

EXHIBIT B

Bedrock Computer Technologies, LLC v. Softlayer Technologies, Inc. et al Doc. 462 Att. 3

Dockets.Justia.com

http://dockets.justia.com/docket/texas/txedce/6:2009cv00269/116887/
http://docs.justia.com/cases/federal/district-courts/texas/txedce/6:2009cv00269/116887/462/3.html
http://dockets.justia.com/

IN THE UNITED STATES DISTRICT COURT
FOR THE EASTERN DISTRICT OF TEXAS

TYLER DIVISION

BEDROCK COMPUTER
TECHNOLOGIES LLC,

 Plaintiff,

v.

SOFTLAYER TECHNOLOGIES, INC.,
et al.

 Defendants.

§
§
§
§
§
§
§
§
§
§
§

 CASE NO. 6:09-cv-269

 Jury Trial Demanded

REBUTTAL REPORT OF DR. MARK JONES

ATTACHMENT 2 - RESPONSE TO LINUX 2.0 ASSERTED ART

-1-
Dallas 317148v1

1. Validity Analysis

1.1. Organization

I will discuss each claim element individually and will address Dr. Jeffay’s and Mr.

Williams’ arguments on an element-by-element basis. My use of the phrase “Linux 2.0” refers

to the asserted prior versions of the Linux kernel, not just Linux 2.0.1.

I incorporate by reference my discussion of the history of Linux in each and every

analysis below. For that reason, it should be understood that the specific reasoning that I provide

below does not limit my opinion as to why Linux 2.0 does not invalidate the claims of the ’120

patent. I also note that, in addition to the documents cited in this discussion, my opinion has

been informed by the source code for the versions of Linux as well as KTS0000247 and

KTS0000242.

1.2. Independent Claim 1

1.2.1. Term 1(c)

the record search means including a means for identifying and removing at least
some of the expired ones of the records from the linked list when the linked list is accessed,
and

1.2.1.1.Court’s Construction

The Court has construed term 1(c):

Claim Term Court’s Construction

the record search means including a means for
identifying and removing at least some of the
expired ones of the records from the linked list
when the linked list is accessed, and

Function: identifying and removing at least
some of the expired ones of the records from
the linked list when the linked list is accessed

Structure: CPU 10 and RAM 11 of FIG. 1 and
col. 3 lines 52-56 and portions of the
application software, user access software or
operating system software, as described at col.
4 lines 22-48, programmed with software
instructions as described in Boxes 33-42 of
FIG. 3 and in col. 5 line 53-col. 6 line 34,
and/or programmed with software instructions

-2-
Dallas 317148v1

as described in the pseudo-code of Search
Table Procedure (cols. 11 and 12) or Alternate
Version of Search Table Procedure (cols. 11,
12, 13, and 14), and equivalents thereof.

1.2.1.2.Analysis

Mr. Williams opines that it is the insertion and subsequent garbage collection on a linked

list that meet this step. See Williams Report at ¶¶ 25 through 37 (beginning on page 158).1 Dr.

Jeffay, on the other hand, opines that the search for duplicate records is the “access” and that the

code for searching for a duplicate and removing expired records meets this limitation. See Jeffay

Report at ¶¶ 252. Once again, neither Dr. Jeffay nor Mr. William articulates any theory of

statutory equivalence to support their opinions that this claim term is met. In any event, I

disagree with both Mr. Williams and Dr. Jeffay. As an initial matter, Linux 2.0 does not perform

the identical function of identifying and removing at least some of the expired ones of the

records from the linked list when the linked list is accessed. A hash value is passed as an

argument to rt_cache_add(), which accesses a linked list to insert a record. After the record is

inserted, rt_cache_add() releases access of the linked list, and then re-accesses the linked list to

perform on-demand garbage collection. That rt_cache_add() accesses the linked list twice—one

for inserting the record and then again to perform on-demand garbage collection. That there are

1 Mr. Williams also opines that the invocation of rt_garbage_collect() meets this limitation. See
Williams Report at ¶¶ 39-42 (beginning on page 160). As discussed in my opening report,
rt_garbage_collect() is an on-demand garbage collection routine and does not come close to
performing the function similar to the structure in the Court’s construction. Particularly,
rt_garbage_collect() has no structure identical to or substantially the combination of the record
searching, identification, and removing structures in the Court’s construction. Version 2.0.1 of
rt_garbage_collect() walks the entire hash list looking for expired entries. Expired entries are
then deleted when they are found. The garbage collection process stops when the cache size
goes below RT_CACHE_SIZE_MAX entries, which is hard-wired in the code Linux 2.0.1 to be
256.

-3-
Dallas 317148v1

two separate accesses is evidenced by the calls to cli(), which turns off interrupts thereby

preventing other threads from accessing—reading and/or writing—the linked list, and sti(),

which turn the interrupts back on.2 Because the identification and removal of expired records

does not perform when the linked list is accessed, i.e., using the access from claim 1(b), Linux

2.0 does not perform the identical function. Further, even assuming for the sake of argument that

Linux 2.0 performed the identical function, it does not perform the function in an identical or

substantially the same way as the structure in the Court’s construction. The structures in the

Court’s construction use the linked list access used for record searching to identify and remove

an expired record. rt_cache_add(), on the other hand, simply accesses a linked list to insert a

record. While it performs garbage collection immediately after this access, it does not piggyback

on any accessing that rt_cache_add() would do without garbage collection. Put another way, the

linked list is accessed by rt_cache_add() for no reason other than to perform garbage collection.

See also Microsoft Computer Dictionary 5ed. (Microsoft Press 2002) (defining the verb access to

be “[t]o gain entry to memory in order to read or write data.”).

1.3. Dependent Claim 2

1.3.1. Claim language

The information storage and retrieval system according to claim 1 further including
means for dynamically determining maximum number for the record search means to remove
in the accessed linked list of records.

1.3.1.1.Court’s Construction

The Court has construed the following within claim 2:

2 Linux 2.0 also includes the functions ip_rt_fast_lock() and ip_rt_unlock(). These routines do
not actually lock a linked list and instead keep a count of the number of threads which are
accessing the entire routing table. Based on the count, these functions will delay certain
processes from operating on the routing table, but they do not prevent all threads from accessing
the routing table. And again, the count applies to the entire routing table rather than an
individual linked list..

-4-
Dallas 317148v1

Claim Term Court’s Construction

means for dynamically determining maximum
number

Function: dynamically determining maximum
number for the record search means to remove
in the accessed linked list of records

Structure: CPU 10, and RAM 11 of FIG. 1 and
col. 3 lines 52-56 and portions of the
application software, user access software or
operating system software, as described at col.
4, lines 22-48, programmed with software
instructions to dynamically determine a
maximum number of records to remove by
choosing a search strategy of removing all
expired records from a linked list or removing
some but not all of the expired records as
described in col. 6 line 56 – col. 7 line 15
and/or programmed with software instructions
to dynamically determine a maximum number
of records to remove by choosing between the
pseudo-code of the Search Table Procedure
(cols. 11 and 12) or Alternative Version of
Search Table Procedure (cols. 11, 12, 13, and
14), and equivalents thereof.

1.3.1.2.Analysis

As claim 2 depends on claim 1, I incorporate by reference my analysis of claim 1. Dr.

Jeffay opines that this limitation is met by Linux 2.0 because Linux 2.0 “contains a conditional

statement that determines whether or not to delete an expired record based on a comparison of

the record’s expiration time with the current time.” See Jeffay Report at ¶ 263. Mr. Williams,

however, points to no dynamic determination for rt_cache_add() and instead focused on the

rt_garbage_collect() routine. See Williams at ¶¶ 81-92. I disagree; the structure in Linux 2.0

does not perform the recited function. And once more, both Dr. Jeffay and Mr. Williams ignore

the structure in the Court’s construction. In any event, the conditional statement that Dr. Jeffay

refers to is just a test for expiration. Mr. Williams’ conditional statement simply decides whether

-5-
Dallas 317148v1

to invoke an on-demand garbage collection routine. As such, neither structure in Linux 2.0

performs the identical function for this claim term.

1.4. Independent Claim 5

1.4.1. Term 5(c)

the record search means including means for identifying and removing at least some
expired ones of the records from the linked list of records when the linked list is accessed,
and

1.4.1.1.Court’s Construction

The Court has construed term 5(c):

Claim Term Court’s Construction

the record search means including means for
identifying and removing at least some expired
ones of the records from the linked list of
records when the linked list is accessed

Function: identifying and removing at least
some of the expired ones of the records from
the linked list when the linked list is accessed

Structure: CPU 10 and RAM 11 of FIG. 1 and
col. 3 lines 52-56 and portions of the
application software, user access software or
operating system software, as described at col.
4 lines 22-48, programmed with software
instructions as described in Boxes 33-42 of
FIG. 3 and in col. 5 line 53-col. 6 line 34,
and/or programmed with software instructions
as described in the pseudo-code of Search
Table Procedure (cols. 11 and 12) or Alternate
Version of Search Table Procedure (cols. 11,
12, 13, and 14), and equivalents thereof.

1.4.1.2. Analysis

Mr. Williams opines that it is the insertion and subsequent garbage collection on a linked

list that meet this step. See Williams Report at ¶ 126 (on page 177). Dr. Jeffay, on the other

hand, opines that the search for duplicate records is the “access” and that the code for searching

for a duplicate and removing expired records meets this limitation. See Jeffay Report at ¶¶ 252.

Once again, neither Dr. Jeffay nor Mr. William articulates any theory of statutory equivalence to

-6-
Dallas 317148v1

support their opinions that this claim term is met. In any event, I disagree with both Mr.

Williams and Dr. Jeffay. As an initial matter, Linux 2.0 does not perform the identical function

of identifying and removing at least some of the expired ones of the records from the linked list

when the linked list is accessed. A hash value is passed as an argument to rt_cache_add(),

which accesses a linked list to insert a record. After the record is inserted, rt_cache_add()

releases access of the linked list, and then re-accesses the linked list to perform on-demand

garbage collection. That rt_cache_add() accesses the linked list twice—one for inserting the

record and then again to perform on-demand garbage collection. That there are two separate

accesses is evidenced by the calls to cli(), which turns off interrupts thereby preventing other

threads from accessing—reading and/or writing—the linked list, and sti(), which turn the

interrupts back on.3 Because the identification and removal of expired records does not perform

when the linked list is accessed, i.e., using the access from claim 1(b), Linux 2.0 does not

perform the identical function. Further, even assuming for the sake of argument that Linux 2.0

performed the identical function, it does not perform the function in an identical or substantially

the same way as the structure in the Court’s construction. The structures in the Court’s

construction use the linked list access used for record searching to identify and remove an

expired record. rt_cache_add(), on the other hand, simply accesses a linked list to insert a

record. While it performs garbage collection immediately after this access, it does not piggyback

on any accessing that rt_cache_add() would do without garbage collection. Put another way, the

linked list is accessed by rt_cache_add() for no reason other than to perform garbage collection.

3 Linux 2.0 also includes the functions ip_rt_fast_lock() and ip_rt_unlock(). These routines do
not actually lock a linked list and instead keep a count of the number of threads which are
accessing the entire routing table. Based on the count, these functions will delay certain
processes from operating on the routing table, but they do not prevent all threads from accessing
the routing table. And again, the count applies to the entire routing table rather than an
individual linked list..

-7-
Dallas 317148v1

See also Microsoft Computer Dictionary 5ed. (Microsoft Press 2002) (defining the verb access to

be “[t]o gain entry to memory in order to read or write data.”).

1.5. Dependent Claim 6

1.5.1. Claim language

The information storage and retrieval system according to claim 5 further including
means for dynamically determining maximum number for the record search means to remove
in the accessed linked list of records.

1.5.1.1.Court’s Construction

The Court has construed the following within claim 6:

Claim Term Court’s Construction

means for dynamically determining maximum
number

Function: dynamically determining maximum
number for the record search means to remove
in the accessed linked list of records

Structure: CPU 10, and RAM 11 of FIG. 1 and
col. 3 lines 52-56 and portions of the
application software, user access software or
operating system software, as described at col.
4, lines 22-48, programmed with software
instructions to dynamically determine a
maximum number of records to remove by
choosing a search strategy of removing all
expired records from a linked list or removing
some but not all of the expired records as
described in col. 6 line 56 – col. 7 line 15
and/or programmed with software instructions
to dynamically determine a maximum number
of records to remove by choosing between the
pseudo-code of the Search Table Procedure
(cols. 11 and 12) or Alternative Version of
Search Table Procedure (cols. 11, 12, 13, and
14), and equivalents thereof.

1.5.1.2.Analysis

As claim 6 depends on claim 5, I incorporate by reference my analysis of claim 5. Dr.

Jeffay opines that this limitation is met by Linux 2.0 because Linux 2.0 “contains a conditional

-8-
Dallas 317148v1

-9-
Dallas 317148v1

statement that determines whether or not to delete an expired record based on a comparison of

the record’s expiration time with the current time.” See Jeffay Report at ¶ 263. Mr. Williams,

however, points to no dynamic determination for rt_cache_add() and instead focused on the

rt_garbage_collect() routine. See Williams at ¶¶ 81-92 and 152-153. I disagree; the structure in

Linux 2.0 does not perform the recited function. And once more, both Dr. Jeffay and Mr.

Williams ignore the structure in the Court’s construction. In any event, the conditional statement

that Dr. Jeffay refers to is just a test for expiration. Mr. Williams’ conditional statement simply

decides whether to invoke an on-demand garbage collection routine. As such, neither structure

in Linux 2.0 performs the identical function for this claim term.

	1. Validity Analysis
	1.1. Organization
	1.2. Independent Claim 1
	1.2.1. Term 1(c)
	1.2.1.1. Court’s Construction
	1.2.1.2. Analysis

	1.3. Dependent Claim 2
	1.3.1. Claim language
	1.3.1.1. Court’s Construction
	1.3.1.2. Analysis

	1.4. Independent Claim 5
	1.4.1. Term 5(c)
	1.4.1.1. Court’s Construction
	1.4.1.2. Analysis

	1.5. Dependent Claim 6
	1.5.1. Claim language
	1.5.1.1. Court’s Construction
	1.5.1.2. Analysis

