Bedrock Computer Technologies, LLC v. Softlayer Technologies, Inc. et al Doc. 842 Att. 14

EXHIBIT 13

Dockets.Justia.com

http://dockets.justia.com/docket/texas/txedce/6:2009cv00269/116887/
http://docs.justia.com/cases/federal/district-courts/texas/txedce/6:2009cv00269/116887/842/14.html
http://dockets.justia.com/

Docket No. 375246US91RX
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
IN RE REEXAMINATION OF: Richard Michael NEMES

CONTROL 90/011,426 GAU: 3992

NO:

FILED: January 10, 2011 EXAMINER: ANDREW NALVEN

FOR: METHODS AND APPARATUS FOR INFORMATION STORAGE AND RETRIEVAL USING A
HASHING TECHNIQUE WITH EXTERNAL CHAINING AND ON-THE-FL.Y REMOVAL OF
EXPIRED DATA

INFORMATION DISCLOSURE STATEMENT UNDER 37 CFR 1.555

COMMISSIONER FOR PATENTS
ALEXANDRIA, VIRGINIA 22313

SIR:
Patent holder(s) wishes to disclose the following information.

REFERENCES

I Patent holder(s) wishes to make of record the reference(s) listed on the attached form PTO-1449 and/or
accompanying documents from a corresponding foreign application. Copies of the listed reference(s) are attached,
where required, as are either statements of relevancy or any readily available partial or full English translations of
pertinent portions of any non-English language reference(s).

O Credit card payment is being made online (if electronically filed), or is attached hereto (if paper filed), in the
amount required under 37 CFR §1.17(p).

RELATED CASES
O Attached is a list of patent holder’s pending application(s), published application(s) or issued patent(s) which may
be related to the present application. In accordance with the waiver of 37 CFR 1.98 dated September 21, 2004,
copies of the cited pending applications are not provided. Cited published and/or issued patents, if any, are listed

on the attached PTO form 1449.
O Credit card payment is being made online (if electronically filed), or is attached hereto (if paper filed), in the

amount required under 37 CFR §1.17(p).

Respectfully submitted,

OBLON, SPIVAK, McCLELLAND,
MAIER & NEU T, L.L.P.

L

// Scott A. ﬁcKeown

Customer Number Registration No. 42,866

22850

Tel. (703) 413-3000
Fax. (703) 413-2220
(OSMMN 02/10)

SHEET 1 OF 1

Form PTO 1449 U.S. DEPARTMENT OF coMmerce | ATTY DOCKET NO. CONTROL NO.
(Modified) PATENT AND TRADEMARK OFFICE | 3505 421 jG91RX 90/011,426
INVENTOR(S)
LIST OF REFERENCES CITED BY APPLICANT Richard Michael NEMES
FILING DATE GROUP
January 10, 2011 3992
U.S. PATENT DOCUMENTS
FNITIAL PNOMBER | DATE NAME OLASS | Giass | IF APPROPRIATE
AA
AB
AC
AD
AE
AF
AG
AH
Al
AJ
AK
AL
AM
AN
FOREIGN PATENT DOCUMENTS
DSSI\L/J"\BAE::T DATE COUNTRY YESTRANSLATIONNO
AO
AP
AQ
AR
AS
AT
AU
AV
OTHER REFERENCES (Including Author, Title, Date, Pertinent Pages, etc.)
BAWDEN, Alan, et al., LISP Machine Progress Report - Massachusetts Institute of Technology Adtificial Intelligence
AW | Laboratory - Memo No. 444; August 1977; 29 pgs.
Copyright 1995 by Bao Phan, et al.; Key Management Engine for BSD; 09/26/1995; Pgs. 1-29; (DEF00007942-
AX | DEF00007970)
Copyright 1995 by Bao Phan, et al.; Declarations and Definitions for Key Engine for BSD; 09/28/1995; Pgs. 1-4;
AY | (DEF00007971-DEF00007974)
AZ
Examiner Date Considered

*Examiner: Initial if reference is considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in

conformance and not considered. Include copy of this form with next communication to applicant.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

Memo No. 444 - | August 1977

LISP Machine Progress Report

by the Lisp Machine Group

Alan Bawden
Richard Greenblatt
Jack Holloway
Thomas Knight
David Moon
Daniel Weinreb

ABSTRACT

This informal paper introduces the LISP Machine, describes the goals and current
status of the project, and explicates some of the koy' ideas. It covers the LISP
machine implementation, LISP as a system language, input/output, representation
of data, representation of programs, control structures, storage organization,
garbage collection, the editor, and the current status of the work.

This report describes research done at the Artificial Intelligence Laboratory of
the Massachusetts Institute of Technology. Support for the laboratory’'s
artificial intelligence research is provided in part by the Advanced Research
Projects Agency of the Department of Defense under Office of Naval Research
contract N00014-75-C-0643.

LISP Machine , 2 | Progress Report

INTRODUCTION:

The LISP Machine is a new computer system designed to provide a high
performance and economical implementation of the LISP programming language.-

‘ The LISP language is used widely in the artificial intelligence research
community, and is rapidly gaining adherents outside this group. Most serious
LISP usage has historically been on the DEC PDP-10 computer, and both "major®
implementations (InterLisp at BBN/XEROX and Maclisp at M.I.T.) were originally
done on the PDP-10. Our personal experience has largely been with the Maclisp
dialect of LISP, which was originally written in 1965.

Over the years, dramatic changes have taken place in the Maclisp
implementation. At a certain point, however, modification and reimplementation
of a language on a given machine can no longer efficiently gloss over basic
problems in the architecture of the computer system. We, and many others,
believe this is now the case on the PDP-10 and similar time-shared computer
systems. '

Time sharing was introduced when it became apparent that computers are
. easier to use in an interactive fashion than in a batch system, and that during
an interactive session a user typically uses only a small fraction of the
processor and memory available; often during much of the time his process is
idle or waiting, and so the computer can bé multiplexed among many users while
giving each the impression that he is on his own machine.

' However, in the Lisp community there has been a strong trend towards
programs which are very highly interactive, very large, and use a good deal of
computer time; such programs include advanced editors and debuggers, the MACSYMA
system, and various programinq assistants. When running programs such as these,
which spend very significant amounts of time supporting user interactions, time
sharing systems such as the PDP-10 run into increased difficulties. Not only is
the processor incapable of providing either reasonable throughput or adequate
response time for a reasonable number of users, but the competition for main
memory results in large amounts of time being spent swapping pages in and out (a
condition known as "thrashing®). Larger and larger processors and memory, and
more and more complex operating systems, are required, with more than
proportionally higher cost, and still the competition for memory remains a
bottleneck. The programs are sufficiently large, and the interactions
sufficlently frequent, that the usual time-sharing strategy of swapping the
program out of memory while waiting for the user to interact, then swapping it
back in when the user types something, cannot be successful because the swapping

LISP Machine 3 Progress Report

cannot happen fast enough, .

The Lisp Machine is a personal computer. Personal computing means that
the processor and main memory are not time-division multiplexed, instead each
person gets his own. The personal computation system consists of a pool of
processors, each with its own main memory, and its own disk for swapping. When a
user logs in, he is assigned a processor, and he has exclusive use of it for the
duration of the session. When he logs out, the processor is returned ’to the
pool, for the next person to use. This way, there is no competition from other
users for mémory; the pages the user is frequently referring to remain in core,
and so swapping overhead is considerably reduced. Thus the Lisp Machine solves a
basic problem of time sharing Lisp systems.

The user also gets a much higher degree of service from a Lisp machine
than from a timesharing system, because he can use the full throughput capacity
of the processor and the disk. Although these are quite inexpensive compared to
those used in PDP-10 timesharing systems, they are comparable in speed. In fact,
since disk access times are mainly limited by physical considerations, it often
turns out that the disk used in a personal computer system is less expensive
simply because of its smailer size, and has fully comparable throughput
charactistics to the larger disk used by a timesharing system.

In a single-user machine, there is no penalty for interactiveness, since
there are no competing users to steal a program's memory while it is waiting for
its user to type. Thus the Lisp machine system, unlike time sharing systems,
encourages highly interactive programs. It puts service to the user entirely
.ahead of efficiency considerations

Another problem with the PDP-10 Lisp implementations is the small address
space of the PDP-10 processor. Many Lisp systems, such as MACSYMA and %oods's
LUNAR program, have difficulty running in an 18-bit address space. This problem
is further compounded by the inefficiency of the information coding of compiled
Lisp code; compilers for the PDP-10 produce only a limited subset of the large
instruction set made available by the hardware, and usually make inefficient use
of the addressing modes and fields provided. It is possible to design much more
compact instruction sets for Lisp code. Future programs are likely to be quite a
bit bigger; intelligent systems with natural language front ends may well be
five or ten times the size of a PDP-10 address space. -

The Lisp Machine has a 24 bit virtual address space and a compact
instruction set, described later in this paper. Thus much larger programs may be
used, without running into address space limitations. Since the instruction set
is designed specifically for the Lisp language, the compiler is much simpler than

LISP Machine 4 Progress Report

"the PDP-10 compiler, providing faster and more reliable compilation.

The Lisp machine's compact size and simple hardware construction are
likely to make it more reliable than other machines, such as the PDP-10; the
prototype machine has had almost no hardware failures.

Much of the inspiration for the Lisp Machine project comes from the
pioneering research into personal computing and display-oriented systems done by
Xerox's Palo Alto Research Center.

THE LISP MACHINE IMPLEMENTATION:

Each logged in user of the Lisp Machine system has a processor, a memory,
a keyboard, a display, and a means of getting to the shared resources.
Terminals, of course, are placed in offices and various rooms; ideally there
would be one in every office. The processors, however, are all kept off in a
machine room. Since they may need special environmental conditions, and often
make noise and take up space, they are not welcome office companions, The number
of processors is unrelated to the number of terminals, and may be smaller
depending on economic circumstance.

The processor is implemented with a microprogrammed architecture. It is
called the CONS Machine, designed by Tom Knight [CONS].; CONS is a very
unspecialized machine with 32-bit data paths and 24-bit address paths. It has a
large microcode memory (16K of 48-bit words) to accommodate the large amount of
specialized microcode to support Lisp. It has hardware for extracting and
depositing arbitrary fields in 'arbitrary registers, which substitutes for the
speciauzod' data paths found in conventional microprocessors. It does not have a
cache, but does have a "pdl buffer® (a memory with hardware push-down pointer)
which acts as a kind of cache for the stack, which is where most of the memory
references go in Lisp. '

Using a very unspeciniized processor was found to be a good idea for
several reasons. For one thing, it is faster, less expensive, and easier to
debug. For another thing, it is much easier to microprogram, which allows us to
write and debug the large amounts of microcode required to support a
sophisticated Lisp system with high efficiency. It also makes feasible a
compiler which generates microcode, allowing users to microcompile some of their

LISP Machine . 5» Progress Report

functions to increase performance.

The memory is typically 64k of core or semiconductor memory, and is
expandable to about 1 million words. The full virtual address space is stored on
a 16 million word disk and paged into core (or semiconductor) memory as re:quirod.‘
A given virtual address is always located at the same place on the disk. The
access time of the core memory is about 1 microsecond, and of the disk about 25
milliseconds., Additionally, there is an internal 1K buffer used for holding the
top of the stack (the PDL buffer) with a 200ns access time (see [CONS] for more
detail).

The display is a raster scan TV driven by a 1/4 Mbit memory, similar to
the TV display system now in use on the Artificial Intelligence Lab's PDP-10.
Characters are drawn entirely by software, and so any type or size of font can be
used, including variable width and several styles at the same time., One of the
advantages of having an unspecialized microinstruction processor such as CONS is
that one can implement a flexible terminal in software for less cost than an
inflexible, hardwired conventional terminal. The TV system is easily expanded to
support gray scale, high resolution, and color. This system has been shown to be

~very useful for both character display and graphics.

The keyboard is the same type as is used on the Artificial Intelligence
Lab TV display system; it has several levels of control/shifting to facilitate
easy single-keystroke commands to programs such as the editor. The‘keybaard is
also equipped with a speaker for beeping, and a pointing device, usually a mouse
[MOUSE].

The shared resources are accessed through a 10 million bit/sec packet
switching network with completely distributed control. The shared resources are
to include a highly reliable file system implemented on a dedicated computer
equipped with state of the art disks and tapes, specialized I/0 devices such as
high-quality hardcopy output, special-purpose processors, and connections to the
outside world (e.g. other computers in the building, and the ARPANET).

As in a time sharing system, the file system is shared between users.
Time sharing has pointed up many advantages of a shared file system, such as
common access to files, easy inter-user communication, centralized program
maintenance, centralized backup, etc. There are no personal disk packs to be
lost, dropped by users who are not competent as operators, or to be filled with
copies of old, superseded software. '

LISP Machine 6 " Progress Report

The complete LISP Machine, including processor, memory, disk, terminal,
" and connection to the shared file system, is packaged in a single 19* logic
cabinet, except for the disk which is free-standing. The complete machine would
be likely to cost about $80,000 if commercially produced. Since this is a
complete, fully-capable system (for one user at a time), it can substantially
lower the cost of entry by new organizations into serious Artificial Intelligence
work.

LISP AS A SYSTEM LANGUAGE:

In the software of the Lisp Machine system, code is written in only two
languages (or "levels"): Lisp, and CONS machine microcode. There is never any
reason to hand-code macrocode, since it corresponds so closely with Lisp;
anything one could write in macrocode could be more easily and clearly written in
the corresponding Lisp. The READ, EVAL, and PRINT functions are completely
written in Lisp, including their subfunctions (except that APPLY of compiled
functions is in micro-code). This illustrates the ability to write "system"
functions in Lisp.

In order to allow various low-level operations to be perfomed by Lisp
code, a set of "sub-primitive® functions exist. Their names by convention begin
with a "%*, so as to point out that they are capable of performing unLispy
operations which may result in meaningless pointers. These functions provide
*machine level" capabilities, such as performing byte-deposits into memory. The
compiler converts calls to these sub-primitives into single instructions rather
than subroutine calls. Thus Lisp-coded low-level operations are just as
efficient as they would be in machine language on a conventional machine.

In addition to sub-primitives, the ability to do system programming in
Lisp depends on the Lisp machine's augmented array feature. There are several
types of arrays, one of which is used to implement character strings. This makes
it easy and efficlent to manipulate strings either as a whole or character by
character. An array can have a "leader", which is a little vector of extra
information tacked on. The leader always contains Lisp objects while the array
often contains characters or small packed numbers. The l_eadef facilititates the
" use of arrays to represent various kinds of abstract object types. The presence
in the language of both arrays and lists gives the programmer more control over
data representation.

LISP Machine 7 Progress Report

A traditional weakness of Lisp has been that functions have to take a
fixed number of arguments. Various implementations have added kludges to allow
variable numbers of arguments; these, however, tend either to slow down the
function-calling mechanism, even when the feature is not used, or to force
peculiar programming styles. Lisp-machine Lisp allows functions to have optional
 parameters with automatic user-controlled defaulting to an arbitrary expression
in the case where a corresponding argument is not supplied. It is also possible
to have a “rest" parameter, which is bound to a list of the arguments not bound
to previous parameters. This is frequently important to simplify system programs
and their interfaces.

A similar problem with Lisp function calling occurs when one wants t;o
return more than one value. Traditionally one either returns a list or stores
some of the values into global variables. In Lisp machine Lisp, there is a
multiple-value-return feature which allows multiple values to be returned without
going through either of the above subterfuges.

Lisp's functional orientation and encouragement of a programming style of
small modules and uniform data structuring is appropriate for good systém
programming. The Lisp machine's micro-coded subroutine calling mechanism allows
it to also be efficient. '

Paging 1s handled entirely by the microcode, and is considered to be at a
very low level (lower level than any kind of scheduiinq). Making the guts of the
virtual memory invisible to all Lisp code and most nicrocode helps keep things
simple. It would not be practical in a time sharing system, but in a one-user
machine it is reasonable to put paging at the lowest level and forget about it,
accepting the fact that sometimes the machine will be tied up waiting for the
disk and unable to run any Lisp code.

Micro-coded functions can be called by Lisp code by the usual Lisp
calling mechanism, and provision is made for micro-coded functions to call
macro-coded functions. Thus there is a uniform calling convention throughout the
entire system. This has the effect that uniform subroutine packages can be
written, (for example the TV package, or the EDITOR package) which can be -called
by any other program. (A similar capability is provided by Multics, but ‘'not by
ITS nor TENEX).

’ Many of the capabilities which system programmers write over and over
again in an ad hoc way are built into the Lisp language, and are sufficiently
good in their Lisp-provided form that it usually is not necessary to waste time
worrying about how to implement better ones. These include symbol tables,
storage management, both fixed and flexible data structures, function-calling,

LISP Machine . , 8 Progress Report

and an interactive user interface.

Our experience has been that we can design, code, and debug new features
much faster in Lisp-machine programs than in PDP-10 programs, whether they are
written in assembler language or in traditional "higher-level® languages.

INPUT/OUTPUT:

Low level:

The Lisp Machine processor (CONS) has two busses used for accessing
external devices: the "XBUS", and the "UNIBUS". The XBUS is 32 bits wide, and
is used for the disk and for main memory. The UNIBUS is a standard PDP-11 16-bit
bus, used for various I/0 devices. It allows commonly available PDP-11
compatible devices to be easily attached to the Lisp Machine.

Input/output software is essentially all written in Lisp; the only
functions provided by the microcode are XUNIBUS-READ and %UNIBUS-WRITE, which
know the offset of the UNIBUS in physical address space, and refer to the
corresponding location. The only real reason to have these in microcode is to
avoid a timing error which can happen with some devices which have side effects
when read. It is Lisp programs, not special microcode, which know the location
and function of the registers in the keyboard, mouse, TV, and cable network
interfaces. This makes the low-level 1/0 code just as flexible and easy to
modify as the high level code.

Ther_e are also a couple of microcoded routines which speed up the drawing
of characters in the TV memory. These do not do anything which could not be done
in Lisp, but they are carefully hand-coded in microcode because we draw an awful -
lot of characters.

High level:

‘ Hahy programs perform simple stream-oriented (sequential characters) 1/0.
In order that these programs be kept device-independent, there is a standard
definition of a "stream": a stream is a functional object which takes one
required argument and one optional argument. The first argument is a symbol
which is a "command® to the stream, such as "TYI", which means "input one
character, and return it" and "TYO", which means “"output one character”. The
character argument to the TYO command is passed in the second argument to the
stream. There are several other standard optional stream operations, for several

LISP Machine 9 Progress Report

purposes including higher efficiency. In addition particular devices can define
additional operations for their own purposes.

‘ Streams can be used for I/0 to files in the file system, strings inside

the Lisp Machine, the terminal, editor buffers, or anything else which is
naturally represented as sequential characters.
. For I1/0 which is of necessity device-dependent, such as the sophisticated
operations performed on the TV by the editor, which include multiple blinkers and
random access to the screen, special packages of Lisp functions are provided, and
there is no attempt to be device-independent. (See documentation on the _TV and
network packages). _

In general, we feel no regret at abandoning device independence in
interactive programs which know they are using the display. The advantages to be
gained from sophisticated high-bandwidth display-based interaction far outweigh
the advantages of device-independence. This does mean that the Lisp machine 1is
really not usable from other than its own terminal; in particular, it cannot be
used remotely over the ARPANET.

REPRESENTATION OF DATA:

A Lisp object in Maclisp or Interlisp is represented as an 18 bit
pointer, and the datatype of the object is determined from the pointer; each
page of memory can only contain objects of a single type. In the Lisp machine,
Lisp objects are represented by a 5 bit datatype field, and a 24 bit pointer.
(The Lisp machine virtual address space is 24 bits). There are a variety of
datatypes (most of the 32 possible codes are now in use), which have symbolic
names such as DTP-LIST, DTP-SYMBOL, DTP-FIXNUM, etc.

The Lisp machine data types are designed according to these criteria:
There should be a wide variety of useful and flexible data types. Some-effort
should be made to increase the bit-efficiency of data representation, in order to
improve performance. The programmer should be able to exercise control over the
storage and representation of data, if he wishes. It must always be possible to
take an anonymous piece of data and discover its type; this facilitates storage
management. There should be as much type-checking and error-checking as feasible
in the system. ‘

Symbols are stored as four consecutive words, each of which contains one
object. The words are termed the PRINT NAME cell, the VALUE cell, the FUNCTION

LISP Machine 10 Progress Report

cell, and the PROPERTY LIST cell. The PRINT NAME cell holds a string object,
which is the printed representation of the symbol. The PROPERTY LIST cell, of
course, contains. the property list, and the VALUE CELL contains the current value
of the symbol (it 1s a shallow-binding system). The FUNCTION cell replaces the
task of the EXPR, SUBR, FEXPR, MACRO, etc. properties in Maclisp. When a form
suéh as (FOO ARGl ARG2) is evaluated, the object in FOO's function cell is
applied to the arguments. A symbol objlect has datatype DTP-SYMBOL, and the
pointer is the address of thaese four words. .

Storage of 1list structure is somewhat more complicated. Normally a "list
object® has datatype DTP-LIST, and the pointer is the address of a two word
block; the first word contains the CAR, and the second the CDR of the node.

However, note that since a Lisp object is only 29 bits (24 bits of
pointer and 5 bits of data-type), there are three remaining bits in each word.
Two of these bits are termed the CDR-CODE field, and are used to compress the
storage requirement of list structure. The four possible values of the CDR-CODE
field are given the symbolic names CDR-NORMAL, CDR-ERROR, CDR-NEXT, and CDR-NIL.
CDR-NORMAL indicates the two-word block described above. CDR-NEXT and CDR-NIL
are used to represent a list as a vector, taking only half as much storage as
- usual; only the CARs are stored. The CDR of each location is simply the next
location, except for the last, whose CDR is NIL. The primitive functions which .
create lists (LIST, APPEND, etc.) create these compressed lists. If RPLACD is
done on such a list, it is automatically changed back to the conventional
two-word représentation. in a transparent way.

The idea is that in the first word of a list node the CAR is represented
by 29 bits, and the CDR is represented by 2 bits. It is a compressed pointer
which can take on only 3 legal values: to the symbol NIL, to the next location
after the one it appears in, or indirect through the next location. CDR-ERROR is
used for words whose address should not ever be in a list object; in a "full
node®, the first word is CDR-NORMAL, and the second is CDR-ERROR. It is
important to note that the cdr-code portion of a word is used in a differsnt way
from the data-type and pointer portion; it is a property of the memory cell
itself, not of the cell's contents. A "list object® which is represented in
compressed form still has data type DTP-LIST, but the cdr code of the word
addressed by its pointer field is CDR-NEXT or CDR-NIL rather than CDR-NORMAL .

Number objects may have any of three datatypes. "FIXNUMs", which are
24-bit signed integers, are represented by objects of datatype DTP-FIX, whose
*pointer® parts are actually the value of the number. Thus fixnums, unlike all
other objects, do not require any "CONS"ed storage for their representation.

LISP Machine 11 Progress Report

This speeds up arithmetic programs when the numbers they work with are reasonably
small. Other types of numbers, such as floating point, BIGNUMs (integers of
arbitrarily high precision), complex numbers, and so on, are represer{ted by
objects of datatype DTP-EXTENDED-NUMBER which point to a block of storage
containing the details of the number. The microcode automatically converts
- between the different number representations as necessary, without the need for
explicit declarations on the programmer's part.

There is also a datatype DTP-PDL-NUMBER, which is almost the same as

DTP-EXTENDED-NUMBER. The difference is that pdl numbers can only exist in the
pdl buffer (a memory internal to the machine which holds the most recent stack
frames), and their blocks of storage are allocated in a 'special area. Whenever
an object is stored into memory, if it is a pdl number its block of storage is
copied, and an ordinary extended number is substituted, The idea of this is to
prevent intermediate numeric results from using up storage and causing increased
need for garbage collection. When the special pdl number area becomes full, all
pdl numbers can quickly be found by scanning the pdl buffer. Once they have been
copied out into 6rdinary numbers, the special area is guaranteed empty and can be
reclaimed, with no need to garbage collect nor to look at other parts of memory.
Note that these are not at all the same as pdl numbers in Maclisp; however, they
both exist for the same reason.

The most important other data type is the array. Some problems are best
attacked using data structures organized in the list-processing style of Lisp,
and some are best attacked using the array-processing style of Fortran. The
complete programming system needs both. As mentioned above, Lisp Machine arrays
are augmented beyond traditional Lisp arrays in several ways. First of all, we
have the ordinary arrays of Lisp objects, with one or more dimensions. Compact
storage of positive integers, which may represent characters or other non-numeric
entities, is afforded by arrays of 1-bit, 2-bit, 4-bit, 8-bit, or 16-bit
elements.

For stringi—processing, there are string-arrays, which are usually
one-dimensional and have 8-bit characters as elements. At the microcode level
Strings are treated the same as 8-bit arrays, however strings are treated
differently by READ‘. PRINT, EVAL, and many other system and user functions. For
example, they print' out as a sequence of characters enclosed in quotes. The
characters in a character string can be accessed and modified with the same
array-referencing functions as one uses for any other type of array. Unlike
‘arrays in other Lisp systéms, Lisp machine arrays usually have only a single word

LISP Machine 12 Progress Report

of overhead, so the character strings are quite storage-efficient. ‘

There are a number of specialized types of arrays which are used to
implement other data types, such as stack groups, internal system tables, and,
most importantly, the refresh memory of the TV display as a two-dimensional array
of bits. ' '

An important additional feature of Lisp machine arrays is called “array
leaders." A leader is a vector of Lisp objects, of user-specified size, which '
may be tacked on to an array. Leaders are a good place to remember miscellaneous
extra information associated with an array. Many data structures consist of a
combination of an array and a record (see below); the array contains a number of
objects all of the same conceptual type, while the record contains miscellaneous
items all of different conceptual types. By storing the record in the leader of
the array, the single conceptual data structure is represented by a single actual
object. Many data structures in Lisp-machine system programs work this way.

Another thing that leaders are used for is remembering the "current
length® of a partially-populated array. By convention, array leader element
number 0 is always used for this.

Many programs use data objects structured as “records"; that is, a
compound object consisting of a fixed number of named sub-objects. To facilitate
the use of records, the Lisp machine system includes a standard set of macros for
defining, creating, and accessing record structures. The user can choose whether
the actual representation is to be a Lisp list, an array, or an array-leader.
Because this is done with macros, which translate record operations into the
lower-level operations of basic Lisp, no other part of the system needs to know
about records.

Since the reader and printer are written in Lisp and user-modifiable,
this record-structure feature could easily be expanded into a full-fledged
user-defined data type facility by modifying read and print to support input and’
output of record types. '

Another data type is the "locative pointer.” This is an actual pointer
to a memory location, used by low-level system programs which need to deal with
the guts of data representation. Taking CAR or CDR of a locative gets the
contents of the pointed-to location, and RPLACA or RPLACD stores. It is possible
to LAMBDA-bind the location., Because of the tagged architecture and
highly-organized storage, it is possible to have a locative pointer into the
middle of almost anything without causing trouble with the garbage collector. '

LISP Machine 13 Progres; Report

REPRESENTATION OF PROGRAMS:

In the Lisp Machine there are three representations for programs.
Interpreted Lisp code is the slowest, but the easiest for programs to understand
and modify. It can be used for functions which are being debugged, for functions
which need to be understood by other functions, and for functions which are not
worth the bother of compiling. A few functions, notably EVAL, will not work
interpreted.

Compiled Lisp ("macrocode”) is the main representation for programs.
This consists of instructions in a somewhat conventional machine-language, whose
unusual features will be described below. Unlike the case in many other Lisp
systems, macrocode programs still have full checking for unbound variables, data
type errors, wrong number of arguments to a function, and so forth, so it is not
necessary to resort to interpreted code just to get extra checking to detect
bugs. Often, after typing in a function to the editor, one skips the
interpretation step and requests the editor to call the compiler on it, which
only takes a few seconds since the compiler is always in the machine and only has
to be paged in.

Compiled code on the Lisp Machine is stored inside objects called (for
historical reasons) Function Entry Frames (FEFs). For each function compiled,
one FEF is éreated, and an object of type DTP-FEF-POINTER is stored in the
function cell of the symbol which is the name of the function. A FEF consists of
some header information, a description of the arguments accepted by the function,
pointers to external Lisp objects needed by the function (such as constants and
special variables), and the macrocode which implements the function.

The third form of program representation is microcode. The system
includes a good deal of hand-coded microcode which executes the macrocode
:lnstfuctions. implements the data types and the function-calling mechanism,
maintains the paged virtual memory, does storage allocation and garbage
collection, and performs similar systemic functions. The primitive operations on
the basic data types, that is, CAR and CDR for lists, arithmetic for numbers,
reference and store for arrays, etc. are mplemented as microcode subroutines.
In addition, a number of commonly-used Lisp functions, for instance GET and ASSQ.
are hand-coded in microcode for speed.

In addition to this system-supplied microcode, there is a feature called
micro compilation. Because of the simplicity and generality of the CONS
microprocessor, it is feasible to write a compiler to compile user-written Lisp
functions directly into microcode, eliminating the overhead of fetching and

LISP Machine 14 | Progress Report

interpreting macroinstructions. This can be used to boost performance by
microcompiling the most critical routines of a program. Because it is done by a
compiler rather than a system programmer, this pe_rformance improvement 1is
avajilable to everyone. The amount of speedup to be expected depends on the
operations used by the program; simple low-level operations such as data
transmission, byte extraction, integer arithmetic, and simple branching can
expect to benefit the most. Function calling, and operations which already spend
most of their time in microcode, such as ASS5Q, will benefit the least. In the
best case one can achieve a factor of about 20, In the worst case, maybe no
speedup at all.

Since the amount of control memory is limited, only a small number of
microcompiled functions can be loaded in at one time. This means that programs
have to be characterized by spending most of their time in a small inner kernel
of functions in order to benefit from microcompilation; this is probably true of
most programs. There will be fairly hairy metering facilities for identifyinq
such critical functions. ’ '

We do not yet have a microcompiler, but a prototype of one was written
and heavily used as part of the Lisp machine simulator. It compiles for the
PDP-10 rather than CONS, but uses similar techniques and a similar interface to
the built-in microcode.

In all three forms of program, the flexibility of function calling is
augmented with generalized LAMBDA-lists. In order to provide a more general and
flexible scheme to replace EXPRs vs. FEXPRs vs. LEXPRs, a syntax borrowed from
Muddle and Conniver is used in LAMBDA lists. In the general case, there are an
arbitrary number of REQUIRED parameters, followed by an arbitrary number of
OPTIONAL parameters, possibly followed by one REST parameter. When a function is
APPLIED to its arguments, first of all the required formal parameters are paired
off with arguments; if there are fewer arguments than required parameters, an
error condition is caused. Then, any remaining arguments are paired off with the
optional parameters; if there are more optional parameters than arguments
remaining, then the rest of the optional parameters are initialized in a
user-specified manner. The REST parameter is bound to a list, possibly NIL, of
all arguments remaining after all OPTIONAL parameters are bound. To avoid.
CONSing, this list is actually stored on the pdl; this means that you have to be
careful how you use it, unfortunately. It is also possible to control which
arguments are evaluated and which are quoted.

Normally, such a complicated calling sequence would entail an

LISP Machine 15 Progress Report

unacceptable amount of overhead. Because this is all implemented by microcode,
and because the simple, common cases are speclal-cased, we can provide these
advanced features and still retain the efficiency needed in a practical system.

We will now discuss some of the issues in the design of the macrocode
instruction set. Each macroinstruction is 16 bits long; they are stored two per
word. The instructions work in a stack-oriented machine. The stack is formatted
into frames; each frame contains a bunch of arguments, a bunch of local variable
value slots, a push-down stack for intermediate results, and a header which gives
the function which owns the frame, links this frame to previous frames, remembers
the program counter and flags when this frame is not executing, and may contain
"additional information" used for certain esoteric purposes. Originally this was
intended to be a spaghetti stack, but the invention of closures and stack-groups
(see the control-structure 'section). combined with the extreme complexity of

spaghetti stacks, made us decide to use a simple linear stack. The current frame

is always held in the pdl buffer, so accesses to arguments and local variables do
not require memory references, and do not have to make checks related to the
garbage collector, which improves performance. Usually several other frames will
also be in the pdl buffer. :

The macro instruction set is bit-compact. The stack organization and
Lisp's division of programs into small, separate functions means that address
fields can be small. The use of tagged data types, powerful generic operations,
and easily-called microcoded functions makes a single 16-bit macro instruction do
~ the work of several instructions on a conventional machine such as a PDP-10.

The primitive operations which are the instructions which the compiler
generates are higher-level than the instructions of a conventional machine. They
all do data type checks; this provides more run-time error checking than in
Maclisp, which increases reliability. But it also eliminates much of the need to
make declarations in order to get efficient code. Since a data type check is
‘ being made, the "primitive®” operations can dynamically decide which specific
routine is to be called. This means that they are all "generic", that is, they
work for all data types where they make sense.

The operations which are regarded as most important, and hence are
easiest for macrocode to do, are data transmission, function calling, conditional
testing, and simple operations on primitive types, that is, CAR, CDR, CADR, CDDR,
RPLACA, and RPLACD, plus the usual arithmetic operations and comparisons. More
complex operations are generally done by "miscellaneous" instructions, which call
microcoded subroutines, passing arguments on the temporary-results stack.

There are three main kinds of addressing in macrocode. First, there is

LISP Machine 16 Progress Report

implicit addressing of the top of the stack. This is the usual way that operands
get from one instruction to the next.

Second, there is the source field (this is sometimes used to store
results, but I will call it a source anyway). The source can address any of the
following: Up to 64‘arguments to the current function. Up to 64 local variables
of the current function. The last result, popped off the stack, One of several
conmonly-used constants (e.g. NIL) stored in a system-wide constants area. A
constant stored in the FEF of this function. A value cell or a function cell of
a symbol, referenced by means of an invisible pointer in the FEF; this mode is
used to reference special variables and to call other functions.

Third, there is the destination field, which specifies what to do with
the result of the instruction. The possibilities are: Ignore it, except set the
‘indicators used by conditional branches. Push it on the stack. Pass it as an
argument. Return it as the value of this function. Cons up a list.

There are five types of macroinstructions, which will be described.
First, there are the data transmission instructions, which take the source and
MOVE it to the 'destination, optionally taking CAR, CDR, CAAR, CADR, CDAR, or CDDR
in the process. Because of the powerful operations that can be specified in the .
destination, these instructions also serve as argument-passing, function-exiting,
and list-making instructions.

Next we have the function calling instructions. The simpler of the two
is CALLO, call with no arguments. It calls the function indicated by its source,
and when that function returns, the result is stored in the destination. The
microcode takes care of identifying what type of function is being called,
invoking it in the appropriate way, and saving the state of the current function.
It traps to the interpreter if the called function is not compiled.

The more complex function call occurs when there are arguments to be
passed. The way it works is as follows. First, a CALL instruction is executed.
The source operand is the function to be called. The beginnings of a new stack
frame are constructed at the end of the current frame, and the functiosi to be
called is remembered. The destination of the CALL instruction specifies where
the result of the function will be placed, and it is saved for later use when the
function returns. Next, instructions are executed to compute the arguments and
store them into the destination NEXT-ARGUMENT. This causes them to be added to
the new stack frame. When the last argument is computed, it is stored into the
destination LAST-ARGUMENT, which stores it in the new stack frame and then
activates the call. The function to be called is analyzed, and the arguments are
bound to the formal parameters (usually the arguments are already in the correct

LISP Machine ' 17 Progress Report

slots of the new stack frame). Because the computation of the arguments is
introduced by a CALL instruction, it is easy to find out where the arguments are
and how many there are. The new stack frame becomes current and that function
begins execution. When it returns, the saved destination of the CALL instruction
is retrieved and the result is stored. Note that by using a destination of
NEXT-ARGUMENT or LAST-ARGUMENT function calls may be nested. By using a
destination of RETURN the result of one function may become the result of its.
caller, '

The third class of macro instructions consists of a number of common
operations on primitive data types. These instructions do not have an explicit
destination, in order to save bits, but implicitly push their result (if any)
onto the stack. This sometimes necessitates the generation of an extra MOVE
instruction to put the result where it was really wanted. These instructions
include: Operations to store results from the pdl into the "source”. The basic
arithmetic and bitwise boolean operations. Comparison operations, including EQ
and arithmetic comparison, which set the indicators for use by conditional
branches. Instructions which set the "source® operand to NIL or zero. Iteration
instructions which change the "source" operand using CDR, CDDR, 1+, or 1- (add or
subtract one). Binding instructions which lambda-bind the "source" operand, then
optionally set it to NIL or to a value popped off the stack. And, finally, an .
instruction to push its effective address on the stack, as a locative pointer.

The fourth class of macro instructions are the branches, which serve
mainly for compiling COND. Branches contain a self-relative address which is
transferred to if a specified condition is satisfied. There are two indicators,
which tell if the last result was NIL, and if it was an atom, and the state of
" these indicators can be branched on; there is also an unconditional branch, of
course. For branches more than 256 half-words away, there is a double-length
long-branch instruction. An interesting fact is that there are not really any
indicators; it turns out to be faster just to save the last result in its
entirety, and compare it against NIL or whatever when that is needed by a branch
instruction. It only has to be saved from one instruction to the immediately
following one.

The fifth class of macro instructions is the "miscellaneous function."
This selects one of 512 microcoded functions to be called, with arguments taken
from results previously pushed on the 'stack. A destination is specified to
receive the result of the function. In addition to commonly-used functions such
as GET, CONS, CDDDDR, REMAINDER, and ASSQ, miscellaneous functions include
sub-primitives (discussed above), and instructions which are not as commonly used

LISP Machine 18 . Progress Report

as the first four classes, including operations such as array-accessing, consing
up lists, un-lambda-binding, special funny types of function calling, etc.

The way consing-up of lists works is that one first does a miscellaneous
function saying "make a list N long". One then executes N instructions with
destination NEXT-LIST to supply the elements of the list. After the Nth such
instruction, the list-object magically appears on the top of the stack. This
saves having to make a call to the function LIST with a variable number of
arguments. '

Another type of "instruction set® used with macrocode is the Argument
Description List, which is executed by a different microcoded interpreter at the
time a function is entered. The ADL contains one entry for each argument which
the function expects to be passed, and for each auxiliary variable. It contains
all relevant information about the argument: whether it is required, optional,
or rest, how to initialize it if it is not provided, whether it is local or
special, datatype checking information, and so on. Sometimes the ADL can be
dispensed with if the "fast argument option® can be used instead; this helps
save time and memory for small, simple functions. The fast-argument option is
used when the optional arguments and local variables are all to be initialized to
NIL, there are not too many of them, there is no data-type checking, and the
usage of special variables is not too complicated. The selection of the
fast4argumeht option, if appropriate, is automaticnlly made by the system, so the
user need not be concerned with it. The details can be found in the FORMAT
document. -

CONTROL STRUCTURES:

Function calling. Function calling is, of course, the basic main control
structure in Lisp. As mentioned above, Lisp machine function calling is made
fast through the use of microcode and augmented with optional arguments, rest
arguments, multiple return values, and optional type-checking of arguments.

CATCH and THROW. CATCH and THROW are a Maclisp control structure which
will be mentioned here since they may be new to some people. CATCH is a way of
marking a particular point in the stack of recursive function invocations.” THROW
causes control to be unwound to the matching CATCH, automatically returning
through the intervening function calls. They are used mainly for handling errors
and unusual conditions. They are also useful for getting out of a hairy piece of

LISP Machine 19 Progress Report

code when it has discovered what value it wants to return; this applies
particularly to nested loops. ,

Closures. The LISP machine contains a data-type called "closure® which
is used to implement "full funarging®. By turning a function into a closure, it
becomes possible to pass it as an argument with no worry about naming conflicts,
and to return it as a value with exactly the minimum necessary amount of binding
environment being retained, solving the classical "funarg problem". Closures are
implemented in such a way that when they are not used the highly spoedé ‘and
storage-efficient shallow binding variable scheme operates at full efficiency,
and when they are used things are slowed down only slightly. The way one creates
a closure is with a form such as:

{ CLOSURE '(FO0O-PARAM F0O-STATE)
(FUNCTION FOO-BAR))

The function could also be written directly in place as a
LAMBDA-expression, instead of referring to the externally defined FOO-BAR. The
variables FOO-PARAM and FOO-STATE are those variables which are used free by
FOO-BAR and are intended to be "closed®. ‘That is, these are the variables whose
binding environment is to be fixed to that in effect at the time the closure is
created. The explicit declaration of which variables are to be closed allows the
implementution to have high efficiency, since it does not need to save the whole
variable-binding environment, almost all of which 1is useless. It also allows the
programmer to explicitly choose for each variable whether it is to be dynamically
bound (at the point of call) or statically bound (at the point of creation of the
closure), a choice which is not conveniently available in other languages. In
addition the program is clearer because the intended effect of the closure is
made manifest by listing the variables to be affected.

Here 1is an example, in which the closure feature is used to solve a
problem presented in "LAMBDA - The Ultimate Imperative®™ [LAMBDA]. The problem is
to write a function called GENERATE-SQRT-OF-GIVEN-EXTRA-TOLERANCE, which is to
take one argument, which is the factor by which the tolerance is to be increased,
and return a function which takes sqdaro roots with that much more tolerance than
usual, whatever "“usual” is later defined to be. You are given a function SQRT
which makes a free reference to EPSILON, which is the tolerance it demands of the
trial solution. The reason this example presents difficulties to various
languages is that the variable EPSILON must be bound at the point of call (i.e.

LISP Machine 20 Progress Report

dynamically scoped), while the variable FACTOR must be bound at the point of
creation of the function (i.e. lexically scoped). Thus the programmer must have
explicit control over how the variables are bound.

(DEFUN GENERATE-SQRT-OF-GIVEN-EXTRA-TOLERANCE (FACTOR)
(CLOSURE ‘' (FACTOR)
(FUNCTION
(LAMBDA (X)
((LAMBDA (EPSILON) (SQRT X))
(* EPSILON FACTOR))))))

The function, when called, rebinds EPSILON to FACTOR times its current value,
then calls SQRT. The value of FACTOR used is that in effect when the closure was
created, i.e. the argument to GENERATE-SQRT-OF-GIVEN-EXTRA-TOLERANCE.

The way closures are implemented is as follows. For each variable to be
closed an “external value cell™ is created, which is a CONSed up free-storage
cell which contains the variable's value when it is at that level of binding.
Because this cell is CONSed up, it can be retained as long as necessary, Jjust
like dny other data, and unlike cells in a stack. Because it is a cell, if the
variable is SETQed' the new value is seen by all the closures that should see it.
The association between the symbol which is the name of the variable and this
value cell is of the shallow-binding type, for efficiency; an invisible pointer
(see the storage organization section) in the normal (internal) value cell
supplies the connection, eliminating the overhead of searching stack frames or
a-lists. If at the time the closure is created an external value cell already
exists for a variable, that one is used instead of creating a new one. Thus all
closures at the same "level of binding" use the same value cell, which is the
desired semantics.

The CLOSURE function returns an object of type DTP-CLOSURE, which
contains the function to be called and, for each variable closed over, locative
pointers to its internal and external value cells. '

When a closure is invoked as a function, the variables mentioned in the
closure are bound to invisible pointers to their external value cells; this puts
these variables into the proper binding environment. The function contained in
the closure is then invoked in the normal way. When the variables happen to be
referred to, the invisible pointers are automatically followed to the external
value cells. If one of the closed variables is then bound by some other

LISP Machine 21 Progress . Report

function, the external value cell bointer is saved away on the binding stack,
like any saved variable value, and the variable reverts to normal nonclosed
status. When the closed function returns, the bindings of the closed variables
are restored just like any other variables bound by the function.

_ Note the economy of mechanism. Almost all of the system is completely
unaffected by and unaware of the existence of closures; the invisible pointer
vmechanism takes care of things. The retainable binding environments are
allocated through the standard CONS operation. The switching of variables
between normal and "closed" status is done through the standard binding
operation. The operations used by a closed function to access the closed
variables are the same as those used to access ordinary variables; closures are
called in the same way as ordinary functions. Closures work just as well in the
interpreter as in the compiler. An important thing to note is the minimality of
CONSing in closures. When a closure is created, some CONSing is done; external
value cells and the closure-object itself must be created, but there is no extra
*overhead®. When a closure is called, no CONSing happens.

One thing to note is that in the compiler closed variables have to be
declared "special". This is a general feature of the Maclisp and Lisp machine
_compilers, that by default variables are local, which means that they are
lexically bound, only available to the function in which they are bound, and
implemented not with atomic symbols, but simply as slots in the stack. Variables
that are declared special are implemented with shallow-bound atomic symbeols,
identical to variables in the interpreter, and have available either dynamic
binding or closure bindlng. They are somewhat less efficient since it takes two
memory references to access them and several to bind them. '

Stack groups. The stack group is a type of Lisp object useful for
implementation of certain advanced control structures such as coroutines,
asynchronous processes, and generators. A stack group is similar to a process
(or fork or job or task or control-point) in a time-sharing system; it contains
such state information as the "regular" and "special” (binding) PDLs and various
internal registers. At all times there is one stack group running on the
machine.

Control may be passed between stack groups in several ways (not all of
which exist yet on our prototype machine). A stack-group may be called like a
function; when it wants to return it can do a %STACK-GROUP-RETURN which is
different from an ordinary function return in that the state of the stack group
remains unchanged; the next time it is called it picks up from where it left

LISP Machine . 22 ~ Progress Report

off. This is good for generator-like applications; each time
%STACK-GROUP-RETURN is done, a value is emitted from the generator, and as a
side-effect execution is suspended until the next time the generator is called.
%STACK-GROUP-RETURN is analogous to the ADIEU construct in CONNIVER. '

Control can simply be passed explicitly from one stack group to another.
coroutine-style. Alternatively, there can be a scheduler stack-group which
invokes other stack groups when their requested scheduling conditions are
satisfied. ‘

Interrupts cause control of the machine to be transferred to an
interrupt-handler stack group. Essentially this is a forced stack group call
like those calls described above. Similarly, when the microcode detects an error
the current stack group is suspended and control is passed to an error-handling
stack group. The state of the stack group that got the error is left exactly as
it was when the error occurred, undisturbed by any error-handling operations.
This facilitates error analysis and recovery.

When the machine is started, an "initial" stack group' becomes the current
stack group, and is forced to call the first function of Lisp.

Note that the same scheduler-driven stack-group switching mechanism can
be used both for user programs which want to do parallel computations, and for
system programming purposes such as the handling of network servers and
peripheral handlers.

Each stack group has a call-state and a calling-stack-group variable,
which are used in maintaining the relations between stack groups. A stack group
also has some option flags controlling whether the system tries to keep different
stack groups' binding environments distinct by undoing the special variable
bindings of the stack group being left and redoing the bindings of the stack
group being entered.

Stack groups are created with the function MAKE-STACK-GROUP, which takes
one main argument, the "name" of the stack group. This is used only for
debugging, and can be any mnemonic symbol. It returns the stack group, i.e., a
Lisp object with data type DTP-STACK-GROUP. Optionally the sizes of the pdls may
be specified.

The function STACK-GROUP-PRESET is used to initialize the state of a
stack group: the first argument is the stack group, the second is a function to
be called when the stack group is invoked, and the rest are arguments to that
function. Both PDLs are made om'pty. The stack group is set to the
AWAITING-INITIAL-CALL state. When it is activated, the specified function will
find that it has been called with the specified arguments. If it should return

LISP Machine 23 Progress Report

in the normal way, (i.e. the stack group "returns off the top", the stack group
will enter a "used up" state and control will revert to the calling stack group.
Normally, the specified function will use XSTACK-GROUP-RETURN several times;
otherwise it might as well have been called directly rather than in a stack
group.

One important difference between stack groups and other means proposed to
implement similar features is that the stack droup scheme involves no loss of
efficiency in normal computation. In fact, the compiler, the interpreter, and
even the runtime function-calling mechanism are completely unaware of the
existance of stack groups.

STORAGE ORGANIZATION;:

Incremental Garbage Collection, The Lisp machine will use a real-time,
incremental, compacting garbage collector. Real-time means that CONS (or related
functions) never delay Lisp execution for more than a small, bounded amount of
time. ‘

‘ This is very important in a machine with a large address space, where a
traditional garbage collection could bring everything to a halt for several
minutes. The garbage collector is incremental, i.e. garbage collection is
interleaved with execution of the user's program; every time you call CONS the
garbage collection proceeds for a few steps. Copying can also be triggered by a
memory reference which fetches a pointer to data which has not yet been copied.
The garbage collector compactifies in order to improve the paging
characteristics. ‘

The basic algorithm is described in a paper by Henry Baker [GC]. We have
not implemented it yet, but design is proceeding and most of the necessary
changes to the microcode have already been made. It is much simpler than
previous methods of incremental garbage collection in that only one process is
needed; this avoids interlocking and synchronization problems, which are often
very difficult to debug.

Areas. Storage in the Lisp machine is divided into "areas.® Each area
contains related objects, of any type. Since unlike PDP-10 Lisps we do not
encode the data type in the address, we are free to use the address to encode the
area. Areas are intended to give the user control over the paging behavior of

LISP Machine 24 Progress Report

his program, among other things. By putting related data together, locality can
be greatly increased. Whenever a new object is created, for instance with CONS,
the area to be used can optionally be specified. There is a default Working
Storage area which collects those objects which the user has not chosen to
control explicitly.

Areas also give the user a handle to control the garbage collector. Some
areas can be declared to be "static", which means that they change slowly and the
garbage collector should not attempt to reclaim any space in them. This can
eliminate a lot of useless copying. All pointers out of a static area can be
collected into an "exit vector", eliminating any need for the garbage collector
to look at that area. As an important example, an English-language dictionary
can be kept inside the Lisp without adversely affecting the speed of garbage
collection. A "static® area can be explicitly garbage-collected at infrequent
intervals when it is believed that that might be worthwhile.

Each area can potentially have a different storage discipline, a
‘different paging algorithm, and even a different data representation. The
microcode will dispatch on an attribute of the area at the appropriate times.
The structure of the machine makes the performance cost of these features
negligible; information about areas is stored in extra bits in the memory
mapping hardware where it can be qdickly dispatched on by the microcode. These
dispatches usually have to be done anyway to make the garbage collector work, and
to implement invisible pointers.

Invisible Pointers. ' An invisible pointer is similar to an indirect
‘address word on a conventional computer except the indirection is specified in
the data instead of in the instruction. A reference to a memory location
containing an invisible pointer is automatically altered to use the location
pointed to by the invisible pointer. The term "invisible"™ refers to the fact
that the presence of such pointers is not visible to most of the system, since
they are handled by the lowest-level memory-referencing operations. The
invisible pointer feature does not slow anything down too much, because it is
part of the data type checking that is done anyway (this is one of the benefits
of a tagged architecture). A number of advanced features of the Lisp machine
depend upon invisible pointers for their efficient implementation.

Closures use invisible pointers to connect internal value cells to
external value cells. This allows the variable binding scheme to be altered from
normal shallow binding to allocated-value-cell shallow binding when closures are
being used, without altering the normal operation of the machine when closures

LISP Machine 25 Progress Report

are not being used. At the same time the slow-down when closures are used
amounts to only 2 microseconds per closed-variable reference, the time needed to
detect and follow the invisible pointer,

Invisible pointers are necessary to the operation of the cdr-coded
compressed list scheme. If an RPLACD is done to a compressed list, the list can
no longer be represented in the compressed form. It is necessary to allocate a
full 2-word cons node and use that in its place. But, it is also necessary to
preserve the identity (with respect to EQ) of the list. This 1s done by storing
an invisible pointer in the original location of the compressed list, pointing to
the uncompressed copy. Then the list is still represented by its original
location, preserving EQ-ness, but the CAR and CDR operations follow the invisible
pointér to the new location and find the proper car and cdr.

This is a special case of the more general use of invisible pointers for
*forwarding” references from an old representation of an object to a new one.
For instance, there is a function to increase the size of an array. If it cannot
do it in place, it makes a new copy and leaves behind an invisible pointer.

The exit-vector feature uses invisible pointers. One may set up an area
to have the property that all references from inside that area to objects in
other areas are collected into a single exit-vector. A location which would
normally contain such a reference instead contains an invisible pointer'to the
appropriate slot in the exit vector. Operations on this area all work as before,
except for a slight slow-down caused by the invisible pointer following. It is
also desirable to have automatic checking to prevent the creation of new outside
references; when an attempt is made to store an outside object into this area
execution can trap to a routine which creates a new exit vector entry if
necessary and stores an invisible pointer instead. The reason for exit vectors
is to speed up garbage collection by eliminating the need to swap in all of the
pages of the area in order to find and relocate all its references to outside
objects. ‘

The macrocode instruction set relies on invisible pointers in order to
access the value cells of "special" (non-local) variables and the function cells
of functions to be called.

Certain system variables stored in the microcode scratchpad memory are
~ made available to Lisp programs by linking the value cells of appropriateiy-named
Lisp symbols to the scratchpad memory locations with invisible pointers. This
makes it possible not only to read and write these variables, but also to
lambda-bind them. In a similar fashion, invisible pointers could be used to link
two symbols' value cells together, in the fashion of MicroPlanner but with much

LISP Machine 26 Progress Report

greater efficiency.

THE EDITOR:

The Lisp machine system includes an advanced real-time display oriented
editor, which is written completely in Lisp. The design of this editor drew
heavily on our experience with the EMACS editor (and its predecessors) on the
PDP-10, The high-speed display and fast response time of the Lisp machine are
crucial to the success of the editor. _

The TV display is used to show a section of the text buffer currently
'being edited. When the user types a normal printing character on the keyboard,
that character is inserted into his buffer, and the display of the buffer is
updated; you see the text as you type it in. When using an editor, most of the
user's time is spent in typing in text; therefore, this is made as easy as
possible. Editing operations other than the insertion of single characters are
invoked by control-keys, i.e. by depressing the CONTROL and/or META shift keys,
along with a single character. For example, the command to move the current
location for typein in the buffer (the "point") backward is Control-B (B is
mnemonic for Backward); the command to move to the next line is Control-N.
There are many more advanced commands, which know how to interpret the text as
words or as the printed representation of Lisp data structure; Meta-F moves
forward over an English word, and Control-Meta-F moves forward over a Lisp
expression (an atom or a list).

The real-time display-oriented type of editor is much easier to use than
traditional text editors, because you can always see exactly what you are- doing.
A new user can sit right down and type in text. However, this does not mean that
‘there can be no sophisticated commands and macros. Very powerful operations are
provided in the Lisp machine editor. Self-documentation features exist to allow
the user to ask what a particular key does before trying it, and to ask what keys
contain a given word in their description. Users can write additional commands,
in Lisp, and add them to the editor's command tables. '

The editor knows how much a line should be indented in a Lisp program in
order to reflect the level of syntactic nesting. When typing in Lisp code, one
uses the Linefeed key after typing in a line to move to the next line and
automatically indent it by the right amount. This serves the additional purpose
of instantly pointing out errors in numbers of parentheses.

LISP Machine 27 Progress Report

The editor can be used as a front end to the Lisp top level loop. This
provides what can be thought of as very sophisticated rubout processing. When
the user is satisfied that the form as typed is correct, he can activate it,
allowing Lisp to read in the form and evaluate it. When Lisp prints out the
result, it is inserted into the buffer at the right place. Simple commands are
available to fetch earlier inputs, for possible editing and reactivation.

In addition to commands from the keyboard, the mouse can be used to point
to parts of the buffer, and to give simple editing commands. The use of mice for
text editing was originated at SRI, and has been refined and extended at
XEROX-PARC.

The character-string representation of each function in a program being
worked on is stored in its own editor buffer. One normally modifies functions by
editing the character-string form, then typing a single-character command to read
it into Lisp, replacing the old function. Compilation can optionally be
requested. The advantage of operating on the character form, rather than
directly on the list structure, is that comments and the user's chosen formatting
of the code are preserved; in addition, the editor is easier to use because it
operates on what you see on the display. There are commands to store sets of
buffers into files, and to get them back again.

The editor has the capability to edit and display text in multiple fonts,
and many other features too numerous to mention here.

CURRENT STATUS (August 1977)

The original prototype CONS machine was designed and built somewhat more
than two years ago. It had no memory and no 1/0 capability, and remained pretty
much on the back burner while software was developed with a simulator on the
PDP-10 (the simulator executed the Lisp machine macro instruction set, a function
now performed by CONS microcode.) Microprogramming got under way a little over a
year ago, and in the beginning of 1977 the machine got memory, a disk, and a
terminal.

We now have an almost-complete system running on the prototype machine.
The major remaining "holes" are the lack of a garbage collector and the presence
of only the most primitive error handling. Also, floating-point and big-integer
numbers and microcompilation have been put off until the next machine. The
system includes almost all the functions of Maclisp, and quite a few new ones.

LISP Machine 28 Progress Report

The machine is able to page off of its disk, accept input from the keyboard and
the mouse, display on the TV, and do I/0 to files on the PDP-10. The display
editor is completely working, and the compiler runs on the machine, so the system
is quite usable for typing in, editing, compiling, and debugging Lisp fun;:tions.

As a demonstration of the system, and a test of its capabilities, two
large programs have been brought over from the PDP-10, William Woods's LUNAR
English-language data-base gquery system was converted from InterLisp to Maclisp,
thence to Lisp machine Lisp. On the Lisp machine it runs approximately 3 times
as fast as in Maclisp on the KA-10, which in turn is 2 to 4 times as fast as in
InterLisp. Note that the Lisp machine time is elapsed real time, while the
PDP-10 times are virtual run times as given by the operating system and do not
include the delays die to timesharing.

Most of the Macsyma symbolic algebraic system has been converted to the
Lisp_ machine; nearly all the source files were simply compiled without any
modifications., Most of Macsyma works except for some things that require
bignums. The preliminary speed is the same as on the KA-10, but a number of
things have not been optimally converted. (This speed measurement is, again,
elapsed time on the Lisp machine version versus reported run time on the KA-10
‘time sharing system. Thus, paging and scheduling overhead in the KA-10 case are
not counted in this measurement.) _ ‘

’ LUNAR (including the dictionary) and Macsyma can reside together in the
Lisp machine with plenty of room left over; either program alone will not
entirely fit in a PDP-10 address space.

The CONS machine is currently being redesigned, and a new machine will be
built soon, replacing our present prototype. The new machine will have larger
sizes for certain internal memories, will incorporate newer technology, will have
greatly improved packaging, and will be faster. It will fit entirely in one
cabinet and will be designed for ease of construction and servicing. In late
1977 and early 1978 we plan to build seven additional machines and install them
at the MIT AI Lab. During the fall of 1977 we plan to finish the software,
bringing it to a point where users can be put on the system. User experience
with the Lisp machine during 1978 should result in improvement and cleaning up of
the software and documentation, and should give us a good idea of the real
performance to be expected from the machine. At that time we will be able to
st_:art thinking about ways to make Lisp machines available to the outside world.

LISP Machine ! 29 Progress Report

REFERENCES:

CONS: Steele, Guy L. "Cons", not yet published. This is a revision of
Working paper 80, CONS by Tom Knight

GC: Baker, Henry, "List Proce;sina in Real Time on a Serial Computer®,
Working Paper 139

LAMBDA: Steele, Guy L. "LAMBDA - The Ultimate Imperative®, Artificial
Intelligence
Memo 353

MOUSE: See extensive publications by Englebart and group at SRI.

key.c

WOIONUT WP

9/28/1995

key.c : Key Management Engine for BSD

Copyright 1995 by Bao Phan, Randall Atkinson, & Dan McDonald,
All Rights Reserved. All Rights have been assigned to the US

Naval Research Laboratory (NRL). The NRL Copyright Notice and
License governs distribution and use of this software.

Patents are pending on this technology. NRL grants a license
to use this technology at no cost under the terms below with
the additional requirement that software, hardware, and
documentation relating to use of this technology must include
the note that:
This product includes technology developed at and
licensed from the Information Technology Division,
US Naval Research Laboratory.

@ (#) COPYRIGHT 1.1la (NRL) 17 August 1995
COPYRIGHT NOTICE

All of the documentation and software included in this software
distribution from the US Naval Research Laboratory (NRL) are
copyrighted by their respective developers.

This software and documentation were developed at NRL by various
people. Those developers have each copyrighted the portions that they
developed at NRL and have assigned All Rights for those portioms to
NRL. Outside the USA, NRL also has copyright on the software
developed at NRL. The affected files all contain specific copyright
notices and those notices must be retained in any derived work.

NRL LICENSE

NRL grants permission for redistribution and use in source and binary
forms, with or without modification, of the software and documentation
created at NRL provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce Lhe above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software
must display the following acknowledgement :

This product includes software developed at the Information
Technology Division, US Naval Research Laboratory.

4. Neither the name of the NRL nor the names of its contributors
may be used to endorse or promote products derived from this sof:iware
without specific prior written permission.

THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ~"AS
IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, CR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THECRY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

DEF00007942

115

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

9/28/1995

The views and conclusions contained in the software and documentation
are those of the authors and should not be interpreted as representing
official policies, either expressed or implied, of the US Naval
Research Laboratory (NRL).

#include <sys/types.h>
#include <sys/param.h>
#include <sys/proc.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <pys/time.h>
#include <sys/kernel.h>
#include <net/raw cb.h>
#include <net/if.h»>
#include <net/if types.h>
#include <net/if dl.h>
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/in var.h>
#include <netinet/if_ether.h»>

#include <netinet6/iné.h>
#include <netineté6/iné var.h>
#include <netineté6/ipsec.h>
#include <netineté6/key.h>
#include <netinet6/in6_debug.h>

#define MAXHASHKEYLEN (2 * gizeof(int) + 2 * sizeof (struct
sockaddr_iné6))

/*

* Not clear whether these values should be
* tweakable at kernel config time.

*/

#define KEYTBLSIZE 61

#define KEYALLOCTBLSIZE 61

#define SO28PITBLSIZE €1

*
* These values should be tweakable...

* perhaps by using sysctl

*

#define MAXLARVALTIME 240; /* Lifetime of a larval key table entry */
#define MAXKEYACQUIRE 1; /* Max number of key acqQuire messages sent
*

/* per destination address
*
#define MAXACQUIRETIME 15; /* Lifetime of acguire message */

/*
* Key engine tables and global variables

*/

struct key tblnode keytable [KEYTBLSIZE] ;
struct key allocnode keyalloctbl [KEYALLOCTBLSIZE] ;
struct key_so2spinode so2spitbl [SO2SPITBLSIZE] ;

struct keyso cb keyso cb;

struct key tblnode nullkeynode = { 0, 0, 0, 0, 0 };
struct key registry *keyregtable;

struct key acquirelist *key acquirelist;

u long maxlarvallifetime = MAXLARVALTIME;

int maxkeyacquire = MAXKEYACQUIRE;

DEF00007943

key.c

132
133
134
135
136
137
138
139

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

159
160
161

163
164

166
167
168
169
170
171
172
173
174
175
176
177
178
179

180

182
183
184
185
186
187

189
190
191

193
194
195

9/28/1995
u_long maxacquiretime = MAXACQUIRETIME;

extern void dump_secassoc();

* (temporary) Dump a data buffer

void
dump_buf (buf, len)
char *buf;
int len;
int 1i;

printf ("buf=0x%x len=%d:\n", buf, len):

for (i1 = 0; 1 < len; i++)
printf ("0Ox%x ", (u_int8)*(buf+i));
printf("\n");

}

/* __
* (temporary) Dump a key tblnode structrue
__ *
/

void

dump_keytblnode (ktblnode)
struct key_tblnode *ktblnode;

if (!ktblnode) {
printf ("NULL key table node pointer!\n");:
return;

printf("golist=0x%x ", ktblnode->solist);

printf ("secassoc=0x%x ", ktblnode-s>secassoc);
printf ("next=0x%x\n", ktblnode-»>next);
}
/* __
* key secassoc2msghdr() :
* Copy info from a security association into a key message buffer.
* Assume message buffer is sufficiently large to hold all security
* association information including src, dst, from, key and iv.
__ E
/
int

key_secassoczmsghdr (secassoc, km, keyinfo)
struct ipsec assoc *secassoc;
struct key msghdr *km;
struct key_msgdata *keyinfo;

char *cp;
DPRINTF (IDL_GROSS_EVENT, ("Entering key_ secassoc2msghdr\n"));

if {((km == 0) || (keyinfo == 0) || (secassoc == 0))
return(-1);

km->type = secassoc->type;
km->state = secassoc->state;
km->label = secassoc->label;
km->s8pi = secassoc->spi;

DEF00007944

key.c 9/28/1995

196 km->keylen = secassoc->keylen;

197 km->ivlen = secassoc->ivlen;

198 km->algorithm = gsecassoc->algorithm;

199 km->lifetype = secassoc->lifetype;

200 km->lifetimel = secassoc->lifetimel;

201 km->lifetime2 = secassoc->lifetime2;

202

203 /*

204 * gtuff src/dst/from/key/iv in buffer after

205 * the message header.

206 */

207 cp = (char *) (km + 1);

208

209 #define ROUNDUP(a) \

210 ((a) > 0?2 (1 + (((a) - 1) | (sizeof(long) - 1))) : sizeof(long))
211 #define ADVANCE (x, n) \

212 { x += ROUNDUP(n); }

213

214 DPRINTF (IDL FINISHED, ("sa2msghdr: 1\n"));

215 keyinfo-s>src = (struct sockaddr *)cp:

216 if (secassoc->src.siné len)

217 bcopy ((char *)&(secassoc->src), Cp, secassoc->src.siné_len);
218 ADVANCE (cp, secassoc->src.siné_len);

219 } else {

220 bzero(cp, sizeof (struct sockaddr iné));

221 ADVANCE (cp, sizeof (struct sockaddr_in6));

222

223 DPRINTF(IDL_FINISHED, ("sa2msghdr: 2\n")};

224

225 keyinfo->dst = (struct sockaddr *)&(secassoc->dst);

226 if (secassoc->dst.siné len)

227 bcopy ((char *)&(secassoc->dst), cp, secassoc->dst.siné_len);
228 ADVANCE (cp, secassoc->dst.siné_len);

229 } else {

230 bzero(cp, sizeof (struct sockaddr iné));

231 ADVANCE (cp, sizeof (struct sockaddr iné6));

232

233 DPRINTF (IDL_FINISHED, ("sa2msghdr: 3\n"));

234

235 keyinfo->from = (struct sockaddr *)cp;

236 if (secassoc->from.siné len) {

237 beopy ((char *)&(secassoc->from), cp, secassoc->from.siné_len);
238 ADVANCE (cp, secassoc->from.siné_len) ;

239 } else {

240 bzero(cp, sizeof(struct sockaddr iné));

241 ADVANCE (cp, sizeof (struct sockaddr_in6));

242

243 DPRINTF (IDL FINISHED, ("sa2msghdr: 4\n"));

244

245 keyinfo->key = cp;

246 keyinfo->keylen = secassoc->keylen;

247 if (secassoc->keylen)

248 becopy ((char *) (secassoc->key), Cp, secassoc->keylen);
249 ADVANCE (cp, secassoc->keylen) ;

250 }

251

252 DPRINTF (IDL_FINISHED, ("sa2msghdr: 5\n"));

253 keyinfo->iv = cp;

254 keyinfo->ivlen = secassoc->ivlen;

255 if (secassoc-»>ivlen)

256 beopy ((char *) (secassoc->iv), cp, secassoc->ivlen);
257 ADVANCE (cp, secassoc->ivlen);

258

259

260 DDO (IDL FINISHED,printf ("msgbuf (len=%d):\n", (char *)cp - (char *)km));
261 DDO (IDL FINISHED, dump_ buf ((char *)km, (char *)cp - (char *)km));
262 DPRINTF (IDL_FINISHED, ("sa2msghdr: 6\n"));

DEF00007945

key.c 9/28/1995

263 return(0) ;

264

265

266

P A R e e i ittt

268 * key msghdr2secassoc() :

269 * Copy info from a key message buffer into an ipsec_assoc

270 * structure

o e R *

/

272 1int

273 key_msghdr2secassoc (secassoc, km, keyinfo)

274 struct ipsec assoc *secassoc;

275 struct key msghdr *km;

276 struct key msgdata *keyinfo;

277

278 DPRINTF (IDL_GROSS_EVENT, ("Entering key_msghdr2secassoc\n")) ;

279

280 if ((km == 0) || (keyinfo == 0) || (secassoc == 0))

281 return(-1) ;

282

283 secassoc->len = sizeof (*secassoc);

284 secassoc->type = km->type;

285 secassoc->8tate = km->state;

286 gecassoc->label = km->label;

287 secassoc->spl = km->spi;

288 secassoc->keylen = km-s>keylen;

289 secassoc-»>ivlen = km->ivlen;

290 secassoc-»algorithm = km->algorithm;

291 secassoc-»lifetype = km->lifetype;

292 secassoc->lifetimel = km->lifetimel;

293 secassoc->1lifetime2 = km->lifetime2;

294

295 if (keyinfo->src)

296 becopy ((char *) (keyinfo->src), (char *)&(secassoc->src),

297 keyinfo-»>src->sa_len);

298

299 if (keyinfo->dst)

300 bcopy ((char *) (keyinfo->dst), (char *)&(secassoc->dst),

301 keyinfo->dst->sa_len);

302

303 if (keyinfo->from)

304 beopy ((char *) (keyinfo->from), (char *)&(secassoc->from),

305 keyinfo->from->sa_len);

306

307 /*

308 * Make copies of key and iv

309 */

310 if (secassoc->ivlien) {

311 K Malloc (secassoc->iv, caddr_t, secassoc->ivlen);

312 if (secassoc->iv == 0)

313 DPRINTF (IDL_CRITICAL, {"msghdr2secassoc: can't allocate mem for
ivin"));

314 return(-1);

315

316 bcopy ((char *)keyinfo->iv, (char *)secassoc->iv, secassoc->ivlen);

317 } else

318 secassoc->iv = NULL;

319

320 if (secassoc->keylen) {

321 K Malloc (secassoc->key, caddr_t, secassoc->keylen);

322 if (secassoc->key == 0)

323 DPRINTF (IDL_CRITICAL, ("msghdr2secassoc: can't allocate mem for
key\n")) ;

324 if (secassoc->iv)

325 KFree (secassoc->1v) ;

326 return(-1);

DEF00007946

key.c

327
328

329
330
331
332
333
334
335
336
337
338
339

340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365

366
367

368
369
370
371
372
373

375
376
377
378
379
380
381

383
384
385
386
387
388
389

9/28/1995

becopy ((char *)keyinfo-»>key, (char *)secassoc->key,
secassoc->keylen);

} else
gsecassoc->key = NULL;

return(0) ;

/* __
* addrpart equal(): -

* Determine if the address portion of two sockaddrs are equal.

* Currently handles only AF INET and AF INETé address families.

int

addrpart equal (sal, sa2)
struct sockaddr *sal;
struct sockaddr *saz;

{
if ({sal-»sa family == sa2-»>sa_family))
switch(sal->sa_family)
case AF INET:
if (({struct sockaddr in *)sal)->sin addr.s addr ==
((struct sockaddr_in *)sa2)->sin_addr.s_addr)
return (1) ;
break;
case AF INET6:
if (IN6 ADDR EQUAL(((struct sockaddr iné *)sal)-=>sginé_addr,
((struct sockaddr_iné *)sa2)->siné_addr))
return (1) ;
} break;
return (0} ;
}
/* __
* my addr():
* Determine if an address belongs to one of my configured
interfaces.
* Currently handles only AF INET and AF INET6 addresses.
__ *
/
int

my_addr (sa)
struct sockaddr *sa;

extern struct iné ifaddr *iné ifaddr;
extern struct in ifaddr *in_ifaddr;

struct iné ifaddr *i6a = 0;
struct in_ifaddr *ia = 0;

switch(sa->sa family) {
case AF INET6:
for (i6a = iné ifaddr; i6a; i6a = i6a->i6a next) {
if (IN6 ADDR EQUAL(((struct sockaddr_in6 *)sa)->siné_addr,
ifa->i6a_addr.sin6_addr))
return(l);

break;
case AF INET:
for (ia = in ifaddr; ia; ia = ia->ia next) {
if (((struct sockaddr in *)sa)->sin_addr.s_addr ==
ia->ia addr.sin_addr.s_addr)
return(l);

DEF00007947

key.c
390

392
393
394
395
396
397
398
399
400

401
402
403
404
405
406
407

408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428

429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450

452
453

9/28/1995

}
break;
return{Q) ;
/* __
* key inittables():
* Allocate space and initialize key engine tables
/
void

?ey_inittables()

gstruct key tblnode *keynode;
int 1i;

K Malloc (keyregtable, struct key_ registry *, sizeof (struct
key registry));
if (keyregtable == 0)

panic("key inittables");
bzero((char *)keyregtable, sizeof (struct key registry));
K Malloc(key acquirelist, struct key acquirelist *,

sizeof (struct key_ acquirelist));

if (key acquirelist == 0)

panic("key inittables");

bzero((char *)key acquirelist, sizeof(struct key_acquirelist));

for (1 = 0; 1 < KEYTBLSIZE; i++)
bzero(({char *)s&keytable[i], sizeof (struct key_tblnode)) ;
for (i = 0; 1 < KEYALLOCTBLSIZE; 1i++)

bzero((char *)skeyalloctbl[i]), sizeof (struct key_allocnode)) ;

for (i = 0; i < SO2SPITBLSIZE; i++)

bzero((char *)&so2spitbl[i], sizeof (struct key_so2spinode));

/i __
* key gethashval() :
* Determine keytable hash wvalue.
o/
int
key_gethashval (buf, len, tblsize)
char *buf;
int len;

int tbleize;
int i, j = 0;

/¥
* Todo: Use word size xor and check for alignment
and zero pad if necessary. Need to also pick
* a good hash function and table size.
*
if (len <= 0)
DPRINTF (IDL _CRITICAL, ("key gethashval got bogus len!\n"))
return(-1) ;

for(i = 0; i < len; i++) {
\ i* (u_int8) (*(buf + 1));
} return (j % tblsize);
/* __

DEFO00007948

key.c 9/28/1995

454 * key createkey():

455 * Create hash key for hash function

456 * key is: type+src+dst if keytype =1

457 * type+src+dst+spi if keytype = 0

458 * Uses only the address portion of the src and dst sockaddrs to

459 * form key. Currently handles only AF INET and AF INETé sockaddrs

LN e it *
/

461 int

462 key_createkey(buf, type, src, dst, spi, keytype)

463 char *buf;

464 u int type;

465 struct sockaddr *src:

466 struct sockaddr *dst;

467 u int32 spi;

468 u_int keytype;

469

470 char *cp., *p;

471

472 DPRINTF(IDL_FINISHED,(“Entering key_createkey\n"));

473

474 if (!buf || !src || !dst)

475 return(-1) ;

476

477 cp = buf;
478 bcopy ((char *)&type, cp, sizeof (type));

479 cp += sizeof (type):

480

481 /*

482 * Agsume only IPv4 and IPvé addresses.

483 */

484 #define ADDRPART (a) \

485 ((a)->sa family == AF INET6) ? \

486 (char *)&(((struct sockaddr iné *) (a))-»>sin6 addr) : \
487 (char *)&(((struct sockaddr_in *) (a))->sin_addr)

488

489 #define ADDRSIZE(a) \

490 ({a) ->sa family == AF INET6) ? sizeof (struct in_addré) : \
491 gizeof (struct in_addr)

492

493 DPRINTF (IDL GROSS EVENT, ("src addr:\n"));
494 DDO (IDL GROSS EVENT,dump smart sockaddr({src));
495 DPRINTF (IDL GROSS EVENT, ("dst addr:\n"));
496 DDO (IDL._GRQOSS_EVENT, dump_smart_sockaddr (dst)) ;

498 p = ADDRPART (src) ;
499 bcopy (p, cp, ADDRSIZE (src));
500 cp += ADDRSIZE (src);

502 p = ADDRPART (dst) ;

503 bcopy (p, cp, ADDRSIZE (dst)):
504 cp += ADDRSIZE (dst);

505

506 #undef ADDRPART

507 #undef ADDRSIZE

508

509 if (keytype == 0) {

510 beopy ((char *)&spi, cp, sizeof(spi));
511 cp += sizeof (spi);

512

513

514 DPRINTF (IDL FINISHED, ("hash key:\n"));
515 DDO (IDL FINISHED, dump_ buf (buf, cp - buf));
516 return(cp - buf);

517)}

518

519

DEFO00007949

key.c

520
521
522

523
524
525

526
527
528
529
530
531
532
533
534
535
536

537
538
539
540

541
542
543
544
545
546
547
548
549
550
551
552
553

555
556
557

558
559
560
561
562
563
564
565
566

567
568
569
570
571
572
573
574
575
576
577
578

9/28/1995

/* ___
* key sosearch() :

* Search the so2spi table for the security association allocated
to

* the socket. Returns pointer to a struct key_so2spinode which
can

* be used to locate the security association entry in the
keytable.
__ *
/ .
struct key so2spinode *

key_ sosearch(type, src, dst, so)

u int type;

struct sockaddr *src;
struct sockaddr *dst;
gtruct socket *s0;

struct key_so2spinode *np = 0;

if (! (src && dst)) |
DPRINTF(IDL CRITICAL, ("key sosearch: got null src or dst
pointer!\n"));
return (NULL) ;

for (np = so2spitbl[((u_int32)so) % SO2SPITBLSIZE] .next; np; np = np->
next)
if ((so == np->socket) && (type == np->keynode->secassoc->type)
&& addrpart equal (src, -
(struct sockaddr *)&(np-s>keynode->gecassoc->src))

&& addrpart equal (dst,
(struct sockaddr *)&(np->keynode->secassoc->dst)))

return (np) ;

return (NULL) ;

* key sodelete(}:
* Delete entries from the so2spi table.

* flag = 1 purge all entries
* flag = 0 delete entries with socket pointer matching socket
__ *
/

void

key sodelete (socket, flag)

struct socket *socket;
int flag;

struct key so2spinode *prevnp, *np;
int 8 = splnet();

DPRINTF (IDL MAJOR_EVENT,("Entering keysodelete w/so=0x%x flag=%d\n",
socket,flag));
if (flag) {
int i;
for (i =
for (np
KFree (np

0; 1 < SO2SPITBLSIZE; i++)
= s02spitbl[i] .next; np; np = np->next) {
):

splx(s);
return;

}

previp = &s02spitbl[((u_int32)socket) % SO2SPITBLSIZE] ;

DEF00007950

key.c

579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619

644

9/28/1995

for (np = prevnp-s>next; np; np = np->next) |{
if (np-»>socket == socket)
struct socketlist *socklp, *prevsocklp;
(np->keynode->alloc_count)--;
v/*
* If this socket maps to a unigque secassoc,
* we go ahead and delete the secassoc, since it
* can no longer be allocated or used by any other
* socket.
*/
if (np-skeynode-s>secassoc->state & K UNIQUE) {
if (key delete(np->keynode->secassoc) != 0)
panic("key_ sodelete");
np = prevnp;
continue;
/*
* We traverse the socketlist and remove the entry
* for this socket
*/
DPRINTF (IDL FINISHED, ("keysodelete: deleting from sccklist..."));
prevsocklp = np-skeynode->solist;
for (socklp = prevsocklp->next; socklp; socklp = socklp->next) {
if (socklp->socket == socket)
prevsocklp->next = socklp-snext;
KFree (socklp) ;
break;
pr?vsocklp = socklp;
DPRINTF (IDL FINISHED, ("done\n")):;
prevnp->next = np->next;
KFree (np) ;
} np = prevnp;
prevnp = Dp;
}
splx(8) ;
}
/* __
* key deleteacquire():
* Delete an entry from the key acquirelist
__ *
/
void
key_deleteacquire(type, target)
u int type;
struct sockaddr *target;
struct key acquirelist *ap, *prev;
prev = key acquirelist;
for(ap = key acquirelist-s>next; ap: ap = ap-»next) {
if (addrpart egqual (target, (struct sockaddr *}&(ap->target)) &&
(type == ap->type))
DPRINTF (IDL MAJOR EVENT, ("Deleting entry from acquire list!\n"));
prev->next = ap-»>next;
KFree (ap) ;
} ap = prev;
} prev = ap;

10

DEF00007951

key.c

645
646
647
648
649
650

652
653

654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676

677
678
679
680
681
682
683
684
685
686
687
688

690

691
692

693
694
695
696
697
698
699
700

701
702
703
704
705
706

9/28/1995

}

/* __
* key search():
* Search the key table for an entry with same type, src addr, dest
* addr, and spi. Returns a pointer to struct key tblnode if found
* else returns null.
__ *
/

struct key tblnode *
key search(type, src, dst, spi, indx, prevkeynode)
u int type:
struct sockaddr *src;
struct sockaddr *dst;
u int32 8pi;
int indx;
struct key_tblnode **prevkeynode;

struct key_tblnode *keynode, *prevnode;

if (indx > KEYTBLSIZE || indx < 0)
return (NULL) ;
if (! (&keytable[indx]))

return (NULL) ;

#define sec type keynode->secassoc-s>type
#define sec spi keynode->secassoc->8pi
#define sec src keynode->secassoCc->8IC
#define sec_dst keynode->secassoc->dst

prevniode = &keytable[indx];
for (keynode = keytable[indx] .next; keynode; keynode

if ((type == gec type) && (spi == sec spi) &&
addrpart equal(src, (struct sockaddr *)&(sec src))

keynode->next)

&& addrpart_equal (dst, (struct sockaddr *)&(sec_dst)))

break;
} prevnode = keynode;
*prevkeynode = prevnode;
return (keynocde) ;

* key addnode () :

* Insert a key tblnode entry into the key table.
pointer

* to the newly created key tblnode.

struct key tblnode *
key_ addnode (indx, secassoc)
int indx;
struct ipsec_assoC *secassoc;

struct key tblnode *keynode;

Returns a

DPRINTF (IDL GROSS EVENT, ("Entering key addnode w/indx=%d

secassoc=0x%x\n",indx, (u_int32)secassoc));

if (! (&keytable[indx]))
return (NULL) ;
if (!secassoc) {

panic("key addnode: Someone passed in a null secassoc!\n");

11

DEF00007952

key.c 9/28/1995

707

708 K Malloc(keynode, struct key tblnode *, sizeof (struct key_tblnode));

709 if (keynode == 0)

710 return (NULL) ;

711 bzero((char *)keynode, sizeof (struct key_tblnode)) ;

712

713 K Malloc(keynode->s0list, struct socketlist *, sizeof (struct

socketlist)) ;

714 if (keynode->solist == 0) {

715 KFree (keynode) ;

716 return (NULL) ;

717

718 bzero((char *) (keynode->solist), sizeof (struct socketlist));

719

720 keynode->secassoc = Secassoc;

721 keynode->g80list-s>next = NULL;

722 keynode->next = keytable [indx] .next;

723 keytable[indx] .next = keynode;

724 return(keynode) ;

725 }

726

727

23 - T L e R

729 * key add():

730 * Add a new security association to the key table. Caller is

731 * responsible for allocating memory for the struct ipsec_assoc as

732 * well as the buffer space for the key and iv. Assumes the
security

733 * association passed in is well-formed.

Y B e i i Tl *
/

735 int

736 key_add(secassoc)

737 struct ipsec_assoc *secassoc;

738

739 char buf [MAXHASHKEYLEN] ;

740 int len, indx;

741 int inbound = 0;

742 int outbound = 0;

743 struct key tblnode *keynode, *prevkeynode;

744 struct key allocncde *np;

745 int s;

746

747 DPRINTF (IDL, GROSS EVENT, ("Entering key_add w/secassoc=0x%x\n",

secassoc)) ;

748

749 if (!secassoc) {

750 panic("key_add: who the hell is passing me a null pointer");

751

752

753 /*

754 * For storage purposes, the two esp modes are

755 * treated the same.

756 */

757 if (secassoc->type == SS ENCRYPTION NETWORK)

758 secassoc->type = SS_ENCRYPTION_TRANSPORT;

759

760 /*

761 * Should we allow a null key to be inserted into the table ?

762 * or can we use null key to indicate some policy action...

763 */

764

765 /*

766 * For esp using des-cbc or tripple-des we call

767 * des set odd parity.

768 */

12

DEF00007953

key.c

769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784

785
786
787
788
789
790
791
792
793
794
795
796
797
798

800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834

9/28/1995

if (secassoc->key && (secassoc->type == SS ENCRYPTION TRANSPORT) &&
((secassoc-»algorithm == IPSEC ALGTYPE ESP DES CBC) ||
(secassoc->algorithm == IPSEC ALGTYPE_ESP_3DES)))
des_set_odd_parity(secassoc->key) ;

/*
* Check if secassoc with same sp: exists before adding
*
/
bzero ((char *)&buf, sizeof (buf));
len = key_createkey ((char *)&buf, secassoc->type,
(struct sockaddr *)&(secassoc->8rc),
(struct sockaddr *)&(secassoc->dst),
secassoc->gpi, 0);
indx = key gethashval ((char *)&buf, len, KEYTBLSIZE);
DPRINTF (IDL GROSS EVENT, ("keyadd: keytbl hash position=%d\n", indx)):
keynode = key_search(secassoc->type, (struct sockaddr *)&(secassoc->
src) ,
(struct sockaddr *)é&(secassoc->dst),
secassoc->8pi, indx, &prevkeynode);
if (keynode) {
DPRINTF (IDL_MAJOR EVENT, ("keyadd: secassoc already exists!\n"));
return(-2) ;

inbound = my addr((struct sockaddr *)&(secassoc->dst));
outbound = my addr((struct sockaddr *)&(secassoc->src));
DPRINTF (IDL_FINISHED, ("inbound=%d outbound=%d\n", inbound, outbound)):

/*

* We allocate mem for an allocation entry if needed.

* This is done here instead of in the allocaton code

* gegment so that we can easily recover/cleanup from a

* memory allocation error.

*/
if (outbound || (!inbound && !outbound)) {

K Malloc{np, struct key_allocnode *, sizeof (struct key_allocnode));

if (np == 0)

DPRINTF (IDL_CRITICAL, ("keyadd: can't allocate allocnode!\n")};
} return(-1);
}

8 = splnet();

if ((keynode = key addnode(indx, secassoc)) == NULL) ({
DPRINTF (IDL_CRITICAL, ("keyadd: key_ addnode failed!\n"));
if (np)
KFree (np) ;
splx(s);

return(-1);

DPRINTF (IDL EVENT, ("Added new keynode:\n"));
DDO(IDL GROSS EVENT, dump keytblnode (keynode)) ;
DDO (IDL_GROSS_EVENT, dump_secassoc (keynode->secassoc)) ;

/*

* We add an entry to the allocation table for

* this secassoc if the interfaces are up and

* the secassoc is outbound. In the case

* where the interfaces are not up, we go ahead
* and do it anyways. This wastes an allocation
* entry if the secassoc later turned out to be
* inbound when the interfaces are ifconfig up.
*
if

(outbound || (!inbound && !outbound)} {

len = key createkey((char *)&buf, secassoc->type,
(struct sockaddr =*)&(secassoc->s8rc),

13

DEF00007954

key.c

835
836
837
838

839
840
841
842
843
844
845
846
847
848

849
850
851
852
853
854
855
856
857
858

859

861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896

897

9/28/1995

(struct sockaddr *)&(secassoc->dst),
0, 1);
indx = key gethashval ((char *)&buf, len, KEYALLOCTBLSIZE);
DPRINTF (IDL,_GROSS EVENT, ("keyadd: keyalloc hash position=%d\n",
indx)) ;
np->keynode = keynode;
np->next = keyalloctbl [indx] .next;
keyalloctbl[indx] .next = np;
if (inbound)
secassoc->state |= K_INBOUND;
if (outbound)
secassoc->state [= K _OUTBOUND;
key deleteacquire(secassoc->type, (struct sockaddr
*) & (secassoc->dst)) ;
splx(s) ;
return 0O;
}
/* __
* key get():
* Get a security association from the key table.
__ *
/
int
key_get (type, src, dst, spi, secassoc)
u int type;
struct sockaddr *src;
struct sockaddr *dst;
u int32 spi;
(struct ipsec_assoc **secassoc;
char buf [MAXHASHKEYLEN] ;
struct key tblnode *keynode, #*prevkeynode;
int len, indx;
/I'
* For storage purposes, the two esp modes are
* treated the same.
*/
if (type == S8 ENCRYPTION NETWORK)
type = SS_ENCRYPTION_TRANSPORT;
bzero (&buf, sizeof (buf));
*gecassoc = NULL;
len = key createkey ((char *)&buf, type, src, dst, spi, 0);
indx = key gethashval ((char *)&buf, len, KEYTBLSIZE);
DPRINTF (IDL GROSS EVENT, ("keyget: indx=%d\n",indx));
keynode = key search(type, src, dst, spi, indx, &prevkeynode);
if (keynode)
DPRINTF (IDL_EVENT, ("keyget: found it! keynode=-0x%x", keynode));
*gecassoCc = keynode->secassoc;
return(0) ;
} else
return(-1); /* Not found */
}
/* __
* key dump () :
* Dump all valid entries in the keytable to a pf key socket. Each
* security associaiton is sent one at a time in a pf_key message.
A
* message with seguno = 0 signifies the end of the dump

14

DEF00007955

key.c 9/28/1995

897 transaction.

Y I e R
/
899 int
900 key_ dump (s80)
901 struct socket *so;
902
903 int len, i;
904 int seqg = 1;
905 struct mbuf *m;
906 struct key msgdata keyinfo;
907 struct key msghdr *km;
908 struct key tblnode *keynode;
909 extern struct sockaddr key src;
910 extern struct sockaddr key dst;
911
912 /*
913 * Routine to dump the key table to a routing socket
914 * Use for debugging only!
915 */
916
917 DPRINTF (IDL_GROSS_EVENT, ("Entering key dump()"));
918 /*
919 * We need to speed this up later. Fortunately, key dump
920 * messages are not sent often.
921 */
922 for (i = 0; i <« KEYTBLSIZE; i++) {
923 for (keynode = keytable[i] .next; keynode; keynode = keynode-»>next) {
924 .
925 /*
926 * We exclude dead/larval/zombie security associations for now
927 * but it may be useful to also send these up for debugging
purposes
928 *
929 if (keynode->secassoc->state & (K_DEAD | K _LARVAL | K _ZOMBIE})
930 continue;
931
932 len = (sizeof (struct key msghdr) +
933 ROUNDUP (keyncde - >8ecassoc->8rc.siné len) +
934 ROUNDUP (keynode - >8ecassoc->dst.sin6 len) +
935 ROUNDUP (keynode->secassoc->from,.sin6_len) +
936 ROUNDUP (keynode- >gecassoc->keylen) +
937 ROUNDUP (keynode- >secassgoc->ivlen)) ;
9238 K Malloc(km, struct key_msghdr *, len);
939 if (km == 0)
940 return (ENOBUFS) ;
941 if (key secassoc2meghdr (keynode-»>secassoc, km, &keyinfo) != 0)
942 panic ("key dump") ;
943 km->key msglen = len;
944 km->key msgvers = KEY VERSION;
945 km->key msgtype = KEY DUMP;
946 km->key pid = curproc->p _pid;
947 km->key seq = seqg++;
948 km->key errno - 0;
949 MGETHDR (m, M WAIT, MT DATA);
950 m->m len = m->m_pkthdr.len = 0;
951 m->m next = 0;
952 m->m nextpkt = 0;
953 m->m pkthdr.rcvif = 0;
954 m copyback(m, 0, len, (caddr_t)km);
955 KFree (km) ;
956 if (sbappendaddr{&so-»so_rcv, &key src, m, (struct mbuf *)0) == 0)
957 m_free(m);
958 else
959 sorwakeup (s0) ;
960
961 }
15

DEFO00007956

key.c

962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
280
981
982
983
984
985
986
987
988
989
990

991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004

1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015

1016

1017
1018
1019
1020
1021
1022
1023
1024

K Malloc(km, struct key msghdr *, sizeof (struct key_msghdr)):
if (km == 0)
return (ENOBUFS) ;
bzero((char *)km, sizeof (struct key msghdr));
km->key msglen = sizeof (struct key_msghdr) ;
km->key msgvers = KEY VERSION;
km->key msgtype = KEY DUMP;
km-s>key pid = curproc->p_pid;
km->key seqg = 0;
km->key errno = 0;
MGETHDR (m, M WAIT, MT DATA);
m->m len = m->m_pkthdr.len = 0;
m->m next = 0;
m->m nextpkt = 0;
m->m pkthdr.rcvif = 0;
m copyback(m, 0, km-s>key msglen, (caddr_t)km);
KFree (km) ;
if (sbappendaddr(&so->s0_rcv, &key src, m, (struct mbuf *)0)
m free(m);
else
sorwakeup (so) ;
DPRINTF (IDL_GROSS_EVENT, ("Leaving key dump()\n"));
return(0) ;

}
2 S T T T T e
* key delete():
* Delete a security association from the key table.
/

int

key delete(secassoc)

struct ipsec_assoc *secassoc;

char buf [MAXHASHKEYLEN] ;

int len, indx;

struct key tblnode *keynode = 0;

struct key tblnode *prevkeynode = 0;
gstruct socketlist *socklp, *deadsocklp;
struct key so2spinode *np, *prevnp;
struct key_allocnode *ap, *prevap;

int s;

9/28/1995

I
]

DPRINTF (IDL_GROSS_EVENT, ("Entering key_delete w/secassoc=0x¥x\n",

secassoc)) ;

if (secassoc->type == SS ENCRYPTION NETWORK)
gecassoc->type = SS ENCRYPTION TRANSPORT;

bzero((char *)&buf, sizeof (buf));

len = key_createkey((char *)&buf, secassoc->type,
(struct sockaddr *)&(secassoc->srC),
(struct sockaddr *)&(secassoc->dst),
gsecassoc->spi, 0);

indx = key gethashval ({(char *)&buf, len, KEYTBLSIZE);

DPRINTF (IDL_GROSS EVENT, ("keydelete: keytbl hash position=%d\n",

indx));

keynode = key_search(secassoc->type, (struct sockaddr *)&(secassoc->

src),
(struct sockaddr *)s&(secassoc->dst),
secassoc->8pl, indx, &prevkeynode) ;

if (keynode) {
s = splnet();

DPRINTF (IDL EVENT, ("keydelete: found keynode to delete\n"));

keynode->gecassoc->state |= K_DEAD;

16

DEF00007957

key.c

1025
1026

1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064

1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089

}

9/28/1995

if (keynode->ref count > 0) {
DPRINTF (IDL MAJOR EVENT, ("keydelete: secassoc still held, marking
for deletion only!\n"));
splx(s);
return(0) ;

prevkeynode->next = keynode-s>next;

*
* Walk the socketlist and delete the
* entries mapping sockets to this secassoc
* from the so2spi table.
*/
DPRINTF (IDL GROSS EVENT, ("keydelete: deleting socklist..."));
for (socklp = keynode->golist-snext; socklp;)
prevnp = &so2spitbl[((u int32) (socklp->socket)) % SO2SPITBLSIZE];

for{(np = prevnp-»>next; np; np = np->next)

if ((np->socket == socklp->socket) && (np->keynode == keynode)) {
prevnp->next = np->next;
KFree (np) ;
break;

prevnp = np;

deadsocklp = socklp;
socklp = socklp-s>next;
KFree (deadsocklp) ;

DPRINTF(IDL_GROSS_EVENT,("done\n"));
/*
* If an allocation entry exist for this
* gecassgoc, delete it.
*/
bzero({(char *)&buf, sizeof (buf));
len = key createkey((char *)&buf, secassoc->type,
(struct sockaddr ¥)é&(secassoc->src),
(struct sockaddr *)&(secassoc->dst),
0, 1):
indx = key gethashval((char *)&buf, len, KEYALLOCTBLSIZE) ;
DPRINTF (IDL_GROSS_EVENT, ("keydelete: alloctbl hash position=%d\n",
indx)) ;
prevap = &keyalloctbl[indx];
for (ap = prevap->next; ap; ap = ap-»>next) {
if (ap->keynode == keyncde)
prevap->next = ap-»>next;
KFree (ap) ;
break;

prevap = ap;

if (keynode->secassoc->1v)
KFree (keynode->secassoc->iv) ;
if (keynode->secassoc->key)
KFree (keynode->secassoc->key) ;
KFree (keynode - >secassoc) ;
if (keynode->solist)
KFree (keynode->solist) ;
KFree (keynode) ;
splx(s);
return(0) ;

return(-1);

17

DEFO00007958

9/28/1995

/* __
* key flush():
* Delete all entries from the key table.
/

void

key_ flush(void)

struct key_tblnode *keyncde;

int 1i;
/*
* Thig is slow, but simple.
*/
DPRINTF (IDL_FINISHED, ("Flushing key table..."));

for (i = 0; 1 < KEYTBLSIZE; 1i++)
while (keynode = keytable[i] .next)
if (key delete(keynode->secassoc) != 0)
panic{"key flush");

DPRINTF (IDL_FINISHED, ("done\n"));

}
/*__1 ___
* key getspi():
* Get a unique spi value for a key management daemon/program.
* spi value, once assigned, cannot be assigned again.
/
int
key_getspi(type, src, dst, spi)
u int type;

struct sockaddr *src;
struct sockaddr *dst;
u int32 *spi;

struct ipsec assoc *secassoc;

struct key_tblnode *keynode, *prevkeynode;
int count, done, len, indx;

int maxcount = 1000;

u int32 val;

char buf [MAXHASHKEYLEN] ;

int s;

DPRINTF (IDL MAJOR EVENT, ("Entering getspi w/type=%d\n",type));
if (!(src && dst))
return(-1);

/*

* For storage purposes, the two esp modes are
* treated the same.

*/
if (type == 88 ENCRYPTION NETWORK)

type = SS_ENCRYPTION_ TRANSPORT;

done = count = 0;
do {
count++;
/*
* Currently, valid spi values are 32 bits wide except for
the value of zero. This need to change to take into
account more restrictive spi ranges.

* % ¥ W

TODO: Kebe says to allow key mgnt daemon to specify range

18

DEF00007959

}

DP
w/
if

9/28/1995

* of valid spi to get.
*
/
val = random();
DPRINTF(IDL_FINISHED, ("%u ",val));
if (val)
DPRINTF(IDL_FINISHED,("\n"));
bzero(&buf, sizeof (buf));
len = key createkey((char *)&buf, type, src, dst, val, 0);
indx = key gethashval((char *)&buf, len, KEYTBLSIZE);
if (tkey search(type, src, dst, val, indx, &prevkeynode)}) {
5 = splnet();
K Malloc (secassoc, struct ipsec_assoc *, sizeof (struct
ipsec assoQ));
if (secassoc ==

{
DPRINTF (IDL, CRITICAL, ("key getspi: can't allocate memory\n"));:

splx(s);
return(-1);

bzero((char *)secassoc, sizeof(struct ipsec_assoc));

DPRINTF (IDL FINISHED, ("getspi: indx=%d\n",indx));

secassoc->len = sizeof (struct ipsec_assoc);

secassoc->type = type;

gecassoc->8pi = val;

secassoc->state |= K LARVAL;

if (my addr{(struct sockaddr *)&{secassoc->dst)))
gecaggoc->state |= K INBOUND;

if (my addr({struct sockaddr *)&(secassoc->src)))
secassoc->state |= K_OUTBOUND;

becopy ((char *)src, (char *)&(secassoc-»>src), src->sa len);
bcopy ((char *)dst, (char *)&(secassoc->dst), dst-»>sa_len);
gecasgoc->from.sin6é family = AF INET6;
secassoc->from.siné_len = sizeof (struct sockaddr_iné);

/*

* We need to add code to age these larval key table
* entries so they don't linger forever waiting for

* a KEY UPDATE message that may not come for various
* reagons. This is another task that key_reaper can
*/do once we have it coded.

*

secassoc->1lifetimel = time.tv_sec + maxlarvallifetime;

if (!(keynode = key addnode (indx, secassoc))) {
DPRINTF (IDL_CRITICAL, {"key_getspi: can't add node\n"));
splx(s);

return(-1);

DPRINTF (IDL_FINISHED, ("key_getspi: added node Cx%x\n", keynode)) ;

done++;
splx(s);

while ((count < maxcount) && !done);

RINTF (IDL FINISHED, ("getspi returns

spi=%u,count=%d\n",val,count));
(done) {

*spi = val;

return(0) ;

else {

*spl = 0;

return(-1) ;

19

DEF00007960

key.c

1219
1220
1221
1222
1223

1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284

9/28/1995

/* __
* key update():
* Update a keytable entry that has an spi value assigned but is
* incomplete (e.g. no key/iv).
__ *
/

int

key_update (secassoc)

{ struct ipsec_assoc *secassoc;
struct key tblnode *keynode, *prevkeyncde;
struct key allocnode *np = 0;
u int8 newstate;
int len, indx, inbound, outbound;
char buf [MAXHASHKEYLEN] ;
int 8;

/*
* For storage purposes, the two esp modes are
* treated the same.
*/

if (secassoc->type == S8 ENCRYPTION NETWORK)
secassoc->type = SS_ENCRYPTION_ TRANSPORT;

bzero(sbuf, sizeof (buf));
len = key createkey((char *)&buf, secassoc->type,
(struct sockaddr *)&(secassoc-»>src),
(struct sockaddr *)&(secassoc->dst),
secassoc->spi, 0);
indx = key gethashval ((char *)&buf, len, KEYTBLSIZE);
if (! (keynode = key search(secassoc->type,
(struct sockaddr *)&(secassoc->s8xc),
(struct sockaddr *)&(secassoc->dst),
gsecassoc-»8pi, indx, &prevkeynode))) {
return (ESRCH) ;

if (keynode-s>secassoc->state & K _DEAD)
return(ESRCH) ;

/* Should we also restrict updating of only LARVAL entries ? */
8 = splnet();

inbound = my addr ((struct sockaddr *)&(secassoc->dst));
outbound = my_addr((struct sockaddr *)&(secassoc->src));

newstate = keynode->secassoc->state;
newstate &= ~K LARVAL;
if (inbound)
newstate |= K_INBOUND;
if (outbound)
newstate |= K_OUTBOUND;

if (outbound [| (!inbound && !outbound)} ({
K Malloc (np, struct key allocnode *, sizeof (struct key_allocnode)) ;
if (np == 0)
DPRINTF (IDL_CRITICAL, ("keyupdate: can't allocate allocnode!\n"));
splx(s):

return (ENOBUFS) ;

We now copy the secassoc over. We don't need to copy
the key and iv into new buffers since the calling routine
* does that already.

* * *

20

DEFO00007961

key.c

1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310

1311
1312
1313
1314
1315
1316

1317
1318
1319
1320
1321
1322
1323
1324

1325
1326

1327
1328
1329
1330
1331
1332
1333
1334
1335

1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346

9/28/1995

* (keynode->secassoc) = *gecassoc;
keynode->secassoc->s8tate = newstate;

/*
* Should we allow a null key to be inserted into the table ?
* or can we use null key to indicate some policy action...

¥/

if (keynode->secassoc->key &&
(keynode->secassoc->type == SS_ENCRYPTION TRANSPORT) &&
((keynode->secassoc->algorithm == IPSEC ALGTYPE ESP DES_CBC) ||
(keynode->secassoc->algorithm == IPSEC ALGTYPE_ESP_3DES)))
des_set_odd_parity(keynode->secassoc->key) ;

/*
* We now add an entry to the allocation table for this
* updated key table entry.
*
/
if (outbound || (!inbound && t!outbound)) {
len = key createkey((char *)&buf, secassoc->type,
(struct sockaddr *)&(secassoc->src),
(struct sockaddr *)&(secassoc->dst),
0, 1);
indx = key gethashval ((char *)&buf, len, KEYALLOCTBLSIZE);
DPRINTF (IDL_FINISHED, ("keyupdate: keyalloc hash position=%d\n",
indx)) ;
np->keynode = keynode;
np->next = keyalloctbl [indx] .next;
keyalloctbl [indx] .next = np;

}

key deleteacquire (secassoc->type, (struct sockaddr
*) & (secassoc->dst)) ;

splx(s);
return(0) ;

* key register():

Register a socket as one capable of acquiring security

associations

for the kernel.

int
key register (socket, type)

struct socket *socket;
u_int type;

struct key registry *p, *new;
int s = splnet();

DPRINTF (IDL MAJOR_EVENT, ("Entering key_register w/so=0x%x,type=%d\n",
socket, type));

if (! (keyregtable && socket))
panic("key_register");

/*
* Make sure entry is not already in table
*/
for(p = keyregtable->next; p; p = p->next) {
if ((p->type == type) && (p->socket == socket)) ({

splx(g);
return (EEXIST) ;

21

DEF00007962

key.c 9/28/1995

1347 }

1348 }

1349

1350 K Malloc(new, struct key registry *, sizeof (struct key_registry));

1351 if (new == 0) ({

1352 splx(s);

1353 return (ENOBUFS) ;

1354

1355 new->type = type;

1356 new->socket = socket:;

1357 new->next = keyregtable->next;

1358 keyregtable->next = new;

1359 splx(s) ;

1360 return(0) ;

1361}

1362

1363 /oo m e o e e e mm e oo —o-- oo

1364 * key unregister():

1365 * Delete entries from the registry list.

1366 * allflag = 1 : delete all entries with matching socket

1367 * allflag = 0 : delete only the entry matching socket and type

1368 m - o m o m oo o m e e e e eoco—oo---- *
/

1369 wvoid

1370 key_unregister (socket, type, allflag)

1371 struct socket *socket;

1372 u int type;

1373 int allflag;

1374

1375 struct key registry *p, *prev;

1376 int 8 = splnet();

1377

1378 DPRINTF (IDL MAJOR EVENT, ("Entering key unregister
w/80=0x%x, type=%d, flag=%d\n", socket, type. allflag));

1379

1380 if (! (keyregtable && socket))

1381 panic("key register");

1382 prev = keyregtable;
1383 for(p = keyregtable->next; p; p = p->next) {

1384 if ((allflag && (p->socket == Bocket)) ||

1385 ((p->type == type) && (p->socket == sBocket))

1386 prev->next = p->next;

1387 KFree (p) ;

1388 D = prev;

1389 1

1390 prev = p;

1391

1392 splx(s);

1393 |}

1394

1395

I I e e R R T LR

1397 * key acquire() :

1398 * Send a key acquire message to all registered key mgnt daemons

1399 * capable of acquire security association of type type.

1400 *

1401 * Return: 0 if succesfully called key mgnt. daemon (s)

1402 * -1 if not successfull.

1403 s mem e e s e oo m e e e e o e oo — s —e-—----—- - *
o/

1404 1int

1405 key_acquire(type, src, dst)

1406 u int type;

1407 struct sockaddr *src;

1408 struct sockaddr *dst;

1409

1410 struct key_ registry *p;

22

DEF00007963

key.c

1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441

1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453

1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475

9/28/1995

struct key acquirelist *ap, *prevap;
int success = 0, created = 0;

struct socket *last = 0;

struct mbuf *m = 0;

u int etype;

extern struct sockaddr key_src;

DPRINTF (IDL_MAJOR_EVENT, ("Entering key_acquire()\n")};

if (!keyregtable || !src || t!dst)
return (-1);

/*

* We first check the acquirelist to see 1f a key_acquire
* message has been sent for this destination.

*

etype = type;
if (etype == 88 ENCRYPTION NETWORK)
etype = SS ENCRYPTION TRANSPORT;
prevap = key acgquirelist;
for(ap = key acquirelist-snext; ap; ap = ap->next) {
if (addrpart equal(dst, (struct sockaddr *)&(ap->target)) &&
(etype == ap->type))
DPRINTF (IDL, MAJOR EVENT, ("acquire message previously sent!\n"));
if (ap->expiretime < time.tv sec)
DPRINTF (IDL,_MAJOR_EVENT, ("acquire message has expired!\n"));
ap-»>count = 0;
break;

if (ap->count < maxkeyacquire) {
DPRINTF (IDL MAJOR_EVENT, ("max acquire messages not yet
exceeded!\n")) ;
break;

return(0) ;
} else if (ap->expiretime < time.tv_sec) {
/*
* Since we're already looking at the list, we may as
* well delete expired entries as we scan through the list.
* This should really be done by a function like key reaper()
* but until we code key reaper (), this is a quick and dirty
* hack.
*/
DPRINTF (IDL_MAJOR_EVENT, ("found an expired entry...deleting
it!\n"));
prevap->next = ap->next;
KFree (ap) ;
} ap = prevap;

prevap = ap;

/*
* Scan registry and send KEY ACQUIRE message to
* appropriate key management daemons.
*/
for(p = keyregtable-snext; p; p = p-»next) {
if (p->type !'= type)
continue;

if (lcreated) {
struct key_msghdr *km;
int len;
len = sizeof (struct key_msghdr) + ROUNDUP (src->sa_len) +

ROUNDUP (dst->s8a len);
K_Malloc(km, struct key_msghdr *, len);

23

DEF00007964

key.c

1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542

if (km == 0)

9/28/1995

DPRINTF (IDL_CRITICAL, ("key_acquire: no memory\n")) ;

return(-1);

DPRINTF (IDL_FINISHED, ("key_acquire/created: 1\n"));

bzero((char *)km,
km->key msglen =
km->key msgvers
km->key msgtype
km->type = type;

len) ;

len;

KEY VERSION;
KEY ACQUIRE;

DPRINTF (IDL FINISHED, ("key_acquire/created: 2\n"});

/*

* This is inefficient and slow.

*/
/*

* We zero out sin zero here for AF INET addresses because
* ip output () currently does not do it for performance reascns.

*/

if (src-ssa family == AF INET)
bzero((char *) (&((struct sockaddr in *)src)-»>sin zero},
sizeof (((struct sockaddr in *)src)-»>sin_zero));
if (det-»sa family == AF INET)
bzero((char *) (&((struct sockaddr in *)dst)->sin zero),
sizeof (| {(struct sockaddr in *)dst)->sgin_zero));

beopy ((char *)src,
bcopy ((char *)dst,

dst->sa len);

src->s8a len);
+ ROUNDUP (src-»>sa_len)),

(char *) (km + 1),
(char *) {((int) (km + 1)

DPRINTF (IDL FINISHED, ("key acquire/created: 3\n"));

MGETHDR (m,

M WAIT, MT DATR);

m->m len = m->m_pkthdr.len = 0;

m->m next = 0;
m->m nextpkt = 0;
m->m pkthdr.rcvif
m copyback(m, 0O,
KFree (km) ;

len,

= 0;
(caddr_t)km) ;

DPRINTF (IDL FINISHED, ("key acquire/created: 4\n"));
DDO (IDL FINISHED, dump_mchain(m)) ;

Created++;

}

if (last) {
struct mbuf *n;
if (n = m copy(m,

if (sbappendaddr (&last->so_rcv,

m freem(n);

else {
sorwakeup (last) ;
guccess++;

last = p->socket;

}
if (last) {

0, {int)M COPYALL)) {

&key src, n, (struct mbuf *)0) == 0)
DPRINTF (IDL_FINISHED, ("key_acquire/last: 1\n"));
&key src, m, (struct mbuf *)0) == 0)

if (sbappendaddr(&last-»>so_rcv,

m freem(m) ;

else {
sorwakeup(last) ;
SUCCESBS8++;

DPRINTF (IDL_FINISHED, ("key_acquire/last: 2\n"));

} else
m_freem(m) ;

/*

24

DEF00007965

key.c

1543
1544
1545
1546
1547
1548

1549
1550
1551
1552
1553
1554
1555
1556
1557

1558
1559
1560
1561
1562
1563
1564
1565
1566
1567

1568
1569

1570
1571
1572

1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1€01
1602
1603

9/28/1995

* Update the acquirelist
*
if (success) {

if (tap) {
DPRINTF (IDL MAJOR EVENT, ("Adding new entry in acquirelist\n"});
K Malloc(ap, struct key acguirelist *, sizeof (struct
key acguirelist));
if (ap ==

return(success ? 0 : -1);
bzero((char *)ap, sizeof (struct key acquirelist));
bcopy ((char *)dst, (char *)&(ap->target), dst->sa_len);
ap->type = etype;
ap->next = key acquirelist-snext;
key acquirelist->next = ap;

DPRINTF (IDL_EVENT, ("Updating acquire counter and expiration
time\n"));

ap->count++;

ap->expiretime = time.Lv_sec + maxacquiretime;

DPRINTF (IDL MAJOR EVENT, ("key acquire: done! success=%d\n",success));
return(success ? 0 : -1);

* key alloc() :
* Allocate a security association to a socket. A socket
requesting
* unigque keying (per-socket keying) is assigned a security
assocation
* exclusively for its use. Sockets not requiring unique keying
are
* assigned the first security association which may or may not be
* used by another socket.
__ *
o
int
key_alloc(type, src, dst, socket, unigue_key, keynodep)
u int type;

struct sockaddr *src;

struct sockaddr *dst;

struct socket *gsocket;

u int unique key;

struct key_tblnode **keynodep;

struct key tblnode *keynode;

char buf [MAXHASHKEYLEN] ;

struct key allocnode *np, *prevnp;
struct key_so2spinode *newnp;

int len;

int indx;

DPRINTF (IDL GROSS EVENT, ("Entering key_alloc w/type=%u!\n",type));
if (!(src && dst))
DPRINTF (IDL_CRITICAL, ("key_alloc: received null src or dst!\n"));
return(-1) ;

/*
* We treat esp-transport mode and esp-tunnel mode
* as a single type in the keytable.
*/
if (type == SS ENCRYPTION NETWORK)
type = SS_ENCRYPTION_TRANSPORT;

/*

* Search key allocation table

25

DEF00007966

key.c

1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635

1636
1637

1638
1639
1640
1641
1642
1643

1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654

1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666

9/28/1995

*/

bzero({(char *)&buf, sizeof (buf));
len = key createkey((char *)&buf, type, src, dst, 0, 1);
indx = key gethashval ((char *)&buf, len, KEYALLOCTBLSIZE);

#idefine np type np->keynode->secasscc->type

#define np state np->keynode->secassoc->state

#define np src (struct sockaddr *)&(np->keynode->secassoc->src)
#define np_dst (struct sockaddr *)&(np->keynode-»secassoc->dst)

prevnp = &keyalloctbl [indx];
for (np = keyalloctbl [indx] .next; np; np = np-»>next) {

}

if ((type == np type) && addrpart_equal (src, np_src) &&
addrpart equal(dst, np_dst) &&
! (np_state & (K LARVAL | K _DEAD | K_UNIQUE))) {
if (! (unique_key))
break;
if (!(np state & K USED))
break;

prevnp = np;

if (np) {

struct key so2spinode *newp;
struct socketlist *newsp;
int s = splnet();

DPRINTF (IDL MAJOR EVENT, ("key alloc: found node to allocate\n"))};
keynode = np->keynode;

K Malloc (newnp, struct key_so2spinode *, sizeof (struct
key so2spinode)) ;
if (newnp == 0)
DPRINTF (IDL_CRITICAL, ("key_alloc: Can't alloc mem for so2spi
node!\n")) ;
splx(s);
return (ENOBUFS) ;

K Malloc(newsp, struct socketlist *, sizeof (struct socketlist));
if (newsp == 0)
DPRINTF (IDL CRITICAL, ("key_alloc: Can't alloc mem for
socketlist!\n"));
if (newnp)
KFree (newnp) ;
splx(s);
return (ENOBUFS) ;

/*

* Add a hash entry into the so2spi table to

*/map socket to allocated secassoc.

x
DPRINTF (IDL GROSS EVENT, ("key alloc: adding entry to so2spi
table..."));
newnp->keynode = keynode:
newnp->socket = socket;
newnp->next = so2spitbl{((u_int32)socket) % SO2SPITBLSIZE] .next:
so2spitbl [((u int32)socket) % SO2SPITBLSIZE] .next = newnp;
DPRINTF (IDL_GROSS_EVENT, ("done\n"));

if (unique_key) {
/* -
* Need to remove the allocation entry
* gince the secassoc is now unique and
* can't be allocated to any other socket

*/

26

DEF00007967

key.c

1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697

1698

1699
1700
1701
1702
1703

1704
1705
1706
1707
1708
1709
1710

1711
1712

1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725

1726
1727

9/28/1995

DPRINTF (IDL MAJOR EVENT, ("key alloc: making keynode unique..."));
keynode->secassoc->state |= K UNIQUE;
prevnp->next = np->next;
KFree (np) ;
DPRINTF(IDL_MAJOR_EVENT,("done\n"));
}
keynode->secassoc->state |= K USED;
keynode->secassoc->state |[= K_OUTBOUND;
keynode->alloc_count++;
/*
* Add socket to list of socket using secassoc.
*/
DPRINTF (IDL GROSS EVENT, ("key_alloc: adding so to solist..."));
newsp->socket = socket;
newsp->next = keynode-s>solist->next;
keynode->solist->next = newsp;
DPRINTF (IDL_GROSS EVENT, ("done\n"));
*keynodep = keynode;
splx(s);
return(0) ;
}
*keynodep = NULL;
return(0) ;
/* __
* key free():
* Decrement the refcount for a key table entry. If the entry is
* marked dead, and the refcount is zero, we go ahead and delece
it.
___ *
/
void
key_ free(keynode)

struct key_tblnode *keynode;

{

DPRINTF (IDL MAJOR EVENT, ("Entering key_free

w/keynode=0x%x\n", keynode)) ;

if (!keynode)
DPRINTF (IDL_CRITICAL, ("Warning: key_free got null pointer\n"));
return;

(keynode->ref count)--;

if (keynode->ref count < 0) {
DPRINTF(IDL CRITICAL, ("Warning: key_ free decremented refcount to
$d\n", keynode->ref count));

if ((keynode->secassoc->state & K DEAD) && (keynode->ref_count <= 0))

DPRINTF (IDL MAJOR EVENT, ("key free: calling key_delete\n"));
key_delete (keynode->secassoc) ;

* getassocbyspi ():
Get a security association for a given type, src, dst, and spi.

*

%

* Returns: 0 if sucessfull

* -1 if error/not found
*
*

Caller must convert spi to host order. Function assumes spi is

* in host order!

DEF00007968

key.c

1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740

1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756

1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771

1772
1773
1774

1775

1776
1777

1778
1773
1780
1781
1782
1783
1784
1785
1786
1787

9/28/1995

o/
int
getassocbyspi (type, src, dst, spi, keyentry)
u int type;
struct sockaddr ¥*src;
struct sockaddr *dst;
u int32 spi;
struct key_ tblnode **keyentry;

char buf [MAXHASHKEYLEN] ;
int len, indx;
struct key_tblnode *keynode, *prevkeynode = 0;

DPRINTF (IDL,_GROSS_EVENT, ("Entering getassocbyspi w/type=%u spi=%u\n",
type.spi));
/*
* We treat esp-transport mode and esp-tunnel mode
* as a single type in the keytable.
*/
if (type == S8 ENCRYPTION NETWORK)
type = SS_ENCRYPTION_TRANSPORT;

*keyentry = NULL;

bzero(&buf, sizeof (buf));

len = key createkey((char *)&buf, type, src, dst, spi, 0);

indx = key gethashval ((char *)&buf, len, KEYTBLSIZE):;

DPRINTF (IDL FINISHED, ("getassocbyspi: indx=%d\n",indx));

DDO (IDL_FINISHED,dump sockaddr (src);dump sockaddr(dst));

keynode = key search(type, src, dst, spi, indx, &prevkeynode);

DPRINTF (IDL GROSS EVENT, ("getassocbyspi: keysearch

ret=0x%x\n", keynode)) ;

if (keynode && !(keynode->secassoc->state & (K DEAD | K LARVAL))) {
DPRINTF (IDL EVENT, ("getassocbyspi: found secassoc!\n"));
(keynode->ref count) ++;
*keyentry = keynode;

} else {
DPRINTF (IDL MAJOR_EVENT, ("getassocbyspi: secassoc not found!\n"));
return (-1);

return(0) ;

/* __
* getassocbysocket () :

* Get a security association for a given type, src, dst, and
socket.

* If not found, try to allocate one.

* Returns: 0 if successfull

* -1 if error condition/secassoc not found (*keyentry =
NULL)
* 1 if secassoc temporarily unavailable (*keynetry =
NULL)
* (e.g., key mgnt. daemon(s) called)

int
getassocbysocket (type, src, dst, socket, unique_key, keyentry)
u int type;
struct sockaddr *src;
struct sockaddr *dst;
struct socket *socket;
u int unique key;
struct key_tblnode **keyentry;

struct key_tblnode *keynode = 0;

28

DEF00007969

key.c 9/28/1995

1788 struct key so2spinode *np;
1789 int len, indx;

1790 u int32 spi;

1791 u_int realtype;

1792

1793 DPRINTF (IDL GROSS EVENT, ("Entering getassocbysocket w/type=%u
so=0x%x\n", type, socket)) ;

1794

1795 /*

1796 * We treat esp-transport mode and esp-tunnel mode

1797 * as a single type in the keytable. This has a side

1798 * effect that socket using both esp-transport and

1799 * esgp-tunnel will use the same security association

1800 * for both modes. 1Is this a problem?

1801 */

1802 realtype = type;

1803 if (type == SS ENCRYPTION NETWORK)

1804 type = SS_ENCRYPTION_ TRANSPORT;

1805

1806 if (np = key sosearch(type, src, dst, socket)) ({

1807 if (np->keynode && np-s>keynode->secassoc &&

1808 ! (np->keynode->secassoc->state & (K DEAD | K LARVAL))) {

1809 DPRINTF (IDL FINISHED, ("getassocbysocket: found secassoc!\n"));

1810 (np->keynode->ref count) ++;

1811 *keyentry = np-s>keynode;

1812 return(0) ;

1813

1814 }

1815

1816 /*

1817 * No secassoc has been allocated to socket,

1818 * g0 allocate one, if available

1819 */

1820 DPRINTF (IDL EVENT, ("getassocbyso: can't find it, trying to
allocate!\n"));

1821 if (key alloc(realtype, src, dst, socket, unique_key, &keynode) == 0)
1822 if (keynode)
1823 DPRINTF (IDL EVENT, ("getassocbyso: key alloc found secassoc!\n"));
1824 keynode-s>ref count++;
1825 *keyentry = keynode;
1826 return(0) ;
1827 } else {
1828 /*
1829 * Kick key mgnt. daemon (s)
1830 * (this should be done in ipsec output policy() instead or
1831 * gelectively called based on a flag value)
1832 */
1833 DPRINTF (IDL FINISHED, ("getassocbyso: calling key mgnt
daemons!\n")) ;
1834 *keyentry = NULL;
1835 if (key acquire(realtype, src, dst) == 0)
1836 return (1) ;
1837 else
1838 return(-1);
1839
1840 }
1841 *keyentry = NULL;
1842 return(-1);
1843
1844
1845
29

DEF00007970

=
@
<

WIS WK

9/28/1995

key.h : Declarations and Definitions for Key Engine for BSD.

Copyright 1995 by Bao Phan, Randall Atkinson, & Dan McDonald,
All Rights Reserved. 2all rights have been assigned to the US
Naval Research Laboratory (NRL). The NRL Copyright Notice and
License Agreement governs distribution and use of this software.

L g
*
*
*
*
*
*
* Patents are pending on this technology. NRL grants a license
* to use this technology at no cost under the terms below with
* the additional requirement that software, hardware, and

* documentation relating to use of this technology must include
* the note that:

* This product includes technology developed at and

* licensed from the Information Technology Division,

* US Naval Research Laboratory.

*

@ (#) COPYRIGHT 1.1a (NRL) 17 August 1995
COPYRIGHT NOTICE

All of the documentation and software included in this software
distribution from the US Naval Research Laboratory (NRL) are
copyrighted by their respective developers.

This software and documentation were developed at NRL by various
people., Those developers have each copyrighted the portions that they
developed at NRL and have assigned All Rights for those portions to
NRL., Outside the USA, NRL also has copyright on the software
developed at NRL. The affected files all contain specific copyright
notices and those notices must be retained in any derived work.

NRL LICENSE

NRL grants permission for redistribution and use in source and binary
forms, with or without modification, of the software and documentation
created at NRL provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:

This product includes software developed at the Information
Technology Division, US Naval Research Laboratory.

4, Neither the name of the NRL nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ~"AS
IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL CR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY QUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

DEF00007971

104

105
106
107

109
110
111
112
113
114

115
116
117
118
119
120
121
122

124
125
126
127

129
130

9/28/1995

The views and conclusions contained in the software and documentation
are those of the authors and should not be interpreted as representing
official policies, either expressed or implied, of the US Naval

Research Laboratory (NRL).

/*
* PF_KEY messages
*/

#define KEY ADD
#define KEY DELETE
#define KEY UPDATE
#define KEY GET
#define KEY ACQUIRE
#define KEY GETSPI
#define KEY REGISTER
#define KEY EXPIRE
#define KEY DUMP
#define KEY FLUSH

HWOOJOUT L WD

#define KEY VERSION 1
#define POLICY_VERSION 1

/*

* Security association state

*/

#define K USED 0x1 /* Key used/not used */

#define K UNIQUE 0x2 /* Key unique/reusable */

#idefine K LARVAL 0x4 /* SPI assigned, but sa incomplete */
#define K ZOMBIE 0x8 /* 8a expired but still useable */
#define K DEAD 0x10 /* sa marked for deletion, ready for

reaping */

#define K INBOUND 0x20 /* sa for inbound packets, ie. dst=myhost

*

#define K OUTBOUND 0x40 /* sa for outbound packets, ie.

grc=myhost */

/*

* Structure for key message header.

PF KEY message consists

of key msghdr followed by

L4

* grc sockaddr, dest sockaddr, from sockaddr, key, and 1iv.
* Assumes size of key message header less than MHLEN.
*

struct key msghdr {
u short key msglen; /*
src/dst/from/key/iv */
u char key msgvers; /*
u char Kkey msgtype; /*

pid_t key pid; /*
int key seq; /*
int key errno; /*
u int8 type; /*
u int8 state: /*
u int8 label; /*
u int32 spi; /*
u int8 keylen; /*
u int8 divlen; /*
u int8 algorithm; /*
u int8 lifetype; /*
u int32 lifetimel; /*
u int32 lifetime2; /*

length of message including

key version number */

key message type, eg. KEY ADD */
process id of message sender */

message sequence number */

error code */

type of security association */

state of security association */
sensitivity level */

spi value */

key length */

iv length */

algorithm identifier */

type of lifetime */

lifetime value 1 */

lifetime value 2 */

DEF00007972

key.h

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

152
153
154
155
156
157
158
159
160
161
162
163

164
165

166
167
168
169
170
171
172
173
174
175
176
177

178

180
181
182
183

184
185
186
187
188
189
190

192

9/28/1995

struct key msgdata {

struct sockaddr *src; /* source host address */

struct sockaddr *dst; /* destination host address */

struct sockaddr *from; /* originator of security association */
caddr t iv; /* initialization vector */

caddr t key; /* key */

int ivlen; /* key length */

int keylen; /* iv length */

}i

struct policy msghdr {
u short policy msglen; /* message length */
u char policy msgvers; /* message version */
u char policy msgtype; /* message type */
int policy seq; /* message sequence number */
int policy _errno; /* error code */

’

#ifdef KERNEL

/t

* Key engine table structures
*

struct socketlist {
struct socket *socket; /* pointer to socket */
struct socketlist *next; /* next */

’

struct key tblnode {

int alloc count; /* number of sockets allocated to
secassoc */

int ref_count; /* number of sockets referencing secassoc
*/

struct socketlist *solist; /* list of sockets allocated to secassoc
*/

struct ipsec assoc *secassoc; /* security association */
struct key_tblnode *next; /* next node */

}i

struct key allocnode {
struct key tblnode *keynode;
struct key allocnode *next;

i

struct key so2spinode {
struct socket *socket; /* socket pointer */
struct key_tblnode *keynode; /* pointer to tblnode containing secassoc

*/
/* info for socket */
struct key_so2Zspinode *next;

}i

struct key registry {
u int8 type; /* secassoc type that key mgnt. daemon can
acquire */)
struct socket *socket; /* key management daemon socket pointer */
struct key_registry *next;

i

struct key acquirelist {

u int8 type; /* secassoc type to acquire */

struct sockaddr iné target; /* destination address of secassoc */

u int32 count; /* number of acquire messages sent */

u_long expiretime; /* expiration time for acquire message */
3

DEF00007973

key.h

193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

213
214
215
216
217
218
219
220

221
222

223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242

243
244
245

struc

i

struct
int i
int i
int a

#endif

*
* Usef
*/

#ifndef
#define
#define
felse

#define

9/28/1995

t key_acquirelist *next;

keyso cb {

p4 count; /* IPv4 */

pé count; /* IPvé */

ny_count; /* Sum of above counters */
ul macros

KERNEL
K Malloc(p, t, n) (p = (t) malloc((uneigned int) (n)))
KFree (p) free((char *)p);

(t) malloc((unsigned long) (n), M_SECA,

K Malloc(p, t, n) (p

M DONTWAIT))

#define
#endif

#ifdef
void
void
void
int

* 1

int
* I

int
int
int

void
int
int

int
int
void
int
int
int
void
int
int

*
i

#endif

KFree (p) free((caddr_t)p, M_SECA);
/* KERNEL */

KERNEL

key init _P((void));

key cbinit P((void));

key inittables P((void));

key secassoc2msghdr _ P((struct ipsec_assoc *, struct key_msghdr

struct key_msgdata *));
key msghdr2secassoc _ P((struct ipsec_assoc *, struct key_msghdr

struct key_msgdata *));
key add P((struct ipsec assoc *));
key delete P((struct ipsec assoc *));
key_get P({u int, struct sockaddr *, struct sockaddr *, u_int32,
struct ipsec assoc **));
key flush P((void));
key dump _P((struct socket *));
key_getspi P((u int, struct sockaddr *, struct sockaddr *,
u int32 ¥));
key update _P((struct ipsec assoc *));
key register _P((struct socket *, u_int));
key unregister P((struct socket *, u int, int));
key acquire _P((u int, struct sockaddr *, struct sockaddr *));
getassocbyspi P({(u int, struct sockaddr *, struct sockaddr *,
u int32, struct key tblnode **));
getassocbysocket P((u_int, struct sockaddr *, struct sockaddr *,
struct socket *, u int, struct key_tblnode **)};
key free _P((struct key tblnode *));
key output P((struct mbuf *, struct socket *));
key usrreq __ P((struct socket *, int, struct mbuf *, struct mbuf

struct mbuf *));

DEF00007974

	2011-04-28 Reexam Miscellaneous Incoming Letter

