

EXHIBIT 14

Bedrock Computer Technologies, LLC v. Softlayer Technologies, Inc. et al Doc. 842 Att. 15

Dockets.Justia.com

http://dockets.justia.com/docket/texas/txedce/6:2009cv00269/116887/
http://docs.justia.com/cases/federal/district-courts/texas/txedce/6:2009cv00269/116887/842/15.html
http://dockets.justia.com/

6640e328-b5ee-4d66-89ae-bcd019768030

Page 1

1 IN THE UNITED STATES DISTRICT COURT
 FOR THE EASTERN DISTRICT OF TEXAS

2 TYLER DIVISION
3

BEDROCK COMPUTER)
4 TECHNOLOGIES LLC

 DOCKET NO. 6:09cv269
5 -vs-)

 Tyler, Texas
6 8:50 a.m.

YAHOO!, INC.) April 29, 2011
7
8 TRANSCRIPT OF TRIAL

 MORNING SESSION
9 BEFORE THE HONORABLE LEONARD DAVIS,

 UNITED STATES DISTRICT JUDGE
10
11 A P P E A R A N C E S
12

FOR THE PLAINTIFF:
13

MR. DOUGLAS A. CAWLEY
14 MR. THEODORE STEVENSON, III

MR. SCOTT W. HEJNY
15 MR. JASON D. CASSADY

McKOOL SMITH
16 300 Crescent Court, Ste. 500

Dallas, TX 75201
17
18 MR. ROBERT M. PARKER

MR. ROBERT CHRISTOPHER BUNT
19 PARKER, BUNT & AINSWORTH

100 E. Ferguson, Ste. 1114
20 Tyler, TX 75702
21

COURT REPORTERS:
22

MS. JUDY WERLINGER
23 MS. SHEA SLOAN
24

Proceedings taken by Machine Stenotype; transcript was
25 produced by a Computer.

6640e328-b5ee-4d66-89ae-bcd019768030

Page 14

1 ANSWER: Yes.

2 QUESTION: And, again, you said that when

3 you sent e-mails to Mr. Absher, you had no reason to be

4 dishonest; isn't that true?

5 ANSWER: No. Absolutely.

6 QUESTION: Now, isn't it true, in that

7 paragraph, sir, you wrote to Mr. Absher stating: My

8 analysis showed that the code written by me does not

9 actually collide with the aforementioned patent. My

10 code uses quite different techniques?

11 ANSWER: Yes.

12 QUESTION: And isn't it also true, sir,

13 that the current Linux kernel actually contains logic,

14 which could be considered infringing the patent?

15 ANSWER: Yes.

16 QUESTION: Okay. And isn't it also true

17 that you could not find any references describing the

18 idea in the patent before 1999? Isn't that true, sir?

19 ANSWER: No. It was a mistake.

20 Actually, I found a lot of references

21 dated back to 1985 about this technique. I just didn't

22 have any references at that point.

23 QUESTION: Well, sir, in the e-mail

24 that's Exhibit 8, you've already said that you were

25 truthful when you wrote this e-mail, right?

6640e328-b5ee-4d66-89ae-bcd019768030

Page 15

1 ANSWER: Yes, I was truthful. I didn't

2 lie. I just didn't have the information. I got it --

3 QUESTION: I understand. But in this

4 e-mail, didn't you write: I could not find any

5 references describing the idea before 1999?

6 ANSWER: I found them quickly after that.

7 To December 15, I have already investigated the case and

8 find all the papers, found who -- I didn't find actually

9 who invented this technique, but I found investigations

10 of analysis of technique dated ten years before that, at

11 least 1985.

12 QUESTION: Okay. Well, sir, my question

13 is, in this e-mail, isn't it true that you wrote: I

14 could not find any references describing the idea before

15 1999?

16 ANSWER: No. It is not true. I was

17 truthful when I wrote it, but I just didn't have that

18 information. So this sentence is not true.

19 I am truthful, but -- I am truthful, but

20 statement is not true. I didn't lie, but the statement

21 is not true. I just didn't know that it wasn't true at

22 that time when I wrote this.

23 QUESTION: Now, Mr. Kuznetsov, isn't it

24 true, sir, that the Defendant's position can be

25 difficult to defend, and you believe that they should

6640e328-b5ee-4d66-89ae-bcd019768030

Page 16

1 seek an expert in loopholes of patent rules?

2 ANSWER: Yes. Yes, I wrote that as well.

3 QUESTION: Is it a true statement, sir,

4 that the Defendant's position can be difficult to

5 defend, and you believe they should seek an expert in

6 loopholes of patent rules?

7 ANSWER: No. It was a wrong statement.

8 I thought that it's true when I wrote this. But after I

9 remembered that this code is actually inherited from my

10 code of 1995, I returned my opinion to the opinion which

11 I had a year ago. It is not true.

12 QUESTION: Yes or no, Mr. Kuznetsov, did

13 you say you should seek an expert in loopholes of patent

14 rules?

15 ANSWER: Yes.

16 QUESTION: Okay.

17 ANSWER: This is not true.

18 (End of video clip.)

19 THE COURT: All right. Thank you.

20 Who will be your next witness?

21 MR. CAWLEY: Your Honor, at this time, we

22 would call to the stand Mr. David Filo.

23 THE COURT: All right, Mr. Filo.

24 MR. CAWLEY: May I proceed, Your Honor?

25 THE COURT: Yes, you may.

6640e328-b5ee-4d66-89ae-bcd019768030

Page 128

1 behind. It's not -- is not this enough to invalidate

2 the patent?

3 Q. Exactly. And we will hear the rest of his

4 deposition this afternoon, correct?

5 A. That's my understanding.

6 Q. And have you had an opportunity to look at

7 the -- I think Mr. Cawley asked you and you said you had

8 had an opportunity now to look at the -- what we call

9 the old prior art Linux code or the Kuznetsov code or

10 the '95 code?

11 A. Yes, ma'am.

12 Q. And do you have a copy in front of you, sir?

13 A. I do.

14 Q. And what language is this code written in?

15 A. This is written in C.

16 Q. And do you read and program in C?

17 A. Yes, ma'am.

18 MS. DOAN: We're on Exhibit 48, and it

19 starts around Page 132, I think, is where the lines are.

20 Q. (By Ms. Doan) And have you reviewed this old

21 prior art '95 Linux code?

22 A. Yes, ma'am, I have.

23 Q. And what version are you looking at, please,

24 sir? Is it 2.0.1?

25 A. I'm looking at -- yes, 2. -- well, sorry.

6640e328-b5ee-4d66-89ae-bcd019768030

Page 129

1 This is Linux 2.0.1, that's correct.

2 Q. Okay. And you understand that there's three

3 different versions that we're all talking about, all

4 basically have the same type of code in it, correct?

5 A. Yes, ma'am. Well, three versions? Sorry.

6 Q. Right. Of the old Linux code?

7 A. The old Linux code, yes.

8 Q. Okay. And does Exhibit No. 48, the old Linux

9 code, have on-the-fly garbage collection with a hashing

10 table and external chaining?

11 A. Yes, ma'am.

12 Q. And can you tell us where that is in the prior

13 art?

14 A. Sure. So -- I'm not sure I have exactly the

15 same thing you have, but let me try.

16 If you could go to Line -- let's start at Line

17 1446.

18 That's not it. I'm going to need -- I

19 don't -- this is a different -- try 1365. I have two

20 different printouts here. Sorry.

21 Q. Okay. That's fine. 1365?

22 A. Yes, that's correct.

23 Q. Okay. Does that match the version we're

24 talking about?

25 A. Yes, that matches what I have here.

6640e328-b5ee-4d66-89ae-bcd019768030

Page 130

1 Q. Exhibit 48? Okay.

2 A. Yes.

3 Q. And tell us what where -- where in the code,

4 in the 1995 Alexey Kuznetsov code, it has on-the-fly

5 garbage collection with external chaining and a linked

6 list.

7 A. Okay. Well, this is -- if we could go back

8 previously to the code -- but this is a hash -- this is

9 within a hash table. And Line 1365 represents the

10 beginning of walking the linked list within the hash

11 table.

12 I think you've seen this structure before,

13 where you have a while loop, and that represents -- you

14 know, this while loop that starts on Line 1365 and ends

15 on Line 1383, that is the code that represents walking

16 the linked list. And, again, I think we've looked at

17 this before in some other examples.

18 And the idea is you start with the first

19 record and you iterate through. While we're walking

20 through the list here, if you look at Line 1369, we will

21 see that there is a check to see if -- here we see this

22 Cache_TIMEOUT, and basically what this is doing is

23 checking to see if this particular record in the linked

24 list has expired.

25 We identify that it has expired, and

6640e328-b5ee-4d66-89ae-bcd019768030

Page 131

1 immediately in Lines -- well, in the Lines 1372 through

2 1378, that is where it's removing the expired record.

3 And so this is, again, all within the same

4 access of the linked list while we're walking it. It

5 has identified and removed the expired record.

6 And if you go down further to Line 1382,

7 that's just updating the pointer to continue walking the

8 list.

9 And then, as I said, as you drop down to 1384,

10 you now have exited the list; and you have completed

11 walking the list.

12 Q. All right. So that on Line 13 -- 1378 there,

13 it says rt_free(rth). Can you tell us what that means?

14 A. Rt_free, that is what is removing -- well,

15 it's in combination with 13 -- it's actually a

16 combination of 1372 through 1378. You have to do those

17 multiple operations to do the actual removal. And

18 that's kind of the final step in removing that record.

19 Q. That removes the record?

20 A. That's correct.

21 Q. Okay. So does Exhibit No. 48, the lines we

22 just went over, does that --

23 A. But it doesn't -- the record was actually

24 removed above that --

25 Q. Okay.

6640e328-b5ee-4d66-89ae-bcd019768030

Page 132

1 A. -- in 1372. What that does is actually free

2 the memory. As we've talked about before, once the

3 record is kind of deleted from the list, it is now

4 rt_free on Line 1378, is what is returning the record to

5 the operating system to be used for something else.

6 Q. I see. So what is the line that actually

7 removes the record from the external chain?

8 A. Actually, it's 1372, which is what changes the

9 pointer and skips over and is effectively taking that

10 record out of the list.

11 Q. Okay. So does Exhibit No. 48 -- Defendant's

12 Exhibit No. 48 describe on-the-fly garbage collection

13 with external chaining in a linked list?

14 A. Yes, ma'am, it does.

15 Q. Does it also have the automatic removal of

16 expired records?

17 A. Yes, ma'am. I talked -- just talked about

18 that. It identifies the records and removes them while

19 it's walking the list.

20 Q. And this code in Exhibit No. 48 was available

21 in 1995 and 1996, approximately one to two years before

22 the '120 patent was even applied for, correct?

23 A. Yes, ma'am.

24 Q. I think you talked about this a little bit

25 earlier. Yahoo! had Linux in late '95 or early '96?

6640e328-b5ee-4d66-89ae-bcd019768030

Page 133

1 A. That's correct.

2 Q. Does the 1995 -- does DX Exhibit No. 48

3 invalidate the '120 patent?

4 A. I believe it does.

5 Q. And, of course, you read the patent?

6 A. Right.

7 Q. And you studied it since your deposition --

8 A. Yes, ma'am.

9 Q. -- to be able to come and talk to us here

10 today about it?

11 A. Yes, ma'am.

12 Q. And you've reviewed other patents in the past?

13 A. I have.

14 Q. And you've reviewed Judge Davis' claim

15 construction?

16 A. Yes, I have.

17 Q. And you are applying the terms as Judge Davis

18 has construed them in this patent?

19 A. Yes, ma'am.

20 Q. Thank you, sir.

21 Have you also reviewed the NRL code?

22 A. I have.

23 MS. DOAN: Casey, I believe that is

24 Exhibit 215 -- oh, 37. I'm sorry. 37.

25 Q. (By Ms. Doan) Do you have that in front of

6640e328-b5ee-4d66-89ae-bcd019768030

Page 134

1 you, sir?

2 A. Yes, ma'am. I hope these lines match up.

3 Q. Well, I have NRL Code No. 37, and it's dated

4 9/28/1995 in the upper right-hand corner.

5 Is that what you have?

6 A. I have the file before that.

7 Q. The first page?

8 A. But this actually looks a little bit

9 different, but, again, I think the line numbers will

10 match up.

11 Q. Okay. You've got key.c; is that right?

12 A. Yes, ma'am.

13 Q. Okay. So the lines should match up?

14 A. They should.

15 So if you go to Line, I guess, 1332, to see if

16 it matches.

17 It does not match. Sorry.

18 Q. That's okay. Let me give you my copy of

19 Exhibit No. 37.

20 A. Okay. It would be Line 1397.

21 Okay. Sorry. We're close.

22 All right. So that says key acquire. That's

23 just the -- that's the function I guess that I'll talk

24 about first. Let's go to --

25 Q. Are --

6640e328-b5ee-4d66-89ae-bcd019768030

Page 135

1 A. Sorry.

2 Q. That's all right. Go ahead.

3 A. This code is a little harder to read. It's

4 got a lot of kind of debugging, slash -- debugging

5 information that kind of confuses things, but...

6 Q. What is debugging information?

7 A. It's information that the computer prints out

8 to explain what's happening, for humans to read. And so

9 instead of just doing kind of its work to run the

10 computer, it's also printing this stuff out.

11 Q. Is this also written in the language or the

12 computer language C?

13 A. Yes, it is.

14 Q. And, of course, you read and write in C?

15 A. Yes, ma'am.

16 Q. Now, I think we covered this earlier, but

17 Exhibit No. 37 is the key.c file to the NRL code; is

18 that right?

19 A. Yes, ma'am.

20 Q. Okay. And where are we -- what's happening on

21 Line 1397?

22 A. Well, that's just the start of it. I wanted

23 to check to see if it was same.

24 If you go down to Line 1431, this represents

25 the -- where you see the word "for," unfortunately, this

6640e328-b5ee-4d66-89ae-bcd019768030

Page 136

1 is a little different than what we've seen in the past.

2 When we've looked at walking a linked list, we've seen

3 the word "while."

4 This "for" is very similar to that, almost

5 equivalent. It's got some other stuff in there, but,

6 effectively -- I don't want to go into too much detail

7 here, I think, but the for loop -- it's called a for

8 loop instead of the while loop, and it's very similar to

9 that.

10 And if you go down to -- you know, that for

11 loop extends from 1431 down to 1459.

12 Q. 1459?

13 A. Yes, ma'am.

14 So that represents the loop that is walking

15 the list.

16 Q. Okay.

17 A. So, again, this represents a linked list and

18 it is -- this code is walking that list, and we can see

19 at the top, it says for. And it says ap = key

20 acquirelist next; ap; ap = ap next). The ap = ap next

21 on 1431, that represents moving the pointer to the next

22 record.

23 Q. Okay.

24 A. If you look at Line -- and I don't want to go

25 through all this code, but if you look at Line 1445, we

6640e328-b5ee-4d66-89ae-bcd019768030

Page 137

1 look for a condition that checks to see, in this case,

2 has the record expired. And you can kind of see ap

3 expiretime is less than time.tv_sec.

4 This is identifying expired records while it's

5 walking the list, and then what it does with that -- in

6 fact, if you read the comments -- and, again, this is

7 not the computer code but it's comments, so it may not

8 necessarily match. But it says since we're already

9 looking at this list, we may as well delete expired

10 entries as we scan through the list.

11 And if you look down at Line 1454 and 145 --

12 well, 1454 removes the record from the list. And then

13 we have a similar free, as we had before with the

14 rt_free in 1455, that frees up the memory to give it

15 back to the operating system to do something else.

16 Q. So Lines 1431 through 1459 are the part that's

17 the on-the-fly garbage collection while walking a linked

18 list; is that right?

19 A. That's correct. So this is a linked -- yes.

20 Q. Okay. And is there another part of this same

21 file, key.c in the NRL code, that talks about the hash

22 table with external chaining?

23 A. Yes, ma'am. It's going to be -- I'm going to

24 have to find it again, but around 615. Let's see if

25 it's close. Oh, 6 -- 6 -- 649.

6640e328-b5ee-4d66-89ae-bcd019768030

Page 138

1 Q. Okay.

2 A. So there are many examples in this file that

3 look at hash table or that -- this file is full of

4 routines and stuff that work on a hash table with

5 external chaining.

6 But I'll take you to Line 675, and the code

7 says prevnode = &keytable [indx]. And what that

8 represents, the key table is the hash table. The index

9 is -- in this case, it's being passed into the code.

10 That's the hash value.

11 And this next part of the code is, again,

12 walking -- is walking the linked list.

13 Q. Okay.

14 A. So this part of it -- sorry. So 676 is,

15 again, this for loop construct that I talked about.

16 And, again, you can see where it walks the

17 list by starting at the front, which is the keynode =

18 keytable [indx].next. And then it advances the pointer

19 to go to the next element by -- at the -- the last part

20 of that which says keynode = keynode.next), it starts on

21 676. It ends on 685. This code is a little --

22 Q. We can tell that from sort of the closed

23 bracket or closed paren?

24 A. Well, actually, so -- yeah, it stops at 682.

25 Q. 682?

6640e328-b5ee-4d66-89ae-bcd019768030

Page 139

1 A. And the point of this isn't so much to talk

2 about walking the list, but it's just to show that this

3 is a hash table, and the hash table has -- each element

4 of the hash table is an external chain or linked list.

5 Q. Okay.

6 A. So this represents a hash table with external

7 chaining.

8 Q. So Lines 675 to 682 of Exhibit No. 37

9 describes a hash table with external chaining; is that

10 correct?

11 A. Yes, ma'am, although you have to kind of go --

12 the keytable -- I think that's -- that's accurate, yes,

13 ma'am.

14 Q. All right. So within the key.c of the NRL

15 code, you had one part of the code that talked about a

16 hash table with external chaining, and another part of

17 the card -- code that talked about on-the-fly garbage

18 collection with a linked list; is that right?

19 A. Yes, ma'am.

20 Q. And combined these two references, these two

21 lines, sections of lines that you've talked about from

22 the NRL code, do they invalidate the '120 patent?

23 A. I believe they do.

24 Q. And would these have been -- the hash table

25 with external chaining and linked list within on-the-fly

6640e328-b5ee-4d66-89ae-bcd019768030

Page 140

1 garbage collection, would that have been something to --

2 that was well-known that you could interchange within

3 the -- a person of ordinary skill in the art back in

4 1995?

5 A. I believe so. And we've talked earlier about

6 the -- the hash tables with external chaining that's

7 been well-known back to the '70s or '60s, even further

8 back.

9 And the part that we looked at earlier which

10 walked the list, identified the expired entries and

11 removed them, that represents walking the list and

12 automatically expiring some of the -- or automatically

13 removing some of the expired records. So those two

14 concepts are in this file.

15 I think the concept of walking the list, this

16 represents -- I don't know how far back that goes. I

17 wouldn't suggest it goes back to the '60s, but this is

18 an example in 1995 that represents that concept. So

19 those two concepts together, my belief is, invalidates

20 the patent.

21 Q. Okay. And combined together would be under

22 the theory of obviousness, right?

23 A. Yes. I mean, external -- external chaining in

24 a hash table or, again, a linked list, that linked list,

25 if there's some way to operate on a linked list that's

6640e328-b5ee-4d66-89ae-bcd019768030

Page 141

1 found -- discovered elsewhere, that's obvious to apply

2 that to any use of a linked list.

3 In this case, the linked list happens to be in

4 the hash table. Linked list could be used for lots of

5 different things. They could be used standalone. They

6 could be used in hash tables. They could be used in

7 other data structures.

8 So taking the capability of automatically

9 expiring, automatically removing expired entries in a

10 linked list and combining that with the hash table is,

11 to me, very obvious.

12 Q. Okay. And does the NRL code inval --

13 invalidate the '120 patent, in your opinion?

14 A. I believe it does.

15 Q. All right. And, of course, you know that Dan

16 McDonald will be testifying later on in this case about

17 this to explain the e-mail that Mr. Cawley was talking

18 about?

19 A. Yes, ma'am.

20 Q. Now, if you would review the actual accused

21 code in this case, 2.6.9 and 2.6.18?

22 A. I have.

23 Q. And you're aware that the reason we focus on

24 those two is because the majority of the 196,000 servers

25 with the accused Linux candidate code are in these two

6640e328-b5ee-4d66-89ae-bcd019768030

Page 142

1 versions; is that right?

2 A. Yes, ma'am.

3 Q. So, for example, he -- well, I don't know

4 where it went anymore.

5 So, for example, there are two versions of

6 generation ID code. Do you recall that, that Dr. Jones

7 went through yesterday?

8 A. Yes, ma'am.

9 Q. But there's only one offline server at Yahoo!

10 with each of those two versions, right?

11 A. There used to be.

12 Q. Okay. So the vast majority of the servers

13 we're talking about is in 2.6.9 and 2.6.18, right?

14 A. Yes.

15 Q. All right. Now, let's look at 2.6.9, and I

16 believe that's Exhibit No. DX -- Defendant's Exhibit

17 No. 74.

18 A. Yes, ma'am. I have that one this time.

19 That's good.

20 Q. And does 2.6., this Linux candidate code

21 version, identify a record in the same access of a

22 linked list?

23 A. No, it does not.

24 Q. How do you know that?

25 A. Well, looking at the code -- and we have --

6640e328-b5ee-4d66-89ae-bcd019768030

Page 143

1 you guys, you have looked at this code before. So if we

2 go down to Line --

3 Q. I think they have a copy of the code, the

4 2.6.9.

5 A. Okay.

6 Q. And is that --

7 MS. DOAN: Is that the green version or

8 the yellow version? Who's got our copy?

9 Q. (By Ms. Doan) It says 2.6.9 at the top?

10 2.6.9?

11 A. Yes. Sorry. Yes, this is -- again, I have

12 the Exhibit 74.

13 And so at Line 776 --

14 Q. 776?

15 A. -- that's the rt_intern_hash function that we

16 have been talking about.

17 And if we go down to Line 795, I think you

18 will be familiar with the while loop that begins walking

19 the linked list. And I'll skip over the rest of it,

20 because I think you are somewhat familiar with it.

21 But 795 begins walking the list and the end of

22 that list is -- sorry -- the end of that while loop is

23 on 836.

24 Q. Okay.

25 A. And, again, we've looked at this, but this is

6640e328-b5ee-4d66-89ae-bcd019768030

Page 144

1 the while loop that walks through the list, each entry;

2 and while it's walking through the list, one of the

3 things it does is it scores each -- each record.

4 Q. How do we know that? Where are those lines?

5 A. Yes. So that's on Line 826 through 829.

6 Q. 826 through 829?

7 A. Sorry. 824 through 829.

8 Q. Okay.

9 A. The 824 line is actually computing the score,

10 and then we're keeping track of the lowest score in 826

11 through 829.

12 So this is walking the list and is identifying

13 records or -- it's identifying candidates.

14 And on 835, that's near the end of the while

15 loop. That's updating the pointer, which goes to the

16 next record. And, again, the while loop that begins

17 Line 795 is completed on 836.

18 So by the time we get to Line 838, we have

19 completed walking the list. We have gone through every

20 single element and analyzed every single element, and we

21 have effectively walked off the end of the list. And we

22 have completed the access of that list.

23 Q. So that would be between -- the first access

24 of the list is between 795 and --

25 A. 837.

6640e328-b5ee-4d66-89ae-bcd019768030

Page 145

1 Q. -- 837?

2 A. Yes.

3 Q. Okay. And what happens in that first access

4 between 795 and 837?

5 A. Well, there are a couple of things. It looks

6 for a match, but assuming there's no match, it's

7 doing -- it's doing the scoring for the candidates and

8 keeping track of the lowest score.

9 Q. Are there any records that are removed in the

10 Linux candidate code 2.6.9 in the first access -- or the

11 first walking all the way down the list from 795 to 837?

12 A. No, ma'am. As in the earlier example, we saw

13 where it actually removed it while it was walking the

14 list. In this example, there is no removal while it's

15 walking the list.

16 Q. Where does the removal take place?

17 A. It takes place after the first access, and you

18 see the lines 838 down to -- call it 847 where it's

19 checking to see if there's a candidate and to see how

20 long the linked list is. I guess -- and you guys,

21 again, have looked at this code and are possibly

22 familiar with it.

23 And on Lines 846 and 847 -- well, 846 is what

24 takes it out of the list, and 847 is what's freeing the

25 memory to go back to the operating system.

6640e328-b5ee-4d66-89ae-bcd019768030

Page 146

1 Q. So Lines 838 to 847 would be the second

2 access?

3 A. Yes, ma'am. That's going back and accessing

4 the list a second time. Again, the first list was

5 completed at 837.

6 Q. And you understand that Judge Davis has

7 instructed us that the '120 patent would require, when

8 the linked list is accessed, both identification and

9 removal of expired records occurs during the same access

10 of a linked list; is that right?

11 A. Yes, ma'am.

12 Q. And do both identification and removal of the

13 record happen in the same access in the 2.6.9 code?

14 A. No, ma'am.

15 Q. Now, we heard something yesterday about like a

16 spin_lock, spin_lock from Dr. Jones.

17 Do you recall that?

18 A. Yes, ma'am.

19 Q. Okay. So does the existence of a spin_lock or

20 spin_unlock in the Linux candidate code determine the

21 access?

22 A. No, ma'am. And again, there's no lock --

23 there's no mention of a lock in the patent, and so, you

24 know, locks are -- locks are fairly arbitrary in where

25 they get placed in computer code. It can vary a lot,

6640e328-b5ee-4d66-89ae-bcd019768030

Page 147

1 depending on what type of lock you use and that type of

2 thing.

3 And so I think, again, as has been talked

4 about, there is no mention of the word lock in the

5 patent. So I don't see how that would -- would apply

6 to -- to considering where the access is.

7 Q. Okay. And as a technician, as you are, why

8 would a lock not define the access? Why would a lock

9 matter or not?

10 A. Why would a lock matter or not?

11 Well, again, there are many different ways to

12 do locking, and you could -- you could lock huge parts

13 of the operating system and do many, many operations

14 while you have things locked.

15 And, you know, there are things like giant

16 locks in kernels that lock the system for very long

17 periods of time, do many, many operations. And to

18 consider all that stuff to be a single access just is

19 kind of a silly idea.

20 Q. All right. And if you look at Exhibit No. --

21 it's DX77, that's the 2.6.18 Route.c?

22 A. Yes, ma'am.

23 Q. 77. That's another version of the candidate

24 code?

25 A. Yes, ma'am.

6640e328-b5ee-4d66-89ae-bcd019768030

Page 148

1 Q. Are -- I know the line numbers are different,

2 but essentially is it the same thing, walking the --

3 A. Yeah. As has been talked about earlier, the

4 differences between 2.6.9 and 2.6.18 are mostly for the

5 purposes of -- these discussions are cosmetic. There

6 are differences in the actual code, but not important to

7 walking the list, identifying records, removing them,

8 and et cetera.

9 Q. Sure. So we all have our copies of the green

10 code.

11 A. Oh, sorry.

12 Q. Can you just take us and tell us which

13 lines --

14 A. Yes. Right.

15 Q. -- are the first access and the second?

16 A. So Line 937 --

17 Q. Okay.

18 A. Oh, no. Sorry. I'm sorry. Line 934.

19 Q. Hold on a second. Mr. Morisseau just pointed

20 out to me, I think the green code is actually a version

21 of 2.6.27. It's not 2.6.18 that we're talking about

22 here.

23 So do we have an example of 2.6.18 to show the

24 jury?

25 MR. MORISSEAU: The jurors do not have

6640e328-b5ee-4d66-89ae-bcd019768030

Page 149

1 that.

2 MS. DOAN: They don't have that? Okay.

3 THE WITNESS: We can show it on the

4 screen.

5 MS. DOAN: We can show it on the screen.

6 Sorry about that. That's fine. Sorry

7 about that.

8 A. I think I said 934 -- or Line 934. So that's

9 exactly what we just looked at. It's the while loop.

10 Starts at 934, and this while loop ends on 9 -- or 7 --

11 sorry -- 979.

12 Q. (By Ms. Doan) Okay.

13 A. And then --

14 Q. And that was the first access?

15 A. That's the first access. That's walking the

16 list, looking at every single record in the list. You

17 see the scoring on 967.

18 Q. I tell you what. Hold on one second.

19 MS. DOAN: Judge Davis, we have a copy of

20 the 2.6.18 code. Can we pass them out to the jury real

21 quick so they can follow along?

22 Judge Davis, we actually have copies of

23 this code. Can we pass it out to the jury real quick?

24 THE COURT: That's fine.

25 (Pause.)

6640e328-b5ee-4d66-89ae-bcd019768030

Page 150

1 Q. (By Ms. Doan) All right. This is Defendants'

2 Exhibit 77. And I'm sorry. I think you were on Line

3 934 to 979?

4 A. Yes. 934, which, again, is the start of the

5 while loop. And that while loop goes from 934 down to

6 979.

7 Q. How do you know that the first access ends

8 there as opposed to what Dr. Jones was telling us

9 yesterday?

10 A. Well, again, at 979 -- or sorry -- 980, which

11 is the first time you've -- you know, have completed the

12 while loop -- 980 isn't really any code, but it's kind

13 of blank. And so the next statement to execute would be

14 981.

15 But at that point, when you've completed the

16 while loop, you have gone through every single record,

17 and you have analyzed every single record, and you have

18 walked the entire list, and you've effectively -- like

19 as I said, you've walked off the end of the list.

20 Q. So you're at the very end of the list?

21 A. And you looked at the last pointer, and it was

22 empty, and so now you're -- have nowhere to go, so

23 you're coming off the list.

24 Q. So once you go all the way -- that was -- when

25 Dr. Jones talked about yesterday with the sticky notes,

6640e328-b5ee-4d66-89ae-bcd019768030

Page 151

1 it was all the way to the eight records at the end of

2 the linked list?

3 A. And you go to the ninth record and you realize

4 there is none, and that's when you stop the loop.

5 Q. You have to go back into the --

6 A. That's the end of that access.

7 Q. Okay. And so where does the second access

8 take place?

9 A. Again, this is very similar to the previous

10 code we just talked about, and that's Line 981 where it

11 checks to see if there are any candidates. And if there

12 are and the list is longer than eight or whatever the

13 elasticity is set to, it removes the record from the

14 list in Line 989, and then it frees and returns to the

15 operating system, the memory associated with that, on

16 Line 990.

17 Q. And again, with respect to 2.6.18, is your

18 same analysis, with respect to -- does it matter about

19 the spin_lock/unlock?

20 A. It's the same.

21 Q. And does the 2.6.18 remove expired records as

22 required by Judge Davis in his claim construction?

23 A. I don't believe they do -- it does.

24 Q. Okay. And why not?

25 A. Well, so if you look at -- go back up to Line

6640e328-b5ee-4d66-89ae-bcd019768030

Page 152

1 967 and look at that -- look down through 973, call

2 it --

3 Q. 973?

4 A. Well, just do a --

5 THE WITNESS: Yeah, there you go.

6 Well, do it in one highlight. That's

7 confusing. Can you just do one highlight instead of

8 two?

9 Q. (By Ms. Doan) Yeah. So from 9 -- give me

10 those -- the spread of those lines. From 966 to --

11 THE WITNESS: Just do one highlight

12 that's 966 -- or no -- sorry. Yeah, 967 -- okay.

13 That's fine. But it doesn't line up, so

14 if you could just kill the highlights and do -- kill the

15 other one, and do 967 through whatever I said, 9 -- or

16 972.

17 MS. DOAN: Can you do that if it's on

18 different pages? He has two pages, so he can't really

19 do that.

20 THE WITNESS: Oh, sorry. Sorry. I

21 didn't understand that.

22 MS. DOAN: That's okay.

23 THE WITNESS: Okay. All right. So it's

24 not going to quite line up, but...

25 A. All right. Okay. So this -- and Lines 967,

6640e328-b5ee-4d66-89ae-bcd019768030

Page 153

1 this is computing the score for that record in the list.

2 And this score is -- there's not a score about whether

3 the record is obsolete; this is a score -- has a bunch

4 of different factors that go into it, but it's simply a

5 score. And then we keep track of the lowest score.

6 And so in some sense, this is like pulling

7 straws; and because the score that's lowest is going to

8 get kicked out, it's kind of pulling straws, and the one

9 with -- whoever ends -- the record with the smallest

10 straw is going to get kicked out.

11 Now, it has nothing to do with whether the

12 record is expired or obsolete. These records that are

13 identified are all valid data; they are useful in the

14 future; and they could be used to do the -- you know,

15 the route lookup if it was there.

16 So there's nothing obsolete about these

17 entries. And again, we're just kind of picking one

18 somewhat at random, which one to pull out, and these are

19 all useful data and not obsolete or expired.

20 Q. So by applying Judge Davis's claim

21 construction of the word expired, which says obsolete

22 and, therefore, no longer needed or desired in the

23 storage system because of some condition, event, or

24 period of time, the 2.6.18 and 2.6.9 Linux code do not

25 meet that definition of expired record?

6640e328-b5ee-4d66-89ae-bcd019768030

Page 154

1 A. Yes. We've looked at the 2.6.18, but the

2 same -- the same reasoning applies to 2.6.9, which that

3 code is -- I believe it's identical character for

4 character.

5 Q. In your opinion, does the Linux candidate

6 code -- sorry.

7 In your opinion, does the Linux candidate code

8 infringe the '120 patent?

9 A. I believe it does not.

10 Q. And whether it's Version 2.6.18 or 2.6.9 or

11 any of the other versions that we covered yesterday with

12 Dr. Jones?

13 A. Anything with the candidate code, I believe,

14 does not.

15 Q. Okay. You haven't looked at the generation ID

16 code?

17 A. I haven't looked at that.

18 Q. Why not?

19 A. I saw it for the first time -- we have --

20 sorry. We had two servers running that code. These

21 servers had never performed a single function for the

22 Yahoo! website. They were in a test lab. Once we

23 realized that they were running generation ID code, we

24 immediately wiped those servers clean.

25 So we no longer have those. We had them. I

6640e328-b5ee-4d66-89ae-bcd019768030

Page 155

1 didn't think it was important to look at that, given

2 that the other 196,338 servers or whatever have the

3 older 2.6.9 and 2.6.18, so that's what I focused on.

4 Q. Okay. Thank you, sir. I want to switch gears

5 for a little bit --

6 A. Sure.

7 Q. -- and talk about now denial of service

8 attacks, because I know that's something that Mr. Cawley

9 covered with you as well.

10 A. Yes, ma'am.

11 Q. Has Yahoo!'s system ever been a target for a

12 denial of service attack?

13 A. Yes.

14 Q. And was Yahoo! a target for denial of service

15 attacks in 2005 before the candidate code was ever

16 written?

17 A. Yes, ma'am.

18 Q. And was Yahoo! a target for denial of service

19 attacks after the candidate code in the Linux operating

20 system?

21 A. Yes, ma'am.

22 Q. When you say we're a target for a denial of

23 service attack, what do you mean by that?

24 A. Target just means, you know, we -- there are a

25 lot of people out there trying to do malicious things,

6640e328-b5ee-4d66-89ae-bcd019768030

Page 156

1 and we have a lot of services we offer, and we serve a

2 lot of people, and we are one of the biggest targets on

3 the web. And because there are a number of people that

4 are out there doing malicious things, we end up being a

5 target for many of them.

6 Q. I had one other question about this code. I'm

7 so sorry. Do you mind going back to that in 2677 --

8 Exhibit No. 277 (sic)?

9 A. Okay.

10 Q. Because I want to make sure -- we're all

11 talking about so many different lines of code. The

12 2.6.18 code, that's the entire Route.c; that's the

13 entire route cache, correct?

14 And if you'll look at the very front page, it

15 says at the top front line --

16 A. Yes, ma'am.

17 Q. -- jEdit - Source Code_2.6.18_route.c?

18 A. Yes.

19 Q. Okay. That's the entire route cache?

20 A. I haven't verified that this exhibit

21 represents every single line of that file, but the route

22 cache is in that file.

23 Q. There's basically -- I think the copy we have

24 has about 3178 lines?

25 A. I think mine has -- mine has a few more than

6640e328-b5ee-4d66-89ae-bcd019768030

Page 157

1 that, but --

2 Q. Actually, it does. It's got 3214, right?

3 A. 3214. Yeah.

4 Q. 3214 --

5 A. 3214. I mean, I haven't -- I haven't

6 actually -- I mean, I have downloaded the source code,

7 but I haven't compared it to this to see if they're

8 actually -- this printout matches what you can download.

9 Q. Okay. And basically, Bedrock is talking about

10 41 of these lines in 2.6.18, correct?

11 A. My understanding is it's about 40. I haven't

12 counted it personally.

13 Q. Okay. And you mentioned that you had

14 downloaded this code recently?

15 A. Yes, ma'am.

16 Q. Why did you do that?

17 A. Well, for purposes of analysis. I downloaded

18 both the 2.6.9 Linux kernel and the 2.6.8 Linux kernel.

19 Q. And can any of us do that in the courtroom?

20 A. Yes, ma'am. It's readily available. Many

21 places you can go, but kind of -- source of truth or

22 the -- kind of the main place to go would be kernel.org.

23 Q. And we're showing a webpage up here from

24 www.kernel.org?

25 A. Correct. And this has -- you can pretty much

