court has construed to mean “obsolete and therefore no longer needed or desired in
the storage system because of some condition, event, or period of time.” Dkt. No. 369 at 7-9. In
the accused code, Bedrock alleges that the “expired” record is the “candidate” for deletion

4 Bedrock’s proposed reexamination amendments to claims 3 and 7 support this argument. In its Nov. 23, 2010
Amendment in Ex Parte Reexamination of U.S. Patent No. 5,893,120 (“Amendment”), Bedrock amended the claims
to read “accessing the linked list of records to search for a target record, identifying at least some of the
automatically expired ones of the records while searching for the target record, and removing at least some of the
automatically expired records from the linked list when the linked list is accessed.” Bedrock states that this
amendment is merely a clarification. See Amendment, at 3, 7. Nonetheless, once the while-loop ends, there is no
further searching of the linked list for a target record; the target record has already been found or does not exist in
the route cache. In either event, the removal of a candidate occurs only after the first access to the linked list has
ended.

3

identified within the while-loop that accesses the linked list while searching for a record in the
routing cache. See, e.g., Infring. Cont. at 6-7.

But the “candidate” record for removal is not “expired.” When the while-loop is
accessing the linked list of IP routing cache records, each record is evaluated by the function
rt_score(). See id. at 6; Linux 2.6.18.1, route.c at 966-973. Rt_score() weighs a number of
criteria, including the time the record was last used and the type of IP route (e.g., unicast or
multicast), to determine a score. See, e.g., Linux 2.6.18.1 at lines 542-561. If the score for a
record is lower than the lowest score of the records that have been previously evaluated during
that access of the linked list, the record becomes the new “candidate” for deletion. Id. Thus,
rt_score() does not determine whether a record is expired, or obsolete, and therefore no longer
needed or desired—in fact, the candidate record may or may not be removed, and the routing
information contained in that candidate record can later be used by the system as a valid IP route.
The only determination made is that the candidate record is the lowest scoring of the records in
the linked list at that time.

Because the record identified by Bedrock as the “expired” record is not, in fact, expired
at all, no accused version can meet all the limitations of the independent claims of the ’120
patent. Bedrock has not alleged infringement under the doctrine of equivalents, but there cannot
be infringement under the doctrine of equivalents unless all limitations are met. Warner-
Jenkinson Co. v. Hilton Davis Chem. Co. 520 U.S. 17, 29-30 (1997). Accordingly, Defendants
are entitled to summary judgment of non-infringement of the ’120 patent as to those versions of
the Linux kernel.

C. No version of the Accused Linux Kernels contains code for “dynamically
determining maximum number” of records to remove.

Dependent claims 2, 4, 6, and 8 of the ’120 patent require that the accused code
dynamically determine a maximum number of expired ones of the records to remove when the
linked list is accessed. The Court construed “dynamically determining” to mean “making a
decision based on factors internal and external to the information storage and retrieval system.”
Dkt. No. 369 at 15. The Court declined to construe “maximum number,” but emphasized that
“[t]he maximum number need only be an upper limit as to the records to be removed.” Id. at 18.
Bedrock accuses the binary decision of whether or not to remove a single candidate record as the
dynamic determination of a maximum number. See Infring. Cont. at 8-9. This decision is
merely and always whether to remove the single candidate record; nothing more, nothing less.
Such a decision is plainly not “dynamically determining maximum number,” as claimed.

Instead, the accused code performs a binary decision of whether or not to perform a
removal of a single candidate record. It does not determine a number, much less a maximum
number of records to remove. Furthermore, the accused code does not make any evaluation of
internal or external conditions to determine a number of records to remove. A yes/no
determination of whether to remove a single candidate record plainly does not qualify as
“dynamically determining maximum number.”

Nor does the accused Linux code choose between alternate algorithms as required by the
“means for dynamically determining” limitations in claims 2 and 6. See Dkt. No. 369 at 40. The
Court’s construction requires “software instructions to dynamically determine a maximum
number of records to remove by choosing a search strategy of removing all expired records from
a linked list or removing some but not all of the expired records as described in col. 6 line 56 –

4

col. 7 line 15 and/or programmed with software instructions to dynamically determine a
maximum number of records to remove by choosing between the pseudo-code of the Search
Table Procedure (cols. 11 and 12) or Alternative Version of Search Table Procedure (cols. 11,
12, 13, and 14), and equivalents thereof.” As can be seen, there must be a choice between two
search strategies, or a choice between two search table procedures in the pseudocode in the ’120
patent. There is no such choice in the accused code. In substantial contrast to claims 2 and 6 as
construed by the Court, there is only a decision in the accused code of whether or not to remove
a single candidate record.

Again, Bedrock has not alleged infringement under the doctrine of equivalents, and the
structural differences prevent equivalence under §112(6). Ishida, 221 F.3d at 1316. Without
meeting all the elements, there can be no infringement. Warner-Jenkinson, 520 U.S. at 29-30.
Therefore, Defendants are entitled to summary judgment of non-infringement of claims 2, 4, 6,
and 8 of the ’120 patent.

D. The accused versions do not meet the delete limitation of Claim 5.

Claim 5 requires a “mea[n]s, utilizing the record search means, for inserting, retrieving,
and deleting records from the system and, at the same time, removing at least some expired ones
of the records in the accessed linked list of records.” See ’120 Patent, Claim 5. The Court
construed the means for deleting records to include Figure 7 or the Delete pseudocode in
Columns 11-12. Dkt. No. 369 at 42-43. Figure 7 and the pseudocode require the calling of
“record search means” to remove expired records it identifies while searching for the record to
delete. See ’120 Patent, at Fig. 7, Col 11-12. When the record to delete is found, the procedure
in Figure 7 and the pseudocode deletes the record and then terminates. Id.

Bedrock’s infringement contentions acknowledge that the accused code does not utilize
the record search means, portions of rt_intern_hash(), to delete a record. See Infring. Cont. at
35-36. Bedrock identifies rt_del() as the code that deletes a record from the routing cache.
However, rt_del() simply traverses a linked list until it finds the record to delete and then deletes
it. Rt_del() does not search for, identify or remove automatically expired records as is required
by the record search means of Figure 3. The code identified by Bedrock then calls
rt_intern_hash() after a record has been deleted by rt_del() to insert a new entry into a linked list
in the routing cache. See, e.g., Infring. Cont. at 34-36. Thus, the accused code does not remove
an expired record while utilizing the record search means to search for a particular record to
delete as required by Figure 7 and the pseudocode and cannot infringe Claim 5 either literally or
by equivalents.

E. There is no evidence to show that the accused code has executed on
Defendants’ systems.

Bedrock has offered no evidence that the accused code has ever executed on any of the
Defendants’ actual systems. Bedrock’s only argument to date is that the mere existence of the
accused code in Defendants’ systems is sufficient to prove infringement. For the method claims
of the ’120 patent, claims 3, 4, 7 and 8, such an argument is plainly insufficient, as method
claims are only infringed when they are performed.

Even assuming that the accused code would infringe the method claims of the ’120 patent
if performed, there is no evidence that any of the Defendants’ systems have ever executed it.
Bedrock cannot meet its burden of proof regarding infringement of the method claims of the

5

’120 patent. Therefore, Defendants are entitled to summary judgment of non-infringement of
claims 3, 4, 7, and 8.

Further, when an apparatus claim requires more than “mere capability,” a patent owner
must show that all of the claimed elements are present in the accused device. See Fantasy Sports
Props. v. Sportsline.com, Inc., 287 F.3d 1108, 1118 (Fed. Cir. 2002) (affirming a judgment of
non-infringement where the claims language “means for scoring . . . bonus points” required the
software to actually award bonus points”). Here, the system claims of the ’120 patent require the
removal of expired records while accessing the linked list, not just the capability of performing
these limitations.

Defendants’ networks comprise multiple hardware and software layers that spread out
network traffic loads. Defendants’ networks are architected and configured in such a way that
the accused code is not useful, functional or operational. Bedrock can advance no evidence that
the accused code does run or has ever run and so cannot meet its burden of proof of
infringement. Therefore, Defendants are similarly entitled to summary judgment of non-
infringement of claims 1, 2, 5, and 6.

F. Conclusion

As outlined above, there are no genuine issues of material fact and Defendants are
entitled to summary judgment of non-infringement of the ’120 patent given Bedrock’s
admissions. For the foregoing reasons the Court should permit the Defendants to file a joint
motion.

Respectfully submitted,

/s/ Claude M. Stern_____________
Claude M. Stern
Quinn Emanuel Urquhart & Sullivan
Attorneys For Defendant Google Inc. and
Match.Com, LLC

/s/ E. Danielle T. Williams________
E. Danielle T. Williams
Kilpatrick Townsend & Stockton LLP
Attorneys For Defendants SoftLayer Technologies,
Inc. and Amazon.com, Inc.

/s/ Alan L. Whitehurst________
Alan L. Whitehurst
Alston & Bird LLP
Attorneys For Defendants MySpace Inc.
and AOL Inc.

/s/ Yar R. Chaikovsky______
Yar R. Chaikovsky
McDermott Will & Emery
Attorneys For Defendant Yahoo! Inc.

DM_US 27421595-3.049256.0026

