

EXHIBIT E

Bedrock Computer Technologies, LLC v. Softlayer Technologies, Inc. et al Doc. 462 Att. 6

Dockets.Justia.com

http://dockets.justia.com/docket/texas/txedce/6:2009cv00269/116887/
http://docs.justia.com/cases/federal/district-courts/texas/txedce/6:2009cv00269/116887/462/6.html
http://dockets.justia.com/

01980.51572/3959439.1

IN THE UNITED STATES DISTRICT COURT

FOR THE EASTERN DISTRICT OF TEXAS

TYLER DIVISION

Bedrock Computer Technologies LLC,

Plaintiff,

v.

Softlayer Technologies, Inc.,

et al.

Defendants.

Case No. 6:09-CV-269-LED

JURY TRIAL DEMANDED

DECLARATION OF DR. KEVIN JEFFAY

IN SUPPORT OF

DEFENDANTS’ MOTION FOR SUMMARY JUDGMENT REGARDING

INVALIDITY OF U.S. PATENT NO. 5,893,120

01980.51572/3959439.1 1

I, Dr. Kevin Jeffay, declare as follows:

1. I am over 18 years of age. The statements made herein are true and correct and

are of my own personal knowledge. I make this declaration in connection with Defendants’

Motion for Summary Judgment of Invalidity of U.S. Patent No. 5,893,120.

2. A detailed record of my professional qualifications, including a list of

publications, awards, professional activities, and recent testimony either at trial or at deposition,

is attached as Exhibit B to the Invalidity Expert Report I submitted in this action (attached as

Exhibit A hereto).

Invalidity

3. I wrote a report, dated January 25, 2011, detailing my opinions regarding the

invalidity of U.S. Patent No. 5,893,120 (the ‘120 Patent), as well as the basis and reasons

therefore, a true and correct copy of which is attached as Exhibit A. This report accurately

reflects my true opinion.

4. I declare under penalty of perjury under the laws of the United States of America

that the foregoing is true and correct. Executed on February 8, 2011 in Chapel Hill, N.C.

Respectfully submitted,

Kevin Jeffay, Ph.D.

EXHIBIT A

01980.51572/3920046.1

INVALIDITY EXPERT REPORT OF DR. KEVIN JEFFAY, PH.D

Bedrock Computer Technologies, LLC vs. Softlayer Technologies, Inc., et al.

Case No. 6:09-cv-269-LED (E.D. Tex.)

January 25, 2011

01980.51572/3934498.1 1

I. INTRODUCTION

1. My name is Kevin Jeffay. I am a tenured professor in the Department of

Computer Science at the University of North Carolina at Chapel Hill where I currently hold the

position of Gillian T. Cell Distinguished Professor of Computer Science.

2. I have been retained on behalf of Google Inc., and Match.com, LLC, to offer an

expert opinion on the validity of claims 1-8 of U.S. Patent No. 5,893,120 (hereafter, “the ‘120

Patent”).1 I submit this report to describe my opinions on these matters.

3. This report is structured as follows. The remainder of this section presents a

synopsis of my background and relevant expertise that qualify me as an expert in this matter.

Section II summarizes my opinions that the asserted claims of ‘120 Patent are invalid in light of

the prior art that existed at the time of filing on the application for the ‘120 Patent. Section III

provides some background material on the technology disclosed in the ‘120 Patent. Section IV

discusses my understanding of the legal standards I am to apply when assessing the validity of

patent claims. Section V presents my opinion on the definition of a person of ordinary skill in the

art at the time of the application for the ‘120 Patent. Section VI presents my analysis of the

validity of claims 1-8 of the ‘120 Patent.

4. In reaching the conclusions described herein, I have considered the documents

and materials identified in Exhibit A that is attached to this report. My opinions are also based

upon my education, training, research, knowledge, and personal and professional experience.

5. If asked at hearings or trial, I am prepared to testify on issues pertaining to the

materials alleged to be prior art to the ‘120 Patent, how those materials relate to the asserted

1 Though I have not currently been retained to render an opinion by any other defendants

in this case, I may ultimately render an opinion at trial on behalf of other defendants.

2

claims of the ‘120 Patent, and on the validity of the claims of the ‘120 Patent. I am further

prepared to testify on the operation of the systems and methods of the ‘120 Patent, relevant

background material such as computer programming and data structures.

6. The details of my analysis, and conclusions that form the basis for any testimony I

may give, are provided below. To support or summarize my opinions, any testimony I give may

include appropriate visual aids, some or all of the data or other documents and information cited

herein or identified in Exhibit A, and additional data or other information identified in discovery.

7. I reserve the right to supplement the opinions in this report based on any

subsequent testimony or facts revealed through discovery, as well as any subsequent reports

issued by the Plaintiff’s experts and the Court’s formal claim construction of the disputed terms

in this matter.

A. Qualifications

8. A detailed record of my professional qualifications, including a list of

publications, awards, professional activities, and recent testimony either at trial or at deposition,

is attached as Exhibit B to this report and summarized below.

9. I have a Ph.D. in computer science from the University of Washington, a M.Sc.

degree in computer science from the University of Toronto, and a B.S. degree with Highest

Distinction in mathematics from the University of Illinois at Urbana-Champaign.

10. I have been involved in the research and development of networked computing

systems for nearly 30 years. I have been a faculty member at North Carolina since 1989 where I

have performed research and taught in the areas of operating systems, computer networking,

anomaly detection, distributed systems, the world-wide web, multimedia computing and

networking, and real-time and embedded systems, among others. I consider myself an expert in

these areas as well as others.

3

11. I have authored or co-authored over 100 articles in peer-reviewed journals,

conference proceedings, texts, and monographs in the aforementioned areas of computer science

and others. I am currently an Associate Editor for the journal Real-Time Systems and have

previously served as the Editor-in-Chief for the journal Multimedia Systems. In addition, I have

edited and co-edited numerous published proceedings of technical conferences and have edited a

book of readings in multimedia computing and networking (with Hong-Jiang Zhang) published

by Morgan Kaufman.

12. I have served on numerous proposal review panels for the National Science

Foundation and other international funding agencies in the aforementioned areas of computer

science. I have served as a program chair or member of the technical program committee for

over 100 professional, international, and technical conferences, workshops, and symposia.

13. I have worked for, and had research collaborations with, companies such as Cisco

Systems, CloudShield, VMware, Lucent, Cabletron/Aprisma, IBM, Dell, Sun, Intel, DEC, and

Hewlett Packard, among others. All of these collaborations have involved computer networking,

distributed systems, and the Internet.

14. I am a named inventor on two U.S. Patents and I have a third application for a

patent pending. These patents relate generally to computer networking.

15. In my research and teaching I have considered problems of the design and

implementation of operating systems, computer networks, network communication protocols,

and distributed systems and services. I have also considered problems of network measurement

and the evaluation of network and server performance. Since 1992, I have served as the Director

of Undergraduate Studies for the Department of Computer Science at UNC. In this role I have

been responsible for curriculum development and student advising for the Department.

4

16. I have served as an expert witness and technical consultant in litigation matters

concerning operating systems, computer networks, distributed systems, telecommunication

networks, and telecommunications systems for cellular, wireline, and voice over IP (VoIP)

telephony, among others. This work has been performed on behalf of entities such as Cisco

Systems, AT&T, Lucent, Alcatel-Lucent, Enterasys, Nortel Networks, AOL, Verizon Wireless,

Cox Communications, Motorola, Green Hills Software, Akamai Technologies, Dell, and

Toshiba, among others. I have testified in several trials, arbitrations, and claim construction

hearings as an expert witness.

B. Compensation

17. I am being compensated for my work in this matter at the rate of $450 per hour

plus expenses. My compensation is in no way tied to the outcome of this matter.

II. SUMMARY OF OPINIONS

18. I understand that this suit has been brought by Bedrock Computer Technologies

LLC (“Bedrock”), the current owner of the ‘120 Patent. I further understand that Bedrock has

asserted claims 1-8 of the ‘120 Patent (collectively, “the asserted claims”) in this matter. I have

studied the ‘120 Patent and its file history as well as the prior art references cited below and

listed in Exhibit A. Having reviewed these materials, it is my opinion that:

• NRL BSD key management computer source code files key.c and key.h by Bao Phan,
Randall Atkinson, and Dan McDonald, US Naval Research Laboratory, 1995
(hereafter, “the NRL BSD source code”) in combination with itself or with “The Art
of Computer Programming,” Volume 3, “Searching and Sorting,” by D.E. Knuth,
Addison-Wesley, 1973 (hereafter, “the Knuth reference” or simply “Knuth”), Robert
L. Kruse, Data Structures and Program Design, Second Edition, Prentice-Hall,
Englewood Cliffs, New Jersey, 1987 (hereafter “Kruse”), or Daniel F. Stubbs and
Neil W. Webre, Data Structures with Abstract Data Types and Pascal, Brooks/Cole
Publishing Company, Monterey, California, 1985 (hereafter “Stubbs”) renders
obvious claims 1, 5, and 7. Further, the NRL BSD code in combination with U.S.
Patent 6,119,214, “Method For Allocation of Address Space in a Virtual Memory

5

System,” to Dirks, filed April 25, 1994, and issued September 12, 2000 (hereafter,
“the Dirks ‘214 Patent,” or simply “Dirks”) renders obvious claims 2, 4, 6, and 8.

• Xinu Operating System computer source code file gcache.c by Douglas Comer and
Shawn Ostermann, Purdue University, October 1991 (hereafter “GCache source
code”), and the companion documentation “GCache: A Generalized Caching
Mechanism,” Douglas Comer and Shawn Ostermann, Technical Report CSD-TR-91-
081, Department of Computer Science, Purdue University, November 1991 (revised,
March 1992) (hereafter “GCache report”) anticipates all claims of the ‘120 Patent
and, in combination with Dirks, renders obvious claims 2, 4, 6, and 8.

• Linux computer source code route.c, version 1.0.14, by Ross Biro et al., dated May,
31, 1993, part of the Linux operating system kernel, version 2.0.1, dated July 3, 1996
(hereafter, “Linux v2.0.1”) anticipates all claims of the ‘120 Patent and, in
combination with Dirks, renders obvious claims 2, 4, 6, and 8.

• U.S. Patent 5,121,495, “Methods and Apparatus For Information Storage and
Retrieval Utilizing Hashing Techniques,” to Nemes, issued June 9, 1992 (hereafter,
“the Nemes ‘495 Patent”), in combination with Knuth, Kruse, or Stubbs renders
obvious claims 1, 3, 5, and 7 of the ‘120 Patent and, in combination with Knuth,
Kruse, or Stubbs, and Dirks, NRL BSD, Linux v2.0.1, or GCache, renders obvious
claims 2, 4, 6, and 8.

19. The bases for these opinions are presented in detail below.

III. BACKGROUND ON THE TECHNOLOGY OF THE ‘120 PATENT

20. The technology at issue in this matter is a particular set of methods and systems

for storing and retrieving information in a computer system. The methods revolve around the use

of a basic technique in computer programming known as “hashing.” This section provides a brief

background on computer programming generally, and some specific ways that programmers

arrange data in the memory of computer so as to efficiently store and retrieve data. This includes

a discussion of the well-known technique of hashing as well as an overview of the specific

technology disclosed in the specification and claims of the ‘120 Patent.

6

A. Background on Computer Programs and Data Structures

21. Computer programs are sequences of instructions that cause the processor of the

computer to perform some useful task. The instructions perform various manipulations of data

that are stored in the memory of the computer. (The term “memory,” as used in this report, refers

to the random access memory [RAM] of the computer. This is a form of storage wherein the

computer’s processor can read or write any storage location in the memory in a single step at any

time.)

22. Abstractly, a computer program is the combination of one or more algorithms,

and one or more data structures. An algorithm is a set of specific steps (a “procedure”) to be

carried out by the processor to generate some specific result. For example, in the computing

field, there exist well-known algorithms to sort a sequence of numbers, to efficiently search a set

of data values for the presence or absence of a particular value, or to perform some mathematical

calculation such as to determine if a given value is a prime number, or to compute the greatest

common divisor of two integer numbers.

23. Data structures refer to the manner in which data is arranged in the computer’s

memory. Just as one can imagine numerous schemes for organizing a set of paper files in a filing

cabinet, a programmer can similarly chose from a number of differing ways of organizing data in

memory. And just as the scheme used for organizing paper files in a filing cabinet can effect the

effort required to store a new file or retrieve an existing file, so to can the scheme a programmer

chooses to use to arrange data in a computer’s memory effect the effort required by a program to

store and retrieve data.

1. Arrays

24. The simplest data structure for storing and retrieving data is known as an array.

An array consists of a contiguous sequence of memory locations. An array is used to store a

7

sequence (a collection) of related data values. Arrays have the advantage that any element of the

array can be accessed in a single step. If x is the location in memory of the first element in the

array (x is the “starting address” of the array), and y is the number of memory locations required

to store an element of the array, then the kth element in the array can be accessed in a single step

by simply accessing memory location x + (k–1)y. The figure below shows an array of nine

elements where locations 2-4 of the array presently store data values v1 through v3.

25. Arrays have the disadvantage that once the array is created, the size of the array is

fixed. That is, arrays occupy a fixed amount of memory (a fixed number of contiguous memory

locations). If additional storage is required, a new, larger array must be created and the contents

of the old array copied into the new, larger array. If the old array is large, the time required to

copy the old array to the new array can be large and thus undesirable.

2. Linked Lists

26. Another simple data structure for storing and retrieving data is known as a linked

list. A linked list consists of a set of nodes (also called “records”) that can be randomly

distributed throughout the computer’s memory. A node is a set of adjacent memory locations (a

small “block” or “region” of memory). In the simplest case, each node consists of two memory

locations (two “fields”): a first location storing a value and a second location storing a pointer to

another node. The value field of a node is the data item that is stored in the node (i.e., the data

value that the programmer wishes to store in memory). The pointer field of a node is the address

of (an indication of the location in memory of) the next node in the list.

8

27. The figure below shows a linked list of three nodes where y is the number of

memory locations required to store a data value in a node. The nodes of the linked list are stored

in memory at (unrelated) addresses x1, x2, and x3. In this example, the first node of the linked list

contains the data value v1, the second node contains the data value v2, and the third node contains

the data value v3. The pointer field in the first node of the linked list contains the starting address

of (“points to”) the second node in the linked list, and the pointer field in the second node of the

linked list contains the starting address of the third node in the linked list. As the list contains

only three nodes, the pointer field in the last node of the linked list (the third node of the linked

list [the node containing the data value v3]), contains an indication that the pointer field is

“empty” or invalid (does not point to any node in the linked list).

28. Using the data values stored in a linked list is more complex than using the data

values stored in an array. In order to use a data value stored in a linked list (or in an array), the

data value must first be located within the linked list (or within the array). Whereas in an array,

the kth element in the array can be located in a single step, in a linked list, k steps are required to

locate the kth node. To locate the kth node of a linked list, the linked list must be traversed. To do

this, the first node in the linked list (called the “head” or “root” of the list) is located. The data

stored in the first node is read to find the pointer to (to find the location in memory of) the

second node in the list. Next, data stored in the second node in the list is read to find the pointer

to (to locate) the third node in the list. The data stored in the third node in the list is then read,

9

and so on until the kth node in the list is located. At this point the data stored in the kth node of a

linked list can be used.

29. This process of accessing a linked list is most commonly performed with a

program structure known as a loop. A loop consists of a series of instructions (called the “body”

of the loop) that are executed over and over until some condition is met. The execution of the

loop starts with a consideration of the head of the linked list and each subsequent execution of

the loop body (each “iteration” of the loop) considers the next node in the list. Thus, accessing a

linked list consists of starting with the head of the linked list and iteratively considering the

nodes in the list in turn until some condition is met. The notion of iteration is fundamental to the

process of accessing a linked list. Inserting data into a linked list, removing data from a linked

list, and searching for a data value in a linked list, all require an iterative procedure to be

followed (and this iterative procedure is most commonly realized with a loop structure).

30. Because accessing a linked list (for example, to locate a node in the linked list) is

an iterative process, it can require significantly more steps (and thus require more time) than

accessing an array (for example, locating an element in an array). However, the advantage of

linked lists is that the size of the list (the number of nodes in the list) can easily grow or shrink

over time without requiring any copying of data items. To increase the number of nodes in a

linked list, a new node can be created anywhere in memory and added to (“linked” into) the list.

A new node is added to the list by changing the pointer of a node that is already in the list to

point to (to store the location in memory of) the newly allocated node, and to set the pointer of

the newly allocated node to point to the node that the pointer of preceding node in the list

previously pointed to.

10

31. For example, the two figures below illustrate the steps of adding a node to a

linked list. In this example, a linked list initially contains two nodes containing data values v1 and

v3. A new node containing the data value v2 is inserted into the linked list after the node

containing the data value v1. In this case, the pointer in the node containing data value v1 is

adjusted to point to the new node containing data value v2, and the pointer in the new node

containing data value v2, is set to point to the node containing data value v3. Thus, adding a new

node to a linked list requires at most two pointer modification operations.

32. Deleting2 a node from a linked list requires one pointer modification operation.

To delete a node from a linked list, the pointer in the predecessor node of the node to be deleted

is simply adjusted to “bypass” the node to deleted. For example, the figure below illustrates the

step of deleting the node containing the data value v3 from the linked list above. Deletion is

accomplished by locating the node in the linked list that precedes the node containing the data

value v3 in the linked list, and adjusting the pointer in the predecessor node to bypass the node

containing the data value v3. In this case, since the node containing the data value v3 was the last

2 The Court’s claim construction order construes “removing” a record from the linked list

as merely adjusting the pointers in the linked list to bypass the record, and not to include
deallocation of the record. My discussion of deletion from a linked list applies that same
construction.

11

node in the linked list, the pointer in the predecessor node (the node containing data value v2) is

adjusted to indicate that there are no additional nodes in the linked list.

33. When a node is deleted from a linked list, most typically the storage associated

with the node is reclaimed for future use by the program.

34. Whether or not a programmer chooses to use an array or a linked list in a program

to store and retrieve data will depend on whether the programmer chooses to optimize the

execution of their program for low data retrieval times or the ability to easily manipulate the

amount of memory available to store data. The former concern would argue for use of an array

data structure while the latter concern would argue for the use of a linked list data structure.

3. Knowledge of Arrays and Linked Lists was Common in 1997

35. Arrays and linked lists are among the most very basic and elementary data

structures used in computer programs. By 1997, it was common for students desiring a college

degree in computer science to have started their study of computer programming in high school

and to have already encountered, and used, arrays and linked lists in programs they wrote while

in high school. In college, a computer science major (or students in other majors requiring a

knowledge of programming) would typically take a formal course in data structures in either

their freshman or sophomore year. However, such a data structures course would consider

structures significantly more advanced than arrays and linked lists and would in fact assume

students already possessed knowledge of arrays and linked lists.

12

36. For example, presently, at the University of Texas at Tyler (UT Tyler), students

desiring formal training in computer science would take the computer science course COSC

2336, “Data Structures and Algorithms,” in the first semester of their sophomore (second) year.

As expected, based on information from UT Tyler’s web site, this class provides a sound

grounding in the fundamentals of data structures and algorithms and includes material on

hashing and collision resolution schemes (see,

http://cs.uttyler.edu/CourseSyllabi/Undergraduate/ COSC%202336.pdf). While this information

is contemporary, it comports with my personal knowledge of and experience with data structure

and algorithms classes going back nearly 30 years.

B. Background on Searching and Hashing

1. Searching

37. While individual elements stored in an array can be accessed in a single step, the

problem of determining whether or not a particular data value is currently stored in an array, or

where a particular data value is stored in an array, may require several steps. This is because, in

general, determining whether or not a particular data value is currently stored in an array, or

where a data value is stored in an array, will require the use of an algorithm for searching the

contents of the array.

38. For example, to determine if a data value v is currently stored in an array, the

simplest search algorithm, linear search (also called sequential search), simply traverses each

array location in sequence, checking the value stored in each location against the value v. If an

array location is found that stores the value v, the algorithm produces as its result an indication of

the location in (the address, or “index,” of the location within) the array storing value v. If the

13

array does not store the value v, then the algorithm produces as its result an indication that the

desired value was not found.

39. In the best case, the linear search algorithm can determine if a value is stored in

an array in one step. This occurs when the sought after data value happens to be stored in the first

element in the array. In the worst case, the linear search algorithm will require n steps to

determine if a data value is stored in an array, where n is the length of (the number of elements

in) the array. The worst case occurs if the sought after data value happens to be stored in the last,

or nth, element in the array. (If the sought after data value is not stored in the array then n steps

are required to make this determination because the entire array must be searched.) On average,

the linear search algorithm can determine where a data value is stored in an array in (n+1)/2

steps.

40. These performance results also hold for a linear search for a data value stored in a

linked list. That is, in the best case, the linear search algorithm can determine if a value is stored

in a linked list in one step; in the worst case, the linear search algorithm will require n steps to

determine if a data value is stored in a linked list (where n is the number of nodes in the linked

list); and in the average case, the linear search algorithm can determine where a data value is

stored in a linked list array in (n+1)/2 steps.

41. In either case, linear search in either an array or linear search in a linked list,

requires a traversal of the respective data structure (an iteration through the elements of either the

array or the linked list).

2. Hashing

42. Hashing is a class of techniques for storing and retrieving data in a computer

system that are more efficient than linear searching. Hashing attempts to minimize the average

number of steps required to search for a data value in memory. In particular, data storage and

14

retrieval systems using hashing attempt to ensure that most data values stored in the system can

be located in a small number of steps (ideally one step), independent of where the data values are

stored in memory.

43. Hashing algorithms use a data structure abstractly called a “hash table.” In the

simplest case, a hash table is just an array. Locations in the array are colloquially referred to as

“buckets.” Data values are stored in the array via the use of a hash function. A hash function is a

mathematical function that takes a value (also called a “key” or a “search key”) and computes an

integer in the range from 1 to n, where n is the number of elements in the hash table array (the

number of “buckets” in, or the size of, the hash table). In the simplest case, data values are stored

in the hash table by computing the hash function of the data value (by “hashing the value”) to

produce an index into the table (an integer value from 1 to n3). If a data value v “hashes” to the

value h (i.e., if applying the hash function to data value v produces the result h), then the data

value v is stored in the h
th location in the hash table (i.e., the data value is stored in the h

th

element in the hash table array or, equivalently, the h
th bucket in the hash table). To later

determine if the data value v is stored in the hash table, one need only compute the hash of v and

check the location in the hash table given by the hash function for the presence of value v.

a. Collisions and Collision Resolution

44. Generally, the domain of the hash function (the set of possible values to be stored

in the hash table) will be considerably larger than the size of the hash table. For example,

consider storing social security numbers for employees of a small company in a hash table. If the

company has 100 employees then, in principle, the hash table would require no more than 100

3 Hash functions would actually generate hash table indices in the range from 0 to n–1.

Similarly, indices in hash tables with n elements would range from 0 to n–1. However, to
simplify the presentation, here it is assumed hash functions, and hash table indices, range from 1
to n.

15

storage locations. However, the domain of the hash function, the set of all possible social

security numbers (hundreds of millions of numbers), will be considerably larger than the size of

the hash table (100 elements). This necessarily means that it will be possible for different social

security numbers to hash to the same hash table location. That is, it is possible for the hash of

one employee’s social security number to equal the hash of another employee’s social security

number. More generally, in any hash table it will be possible for data values v1 and v2 to hash to

the same hash table location (i.e., it is possible for the hash of v1 and v2 to produce the same

number). Thus, when trying to store a particular value v1 in the hash table, it may be the case that

the location in the hash table corresponding to v1 (the location in the hash table given by

applying the hash function to the value v1), may be occupied by another value v2 that was

previously stored in the hash table. In such a situation, a collision is said to occur.

45. For example, consider a hash function where the hash of a data value v1 equals the

hash of another data value v2. Assume that the hash of data value v1 equals h (and thus the hash

of data value v2 also equals h). If the data value v2 is inserted into the hash table, v2 will be stored

in the hash table at location h (v2 will be stored in the hth bucket). If one later attempts to store

the data value v1 in the hash table, they will attempt to insert the data value v1 into location h of

the hash table but find that the hth bucket of the hash table already contains a value (the value v2).

Thus, the insertion of data value v1 into the hash table will “collide” with the previous insertion

of data value v2. Collisions are a natural consequence of storing data items with a wide range of

values in tables of fixed size.

46. Hashing algorithms deal with collisions via a collision resolution scheme. There

are two basic forms of collision resolution schemes: open addressing and chaining (also called

external chaining). In open addressing, when a data value v1 to be stored in a hash table at

16

location h collides with a data value v2 (i.e., when the data value v2 was previously stored in the

hash table at location h), the insertion procedure “probes” (searches) the hash table for an empty

location in which to store the data value v1. The probing of the hash table for an empty location

follows a probe sequence. In the simplest case, known as linear probing, the probing proceeds in

a “linear” fashion by checking hash table locations h+1, h+2, h+3, …, n in sequence, looking for

an empty location. If an empty location is found, then data value v1 is stored in the first such

empty location. If an empty location is not found, the “probing” continues with locations 1, 2, 3,

… h–1, of the hash table. If no empty locations are found, then the hash table is “full” and some

remedial action must be taken. (Note that after location h–1 of the hash table is probed, the entire

table has been searched.)

47. For example, consider the following graphical illustration of hashing with

collision resolution based on linear probing. The figure below shows the first nine elements of a

hash table (the first nine elements of an array) that currently stores data values v1, v2, and v3.

In this example, applying the hash function H to the data value v1 yields the result 2 (i.e., H(v1) =

2). Since the hash of v1 equals 2, data value v1 is stored in the second bucket of the hash table.

Similarly, in the figure above, the hash of v2 equals 4 (H(v2) = 4) and thus data value v2 is stored

in the fourth bucket of the hash table, and the hash of v3 equals 7 (H(v3) = 7) and thus data value

v3 is stored in the seventh bucket of the hash table.

48. Now consider inserting data value v4 into the hash table. Assume data value v4

hashes to the value 2 (i.e., assume H(v4) = 2, the same hash value as data value v1). An attempt to

insert data value v4 into the second bucket of the hash table will result in a collision because data

17

value v1 is already stored in the second bucket of the hash table. The collision will be resolved by

linear probing starting with hash bucket 2+1 = 3. In this case, bucket 3 is empty and hence data

value v4 would be stored in the third location of the hash table as shown below.4

49. Next, consider inserting data value v5 with hash value 4 (H(v5) = 4) into the hash

table. The insertion of data value v5 will also result in a collision because data value v2 is already

stored in the fourth bucket of the hash table. Linear probing will again be used and data value v5

will be stored in the fifth bucket of the hash table as shown below.

50. Next, consider inserting data value v6 with hash value 2 (H(v6) = 2) into the hash

table. The insertion of data value v6 will result in a collision with data value v1 that also has a

hash value of 2 (and is stored in the second bucket of the hash table). Once again linear probing

is used to find an empty hash table location. As before the probe sequence would start with the

2+1 = 3rd hash table bucket. In this case, because buckets 3 through 5 are full (each contains a

data value), the linear probing algorithm would generate the probe sequence of buckets 3, 4, 5,

and 6. The linear probing algorithm would stop at the 6th bucket because this is the first bucket

4 For convenience, in the following figures, hash table entries with data values that hash

to the same hash bucket are illustrated with the same shade of grey. Thus, for example, hash
table entries 2 and 3 have the same shading because the data values they contain, v1 and v4, hash
to the same value (H(v1) = H(v4) = 2).

18

encountered that was empty. As a result of this probing, data value v6 will be stored in the sixth

bucket of the hash table as shown below.

51. Notice that if a seventh data value were to be added to the hash table, and this

seventh data value hashed to any value in the range 2 through 7, the seventh data value would be

stored in the eighth bucket of the hash table. This behavior would occur because buckets 2

through 7 of the hash table are full and the eighth bucket is the first empty bucket. Thus, for any

collision that occurs with buckets 2 through 7, linear probing would terminate at the eighth

bucket.

52. Note further that when probing for an empty bucket to store a data value v, a

probe sequence can encounter buckets containing data values that collide with v as well as

buckets containing data values not colliding with v. That is, not every hash table location

considered in a probe sequence for data value v collides with data value v. For example, if data

value v7 with a hash value of 2 is stored in the hash table above, data value v7 will collide with

data value v1 stored in location 2 of the hash table and, as a result, the linear probing algorithm

will place data value v7 into the eighth bucket of the hash table as previously described.

However, in the course of probing for the first free bucket after the second hash bucket (the first

free bucket after the bucket where data value v7 hashed to), the linear probing algorithm will

consider hash table locations 3, 4, 5, 6, 7, and 8, of which locations 4, 5, and 7 contain data

values that do not collide with data value v7. This observation will be important when discussing

the process of deleting data values from a hash table with collision resolution based on open

addressing.

19

53. The second collision resolution scheme, external chaining, uses a different data

structure for the hash table and a different procedure for searching the hash table. When external

chaining is used, the hash table still employs an array, however, the elements of the array (the

buckets of the hash table) no longer store data values. Instead, each array location stores a

pointer to a linked list (a pointer to the head of a linked list). That is, each array element now

stores an indication of the location of the head of a linked list rather than a data value.

54. In external chaining, there will be a separate linked list associated with (pointed to

by) each hash table array location. The linked list for the hth location in the array (the linked list

pointed to by the hth location in the array) is used to store all the data values that hash to the

value h. In this arrangement, the “hash table” is now a hybrid structure consisting of an array of

pointers and a set of linked lists. When storing a data value v in this new hash table, the hash of

data value v is computed as before and the resulting hash value h is still used to locate the hth

element of the hash table array. However, the hth location of the array is now read to find the

head of a linked list of data values that hash to the hth location of the array. The head of the

appropriate linked list is found by reading the hth location in the array of the hash table and

following the pointer stored at that location. Once the head of the linked list is found,5 a new

node for the linked list is created, the data value v is stored in the new node, and the new node is

inserted into the linked list using the procedure previously described. (Precisely where the new

node is inserted into the linked list is up to the programmer.)

5 Before inserting the data value into the linked list, one common implementation choice

to prevent the insertion of duplicate values is to search for the data value being inserted and, if
there, not inserting the new data value. This is commonly done when there are concerns with
duplicate records being stored in the linked list/hash table.

20

b. Searching For Data Values in a Hash Table

55. The process of searching for data values stored in a hash table follows many of

the same steps as the process for storing elements in a hash table. To determine if a data value v

is stored in a hash table, the hash of v is first computed. If the hash of v is the value h, then in the

case of hashing with collision resolution based on open addressing, the hth hash bucket (location

h of the hash table array) is accessed. If the hth hash bucket is empty, then data value v is not

stored in the hash table and the search procedure would return an indication of this fact. If the hth

hash bucket is not empty, then the data value stored in location h is compared to data value v. If

the values match, then data value v is stored in the hash table (at location h) and the search

procedure would return an indication of this fact. If location h of the hash table array is not

empty but the data value stored in location h does not match data value v, the search procedure

probes the hash table according to the probe sequence. In the case of linear probing, this is done

by checking hash table locations (buckets) h+1, h+2, etc., until either an empty location is found

or a location storing the value v is found (or until the entire hash table has been probed

[searched]). If an empty location is found, or if the entire table is probed and data value v is not

found, then data value v is not stored in the hash table. If the value v is found then data value v

was stored in the hash table. In either case, the search procedure would return the appropriate

indication of success or failure.

56. Note that when probing a hash table for a particular data value v, as was the case

when inserting data values into a hash table, one may encounter both data values that collide

with data value v (i.e., data values whose hash is the same as the hash of data value v), as well as

data values that do not collide with data value v.

57. In the case of hashing with collision resolution based on external chaining, to

determine if a data value v is stored in a hash table, the hash h of data value v is computed and

21

used to find the head of the hth linked list. This is done by reading the hth location of the hash

table array and following the pointer stored there to locate the head of the hth linked list. If the hth

linked list is empty, then data value v is not stored in the hash table and the search procedure

would return an indication of this fact. If the hth linked list is not empty, then the linked list is

traversed (searched) in a linear fashion to determine if the data value v is stored in the list. If the

h
th linked list contains the value v, then the search procedure would return an indication of this

fact. If the hth linked list does not contain the value v, then the search procedure would return an

indication of this fact.

c. Deletion of Data Values From a Hash Table

58. The process of deleting a data value stored in a hash table first requires that the

data value to be deleted is located in the hash table. This requires that the search procedure

appropriate for the collision resolution scheme in use is first used to locate the data value to be

deleted. Once located, the deletion process will also depend on the collision resolution scheme in

use.

59. In the case of deleting a data value from a hash table with collision resolution

based on external chaining, the deletion process is equivalent to deleting an element from a

linked list and thus quite simple. Consider a simple linked list associated with the hth bucket of a

hash table (i.e., this linked list holds data values that hash to the value h). Consider further that

this linked list presently consists of three nodes storing the data values v1, v2, and v3 (in that

order) (i.e., in this hash table, the three data values, v1, v2, and v3, all hash to the value h and thus

collide with one another and are stored in the external chain for the hth bucket of the hash table).

The figure below illustrates this situation where the data values, v1, v2, and v3, all hash to the

value 5.

22

60. Assume that data value v2 is the data value to be deleted. As a first step, the node

in the linked list containing the data value v2 would have to be located. This would be

accomplished by using the search procedure described above to first compute the hash of data

value v2 (compute H(v2) = 5), then access the fifth bucket of the hash table to locate the fifth

linked list, and then follow the procedure for deleting a node from a linked list. This deletion

procedure would consist of first traversing the fifth linked list to locate the node containing the

data value v2. During the process of locating the node in the linked list containing the data value

v2, the deletion procedure would record the location of the node in the linked list that is the

predecessor in the list of the node containing the data value v2. In this example, this means that as

part of the process of locating the node containing the data value v2, the deletion procedure

would also record the location of the node containing the data value v1.

61. Having located the node containing the data value v2, in order to delete6 the node,

the pointer in the predecessor node in the linked list to the node containing the data value v2 (i.e.,

the pointer in the node containing the data value v1) is simply set to point to the node in the

linked list pointed to by the pointer in the node containing the data value v2. That is, the pointer

6 The Court’s claim construction order construes “removing” a record from the linked list

as merely adjusting the pointers in the linked list to bypass the record, and not to include

23

in the node containing the data value v1 is changed to point to the node containing the data value

v3 (the node pointed to by the pointer in the node containing the data value v2 [the node to be

deleted]) as shown below. At this point the node containing the data value v2 is no longer in the

linked list because no node in the list points to it. At this point the storage occupied by the node

containing the data vale v2 would be reclaimed or otherwise made available for further use by the

program. Apart from the process of locating the node containing the data value to be deleted, the

process of deleting a node from a linked list can typically be performed in a single statement (a

single “instruction”) in a computer programming language.

62. In contrast, deleting a data value from a hash table with collision resolution based

on open addressing is significantly more complex. In particular, the seemingly obvious means of

deleting a data value from a hash table, namely deleting the data value stored in a bucket, will

not work.7 This is because when collision resolution is based on open addressing, a hash table

location may appear in one or more probe sequences for data values that have collided other data

deallocation of the record. My discussion of deletion from a linked list in a hash table applies
that same construction.

7 Knuth commented on the surprising subtly and complexity of deleting from a hash table
with collision resolution based on open addressing, stating “[m]any computer programmers have
great faith in algorithms, and they are surprised to find that the obvious way to delete records
from a scatter table [a hash table with collision resolution based on open addressing] doesn’t
work” (see Knuth, p. 526).

24

values in the hash table (appear in probe sequences for data values other than the data value to be

deleted). As a result, if a data value is simply deleted from the hash table and its bucket marked

as empty, a “gap” can appear in a probe sequence that will potentially result in other data values

in the hash table becoming inaccessible.

63. For example, consider again the hash table with collision resolution based on

linear probing from the discussion above on collisions. The table, reproduced below, stores six

data values where two sets of values collide with one another (data values v1, v4, and v6 collide

with one another, and data values v2 and v5 collide with one another).

64. If data value v2 were to be deleted, the location of data value v2 would first have to

be determined. Having found data value v2 in the fourth bucket of the hash table, data value v2

cannot be deleted by simply erasing the contents of the fourth bucket of the hash table. If a

deletion procedure simply erased the contents of the fourth bucket of the hash table as shown

below, then if collision resolution was based on linear probing, data values that collided with v2,

for example data value v5, would become inaccessible. Data value v5 would be inaccessible

because a search for data value v5 would start with location 4 of the hash table (since the hash of

data value v5 is 4). The search procedure would examine location 4 of the hash table, find that

location to be empty, and, as described above, conclude (erroneously) that data value v5 was not

in the hash table.

25

65. Note further that if a deletion procedure deleted the data value v2 by simply

erasing the contents of the fourth bucket of the hash table, then data values hashing to either the

second or third buckets of the hash table could similarly become inaccessible. That is, data

values stored in the hash table unrelated to the deleted data value v2 can also become

inaccessible. For example, if the contents of the fourth bucket of the hash table were erased, data

value v6 in the figure above would become inaccessible. This is because the location in the hash

table occupied by the (deleted) data value v2, location 4, is on the probe sequence for data values

colliding with data value v1 (the probe sequence for data values hashing to the second bucket of

the has table). If the contents of the fourth bucket of the hash table are erased, a “gap” appears in

the probe sequence for data values hashing to second bucket in the hash table. Note that these are

data values that did not collide with data value v2 and thus, from a hashing perspective, are

unrelated to v2. In this case, when searching for data value v6, the search procedure would

consider hash table locations 2, 3, and 4 in turn. Upon finding location 4 of the hash table to be

empty, the search procedure would again erroneously conclude that data value v6 was not in the

hash table.

66. There are two basic approaches to deleting data values in hash tables with

collision resolution based on open addressing. The simplest approach is to store more

information about the state of hash table locations in the hash table. Whereas previously, hash

table locations could be in either one of two states, “empty” or “full,” now a hash table location

can be either “empty,” “full,” or “deleted.” A hash table location being in the “deleted” state

means that for purposes of inserting data values into the hash table, the location is empty and

available for storage of a new data value, but that for purposes of searching for data values stored

in the hash table, the location is “full,” but it contains invalid (deleted) data. That is, for purposes

26

of searching for data values stored in the hash table, a deleted location should simply be skipped

and the probe sequence continue with the next location in the hash table (in the case of linear

probing). Under this new scheme of labeling hash table locations, the figure below illustrates the

state of the hash table above after the deletion of data value v2.

Now, when searching for data value v6, a linear probing search procedure will not terminate at

hash table location 4 and return an indication that data value v6 is not stored in the table. Instead,

when probing hash table location 4, the search procedure will skip over hash table location 4 and

continue the probe sequence. Eventually, the search procedure will probe hash table location 6,

find data value v6 and return an indication that data value v6 is indeed present in the hash table.

67. An obvious downside of this approach to deletion is that probe sequences are now

longer than need be. As a result it will take longer to find certain data values stored in the hash

table. For example, when searching for data value v5, two hash table locations, locations 4 and 5,

must be probed (recall that data value v5 hashes to the fourth bucket of the hash table and hence

any search for data value v5 necessarily would start with the fourth location in the hash table).

68. A seemingly obvious solution to the problem of probe sequences being longer

than need be, is to “fill in the gap” in the probe sequence for data values hashing to the fourth

bucket of the hash table by simply placing data value v5 in the fourth bucket of the hash table

(since data value v5 hashes to the fourth bucket of the hash table), and marking the bucket in the

hash table previously occupied by data value v5 as empty. The result would be the hash table

shown below.

27

69. This process of combining deletion with the moving (copying) of data values

colliding with the deleted data value, solves the problem of probe sequences for data values

colliding with the deleted data value being longer than they otherwise need to be. However, note

that in moving data values colliding with the deleted data value, unrelated data values can now

become inaccessible. For example, moving data value v5 from location 5 in the hash table to

location 4, shortens the probe sequence required to locate v5 in the future. However, now data

value v6 that did not collide with the deleted data value v2 is now inaccessible. Data value v6 is

now inaccessible because data value v6 hashes to location 2 of the hash table and, under linear

probing, would be searched for by probing locations 2, 3, 4, and 5 of the hash table in turn. Upon

encountering empty location 5 of the hash table (the location made empty by moving data value

v5 from location 5 in the hash table to location 4) a search procedure would erroneously conclude

that data value v6 is not stored in the hash table.

70. Solving this problem is vexing because although the deletion procedure originally

sought to delete data value v2 — a data value that hashed to the fourth bucket of the hash table —

the deletion procedure must identify all the data values stored in the hash table that are reached

via a probe sequence that includes the fourth location in the hash table. This is a complex

procedure because such data values are not easily identifiable because they are not related to data

value v2. To be sure, algorithms to delete data values from a hash table with collision resolution

based on open addressing, and at the same time reduce the length of probe sequences, are well

known. However, these algorithms are typically quite complex and costly in terms of execution

28

time. The algorithms are costly because they involve rehashing (removing and reinserting) data

values stored in the hash table. Moreover, while the rehashing process is in progress, the hash

table will not be available for other storage and retrieval operations (the hash table will be

“offline”).8 All of this is in marked contrast to the process of deleting a data value from a hash

table with collision resolution based on external chaining which simply requires a single pointer

manipulation operation.

3. Hashing of Records

71. For simplicity, and ease of explanation, the forgoing has described hashing within

the context of storing and retrieving individual data values. However, in practice, one typically

stores collections of data in a hash table. That is, in many storage and retrieval applications, a set

of related data items are stored together in a structure commonly called a record. For example, in

a database application, an “employee record” might contain a collection of data related to a

specific employee, such as the individual’s name, date of birth, address, social security number,

pay grade, etc. Just as programmers can create arrays and linked lists of individual data values,

they can also create arrays and linked lists of records. Conceptually, the only difference between

an array (or linked list) of individual data values and an array (or linked list) of records, is the

amount of storage in memory required to store an element of the array (or a node of the linked

list). Similarly, hash tables of records can be created using either an array of records (when open

addressing is used) or a set of linked lists of records (when external chaining is used).

8 As discussed in Section VI.A, the inventor of the ‘120 Patent, Richard Nemes,

previously applied for a patent related to hashing with collision resolution base on open
addressing via linear probing. In the earlier patent, the ‘495 Patent, Dr. Nemes acknowledged
that then existing techniques for deletion of entries from a hash table with collision resolution
based on open addressing were so expensive in time that their use would result in the hash table
being unavailable for use.

29

72. The primary new complexity introduced when hashing records rather than

individual data values is that the programmer now has to decide what to use as the input for the

hash function. That is, if a record contains a set of fields (name, address, etc.), the programmer

must select one or more of these fields to use as the input for the hash function. Whatever field or

fields the programmer selects to hash on, that element (or collection of elements) is referred to as

the hash key or a record search key. However, whatever is used as the hash key, as when hashing

individual data values, the hash function still computes a value from 1 to n, where n is the size of

the hash table (the number of locations or buckets in the hash table array).

4. State of Knowledge of Hashing in 1997

73. Search algorithms generally, and search algorithms based on hashing, were well

known in the art by 1997. For example, more than twenty years earlier, in 1973, the eminent

computer scientist Donald Knuth published a series of volumes on (and titled) “The Art of

Computer Programming.” In volume 3, “Searching and Sorting,” Knuth identified and analyzed

the foundational algorithms for all searching and sorting procedures, including hashing with

open addressing and external chaining. Because of its comprehensive treatment of its subjects,

and because of its elegant yet rigorous analyses of algorithms, ever since its publication, “The

Art of Computer Programming” has been universally considered to be the seminal reference on

the foundations of computer programming. For example, at the close of the twentieth century,

the publication “American Scientist,” published by the Sigma Xi Scientific Research Society,

listed “The Art of Computer Programming” among its list of its “100 or so books that shaped a

century [the twentieth century] of science.”9

9 “100 or so Books that Shaped a Century of Science,” by Phylis and Philip Morrison,

American Scientist, Vol. 87, No. 6, November-December 1999.

30

C. Choosing a Collision Resolution Scheme

74. Hashing is a well-known and much used technique for efficiently storing and

retrieving data in a computer system. When designing a hashing scheme, a programmer must

make three interrelated decisions. A programmer must decide what size hash table to use, what

hash function to use, and which of the two classes of collision resolution techniques to use

(collision resolution based on open addressing or collision resolution based on external

chaining).

75. The following considers the problem of selecting a collision resolution scheme.

Generally, the choice of collision resolution scheme can be influenced by factors such as the

amount of memory to be consumed by the hash table, whether or not the hash table is expected

to grow or shrink significantly over time, the complexity of the collision resolution scheme, and

the frequency with which records are expected to be deleted from the hash table. Interestingly, as

the following makes clear, in all cases, there are strong, clear-cut reasons for selecting the

external chaining method of collision resolution over open addressing methods such as linear

probing.

1. Considerations Based on Memory Usage

76. The size of the hash table is primarily determined by how many records are

expected to be stored. However, if the expected number of records is either unknown or is

expected to be highly variable, this may impact the choice of collision resolution scheme.

External chaining allows for hash tables to grow in size with minimal effort whereas open

addressing can require substantial effort to increase the size of the hash table. The difference here

mirrors the difference between the effort required to increase the size of an array versus the effort

required to increase the size of a linked list. Because external chaining is based on linked lists,

the chains, and hence the size of the hash table, can grow by simply linking in new nodes for

31

new hash table records. Thus, to extend the size of a hash table with collision resolution based on

external chaining requires the allocation of a new linked list node and insertion of the node into

the appropriate linked list. Once the location for insertion in the linked list has been identified,

the insertion process requires at most two pointer manipulations as illustrated above in Section

III.A.2.

77. In contrast, increasing the size of a hash table with collision resolution based on

open addressing requires allocating a new, larger array for the hash table, and then rehashing (re-

inserting) each element in the old hash table into the new hash table. If the hash table is large, the

overhead of rehashing every element in the old hash table can be substantial and can require that

a storage and retrieval system using hashing with collision resolution based on open addressing

be taken offline while the size of the hash table is increased and the contents of the old table are

rehashed.

78. A second memory usage consideration concerns the size of the records to be

hashed. If the records to be hashed are small, for example, if the records consist of only a single

data value, then the storage required for a hash table with collision resolution based on external

chaining may be greater than the storage required for a hash table with collision resolution based

on open addressing. This is because nodes in the linked lists used with external chaining require

memory to store the pointers to subsequent elements in the list and no such memory is required

with open addressing. However, if the number of records stored in a hash table is small

compared to the overall size of the table, the storage required for a hash table with collision

resolution based on external chaining may actually be less than the storage required for a hash

table with collision resolution based on open addressing. In this case, this is because with

external chaining, nodes are only created as needed, whereas with open addressing, all of the

32

memory required to store the maximum number of records must be allocated when the hash table

is created (even though, as discussed below, some of this memory will never be used).

79. Similarly, if the records to be hashed are large (require a lot of memory to store),

then the storage required for a hash table with collision resolution based on external chaining

will be less than the storage required for a hash table with collision resolution based on open

addressing. This is again because with external chaining, nodes are only created as needed

whereas with open addressing, all the memory required to store the maximum number of records

must be allocated when the hash table is created.

80. Thus, considerations of efficient memory usage often favor performing collision

resolution in a hash table using external chaining rather than open addressing.

2. Considerations Based on the Frequency of Deletions

81. If records are expected to be frequently deleted from the hash table, then collision

resolution based on external chaining will be more desirable than collision resolution based on

open addressing. First, as discussed above, deletions from a hash table with collision resolution

based on external chaining is equivalent to deletions from a linked list and thus trivial (requiring

only one pointer manipulation to bypass the deleted node in the list). In contrast, deletion from a

hash table with collision resolution based on open addressing requires either the introduction and

management of a new “deleted” state for hash table locations (result in longer probe sequences

than necessary), or requires the use of a complex and time consuming algorithm to locate and

rehash elements in the table to fill in any “gap” in probe sequences created by the deletion of a

record.

82. Second, frequent deletions from a hash table with collision resolution based on

open addressing, and in particular, collision resolution based on linear probing, can negatively

impact the performance of searching for records in the hash table. In particular, if gaps in probe

33

sequences formed by the deletion of records are not filled (i.e., if the complex and time

consuming gap filling algorithm is not used and instead hash table locations are merely labeled

as being in the “deleted” state when elements are deleted), then the time required to determine if

a record is not in a hash table can be substantially increased. This is because whereas normally,

when searching for a record in a hash table with collision resolution based on open addressing,

upon encountering an empty hash table location, the search procedure can terminate and

conclude that the sought after record is not present in the hash table. If gaps in probe sequences

are not filled, and empty locations that are labeled “deleted” exist in the hash table (because

those locations previously contained a record that has since been deleted), then the search

procedure can no longer terminate when it encounters an empty, “deleted” location. Instead, as

described above, the search procedure must continue until it finds an empty hash table location

that has never contained a record. In particular, in the worst case, a search for an element not in

the hash table may require a search of the entire table (i.e., in effect, a linear search must be

performed) even though the table may be arbitrarily close to being empty (be in a state when

most hash table locations are not being used).

83. Hash tables with collision resolution based on external chaining do not suffer

from the problem of degraded performance when deletions are frequent. To the contrary, because

deletions from a hash table with collision resolution based on external chaining only serve to

shorten the length of the external chains (the linked lists), deletions from a hash table with

collision resolution based on external chaining will result in improved performance (decreased

search times when searching for records not presently in the hash table).

3. Considerations Based on Search Performance

84. The foregoing has shown that when deletions are frequent, collision resolution

based on external chaining can provide better search performance than collision resolution based

34

on linear probing. However, the same is true even when records are never deleted from the hash

table.

85. In his seminal work, Knuth analyzed the performance of a number of variants of

the linear probing and external chaining, collision resolution schemes. In particular, Knuth

analyzed the average number of probes required to find an element in a hash table as a function

of collision resolution scheme and as a function of how “full” the hash table is. The “fullness” of

a hash table is measured by computing the ratio of the number of records N stored in the hash

table to the number of distinct values M generated by the hash function. (The value M

corresponds to the number of buckets in the hash table.) This ratio, N/M, is referred to as the load

factor of the hash table. When the load factor is 1, then in the case of open addressing, the hash

table is full (every location in the hash table stores a value and no more records can be stored in

the hash table). When the load factor is 0, the hash table is completely empty.

86. The plot below, taken from Knuth (see, Knuth, p. 539), shows how the average

number of probes required to find a record stored in a hash table varies as a function of the load

factor for a variety of collision resolution schemes.

35

In this figure, the leftmost line, the line labeled “L,” shows the average number of probes

required to find a record stored in the hash table when collision resolution is based on linear

probing. The rightmost line, the line labeled “S” (overlaid on top of the line labeled “SO”),

shows the average number of probes required to find a record stored in the hash table when

collision resolution is based on external chaining (called “separate chaining” in Knuth). This

analysis clearly shows that for all load factors, the average number of probes required to find a

record that is present in the hash table when collision resolution is based on external chaining is

smaller than the average number of required probes when collision resolution is based on linear

probing. More importantly, Knuth’s analysis shows that the average number of probes required

to find a record present in the hash table when collision resolution is based on linear probing

grows exponentially as the load factor increases, while the average number of probes required to

find a record present in the hash table when collision resolution is based on external chaining

grows only linearly (with very shallow slope). These data suggest that one would expect

dramatically different search time performance when the load factor goes above 50% (when the

has table is more than half full).

87. A tabular view of this same phenomena can be found in data structures textbooks,

such as the text “Data Structures and Program Design,” Second Edition, by R.L. Kruse, Prentice

Hall, Englewood Cliffs, NJ, 1987 (hereafter the “Kruse text” or simply “Kruse”). The table

below, from Kruse, shows empirical data from a study of hashing 900 pseudorandom numbers

and then searching for various values (see, Kruse, p. 213). Three hash tables were constructed,

each using a different collision resolution method, but including external chaining (called

“Chaining” in the table below) and linear probing (called “Linear probes” in the table below).

36

The table shows the number of probes required to search for an element as a function of the load

factor of the hash table.

For a successful search (a search for a record that is present in the hash table), these data confirm

that searching in a hash table with collision resolution based on external chaining always requires

fewer probes than a search in a hash table with collision resolution based on linear probing. In

particular, these data confirm that as the load factor of the table increases beyond 50%, the

number of probes required to locate an element in a hash table with collision resolution based on

linear probing grows exponentially while the number of probes required to locate an element in a

hash table with collision resolution based on external chaining grows linearly (again with very

shallow slope).

88. For an unsuccessful search (a search for a record that is not present in the hash

table), the Kruse data show that the disparity in search performance (the disparity in the number

of probes) is even more pronounced. In particular, as the load factor of the table approaches

100% (as the hash table becomes full), the number of probes required to determine if a record is

not in a hash table with collision resolution based on linear probing is more than 400 times that

required for a hash table with collision resolution based on external chaining. This is a profound

difference.

89. The profound difference in the number of probes required to determine that a

record is not stored in a hash table when collision resolution is based on linear probing versus

37

external chaining is also shown in Knuth’s analysis. Below is a plot from Knuth showing how

the average number of probes required to determine that a record is not present in a hash table

varies as a function of the load factor (see, Knuth, p. 539). The interpretation of the labels on the

lines of the plot are the same as in the plot above (i.e., the leftmost line, the line labeled “L,”

shows the average number of probes required for an unsuccessful search when collision

resolution is based on linear probing, and the second line from the right, the line labeled “S,”

shows the average number of probes required for an unsuccessful search when collision

resolution is based on external chaining).

This analysis clearly shows that the average number of probes required to determine if a record is

not present in a hash table when collision resolution is based on external chaining is always

smaller than the average number of required probes when collision resolution is based on linear

probing. More importantly, Knuth’s analysis shows that the average number of probes required

to determine if a record is not present in the hash table when collision resolution is based on

linear probing grows exponentially as the load factor increases, while the average number of

probes required to determine if a record is not present in the hash table when collision resolution

38

is based on external chaining grows only slightly worse than linearly (but again with a very

shallow slope). These data suggest that one would expect dramatically different performance

(search times) when the load factor goes above 25% (when the hash table is more than one

quarter full). And indeed, the Kruse study above confirms this expectation.

90. A key difference in the search performance between collision resolution based on

linear probing and collision resolution based on external chaining is a phenomenon known as

clustering. In hash tables with collision resolution based on linear probing, as the load factor

increases (as the table becomes more full), it becomes likely that records fill numerous adjacent

locations in the hash table. When this occurs, collision resolution requires a higher number of

probes because more hash table locations now have to be examined before an empty location is

found. Because more probes are required, search times increase.

91. For example, the example hash table previously considered, with collision

resolution based on linear probing, illustrates an instance of clustering. As shown below, because

data values hashing to the second and fourth hash table buckets collided with data values already

stored in the table, and because these data values are generally hashing “close” to one another, a

contiguous sequence of hash table locations (locations 2 through 7) are filled. The presence of

this “cluster” of records in the hash table means that searches for records hashing to locations 2

through 6 of the table will require several probes before generating a result (an indication of

success or failure).

92. Collision resolution based on external chaining is immune from the clustering

effect. As a result, search time performance in hash tables with collision resolution based on

39

external chaining is largely unaffected by the load factor of a hash table (as is clearly evident

from the data shown above from Knuth and Kruse).

93. Because of the problems caused by clustering in hash tables with collision

resolution based on linear probing, the load factor for such hash tables is typically required to

always be smaller than a comparable hash table with collision resolution based on external

chaining. When the load factor exceeds a certain threshold, hash tables with collision resolution

based on linear probing are typically taken off-line (made unavailable for searching, insertion, or

deletion), the size of the table expanded, and the records stored in the table rehashed. These are

all expensive and time-consuming operations. A typical load factor threshold that would trigger

an expansion and reconstruction of the hash table would be a value in the range of 50-80%.

Thus, potentially, when a hash table with collision resolution based on linear probing is only half

full, the table may be taken off-line and expanded. In contrast, as discussed above, hash tables

with collision resolution based on external chaining can always be expanded without requiring

rehashing. As a result, hash tables with collision resolution based on external chaining can

tolerate load factors greater than 1.0. (Load factors for hash tables with collision resolution based

on open addressing probing can never exceed 1.0 [and as discussed above, typically must stay

below a value in the range of 0.5 – 0.8].)

4. Considerations Based on Implementation Complexity

94. Collision resolution based on external chaining is simpler to implement than

collision resolution based on open addressing. Implementing collision resolution based on

external chaining simply requires implementing procedures to insert, delete, retrieve, and search

a linked list (note that the insert, retrieve, and delete procedures will require first searching the

list). These are elementary procedures. In fact, notably, in his description of external chaining,

Knuth remarks:

40

This method [hashing with external chaining] is a straightforward combination of
techniques we have discussed before, so we do not need to formulate a detailed algorithm
for chained scatter [hash] table. (See, Knuth, p. 513, emphasis added.)

Thus, Knuth teaches that knowledge of linked lists (a technique previously discussed in Knuth)

is sufficient to implement external chaining. As a result, Knuth does not provide a reference

implementation of hashing with external chaining (Knuth does provide reference

implementations of forms of external chaining that are more sophisticated than the schemes

considered herein). In contrast, Knuth does provide a reference implementation of collision

resolution based on the simplest form of open addressing, namely linear probing. This was likely

done because even open addressing based on linear probing is conceptually and algorithmically

more complicated than collision resolution based on external chaining.

95. In addition, as discussed previously, deletions of records from a hash table are

significantly easier to implement when collision resolution is based on external chaining than

when collision resolution is based on linear probing. Deletion10 of records from a hash table with

collision resolution based on external chaining is equivalent to deletion from a linked list and

thus requires only a single pointer manipulation (once the node to be deleted from the list has

been located). Deletion of records from a hash table with collision resolution based on linear

probing requires either introducing the notion of a “deleted” state into the hash table (and thus

requires changes to the procedures to insert into and search the hash table), or requires the

implementation of a complex and time consuming algorithm to fill gaps in probe sequences

caused by the deletion of records. (Deletion of records from a hash table with collision resolution

10 The Court’s claim construction order construes “removing” a record from the linked

list as merely adjusting the pointers in the linked list to bypass the record, and not to include
deallocation of the record. My discussion of deletion from a hash table with external chaining
applies that same construction.

41

based on linear probing also requires that the node to be deleted first be located within the hash

table.)

96. In fact, authors such as Kruse often describe the complexity of supporting

deletion of records under external chaining versus linear probing (or more generally open

addressing) in stark terms. For example, the Kruse text teaches that the method of deleting

records from a hash table with collision resolution based on open addressing by marking hash

table locations as “deleted” will make the open addressing algorithms “somewhat more

complicated and bit slower” (see, Kruse, p. 206). In addition, Kruse next states:

With the methods we have so far studied for hash tables [open addressing], deletions are
indeed awkward and should be avoided as much as possible. (See, Kruse, p. 206.)

In contrast, with respect to deletions from a hash table with collision resolution based on external

chaining, when discussing the advantages of external chaining Kruse writes:

Finally, deletion becomes a quick and easy task in a chained hash table [a hash table with
collision resolution based on external chaining]. Deletion proceeds in exactly the same
way as deletion from a simple linked list. (See, Kruse, p. 206.)

97. In summary, collision resolution based on external chaining has numerous well-

known and clear-cut advantages that in many instances would lead one to select this method of

collision resolution over open addressing. Collision resolution based on external chaining can

use less memory, provide faster searching, allow the size of the hash table to easily grow

dynamically, and be easier to implement than collision resolution based on linear probing. This is

particularly true if support for deletion of records from hash tables is an important concern. In

the abstract, if support for deletion of records from hash tables is an important concern then

external chaining would be the collision resolution algorithm of choice. Additionally, in 1997,

these facts were well known to formally trained (e.g., college educated) computer programmers

and would have been common knowledge among such individuals. Such individuals would have

42

been exposed to the material presented here no later than their freshman or sophomore year in

college when they took a data structures or algorithms course.

D. Overview of the ‘120 Patent

98. U.S. Patent No. 5,893,120 is titled “Methods and Apparatus For Information

Storage and Retrieval Using a Hashing Technique With External Chaining and On-the-Fly

Removal of Expired Data.” The application that resulted in the ‘120 Patent was filed on January

2, 1997. The ‘120 Patent was issued on April 6, 1999 to Richard Nemes.

99. The ‘120 Patent concerns a method and apparatus for performing storage and

retrieval in an information storage system of records where at least some of the records

automatically expire. The ‘120 Patent explains that “[s]ome forms of information are such that

individual data items, after a limited period of time, become obsolete, and their presence in the

storage system is no longer needed or desired” (see, ‘120 Patent, col. 2, lines 7-10). Expired

records remaining in the storage system are a potential problem because their presence may

increase the time required to locate non-expired records (see, ‘120 Patent, col. 2, lines 16-19).

The goal of the ‘120 Patent is to remove such expired records to reclaim the storage occupied by

the records so as to maintain fast access to the (non-expired) records (see, ‘120 Patent, col. 2,

lines 19-21).

100. The specification of the ‘120 Patent teaches the use of hashing with the external

chaining method for resolving collisions in the hash table, and linked lists generally, for storing

and retrieving information (see, e.g., ‘120 Patent, Abstract, col. 1, lines 20-22). As acknowledged

in the ‘120 Patent, the use of hashing with external chaining for storing and retrieving

information in an information storage system was well known prior to the filing of the

43

application for the ‘120 Patent (see, e.g., ‘120 Patent, col. 1, lines 42-46, col. 1, line 65 – col. 2,

line 6).

101. The ‘120 Patent is generally directed to information storage and retrieval systems

comprising either linked lists of records, or hash tables for storing and retrieving records where

collision resolution is based on external chaining. In both cases, at least some of the records

automatically expire (see, e.g., ‘120 Patent, col. 3, lines 4-7). When the linked list is accessed,

the methods of the ‘120 Patent identify at least some of the automatically expired records, and

remove at least some of the automatically expired records (see, e.g., ‘120 Patent, col. 3, lines 7-

11). As an example, the ‘120 Patent teaches that expiration of a record could be determined by

comparing a timestamp maintained in the record to the current time-of-day value maintained by

the computer (see, ‘120 Patent, col. 6, lines 9-11).

E. The Prosecution History

102. I have reviewed the prosecution history of the ‘120 patent and the prior art cited

against the claims of the ‘120 patent by the United States Patent and Trademark Office

(“USPTO”) during prosecution. During prosecution, the USPTO did not consider the prior art I

address in this report, with the exception of the ‘495 Patent. Although the Knuth, Kruse, and

Stubbs references were cited to the USPTO, they were not cited in any office actions by the

USPTO and it is not clear whether they were ever considered by the USPTO. The USPTO also

did not have the benefit of the testimony of prior art witnesses Daniel McDonald or Dr. Shawn

Ostermann, nor did the USPTO have the benefit of the testimony of Dr. Richard Nemes, the

inventor of the ‘120 Patent.

103. Furthermore, Dr. Nemes did not inform the USPTO that external chaining and

open addressing are the two principle collision resolution techniques as described in the Knuth,

44

Kruse and Stubbs references. Nor did Dr. Nemes inform the USPTO that external chaining is an

obvious design alternative over linear probing. This is despite the fact that Dr. Nemes testified

that he did not know of any collision resolution techniques for removing expired records other

than linear probing and external chaining (see, Nemes Dep. Tr., p. 194). Had Dr. Nemes told the

USPTO that external chaining was an obvious design alternative to those of ordinary skill in the

art in view of linear probing, I believe the USPTO would have had sufficient basis for rejecting

the ‘120 patent on obviousness grounds.

IV. LEGAL STANDARDS

104. I understand that under Section 102 of the Patent Act, claims may be invalidated

for lack of novelty or loss of rights. I have been informed by counsel that a claimed invention is

invalid for anticipation or lack of novelty when all of the limitations of the claim as construed by

the Court are present in a single prior art reference. I understand, however, that all limitations of

the claim need not be shown directly so long as all limitations are necessarily present in the

single prior art reference and thus are inherent.

105. Section 102 of the Patent Act provides that “[a] person shall be entitled to a patent

unless . . . (a) the invention was known or used by others in this country, or patented or described

in a printed publication in this or a foreign country, before the invention thereof by the applicant

for patent, or . . . (b) the invention was patented or described in a printed publication in this or a

foreign country or in public use or on sale in this country, more than one year prior to the date of

the application for patent in the United States, or . . . (g) . . . (2) before such person’s invention

thereof, the invention was made in this country by another inventor who had not abandoned,

suppressed, or concealed it.”

45

106. I have been informed by counsel that the evidence must be “clear and convincing”

for a claim to be found invalid.

107. I understand that a claim is obvious in light of the prior art if the difference or

differences between the claimed subject matter and the prior art are such that the subject matter

as a whole would have been obvious, at the time the invention was made, to a person having

ordinary skill in the art.

108. I understand that that in KSR Int’l Co. v. Teleflex, Inc., 127 S. Ct. 1727 (2007),

the Supreme Court provided an outline for analyzing obviousness. The Supreme Court rejected

the Federal Circuit’s “rigid” application of the “teaching, suggestion, or motivation” test for

obviousness in favor of an “expansive and flexible approach” using “common sense.” I also

understand that the Supreme Court explained that under the correct analysis, any need or

problem known in the field of endeavor at the time of invention and addressed by the patent can

provide a reason for combining the elements in the manner claimed. I also understand that the

Supreme Court explained that “[t]he combination of familiar elements according to known

methods is likely to be obvious when it does no more than yield predictable results.” I further

understand that the Court pointed to other factors that may show obviousness. These factors

included the following principles:

• a combination that only unites old elements with no change in their respective functions
is unpatentable. As a result, the combination of familiar elements according to known
methods is likely to be obvious when it does no more than yield predictable results,

• a predictable variation of a work in the same or a different field of endeavor is likely
obvious if a person of ordinary skill would be able to implement the variation,

• an invention is obvious if it is the use of a known technique to improve a similar device
in the same way, unless the actual application of the technique would have been beyond
the skill of the person of ordinary skill in the art. In this case, a key inquiry is whether
the improvement is more than the predictable use of prior art elements according to their
established functions,

46

• an invention is obvious if there existed at the time of invention a known problem for
which there was an obvious solution encompassed by the patent’s claims.

• inventions that were “obvious to try” — chosen from a finite number of identified,
predictable solutions, with a reasonable expectation of success — are likely obvious,

• known work in one field of endeavor may prompt variations of it for use in either the
same field or a different one based on design incentives or other market forces if the
variations would have been predictable to one of ordinary skill in the art, and

• an explicit teaching, suggestion, or motivation in the art to combine references, while
not a requirement for a finding of obviousness, remains “a helpful insight” in
determining upon which a finding of obviousness may be based.

109. Finally, I understand that even if a claimed invention involves more than

substitution of one known element for another or the application of a known technique to a piece

of prior art ready for improvement, the invention may still be obvious. I also understand that in

such circumstances courts may need to look to interrelated teachings of multiple patents; the

effects of demands known to the design community or present in the marketplace; and the

background knowledge possessed by a person having ordinary skill in the art to determine if the

claimed invention is obvious.

110. I understand that a plaintiff can rebut a showing of obviousness over the prior art

by showing “secondary considerations” of non-obviousness and that it is plaintiff's burden to

make a showing of secondary considerations. Because it is plaintiff’s burden to show secondary

considerations, I reserve my right to address any such secondary considerations in a

supplemental report or at trial.

V. DEFINITION OF A PERSON OF ORDINARY SKILL IN THE ART

111. It is my opinion that a person of ordinary skill in the art would have a Bachelor of

Science degree in computer science or computer engineering, including practical experience

writing computer programs, or the equivalent.

47

112. Such a person in January 1997 would know all of the material discussed in the

Background section of this report (Section III) and would have no difficulty implementing an

information storage and retrieval system using hashing with collision resolution based on either

open addressing or external chaining. Such a person of ordinary skill would also have no

difficulty modifying or adapting an existing implementation of an information storage and

retrieval system using hashing with collision resolution based on either open addressing or

external chaining to change the collision resolution scheme in use.

VI. THE PRIOR ART

113. The following summarizes the prior art systems and references that are relevant to

my analysis of the validity of the ‘120 Patent.

A. The Nemes ‘495 Patent

114. The inventor of the ‘120 Patent, Richard Nemes, had previously filed for, and

received, a first patent related to an information storage and retrieval system employing on-the-

fly deletion of expired records from a hash table. U.S. Patent 5,121,495 (“the ‘495 Patent”),

entitled “Methods and Apparatus for Information Retrieval Utilizing Hashing Techniques,” was

filed on October 31, 1989, and issued on June 9, 1992.

115. The ‘495 Patent is generally directed to the same problem as the ‘120 Patent:

using hashing techniques in an information storage and retrieval system and on-the-fly removal

of automatically expiring records from the hash table. However, whereas the ‘120 Patent

considers hashing with collision resolution based on external chaining, the ‘495 Patent considers

hashing with collision resolution based on linear probing. As explained above, there are only two

classes of collision resolution schemes: collision resolution based on open addressing and

collision resolution based on external chaining. Within the class of collision resolution schemes

48

based on open addressing, collision resolution based on linear probing is the exemplar method.

Moreover, as discussed in Section III.C above, it is widely accepted that of the two basic

methods of collision resolution, (1) collision resolution based on external chaining is

significantly easier to understand and to implement (and in many case provides superior memory

and processing time performance), and (2) when deletions of records from a hash table are of

concern, collision resolution based on external chaining provides significant advantages and in

many cases is the preferred technique. For at least these reasons, as explained in more detail

below, given the teachings of the ‘495 Patent, a person of ordinary skill in the art would have

been motivated to adapt the teachings of the ‘495 Patent to hashing with collision resolution

based on external chaining. Moreover, it would have been a trivial matter for a person of

ordinary skill in the art to adapt the teachings of the ‘495 Patent to hashing with collision

resolution based on external chaining.

116. Of note is the fact that significant portions of the ‘495 Patent were copied into

both the specification, figures, and claims of the ‘120 Patent. In my opinion this is evidence that

there is little fundamental difference between the ‘495 Patent and the ‘120 Patent beyond the

former’s use of collision resolution based on linear probing and the latter’s use of external

chaining. Indeed I understand that when Bell Communications Research Inc. (“Bellcore”), the

assignee of the ‘495 Patent originally prepared the application for the ‘495 Patent, a version of

the application from January 1988 included the paragraph:

It is to be understood that the present invention will be described in connection
with linear probing with open addressing only for convenience and because such a
collision-resolution strategy is very commonly used. The techniques of the
present invention can just as readily applied [sic] to such other forms of collision-
resolution strategies by modifications readily apparent to those skilled in the art.
(See TELECORDIA00000253.)

49

Thus, at some point during the preparation of the application for the ‘495 Patent, Bellcore

understood that the techniques of the ‘495 Patent could be readily applied to other forms of

collision resolution. I concur fully with this statement.11 There is no question that a person of

ordinary skill in the art at the time of the application for the ‘495 Patent (nearly 10 years before

the application for the ‘120 Patent) could readily adapt the teachings of on-the-fly removal of

automatically expiring records from a hash table in the ‘495 Patent to hashing with collision

resolution based on external chaining.

B. The Nemes ‘499 Patent

117. The inventor of the ‘120 Patent, Richard Nemes, also had previously filed for, and

received, an additional patent related to an information storage and retrieval system employing

hashing. U.S. Patent 5,287,499 (“the ‘499 Patent”), entitled “Methods and Apparatus for

Information Storage and Retrieval Utilizing a Method of Hashing and Different Collision

Avoidance Schemes Depending Upon Clustering in the Hash Table,” was filed on May 16, 1991,

and issued on February 15, 1994. The ‘499 Patent is generally directed to a method and

apparatus for information storage and retrieval using a hash table where at certain times collision

resolution based on external chaining for resolving collisions is used and at other times the

collision resolution based on linear probing for resolving collisions is used. The disclosures in

the ‘499 Patent confirm that techniques for hashing with collision resolution based on external

chaining were known to Dr. Nemes before 1997.

118. The Nemes ‘499 Patent confirms that deletion of records from an external chain

of a hash table with is easy:

11 I only became aware of the Bellcore draft application of the ‘495 Patent in late

December 2010. Seeing this application confirmed my long-standing opinion that the teachings
of the ‘495 Patent were readily adaptable to hashing with collision resolution based on external
chaining.

50

If it is determined in decision box 63 that the contents of the cell is a list pointer, box 64
is entered where the record to be deleted is removed from the linked list. This is easily
accomplished by adjusting the pointer in the chain just before the record to be deleted to
point the [sic] the record to deleted. (See, ‘499 Patent, col. 8, lines 53-58, emphasis
added.)

C. NRL BSD Key Management Source Code

119. In 1995, the US Naval Research Laboratory (NRL) developed and publicly

released a reference implementation of the IPv6 protocol (the sixth version of the

internetworking protocol IP) for the open source Unix operating system known as “4.4BSD-

Lite.” By way of background, IP is the network protocol used by computers on the Internet to

deliver data (messages) between each other. (In this context, a protocol is a set of rules for

exchanging messages between computers.)

120. The NRL IPv6 reference implementation is in the form of a series of files of

computer source code written in the C programming language. The NRL IPv6 reference

implementation analyzed in this report is from the software release labeled ipv6-dist-domestic

and consists primarily of the files ipv6-dist-domestic/sys.common/netinet6/key.{h,c}. The files are

publicly available on the Internet and were obtained from the ftp site ftp://ftp.ripe.net/ipv6/nrl. I

understand that these files have been produced as documents labeled DEF7942 – DEF7974. The

files carry a copyright date of August 1995 and a file modification data of September 28, 1995.

This is an indication that the files downloaded have not been modified since September 28, 1995.

Daniel McDonald, one of the authors of the NRL IPv6 reference implementation, testified in his

deposition that the code was published in late 1995 (see, McDonald Depo Tr., p. 29, line 14 to p.

30, line 14). I believe that the key.c and key.h files in the initial release of the NRL IPv6

reference implementation analyzed below were publicly available by late 1995.

51

121. Subsequent to the initial release of the NRL IPv6 code, the NRL published a

second version of the code, known as “Alpha-2.” According to Mr. McDonald, this code was

released in January 1996 and provided to MIT for publication (see, McDonald Depo Tr., p. 31,

line 23 to p. 33, line 15). Jeffrey Schiller, an employee of MIT, testified that he received the

NRL code in January 1996 and would have published it soon thereafter (see, Schiller Depo

Rough Tr., p. 39, line 18 to p. 40, line 22). I believe that the files key.c and key.h in the “Alpha-

2” release of the NRL IPv6 code were available no later than January 1996. I understand that the

files in the “Alpha-2” release have been produced as documents labeled YAHOO507259. I have

reviewed the files in the “Alpha-2” release and have concluded that these files are substantively

identical to the files in the original release with respect to the code relevant to my analysis. As a

result, the analysis I have done on the original NRL IPv6 code below applies equally to the

“Alpha-2” release that was available as of January 1996.

122. The NRL IPv6 implementation included an implementation of the Internet

Protocol security protocol suite “ipsec” (“IP security”). Ipsec is a protocol (a set of rules for the

exchange of messages) that enables a pair of computers to establish a secure, logical

communications channel over the Internet by encrypting the messages exchanged over this

logical channel.

123. The NRL ipsec implementation included a new operating system interface for

cryptographic key management. This interface, part of a new BSD “protocol family” called

PF_KEY, was to be used by programmers who developed distributed applications where security

was achieved by encrypting the data in messages sent by the application. The PF_KEY interface

provided a set of functions for programmers to manage the encryption keys (“encryption

passwords”) used in their application. The PF_KEY interface was designed in accordance with a

52

then proposed security architecture for the IP protocol suite (see, RFC 1825, “Security

Architecture for the Internet Protocol,” August 1995).

124. Part of the NRL ipsec implementation consists of a process within the BSD

operating system called the “key engine.” The key engine sends messages to processes

(applications) that are endpoints of some secure communication channel. Specifically, the key

engine sends “key acquire” messages to applications directing the applications to acquire a new

encryption key (obtain a new “security association”) for use in securing the communications

with other processes. To perform this messaging function, the key engine maintains a linked list

of records called an “acquirelist.” Each record on the acquirelist represents (stores information

about) a process that is associated with an encryption key. When the key engine attempts to send

a key acquire message to a process, the key engine first traverses the acquirelist linked list to

check whether or not a key acquire message has recently been sent to the process. In the course

of traversing the acquirelist, the key engine also checks to see if any entries in the list of records

have expired. Records on the acquirelist contain an expiration time (a time of day) that is set

when a record is added to the acquirelist. Like the ‘120 Patent, the NRL ipsec implementation

uses timestamps to determine if records in the linked list have expired: once the current time

advances past a record’s expiration time, the record in the acquirelist is considered to have

expired and be obsolete. Thus, if expired records are found during the traversal of the acquirelist,

the key engine, deletes those records (removes the records from the linked list and deallocates

the storage occupied by the record) (see, NRL BSD source code, file key.c, lines 1423-1460). For

these reasons, as the analysis below will show, the NRL ipsec implementation teaches the same

method of on-the-fly removal of expired data from a linked list as the ‘120 Patent.

53

125. Of note is the fact that the September 1995 NRL IPv6 implementation was termed

an “alpha” release by its developers (see, NRL BSD source code, file README). The

developers stated that the state of the implementation was “complete enough to use for

experimenting but it is not entirely complete” (see, file README). This is consistent with the

commonly accepted notion of an alpha release in the software development community: the

software is capable of functioning at some minimal level but it is not complete. Often it is the

case that certain functions may have been implemented quickly and that further tuning or

rewriting of the implementation may be necessary.

126. This situation appears to have been the case with the NRL developer’s

implementation of on-the-fly removal of expired data from the acquirelist linked list. In the

source code for the traversal of the acquirelist, the following comment (a note to the reader)

appears just prior to the code that removes expired records:

/*
 * Since we’re already looking at the list, we may as
 * well delete expired entries as we scan through the list.
 * This should really be done by a function like key_reaper()
 * but until we code key_reaper(), this is a quick and dirty
 * hack.
 */

(See, NRL BSD source code, file key.c, lines 1446-1452.)

As an experienced software developer, this comment tells me that the NRL developers did not

view their on-the-fly deletion as anything particularly deep or novel. Their observation that

“[s]ince we’re already looking at the list, we may as well delete expired records as we scan

through the list” indicates to me that the on-the-fly removal of expired records idea was an

obvious design choice to consider. Moreover, the fact that the developers thought their

implementation to be a “quick and dirty hack,” further communicates that there is nothing

special or complex about this implementation. (In the computer science community, as a noun,

54

“hack” is a colloquialism for, among other things, “the first thing that a programmer thought to

do.”)

127. The NRL BSD source code also contains an implementation of a hash table called

keytable (see, NRL BSD source code, file key.c, line 122). The keytable hash table uses external

chaining to resolve collisions, as evidence by the fact that the nodes of the keytable, which are

defined as key_tblnode structures in key.h, contain a pointer to the next record in a linked list

(see, NRL BSD source code, file key.h, lines 162-68).

128. The NRL BSD source code also contains a number of standard functions to

search, insert, retrieve, and delete records from the keytable hash table. The function

key_search() is used to search the keytable for a particular entry with a matching type, source

address, destination address, and a parameter known as the security parameter index (spi) (an

index into a security association database) (see, NRL BSD source code, file key.c, lines 648-

685). If a match is found, the function returns a pointer to the matching record. Otherwise, the

function returns a null pointer, indicating that the search has failed.

129. The function key_add() is used to insert a record into the keytable hash table (see,

NRL BSD source code, file key.c, lines 728-852). Before inserting the record, the function uses

the key_search() function to search the table to see if the record already exists in the hash table

(see, NRL BSD source code, file key.c, lines 782-786). To do this, the key_add() function first

calculates a hash value, then calls key_search(), passing the hash value into the key_search()

function. If key_search() returns null, indicating that the record was not found, the key_add()

function then adds a new entry at lines 796-818 by allocating memory for the record and copying

the values into the new record using the function key_addnode() (see, NRL BSD source code,

file key.c, lines 796-818, 688-725).

55

130. The function key_get() is used to retrieve a record from the keytable hash table

(see, NRL BSD source code, file key.c, lines 855-890). The key_get() function uses the

key_search() function to search the table for the record to be retrieved (see, NRL BSD source

code, file key.c, line 883). Like the key_add() function, the key_get() function calculates a hash

value to be passed into the key_search() function (see, NRL BSD source code, file key.c, lines

881-883). If key_search() finds the record being retrieved, it returns a pointer to the record,

which is used by key_get() to copy the security association stored in the record. The key_get()

function then returns 0, indicating success (see, NRL BSD source code, file key.c, lines 884-

888). If key_search() fails to find the record, key_get() will return -1 indicating that the record

was not found (see, NRL BSD source code, file key.c, lines 888-89).

131. The function key_delete() is used to delete a record from the keytable hash table

(see, NRL BSD source code, file key.c, lines 987-1087). Like key_add() and key_get(),

key_delete uses the key_search() function to search the table for the record to be retrieved, and

calculates a hash value to be passed into the key_search() function (see, NRL BSD source code,

file key.c, lines 1013-18). If key_search() finds the record, it is removed from the hash table by

adjusting the pointers in the linked list to bypass the record and the key_delete() function returns

0, indicating success (see, NRL BSD source code, file key.c, lines 1020, 1031, 1084). Otherwise,

the key_delete() function returns -1, indicating failure.

132. It would have been obvious to one of ordinary skill in the art that the on-the-fly

removal of expired records that occurs in the key_acquire() function from the key_acquirelist

linked list could have been combined with the key_search() function, resulting in an on-the-fly

removal of expired records from a hash table with external chaining that would occur during

insertion, retrieval, and deletion operations.

56

133. Such a combination would have been easily implemented by one of ordinary skill

in the art. It could have been accomplished by simply importing the code in the key_acquire()

function that checks, during the traversal of the linked list, whether each record is expired and

removes it if it is, into the key_search() function (see, NRL BSD source code, file key.c, lines

1445-57). The result of such a combination would have been predictable – i.e. it would have

resulted in the same on-the-fly removal of expired records in a linked list in a hash table instead

of a free-standing linked list.

134. A person of ordinary skill in the art would have been motivated to combine these

two techniques if faced with the need to implement an information storage and retrieval system

that was expected to deal with a large number of records (on the order of hundreds or more) and

that contained expiring records that needed to be removed from the system. For example, if one

had expected the key_acquirelist to need to store hundreds of records, the obvious solution

would have been to use a hash table instead of a linked list because of the benefits in search

speed that come with a hash table.

135. The result of importing the on-the-fly removal code contained in the

key_acquirelist into the key_search() function would have been a search function that is

essentially identical to the Alternate Version of the Search Table Procedure found in the pseudo-

code of the ‘120 Patent (see, ‘120 Patent, cols. 11-14). That key_search() function would then be

utilized by the key_add(), key_get(), and key_delete() functions to insert, retrieve and delete

records and, at the same time, remove expired records from the accessed linked list of records.

136. The technique of hashing with external chaining that was implemented in the

keytable structure and the key_search(), key_add(), key_get(), and key_delete() functions is also

disclosed in any number of basic computer science textbooks dealing with data structures and

57

algorithms. For example, Knuth discloses algorithms for hashing with “collision resolution by

‘chaining’” in Section 6.4 on Hashing (see, Knuth pp. 506-518). Kruse discloses hashing in

Section 6.5, including a discussion of collision resolution by chaining in Section 6.5.4 (see,

Kruse, pp 198-215). This section includes Pascal algorithms for retrieving and inserting into a

hash table with external chaining (see, Kruse p. 208). The textbook “Data Structures with

Abstract Data Types and Pascal” by D. F. Stubbs and N. W. Webre, Brooks/Cole Publishing Co.,

Monterey, California, 1985, hereafter “Stubbs,” also discloses hashing with external chaining

(see Stubbs pp. 310-36, Section 7.4, “Hashed Implementations,” describing hashing). This

section includes a section on “External Chaining” that describes the algorithm for collision

resolution by external chaining (see Stubbs. pp. 324-25).

137. Just as combining the on-the-fly removal of expired records disclosed in the

key_acquire() code and the hash table implementation of keytable would have been obvious, it

would have been obvious to combine the NRL BSD key_acquire() code with the methods of

hashing with external chaining that were well known in the art and disclosed in the Knuth,

Kruse, and Stubbs textbooks for the same reasons.

D. The GCache Software from Purdue University

138. In 1991, Doug Comer and Shawn Ostermann of Purdue University developed and

released software, known as “GCache,” for general-purpose cache management as part of the

Xinu operating system. The Xinu operating system is a Unix-like operating system developed for

educational and research purposes at Purdue University in the late 1980s and early 1990s (Xinu

is “Unix” spelled backwards and allegedly stands for “Xinu Is Not Unix”).

139. The GCache software is single file of computer source code written in the C

programming language. The version of GCache analyzed in this report is from the XINU

software release publicly available on the Internet at the ftp site ftp://ftp.cs.purdue.edu

58

/pub/comer/XINU-SPARC.TAR.Z. In this distribution, the GCache software is found at the path

XINU-SPARC/xinu/src/sys/sys/archindep/gcache.c and XINU-SPARC/xinu/src/sys/h/gcache.h.

The file gcache.c carries an internal date stamp of October 21, 1991, and a file modification date

of December 26, 1993. This is an indication that the files downloaded have not been modified

since December 26, 1993. I understand that this file was produced in this litigation as the

document labeled RHT-BR00015824. The GCache software was also described in a Purdue

University, Department of Computer Science Technical Report titled “GCache: A Generalized

Caching Mechanism,” by D. Comer and S. Ostermann (the developers of the GCache source

code), dated November 1991 and revised March 1992 (the “GCache paper”). I understand that

the GCache paper was produced in this litigation as RHT-BR00015539. Dr. Shawn Ostermann,

the primary author of GCache testified in his deposition that the software was available publicly

at least as of 1994 (see, Ostermann Depo. Tr. p. 49, lines 2-20). I believe that the computer

source code file gcache.c analyzed below was publicly available no later than 1994 and thus I

understand qualifies as prior art to the ‘120 Patent.

140. The GCache software provided general facilities to create and manage caches. In

an operating system, a cache is a copy of data, typically data read from a device, that is held in

main memory (RAM) where it can be accessed more efficiently. The GCache software supports

the creation of caches that are organized as hash tables. The hash tables are accessed via a hash

function and collisions are resolved via the external chaining technique.

141. Each entry in the cache has an associated “lifetime.” The “lifetime” of a cache

entry is expressed as a duration (a number of seconds). The lifetime of a cache entry serves as a

limit on the number of seconds a cache entry can remain in the cache without being accessed.

Cache entries that have not been accessed in the last lifetime number of seconds are considered

59

to have expired and are eligible for removal from the cache. However, these expired records are

removed from the cache in a lazy manner. Expired cache entries remain in the cache until they

are searched for, at which time the expired record is identified and removed from the cache.

142. Figure 1 from the GCache report, reproduced below, illustrates the general

organization of a cache created with the GCache software. A GCache cache is implemented as a

hash table with a specified number of hash buckets. Each bucket contains a pointer to the head of

a (doubly) linked list of nodes (called “cache entries”). Each cache entry is characterized by a

“key” and a “result.” The key is the data value that is used to identify a cache entry (the value

that is hashed to insert, delete, or locate cache entries). The result is the data value that is

returned as the result of searching for and locating a cache entry in the cache. Cache entries do

not store keys and results but instead store pointers to a key and a result (i.e., the key and result

for a cache entry are stored in memory separately from the cache entry).

143. The GCache software maintains an array of cache descriptors, called the “cache

block.” Each descriptor in the cache block points to a cache that has been created by an

60

application. Applications access GCache caches indirectly through the cache block. In the

example illustrated in Figure 1 above from the GCache report, a user application is accessing a

cache whose cache id is “2.” Figure 1 also shows the hash table for the cache with cache id 2.

The hash table consists of a number of buckets, each bucket pointing to a doubly linked list of

cache entries, each cache entry containing pointers to a key and a result. Figure 1 also illustrates

the fact that the GCache software maintains a maximum number of cache entries for each cache

and entries not currently in use are stored in a free list accessed via the cache block entry for the

cache.

E. Linux Operating System Kernel Version 2.0.1 route.c Software

144. I understand that Bedrock has accused at least versions 2.6.9, 2.6.11, 2.6.18, and

2.6.26 of the Linux operating system kernel of infringing the ‘120 Patent. Within these versions

of the Linux kernel, I further understand that Bedrock has focused on the computer source code

file route.c.

145. Prior to the release of versions 2.6.9, 2.6.11, 2.6.18, and 2.6.26 of the Linux

kernel, version 2.0.1 of Linux was publicly available. Version 2.0.1 of the Linux operating

system kernel also contained a version of the route.c computer source code that provides similar

functions to those provided in to the newer versions of route.c that I understand Bedrock alleges

infringe the asserted claims of the ‘120 Patent. Version 2.0.1 of the Linux kernel is publicly

available on the Internet at the ftp site ftp://ftp.kernel.org/pub/linux/kernel/v2.0/linux-2.0.1.tar.gz.

The version 2.0.1 distribution carries a file modification date of July 3, 1996. The computer

source code file route.c analyzed here, found with the version 2.0.1 distribution at the path linux-

2.0.1/net/ipv4/route.c, carries a file modification date of May 31, 1993. (The version of route.c

analyzed here relies on the header file linux-2.0.1/include/net/route.h which carries a file

modification date of July 3, 1996.) Combined, these dates are an indication that the files

61

downloaded from the kernel.org ftp site have not been modified since July 3, 1996. Further,

Alexey Kuznetsov, one of the authors of the route.c code in Version 2.0.1, has confirmed that

this version was publicly available on or about July 3, 1996 (see, Declaration of Alexey

Kuznetsov, DEF00009284-85). I believe that the computer source code files route.c and route.h

analyzed below were publicly available no later than July 3, 1996 and thus I understand qualify

as prior art to the ‘120 Patent.12

146. The computer source code file route.c is part of the implementation of the TCP/IP

protocol suite in the Linux operating system kernel. TCP/IP refers to a collection of

communication protocols used by all computers on the Internet to communicate with one

another. The computer source code in the file route.c concerns support for the routing of data

packets (messages) between computers. Generally, the process of routing a message from one

computer to another consists of consulting a table, called a routing table, to learn the information

required to transmit the message towards its final destination. Because a computer may have

multiple network interfaces (because a computer may be attached to multiple distinct networks at

the same time), or because a computer operating system may support multiple types of protocols

(because an operating system may support multiple different ways of communicating with other

computers), the computer’s operating system (Linux in this case) may have multiple separate

routing tables. Thus, when the Linux operating system receives a message from an application

for transmission to another computer, the Linux operating system must determine the appropriate

12 I understand that versions 1.3.52 and 1.3.51 of the Linux kernel, both released in

December 1995 (see, http://www.kernel.org/pub/linux/kernel/v1.3, Declaration of Alexey
Kuznetsov, DEF00009285), have also been identified as prior art to the ‘120 Patent. The portions
of version 2.0.1 of the Linux kernel that I analyze in this report also appear in version 1.3.52 and
1.3.51 of the Linux kernel and are substantively identical. Therefore, my discussion and analysis
of version 2.0.1 of the Linux kernel applies equally to versions 1.3.52 and 1.3.51.

62

routing table to consult, and then access that table to learn the information required to transmit

the message towards its intended destination.

147. The processing steps of locating and accessing the appropriate routing table are

generically referred to as “routing” a message within the operating system. To speed up the

process of routing a message, the Linux operating system maintains a cache of recently used data

from recently accessed routing tables. This cache, called the “routing table cache,” or simple the

“route cache,” is implemented as a hash table with collision resolution based on external

chaining.

148. The implementation of the route cache in version 2.0.1 of the Linux kernel is

substantially similar to the implementation of the cache appearing in later versions of the Linux

kernel. For concreteness, the following describes the operation of a portion of the route cache in

version 2.0.1 of the Linux kernel by comparison with the equivalent portions of the route cache

implementation in version 2.6.18 of the Linux kernel. The same comparison can be made

between version 2.0.1 of the Linux kernel and version 2.6.18 of the kernel.

149. In version 2.0.1 of the Linux kernel, the route cache is implemented as a hash

table called ip_rt_hash_table (“the IP route hash table”). In version 2.6.18 of the Linux kernel the

route cache is implemented as a hash table called ip_rt_hash_table. Each element of the hash

table in version 2.0.1 of the Linux kernel (each bucket of the hash table) contains a pointer to

record called an rtable (a “route table entry”). Each element of the hash table in version 2.6.18 of

the Linux kernel similarly points to a record called an rtable. In both versions 2.0.1 and 2.6.18 of

the Linux kernel the route table entries are linked to one another to form a linked list (an external

chain for a hash table bucket). In version 2.0.1 of the Linux kernel the route hash table is

accessed via a hash function called ip_rt_hash_code. In version 2.6.18 of the Linux kernel the

63

route hash table is accessed via a hash function called rt_hash_code. In both versions 2.0.1 and

2.6.18 of the Linux kernel this hash function is used to locate a bucket in the route hash table to

find (or insert, or delete) a specific route table entry.

150. In version 2.0.1 of the Linux kernel, to add an entry to the route cache, the route

hash table is used to locate an external chain (a linked list of route table entries) that is then

accessed to perform the appropriate task. Each route table entry maintains a number of data

values that describe the state of the entry. These data values include a reference count that

indicates the number of references to the route table entry, and a form of timestamp that indicates

when the route table entry was last accessed. When a route table entry has not been referenced

(when its reference counter is zero), and when the entry has not been used for a specified period,

the route table entry is considered to have expired (as Bedrock interprets expiration in its

Infringement Contentions) and is eligible for deletion. When a route table entry is added to the

route cache (when a route table entry is added to an external chain of the IP route hash table), the

linked list that comprises an external chain of the IP route hash table is accessed to identify and

remove expired route table entries.

F. The Dirks ‘214 Patent

151. U.S. Patent 6,119,214 to Dirks, titled “Method For Allocation of Address Space

in a Virtual Memory System,” was filed April 25, 1994, and issued September 12, 2000. Given

these dates, I understand that the Dirks ‘214 Patent qualifies as prior art to the ‘120 Patent.

152. Generally, the Dirks ‘214 Patent discloses a method of managing the physical

memory allocated to processes in a computer system. The patent is directed to the virtual

memory system within the computer’s operating system and hardware memory management

unit. Virtual memory is the logical view of memory maintained by processes (programs

executing on the computer). Virtual memory is distinguished from physical memory which is the

64

(physical) memory that is actually used to store executing programs and their data. Virtual

memory is a means of accessing physical memory wherein executing programs reference

memory by generating abstract virtual addresses that must be translated (“mapped”) to actual

physical addresses before memory can be accessed. In modern computer systems, the mapping

from virtual addresses to physical addresses is performed by a hardware memory management

unit that is controlled by the computer’s operating system.

153. The memory management unit typically maintains a table, called a “page table,”

that maps virtual memory “pages” to physical memory pages. A page is the basic unit of memory

allocation (some fairly large number of bytes). Conceptually, all of physical memory is

partitioned into a number of equal-sized physical memory pages numbered from 0 to some large

number. The largest page number depends on how much physical memory is present in the

computer.

154. When a program commences execution, it must first be allocated a number of

physical memory pages. These memory pages are used to hold the executable instructions of the

program and any data the program requires for execution. The operating system of the computer

will allocate a number of physical pages (a set of physical page numbers) for the program and

assign them to the program. When the program executes, the program will then reference these

physical pages as virtual pages (reference these physical pages by virtual page numbers). The

page table in the memory management unit will keep track of the correspondence between the

virtual page numbers and physical page numbers. Thus, when a process references a particular

virtual page, the memory management unit will access the page table using the virtual page

number (and possibly other data) to locate the appropriate physical page. Once located, the

physical page corresponding to the requested virtual page can then be accessed.

65

155. The Dirks ‘214 Patent considers a particular type of page table commonly known

as an “inverted page table” or a “reverse mapped page table.”13 As an example of an inverted

page table, the Dirks ‘214 Patent references the Motorola PowerPC 601 processor (see, Dirks,

col. 3, lines 64-66). An inverted or reverse mapped page table contains a number of entries that is

proportional to the number of physical memory pages in the computer system (proportional to

the amount of memory in the computer). Each page table entry contains one or more “page

mappings” (or simply “mappings”). A mapping is a pairing of a virtual page number with its

corresponding physical page number. A mapping tells the memory management unit where in

physical memory (in which physical memory page) a process’s virtual page can be found. In the

PowerPC 601 processor each page table entry contained eight virtual page number to physical

page number mappings. In the PowerPC architecture, the collection of eight mappings is referred

to as a “page table entry group” (a “PTEG”).

156. In an inverted page table, when a process references a particular virtual page, the

memory management unit must search the page table to find the appropriate virtual page number

to physical page number mapping (to find the number of the appropriate physical page to

access). This searching process is performed via the use of hashing techniques. Specifically, the

inverted page table is organized as a hash table (an array of hash locations). When the memory

management unit receives a request for a virtual page from a process (from the program

currently executing), the memory management unit will apply a hash function to data in the

request to generate an index into the page table. Each entry in the page table (e.g., each PTEG)

13 The Dirks ‘214 Patent references the Motorola 601 processor for its background on

memory management (see, Dirks, col. 3, lines 64-66). The Motorola 601 processor was an
implementation of the Apple/IBM/Motorola PowerPC processor architecture. The description of
inverted page tables here comes from both the Dirks ‘214 Patent itself as well as publicly

66

stores a number of virtual page number to physical page number mappings (see, Dirks, col. 9,

lines 36-40). Using the terminology of the Nemes ‘495 Patent, an entry in the page table can thus

be viewed as an external “chain” of records (see, e.g., Nemes ‘495 Patent, col. 1, lines 60-63).

157. Once a hash value for a virtual page request is computed, the corresponding

location in the page table (the corresponding PTEG) is accessed and searched to see if a mapping

for the requested virtual page is present (see, Dirks, col. 9, lines 40-45). If such an entry is

present, the physical page number corresponding to the requested virtual page number is returned

and used to access physical memory. If an entry for the requested virtual page is not present in

the page table then the requested virtual page is not present in physical memory (a physical page

has not been allocated for this virtual page) and the operating system is invoked to resolve this

situation.

158. The Dirks ‘214 Patent considers a virtual memory scheme that is similar as that

found in the PowerPC 601 processor architecture. Specifically, each process, or sub-process

(“thread”), is allocated a region of virtual memory called a “segment.” A segment is identified by

a number called a “virtual segment identifier” (“VSID”). A segment is composed of a number of

equal sized virtual pages. When a process or thread accesses memory in some virtual page, the

process or thread’s VSID (its virtual segment number) and the virtual page number (called the

“page index” in Dirks) within the segment are used to access the page table. The VSID and page

index are used as inputs to a hash function to compute a location in the page table (a hash table)

to search for the mapping to a physical page number.

159. When processes or threads terminate (are “deleted”), the VSID assigned the

process or thread can be reallocated to some other process or thread. However, before any such

available information on the PowerPC architecture such as the reference “PowerPC Operating

67

reallocation can occur, all of the entries in the page table corresponding to deleted process’ or

thread’s VSID must be deleted (because the process or thread has been deleted, all page

mappings for the deleted process or thread are now invalid). Finding all of the page mappings

corresponding to a VSID of a deleted process or thread is not easy because the virtual pages used

by the deleted process or thread may be spread all over the page table (because page mappings

are placed in the page table according to a hash function). Each location in the page table can be

examined in turn to determine if it contains a page mapping for a VSID of a deleted process or

thread, however, this will be a time consuming, and thus undesirable, operation.

160. To remedy this problem, the Dirks ‘214 Patent teaches a method of on-the-fly

removal of page table entries that correspond to VSID’s of deleted processes or threads. When a

process or thread is created or deleted, or in response to some regularly occurring event, a

number of entries in the page table are examined (see, Dirks, col. 10, lines 20-24). The Dirks

‘214 Patent refers to the process of examining a number of entries in the page table at the

occurrence of an event as a “sweeping process.” In the sweeping process, for each page table

entry to be “swept,” it is determined whether or not any page mappings in the page table entry

correspond to VSIDs of deleted processes or threads. Any such page mappings found are

removed from the page table because they are obsolete and no longer needed or desired (see,

Dirks, col. 7, lines 2-7, col. 8, lines 44-46, col. 9, lines 11-14).

161. In more detail, the Dirks system maintains three lists of VSIDs: a “free list” of

VSIDs that have not been allocated to any process or thread and thus are available for use, an

“inactive list” of VSIDs of deleted processes or threads whose page mappings are still present in

the page table, and a “recycle list” of VSIDs of deleted processes or threads whose page

Environment Architecture,” Book III, Version 2.02, January 2005.

68

mappings are in the process of being deleted from the page table. During the sweeping process, a

number of entries in the page table are examined. Any page mapping corresponding to a VSID

on the inactive and/or recycle list that is found in a page table entry is deleted.

162. The Dirks system limits the number of entries that are examined on any given

sweep to limit the amount of garbage collection that is done at any given moment (see, Dirks,

col. 6, lines 9-15, col. 7, lines 14-46). One embodiment of the invention disclosed calculates the

number of entries to examine based on “the total number of entries in the page table and the

number of threads and applications that are allowed to be active at any given time” (see, Dirks,

col. 7, lines 14-37). Dirks derives a formula for this calculation (see, Dirks, col. 8, lines 29-32):

163. Dirks further discloses that “[a]ny other suitable approach can be employed to

determine the number of entries to be examined during each step of the sweeping process” (see,

Dirks, col. 7, lines 38-40).

VII. ANALYSIS OF THE VALIDITY OF THE ‘120 PATENT

164. Here I assess the validity of the asserted claims of the ‘120 Patent. In performing

this analysis I have used the claim constructions rendered by the Court in its January 10, 2011

Memorandum Opinion and Order concerning claim construction. For completeness, these claim

constructions are listed in the table below. For terms and claim limitations where no construction

has been provided, I analyze those elements using the plain and ordinary meaning of the terms as

would have been understood by a person of ordinary skill in the art as of January 1997.

Claim Term Court’s Construction

“a linked list to store and provide access to
records”

a list, capable of containing two or more
records, in which each record contains a
pointer to the next record or information

69

indicating there is no next record

“automatically expiring”/ “expired” becoming obsolete and therefore no longer
needed or desired in the storage system
because of some condition, event, or period
of time / obsolete and therefore no longer
needed or desired in the storage system
because of some condition, event, or period
of time

“removing . . . from the linked list” adjusting the pointer in the linked list to
bypass the previously identified expired
records

“dynamically determining” making a decision based on factors internal
or external to the information storage and
retrieval system

“maximum number” no construction necessary, but not limited
to a single number

“external chaining” a technique for resolving hash collisions
using a linked list(s)

“when the linked list is accessed” both identification and removal of the
automatically expired record(s) occurs
during the same access of the linked list

Ordering of Method Steps – Claim 7 the “inserting, retrieving or deleting” step
must follow, at least in part, “the step of
removing”

Ordering of Method Steps identifying must begin before removing
can begin

“a record search means utilizing a search
key to access the linked list”

Function: utilizing a search key to access
the linked list

Structure: CPU 10 and RAM 11 of FIG. 1
and col. 3 lines 52-56 and portions of the
application software, user access software
or operating system software, as described
at col. 4 lines 22-48, programmed with
software instructions as described in Boxes
31-36 and Boxes 39-41 of FIG. 3 and in
col. 5 line 53-col. 6 line 4 and col. 6 lines
14-20, and/or programmed with software

70

instructions as described in the pseudo-
code of Search Table Procedure (cols. 11
and 12) or Alternate Version of Search
Table Procedure (cols. 11, 12, 13, and 14),
and equivalents thereof

“the record search means including a
means for identifying and removing at least
some of the expired ones of the records
from the linked list when the linked list is
accessed”

Function: identifying and removing at least
some of the expired ones of the records
from the linked list when the linked list is
accessed

Structure: CPU 10 and RAM 11 of FIG. 1
and col. 3 lines 52-56 and portions of the
application software, user access software
or operating system software, as described
at col. 4 lines 22-48, programmed with
software instructions as described in Boxes
33-42 of FIG. 3 and in col. 5 line 53-col. 6
line 34, and/or programmed with software
instructions as described in the pseudo-
code of Search Table Procedure (cols. 11
and 12) or Alternate Version of Search
Table Procedure (cols. 11, 12, 13, and 14),
and equivalents thereof

“means, utilizing the record search means,
for accessing the linked list and, at the
same time, removing at least some of the
expired ones of the records in the linked
list”

Function: utilizing the record search
means, accessing the linked list and, at the
same time, removing at least some of the
expired ones of the records in the linked
list

Structure: CPU 10 and RAM 11 of FIG. 1
and col. 3 lines 52-56 and portions of the
application software, user access software
or operating system software, as described
at col. 4 lines 22-48, programmed with
software instructions that provide the
insert, retrieve, or delete record capability
as described in the flowchart of FIG. 5 and
col. 7 line 65-col. 8 line 32, FIG. 6 and col.
8 lines 33-34, or FIG. 7 and col. 8 lines 45-
59, respectively, and/or programmed with
software instructions that provide the
insert, retrieve or delete record capability
as described in the pseudo-code of Insert
Procedure (cols. 9 and 10), Retrieve
Procedure (cols. 9, 10, 11, and 12), or

71

Delete Procedure (cols. 11 and 12),
respectively, and equivalents thereof

“a hashing means to provide access . . .” Function: to provide access to records
stored in a memory of the system and using
an external chaining technique to store
records with same hash address at least
some of the records automatically expiring

Structure: CPU 10 and RAM 11 of FIG. 1
and col. 3 lines 52-56 and portions of the
application software, user access software
or operating system software, as described
at col. 4 lines 22-48, programmed with
software instructions to provide a hash
table having a pointer to the head of a
linked list of externally chained records as
described in col. 5 lines 16-26 and/or
programmed with software instructions as
described in pseudo-code of Definitions,
definition number 4, and equivalents
thereof

“means for dynamically determining
maximum number”

Function: “dynamically determining
maximum number of records for the record
search means to remove in the accessed
linked list of records”

Structure: CPU 10 and RAM 11 of FIG. 1
and col. 3 lines 52-56 and portions of the
application software, user access software
or operating system software, as described
at col. 4 lines 22-48, programmed with
software instructions to dynamically
determine a maximum number of records
to remove by choosing a search strategy of
removing all expired records from a linked
list or removing some but not all of the
expired records as described in col. 6 line
56-col. 7 line 15 and/or programmed with
software instructions to dynamically
determine a maximum number of records
to remove by choosing between the
pseudo-code of the Search Table Procedure
(cols. 11 and 12) or Alternative Version of
Search Table Procedure (cols. 11, 12, 13,

72

and 14), and equivalents thereof

“mea[n]s, utilizing the record search
means, for inserting, retrieving, and
deleting from the system and, at the same
time, removing at least some of the expired
ones of the records in the accessed linked
list of records”

Function: utilizing the record search
means, inserting, retrieving, and deleting
records from the system and, at the same
time, removing at least some of the expired
ones of the records in the accessed linked
list of records

Structure: CPU 10 and RAM 11 of FIG. 1
and col. 3 lines 52-56 and portions of the
application software, user access software
or operating system software, as described
at col. 4 lines 22-48, programmed with
software instructions that provide the
insert, retrieve, and delete record capability
as described in the flowchart of FIG. 5 and
col. 7 line 65-col. 8 line 32, FIG. 6 and col.
8 lines 33-44, or FIG. 7 and col. 8 lines 45-
59, respectively, and/or programmed with
software instructions that provide the
insert, retrieve and delete record capability
as described in the pseudo-code of Insert
Procedure (cols. 9 and 10), Retrieve
Procedure (cols. 9, 10, 11, and 12), and
Delete Procedure (cols. 11 and 12),
respectively, and equivalents thereof

A. The NRL BSD Source Code Anticipates and/or Renders Obvious All Claims

of the ‘120 Patent

165. It is my opinion that the NRL BSD code anticipates claims 3 and 4 of the ‘120

Patent and, in combination with itself or with various textbooks disclosing hashing with external

chaining (including Knuth, Kruse, or Stubbs), renders obvious claims 1, 5, and 7. Further, the

NRL BSD code in combination with itself or Knuth, Kruse, or Stubbs, and Dirks renders obvious

claims 2, 4, 6, and 8.

73

1. The NRL BSD source code in combination with itself or Knuth,

Kruse, or Stubbs, renders obvious claims 1 and 5 of the ‘120 Patent

166. The NRL BSD source code discloses an information storage and retrieval system

wherein a variety of data items related to security associations are stored in, and retrieved from,

data structures such as a linked list or a hash table (see, NRL BSD source code, e.g., key.c, lines

648-1087, 1545-1560).

a. The NRL BSD code discloses the “linked list to store and

provide access to records stored in a memory of the system, at

least some of the records automatically expiring” limitation of

claim 1 and the “hashing means to provide access to records

stored in a memory of the system and using an external

chaining technique to store the records with same hash

address, at least some of the records automatically expiring”

limitation of claim 5

167. The NRL BSD source code discloses a linked list to store and provide access to

records stored in a memory of the system. The NRL BSD source code uses a linked list of

records called a key_acquirelist (see, NRL BSD source code, key.c, line 129). The definition of a

key_acquirelist record (expressed in the syntax of the C programming language) is:

struct key_acquirelist {
 u_int8 type; /* secassoc type to acquire */
 struct sockaddr_in6 target; /* destination address of secassoc */
 u_int32 count; /* number of acquire messages sent */
 u_long expiretime; /* expiration time for acquire message */
 struct key_acquirelist *next;
};

(See NRL BSD source code, key.h, lines 188-194.)

168. The key_acquirelist structure includes a pointer to the next record in the linked

list called “next” on line 193.

169. The NRL BSD code also discloses a hash table with external chaining called

keytable (see NRL BSD source code, key.c, line 122). The keytable structure is defined as an

array of linked lists, which is a hash table. The function key_gethashval() is used to hash the

74

search key to a hash table entry corresponding with the appropriate linked list (see NRL BSD

source code, key.c, lines 425-50, 782, 881, 1014).

170. The definition of a node of the keytable is:

struct key_tblnode {
 int alloc_count; /* number of sockets allocated to secassoc */
 int ref_count; /* number of sockets referencing secassoc */
 struct socketlist *solist; /* list of sockets allocated to secassoc */
 struct ipsec_assoc *secassoc; /* security association */
 struct key_tblnode *next; /* next node */
};

(See NRL BSD source code, key.h, lines 162-168.)

171. The keytblnode structure includes a pointer to the next record in the linked list

called “next” on line 167.

172. Knuth, Kruse, and Stubbs also disclose hashing with external chaining (see

Knuth, pp. 513-518, Kruse pp. 206-08, Stubbs pp. 324-25).

173. It would have been obvious to one of ordinary skill in the art that the linked list

used for the key_acquirelist could have been implemented as a hash table like the keytable hash

table or as described in Knuth, Kruse, or Stubbs. One of ordinary skill in the art would have been

motivated to replace the linked list with a hash table in a system where the number of records

expected to be stored in the structure was large, since the hash table would result in more

efficient searching.

174. Included in each key_acquirelist record is an expiration time “expiretime.”

Records in the key_acquirelist expire a set amount of time after they are added to the list. As

shown in the following source code, by default, this duration is 15 seconds:

#define MAXACQUIRETIME 15; /* Lifetime of acquire message */

(See NRL BSD source code, key.c, line 116.)

u_long maxacquiretime = MAXACQUIRETIME;

(See NRL BSD source code, key.c, line 132.)

75

DPRINTF(IDL_EVENT,(“Updating acquire counter and expiration time\n”));
ap->count++;
ap->expiretime = time.tv_sec + maxacquiretime;

(See NRL BSD source code, key.c, function key_acquire, lines 1557-1559.)

175. Records in the key_acquirelist become obsolete and are therefore no longer

needed in the storage system after their expiration time (a limited period of time):

} else if (ap->expiretime < time.tv_sec) {
 /*
 * Since we’re already looking at the list, we may as
 * well delete expired entries as we scan through the list.
 * This should really be done by a function like key_reaper()
 * but until we code key_reaper(), this is a quick and dirty
 * hack.
 */
 DPRINTF(IDL_MAJOR_EVENT,(“found an expired entry...deleting it!\n”));
 prevap->next = ap->next;
 KFree(ap);
 ap = prevap;
}

(See NRL BSD source code, key.c, function key_acquire, lines 1445-1457.)

176. Thus, under the Court’s claim constructions, the NRL BSD source code discloses

a linked list to store and provide access to records stored in a memory of the system, at least

some of the records automatically expiring. The NRL BSD code in combination with itself or

Knuth, Kruse, or Stubbs discloses a hashing means to provide access to records stored in a

memory of the system and using an external chaining technique to store the records with same

hash address, at least some of the records automatically expiring.

b. The NRL BSD code discloses the “record search means

utilizing a search key to access the linked list” limitation of

claim 1 and the “record search means utilizing a search key to

access a linked list of records having the same hash address”

limitation of claim 5

177. Further, the NRL BSD source code discloses a record search means utilizing a

search key to access the linked list. The NRL BSD source code discloses a key_acquirelist linked

list of records that is accessed using a search key consisting of the combination of the destination

address of the target security association and the type of the association.

76

178. The NRL BSD code discloses getting the head of the key_acquirelist and

traversing the key_acquirelist in search of a record with a key that matches the search key:

for(ap = key_acquirelist->next; ap; ap = ap->next) {
 if (addrpart_equal(dst, (struct sockaddr *)&(ap->target)) &&
 (etype == ap->type)) {
 DPRINTF(IDL_MAJOR_EVENT,(“acquire message previously sent!\n”));
 if (ap->expiretime < time.tv_sec) {
 DPRINTF(IDL_MAJOR_EVENT,(“acquire message has expired!\n”));
 ap->count = 0;
 break;
 }
 if (ap->count < maxkeyacquire) {
 DPRINTF(IDL_MAJOR_EVENT,(“max acquire messages not yet exceeded!\n”));
 break;
 }
 return(0);
 } else if (ap->expiretime < time.tv_sec) {
 /*
 * Since we’re already looking at the list, we may as
 * well delete expired entries as we scan through the list.
 * This should really be done by a function like key_reaper()
 * but until we code key_reaper(), this is a quick and dirty
 * hack.
 */
 DPRINTF(IDL_MAJOR_EVENT,(“found an expired entry...deleting it!\n”));
 prevap->next = ap->next;
 KFree(ap);
 ap = prevap;
 }
 prevap = ap;
}

 (See NRL BSD source code, key.c, function key_acquire, lines 1430-1459.)

179. When the NRL BSD code identifies a record with a key that matches the search

key, the code exits the for loop that is traversing the linked list (see, NRL BSD source code,

key.c, lines 1432-1442).

180. If a match is found during the traversal of the linked list, the variable ap will point

to the matching record. If ap is not null, this indicates success of the search. If ap is null, this

indicates that the search failed. On lines 1546 to 1556, a new record will be inserted into the

key_acquirelist if the search failed.

181. The NRL BSD code also discloses the function key_search(), which searches the

keytable hash table for a record with a key matching the search key (see, NRL BSD source code,

77

key.c, lines 648-685). The key_search() function is called by the function key_add(), key_get(),

and key_delete(), each of which hashes the search key and passes the resulting value to the

function key_search() as the parameter indx (see, NRL BSD source code, key.c, lines 782-86,

881-83, 1014-16). The key_search() function then gets the head of the target linked list

corresponding with that hash value in the key_tblnode and traverses the linked list in search of a

record with a key matching the record search key (see, NRL BSD source code, key.c, lines 676-

85). All of the records in that linked list will have the same hash address. When the key_search()

function finds a key match, it saves a pointer to the list element in the variable keynode, stops

traversing the linked list, and returns a pointer to the matching record to the calling function

(indicating success of the search). If no match is found, key_search() returns a null value, which

indicates failure of the search. (see NRL BSD source code, key.c, lines 677-81, 683-84).

182. Though the key_acquire() code does not hash the search key before getting the

head of the target list, it would have been obvious to one of ordinary skill in the art that a hash

table could have been used instead of a linked list to store and provide access to records.

183. One of skill in the art would have been motivated to use a hash table like the one

used in the NRL BSD code for keytable or as described in Knuth, Kruse, or Stubbs instead of the

linked list used for the key_acquirelist where a large number of records were expected to be

stored because a hash table provides for more efficient searching of records. In such a case, the

linked list accessed by the key_acquire() function would be a linked list of records having the

same hash address.

184. The NRL BSD source code in combination with itself or Knuth, Kruse, or Stubbs

discloses using a search key to access records stored in the list that is equivalent to the structure

identified by the Court in its Claim Construction Order (see, NRL BSD source code, key.c, lines

78

1430-1563), including Figure 3, boxes 32-36 and 39-41 and the Alternate Version of the Search

Table Procedure in the pseudo-code of the ‘120 Patent.

c. The NRL BSD code discloses the “record search means

including a means for identifying and removing at least some

of the expired ones of the records from the linked list when the

linked list is accessed” limitation of claims 1 and 5

185. Further, the NRL BSD source code discloses a means for identifying and

removing at least some of the expired records from the key_acquirelist linked list when the

linked list is accessed. The NRL BSD source code discloses a key_acquirelist linked list of

records that is accessed using a search key consisting of the combination of the destination

address of the target security association and the type of the association. That list is accessed to

search for a record that is being inserted. During that access to the key_acquirelist linked list,

expired records are identified and removed (see, NRL BSD source code, key.h, lines 188-194,

key.c, lines 1431-1459). This is made clear by the NRL developers comment in the source code

to access the key_acquirelist linked list:

/*
 * Since we’re already looking at the list, we may as
 * well delete expired entries as we scan through the list.
 * This should really be done by a function like key_reaper()
 * but until we code key_reaper(), this is a quick and dirty
 * hack.
 */

(See, NRL BSD source code, key.c, lines 1446-1452.)

186. The NRL BSD source code discloses a structure for identifying and removing at

least some of the expired records from the linked list that is equivalent to the structure identified

by the Court’s claim construction order (see, NRL BSD source code, key.c, lines 1431-1459).

79

d. The NRL BSD code discloses the “means, utilizing the record

search means, for accessing the linked list and, at the same

time, removing at least some of the expired ones of the records

in the linked list” limitation of claim 1 and the “means,

utilizing the record search means, for inserting, retrieving, and

deleting records from the system and, at the same time,

removing at least some expired ones of the records in the

accessed linked list of records” limitation of claim 5

187. Further, the NRL BSD source code discloses using the record search means to

access the key_acquirelist linked list to insert a record and at the same time, remove at least some

of the expired records from the key_acquirelist linked list (see, NRL BSD source code, key.h,

lines 188-194, key.c, lines 1431-1459). The key_acquire() function uses the code at lines 1431-

59 to search for a record matching the search key and, at the same time, remove expired records

from the linked list as described above. If a record is not found during that search, a new record

is inserted into the linked list on lines 1546-60.

188. Line 1548 allocates memory for the new list element by calling the function

K_Malloc(). Line 1552 copies the record into the new list element and lines 1554-55 adjust the

pointers in the key_acquirelist linked list to insert the new record into that linked list (see, NRL

BSD source code, key.c, lines 1548-1555).

189. The NRL BSD code further discloses that the key_acquire() function is called by

the function getassocbysocket() (see NRL BSD source code, key.c, lines 1779, 1835).

190. The NRL BSD code also discloses the functions key_add(), key_get(), and

key_delete(), all of which utilize the function key_search() to access the linked lists in the

key_table hash table to search for the records being inserted, retrieved and deleted, respectively.

191. The function key_add() adds a record to the keytable hash table. The key_add()

function calculates a hash value based on the search key and calls key_search() to search for the

record being added, passing in the hash value as one of the parameters (see, NRL BSD source

80

code, key.c, lines 782-786). If key_search() finds a record, key_add() returns a value indicating

that the record already exists in the table. If key_search() does not find a record, key_add()

allocates memory for a new record in lines 802-808 and then adds a new record by calling the

function key_addnode() on line 812. The function key_add() copies the record to be inserted into

the new list element and inserts that element into the keytable hash table by adjusting pointers.

(See, NRL BSD source code, key.c, lines 720-23).

192. The function key_get() retrieves a record stored in the keytable hash table. The

function key_get() calculates a hash value based on the search key of the record being searched

for and utilizes key_search() to search for the record being retrieved (see, NRL BSD source

code, key.c, lines 881-883). If key_search() finds the record, the security association stored in the

record is copied into the structure secassoc and the function returns 0 indicating success (see,

NRL BSD source code, key.c, lines 884-88). If no record is found, the function returns -1,

indicating failure (see, NRL BSD source code, key.c, lines 888-89).

193. The function key_delete() deletes a record from the keytable hash table. The

function key_delete() calculates a hash value based on the search key of the record being

searched for and utilizes key_search() to search for the record being deleted (see, NRL BSD

source code, key.c, lines 1014-16). If key_search() finds the record being deleted, the record is

removed from the keytable hash table by adjusting pointers to bypass the record (see, NRL BSD

source code, key.c, lines 1020, 1031). The function then returns 0, indicating success (see, NRL

BSD source code, key.c, line 1084). Otherwise, the function returns -1, indicating failure (see,

NRL BSD source code, key.c, line 1086).

194. To the extent the key_acquire function does not disclose the structure for this

limitation, the key_acquire() function in combination with the key_search(), key_add(),

81

key_get(), and key_delete() functions does disclose this structure. As previously discussed, it

would have been obvious to one of skill in the art that the linked list in the key_acquirelist could

have been replaced by a hash table as implemented in keytable or as described by Knuth, Kruse,

or Stubbs, and that insertions, retrievals, and deletions from that hash table could have been

implemented in the same manner as for the keytable hash table.

195. For these reasons, the NRL BSD source code in combination with itself or Knuth,

Kruse, or Stubbs discloses a structure for utilizing the record search means to access the linked

list or insert, retrieve, and delete records from the system and, at the same time, remove at least

some of the expired records from the linked list that is equivalent to the structure identified by

the Court’s claim construction order.

2. The NRL BSD source code renders obvious claims 2 and 6 of the ‘120

Patent

196. The NRL BSD source code discloses a means for dynamically determining

maximum number for the record search means to remove in the accessed linked list of records.

197. In Bedrock’s Infringement Contentions, Bedrock has taken the position that the

determination of whether or not to delete one expired record falls within the meaning of this

claim. While I do not agree with this interpretation, if the Court were to agree with this

interpretation, the NRL BSD code anticipates this claim.

198. The NRL BSD code contains a conditional statement that determines whether or

not to delete an expired record based on a comparison of the record’s expiration time with the

current time (see, NRL BSD source code, key.c, lines 1445-1457). This determination of whether

or not to delete an expired record falls within Bedrock’s interpretation of this claim as I

understand it.

82

199. Additionally, it is a fundamental concept in computer programming to make

decisions in a program based on factors internal or external to the system being implemented.

Thus, arguably, virtually any determination that is made in a computer system is a dynamic

determination as that term has been construed. If processing load were a concern in the NRL

IPv6 system, it would have been obvious to one of ordinary skill in the art to introduce a

dynamic determination of the number of expired records to remove from the key_acquirelist to

limit the amount of clean up work performed during the traversal of the list. That is, since

deletion of expired records from the key_acquirelist was an afterthought (“since we’re already

looking at the list, we may as well delete expired entries as we scan through the list” [see, NRL

BSD source code, lines 1430-1459]), it would have been obvious to limit the amount of time

spent deleting expired records to, for example, limit the time spent in any one instance of the

key_acquire() function.

200. One of ordinary skill in the art would have known that dynamically determining

the maximum number to remove would limit the burden on the system and bound the length of

any real-time interruption to prevent delays in processing. Indeed, Dr. Nemes concedes that such

dynamic determination was obvious when he states in the ‘120 patent that “[a] person skilled in

the art will appreciate that the technique of removing all expired records while searching the

linked list can be expanded to include techniques whereby not necessarily all expired records are

removed, and that the decision regarding if and how many records to delete can be a dynamic

one” (see, ‘120 Patent, col. 7, lines 10-15).

201. Furthermore, the NRL BSD code in combination with the Dirks ‘214 Patent

renders these claims obvious. The disclosures of the Dirks ‘214 Patent are described in Sections

VI.F and VII.E. The Dirks ‘214 Patent teaches a simple formula for bounding the number hash

83

table entries considered when deleting expired entries as a fraction of the total number of entries

in the hash table and the number of active processing entities. A person or ordinary skill in the

art would recognize that this simple bounding ratio could be applied to the bounding the number

of removals in the key_acquirelist processing by, for example, computing the ratio of the number

of entries in the key_acquirelist to the number of active processes.

3. The NRL BSD source code anticipates claim 3 and renders obvious

claim 7 of the ‘120 Patent

202. The NRL BSD source code discloses a method for storing and retrieving

information records using a linked list and/or a hash table to store and provide access to records.

(see, NRL BSD source code, e.g., key.c, lines 648-1087, 1545-1560). The NRL BSD code also

discloses that at least some of the records in stored in the linked list are automatically expiring,

as discussed above in Section VII.A.1.a. Though the NRL BSD code does not disclose

automatically expiring records in a hash table, one of ordinary skill in the art would have found it

obvious to store the automatically expiring records in a hash table instead of a linked list for the

reasons set forth above.

a. The NRL BSD code discloses accessing the linked list of

records and accessing a linked list of records having the same

hash address

203. The NRL BSD source code discloses accessing a linked list of records in the

key_acquire() function, as discussed above in Section VII.A.1.b. It also discloses accessing a

linked list of records having the same hash address in the key_search() function, as discussed

above in Section VII.A.1.b.

204. As previously discussed above, it would have been obvious to one of ordinary

skill in the art that a hash table like the keytable hash table or as described in Knuth could be

used instead of a linked list in the key_acquire() function.

84

b. The NRL BSD code discloses identifying at least some of the

automatically expired ones of the records

205. The NRL BSD code discloses identifying at least some of the automatically

expired ones of the records when the linked list is accessed.

206. As discussed above in Section VII.A.1.c, the key_acquire() function identifies

automatically expired records while the linked list is being traversed in search of the record to be

inserted.

c. The NRL BSD code discloses removing at least some of the

automatically expired ones of the records from the linked list

when the linked list is accessed

207. The NRL BSD code discloses removing at least some of the automatically expired

ones of the records during the same access of the linked list as the one in which the automatically

expired records are identified.

208. As discussed above in Section VII.A.1.c, the key_acquire() function identifies and

removes the automatically expired records from the linked list while the linked list is being

traversed in search of the record to be inserted.

d. The NRL BSD code discloses inserting, retrieving or deleting

one of the records from the system following the step of

removing

209. The NRL BSD code discloses inserting, retrieving or deleting one of the records

from the system following the step of removing.

210. As discussed above in Section VII.A.1.d, if the record searched for during the

traversal of the linked list in the key_acquire() function is not found, the record will be inserted.

This insertion occurs after the expired records have been identified and removed (see, NRL BSD

source code, key.c, lines 1543-1560).

85

211. Further, as discussed above, it would have been obvious to one skilled in the art

that the linked list in the key_acquirelist could have been replaced by a hash table, and that

insertions, retrievals, and deletions from that hash table could have been implemented in the

same manner as for the keytable hash table or as described in Knuth, Kruse, or Stubbs. The

resulting code would insert, retrieve, or delete a record after identifying and removing

automatically expired records in the key_search() function.

4. The NRL BSD source code anticipates and/or renders obvious claim 4

and renders obvious claim 8 of the ‘120 Patent

212. The NRL BSD source code discloses the step of dynamically determining

maximum number of expired ones of the records to remove when the linked list is accessed.

213. As discussed above in Section VII.A.2, under Bedrock’s interpretation of this

claim, the NRL BSD code dynamically determines a maximum number of records to remove.

214. As discussed above in section VII.A.2, it would have been obvious to one of

ordinary skill in the art to combine the NRL BSD code with the dynamic determination of a

maximum number that occurs in Dirks.

B. The GCache Source Code Anticipates and/or Renders Obvious All Claims of

the ‘120 Patent

215. It is my opinion that the GCache code anticipates all claims of the ‘120 Patent

and, in combination with Dirks, renders obvious claims 2, 4, 6, and 8.

1. The GCache source code anticipates claims 1 and 5 of the ‘120 Patent

216. The GCache source code discloses an information storage and retrieval system

wherein data values to be cached are stored in, and retrieved from, caches organized as hash

tables with collision resolution based on external linked lists (see, GCache source code, e.g.,

gcache.c, structures cacheblk [line 22], cacheentry [line 53], and functions cainsert [line 246],

caremove [line 355], and calookup [line 312]).

86

217. Each cache entry has an associated “lifetime.” When a cache is created, the

maximum lifetime for each cache entry is specified (see, GCache source code, functions

cacreate [line 135], see also, GCache report, p. 2 “Timeouts,” p. 3, “User Interface”). When a

cache entry is accessed, the time since the last access of the entry (or the time since the cache

entry was added to the cache if the cache entry has never been accessed) is compared against the

current time to determine if the time since the last access is greater than the lifetime of the cache

entry. If so, the cache entry is identified as expired and the cache entry is removed from the

cache (see, GCache source code, e.g., functions calookup [line 312], cagetindex [line 643],

caisold [line 622], and GCache report, pp. 9-10, “Timeouts”).

218. Thus, the GCache source code discloses a method of on-the-fly removal of

automatically expiring records from an information storage and retrieval system. As the

following analysis shows, the GCache system for on-the-fly removal of automatically expiring

records from a linked list/hash table is the same as that disclosed in the ‘120 Patent.

a. The GCache source code discloses the “linked list to store and

provide access to records stored in a memory of the system, at

least some of the records automatically expiring” limitation of

claim 1 and the “hashing means to provide access to records

stored in a memory of the system and using an external

chaining technique to store the records with same hash

address, at least some of the records automatically expiring”

limitation of claim 5.

219. The GCache source code discloses a linked list and a hashing means to store and

provide access to records stored in a memory of the system. The GCache source code discloses a

hash table with external chaining, cb_hash, that is part of the structure cacheblk (see, GCache

source code, structure cacheblk [line 31], see also, GCache report, p. 3, “Data Structures”). The

GCache source code also discloses a linked list of cache entries (see, GCache source code,

structure cacheentry [lines 53-64], see also, GCache report, p. 3, “Data Structures”). As

87

described above, cache entries store and provide access to records such as keys and results that

are stored in a memory. Each cache entry contains two pointers, ce_prev and ce_next, which

point to the previous and next nodes in the linked lists (see, GCache source code, structure

cacheentry [lines 62-63]).

220. The GCache source code discloses that at least some of the records stored in the

linked list of GCache entries automatically expire. Cache entries automatically become obsolete

and therefore no longer desired in the storage system because of the condition that the time since

the last access of the cache entry exceeds the lifetime of the cache entry (see, GCache source

code, functions cacreate [line 135], calookup [line 312], cagetindex [line 666-70], caisold [line

617-634], see also, GCache report, p. 2 “Timeouts,” p. 3, “User Interface,” pp. 9-10,

“Timeouts”).

b. The GCache source code discloses the “record search means

utilizing a search key to access the linked list” limitation of

claim 1 and the “record search means utilizing a search key to

access a linked list of records having the same hash address”

limitation of claim 5

221. The GCache source code discloses a record search means utilizing a search key to

access the linked list of records having the same hash address. The GCache source code discloses

a search key pkey that is used as an input to a hash function, the result of which is passed into the

function cagetindex to access the linked list to locate a record corresponding to the search key

(see, GCache source code, functions, e.g., calookup [line 332-333], cahash [line 516-27],

cagetindex [line 643-78], see also, GCache report, p. 3, “Data Structures”). For example, cainsert

calculates a hash value at line 272 by calling the function cahash with pkey as one of its

parameters. The function cahash then outputs a hash value that is passed into the function

cagetindex on line 275. The function cagetindex then accesses the linked list in search of a

record with a search key that matches the target record (see, GCache source code, functions,

88

cagetindex [lines 643-78]). If one is found, and that record is not expired, cagetindex returns a

pointer to that record (see, GCache source code, functions, cagetindex [line 671]). Otherwise, a

null pointer is returned indicating that the search failed (see, GCache source code, functions,

cagetindex [line 669, 677]).

c. The GCache source code discloses the “record search means

including a means for identifying and removing at least some

of the expired ones of the records from the linked list when the

linked list is accessed” limitation of claims 1 and 5

222. The GCache source code discloses that the record search means includes a means

for identifying and removing at least some of the expired ones of the records from the linked list

when the linked list is accessed. The GCache source code discloses that during the access to the

linked list of cache entries to locate a cache entry in cagetindex, the GCache source code both

identifies and removes the cache entry if the entry has expired (see, GCache source code,

functions calookup [line 312], cagetindex [line 643], caisold [line 622], caunlink [line 742], see

also, GCache report, p. 2 “Timeouts,” p. 3, “User Interface,” pp. 9-10, “Timeouts”). More

specifically, when cagetindex finds a record that matches the target record, it will call the

function caisold to determine whether the record is expired (see, GCache source code, functions,

cagetindex [line 661-672], caisold [622-634]). If the record is expired, the function caunlink is

used to adjust the pointers in the linked list to bypass the expired record (see, GCache source

code, functions, cagetindex [line 668], caunlink [lines 757-59]).

89

d. The GCache source code discloses the “means, utilizing the

record search means, for accessing the linked list and, at the

same time, removing at least some of the expired ones of the

records in the linked list” limitation of claim 1 and the “means,

utilizing the record search means, for inserting, retrieving, and

deleting records from the system and, at the same time,

removing at least some expired ones of the records in the

accessed linked list of records” limitation of claim 5

223. The GCache source code discloses a means, utilizing the record search means, for

accessing the linked list and, at the same time, removing at least some of the expired ones of the

records in the linked list. The GCache source code discloses that the cagetindex function is called

by the cainsert, calookup, and caremove functions to insert, retrieve, and delete a record and, at

the same time, remove expired records from the hash table (see, GCache source code, functions

cainsert [line 241-304], caremove [lines 350-76], and calookup [line 307-47]).

224. The cainsert function calculates a hash function using cahash, then passes that

hash value along with the search key for the record to be inserted into the cagetindex function to

search for whether that record already exists in the hash table (see, GCache source code,

functions cainsert [line 272-75]). If the record is found in the table, no new record is inserted, but

rather the existing record is used to store the newly inserted record. If the record is not found, a

new record is inserted into the head of the linked list. Either way, the contents of the record to be

inserted are copied into the existing/newly inserted record (see, GCache source code, functions

cainsert [line 275-89]).

225. The calookup function similarly calculates a hash function using cahash and

passes that hash value and the search key for the record to be retrieved into the cagetindex

function to search for the target record (see, GCache source code, functions calookup [lines 332-

33]). If the record is found in the table, the information in the record is copied and the function

90

returns success (see, GCache source code, functions calookup [lines 333-43]). Otherwise, the

function returns failure (see, GCache source code, functions calookup [line 346]).

226. The caremove function also calculates a hash value and calls cagetindex using

that value and the search key for the record to be deleted in order to search for the target record

(see, GCache source code, functions caremove [lines 369-70]). If the search is successful,

cagetindex will return a pointer to the record to be removed, which is then passed into caunlink

to adjust the pointers to bypass the record, thus removing it from the linked list (see, GCache

source code, functions caremove [lines 370-72], caunlink [lines 757-59]).

2. The GCache source code anticipates and/or renders obvious claims 2

and 6 of the ‘120 Patent

227. The GCache source code discloses a means for dynamically determining

maximum number for the record search means to remove in the accessed linked list of records.

228. In Bedrock’s Infringement Contentions, Bedrock has taken the position that the

determination of whether or not to delete one expired record falls within the meaning of this

claim. While I do not agree with this interpretation, if the Court were to agree with this

interpretation, the Linux v2.0.1 code anticipates this claim.

229. The GCache code contains a conditional statement that determines whether or not

to delete an expired record based on a comparison of the record’s expiration time with the

current time (see, GCache source code, function cagetindex [lines 666-68]). This determination

of whether or not to delete an expired record falls within Bedrock’s interpretation of this claim as

I understand it.

230. Additionally, it is a fundamental concept in computer programming to make

decisions in a program based on factors internal or external to the system being implemented.

Thus, arguably, virtually any determination that is made in a computer system is a dynamic

91

determination as that term has been construed. If processing load were a concern in the GCache

system, it would have been obvious to one of ordinary skill in the art to introduce a dynamic

determination of the number of expired records to remove from cb_hash to limit the amount of

clean up work performed during the traversal of the list. It would have been obvious to limit the

amount of time spent deleting expired records to, for example, limit the time spent in any one

instance of the cagetindex function.

231. One of ordinary skill in the art would have known that dynamically determining

the maximum number to remove would limit the burden on the system and bound the length of

any real-time interruption to prevent delays in processing. Indeed, Dr. Nemes concedes that such

dynamic determination was obvious when he states in the ‘120 patent that “[a] person skilled in

the art will appreciate that the technique of removing all expired records while searching the

linked list can be expanded to include techniques whereby not necessarily all expired records are

removed, and that the decision regarding if and how many records to delete can be a dynamic

one” (see, ‘120 Patent, col. 7, lines 10-15).

232. Furthermore, the NRL BSD code in combination with the Dirks ‘214 Patent

renders these claims obvious. The disclosures of the Dirks ‘214 Patent are described in Sections

VI.F and VII.E. The Dirks ‘214 Patent teaches a simple formula for bounding the number hash

table entries considered when deleting expired entries as a fraction of the total number of entries

in the hash table and the number of active processing entities. A person or ordinary skill in the

art would recognize that this simple bounding ratio could be applied to the bounding the number

of removals in the cagetindex processing by, for example, computing the ratio of the number of

entries in the cagetindex to the number of active processes.

92

3. The GCache source code anticipates claims 3 and 7 of the ‘120 Patent

233. As previously discussed, the GCache source code discloses a method for storing

and retrieving information records using a linked list and/or a hash table with external chaining

to store and provide access to records, some of which automatically expire based on whether the

record’s lifetime has passed.

a. The GCache source code discloses accessing the linked list of

records and accessing a linked list of records having the same

hash address

234. The GCache source code discloses accessing a linked list of records having the

same hash address in the cagetindex function, as discussed above in Section VII.B.1.b.

b. The GCache source code discloses identifying at least some of

the automatically expired ones of the records

235. The GCache code discloses identifying at least some of the automatically expired

ones of the records when the linked list is accessed.

236. As discussed above in Section VVI.B.1.c, the cagetindex function identifies an

automatically expired record while the linked list is being accessed in search of a target record.

c. The GCache source code discloses removing at least some of

the automatically expired ones of the records from the linked

list when the linked list is accessed

237. The GCache code discloses removing at least some of the automatically expired

ones of the records during the same access of the linked list as the one in which the automatically

expired records are identified.

238. As discussed above in Section VII.B.1.c, the cagetindex function identifies and

removes the automatically expired record that was previously identified from the linked list

while the linked list is being accessed in search of a target record.

93

d. The GCache source code discloses inserting, retrieving or

deleting one of the records from the system following the step

of removing

239. The GCache code discloses inserting, retrieving or deleting one of the records

from the system following the step of removing.

240. As discussed above in Section VII.B.1.d, the cagetindex function is utilized by the

functions cainsert, calookup, and caremove to search for a record to be inserted, retrieved, or

deleted from the hash table and remove expired records. The cagetindex function returns a

pointer to that record, which is then used by cainsert, calookup, or caremove to insert, retrieve or

delete the record returned.

4. The GCache source code anticipates and/or renders obvious claims 4

and 8 of the ‘120 Patent

241. The GCache source code discloses the step of dynamically determining maximum

number of expired ones of the records to remove when the linked list is accessed.

242. As discussed above in Section VII.B.2, under Bedrock’s interpretation of this

claim, the GCache code dynamically determines a maximum number of records to remove.

243. As discussed above in section VII.B.2, it would have been obvious to one of

ordinary skill in the art to combine the GCache code with the dynamic determination of a

maximum number that occurs in Dirks.

C. The Linux Version 2.0.1 Source Code Anticipates and/or Renders Obvious

All Claims of the ‘120 Patent

244. It is my opinion that the Linux v2.0.1 source code anticipates all claims of the

‘120 Patent and, in combination with Dirks, renders obvious claims 2, 4, 6, and 8.

94

1. The Linux version 2.0.1 source code anticipates claims 1 and 5 of the

‘120 Patent

245. The Linux v2.0.1 source code discloses an information storage and retrieval

system wherein route table entries are stored in, and retrieved from, a route cache that is

organized as a hash table with collision resolution based on external linked lists (see, Linux

v2.0.1 source code, file route.h, structure rtable [line 65], file route.c, e.g., structure

ip_rt_hash_table [line 151], function rt_cache_add [line 1299]).

246. Each route table entry has an associated “lifetime,” after which the entry is

considered to have expired (as Bedrock interprets expiration in its Infringement Contentions)

(see, Linux v2.0.1 source code, file route.h, structure rtable [line 65], file route.c, e.g., function

ip_rt_check_expire [line 968], rt_cache_add [line 1299]). A record expires when its reference

count drops to zero, indicating that the record is no longer being used, and its lifetime passes.

When a route table entry is inserted into the linked list of the hash table (added to an external

chain of the IP route hash table), the rt_cache_add function traverses the linked list to search for

any entries matching the entry just inserted and deletes those duplicate entries if they are found.

During this traversal in search of the inserted entry, the rt_cache_add function also identifies and

removes expired records linked list that it is traversing (see, Linux v2.0.1 source code, file

route.c, function rt_cache_add, lines 1361-1383).

247. Thus, the Linux version 2.0.1 source code discloses a method of on-the-fly

removal of automatically expiring records from an information storage and retrieval system. As

the following analysis shows, the Linux version 2.0.1 system for on-the-fly removal of

automatically expiring records from a linked list/hash table is the same as that disclosed in the

‘120 Patent.

95

a. The Linux version 2.0.1 source code discloses the “linked list to

store and provide access to records stored in a memory of the

system, at least some of the records automatically expiring”

limitation of claim 1 and the “hashing means to provide access

to records stored in a memory of the system and using an

external chaining technique to store the records with same

hash address, at least some of the records automatically

expiring” limitation of claim 5

248. The Linux v2.0.1 source code discloses a linked list to store and provide access to

records stored in a memory of the system. The Linux v2.0.1 source code discloses a hash table

ip_rt_hash_table. The ip_rt_hash_table structure is defined at line 151 of the route.c code as a

hash table with external chaining. This hash table consists of rtable structures, which are defined

at lines 65-81 of the route.h code as nodes of a linked list and include a pointer to the next record

in the linked list of route table entries at line 67.

249. Under Bedrock’s interpretation of expiration, the Linux v2.0.1 source code further

discloses that at least some of the records stored in the hash table of route table entries

automatically expire. Routing table entries automatically become obsolete and therefore no

longer needed or desired in the storage system because of the condition that the time since the

last use of the route table entry exceeds the timeout value for the route table entry and the route

table entry is not currently being referenced (see, Linux v2.0.1 source code, file route.h, structure

rtable [line 65], file route.c, function ip_rt_check_expire [line 968], rt_cache_add [lines 1369-

1380]).

b. The Linux version 2.0.1 source code discloses the “record

search means utilizing a search key to access the linked list”

limitation of claim 1 and the “record search means utilizing a

search key to access a linked list of records having the same

hash address” limitation of claim 5

250. The Linux v2.0.1 source code discloses a record search means utilizing a search

key to access a linked list of records having the same hash address. The Linux v2.0.1 source code

96

discloses a search key, a form of destination address, that is used as an input to a hash function,

the result of which is further used to access the linked list. For example, the function

rt_redirect_1 calculates a hash value at line 1039 based on the destination address of the record

being inserted, and then calls the rt_cache_add function to insert that record into the route cache

(see, Linux v2.0.1 source code, file route.c, function rt_redirect_1 [lines 1039, 1061]). To

calculate the hash value, rt_redirect_1 calls the function ip_rt_hash_code, which is defined in

route.h at lines 116-120. The resulting value is passed into the rt_cache_add function and is used

to access the appropriate linked list in the hash table ip_rt_hash_table (see, Linux v2.0.1 source

code, file route.c, function rt_cache_add [line 1345]). That linked list is then traversed in search

of a record matching the search key (the destination address) and, if found, deletes it from the

linked list (see, Linux v2.0.1 source code, file route.c, function rt_cache_add [line 1365-83]).

251. The Linux 2.0.1 source code thus discloses using a search key to access records

stored in the list that is equivalent to the structure identified by the Court in its Claim

Construction Order.

c. The Linux version 2.0.1 source code discloses the “record

search means including a means for identifying and removing

at least some of the expired ones of the records from the linked

list when the linked list is accessed” limitation of claims 1 and 5

252. The Linux v2.0.1 source code discloses that the record search means includes a

means for identifying and removing at least some of the expired ones of the records from the

linked list when the linked list is accessed. The Linux v2.0.1 source code discloses that during

the access to the linked list of route table entries to search for a duplicate entry to delete, the

Linux v2.0.1 source code both identifies and removes route table entries that have expired (see,

Linux v2.0.1 source code, file route.h, structure rtable [line 65], file route.c, function

rt_cache_add [lines 1365-1383]).

97

253. In particular, the Linux v2.0.1 source code identifies an expired record (according

to Bedrock’s interpretation) on lines 1369-1370 based on whether the reference count is zero and

the lifetime of the record has passed:

if ((!rth->rt_refcnt && rth->rt_lastuse + RT_CACHE_TIMEOUT < now)
 || rth->rt_dst == daddr)

254. After an expired record is identified, it is then removed from the linked list by

adjusting the pointers in the linked list to bypass the record (see, Linux v2.0.1 source code, file

route.c, function rt_cache_add [line 1372]).

d. The Linux version 2.0.1 source code discloses the “means,

utilizing the record search means, for accessing the linked list

and, at the same time, removing at least some of the expired

ones of the records in the linked list” limitation of claim 1 and

the “means, utilizing the record search means, for inserting,

retrieving, and deleting records from the system and, at the

same time, removing at least some expired ones of the records

in the accessed linked list of records” limitation of claim 5

255. The Linux v2.0.1 source code discloses a means, utilizing the record search

means, for accessing the linked list and, at the same time, removing at least some of the expired

ones of the records in the linked list. The Linux v2.0.1 source code discloses that the

rt_cache_add function is called by the ip_rt_slow_route and rt_redirect_1 functions, which use

rt_cache_add to insert a record into the hash table, retrieve a record from the table to print, and

deletes any duplicate records from the hash table, and at the same time, remove expired records

from the hash table (see, Linux v2.0.1 source code, file route.c, function rt_redirect_1 [line

1061], ip_rt_slow_route [line 1490], rt_cache_add [line 1299-1385]).

256. The function rt_cache_add inserts, retrieves, and deletes records from the hash

table at the same time that it removes at least some of the expired ones of the records from the

accessed linked list of records. First, rt_cache_add inserts a record into the linked list at lines

1356-57. Though this happens before the removal of expired records from the accessed linked

98

list of records that occurs on lines 1365-83, this structure is functionally equivalent to, and

insubstantially different from, performing the insertion after the linked list of records.

257. Moreover, to the extent it is not equivalent, performing the insertion after the

traversal of the linked list of records would have been an obvious variation. Whether the

insertion is performed before or after the removal of expired records is an obvious and trivial

design choice.

258. After the insertion of the record into the linked list, the rt_cache_add function

traverses the remainder of the linked list in search of the record just added so that it can delete

any duplicate records to the record just added. During that traversal in search of the duplicate

record to delete, any expired records are identified and removed (see, Linux v2.0.1 source code,

file route.c, function rt_cache_add [line 1361-1383]).

259. When a duplicate record or an expired record are found, the rt_cache_add

function then retrieves the record that was just removed so that it can print it using the printk

function at line 1376 (see, Linux v2.0.1 source code, file route.c, function rt_cache_add [line

1376]).

260. Further, Bedrock’s apparently construes this claim element to include the

deletion of a record in a separate traversal of the linked list that occurs prior to the removal of

expired records (see, e.g., Bedrock’s Jan. 12, 2011 P.R. 3-6 Infringement Contentions – Google

2.6.18 at 12-13). While I do not agree with Bedrock’s position, if the Court adopts this position,

then both the insertion described above and deletions that occur during the call to function

rt_garbage_collect at line 1342 disclose this claim element (see, Linux v2.0.1 source code, file

route.c, function rt_cache_add [lines 1342, 1356], rt_garbage_collect [lines 1289-1297],

rt_garbage_collect_1 [lines 1107-1137]). The function rt_garbage_collect calls

99

rt_garbage_collect_1, which traverses the linked list to remove expired records (see, Linux

v2.0.1 source code, file route.c, rt_garbage_collect [lines 1289-1297], rt_garbage_collect_1

[lines 1107-1137]).

2. The Linux v2.0.1 source code anticipates and/or renders obvious

claims 2 and 6 of the ‘120 Patent

261. The Linux v2.0.1 source code discloses a means for dynamically determining

maximum number for the record search means to remove in the accessed linked list of records.

262. In Bedrock’s Infringement Contentions, Bedrock has taken the position that the

determination of whether or not to delete one expired record falls within the meaning of this

claim. While I do not agree with this interpretation, if the Court were to agree with this

interpretation, the Linux v2.0.1 code anticipates this claim.

263. The Linux v2.0.1 code contains a conditional statement that determines whether

or not to delete an expired record based on a comparison of the record’s expiration time with the

current time (see, Linux v2.0.1 source code, route.c, lines 1369-80). This determination of

whether or not to delete an expired record falls within Bedrock’s interpretation of this claim as I

understand it.

264. Additionally, it is a fundamental concept in computer programming to make

decisions in a program based on factors internal or external to the system being implemented.

Thus, arguably, virtually any determination that is made in a computer system is a dynamic

determination as that term has been construed. If processing load were a concern in the Linux

v2.0.1 system, it would have been obvious to one of ordinary skill in the art to introduce a

dynamic determination of the number of expired records to remove from the ip_rt_hash_table to

limit the amount of clean up work performed during the traversal of the list. It would have been

100

obvious to limit the amount of time spent deleting expired records to, for example, limit the time

spent in any one instance of the rt_cache_add function.

265. One of ordinary skill in the art would have known that dynamically determining

the maximum number to remove would limit the burden on the system and bound the length of

any real-time interruption to prevent delays in processing. Indeed, Dr. Nemes concedes that such

dynamic determination was obvious when he states in the ‘120 patent that “[a] person skilled in

the art will appreciate that the technique of removing all expired records while searching the

linked list can be expanded to include techniques whereby not necessarily all expired records are

removed, and that the decision regarding if and how many records to delete can be a dynamic

one” (see, ‘120 Patent, col. 7, lines 10-15).

266. Furthermore, the Linux v2.0.1 code in combination with the Dirks ‘214 Patent

renders these claims obvious. The disclosures of the Dirks ‘214 Patent are described in Sections

VI.F and VII.E. The Dirks ‘214 Patent teaches a simple formula for bounding the number hash

table entries considered when deleting expired entries as a fraction of the total number of entries

in the hash table and the number of active processing entities. A person or ordinary skill in the

art would recognize that this simple bounding ratio could be applied to the bounding the number

of removals in the ip_rt_hash_table processing by, for example, computing the ratio of the

number of entries in the ip_rt_hash_table to the number of active processes.

3. The Linux version 2.0.1 source code anticipates claims 3 and 7 of the

‘120 Patent

267. As previously discussed, the Linux v2.0.1 source code discloses a method for

storing and retrieving information records using a linked list and/or a hash table with external

chaining to store and provide access to records, some of which automatically expire based on

whether the record has a reference count of zero and whether the record’s lifetime has passed.

101

a. The Linux version 2.0.1 source code discloses accessing the

linked list of records and accessing a linked list of records

having the same hash address

268. The Linux v2.0.1 source code discloses accessing a linked list of records having

the same hash address in the rt_cache_add function, as discussed above in Section VII.C.1.b.

b. The Linux version 2.0.1 source code discloses identifying at

least some of the automatically expired ones of the records

269. The Linux v2.0.1 code discloses identifying at least some of the automatically

expired ones of the records when the linked list is accessed.

270. As discussed above in Section VII.C.1.c, the rt_cache_add function identifies

automatically expired records while the linked list is being accessed in search of a duplicate

record to the one just inserted.

c. The Linux version 2.0.1 source code discloses removing at least

some of the automatically expired ones of the records from the

linked list when the linked list is accessed

271. The Linux v2.0.1 code discloses removing at least some of the automatically

expired ones of the records during the same access of the linked list as the one in which the

automatically expired records are identified.

272. As discussed above in Section Section VII.C.1.c, the rt_cache_add function

identifies and removes the automatically expired records from the linked list while the linked list

is being accessed in search of a duplicate record to the one just inserted.

d. The Linux version 2.0.1 source code discloses inserting,

retrieving or deleting one of the records from the system

following the step of removing

273. The Linux v2.0.1 code discloses inserting, retrieving or deleting one of the

records from the system following the step of removing.

102

274. As discussed above in Section VII.C.1.d, the rt_cache_add function searches for a

duplicate record matching the record inserted into the cache. If such a duplicate record is found,

it is deleted from the system. This deletion may occur after expired records have been identified

and removed.

4. The Linux version 2.0.1 source code anticipates and/or renders

obvious claims 4 and 8 of the ‘120 Patent

275. The Linux v2.0.1 source code discloses the step of dynamically determining

maximum number of expired ones of the records to remove when the linked list is accessed.

276. As discussed above in Section VII.C.2, under Bedrock’s interpretation of this

claim, the Linux v2.0.1 code dynamically determines a maximum number of records to remove.

277. As discussed above in Section VII.C.2, it would have been obvious to one of

ordinary skill in the art to combine the Linux v2.0.1 code with the dynamic determination of a

maximum number that occurs in Dirks.

D. The Nemes ‘495 Patent Renders Obvious All Claims of the ‘120 Patent

278. It is my opinion that the Nemes ‘495 Patent in combination with various

references disclosing the alternative collision resolution technique of external chaining

(including Knuth, Kruse, or Stubbs), renders obvious claims 1, 3, 5, and 7 of the ‘120 Patent and,

in combination references disclosing external chaining and Dirks, NRL BSD, Linux v2.0.1, or

GCache, renders obvious claims 2, 4, 6, and 8.

279. The ‘120 Patent attempts to claim an application of on-the-fly removal of

automatically expiring records to linked lists generally, as well as linked lists used in the context

of hashing with collision resolution based on external chaining. However, the ‘495 Patent

previously disclosed the use of on-the-fly removal of automatically expiring records in hashing

with collision resolution based on open addressing via linear probing. I believe that this

103

reference, in combination with the knowledge of a person of ordinary skill in the art as of

January 1997 would render the asserted claims of the ‘120 Patent obvious. Specifically, I believe

that it would have been obvious to modify the teachings of on-the-fly deletion of automatically

expiring records in hash tables with collision resolution based on open addressing via linear

probing, to perform on-the-fly removal of automatically expiring records in hash tables with

collision resolution based on external chaining (and thus arrive at on-the-fly removal of records

in linked lists).

280. This is because by the 1970s, by January 1997, and today, it was widely known

that only two basic types of collision resolution schemes exist: collision resolution by open

addressing, and collusion resolution by chaining/external chaining. This fact was taught in the

seminal Knuth treatise in 1973 (see, Knuth, pp. 513, 518), taught in the ‘120 Patent (see, ‘120

Patent, col. 1, lines 53-64), taught in the 1987 Kruse and 1985 Stubbs data structures texts

referenced in the specification of the ‘120 Patent (see, Kruse, pp. 202, 206, Stubbs, pp. 324-25).

Dr. Nemes confirmed this during his August 31, 2010 deposition (see Nemes Depo. Tr. at 194).

Because of this fact, and, as explained above, the fact that collision resolution based on external

chaining has advantages over open addressing when deleting records from a hash table, it would

have been obvious to try to modify references teaching a method of deletion in hash tables with

collision resolution based on linear probing to use collision resolution based on external

chaining.

1. The Nemes ‘495 Patent in combination with various references

renders claims 1, 3, 5, and 7 of the ‘120 Patent obvious

281. The ‘495 Patent discloses a method for information storage and retrieval using

hashing with linear probing. For example, the ‘495 Patent states that “[t]his invention relates to

information storage and retrieval systems.” Moreover, the ‘495 Patent discloses a CPU and RAM

104

programmed with software for on-the-fly removal of expired records from a hash table with

linear probing (see ‘495 Patent, col. 3, line 15-col.4, line 15). It would have been obvious to a

person of ordinary skill in the art at the time of the filing of the application for the ‘120 Patent to

modify the teachings of the ‘495 Patent with respect to on-the-fly removal of automatically

expiring records in a hash table with collision resolution based on linear probing, to arrive at a

hash table with on-the-fly removal of automatically expiring records where collision resolution

was based on external chaining. In making such modifications, the resulting system and methods

would also necessarily disclose on-the-fly removal of automatically expiring records from a

linked list.

282. First, as discussed in Section III above, there are only two types of collision

resolution schemes in existence: collision resolution based on open addressing, and collision

resolution based on external chaining. A person of ordinary skill in the art in January 1997 would

appreciate that among the two types of methods of collision resolution, external chaining is the

simpler of the two methods to implement and is the one more likely to provide higher

performance storage and retrieval operations.

283. For example, the ‘495 Patent presents a Pascal pseudo-code implementation of

hashing of automatically expiring records where collision resolution is based on linear probing.

The ‘120 Patent presents a Pascal pseudo-code implementation of hashing of automatically

expiring records where collision resolution is based on external chaining. As both the ‘495 Patent

and the ‘120 Patent were awarded to the same sole inventor, it is reasonable to assume the same

person, Richard Nemes, developed both codes. Thus, the codes can be compared via a simple

complexity metric such as number of lines of code (ignoring comments and blank lines). Such a

comparison shows that the pseudo code for linear probing contains more lines of code than the

105

external chaining version. In particular, with regard to the function for actually removing

automatically expired records from the hash table (ignoring the complexity of locating such

records), the pseudo code for removing an expired record from the hash table when collision

resolution is based on linear probing consists of 30 lines of Pascal pseudo code while the remove

procedure for removing an expired record from the hash table when collision resolution is based

on external chaining consists of only 12 lines (see, ‘495 Patent, col. 11, lines 18-65, and ‘120

Patent, cols. 13-14). However, more importantly, the code for removing an expired record from

the hash table when collision resolution is based on external chaining contains no loops. Of the

12 lines of code, during the actual execution of the code, either 2 or 5 Pascal statements will be

executed.14 This will be true independent of the size of the hash table. In marked contrast, the

code for removing an expired record from the hash table when collision resolution is based on

linear probing contains nested loops (contains loop within loops). Thus, of the 30 lines of code in

the removal procedure when collision resolution is based on liner probing, during the actual

execution of the code, the body of the inner-most loop, containing 14 lines of code, will be

executed repeatedly depending on the size of the hash table and the number of non-empty hash

buckets. For example, for a hash table with a million records, the removal code for the hash table

in the ‘495 Patent could execute millions of lines of code. In contrast, the removal code for the

hash table in the ‘120 Patent would execute either 2 or 5 lines of code. It is plainly apparent that

the pseudo code for deleting records from a hash table with collision resolution based on linear

probing is significantly more complex and costly in time to execute than the corresponding code

14 The pseudo code for removal of an expired record in the ‘120 Patent contains a call to a

“dispose” function to deallocate the node being removed. The ‘120 Patent does not provide the
pseudo code for this function, however, I note that under the Court’s construction of “removing
… from the linked list,” deallocation of the memory associated with the record to be removed is

106

for deleting records from a hash table with collision resolution based on external chaining. The

former pseudo code includes nested loops wherein colliding records have to be rehashed and the

table must be traversed, whereas the latter code only requires simple pointer adjustment.

284. This comparison confirms the common knowledge that existed among persons of

ordinary skill in the art in 1997 that hashing with collision resolution based on external chaining

is simpler to implement than hashing with collision resolution based on open addressing/linear

probing and will provide better runtime performance. Thus, the complexity comparison above is

not surprising and in fact would be predictable. As discussed in Section III, it was well known

that external chaining would provide lower implementation complexity and lower runtime cost

(execute faster) than linear probing. For at least these reasons, it would have been immediately

obvious for a person of ordinary skill in the art to apply the teachings of the ‘495 Patent to a hash

table with collision resolution based on external chaining. In addition, applying the teachings of

the ‘495 Patent to a hash table with collision resolution based on external chaining would require

nothing more than the ordinary skill of a person of ordinary skill in the art as of January 1997.

285. Indeed, in Knuth’s seminal work, “The Art of Computer Programming, Volume

3, Searching and Sorting,” when discussing the problem of collisions in hash tables, Knuth

states:

We have observed that some hash addresses will probably be burdened with more than
their share of keys. Perhaps the most obvious way to solve this problem is to maintain M
linked lists, one for each possible has address. (See, Knuth, p. 513, emphasis added.)

Thus, when confronted with a need or desire for a hashing solution, Knuth confirms that it would

have been obvious to try a collision resolution scheme based on external chaining. That is,

adapting a collision resolution scheme based on open addressing/linear probing, to one based on

not required. Nonetheless, I have included the dispose function in the count of the Pascal

107

external chaining would have been a predictable variation. Moreover, the application of collision

resolution based on external chaining to a hashing solution previously using collision resolution

based on open addressing would be no more than the predictable use of a prior art element

according to its established function and would yield a predictable result (a functionally

equivalent hash table and one that likely provided better storage and retrieval performance).

286. This significant difference in complexity and performance was noted in Knuth. As

Knuth stated in a section concerning deletion from a hash table where certain complexities were

encountered when deleting elements from a hash table with collision resolution based on linear

probing:

Of course when chaining is used with separate lists for each possible hash value, deletion
causes no problems since it is simply a deletion from a linked linear list. (See, Knuth, p.
527, emphasis added.)

Thus, Knuth confirms that if deletion of records from a hash table were a concern, as they were

in the ‘495 Patent, it would have been obvious to try a collision resolution scheme based on

external chaining because fewer (or no) problems could be expected and, as explained in Section

III.C, better performance would likely result. Kruse confirmed that deletion from hash tables

using open addressing (such as linear probing) is awkward and should be avoided:

With the methods we have so far studied for hash tables [open addressing], deletions are
indeed awkward and should be avoided as much as possible. (See, Kruse, p. 206,
emphasis aded.)

In contrast, with respect to deletions from a hash table with collision resolution based on external

chaining, Kruse states:

Finally, deletion becomes a quick and easy task in a chained hash table [a hash table with
collision resolution based on external chaining]. Deletion proceeds in exactly the same
way as deletion from a simple linked list. (See, Kruse, p. 206, emphasis added.)

statements.

108

287. Further, as discussed in Section III, a person of ordinary skill in the art in January

1997 would appreciate that often times a collision resolution scheme based on external chaining

is preferable to one based in open addressing/linear probing. For example, in applications where

it is expected that the storage capacity of a hash table may have to be increased over time,

collision resolution based on external chaining may be desirable to collision resolution based on

linear probing as the latter requires an expansion of the actual hash table and the rehashing of all

the elements, whereas the former approach accommodates growth by simply allowing the chains

to grow longer.

288. The fact that collision resolution based on external chaining is often preferable to

collision resolution based on linear probing is acknowledged in the ‘120 Patent (see, ‘120 Patent,

col. 2, lines 38-51). In particular, the ‘120 Patent acknowledges that these facts were well known

and discussed in the Knuth and Kruse texts (see, ‘120 Patent, col. 2, lines 37-40). The Stubbs text

also discusses the benefits of external chaining over linear probing (see, Stubbs p. 325). The ‘120

Patent further acknowledges that “hashing techniques for dealing with expiring data that do not

use external chaining prove wholly inadequate for certain applications” (see, ‘120 Patent, col. 2,

lines 41-44). Thus, the ‘120 Patent confirms that it would have been obvious for a person of

ordinary skill in the art dealing with expiring data in January 1997 and aware of the teachings of

the ‘495 Patent, to modify the teachings of the ‘495 Patent to use collision resolution based on

external chaining rather than linear probing. Related to these disclosures in the ‘120 Patent, the

Nemes ‘499 Patent discloses external chaining and teaches that deletion of records from an

external chain of a hash table is “easy” (see, ‘499 Patent, col. 8, lines 53-58). These teachings

would provide further motivation for a person of ordinary skill in the art to have considered

adapting the teachings of the ‘495 Patent to employ external chaining.

109

289. Importantly, while the ‘120 Patent states that “[t]he methods of the above-

mentioned patent [the ‘495 Patent] are limited to arrays and cannot be used with linked lists due

to the significant difference in the organization of the computer’s memory,” this statement is not

to be understood as a statement that a person of ordinary skill in the art would be unable to adapt

the teachings of the ‘495 Patent to employ collision resolution using external chaining. (See,

‘120 Patent at col. 2, lines 48-51.) In fact, to the contrary, given the simplicity of external

chaining, a person of ordinary skill in the art would have no trouble modifying the teachings of

the ‘495 Patent to use linked lists. While the exact instructions given in the ‘495 Patent for an

embodiment of the ‘495 Patent (i.e., the PASCAL programming language code appearing

columns 9-11 of the ‘495 Patent), cannot be used with linked lists without modification, a person

of ordinary skill in the art in January 1997 could easily adapt the code to transform the solution

to one using hashing with collision resolution based on external chaining.

290. Indeed, based on my nearly 30 years of experience teaching programming and

data structures, in January 1997, it is my opinion that certain persons of less than ordinary skill in

the art would have had little trouble converting the hashing solution disclosed in the PASCAL

embodiment of the ‘495 Patent into a corresponding solution using linked lists and external

chaining. For example, in January 1997, at a minimum, freshman/sophomore level

undergraduate computer science majors at UNC who had successfully completed a standard data

structures course would certainly be able to complete this task. During this time frame I had

personally observed teams of undergraduates implement a hashing solution from scratch (i.e.,

without the aid of a reference implementation such as the ‘495 Patent) within the space of an

hour. In addition, the effort required to complete this task would be on the order of hours, not

days or weeks. I again note that in 1973, Knuth felt that hashing with collision resolution based

110

on external chaining was such a straightforward combination of standard techniques that he

declined to present a complete solution in his text. As Knuth stated:

This method [hashing with external chaining] is a straightforward combination of
techniques we have discussed before, so we do not need to formulate a detailed algorithm
for chained scatter [hash] table. (See, Knuth, p. 513, emphasis added.)

Thus, implementing a collision resolution scheme based on external chaining would have been

well within the level of skill of a person of ordinary skill in the art in the 1997 time frame.

291. Thus, when encountering the ‘495 Patent, for the reasons given above and in

Section III, a person of ordinary skill in the art in 1997 would have been motivated to adapt its

teaching to collision resolution based on external chaining at least because external chaining was

well known to provide at least:

• lower implementation complexity,

• lower search times for successful searches (higher search performance),

• lower search times for unsuccessful searches,

• lower removal times,

• better adaptability for dynamic growth in size of the hash table, and

• lower memory requirements when storing records.

In addition, a person of ordinary skill in the art in 1997 would recognize that there was little to

no advantage to using hashing with collision resolution based on linear probing in an application

requiring on-the-fly removal of records from an in-memory hash table.

292. As further evidence that the claims of the ‘120 Patent are obvious in light of the

‘495 Patent, I note that when Bell Communications Research Inc. (“Bellcore”), the assignee of

the ‘495 Patent originally prepared the application for the ‘495 Patent, a version of the

application included the paragraph:

111

It is to be understood that the present invention will be described in connection
with linear probing with open addressing only for convenience and because such a
collision-resolution strategy is very commonly used. The techniques of the
present invention can just as readily applied [sic] to such other forms of collision-
resolution strategies by modifications readily apparent to those skilled in the art.
(See TELECORDIA00000253.)

Thus, prior to the application for the ‘495 Patent, Bellcore understood that the teachings of the

‘495 Patent could be readily adapted to other forms of collision resolution. In addition, a person

of ordinary skill in the art would understand this statement to mean that the techniques of the

‘495 Patent, on-the-fly deletion of automatically expiring records from a hash table can be

readily applied to such other forms of collision resolution strategies such as collision resolution

based on external chaining. Moreover, a person of ordinary skill in the art would understand that

nothing other than ordinary skill would be required to adapt the teachings of the ‘495 Patent to

hashing with collision resolution based on external chaining. Indeed, based on my experience

teaching undergraduates, I have no doubt that given the ‘495 Patent, undergraduate computer

science majors in a sophomore-level data structures course could conceive of, and implement,

on-the-fly deletion of automatically expiring records from a hash table with collision resolution

based on external chaining. The ‘495 Patent, like the seminal Knuth reference, gives an

implementation of its teachings for collision resolution based on linear probing and leaves the

easier, more obvious implementation of collision resolution based on external chaining as an

exercise for the reader. A person of ordinary skill in the art in 1997 could easily complete this

exercise and most likely do so in a mere matter of hours.

293. I understand that at his first deposition in August 2010, Dr. Nemes, the named

inventor of both the ‘120 and ‘495 Patents, was asked about the above passage and did not know

why the passage was deleted from the eventual application submitted to the USPTO. However,

four months later in December 2010, after reviewing the transcript from his former employer

112

Telcordia’s deposition (see, Nemes Depo. Tr. at 880), Dr. Nemes testified that more than 20

years earlier he deleted the paragraph above from the application for the ‘495 Patent because,

So I crossed this out because the techniques of the present invention which center
around Knuth’s algorithm R are applicable only to linear probing. They are not
applicable to other forms of open addressing such as quadratic probing, random
probing and certainly not applicable to linked lists. Knuth’s algorithm R which is
at the heart of the technique in the ‘495 patent is applicable strictly to open
addressing using the linear probing technique. (See, Nemes Dep. Tr., pp. 882, line
20 – 883, line 6.)

294. I note that this testimony is directly at odds with the teaching of the ‘495 Patent.

Knuth’s Algorithm R is a sketch of an algorithm to delete items from a hash table with collision

resolution based on linear probing. Algorithm R appears on page 527 of Knuth (and no other

algorithm appears on page 527). The ‘495 Patent references Algorithm R, however, the patent

explicitly states that Algorithm R (and similar algorithms) can only be used the database is off

line and thus not available for use:

In the prior art, such storage space contamination was avoided by deletion
procedures that eliminated deleted records by replacing the deleted record with
another record in the collision-resolution chain of records and thus close the chain
without leaving any deleted records. One such procedure is shown in the
aforementioned text by Knuth at page 527. Unfortunately, such non-
contaminating procedures, due to the necessity for successive probes into the
storage space, take so much time that they can be used only when the data base is
off line and hence not available for accessing. (See, ‘495 Patent, col. 2, lines 11-
22, emphasis added.)

295. Thus, Dr. Nemes’s testimony, made more than 20 years after the paragraph in

question was written, directly contradicts the ‘495 Patent. Despite Dr. Nemes 2010 testimony

about a detail of his 1988 patent application, Knuth’s Algorithm R is not the “heart” of the ‘495

Patent. First, whereas the ‘120 Patent, written by Dr. Nemes, does contain an explicit indication

as to what “the heart of the technique” is (see, ‘120 Patent, cols. 11-12), the ‘495 Patent contains

113

no such statement. There is nothing in the ‘495 Patent to suggest that Knuth’s Algorithm R is the

“heart” of the ‘495 Patent and there is clear evidence in the ‘495 Patent that Knuth’s Algorithm

R cannot be used in an on-the-fly algorithm such as that taught by the ‘495 Patent. Second,

nowhere in the ‘495 Patent is any indication given that Knuth’s Algorithm R is used in the ‘495

Patent. (Indeed, if Knuth’s Algorithm R really was used in the ‘495 Patent, and was the “heart”

of the patent, this would on its face raise serious questions as to the validity of the ‘495 Patent.)

The SUMMARY OF THE INVENTION section of the ‘495 Patent explains what the real heart

of the ‘495 Patent is: “during normal data insertion or retrieval probes into the data store, the

expired, obsolete records are identified and removed in the neighborhood of the probe.” Even if

the ‘495 Patent discloses using Algorithm R as one means of removing the expired records, it is

the fact that the removal happens on-the-fly that is the heart of the patent, not the particular

algorithm used to remove each expired record. In any event, the ‘495 Patent makes clear that

Knuth’s algorithm R is not suitable for on-the-fly removal.

296. I believe that the observation Bellcore made in 1988 was correct then and is

correct now. The techniques of the ‘495 Patent can just as readily be applied to other forms of

collision resolution strategies, including external chaining, by modifications readily apparent to

those skilled in the art.

297. I am aware that in granting the application for the ‘120 Patent, the USPTO

considered the ‘495 Patent. In particular, I understand that the claims of the ‘120 Patent were

originally rejected in a “double patenting” rejection over the ‘495 Patent. However, this rejection

was based in large part on the appearance of the words “chain” and “chains” in the ‘495 Patent

and the Examiner’s misinterpretation of the “chain” of the ‘495 Patent to connote a linked (or

“chained”) list (see, ‘120 Patent File History, April 1998 Office Action). In response, the

114

Applicant, Richard Nemes, responded that “chains” as used in the ‘495 Patent were not linked

lists. Indeed, in allowing the ‘120 Patent the Examiner stated that “[a]lthough the prior art of

record (Nemes, ‘495 reference) teaches the use of chains of records and the deletion of records,

the Applicant, in the Response dated August 11, 1998, Paper No.5, provided arguments as to

why the chain of records as taught in the '495 reference is not the same as the linked list as

claimed” (see, ‘120 File History, Notice of Allowability). However, what Dr. Nemes never

disclosed, and what the Examiner never heard, were the facts that while “chains” (as used in the

‘495 Patent) and external chaining are not literally the same, there are the only two methods of

resolving collisions in hash tables (the two methods being those based on open addressing

[“chains” of the ‘495 Patent] and external chaining). Further, Dr. Nemes never disclosed, and the

Examiner never heard, that the very references cited in the application for the ‘120 Patent (and in

the ‘495 Patent), namely Knuth and Kruse, both teach that when deletion of records from hash

tables is of concern, use of open addressing and/or linear probing will incur complexity and

performance problems not found with external chaining while external chaining provides

numerous clear benefits over open addressing. For example, Dr. Nemes never disclosed, and the

Examiner never heard, that when considering a hashing solution the Knuth reference cited in the

application for the ‘120 Patent (and in the ‘495 Patent) taught that “the most obvious way to

solve this problem [of collisions]” is to use external chaining (see, Knuth, p. 513), while the

Kruse reference cited in the application for the ‘120 Patent (and in the ‘495 Patent) taught that

when using open addressing, “deletions are indeed awkward and should be avoided as much as

possible” (see, Kruse, p. 206). There is no evidence to suggest the Examiner was ever provided

with this important evidence demonstrating the obviousness of the use of external chaining in

hash tables and linked lists generally.

115

298. According to Dr. Nemes’ deposition testimony, the ‘495 Patent grew out of work

he was doing on the Line Information Data Base (LIDB) at Bellcore (see, Nemes Depo. Tr., p.

457, line 12 to p. 460, line 20). Dr. Nemes testified that LIDB used a hash table with linear

probing because of the limitations of the particular medium in which the data base was being

stored:

 Q. The sequence of buckets on a disk in an LIDB system, does that
sequence – did that sequence restrict the types of collision resolution techniques
you could use?
 A. Well, the goals of the system which were performance I think
dictated the limitation. We wanted to be able to get as much as we could in a
single disk read. It's very expensive in time to access a portion of the disk. You
want to get as much as you can and you want to avoid having to go to the disk
more often than you really have to.
 So that being a primary goal of the LIDB database system I think limited
the implementation for me at that time.

Nemes Depo. Tr. p. 479, line 21 to p. 480, line 10.

299. For a disk-resident hash table, it may be the case that collision resolution based on

linear probing (or open addressing generally) is the most appropriate scheme to use. These would

be because unlike memory (RAM) resident data structures where the processor can directly use

the data structure, disk based data structures require that the data they contain first be read from

disk and copied into memory before the data can be used. Thus, for time sensitive applications,

disk-resident data structures must be arranged on disk so that elements that are likely to be used

together are close to one another on disk and as a result can be read into memory (ideally) in a

single operation. In an environment such as this, an array data structure would typically provide

better storage and retrieval performance than a linked list because array elements that are

adjacent or close to one another in the array are more likely to be stored close to one another on

disk (and thus can be read in a single disk operation). In contrast adjacent elements of a disk-

resident linked list are less likely to stored together on disk because of the less structured manner

116

in which storage is allocated for nodes of a linked list. Because of this, multiple disk operations

may be required to read multiple elements of a linked list into memory.

300. For these reasons, in the context of a disk-based system such as that developed at

Bellcore, basing collision resolution on open addressing likely made sense. However,

nonetheless, the embodiments of the invention of the ‘495 Patent disclosed in the patent are of

memory-based hash tables (see, e.g., ‘495 Patent, cols. 8-11). For memory-resident hash tables,

such as those disclosed in the ‘495 Patent, a person of ordinary skill in the art would have been

motivated to base collision resolution on external chaining rather than open addressing for all the

reasons stated in Section III.

301. Finally, given an example that Dr. Nemes himself used to illustrate why an issued

patent would be invalid for reasons of obviousness, the ‘120 Patent is surely obvious.

302. I understand that Dr. Nemes developed an example of the obviousness of a patent

to use in a class he taught at Pace University on computer security. At his deposition, Dr. Nemes

testified that in explaining obviousness to his class he had used the example of a well-known

algorithm for sorting a sequence of numbers known as bubble sort. Briefly, in bubble sort, an

array of numbers is sorted by traversing the array from left to right (from the first array element

to the last array element) to first find the largest element in the array and then re-traversing the

array to find the second largest element, the third largest element, etc. Dr. Nemes obviousness

example was that in his opinion, one could not patent a bubble sort method that sorted an array in

the “reverse” direction, that is by traversing the array from right to left (from the last element in

the array to the first) instead of from left to right. By Dr. Nemes estimation, such a method

would be an obvious variation of the well-known bubble sort method because reverse traversal of

an array for any purpose was known in the prior art (see, Nemes Dep. Tr., p. 595, line 22 to p.

117

596 line 1). In particular, “reverse bubble sort” would be obvious because it would have been

obvious to take two known things in the art and combine them (see, Nemes Dep. Tr., p. 601,

lines 13 to p. 602 line 7), and that a person of ordinary skill in the art’s imagination would be

broad enough to convert a bubble sort that sorts in one direction to a bubble sort that sorts in the

other direction (see, Nemes Dep. Tr., p. 603, line 23 to p. 604, line 7).

303. If a method to bubble sort a list of numbers in reverse order is obvious because a

person of ordinary skill in the art’s imagination is broad enough to conceive of this variation,

then given the teachings of the ‘495 Patent, the application of hashing with collision resolution

based on external chaining to on-the-fly deletion of automatically expiring records from a hash

table is obvious. In fact, a person of ordinary skill in the art’s imagination would not even have

to be “broad enough” to conceive of this obvious variation because seminal references such as

Knuth, as well as undergraduate textbooks, all teach both the use of collision resolution based on

external chaining, as well as the advantages of external chaining over schemes such as open

addressing or linear probing. No imagination is necessary to conceive of adapting the teachings

of the ‘495 Patent to collision resolution based on linear chaining. It would be an obvious,

predictable variation to attempt and nothing more than ordinary skill in the art would be required

to make such an adaptation and reduce that adaptation to practice.

a. The ‘495 Patent in combination with various references

discloses the “linked list to store and provide access to records

stored in a memory of the system, at least some of the records

automatically expiring” limitation of claim 1 and the “hashing

means to provide access to records stored in a memory of the

system and using an external chaining technique to store the

records with same hash address, at least some of the records

automatically expiring”

304. The ‘495 Patent discloses a hashing means with linear probing. It claims “an

information storage and retrieval system using hashing techniques to provide rapid access to the

118

records of said system and utilizing a linear probing technique to store records with the same

hash address.” (See, ‘495 Patent at col. 11, line 67-col.12, line 3.) It also describes hashing with

linear probing in detail (see, ‘495 Patent at cols. 1-2).

305. The ‘495 Patent teaches automatically expiring records (see, ‘495 Patent,

Abstract, col. 1, lines 57-60, col. 2, lines 35-38, col. 4, lines 23-28, col. 11, line 68 – col. 12, line

5, col. 12, lines 37-42). For example, the ‘495 Patent discloses that “[i]n some common types of

data storage systems, data records become obsolete merely by the passage of time or by the

occurrence of some event. If such expired, lapsed or obsolete records are not removed from the

storage table, they will, in time, seriously degrade or contaminate the performance of the

retrieval system” (see, ‘495 Patent col. 4, lines 23-28). Claim 1 of the ‘495 Patent claims an

information storage and retrieval system with “at least some of said records automatically

expiring” (see ‘495 Patent col. 12, lines 3-5). Similarly, Claim 5 of the ‘495 Patent claims a

method for storing and retrieving information records with “at least some of said records

automatically expiring” (see ‘495 Patent col. 12, lines 40-41).

306. It would have been obvious to adapt an embodiment of the ‘495 Patent to use

external chaining instead of linear probing as disclosed in various references, including Knuth,

Kruse, and Stubbs, because (1) Knuth said it was obvious to try, and (2) ‘120 Patent and cited

texts claim there are well known shortcomings to the use of linear probing. It’s a predictable

combination that would yield a predictable result and the combination was well within the level

of skill of a person of ordinary skill in the art. Where external chaining is used to resolve

collisions rather than linear probing, the techniques of the ‘495 Patent would be applied to linked

lists of records having the same hash address.

119

b. The Nemes ‘495 Patent in combination with various references

discloses the “record search means utilizing a search key to

access the linked list” limitation of claim 1 and the “record

search means utilizing a search key to access a linked list of

records having the same hash address” limitation of claim 5

307. The ‘495 Patent teaches a record search means utilizing a search key to access a

chain of records (see, ‘495 Patent, cols. 10-11, col. 12, lines 6-7, FIG. 3). Figure 3, which

describes a search table procedure that traverses the chains of a hash table with linear probing in

reverse searching for a target record, is almost identical to Figure 3 of the ‘120 Patent. The only

differences between the two figures are that (1) the ‘495 Patent relates to a target chain, whereas

the ‘120 Patent relates to a list, (2) the ‘495 Patent starts at the end of the chain and proceeds in

reverse, whereas the ‘120 Patent starts at the head of a linked list and goes forward, and (3) the

‘495 Patent saves the location of the empty cell that can be used for an insertion, whereas the

‘120 Patent does not. These differences are due to the fact that the ‘495 Patent relates to a hash

table with linear probing.

308. Claim 1 of the ‘495 Patent also claims “a record search means utilizing a search

key to access a chain of records having the same hash address.” Though this “chain of records”

refers to a chain of records in a hash table with linear probing, if external chaining were applied

to resolve collisions in the hash table instead of linear probing, the result would be a record

search means utilizing a search key to access a linked list of records having the same hash

address.

309. As already discussed, it would have been obvious to adapt an embodiment of the

‘495 Patent to use external chaining instead of linear probing. Such an adaptation would have

resulted in a search table procedure like the one found in Figure 3 of the ‘120 Patent.

120

c. The Nemes ‘495 Patent in combination with various references

discloses the “record search means including a means for

identifying and removing at least some of the expired ones of

the records from the linked list when the linked list is

accessed” limitation of claims 1 and 5

310. The ‘495 Patent teaches a record search means including means for identifying

and removing all expired ones of said records from said chain of records each time said chain is

accessed to search for a target record (see, ‘495 Patent, col. 4, line 65-col. 5, line 49, cols. 10-11,

FIG. 3, col. 12, lines 8-11). As previously discussed, FIG. 3 of the ‘495 Patent is nearly identical

to FIG. 3 of the ‘120 Patent, with the differences due to the fact that the ‘495 Patent relates to

linear probing and the ‘120 Patent relates to external chaining.

311. Claim 1 of the ‘495 Patent discloses a “record search means including means for

identifying and removing all expired ones of said records from said chain of records each time

said chain is accessed.” Removing all expired records encompasses removing at least some of

the expired records. Moreover, as discussed above, the chain of records described relates to

linear probing, but would be equivalent to a linked list of records if external chaining were used

as the method of collision resolution.

312. As already discussed, it would have been obvious to adapt an embodiment of the

‘495 Patent to use external chaining instead of linear probing. Such an adaptation would have

resulted in a search table procedure like the one found in Figure 3 of the ‘120 Patent.

121

d. The Nemes ‘495 Patent in combination with various references

discloses the “means, utilizing the record search means, for

accessing the linked list and, at the same time, removing at

least some of the expired ones of the records in the linked list”

limitation of claim 1 and the “means, utilizing the record

search means, for inserting, retrieving, and deleting records

from the system and, at the same time, removing at least some

expired ones of the records in the accessed linked list of

records” limitation of claim 5

313. The ‘495 Patent teaches a record search means including using the record search

means for inserting retrieving and deleting records from said system and, at the same time,

removing all expired ones of said records in the accessed chains of records (see, ‘495 Patent, col.

7, line 3-col. 8 line 16, cols. 9-10, FIGS. 5-7, col. 12, lines 12-16). FIG. 5 of the ‘495 Patent is

nearly identical to FIG. 5 of the ‘120 Patent except that it refers to a “target chain” instead of a

“target list,” checks the table load before deciding whether to insert a record rather than checking

whether memory is available, and it inserts the actual record into the hash table as one normally

would in a hash table with linear probing, rather than as one would with a hash table with

external chaining. Similarly, FIGS. 6 & 7 of the ‘495 Patent are nearly identical to FIGS. 6 & 7

of the ‘120 Patent except for the reference to a target chain instead of a target linked list. If the

linear probing technique of the ‘495 Patent were replaced with an external chaining technique,

these figures would be equivalent.

314. Claim 1 of the ‘495 Patent also claims “means, utilizing the record search means,

for inserting, retrieving and deleting records from said system and, at the same time, removing

all expired ones of said records in the accessed chains of records.” (See, ‘495 Patent, col. 12,

lines 12-16).

315. As already discussed, it would have been obvious to adapt an embodiment of the

‘495 Patent to use external chaining instead of linear probing. Such an adaptation would have

resulted in insert, retrieve, and delete procedures like the ones found in the ‘120 Patent.

122

2. The ‘495 Patent in combination with Dirks, NRL BSD, Linux v2.0.1,

or GCache renders obvious claims 2 and 6 of the ‘120 Patent

316. The ‘495 Patent in combination with Dirks, NRL BSD, Linux v2.0.1, or GCache

renders this claim obvious. The disclosures of NRL BSD, Linux v2.0.1, and GCache are

described above. One of ordinary skill in the art would have been motivated to combine the

dynamic determination of any of these pieces of art with the ‘495 Patent in order to limit the

amount of cleanup done by the record search means.

317. Additionally, it is a fundamental concept in computer programming to make

decisions in a program based on factors internal or external to the system being implemented.

Thus, arguably, virtually any determination that is made in a computer system is a dynamic

determination as that term has been construed. If processing load were a concern in the ‘495

Patent, it would have been obvious to one of ordinary skill in the art to introduce a dynamic

determination of the number of expired records to remove from the hash table to limit the

amount of clean up work performed during the traversal of the list. It would have been obvious

to limit the amount of time spent deleting expired records to, for example, limit the time spent in

any one instance of the record search means.

318. One of ordinary skill in the art would have known that dynamically determining

the maximum number to remove would limit the burden on the system and bound the length of

any real-time interruption to prevent delays in processing. Indeed, Dr. Nemes concedes that such

dynamic determination was obvious when he states in the ‘120 patent that “[a] person skilled in

the art will appreciate that the technique of removing all expired records while searching the

linked list can be expanded to include techniques whereby not necessarily all expired records are

removed, and that the decision regarding if and how many records to delete can be a dynamic

one” (see, ‘120 Patent, col. 7, lines 10-15).

123

319. Furthermore, the ‘495 Patent in combination with the Dirks ‘214 Patent renders

these claims obvious. The disclosures of the Dirks ‘214 Patent are described in Sections VI.F and

VII.E. The Dirks ‘214 Patent teaches a simple formula for bounding the number hash table

entries considered when deleting expired entries as a fraction of the total number of entries in the

hash table and the number of active processing entities. A person or ordinary skill in the art

would recognize that this simple bounding ratio could be applied to the bounding the number of

removals in the hash table processing by, for example, computing the ratio of the number of

entries in the hash table to the number of active processes.

3. The ‘495 Patent in combination with various references renders

obvious claims 3 and 7 of the ‘120 Patent

320. The ‘495 Patent discloses a method for storing and retrieving information records

using hashing techniques to provide rapid access to said records and utilizing a linear probing

technique to store records with the same hash address (see, ‘495 Patent, col. 1, lines 10-12, col.

12 lines 37-42, lines 648-1087, 1545-1560).

321. As already discussed, it would have been obvious to adapt an embodiment of the

‘495 Patent to use external chaining as described in Knuth, Kruse, and Stubbs instead of linear

probing to store records with the same hash address. In such an instance, the method for storing

and retrieving information records would use a linked list to store and provide access to the

records.

322. The ‘495 Patent also discloses at least some of the records in the hash table

automatically expiring (see, ‘495 Patent, col. 1, lines 57-60, col. 4, lines 23-28, col. 12, lines 40-

42). The ‘495 Patent explains that “[i]n some common types of data storage systems, data

records become obsolete merely by the passage of time or by the occurrence of some event” (see

‘495 Patent, col. 4, lines 23-25).

124

a. The ‘495 Patent in combination with various references

discloses accessing the linked list of records and accessing a

linked list of records having the same hash address

323. Claim 5 of the ‘495 Patent discloses “accessing a chain of records having the

same hash address” (see, ‘495 Patent, cols. 10-11, col. 12, lines 43-44, FIG. 3). Moreover, as

discussed above in Section VII.D.1.b, the ‘495 Patent discloses utilizing a search key to access a

chain of records in a hash table.

324. As already discussed, it would have been obvious to adapt an embodiment of the

‘495 Patent to use external chaining as described in Knuth, Kruse or Stubbs instead of linear

probing to store records with the same hash address. In such an instance, the claimed method of

the ‘495 Patent would access a linked list of records having the same hash address rather than the

chain of records claimed.

b. The ‘495 Patent in combination with various references

discloses identifying at least some of the automatically expired

ones of the records

325. Claim 5 of the ‘495 Patent discloses “identifying the automatically expired ones

of said records” (see, ‘495 Patent, col. 4, line 65-col. 5, line 49, cols. 10-11, FIG. 3, col. 12, lines

45-46). Moreover, as discussed above in Section VII.D.1.c, the ‘495 Patent discloses identifying

and removing expired records from a chain of records each time the chain of records is accessed

to search for a target record.

326. As already discussed, it would have been obvious to adapt an embodiment of the

‘495 Patent to use external chaining as described in Knuth, Kruse or Stubbs instead of linear

probing to store records with the same hash address. In such an instance, the claimed method of

the ‘495 Patent would identify automatically expired records in the linked list of records having

the same hash address rather than the chain of records claimed.

125

c. The ‘495 Patent in combination with various references

discloses removing at least some of the automatically expired

ones of the records from the linked list when the linked list is

accessed

327. Claim 5 of the ‘495 Patent discloses “removing all automatically expired records

from said chain of records each time said chain is accessed” (see, ‘495 Patent, col. 4, line 65-col.

5, line 49, cols. 10-11, FIG. 3, col. 12, lines 47-48). Moreover, as discussed above in Section

VII.D.1.c, the ‘495 Patent discloses identifying and removing expired records from a chain of

records each time the chain of records is accessed to search for a target record.

328. As already discussed, it would have been obvious to adapt an embodiment of the

‘495 Patent to use external chaining as described in Knuth, Kruse or Stubbs instead of linear

probing to store records with the same hash address. In such an instance, the claimed method of

the ‘495 Patent would remove automatically expired records in the linked list of records having

the same hash address rather than the chain of records claimed.

d. The ‘495 Patent in combination with various references

discloses inserting, retrieving or deleting one of the records

from the system following the step of removing

329. Claim 5 of the ‘495 Patent discloses “inserting, retrieving or deleting one of said

records from the system following the step of removing” (see ‘495 Patent, col. 7, line 3-col. 8

line 16, cols. 9-10, FIGS. 5-7, col. 12, lines 50-51). Moreover, as discussed above in Section

VII.D.1.d, the ‘495 Patent discloses insert, retrieve, and delete procedures that insert, retrieve, or

delete a record after identifying and removing expired records found during the access of the

chain of records.

330. As already discussed, it would have been obvious to adapt an embodiment of the

‘495 Patent to use external chaining as described in Knuth, Kruse or Stubbs instead of linear

probing to store records with the same hash address. In such an instance, the claimed method of

126

the ‘495 Patent would remove automatically expired records in the linked list of records having

the same hash address rather than the chain of records claimed.

4. The ‘495 Patent in combination with Dirks, NRL BSD, Linux v2.0.1,

or GCache renders obvious claims 4 and 8 of the ‘120 Patent

331. The ‘495 Patent in combination with Dirks, NRL BSD, Linux v2.0.1, or GCache

renders these claims obvious as discussed in Section VII.D.2.

E. The Dirks ‘214 Patent Renders Obvious Claims 2, 4, 6, and 8 of the ‘120

Patent

332. It is my opinion that the Dirks ‘214 Patent in combination with various references

previously described renders obvious claims 2, 4, 6, and 8 of the ‘120 Patent.

a. The Dirks ‘214 Patent discloses the “means for dynamically

determining maximum number for the record search means to

remove in the accessed linked list of records” element of claims

2 and 6 and “the step of dynamically determining maximum

number of expired ones of the records to remove when the

linked list is accessed” of claims 4 and 8.

333. The Dirks ‘214 Patent describes a means and method of dynamically determining

a maximum number of records to remove from a virtual memory page table.

334. The Dirks ‘214 Patent describes a virtual memory manager that removes page

table entries on-the-fly. When a process or thread is created or deleted, or in response to some

regularly occurring event, a number of entries in the page table are examined to identify and

remove expired entries (see, Dirks, col. 7, lines 2-7, col. 8, lines 44-46, col. 9, lines 11-14).

335. The Dirks ‘214 Patent discloses dynamically determines a maximum number of

entries in the page table that are examined on any particular sweep of the page table. For

example, the Dirks ‘214 Patent states that in one embodiment of the invention, “the total number

of entries in the page table and the number of threads and applications that are allowed to be

active at any given time.” The factors on which this determination is based are factors internal to

127

the information storage and retrieval system (see, Dirks, col. 7, lines 14-37). Dirks derives a

formula for this calculation (see, Dirks ‘214 Patent, col. 8, lines 29-32):

336. Moreover, the Dirks ‘214 Patent discloses that “[a]ny other suitable approach can

be employed to determine the number of entries to be examined during each step of the sweeping

process,” and that this maximum number “might vary from one step to the next” (see, Dirks, col.

7, lines 38-46).

337. By placing a limit on the number of entries to examine on any particular sweep,

the system disclosed in the Dirks ‘214 Patent also determines a maximum number of entries that

will be removed, since the system cannot remove more entries than it examines on any particular

sweep.

338. It would have been obvious to one skilled in the art that this method and means of

dynamically determining a maximum number could be combined with any system doing garbage

collection. One skilled in the art would have been motivated to do this for the same reason

explained in Dirks. Because the removal of expired records can be an expensive process, placing

a hard limit on the number of removals, or garbage collection, occurring at any particular time

would have been desirable in any number of the prior art systems and methods described above.

Applying this technique described in Dirks to any of these prior art systems was well within the

ability of one of ordinary skill in the art in January 1997.

128

 I declare under penalty of perjury that the
 foregoing is true and correct.

 Kevin Jeffay, Ph.D.

January 25, 2011

EXHIBIT A

01980.51572/3932130.1

EXHIBIT A: List of Documents Considered

Documents:

1. Donald E. Knuth, The Art of Computer Programming, vol. 3, Sorting and Searching,

Addison-Wesley, Reading, Massachusetts, 1973, produced as the document beginning

DEF00006329.

2. Robert L. Kruse, Data Structures and Program Design, Second Edition, Prentice-Hall,

Englewood Cliffs, New Jersey, 1987, excerpts of which are produced as the documents

beginning DEF00005078, DEF00005130.

3. Daniel F. Stubbs and Neil W. Webre, Data Structures with Abstract Data Types and

Pascal, Brooks/Cole Publishing Company, Monterey, California, 1985, excerpts of which are

produced as the documents beginning DEF00005141, DEF00007975.

4. Douglas Comer and Shawn Ostermann, GCache: A Generalized Caching Mechanism,

produced as the document beginning RHT-BR00015539.

5. VM-Xinu gcache.c, produced as RHT-BR00015824, DEF00008004-15, KTS0000426-

438, and KTS0000439-440.

6. Linux 2.0.1 route.c/route.h, produced as DEF00008567-8605.

7. Linux 1.3.52 route.c/route.h, produced as DEF00001013-1043.

8. Linux 1.3.51 route.c/route.h, produced as DEF00007865-7899.

9. NRL IPv6 key.c/key.h, Alpha release, produced as the documents beginning

DEF00007942 and DEF00007971, ftp://ftp.ripe.net/ipv6/nrl.

10. NRL IPv6 key.c/key.h, Alpha-2 release, produced as the document YAHOO507259.

11. U.S. Patent No. 5,893,120, and related prosecution history, produced as BTEX0000174.

12. U.S. Patent No. 5,287,499, produced as the document beginning DEF00004050.

13. U.S. Patent No. 5,121,495, produced as the document beginning GGL-BED00031386.

01980.51572/3932130.1

14. U.S. Patent No. 6,119,214, produced as the document beginning DEF00000797.

15. Transcript of the Deposition of Daniel McDonald and all exhibits used therein.

16. Transcript of the Deposition of Jeffrey Schiller and all exhibits used therein.

17. Transcript of the Depositions of Dr. Richard Nemes and all exhibits used therein.

18. Transcript of the Deposition of Dr. Mark Jones and all exhibits used therein.

19. Transcript of the Deposition of Dr. Shawn Ostermann and all exhibits used therein.

20. Declaration of Alexey Kuznetsov, produced as the document beginning DEF00009284.

21. Document beginning with bates label BTEX124123.

22. Document beginning with bates label TELECORDIA00000152.

23. Bedrock’s Second Amended Complaint for Patent Infringement.

24. Plaintiff’s P.R. 3-6 Infringement Contentions (Amended 1/12/11) as to Google Inc. and

Match.com LLC (various versions).

25. Defendants Joint Amended Invalidity Contentions (12/20/10).

26. The Court’s 1/10/11 Claim Construction Order, Case 6:09-cv-00269-LED-JDL, Dkt. 369.

27. “PowerPC Operating Environment Architecture,” Book III, Version 2.02, January 2005.

28. http://cs.uttyler.edu/documents/CSCurriculum0809.pdf.

29. http://cs.uttyler.edu/documents/COSCUndergradCourseDesc.pdf.

30. http://cs.uttyler.edu/CourseSyllabi/Undergraduate/COSC%202336.pdf.

31. RFC 1825, Security Architecture for the Internet Protocol, August 1995,

http://tools.ietf.org/html/rfc1825.

EXHIBIT B

CURRICULUM VITAE

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION.
DISTRIBUTION WITHOUT THE EXPRESS PERMISSION OF KEVIN JEFFAY IS FORBIDDEN.

Kevin Jeffay
University of North Carolina at Chapel Hill

Department of Computer Science
Chapel Hill, NC 27599-3175

(919) 962-1938 Voice, (919) 962-1799 FAX
jeffay@cs.unc.edu

http://www.cs.unc.edu/~jeffay

Education Ph.D. Computer Science, University of Washington.
Honors: IBM Graduate Fellowship.

 M.Sc. Computer Science, University of Toronto.

Honors: University of Toronto Open Fellowship.

 B.S. Mathematics with Highest Distinction, University of Illinois at Urbana-Champaign.
Honors: Phi Beta Kappa, James Scholar.

Academic
Experience

Gillian T. Cell Distinguished Professor in Computer Science, University of North Carolina at Chapel
Hill, Department of Computer Science, Chapel Hill, NC, 2008–present.

 S. S. Jones Distinguished Professor in Computer Science, University of North Carolina at Chapel Hill,
Department of Computer Science, Chapel Hill, NC, 2001–2008.

 S. S. Jones Distinguished Term Associate Professor of Computer Science, University of North Carolina
at Chapel Hill, Department of Computer Science, Chapel Hill, NC, 2000.

Associate Professor, University of North Carolina at Chapel Hill, Department of Computer Science,
Chapel Hill, NC, 1996–2000.

 Visiting Professor, Carnegie Mellon University, School of Computer Science, Pittsburgh, PA, 1994.
 Assistant Professor, University of North Carolina at Chapel Hill, Department of Computer Science,

Chapel Hill, NC, 1989–1995.

Honors and
Awards

Favorite Faculty Award, an award given by the Computer Science majors of the 2010 graduating class,
May 2010.

Carolina Women's Center Women’s Advocacy Award, University of North Carolina at Chapel Hill,
Chapel Hill, NC, March 2010.

Gillian T. Cell Distinguished Professor in Computer Science, University of North Carolina at Chapel
Hill, College of Arts and Sciences, Chapel Hill, NC, June 2008.

Outstanding Teaching Award, an award given by the Computer Science majors of the 2008 graduating
class, May 2008.

Favorite Faculty Award, an award given by the Computer Science majors of the 2004 graduating class,
May 2004.

Edward Kidder Graham Outstanding Faculty Award, an award given by the Class of 2004 and the
General Alumni Association, April 2004.

Edward Kidder Graham Advisor of the Year Award, an award given by the Class of 2004 and the
General Alumni Association, April 2004.

 IEEE Service Award, Service to the IEEE Technical Committee on Real-Time Systems, December 2001.

2

Outstanding Teaching Award, Computer Science Student Association, University of North Carolina at
Chapel Hill, Department of Computer Science, May 2000.

S. Shepard Jones Distinguished Term Professorship, University of North Carolina at Chapel Hill, College
of Arts and Sciences, Chapel Hill, NC, March 1999.

 Award Papers:

ACM SIGCOMM 2000, 2003.
IEEE International Symposium on High Assurance Systems Engineering 1999, 2000.
IEEE Real-Time Technology and Applications Symposium, 1995.
ACM International Conference on Multimedia, 1994.
Computer Networks and ISDN Systems, 1994.
International Workshop on Network and Operating System Support for Digital Audio and Video,

1991, 1992, 1993, 1997.

Testifying
Experience
(Within Last
Four Years)

nCUBE Corporation (now ARRIS Group, Inc.), v. SeaChange International, Inc., United States District
Court for the District of Delaware (C.A. No. 01-011 (LPS)).
Provided deposition on behalf of defendant SeaChange International, Inc.

In the Matter of: Certain Multimedia Display and Navigation Systems and Systems, Components Thereof,
and Products Containing the Same, United States International Trade Commission, Investigation
No. 337-TA-694.
Provided deposition and trial testimony on behalf of complainant Pioneer Corporation, and Pioneer
Electronics (USA), Inc.

In the Matter of: Certain Multimedia Display and Navigation Systems and Systems, Components Thereof,
and Products Containing the Same, United States International Trade Commission, Investigation
No. 337-TA-694.
Provided deposition and trial testimony on behalf of complainant Pioneer Corporation, and Pioneer
Electronics (USA), Inc.

LinkSmart Wireless Technologies, LLC v. T-Mobile USA, Inc., et al., United States District Court for the
Eastern District of Texas, Marshall Division (2:08-cv-00264, 00304, 00385, 00026-DF-CE).
Provided deposition testimony on behalf of defendants Cisco Systems Inc., T-Mobile USA, Inc.,
and related defendants.

Quixtar Inc., v. Signature Management Team, LLC, b/d/a Team, Apollo Works Holdings, Inc. Green
Gemini Enterprises, Inc., North Star Solutions, Inc., Northern Lights Services, Inc., Sunset
Resources, Inc., and Sky Scope Team, Inc., United States District Court for the District of Nevada
(3:07-cv-00505).
Provided deposition testimony on behalf of plaintiff Quixtar Inc.

Netscape Communications Corp., v. ValueClick, Inc., Mediaplex, Inc., FastClick, Inc., Commission
Junction, Inc., MeziMedia, Inc., and Web Clients, LLC, United States District Court for the Eastern
District of Virginia, Alexandria Division (1:09-cv-225 TSE/TRJ).
Provided deposition testimony on behalf of plaintiff Netscape Communications Corp.

In the Matter of: Certain Automotive Multimedia Display and Navigation Systems, Components Thereof,
and Products Containing the Same, United States International Trade Commission, Investigation
No. 337-TA-657.
Provided deposition testimony on behalf of respondents Alpine Electronics, Inc., Alpine Electronics
of America, Inc., Pioneer Corporation, and Pioneer Electronics (USA), Inc. and testimony at trial
on behalf of respondents Pioneer Corporation, and Pioneer Electronics (USA), Inc.

Juniper Networks, Inc., v. Abdullah Ali Bahattab, United States District Court for the District of

3

Columbia, (1:07-cv-1771-PLF (AK)).
Provided deposition testimony on behalf of defendant Abdullah Ali Bahattab.

Girafa.com, Inc. v. Amazon Web Services LLC, Amazon.com, Inc., Alexa Internet, Inc., IAC Search &
Media, Inc., Snap Technologies, Inc., Yahoo! Inc., Smartdevil Inc., Exalead, Inc. and Exalead S.A.,
United States District Court for the District of Delaware, (07-787 SLR).
Provided deposition testimony on behalf of defendant Exalead, Inc. and Exalead S.A.

Verizon Services Corp., Verizon Communications, Inc., MCI Communications Corporation, and Verizon
Global LLC, v. Cox Fibernet Virginia, Inc., Cox Virginia Telcom, Inc., Cox Communications
Hampton Roads, LLC, Coxcom, Inc., and Cox Communications, Inc., United States District Court
for the Eastern District of Virginia, (1:08CV157 CMH-TRJ).
Provided deposition testimony on behalf of defendant Cox Communications et al.

Net2Phone, Inc., v. Ebay, Inc. Skype Technologies SA, Skype, Inc., and John Does 1-10, United States
District Court for the District of New Jersey, (06-2469-KSH-PS).
Provided deposition testimony and testimony at an evidentiary hearing on behalf of plaintiff
Net2Phone.

Nortel Networks Inc., v. State Board of Equalization of the State of California, Superior Court of
California, County of Los Angeles, (BC341568).
Provided both deposition testimony and trial testimony on behalf of Plaintiff Nortel Networks.

Extreme Networks, Inc., v. Enterasys Networks, Inc., United States District Court for the Western District
of Wisconsin, (07-C-0229-C).
Provided deposition testimony on behalf of Defendant Enterasys Networks.

Akamai Technologies, Inc. and The Massachusetts Institute of Technology, v. Limelight Networks, Inc.,
United States District Court for the District of Massachusetts, (06-CV-11109 RWZ).
Provided deposition testimony and trial testimony on behalf of Plaintiffs Akamai Technologies and
The Massachusetts Institute of Technology.

Two-Way Media, L.L.C., v. AOL L.L.C., United States District Court for the Southern District of Texas,
Corpus Christi Division, (C-04-089).
Provided deposition testimony on behalf of defendant AOL.

Verizon Wireless Personal Communications, L.P., f/k/a Primeco Personal Communications, L.P., v. Gary
R. Nikolits, as Property Appraiser of Palm Beach County, Florida, Florida Circuit Court, Fifteenth
Judicial Circuit, Palm Beach County, Florida, Civil Division, (05-CA-11462 Division “AE”).
Provided deposition testimony and trial testimony on behalf of plaintiff Verizon Wireless.

Express Logic, Inc., v. Green Hills Software, Inc., American Arbitration Association of San Diego, (73
133 Y 00226 06 BRSH).
Provided deposition testimony and arbitration testimony on behalf of defendant Green Hills
Software.

Industry
Experience

Consultant, Mälardalen University, Vásteras, Sweden, 2001.
Member, Technical Advisory Board, Ganymede Software Inc., Research Triangle Park, NC, 1996–1999.
Consultant and Author, INTEROP Graduate Institute, SOFTBANK Inc., Foster City, CA, 1996–1997.

 Consultant, National Science Foundation, Arlington, VA, 1995–present.

 Consultant, Monterey Technologies Inc., Cary, NC, 1994–1996.
 Consultant, Hewlett-Packard Inc., Ink Jet Components Division, Corvallis, OR, 1993–1994.
 Visiting Researcher, IBM T.J. Watson Research Center, Computer Systems Principles Group, Yorktown

Heights, NY, 1986.

4

 Consultant, Boeing Aerospace, Kent, WA, 1985–1986.
 Software Engineer, R.R. Donnelley & Sons Company Inc., Technical Center, Chicago, IL, 1984.
 Computer Programmer, US Army Corps of Engineers Construction Engineering Research Lab,

Champaign, IL, 1981–1982.

Community
Service

Consultant (unpaid), Children’s Museum About the World (now called Exploris), Raleigh, NC, 1995–
1996.

Professional Activities

Editor Associate Editor, Real-Time Systems, Kluwer Academic Publishers, The Netherlands, 2003-present.
Editor in Chief, Multimedia Systems, ACM/Springer-Verlag, Heidelberg, Germany, 2000–2001.

Editorial Board Journal of Multimedia Tools and Applications, Kluwer Academic Publishers, 1994–1999.

Guest Editor Computer Communications, special issue on system support for multimedia computing, Volume 18,
Number 10, October 1995.

Executive
Committees

ACM/SIGCOMM Internet Measurement Conference Steering Committee, 2005-2009.
College of Reviewers, Canada Research Chairs Program, 2004-present.
Statistical and Applied Mathematical Sciences Institute (SAMSI) program on Network Modeling for the

Internet, 2002-2004.
IEEE Technical Committee on Real-Time Systems, 2000-present.
ACM Special Interest Group on Multimedia, 2000-2002.

Other Committees IEEE Distinguished Visitors Program, 2004–2007.

Conference
Program Chair

11th International Workshop on Quality-of-Service (Co-Chair), Monterey, CA, June 2003.
Sixth IEEE Symposium on Computers and Communications, Hammamet, Tunisia, July 2001.

 21st IEEE Real-Time Systems Symposium, Orlando, FL, November 2000.
Tenth International Workshop on Network and Operating System Support for Digital Audio and Video,

Chapel Hill, NC, June 2000.

 Seventh ACM International Conference on Multimedia (Co-Chair), Orlando, FL, November 1999.
SPIE/ACM Multimedia Computing and Networking 1999 (Co-Chair), San Jose, CA, January 1999.

 Sixth ACM International Conference on Multimedia (Associate Chair), Bristol, UK, September 1998.
IEEE International Conference on Multimedia Computing Systems (Associate Chair), Austin, TX, June

1998.

 SPIE/ACM Multimedia Computing and Networking 1998 (Co-Chair), San Jose, CA, January 1998.
SPIE/ACM Multimedia Computing and Networking 1997 (Associate Chair), San Jose, CA, February

1997.

 IEEE Workshop on Resource Allocation Problems in Multimedia Systems, Washington D.C., December
1996.

Second IEEE Real-Time Technology and Applications Symposium, Boston, MA, June 1996.

5

Conference
General Chair

ACM SIGCOMM Internet Measurement Conference, San Diego, CA, October 2007.

22nd IEEE Real-Time Systems Symposium, London, UK, December 2001.
Tenth International Workshop on Network and Operating System Support for Digital Audio and Video,

Chapel Hill, NC, June 2000.

 Third IEEE Real-Time Technology and Applications Symposium, Montreal, Canada, June 1997.
IEEE Workshop on Resource Allocation Problems in Multimedia Systems, Washington D.C., December

1996.

Member of
Conference

Program
Committee

18th IEEE International Conference on Network Protocols, Kyoto, Japan, October 2010.
ACM SIGCOMM 2010, New Delhi, India, August 2010.
17th IEEE International Conference on Network Protocols, Princeton, NJ, October 2009.
9th Passive and Active Measurement Conference 2008, Cleveland, OH, April 2008.
ACM SIGMETRICS 2008, Annapolis, MA, June 2008.
IEEE INFOCOM 2008, Phoenix, AZ, April 2008.
6th ACM SIGCOMM Workshop on Hot Topics in Networks, Atlanta, GA, November 2007.
15th IEEE International Conference on Network Protocols, Beijing, China, October 2007.
5th IEEE Workshop on Embedded Systems for Real-Time Multimedia, Salzburg, Austria, October 2007.
Workshop on Experimental Computer Science, ACM FCRC, San Diego, CA, June 2007.
15th International Workshop on Quality-of-Service, Chicago, IL, June 2007.
17th International Workshop on Network and Operating System Support for Digital Audio and Video,

Urbana-Champaign, IL, June 2007.
10th IEEE Global Internet Symposium 2007, Anchorage, AK, May 2007.

 ACM SIGMETRICS 2007, San Diego, CA, June 2007.
14th IEEE International Conference on Network Protocols, Santa Barbara, CA, October 2006.
ACM Internet Measurement Conference 2006, Rio de Janeiro, Brazil, October 2006.
Second ACM SIGCOMM Conference on Future Networking Technologies, Lisbon, Portugal, December

2006.

 16th International Workshop on Network and Operating System Support for Digital Audio and Video,
Newport, RI, June 2006.

IEEE Workshop on Research Directions for Security and Networking in Critical Real-Time and
Embedded Systems, San Jose, CA, April 2006.

IEEE INFOCOM 2006, Barcelona, Spain, April 2006.
13th IEEE International Conference on Network Protocols, Boston, MA, November 2005.

 15th International Workshop on Network and Operating System Support for Digital Audio and Video,
Skamania, WA, June 2005.

IEEE INFOCOM 2005, Miami, FL, March 2005.
SPIE/ACM Multimedia Computing and Networking 2005, San Jose, CA, January 2005.
ACM Multimedia 2004, New York, NY, October 2004.

 ACM Internet Measurement Conference 2004, Taormina, Italy, October 2004.
16th EUROMICRO Conference on Real-Time Systems, Catania, Italy, June-July 2004.
14th International Workshop on Network and Operating System Support for Digital Audio and Video,

Cork, Ireland, June 2004.

6

 12th International Workshop on Quality-of-Service, Montreal, Canada, June 2004.
10th IEEE Real-time and Embedded Technology and Applications Symposium, Toronto, Canada, May

2004.
IEEE INFOCOM 2004, Hong Kong, March 2004.

24nd IEEE Real-Time Systems Symposium, Cancun, Mexico, December 2003.

 19th ACM Symposium on Operating Systems Principles, Lake George, New York, October 2003.
15th EUROMICRO Conference on Real-Time Systems, Porto, Portugal, July 2003.
Ninth IEEE Real-Time and Embedded Technology and Applications Symposium, Toronto, CA, May

2003.
SPIE/ACM Multimedia Computing and Networking 2003, San Jose, CA, January 2003.

 23nd IEEE Real-Time Systems Symposium, Austin, TX, November 2002.
10th International Conference on Network Protocols, Paris, France, November 2002.
Second Workshop on Embedded Software, Grenoble, France, October 2002.

 22nd IFIP International Symposium on Computer Performance Modeling, Measurement and Evaluation
(Performance 2002), Rome, Italy, September 2002.

Eighth IEEE Real-Time and Embedded Technology and Applications Symposium, San Jose, CA,
September 2002.

10th International Workshop on Quality-of-Service, Miami, FL, June 2002.

 Seventh Global Internet Symposium (held in conjunction with Globecom 2002), Taipei, Taiwan,
November 2002.

14th EUROMICRO Conference on Real-Time Systems, Vienna, Austria, June 2002.
ACM SIGMETRICS 2002, Marina del Rey, CA, June 2002.
SPIE/ACM Multimedia Computing and Networking 2002, San Jose, CA, January 2002.

 22nd IEEE Real-Time Systems Symposium, London, UK, December 2001.
Sixth Global Internet Symposium (held in conjunction with Globecom 2001), San Antonio, TX,

November 2001.
27th EUROMICRO Conference, Warsaw, Poland, September 2001.

 Sixth IEEE Symposium on Computers and Communications, Hammamet, Tunisia, July 2001.
Seventh IEEE Real-Time Technology and Applications Symposium, Taipei, Taiwan, June 2001.
Ninth IFIP International Workshop on Quality of Service, Karlsruhe, Germany, June 2001.

 SPIE/ACM Multimedia Computing and Networking 2001, San Jose, CA, January 2001.
Fifth Global Internet Mini-Conference (held in conjunction with Globecom 2000), San Francisco, CA,

November 2000.

21st IEEE Real-Time Systems Symposium, Orlando, FL, December 2000.

 Tenth International Workshop on Network and Operating System Support for Digital Audio and Video,
Chapel Hill, NC, June 2000.

Sixth IEEE Real-Time Technology and Applications Symposium, Washington, D.C., June 2000.

 SPIE/ACM Multimedia Computing and Networking 2000, San Jose, CA, January 2000.

19th IEEE Real-Time Systems Symposium, Phoenix, AZ, December 1999.
Fourth Global Internet Mini-Conference (held in conjunction with Globecom ‘99), Rio de Janero, Brazil,

November 1999.

 Fifth International Workshop on Multimedia Information Systems, Palm Springs, CA, October 1999.
Ninth International Workshop on Network and Operating System Support for Digital Audio and Video,

7

Basking Ridge, NJ, June 1999.

 IEEE Workshop on QoS Support for Real-Time Internet Applications, Vancouver, Canada, June, 1999.
Second ACM Workshop on Internet Server Performance (held in conjunction with SIGMETRICS ’99),

Atlanta, GA, May 1999.

 Seventh IEEE International Workshop on Parallel and Distributed Real-Time Systems, San Juan, Puerto
Rico, April 1999.

SPIE/ACM Multimedia Computing and Networking 1998, San Jose, CA, January 1999.

19th IEEE Real-Time Systems Symposium, Madrid, Spain, December 1998.

 Third Global Internet Mini-Conference (held in conjunction with Globecom ‘98), Sydney, Australia
November 1998.

Sixth ACM International Conference on Multimedia, Bristol, UK, September 1998.

 Third IEEE/ACM International Workshop on Multimedia Database Management Systems, Dayton, OH,
August 1998.

Eighth International Workshop on Network and Operating System Support for Digital Audio and Video,
Cambridge, UK, July 1998.

 SPIE Interactive Multimedia Services and Equipment, Zurich, Switzerland, May 1998.
IEEE Workshop on Dependable and Real-Time E-Commerce Systems, Denver, CO, June 1998.
Fourth IEEE Real-Time Technology and Applications Symposium, Denver, CO, June 1998.

 IEEE International Conference on Multimedia Computing Systems, Austin, TX, June 1998.
SPIE/ACM Multimedia Computing and Networking 1998, San Jose, CA, January 1998.

16th IEEE Symposium on Reliable Distributed Systems, Durham, NC, October 1997.

 Third IEEE Real-Time Technology and Applications Symposium, Montreal, Canada, June 1997.
IEEE Real-Time Education Workshop, Montreal, Canada, June 1997.
Seventh International Workshop on Network and Operating System Support for Digital Audio and Video,

St. Louis, MO, May 1997.

 17th International Conference on Distributed Computing Systems, Distributed Real-Time Systems Track,
Performance of Distributed Systems Track, Distributed Multimedia Track, Baltimore, MD, May 1997.

Fifth IFIP International Workshop on Quality of Service, New York, NY, May 1997.

 Third International Conference on Computer Science & Informatics, Raleigh-Durham, NC, March 1997.
SPIE/ACM Multimedia Computing and Networking 1997, San Jose, CA, February 1997.
Fourth ACM International Conference on Multimedia, Boston, MA, November 1996.

 Second USENIX Symposium on Operating Systems Design and Implementation, Seattle, WA,
October/November 1996.

ACM SIGSOFT ‘96: Fourth Symposium on the Foundations of Software Engineering, San Francisco,
CA, October 1996.

 Second IEEE International Workshop on Multimedia Database Management Systems, Blue Mountain
Lake, NY, August 1996.

Second IEEE Real-Time Technology and Applications Symposium, Boston, MA, June 1996.

 Sixth International Workshop on Network and Operating System Support for Digital Audio and Video,
Zushi, Japan, April 1996.

First International Workshop on Real-Time Databases: Issues and Applications, Newport Beach, CA,
March 1996.

 SPIE Multimedia Computing and Networking 1996, San Jose, CA, February 1996.

8

16th IEEE Real-Time Systems Symposium, Pisa, Italy, December 1995.

 Third ACM International Conference on Multimedia, Technical Paper Program, San Francisco, CA,
November 1995.

Third ACM International Conference on Multimedia, Video Program, San Francisco, CA, November
1995.

 1995 ACM Conference on Organizational Computing Systems, Technical Track, Milpitas, CA, August
1995.

Fifth IEEE Workshop on Hot Topics in Operating Systems, Orcas Island, WA, May 1995.

15th International Conference on Distributed Computing Systems, Distributed Real-Time Systems Track
and CSCW track, Vancouver, British Columbia, Canada, May 1995.

 Fifth International Workshop on Network and Operating System Support for Digital Audio and Video,
Durham, NH, April 1995.

IEEE Workshop on the Role of Real-Time in Multimedia, Research Triangle Park, NC, December 1993.

 14th IEEE Real-Time Systems Symposium, Research Triangle Park, NC, December 1993.

13th International Conference on Distributed Computing Systems, Real-Time Issues Track, Pittsburgh,
PA, May 1993.

 12th IEEE Real-Time Systems Symposium, San Antonio, TX, December 1991.
IEEE Conference on Communication Software: Communications for Distributed Applications and

Systems, Chapel Hill, NC, April 1991.

Conference
Organizing
Committees

Finance Chair, IEEE Real-Time Systems Symposium, Miami, FL, December 2005.
Finance Chair, IEEE Real-Time Systems Symposium, Lisbon, Portugal, December 2004.
Finance Chair, IEEE Real-Time Systems Symposium, Cancun, Mexico, December 2003.
Poster Session Chair, ACM Symposium on Operating System Principles, Bolton Landing, NY, October

2003.
Demonstrations Chair, ACM Conference on Computer-Supported Cooperative Work, Research Triangle

Park, NC, November 1994.
Wine Steward, ACM Symposium on Operating System Principles, Asheville, NC, December 1993.

Local Arrangements Chair, 14th IEEE Symposium on Real-Time Systems, Durham, NC, December 1993.

Refereed Publications

Technical Papers Generating Realistic Synthetic TCP Application Workloads, J. Aikat, K. Jeffay, F.D. Smith, Proceedings,
GENI Infrastructure Workshop, Princeton, NJ, June 2010.

 Correlations of Size, Rate, and Duration in TCP Connections: The Case Against, C. Park, F. Hernández-
Campos, J.S. Marron, K. Jeffay, F.D. Smith, Annals of Applied Statistics, Volume 4, Number 1, May
2010, pages 26-52.

 Passive, Streaming Inference of TCP Connection Structure for Network Server Management, J. Terrell,
K. Jeffay, F.D. Smith, J. Gogan, J. Keller, IFIP International Workshop on Traffic Monitoring and
Analysis, Aachen, Germany, May 2009, in, Lecture Notes in Computer Science, Volume 5537, Springer,
Berlin, Germany, pages 42-53.

 Exposing Server Performance to Network Managers Through Passive Network Measurements, J. Terrell,
K. Jeffay, F.D. Smith, J. Gogan, J. Keller, IEEE Internet Network Management Workshop 2008,
Orlando, FL, October 2008, pages 1-6.

9

 Multi-Resolution Anomaly Detection for the Internet, L. Zhang, Z. Zhu, K. Jeffay, J.S. Marron, F.D.
Smith, IEEE Workshop on Network Management, Phoenix, AZ, April 2008, 6 pages.

 The Effects of Active Queue Management and Explicit Congestion Notification on Web Performance, L.
Le, J. Aikat, K. Jeffay, F.D. Smith, IEEE/ACM Transactions on Networking, Volume 15, Number 6,
December 2007, pages 1217-1230.

 Co-Scheduling Variable Execution Time Requirement Real-time Tasks and Non Real-Time Tasks, A.
Singh, K. Jeffay, Proceedings of the 19th Euromicro Conference on Real-Time Systems, Pisa, Italy, July
2007, pages 191-200.

 Quantifying the Effects of Recent Protocol Improvements to Standards-Track TCP: Impact on Web
Performance, M.C. Weigle, K. Jeffay, F.D. Smith, Computer Communications, Volume 29, Number 15,
September 2006, pages 2853-2866.

 Tmix: A Tool for Generating Realistic TCP Application Workloads in ns-2, M.C. Weigle, P. Adurthi, F.
Hernández-Campos, K. Jeffay, F.D. Smith, ACM Computer Communications Review, Volume 36,
Number 3, July 2006, pages 67-76.

 A Loss and Queuing-Delay Controller for Router Buffer Management, L. Le, K. Jeffay, F.D. Smith,
Proceedings of the 26th IEEE International Conference on Distributed Computing Systems, Lisbon,
Portugal, July 2006, 10 pages.

 Understanding Patterns of TCP Connection Usage with Statistical Clustering, F. Hernández-Campos,
A.B. Nobel, F.D. Smith, K. Jeffay, 13th IEEE/ACM International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems (MASCOTS), Atlanta, GA, September 2005,
pages 35-44.

 Delay-Based Early Congestion Detection and Adaptation: Impact on Web Performance, M.C. Weigle, K.
Jeffay, F.D. Smith, Computer Communications, Volume 8, Number 8, May 2005, pages 837-850.

 Extremal Dependence: Internet Traffic Applications, F. Hernández-Campos, K. Jeffay, C. Park, J.S.
Marron, S.I. Resnick, Stochastic Models, Volume 21, Number 1, 2005, pages 1-35.

 Generating Realistic TCP Workloads, F. Hernández-Campos, F.D. Smith, K. Jeffay, Proceedings of the
Computer Measurement Group’s 2004 International Conference, Las Vegas, NV, December 2004, pages
273-284.

 Differential Congestion Notification: Taming the Elephants, L. Le, J. Aikat, K. Jeffay, F.D. Smith,
Proceedings of the 12th IEEE International Conference on Network Protocols, Berlin, Germany, October
2004, pages 118-128.

 Stochastic Models for Generating Synthetic HTTP Source Traffic, J. Cao, W.S. Cleveland, Y. Gao, K.
Jeffay, F.D. Smith M.C. Weigle, Proceedings of IEEE INFOCOM 2004, Hong Kong, March 2004,
Volume 3, pages 1546-1557.

 Variability in TCP Roundtrip Times, J. Aikat, J. Kaur, D. Smith, K. Jeffay, Proceedings of the 2003 ACM
SIGCOMM Internet Measurement Conference, Miami Beach, FL, October 2003, pages 279-284.

 Tracking the Evolution of Web Traffic: 1995-2003, F. Hernández-Campos, K. Jeffay, F.D. Smith,
Proceedings of the 11th IEEE/ACM International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS), Orlando, FL, October 2003, pages 16-25.

 The Effects of Active Queue Management on Web Performance, L. Le, J. Aikat, K. Jeffay, F.D. Smith,
Proceedings of ACM SIGCOMM 2003, Karlsruhe, Germany, August 2003, pages 265-276.

 Managing Latency and Buffer Requirements in Processing Graph Chains, S.M. Goddard, K. Jeffay, The
Computer Journal, Volume 44, Number 6, 2001, (special issue on high-assurance systems), pages 486-

10

503.

 Rate-Based Resource Allocation Methods for Embedded Systems, K. Jeffay, S.M. Goddard, in, Embedded
Software, Proceedings of the First International Workshop on Embedded Software (EMSOFT 2001),
Tahoe City, CA, October 2001, Lecture Notes in Computer Science, Volume 2211, T. Henzinger, C.
Kirsch, editors, Springer-Verlag, Berlin, Germany, 2001, pages 204-222.

 Beyond Audio and Video: Multimedia Networking Support for Distributed, Immersive Virtual
Environments, K. Jeffay, T. Hudson, M. Parris, Proceedings of the 27th EUROMICRO Conference,
Warsaw, Poland, September 2001, pages 300-307.

 Tuning RED for Web Traffic, M. Christiansen, K. Jeffay, D. Ott, F.D. Smith, IEEE/ACM Transactions on
Networking, Volume 9, Number 3, (June 2001), pages 249-264.

 What TCP/IP Protocol Headers Can Tell Us About the Web, F.D. Smith, F. Hernández Campos, K.
Jeffay, D. Ott, Proceedings of ACM SIGMETRICS 2001/Performance 2001, Cambridge, MA, June
2001, pages 245-256.

 Experiments in Best-Effort Multimedia Networking for a Distributed Virtual Environment, T. Hudson,
M.C. Weigle, K. Jeffay, R.M. Taylor II, in Multimedia Computing and Networking 2001, Proceedings,
SPIE Proceedings Series, Volume 4312, San Jose, CA, January 2001, pages 88-98.

 Analyzing the Real-Time Properties of a U.S. Navy Signal Processing System, S.M. Goddard, K. Jeffay,
International Journal of Reliability, Quality and Safety Engineering, Volume 8, Number 4, December
2001, (special issue of HASE ‘99 best papers) pages 301-322.

 A Comparative Study of the Realization of Rate-Based Computing Services in General Purpose
Operating Systems, K. Jeffay, G. Lamastra, Proceedings of the Seventh IEEE International Conference
on Real-Time Computing Systems and Applications, Cheju Island, South Korea, December 2000, pages
81-90.

 The Synthesis of Real–Time Systems from Processing Graphs, S.M. Goddard, K. Jeffay, Proceedings of
the Fifth IEEE International Symposium on High Assurance Systems Engineering, Albuquerque, NM,
November 2000, pages 177-186.

 Tuning RED for Web Traffic, M. Christiansen, K. Jeffay, D. Ott, F.D. Smith, Proceedings of ACM
SIGCOMM 2000, Stockholm, Sweden, August-September 2000, pages 139-150.

 Towards a Better-Than-Best-Effort Forwarding Service for Multimedia Flows, K. Jeffay, IEEE
Multimedia, Volume 6, Number 4, October-December 1999, pages 84-88.

 A Theory of Rate-Based Execution, K. Jeffay, S.M. Goddard, Proceedings of the 20th IEEE Real-Time
Systems Symposium, Phoenix, AZ, December 1999, pages 304-314.

 Parallel Switching in Connection-Oriented Networks, S. Baruah, K. Jeffay, J. Anderson, Proceedings of
the 20th IEEE Real-Time Systems Symposium, Phoenix, AZ, December 1999, pages 200-209.

 Analyzing the Real-Time Properties of a U.S. Navy Signal Processing System, S.M. Goddard, K. Jeffay,
Proceedings of the Fourth IEEE International Symposium on High Assurance Systems Engineering,
Washington, DC, November 1999, pages 141-150.

 Application-Level Measurements of Performance on the vBNS, M. Clark, K. Jeffay, Proceedings of the
IEEE International Conference on Multimedia Computing and Systems, Volume 2, Florence, Italy, June
1999, pages 362-366.

 Lightweight Active Router-Queue Management for Multimedia Networking, M. Parris, K. Jeffay, F.D.
Smith, in Multimedia Computing and Networking 1999, Proceedings, SPIE Proceedings Series, Volume
3654, San Jose, CA, January 1999, pages 162-174.

11

 Proportional Share Scheduling of Operating System Services for Real-Time Applications, K. Jeffay, F.D.
Smith, A. Moorthy, J.H. Anderson, Proceedings of the 19th IEEE Real-Time Systems Symposium,
Madrid, Spain, December 1998, pages 480-491.

 Efficient Object Sharing in Quantum-Based Real-Time Systems, J.H. Anderson, R. Jain, K. Jeffay,
Proceedings of the 19th IEEE Real-Time Systems Symposium, Madrid, Spain, December 1998, pages
346-355.

 A Better-Than-Best-Effort Service for Continuous Media UDP Flows, M. Parris, K. Jeffay, F.D. Smith, J.
Borgersen, Proceedings of the Eighth International Workshop on Network and Operating System Support
for Digital Audio and Video, Cambridge, UK, July 1998, pages 193-197.

 Managing Memory Requirements in the Synthesis of Real-Time Systems from Processing Graphs, S.
Goddard, K. Jeffay, Proceedings of the Fourth IEEE Real-Time Technology and Applications
Symposium, Denver, CO, June 1998, pages 59-70.

 Fair On-Line Scheduling of a Dynamic Set of Tasks on a Single Resource, S.K. Baruah, J.E. Gehrke,
C.G. Plaxton, I. Stoica, H. Abdel-Wahab, K. Jeffay, Information Processing Letters, Volume 64, Number
1, October 1997, pages 43-51.

 A Two-Dimensional Audio Scaling Enhancement to an Internet Videoconferencing System, P. Nee, K.
Jeffay, M. Clark, G. Danneels, Proceedings of the International Workshop on Audio-Visual Services over
Packet Networks, Aberdeen, Scotland, UK, September 1997, pages 201-206.

 Feasibility Concerns in PGM Graphs With Bounded Buffers, S. Baruah, S. Goddard, K. Jeffay,
Proceedings of the Third IEEE International Conference on Engineering of Complex Computer Systems,
Como, Italy, September 1997, pages 130-139.

 Analyzing the Real-Time Properties of a Dataflow Execution Paradigm Using a Synthetic Aperture
Radar Application, S. Goddard, K. Jeffay, Proceedings of the Third IEEE Real-Time Technology and
Applications Symposium, Montreal, Canada, June 1997, pages 60-71.

 Real-Time Computing with Lock-Free Shared Objects, J.H. Anderson, S. Ramamurthy, K. Jeffay, ACM
Transactions on Computing Systems, Volume 15, Number 2, May 1997, pages 134-165.

 The Performance of Two-Dimensional Media Scaling for Internet Videoconferencing, P. Nee, K. Jeffay,
G. Danneels, Proceedings of the Seventh International Workshop on Network and Operating System
Support for Digital Audio and Video, St. Louis, MO, May 1997, pages 237-248. Republished in
“Readings in Multimedia Computing,” K. Jeffay, H.J. Zhang, editors, Morgan Kaufmann, 2002.

 On the Duality between Resource Reservation and Proportional Share Resource Allocation, I. Stoica, H.
Abdel-Wahab, K. Jeffay, in Multimedia Computing and Networking 1997, Proceedings, SPIE
Proceedings Series, Volume 3020, San Jose, CA, February 1997, pages 207-214.

 Strategic Directions in Real-Time and Embedded Systems, J.A. Stankovic, A. Burns, K. Jeffay, M. Jones,
G. Koob, I. Lee, J. Lehoczky, J. Liu, A. Mok, K. Ramamritham, J. Ready, L. Sha, A. van Tilborg, ACM
Computing Surveys, Volume 28, Number 4, December 1996, pages 751-763.

 A Proportional Share Resource Allocation Algorithm For Real-Time, Time-Shared Systems, I. Stoica, H.
Abdel-Wahab, K. Jeffay, S.K. Baruah, J.E. Gehrke, C.G. Plaxton, Proceedings of the 17th IEEE Real-
Time Systems Symposium, Washington, DC, December 1996, pages 288-299.

 A General Framework For Continuous Media Transmission Control, T.M. Talley, K. Jeffay, Proceedings
of the 21st IEEE Conference on Local Computer Networks, Minneapolis, MN, October 1996, pages 374-
383.

 A Router-Based Congestion Control Scheme For Real-Time Continuous Media, K. Jeffay, M. Parris, T.
Talley, F.D. Smith, Proceedings of the Sixth International Workshop on Network and Operating System

12

Support for Digital Audio and Video, Zushi, Japan, April 1996, pages 79-86.

 Lock-Free Transactions for Real-time Systems, J.H. Anderson, S. Ramamurthy, M. Moir, K. Jeffay,
Proceedings of the First Workshop on Real-Time Databases: Issues and Applications, Newport Beach,
CA, March 1996, pages 107-114.

 Real-Time Computing with Lock-Free Shared Objects, J.H. Anderson, S. Ramamurthy, K. Jeffay,
Proceedings of the 16th IEEE Real-Time Systems Symposium, Pisa, Italy, December 1995, pages 28-37.

 Early Experience with the Repository for Patterned Injury Data, D. Stotts, J.B. Smith, K. Jeffay, P.
Dewan, D.K. Smith, W. Oliver, Proceedings of the SPIE International Symposium on Investigative and
Trial Image Processing, San Diego, CA, July 1995, SPIE Volume 2567, 1995, pages 249-260.

 Early Prototypes of the Repository for Patterned Injury Data, P. Dewan, K. Jeffay, J. Smith, D. Stotts,
W. Oliver, Proceedings of Digital Libraries ‘95, The Second Annual Conference on the Theory and
Practice of Digital Libraries, Austin, TX, June 1995, pages 123-130.

 Support For Real-Time Computing Within General Purpose Operating Systems: Supporting co-resident
operating systems, G. Bollella, K. Jeffay, Proceedings of the IEEE Real-Time Technology and
Applications Symposium, Chicago, IL, May 1995, pages 4-14.

 A Rate-Based Execution Abstraction For Multimedia Computing, K. Jeffay, D. Bennett, Proceedings of
the Fifth International Workshop on Network and Operating System Support for Digital Audio and
Video, Durham, NH, April 1995, published in Lecture Notes in Computer Science, T.D.C. Little, R.
Gusella, editors, Volume 1018, pages 64-75, Springer-Verlag, Heidelberg, Germany, 1995.

 An Empirical Study of Delay Jitter Management Policies, D.L. Stone, K. Jeffay, ACM Multimedia
Systems, Volume 2, Number 6, January 1995, pages 267-279. Republished in “Readings in Multimedia
Computing,” K. Jeffay, H.J. Zhang, editors, Morgan Kaufmann, 2002.

 On the Partitioning of Function in Distributed Synchronous Collaboration Systems, J. Menges, K. Jeffay,
ACM CSCW ‘94, Proceedings of the Workshop on Distributed Systems, Multimedia, and Infrastructure
Support in CSCW, Research Triangle Park, NC, October 1994, SIGOIS Bulletin, Volume 15, Number 2,
December 1994, pages 34-37.

 Two-Dimensional Scaling Techniques For Adaptive, Rate-Based Transmission Control of Live Audio and
Video Streams, T.M. Talley, K. Jeffay, Proceedings of the Second ACM International Conference on
Multimedia, San Francisco, CA, October 1994, pages 247-254.

 Transport and Display Mechanisms For Multimedia Conferencing Across Packet-Switched Networks, K.
Jeffay, D.L. Stone, F.D. Smith, Computer Networks and ISDN Systems, Volume 26, Number 10, July
1994, pages 1281-1304. Republished in “A Guided Tour of Multimedia Systems and Applications,” B.
Furht, M. Milenkovic, editors, IEEE Computer Society Press, 1995.

 A Patterned Injury Digital Library for Collaborative Forensic Medicine, D. Stotts, J.B. Smith, P. Dewan,
K. Jeffay, F.D. Smith, D. Smith, S. Weiss, J. Coggins, W. Oliver, Proceedings of Digital Libraries ‘94,
The First Annual Conference on the Theory and Practice of Digital Libraries, College Station, TX, June
1994, pages 25-33.

 The Artifact-Based Collaboration System: An infrastructure for supporting and studying collaboration,
K. Jeffay, J.B. Smith, F.D. Smith, D.E. Shackelford, J. Menges, Proceedings of the 15th Interdisciplinary
Workshop on Informatics and Psychology, Schärding, Austria, May 1994, 27 pages.

 On Latency Management in Time-Shared Operating Systems, K. Jeffay, Proceedings of the 11th IEEE
Workshop on Real-Time Operating Systems and Software, Seattle, WA, May 1994, pages 86-90.

 Inverting X: An Architecture for a Shared Distributed Window System, J. Menges, K. Jeffay, Proceedings
of the Third Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises,

13

Morgantown, WV, April 1994, IEEE Computer Society Press, pages 53-64.

 Issues, Problems, and Solutions in Sharing X Clients on Multiple Displays, H. Abdel-Wahab, K. Jeffay,
Internetworking — Research and Practice, Volume 5, Number 1, March 1994, pages 1-15.

 Dynamic Participation in a Computer-based Conferencing System, G. Chung, K. Jeffay, H. Abdel-
Wahab, Computer Communications, Volume 17, Number 1, January 1994, pages 7-16.

 Accounting for Interrupt Handling Costs in Dynamic Priority Task Systems, K. Jeffay, D.L. Stone,
Proceedings of the 14th IEEE Real-Time Systems Symposium, Raleigh-Durham, NC, December 1993,
pages 212-221.

 Queue Monitoring: A Delay Jitter Management Policy, D.L. Stone, K. Jeffay, Proceedings of the Fourth
International Workshop on Network and Operating System Support for Digital Audio and Video,
Lancaster, UK, November 1993, published in Lecture Notes in Computer Science, D. Shepherd, G. Blair,
G. Coulson, N. Davies, F. Garcia, editors, Volume 846, pages 149-160, Springer-Verlag, Heidelberg,
Germany, 1994.

 The Real-Time Producer/Consumer Paradigm: A paradigm for the construction of efficient, predictable
real-time systems, K. Jeffay, Proceedings of the 1993 ACM/SIGAPP Symposium on Applied Computing,
Indianapolis, IN, ACM Press, February 1993, pages 796-804.

 Accommodating Late-Comers in Shared Window Systems, G. Chung, K. Jeffay, H. Abdel-Wahab, IEEE
Computer, Volume 26, Number 1, January 1993, pages 72-74.

 Scheduling Sporadic Tasks with Shared Resources in Hard-Real-Time Systems, K. Jeffay, Proceedings of
the 13th IEEE Real-Time Systems Symposium, Phoenix, AZ, December 1992, pages 89-99.

 Adaptive, Best-Effort, Delivery of Audio and Video Data Across Packet-Switched Networks, K. Jeffay,
D.L. Stone, T. Talley, F.D. Smith, Proceedings of the Third International Workshop on Network and
Operating System Support for Digital Audio and Video, La Jolla, CA, November 1992, published in
Lecture Notes in Computer Science, V. Rangan, editor, Volume 712, pages 3-14, Springer-Verlag,
Heidelberg, Germany, 1993.

 Architecture of the Artifact-Based Collaboration System Matrix, K. Jeffay, J.K. Lin, J. Menges, F.D.
Smith, J.B. Smith, ACM CSCW ‘92, Proceedings of the Conference on Computer-Supported
Cooperative Work, Toronto, Canada, ACM Press, November 1992, pages 195-202.

 Client/Server Protocol Filtering: An infrastructure for supporting group collaborations, K. Jeffay, J.
Menges, J.-K. Lin, ACM CSCW ‘92, Proceedings of the Workshop on Tools and Technologies, Toronto,
Canada, November 1992, pages 96-99.

 Kernel Support for Live Digital Audio and Video, K. Jeffay, D.L. Stone, F.D. Smith, Computer
Communications, Volume 15, Number 6, July/August 1992, pages 388-395.

 On Kernel Support for Real-Time Multimedia Applications, K. Jeffay, Proceedings of the Third IEEE
Workshop on Workstation Operating Systems, Key Biscayne, FL, April 1992, pages 39-46.

 On Non-Preemptive Scheduling of Periodic and Sporadic Tasks, K. Jeffay, D.F. Stanat, C.U. Martel,
Proceedings of the Twelfth IEEE Real-Time Systems Symposium, San Antonio, TX, December 1991,
pages 129-139.

 Kernel Support for Live Digital Audio and Video, K. Jeffay, D.L. Stone, F.D. Smith, Proceedings of the
Second International Workshop on Network and Operating System Support for Digital Audio and Video,
Heidelberg, Germany, November 1991, published in Lecture Notes in Computer Science, R.G.
Herrtwich, editor, Volume 614, pages 10-21, Springer-Verlag, Heidelberg, Germany, 1992.

 UNC Collaboratory Project Overview, J.B. Smith, F.D. Smith, P. Calingaert, J.R. Hayes, D. Holland, K.
Jeffay, M. Lansman, Proceedings of the 1991 Symposium on Command and Control Research, National

14

Defense University, Washington, D.C., June 1991, pages 341-391.

 YARTOS: Kernel support for efficient, predictable real-time systems, K. Jeffay, D. Stone, D. Poirier,
Proceedings of the Joint Eighth IEEE Workshop on Real-Time Operating Systems and Software and
IFAC/IFIP Workshop on Real-Time Programming, Atlanta, GA, May 1991, in Real-Time Systems
Newsletter, Volume 7, Number 4, Fall 1991, pages 8-13. Republished in “Real-Time Programming,” W.
Halang, K. Ramamritham, editors, 1992.

 System Design for Workstation-Based Conferencing With Digital Audio and Video, K. Jeffay, F.D.
Smith, Proceedings of the IEEE Conference on Communication Software: Communications for
Distributed Applications and Systems, Chapel Hill, NC, April 1991, pages 169-180.

 Designing a Workstation-Based Conferencing System Using the Real-Time Producer/Consumer
Paradigm, K. Jeffay, F.D. Smith, Proceedings of the First International Workshop on Network and
Operating System Support for Digital Audio and Video, International Computer Science Institute,
Berkeley, CA, November 1990, pages 40-55.

 Analysis of a Synchronization and Scheduling Discipline for Real-Time Tasks with Preemption
Constraints, K. Jeffay, Proceedings of the Tenth IEEE Real-Time Systems Symposium, Santa Monica,
CA, December 1989, pages 295-305.

 Corset & Lace: Adapting Ada Runtime Support to Real-Time Systems, T.P. Baker, K. Jeffay, Proceedings
of the Eighth IEEE Real-Time Systems Symposium, San Jose, CA, December 1987, pages 158-167.

 Research in Real-Time Systems, A.C. Shaw, C. Binding, W.L. Hu, K. Jeffay, Proceedings of the Third
IEEE Workshop on Real-Time Operating Systems, Boston, MA, February 1986, pages 121-131.

Book Chapters Rate-Based Resource Allocation Methods, K. Jeffay, in, “Handbook of Real-Time and Embedded
Systems,” I. Lee, J. Y-T. Leung, S.H. Son, editors, Chapman & Hall/CRC Press, Boca Raton, FL, 2008,
pages 4-1 – 4-15. .

 Visualization and Natural Control Systems for Microscopy, R.M. Taylor II, D. Borland, F.P. Brooks Jr.,
M. Falvo, M. Guthold, T. Hudson, K. Jeffay, G. Jones, D. Marshburn, S.J. Papadakis, L.-C. Qin, A.
Seeger, F.D. Smith, D.H. Sonnenwald, R. Superfine, S. Washburn, C. Weigle, M.C. Whitton, P.
Williams, L. Vicci, W. Robinett, in “Visualization Handbook,” C. Johnson, C. Hansen, editors, Harcourt
Academic Press, 2005, pages 875-900.

 An Empirical Study of Delay Jitter Management Policies, D.L. Stone, K. Jeffay, in “Readings in
Multimedia Computing and Networking,” K. Jeffay, H.J. Zhang, editors, Morgan Kaufmann, San
Francisco, CA, 2002, pages 525-537.

 The Performance of Two-Dimensional Media Scaling for Internet Videoconferencing, P. Nee, K. Jeffay,
G. Danneels, in “Readings in Multimedia Computing and Networking,” K. Jeffay, H.J. Zhang, editors,
Morgan Kaufmann, San Francisco, CA, 2002, pages 581-592.

 Lock-Free Transactions for Real-time Systems, J.H. Anderson, S. Ramamurthy, M. Moir, K. Jeffay, in
“Real-Time Database Systems: Issues and Applications,” A. Bestavros, K.J. Lin, S.H. Son, editors,
Kluwer Academic Publishers, Norwell, MA, 1997, pages 215-234.

 Transport and Display Mechanisms For Multimedia Conferencing Across Packet-Switched Networks, K.
Jeffay, D.L. Stone, F.D. Smith, in “A Guided Tour of Multimedia Systems and Applications,” B. Furht,
M. Milenkovic, editors, IEEE Computer Society Press, Los Alamitos, CA, 1995, pages 439-461.

 Contributor to: R&D for the NII: Technical Challenges, M.K. Vernon, E.D. Lazowska, S.D. Personick,
editors, Interuniveristy Communications Council (EDUCOM), 1994.

 YARTOS: Kernel support for efficient, predictable real-time systems, K. Jeffay, D. Stone, D. Poirier, in
“Real-Time Programming,” W. Halang, K. Ramamritham, editors, Pergamon Press, Oxford, UK, 1992,

15

pages 7-12.

Videotapes Adaptive, Best-Effort Delivery of Live Audio and Video Across Packet-Switched Networks, K. Jeffay,
D.L. Stone, ACM Multimedia ‘94 Video Proceedings, San Francisco, CA, October 1994, 6 minutes.
Excerpts also appear on the CD-ROM version of the conference proceedings.

Abstracts &
Short Papers

Quantifying the Effects of Recent Protocol Improvements to Standards-Track TCP, M.C. Weigle, K.
Jeffay, and F.D. Smith, Proceedings of the 11th IEEE/ACM International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS), Orlando, FL,
October 2003, pages 226-229.

 Engineering of Rate Based Services for Real-Time Computing, G. Lamastra, K. Jeffay, 20th IEEE Real-
Time Systems Symposium Work in Progress Proceedings, Phoenix, AZ, December 1999, pages 51-55.

 Lightweight Active Router-Queue Management for Multimedia Networking, M. Parris, K. Jeffay, F.D.
Smith, IS&T/SPIE International Symposium on Electronic Imaging: Science and Technology, San Jose,
CA, January 1999, pages 280-281.

 Support For Real-Time Computing in Windows NT, K. Jeffay, Usage Abstracts, USENIX Windows NT
Workshop, Seattle, WA, August 1997, page 84.

 On the Duality between Resource Reservation and Proportional Share Resource Allocation, I. Stoica, H.
Abdel-Wahab, K. Jeffay, IS&T/SPIE Ninth Symposium on Electronic Imaging: Science and Technology
1997, San Jose, CA, February 1997, pages 135-136.

 Technical and Educational Challenges For Real-Time Computing, K. Jeffay, ACM Computing Surveys,
Volume 28A, Number 4(es), December 1996, URL http://www.acm.org/pubs/contents/journals/surveys/
1996-28/#4es, 3 pages.

 Distributed Real-Time Dataflow: An Execution Paradigm for Image Processing and Anti-Submarine
Warfare Applications, S. Goddard, K. Jeffay, 19th IEEE Real-Time Systems Symposium Work in
Progress Proceedings, Washington, DC, December 1996, pages 55-58.

 Why Using the Request Abstraction in Proportional Share Allocation Systems is Useful, I. Stoica, H.
Zhang, K. Jeffay, Proceedings of the IEEE Real-Time Systems Symposium Workshop on Resource
Allocation Problems in Multimedia Systems, Washington, DC, December 1996, 4 pages.

 Future distributed embedded and real-time applications will be adaptive: Meanings, challenges, and
research paradigms, A.K. Mok, C.L. Heitmeyer, K. Jeffay, M.B. Jones, C.D. Locke, R. Rajkumar, 15th
Proceedings of the 15th IEEE International Conference on Distributed Computing Systems, Vancouver,
British Columbia, Canada, May 1995, pages 182-184.

 Adaptive, Best-Effort Delivery of Live Audio and Video Across Packet-Switched Networks, K. Jeffay,
D.L. Stone, Proceedings of the Second ACM International Conference on Multimedia, San Francisco,
CA, October 1994, pages 487-488.

 Adaptive Rate-Based Flow and Latency Management of Audio and Video Streams, T.-M. Chen, T.
Talley, K. Jeffay, Abstracts of the Fourth Workshop on Network and Operating System Support for
Digital Audio and Video, Lancaster, UK, November 1993, pages 17-20.

 Client/Server Protocol Filtering: An infrastructure for supporting group collaborations, K. Jeffay, J.
Menges, J.-K. Lin, ACM CSCW ‘92, Proceedings of the Workshop on Tools and Technologies, Toronto,
Canada, November 1992, pages 96-99.

 Network and Operating Systems Support for Digital Audio and Video, K. Jeffay, in 13th ACM
Symposium on Operating System Principles “Work in Progress” Abstracts, E.D. Lazowska, editor,
Operating Systems Review, Volume 26, Number 2, April 1992, pages 7-31.

Posters Multivariate SVD Analyses For Network Anomaly Detection, J. Terrell, L. Zhang, K. Jeffay, A. Nobel, H.

16

Shen, F.D. Smith, Z, Zhu, ACM SIGCOMM 2005 Poster Session, Philadelphia, PA, August 2005.

 How Real Can Synthetic Traffic Be?, F. Hernández-Campos, K. Jeffay, F.D. Smith, ACM SIGCOMM
2004 Poster Session, Portland, OR, August 2004.

 A Non-Parametric Approach to Generation and Validation of Synthetic Network Traffic, F. Hernández-
Campos, A. Nobel, F.D. Smith, K. Jeffay, IMA Workshop on Measurement, Modeling, and Analysis of
the Internet, Minneapolis, MN, January 2004.

 Sync-TCP: Using GPS Synchronized Clocks for Early Congestion Detection in TCP, M.C. Weigle, K.
Jeffay, F.D. Smith, ACM SIGCOMM 2000 Poster Session, Stockholm, Sweden, August 2000, page 6.

Reviews Advance Reservation Systems, K. Jeffay, Proceedings of the Fifth International Workshop on Network
and Operating System Support for Digital Audio and Video, Durham, NH, April 1995, published in
Lecture Notes in Computer Science, T.D.C. Little, R. Gusella, editors, Volume 1018, pages 1-2, Springer-
Verlag, Heidelberg, Germany, 1995.

Books and
Proceedings

The Effects of Active Queue Management on TCP Application Performance, An experimental
performance evaluation, L. Le, K. Jeffay, F.D. Smith, Lambert Academic Publishing, Berlin,
Saarbrücken, Germany, 2009, 222 pages.

 Quality-of-Service — IWQoS 2003, K. Jeffay, I. Stoica, K. Wehrle, editors, Lecture Notes in Computer
Science, Springer-Verlag, Berlin, Heidelberg, Germany, Volume 2707, 2003, ISBN 3-540-40281-0, 517
pages.

 Readings in Multimedia Computing and Networking, K. Jeffay, H.J. Zhang, editors, Morgan Kaufman,
San Francisco, CA, 2002, ISBN 1-55860-651-3, 863 pages.

 Proceedings, The 22nd IEEE Real-Time Systems Symposium, K. Jeffay, G. Buttazzo, editors, IEEE
Computer Society Press, Los Alamitos, CA, 2001, ISBN 0-7695-1420-0, 321 pages.

 Proceedings, The Sixth IEEE International Symposium on Computers and Communications, K. Jeffay, R.
Steinmetz, editors, IEEE Computer Society Press, Los Alamitos, CA, 2001, ISBN 0-7695-1177-5, 754
pages.

 Proceedings, The 21st IEEE Real-Time Systems Symposium, K. Jeffay, W. Zhao, editors, IEEE Computer
Society Press, Los Alamitos, CA, 2000, ISBN 0-7695-0900-2, 311 pages.

 Proceedings, The 10th International Workshop on Network and Operating System Support for Digital
Audio and Video, K. Jeffay and H. Vin, editors, Technical Report, Department of Computer Science,
University of North Carolina at Chapel Hill, 2000, 320 pages. Proceedings also published on-line at http:
//www.cs.unc.edu/nossdav2000.

 ACM Multimedia ’99, D. Bulterman, K. Jeffay, H.J. Zhang, editors, ACM Press, Los Angeles, CA, 1999,
ISBN 0-8194-3125-7, 500 pages.

 Multimedia Computing and Networking 1999, D.D. Kandlur, K. Jeffay, T. Roscoe, editors, Proceedings
of SPIE, Volume 3654, SPIE, Bellingham, WA, 1998, ISBN 0-8194-3125-7, 328 pages.

 Multimedia Computing and Networking 1998, K. Jeffay, D.D. Kandlur, T. Roscoe, editors, Proceedings
of SPIE, Volume 3310, SPIE, Bellingham, WA, 1997, ISBN 0-8194-250-0, 266 pages.

 Proceedings, 1997 IEEE Real-Time Technology and Applications Symposium, R. Rajkumar, K. Jeffay,
editors, IEEE Computer Society Press, Los Alamitos, CA, 1997, ISBN 0-8186-8016-4, 269 pages.

 Proceedings, IEEE Real-Time Systems Symposium Workshop on Resource Allocation Problems in
Multimedia Systems, K. Jeffay, editor, http://www.cs.unc.edu/~jeffay/meetings/mm-wrkshp96/prog. html,

17

1996, 250 pages.

 Proceedings, 1996 IEEE Real-Time Technology and Applications Symposium, K. Jeffay, W. Zhao,
editors, IEEE Computer Society Press, Los Alamitos, CA, 1996, ISBN 0-8186-7448-2, 264 pages.

Unrefereed Publications

Invited Papers Modeling and Generation of TCP Application Workloads, F. Hernández-Campos, K. Jeffay, F.D. Smith,
Proceedings of the 4th IEEE International Conference on Broadband Communications, Networks, and
Systems, Raleigh, NC, September 2007, 10 pages.

 Statistical Clustering of Internet Communication Patterns, F. Hernández-Campos, A.B. Nobel, F.D.
Smith, K. Jeffay, Proceedings of the 35th Symposium on the Interface of Computing Science and
Statistics, Salt Lake City, UT, July 2003, Computing Science and Statistics, Volume 35, 2004.

 Rate-Based Resource Allocation Methods for Embedded Systems, K. Jeffay, S.M. Goddard, in, Embedded
Software, Proceedings of the First International Workshop on Embedded Software (EMSOFT 2001),
Tahoe City, CA, October 2001, Lecture Notes in Computer Science, Volume 2211, T. Henzinger, C.
Kirsch, editors, Springer Verlag, Berlin, Germany, 2001, pages 204-222.

 Beyond Audio and Video: Multimedia Networking Support for Distributed, Immersive Virtual
Environments, K. Jeffay, T. Hudson, M. Parris, Proceedings of the 27th EUROMICRO Conference,
Workshop on Multimedia and Telecommunication, Warsaw, Poland, September 2001, pages 300-307.

 Experiments in Best-Effort Multimedia Networking for a Distributed Virtual Environment, T. Hudson,
M.C. Weigle, K. Jeffay, R.M. Taylor II, in Multimedia Computing and Networking 2001, Proceedings,
SPIE Proceedings Series, Volume 4312, San Jose, CA, January 2001, pages 88-98.

 Towards a Better-Than-Best-Effort Forwarding Service for Multimedia Flows, K. Jeffay, IEEE
Multimedia, Volume 6, Number 4, October-December 1999, pages 84-88.

 Network Support For Distributed, Immersive, Virtual Laboratories K. Jeffay, Proceedings of the NSF
Workshop on Automated Control of Distributed Instrumentation, Beckman Institute for Advanced
Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, April 1999, pages 73-
78.

 Storage Requirements For Distributed Virtual Laboratories, K. Jeffay, Proceedings of the Internet2
Distributed Storage Infrastructure Application Workshop, University of North Carolina at Chapel Hill,
Chapel Hill, NC, March 1999, pages 57-59.

 Efficient Kernel Support for Continuous Time Media Systems, K. Jeffay, Proceedings of the ITC
Workshop on Continuous Time Media, Carnegie Mellon University, Pittsburgh, PA, June 1991, 4 pages.

White Papers Contributor to: NSF Report on Network Research Testbeds, B. Braden, M. Gerla, J. Kurose, J. Lepreau,
R. Rao, J. Turner, editors, December 2002. A white paper commission by NSF that led to the creation of
a $10 million funding program for network research testbeds.

 Contributor to: R&D for the National Information Infrastructure: Technical Challenges, M.K. Vernon,
E.D. Lazowska, S.D. Personick, editors, Interuniveristy Communications Council (EDUCOM), 1994.

Technical
Reports

Beyond Window Sharing Hacks: Support for First-Class Window Sharing, J. Menges, K. Jeffay, Report
TR97-021, University of North Carolina at Chapel Hill, Department of Computer Science, Chapel Hill,
NC, April 1997.

 A Proportional Share Resource Allocation Algorithm For Real-Time, Time-Shared Systems, I. Stoica, H.
Abdel-Wahab, K. Jeffay, S.K. Baruah, J.E. Gehrke, C.G. Plaxton, Report TR96-038, University of North
Carolina at Chapel Hill, Department of Computer Science, Chapel Hill, NC, September 1996.

18

 Predicting Worst Case Execution Times on a Pipelined RISC Processor, S.J. Bharrat, K. Jeffay, Report
TR94-072, University of North Carolina at Chapel Hill, Department of Computer Science, Chapel Hill,
NC, April 1994.

 The Design, Implementation, and Use of a Sporadic Tasking Model, K. Jeffay, D. Becker, D. Bennett, S.
Bharrat, T. Gramling, M. Housel, Report TR94-073, University of North Carolina at Chapel Hill,
Department of Computer Science, Chapel Hill, NC, April, 1994.

 UNC Collaboratory Project Overview, J.B. Smith, F.D. Smith, P. Calingaert, J.R. Hayes, D. Holland, K.
Jeffay, M. Lansman, Report 90-042, University of North Carolina at Chapel Hill, Department of
Computer Science, Chapel Hill, NC, November 1990.

 An Implementation and Application of the Real-Time Producer/Consumer Paradigm, D. Poirier, K.
Jeffay, Report 90-038, University of North Carolina at Chapel Hill, Department of Computer Science,
Chapel Hill, NC, October 1990.

 The Real-Time Producer/Consumer Paradigm: Towards Verifiable Real-Time Computations, K. Jeffay,
Report 89-09-15, University of Washington, Department of Computer Science, Seattle, WA, September
1989, (Ph.D. Dissertation).

 On Optimal, Non-Preemptive Scheduling of Periodic and Sporadic Tasks, K. Jeffay, R. Anderson, Report
88-11-06, University of Washington, Department of Computer Science, Seattle, WA, November 1988.

 On Optimal, Non-Preemptive Scheduling of Periodic Tasks, K. Jeffay, Report 88-10-03, University of
Washington Department of Computer Science, Seattle, WA, October 1988.

 Software Engineering of Real-Time Operating Systems, A.C. Shaw, K. Jeffay, Report 88-01-01,
University of Washington Department of Computer Science, Seattle, WA, January 1988.

 Concurrent Programming with Time, A thesis proposal, K. Jeffay, Report 87-10-03, University of
Washington Department of Computer Science, Seattle, WA, October 1987.

 A Lace for Ada’s Corset, T.P. Baker, K. Jeffay, Report 86-09-06, University of Washington Department
of Computer Science, Seattle, WA, September 1986.

Software
Distributions

tmix — A synthetic TCP workload generator, F. Hernández Campos, K. Jeffay, F.D. Smith, June 2005.
 Distributed to other academic and industry networking research groups via the Web.

 UNC VNC — A version of the public domain workspace sharing system VNC to support secure sharing
of workspace regions and windows of individual applications. J. Branscomb, L. Fowler, K. Jeffay,
August 2004.

 Distributed to other research groups and the public via the Web and SourceForge.

 thttp 2003 — An HTTP/v1.0 and v1.1 traffic generation program used to simulate the traffic generated by
a collection of geographically distributed web browsers and servers. L. Le, A. Van Osdol, F.D.
Smith, K. Jeffay, January 2004.

 Distributed to other academic and industry networking research groups via the Web.

 thttp 2001 — An HTTP/v1.0 and v1.1 traffic generation program used to simulate the traffic generated by
a collection of geographically distributed web browsers and servers. F. Hernández Campos, F.D.
Smith, K. Jeffay, August 2002.

 Distributed to other academic and industry networking research groups via the Web.

 Packmime Implementation in ns — An implementation of the Lucent Bell Labs (Bill Cleaveland) HTTP
traffic model in ns. M.C. Weigle, K. Jeffay, F.D. Smith, September 2001.

 Distributed as part of the Network Simulator (ns-2) distribution.

19

 UNC Campus Network Trace Data and Empirical Distributions — A collection of network traces and
empirical distributions illustrating the nature of web browsing and the structure of web pages. F.
Hernández Campos, K. Jeffay, F.D. Smith, June 2001.

 Distributed to other academic and industry networking research groups via the Web.

 HTTP Analysis Tools— A set of tools for analyzing http connections. F. Hernández Campos, K. Jeffay,
F.D. Smith, June 2001.

 Distributed as part of the Network Simulator (ns-2) distribution.

 thttp — An HTTP traffic generation program used to simulate the traffic generated by a collection of
geographically distributed web browsers and servers. M. Christiansen, F.D. Smith, K. Jeffay,
January 2000.

 Distributed to other academic and industry networking research groups via the Web.

 FlowGen — A general purpose, programmable network flow generator. M. Clark, K. Jeffay, F.D. Smith,
December 1999.

 Distributed to Advanced Networking Systems Inc. for use in performance evaluation studies of
Internet 2 and Abilene. Also available via anonymous ftp from http://www.cs.unc.edu/Research/
Dirt.

 TruTime Device Drivers for FreeBSD — A set of FreeBSD device drivers for the TruTime GPS boards,
A. Moorthy, K. Jeffay, and F.D. Smith, December 1998.

 Distributed to Advanced Networking Systems Inc. for use in the IETF Internet Performance
Measurement Initiative (IPMI) Surveyor network.

 YARTOS (Yet Another Real-Time Operating System) — A real-time operating system kernel for Intel x86
platforms that uses a novel task implementation based on a single, shared run-time stack, an
earliest-deadline-first processor scheduling algorithm developed at UNC, and integrates processor
scheduling and inter-process communication. K. Jeffay and D. Stone, January 1996.

Distributed to several universities for use in operating system research and teaching. Also adopted
by researchers at IBM’s Networking Software Division, RTP, NC, for use in constructing a
network protocol evaluation testbed.

 XPEL (The X Protocol Engine Library) — A C++ library for constructing modular X Window System
pseudo-servers, J. Menges and K. Jeffay, November 1993.

Distributed on the Internet via anonymous ftp from ftp.cs.unc.edu.
 XTV (X Terminal View) — An X Window System pseudo-server that supports window sharing and

conferencing across the Internet, H. Abdel-Wahab (Old Dominion University) and K. Jeffay,
August 1991.

Distributed by MIT as part of the contributed software portion of the X Window System
distribution (release 11, version 5). Last revised January 1993.
Also adopted by the NEC Corporation of Japan as the basis for their Xprotodist (X protocol
distributor) product.

Patents Network Server Performance Anomaly Detection, U.S. Provisional Patent Application No. 61/167,819,

J.S. Terrell. K. Jeffay, F.D. Smith, E. Broadhurst, filed April, 2009.

Method for Understanding the Use of TCP/IP Networks by Users, and Non-Parametric Generation of
Synthetic Internet Traffic, U.S. Patent Number 7,447,209, F. Hernández-Campos, K. Jeffay, F.D.
Smith, A. Nobel, November 2008.

User Controlled Adaptive Flow Control for Packet Networks, U.S. Patent Number 5,892,754, V.
Kompella, F.D. Smith, J.P. Gray, and K. Jeffay, April 1999.

20

Public
Demonstrations

The nanoManipulator “reverse field trip” to Orange County High-School, G. Jones, R. Superfine, R.M.
Taylor, M. Whitton, T. Lovelace, R. Parameswaran, K. Jeffay, F.D. Smith, Orange County High School,
Hillsboro, NC, November 1999.

 The Distributed NanoManipulator Project, R.M. Taylor, K. Jeffay, T. Hudson, M. Clark, an invited
demonstration for the Internet 2 Spring 1999 Members Meeting, Washington, DC, April 1999.

 A Demonstration of Internet Access to UNC-CH Advanced Microscopy Facilities for Science Education
Outreach, K. Jeffay, F.D. Smith, R. Superfine, G. Jones, R.M. Taylor, T. Hudson, M. Clark, Orange
County High School, Hillsboro, NC, June 1998.

 The Artifact-Based Collaboration (ABC) System, J.B. Smith, K. Jeffay, D. Shackelford, J. Menges, J.
Hilgedic, B. Ladd, M. Parris, E. Kupstas, T. Ellis, and T. Hudson, CSCW ‘94, ACM Conference on
Computer-Supported Cooperative Work, RTP, NC, October 1994.

 CONCUR: A Window System Supporting Window Sharing, J. Menges and K. Jeffay, CSCW ‘94, ACM
Conference on Computer-Supported Cooperative Work, RTP, NC, October 1994.

 Adaptive, Best-Effort Delivery of Live Audio and Video Across Packet-Switched Networks, K. Jeffay,
Second MCNC/NSF Packet Video Workshop, Research Triangle Park, NC, December 1992.

Grants and Awards

Active Exploring Privacy Breaches in Encrypted VoIP Communications, F. Monrose, K, Jeffay, National
Science Foundation, grant number CNS 10-17318, August 2010, 3 years, $496,492.

 Synthetic Traffic Generation Tools and Resource: A Community Resource for Experimental Networking
Research, K, Jeffay, F.D. Smith, UNC, M. Weigle, Old Dominion University, A. Vahdat, University of
California San Diego, P. Barford, University of Wisconsin, National Science Foundation, grant number
CRI 07-09081, August 2007, 3 years, $799,745.

Completed Modeling and Testing of Application Workloads on Corporate Enterprise Networks, K, Jeffay, F.D.
Smith, IBM Global Services Faculty Award, September 2006, 2 years, $70,000 (exempt from indirect
costs).

 Tera-pixels: Using High-resolution Pervasive Displays to Transform Collaboration and Teaching, K,
Jeffay, A. Lastra, K. Mayer-Patel, L. McMillan, F.D. Smith, National Science Foundation (CISE RI
Program), grant number EIA 03-03590, August 2003, 5 years, $962,902.

 Extracting and Using Semantic Information in Network Workloads, K, Jeffay, F.D. Smith, IBM Global
Services Faculty Award, September 2006, 1 year, $40,000 (exempt from indirect costs).

 Modeling and Testing of Application Workloads on Corporate Enterprise Networks, K, Jeffay, F.D.
Smith, IBM Global Services Faculty Award, September 2006, 1 year, $40,000 (exempt from indirect
costs).

 Generation and Validation of Synthetic Internet Traffic, K, Jeffay, F.D. Smith, A.B. Noble, National
Science Foundation, grant number ANI 03-23648, September 2003, 3 years, $470,000.

 Rate-Based Resource Allocation Methods for Real-Time Embedded Systems, K, Jeffay, F.D. Smith,
National Science Foundation, grant number CCR 02-08924, August 2002, 3 years, $179,990.

 Empirical Workload Characterizations for Advanced Networks, K. Jeffay, F.D. Smith, Cisco Systems,
November 2000, 3 years, $212,500.

 Support for Active Queue Management, Distributed XP Programming, and a Teaching Laboratory for

21

Web Services, F.D. Smith, K. Jeffay, J.B. Smith, P.D. Stotts, IBM Shared University Research Grant,
August 2002, 1 year, $83,000.

 Internet Traffic Measurement and Analysis and A Teaching Laboratory for Enterprise Java Computing,
F.D. Smith, K. Jeffay, J.B. Smith, P.D. Stotts, IBM Shared University Research Grant, April 2001, 1
year, $83,000.

 An NS Implementation of the HTTP Connection Model, F.D. Smith, K. Jeffay, M. Clark Weigle, Lucent
Technologies, April 2001, $10,000.

 Multimedia Networking Research in Support of Virtual Field Trips, K. Jeffay, F.D. Smith, R.M. Taylor
II, Dell Computer Corporation Strategic Technology and Research (STAR) program, December 2000, 1
year, $25,000.

 Rate-based Scheduling Technology for Latency-Sensitive Graphics Applications, J. Anderson, S. Baruah,
K. Jeffay, R. Taylor, National Science Foundation, grant number ITR 00-82866, September 2000, 3.5
years, $350,000.

 Active Router Queue Management for Congestion Control and Quality-of-Service, K. Jeffay, F.D. Smith,
National Science Foundation, grant number ITR 00-82870, September 2000, 3 years, $451,903.

 Internet Measurements and Analysis to Support the nanoManipulator and Tele-Immersion, F.D. Smith,
K. Jeffay, P. Jones, IBM Shared University Research Grant, September 2000, 1 year, $250,000.

 The Performance of Differentiated Services Implementations for Supporting Distributed Virtual
Environment Applications, K. Jeffay, North Carolina Network Initiative, September 2000, 1 year,
$25,000.

 Empirical Application-Workload Characterizations for Advanced Networks, K. Jeffay, F.D. Smith, Sun
Microsystems, September 2000, $79,000.

 Empirical Application-Workload Characterizations for Advanced Networks, F.D. Smith, K. Jeffay,
MCNC, September 2000, 1 year, $50,000.

 A Quality-of-Service Network for the nanoManipulator, K. Jeffay, Cabletron Inc. and the North Carolina
Network Initiative, September 1999, $25,000.

 Interactive Graphics for Molecular Studies and Microscopy — Supplement for Collaborative Science,
F.P. Brooks, D. Erie (Chemistry), K. Jeffay, J. Samulski (Gene Therapy), F.D. Smith, D. Sonnenwald
(Information and Library Science), R. Superfine (Physics and Astronomy), R. Taylor, National Institute
of Health, October 1998, 4 years, $1,902,544.

 Computing Power for Collaborative Science, S.R. Aylward, G. Bishop, D.W. Brenner, E. Bullitt, E.L.
Chaney, V.L. Chi, B.J. Dempsey, N. England, A.G. Gash, D. Fritsch, H. Fuchs, B. Hemminger, J.
Hermans, K. Jeffay, K. Keller, A. Lastra, M. Lin, D. Manocha, L.S. Nyland, S.M. Pizer, J.W. Poulton,
J.F. Prins, J. Rosenman, F.D. Smith, R. Superfine, R.M. Taylor, S. Tell, G. Tracton, A. Tropsha, S.
Washburn, G. Welch, Intel Corporation, August 1998, 3 years, $2,858,747. PI on Multimedia Networking
and A Distributed Teaching Laboratory for Networking and Internet Technologies sections (F.D. Smith,
B.J. Dempsey, Co-PIs), $557,669.

 Empirical Application-Workload Characterizations for Advanced Networks, F.D. Smith, K. Jeffay, North
Carolina Network Initiative, September 1998, $40,000.

 Congestion control for high-speed networks, F.D. Smith, K. Jeffay, IBM Corporation, 1998, $20,000.

 A Communications Middleware For Immersive Distributed Virtual Environments, K. Jeffay, North
Carolina Network Initiative, 1998, $15,000.

 Technology for Real-Time Services in Protocol Stack Implementations, K. Jeffay, IBM Corporation,

22

1997, $80,000.

 Internet Access to UNC-CH Advanced Microscopy Facilities for Science Education Outreach, K. Jeffay,
R. Superfine (Physics and Astronomy), G. Jones (Education), University of North Carolina at Chapel Hill
Instructional Technology Award, 1997, $29,750.

 Support for the Real-Time Technology and Applications Symposium, K. Jeffay, Office of Naval Research,
1997, $7,000.

 Research Experience For Undergraduates supplement to Object Sharing Technology For Real-Time
Systems, J. Anderson, K. Jeffay, National Science Foundation, 1996, $10,000.

 Infrastructure for Research in Collaborative Systems, S.F. Weiss, J.B. Smith, K. Jeffay, P. Dewan, P. D.
Stotts, D.K. Smith, F.D. Smith, W. Oliver (U.S. Armed Forces Institute of Pathology), National Science
Foundation, grant number CDA-9624662, August 1996, 5 years, $1,260,830.

 Collaboration Bus: An Infrastructure for Supporting Interoperating Collaborative Systems, P. Dewan, K.
Jeffay, H. Abdel-Wahab (Old Dominion University), P. D. Stotts, L. Nyland, J.B. Smith, J. Mchugh
(Portland State University), J. Menges (Hewlett Packard), Advanced Research Projects Agency, grant
number 96-06580 (High Performance Distributed Services Technology), 1996, $973,334.

 Object Sharing Technology For Real-Time Systems, J. Anderson, K. Jeffay, National Science Foundation,
grant number CCR 95-10156, 1996, $209,442.

 Flexible Shared Windows, P. Dewan, K. Jeffay, National Science Foundation, grant number IRIS 95-
08514, 1995, $343,811.

 An ATM Testbed For Multimedia Networking and Computer-Supported Cooperative Work, K. Jeffay,
IBM Corporation, 1995, $400,000.

 An Examination of Flow and Congestion Control Mechanisms for Media Transmission in Collaborative
Systems, K. Jeffay, IBM Corporation, 1995, $125,242.

 Software Infrastructure for the Rapid Development of Interactive and Collaborative Educational
Simulations, J.F. Prins, K. Jeffay, P.D. Stotts, L.S. Nyland, Advanced Research Projects Agency, grant
number 95-36871 (Computer Aided Education and Training Initiative), 1995, $200,000.

 A Proposal For Network Routers, K. Jeffay, IBM Corporation, Research Triangle Park, NC, 1994,
$40,000.

 System Support For Video Teleconferencing Across Local Area Networks, K. Jeffay, Intel Corporation,
1993, $253,385.

 The Integration and Use of Digital Audio and Video in Desktop Computing Environments, K. Jeffay,
IBM Corporation, 1993, $100,000.

 Construction of a UNC-Tektronix MBONE Link, K. Jeffay, Tektronix Corporation, 1993, $10,000.

 An Empirical Determination of the Limits of Human Perception of Properties of Digital Audio and Video
Streams, K. Jeffay, University of North Carolina Research Council, 1993, $2,000.

 Processor and Resource Allocation Problems in Hard-Real-Time Systems: Theory and Practice, K.
Jeffay, National Science Foundation, RIA Award, 1991, $59,400.

 Accommodating Continuous Media in a Local Area Network: An exercise in distributed real-time
computing, K. Jeffay, University of North Carolina Junior Faculty Development Award, 1990, $3,000.

 Building and Using a Collaboratory: A Foundation for Supporting and Studying Group Collaborations,
J.B. Smith, F.D. Smith, P. Calingaert, K. Jeffay, J.R. Hayes, D. Holland, M. Lansman, National Science

23

Foundation, grant number ICI-9015443, 1990, $946,000.

 Enhanced program of research and teaching in communications software and distributed systems, K.
Jeffay, IBM Corporation, 1989, $429,000.

 The Design and Construction of Predictable Real-Time Systems, K. Jeffay, Digital Faculty Program
Award, Digital Equipment Corporation, 1989, $180,000.

Invited Presentations

Keynote
Addresses

Network Neutrality Considered Harmful, Revisiting the Quality-of-Service Morass
ACM International Workshop on Network and Operating System Support for Digital

Audio and Video, Newport, RI, May 2006.

 Rate-Based Resource Allocation Methods for Multimedia Computing
SPIE Multimedia Computing and Networking 2003, Santa Clara, CA, January 2003.

 Network Support For Distributed Virtual Environments: The Tele-nanoManipulator
NCNI Advanced Networking Symposium, Research Triangle Park, NC, May 1999.
The Internet 2 Spring Members Meeting (presented jointly with R.M. Taylor),

Washington, DC, April 1999.

 Network Support For Distributed, Immersive, Virtual Environments
Workshop on Automated Control of Distributed Instrumentation, Beckman Institute for

Advanced Science and Technology, University of Illinois at Urbana-Champaign,
Urbana, IL, April 1999.

 The Future of Networking: The Networking Revolution Has Yet to Begin

North Carolina Governor’s Board of Science and Technology Retreat, Banner Elk, NC,
September 1998.

Distinguished

Lectures
The Synthetic Traffic Generation Problem: The least sexy problem in computer networking

University of Minnesota, Minneapolis, MN, January 2008.

 The Effect of Active Queue Management on Web Performance: The Good, the Bad, and the Ugly
University of Nebraska, Lincoln, NE, November 2003.
University of Pennsylvania, April 2004.

 The Evolution of Quality-of-Service on the Internet
Mälardalen University, Sweden, February 2001.

Colloquia The Evolution of Quality-of-Service on the Internet
IEEE Computer Society Seattle Chapter, Seattle, WA, September 2005.

 Modeling and Generating TCP Application Workloads

Georgia Institute of Technology, Atlanta, GA, September 2005.
Microsoft Research, Redmond, WA, September 2005.
Worcester Polytechnic Institute, Worcester, MA, July 2005.
Cisco Systems, RTP, NC, May 2005 (presently jointly with F. Hernandez-Campos and F.D.
Smith).

24

 A Rate-Based Execution Abstraction For Embedded Real-Time Systems

University of Pennsylvania, April 2004.

 How “Real” Can Synthetic Network Traffic Be?
University of Virginia, March 2004.

 Non-Parametric Approach to Generation and Validation of Synthetic Network Traffic
Columbia University, New York, NY, January 2004.

 Is Explicit Congestion Notification (ECN) Worthwhile?
Cisco Systems, San Jose, CA, October 2003.
Intel Architecture Labs, Hillsboro, OR, October 2003.

 Tuning RED for Web Traffic: RED Considered Harmful?
Sprint Advanced Technology Research Laboratories, San Francisco, CA, March 2000.
University of Illinois at Urbana-Champaign, Urbana, IL, March 2000.

 Internet Traffic: Measurement & Generation
Ganymede Software, Research Triangle Park, NC, June 1999. (Presented jointly with

F.D. Smith.)

 Lightweight Active Router-Queue Management for Multimedia Networking
University of Toronto, October 2000.
HP Laboratories, Palo Alto, CA, January 1999.
Sprint Advanced Technology Research Laboratories, San Francisco, CA, January 1999.

 A Better-Than-Best-Effort Service For UDP: Lightweight Active Router-Queue Management for
Multimedia Networking

University of Virginia, January 1999.

 Congestion Control Mechanisms for Real-Time Communications on the Internet
IBM Networking Systems, Research Triangle Park, NC, November 1998.

 A Better Than Best-Effort Forwarding Service For UDP
Microsoft Research, Redmond, WA, March 1998.
IBM Networking Systems, Research Triangle Park, NC, March 1998.

 Multimedia Networking Research at UNC Chapel Hill
IBM Networking Systems, Research Triangle Park, NC, February 1998.
Lucent Technologies, Bell Laboratories, Holmdel, NJ, June 1997.

 Design Principles for Distributed, Interactive, Virtual Laboratories
Mitsubishi Electric Research Laboratory, Cambridge, MA, January 1998.
Lucent Technologies, Bell Laboratories, Holmdel, NJ, June 1997.

 The Performance of Two-Dimensional Media Scaling for Internet Videoconferencing
Mitsubishi Electric Research Laboratory, Cambridge, MA, January 1998.
Carnegie Mellon University, Pittsburgh, PA, March 1997.

25

 Some Approaches to Enabling Real-Time Computation on Desktop Operating Systems

Honeywell Technology Center, Minneapolis, MN, October 1996.

 Two-Dimensional Scaling Techniques for Adaptive, Rate-Based Transmission Control of Live Audio and
Video Streams

Oregon State University, Corvallis, OR, May 1996.

 A Router-Based Congestion Control Scheme For Real-Time Continuous Media

Intel Architecture Development Laboratory, Hillsboro, OR, May 1996.
NetEdge Inc., Research Triangle Park, NC, March 1996.
North Carolina State University, Raleigh, NC, March 1996.

 A Hybrid Reservation-Based/Best-Effort Transmission Scheme For Real-Time Transmission of
Multimedia Data

Intel Research Council, Hillsboro, OR, November 1995.

 Operating System Support For Multimedia Computing
IBM Networking Systems, Research Triangle Park, NC, July 1995.

 Network Support For Multimedia Computing
IBM Networking Systems, Research Triangle Park, NC, July 1995.

 A Rate-Based Execution Abstraction For Multimedia Computing
Tektronix Computer Research Laboratory, Beaverton, OR, May 1996.
INRIA, Rocquencourt, France, December 1995.
AT&T Bell Laboratories, Murray Hill, NJ, July 1995.

 A Theory of Rate-Based Scheduling
Carnegie Mellon University, Pittsburgh, PA, August 1994.

 Demonstration of Videoconferencing Over Packet-Switched Internetworks
Global Lecture Hall of the U.S.-Russian Electronic Distance Education System/TELE-

TEACHING ‘93, Trondheim, Norway (via satellite from Chapel Hill), August 1993.

 Transport and Display Mechanisms For Multimedia Conferencing Across Packet-Switched Networks
York University, York, England, November 1993.
Purdue University, West Lafayette, IN, February 1993.
Intel Architecture Development Laboratory, Hillsboro, OR, February 1993.
Oregon Graduate Institute, Beaverton, OR, February 1993.
Second MCNC/NSF Packet Video Workshop, Research Triangle Park, NC, December 1992.
Carnegie Mellon University, Pittsburgh, PA, November 1992.

 Multimedia and Conferencing Research at UNC-CH
IBM Multimedia Networking, Research Triangle Park, NC, September 1992.

 System Support for Synchronous Collaboration
North Carolina Artificial Intelligence and Advanced Computing Symposium, Raleigh,

NC, March 1992.

26

 Software Architectures for Predictable Real-Time Computer Systems
Carnegie Mellon University, Pittsburgh, PA, March 1992.

 Operating System Requirements for Digital Audio and Video
MCNC/NSF Packet Video Videoconferencing Workshop, Research Triangle Park, NC,

December 1991.

 Some Experiments With Live Digital Audio and Video on a Local-Area Network
IBM European Networking Center, Heidelberg, Germany, November 1991.

 Network and Operating System Support for Digital Audio and Video
Duke University, Durham, NC, November 1994.
Carnegie Mellon University, Pittsburgh, PA, April 1994.
Intel Corporation, Hillsboro, OR, December 1993.

 IBM Networking Systems, Research Triangle Park, NC, June 1992.
IBM TJ Watson Research Center, Yorktown Heights, NY, March 1992.
University of Washington, Seattle, WA, February 1992.
Old Dominion University, Norfolk, VA, October 1991.

 Systems Research in the UNC Collaboration Project
Intel Architecture Development Laboratory, Hillsboro, OR, May 1992.
University of Colorado, Boulder, CO, March 1991.

 Some Deterministic Resource Allocation Problems in Real-Time Computer Systems
Research Triangle Institute, Research Triangle Park, NC, June 1990.
University of North Carolina at Chapel Hill, Department of Operations Research, Chapel

Hill, NC, October 1989.

 The Real-Time Producer/Consumer Paradigm: Towards Verifiable Real-Time Computations
Carnegie-Mellon University, Pittsburgh, March 1991.
Duke University, Durham, NC, June 1990.
Technical University of Denmark, Lyngby, Denmark, September 1989.
University of California at Davis, Davis, CA, April 1989.
University of Minnesota, Minneapolis, MN, April 1989.
Purdue University, West Lafayette, IN, April 1989.
University of North Carolina at Chapel Hill, Chapel Hill, NC, April 1989.

 University of British Columbia, Vancouver, BC, Canada, April 1989.
Rice University, Houston, TX, March 1989.
University of Arizona, Tucson, AZ, March 1989.
Oregon Graduate Center, Beaverton, OR, March 1989.
Tektronix Computer Research Laboratory, Beaverton, OR, March 1989.
University of Colorado, Boulder, CO, March 1989.
IBM TJ Watson Research Center, Yorktown Heights, NY, March 1989.
IBM Systems Integration Division, Owego, NY, March 1989.
New York University, New York, NY, March 1989.
Bell Communications Research, Morristown, NJ, March 1989.

 Concurrent Programming With Time
Olivetti Research Center, Menlo Park, CA, December 1987.

27

IBM TJ Watson Research Center, Yorktown Heights, NY, September 1987.
Columbia University, New York, NY, September 1987.

Short Courses Trends in Congestion Control and Quality-of-Service: Active queue management on the Internet of the
future

Mälardalen University, Sweden, February 2001.

 Rate-Based Execution Models For Real-Time Multimedia Computing
Scuola Superiore Santa Anna, Pisa, Italy, September 1997.

Tutorials Issues in Multimedia Delivery Over Today’s Internet
IEEE International Conference on Multimedia Computing Systems, Austin, TX, June 1998.

 Systems Issues in the Design and Realization of Desktop Videoconferencing Systems,
Second ACM International Conference on Multimedia, San Francisco, CA, October 1994.

Generated January 10, 2011.

