Bedrock Computer Technologies, LLC v. Softlayer Technologies, Inc. et al Doc. 845 Att. 5

Exhibit 4

Dockets.Justia.com

http://dockets.justia.com/docket/texas/txedce/6:2009cv00269/116887/
http://docs.justia.com/cases/federal/district-courts/texas/txedce/6:2009cv00269/116887/845/5.html
http://dockets.justia.com/

| ' Pripoged Class 54 Date to In
APPLICATION(PROVAL FOR FILING [" "guciass 7oo * % Tvestor

AN

Taventor—Case No. (Alphabetical Listing - Fatent and Trademark Offlce Requirement)
/éf? M Afres Cse R :

. .
ettt S _— o . i ; i

Title Equations/Tables Approved: -
' M ETtopgs Ao AAPAAATUS FoL _
ZAFiamdriod Sro aACL ABp pRETRIEVHC ' /g/yg
Kind of Application — RKasignee | Ho. of Clalns 0. of Dvg.Sheets
g/ﬁe\r ' O continuvation %llcora _f_ Indebendent fo. otrFigl.
Design - 0 . < .
O Reissue Opivisicnal ~2_ Dependen 7

Approved For Filing (Inventor(s) and Attorneys to Sign end Date)

o | Gohod Wik Mo,
Date \Jcmgm?ﬁ /988

nd O Y it
Date V‘%?/ff o

By

Date _ ‘ .

Pleagse approve each correct item or note change, if any.

NOTE 70O ngd‘rt . If not available for signature next two weeks,
INVENTOR rification; Doce date of avall FIIIW‘I?%M—_I——n 38 portion.

Verification: 7tp plenning to move, note "moving" and approximate dste.

Intellectusl Property Matters Records Inventor's Verification -
Inventor,éc///_%ep ///C,/%ch /L/EAJT&; Inventor ya
Vocation COMf‘c/“ff‘/L SersoTic Vocation ok
Citizenship Glvr e » Srares oF /475{,/04 Citizenship ot
Residence Address - Residence Address

Frloowcoyr , VEW Lyl

Post 0ffice Add.rou (incl zip code) - |Post Office Address
/7 F0 £A4s7 IUTH “%/ péc &

Beaoum/ N w ¢ Mc /ARG

Taventor - Inventor o |

. {Vocation Vocation ' ‘ !
Citizenship) _ Citizenship :
'Hesldence Address Residence Address

L

Post Office Address (include zip code) Post Office Address

PE. T. . RESTRICTED - LINITED OISTRIBUTION - -BELLCORE ORLY ,
2-85 This document shall be distributed or routed solely to (over)
authorized narsons having a need ta know within Ball

Caumicntiom Rasearch (8allcore)

fiDefendants’ Exhibit)

BRI T ¥

| [Exhibit No. 057

Case No. 6:09-cv-00269-LED -

TELECORDIA00000245

T

R. M. Nemeé)kAse 2» zéizfé;?%£%7—/'

10

15

20

25

30

35

- 1 -

Methods and Apparatus for Information Storage and Retrieval

Technical Field

This invention relates to information storage

and retrieval systems and, more particularly, to the use
of hashing techniques in such systems.
Background of the Invention

Information or data stored in a computer-
controlled storage mechanism can be retrieved by searching
for a particular key in the stored records., Recordg with s
a——stored key matching the search key a#é then retrieved.
Such searching techniques require repeated accesses or
probes into the storage mechanism to perform the key
comparisons. In large storage and retrieval systems, such
searching, even if augmented by efficient search
algorithms such as a binary search, often requires an
excessive amount of time.

Another well-known and much faster method for
storing and retrieving information from computer store
involves the use of so-called "hashing" techniques. These
techniques are also sometimes called scatter-storage or
key-transformation techniques. In a system using hashing,
the key is operated upon (by a hashing function) to
produce a storage address in the storage space (called the
hash table). This sforage address is then used to access
the desired storage location directly with fewer storage
accesses or probes than sequential or binary searches.
Hashing techniques are described in the classic text by D.
Knuth entitled The Art of Computer Programming, Volume 3,
Sorting and Searching, pp.506-549, Addison-Wesley,
Reading, Massachusetts, 1973. ' ‘

Hashing functions are designed to translate the
universe of keys into addresses uniformly distributed
throughout the hash table. Typical hashing operations
include truncation, folding, transposition and modulo
arithmetic. A disadvantage of hashing techniques is that
more than one Key can translate into the same storage

TELECORDIA00000246

o

R. M. Nemes .ase 2

-2 -

address, causing "collisions" in storage or retrieval
operations. Some form of collision-resolution strategy
(sometimes called "rehashing") must therefore be provided.
For example, the simple strategy of searching forward from

5 the initial storage address to the first emptyvstorage
location will resolve the collision. This latter
technique is called linear probing. If the hash table is
considered to be circular so that addresses beyond the end
of the table map back to the beginning of the table, then

10 the linear probing is done withr"open addressing," i.e.,
with the entire hash table as overflow space in the event
that a collision occurs.

Some forms of data records have a limited

lifetime after which they become obsolete. Scheduling

15 activities, for example$, involves records which become
obsolete after the scheduled activity has occurred. Such
record storage locations cannot be simply emptied since
this location may be a link in a chain of locations
previously created during a collision-resolution

20 procedure. The classic solution to this problem is to
mark the record as "deleted" rather than as "empty," and
to leave the record in place. In time, however, the
storage space can become contaminated by an excessive
number of deleted or obsolete storage locations that must

25 Dbe searched to locate desired records. With the passage
of time, such storage contamination can reduce the
performance of retrieval operations below acceptable
levels. Problems of this type are discussed in
considerable detail in Data Structures and Program Design,

30 by R. L. Kruse, Prentice-Hall, Englewood Cliffs, New
Jdersey, 1984, pp. 112-126, and Data Structuresvwith
Abstract Data Types and PASCAL, by D. F. Stubbs and
N. W. Webre, Brooks/Cole Publishing, Monterey, California,
1985, pp. 310-336.

35 In the prior art, such storage space

contamination was avoided by deletion procedures that
eliminated deleted records by replacing the deleted record

TELECORDIA00000247

R. M. Nemes ase 2

- 3 -

with another record in the collision-resolution chain of
records and thus close the chain without leaving any
deleted records. One such procedure is shown in the
aforementioned text by Knuth at page 527. Unfortunately,

5 such non-contaminating procedures, due to the necessity
for successive probes into the storage space, take so much
time that they can be used only when the data base is off
line and hence not available for accessing.

The problem, then, is to provide the speed of

10 access of hashing techniques for large and heavily used
information storage systems having expiring data and, at
the same time, prevent the large-scale contamination which
normally results from expired records in such large and

(heavily used systems.
15 Summary of the Invention

In accordance with the illustrative embodiment
of the invention, these and other problems are overcome by
using a garbage collection procedure "on the fly" while
other types of access to the storage space are taking

20 place. 1In particular, during normal data insertion or
retrieval probes into the data store, the expired,
obsolete records are identified and removed in the
neighborhood of the probe. Specifically, expired or
obsolete records in the collision-resolution chain

25 including the record to be accessed are removed as part of
the normal retrieval procedure.

This incremental garbage collection technique
has the decided advantage of automatically eliminating
contamination caused by obsolete or expired records

30 without requiring that the data base be taken off-line for

" such garbage collection. This is particularly.important
for data bases requiring rapid access and continuous
availability to the user population.
Brief Description of the Drawing

35 A complete understanding of the present
invention may be gained by considering the following
detailed description in conjunction with the accompanying

TELECORDIA00000248

P

R. M. Nemes,,ase 2

drawing, in which:

FIG. 1 shows a general block diagram of a
computer system hardware arrangement in which the
information storage and retrieval system of the present

5 invention might be implemented;

FIG. 2 shows a general block diagram of a
computer system software arrangement in which the
information storage and retrieval system of the present
invention might find use;

10 FIG. 3 shows a general flow chart for table
searching operation which might be used in a hashed
storage system in accordance with the present invention;

FIG. 4 shows a general flow chart for a garbage
collecting remove procedure which forms part of the table

15 searching operation of FIG. 3; |

FIG. 5 shows a general flow chart for record
insertion operations which might be used in a hashed
storage system in accordance with the present invention;

FIG. 6 shows a general flow chart for a record

20 retrieval operation for use in a hashed storage system in
accordance with the present invention; and

FIG. 7 shows a general flow chart for a record’
deletion operation which might be used in the hashed
storage system in accordance with the present invention.

25 To facilitate reader understanding, identical
reference numerals are used to‘designate elements common
to the figures.

Detailed Description

Referring more particularly to FIG. 1 of the
30 drawings, there is shown a general block diagram of a
computer hardware system comprising a Central Processing
Unit (CPU) 10 and a Random Access Memory (RAM) unit 11.
Computer programs stored in the RAM 11 are accessed by
CPU 10 and executed, one instruction at a time, by CPU 10.
35 Data, stored in other portions of RAM 11, are operated
upon by the program instructions accessed by CPU 10 from

TELECORDIA00000249

—

R. M. Nemes .ase 2

10

15

20

25

30

35

- K -

RAM 11, all in accordance with well-known data processing
techniques.

' Central Processing Unit (CPU) 10 also controls
and accesses a disk controller unit 12 which, in turn,
accesses digital data stored on one or more disk storage
units such as disk storage unit 13. In normal operation,
programs and data are stored on disk storage unit 13 until
required by CPU 10. At this time, such programs and data
are retrieved from disk storage unit 13 in blocks and
stored in RAM 11 for rapid access.

Central Processing Unit (CPU) 10 also controls
an Input-Output (IO) controller 14 which, in turn,
provides access to a plurality of input devices such as

'CRT (cathode ray tube) terminal 15, as well as a plurality

of output devices such as printer 16. Terminal 15
provides a mechanism for a computer operator to introduce
instructions and commands into the computer system of

FIG. 1, and may be supplemented with other input devices
such as card and tape readers, remotely located terminals,
optical readers and other types of input devices.
Similarly, printer 16 provides a mechanism for displaying
the results of the operation of the computer system of
FIG. 1 for the computer user. Printer 16 may similarly be
supplemented by line printers, cathode ray tube displays,
phototypéSetters, graphical plotters and other types of
output devices.

The constituents of the computer system of
FIG. 1 and their cooperative operation are well-known in
the art and are typical of all computer systems, from
small personal computers to large main frame systems. The
architecture and operatioh of such systems are well-known
and, since they form no part of the present invention,
will not be further described here.

In FIG. 2 there is shown a graphical
representation of a typical software architecture for a
computer system such as that shown in FIG. 1. The
software of FIG. 2 comprises an access mechanism 20 which,

TELECORDIA00000250

R. M. Nemes _ase 2

-6 -

for simple personal computers, may comprise no more than
turning the system on. In larger systems, providing
service to a_larger number of users, login and password
procedures would typically be implemented in access

5 mechanism 20. Once access mechanism 20 has completed the
login procedure, the user is placed in the operating
system environment 21. Operating system 21 coordinates
the activities of all of the hardware components of the
computer system (shown in FIG. 1) and provides a number of

10 wutility programs 22 of general use to the computer user.
Utilities 22 might, for example, comprise assemblers and
compilers, mathematical routines, basic file handling
routines and system maintenance facilities.

Many computer software systems also include a

15 data base manager program 23 which controls access to the
data records in a data base 24. Data base 24 may, for
example, reside on a disk storage unit or units such as
disk storage unit 13 of FIG. 1. User application programs
such as application program 25 then use the data base

20 manager program 23 to access data base records in data
base 24 for adding, deleting and modifying data records.
It is the efficient realization of a data base manager
such as data base manager program 23 in FIG. 2 to which
the present invention is directed.

25 Before proceeding to a description of one
embodiment of the present invention, it is first useful to
discuss hashing techniques in general. Hashing techniques
have been used classically for very fast access to static,
short term data such as a compiler symbol table.

30 Typically, in such storage tables, deletions are
infrequent and the need for the storage table disappears
quickly. 2A—badly hashed-table-therefore~has—enly-a-very

—short=lifetimew
IfAt-is-desired-totake—advantage of—the—fast. .

35 -aeecess=provided-by-hashing—in—tong-term-dynamie-data, .
-bproblems.ariser In some common types of data storage
systems, data records become obsolete merely by the

TELECORDIA00000251

—

R. M. Nemes Case 2

-7 -

passage of time or by the occurrence of some event. If
such expired, lapsed or obsolete records are not removed
from the storage table, they will, in time, seriously
degrade or contaminate the performance of the retrieval

5 system. Contamination arises because of the ever-
increasing need to search longer and longer chains of
record locations, many of which are expired, to reach a
desired location.

More particularly, a hash table can be described

10 as a logically contiguous, circular list of consecutively
numbered, fixed-sized storage units, called cells, each
capable of storing a single item called a record. Each
record contains a distinguishing field, called the key,
which is used as the basis for storing and retrieving the

15 associated record. The keys throughout the hash table
data base are distinct and unique for each record.

Hashing functions which associate keys with storage
addresses are usually not one-to-one in that they map many
distinct keys into the same location.

20 To store a new record, a cell number is
generated by invoking the hashing function on the key for
the new record. 1If this cell location is not occupied,
the new record is stored there. If this cell location is
occupied, a collision has occurred and the new record must

25 be stored elsewhere, in an overflow area, using an
appropriate collision-resolution technique. A common
collision-resolution strategy, which will be described
here for convenience, is known as linear probing under
open addressing. Open addressing means that the overflow

30 arezis the entire hash table itself. Linear probing
indicates sequential scanning of cells beginnihg with the
next cell, recalling that the storage table is viewed
circularly. The collision is resolved by storing the
record in the first unoccupied cell found.

35 To retrieve a record, the key is hashed to
generate a cell location. If the record is not there (the
keys do not match), searching continues following the sane

TELECORDIA00000252

R. M. NemeS-ease 2

- 8 =

forward path as record storage. An empty cell terminates

the retrieval procedure, which has then failed to find the

record to be retrieved.

is/ to be{yhdersgbod thAt the pres?ht y

5 invention/will/ be descrlbed/&n counectlo w1tp llqear

ith /open addres51ng onlx/for convenlence and
because such a colllslon resolutlon strategy is very
com?pnly used The techélques of the’ present 1nven€{;n
cany just as readlly applled to’ such other forms of/

10 cdillelon resolutlon strategles by,modlflcatlons readlry
Apparent to those skyiled A the art

probing

In FIG. 3 there is shown a flow chart of a
search table procedure for searching the hash table

preparatory to inserting, retrieving or deleting a record.
15 The hash table may, for example, comprise the data base 24
of FIG. 2 and the search table procedure of FIG. 3
comprise a portion of the data base manager 23 of FIG. 2
Starting in box 30 of the search table procedure of
FIG. 3, the search key of the record being searched for is
20 hashed in box 31 to provide the address of a cell. 1In
box 32, the empty cell just past the end of the search
chain of non-empty cells is located, i.e., the first
succeeding unoccupied cell is found. In box 33, the

procedure moves orie cell backward from the current cell
25 position (now at the end of the chain). Decision box 34
 examines the cell to determine if the cell is empty or
not. If the cell tested in decision box 34 lS empty, the

di:}Sl box 35 is entered to determine if WS Y Foend
ghx41<%;&(k%QMJ_maiéhes_the—seapd;JugL If so, the search is

30 successful and returns success in box 36 and terminates in
terminal box 39. If ¢JK§4Gﬁﬁ4}§—iﬂ*the*CHTT“teSted“lnf‘
box—35—does—not-match-the sedrch~key, box 37 is entered
where the location of the empty cell is saved for possible
record insertion. In box 38 failure is returned since an

35 empty cell was found before a cell with a matching key.
The procedure again terminates in box 39.

If the cell tested in decision box 34 is not

TELECORDIA00000253

e

"R. M. Nemes _.ase 2

10

15

20

25

30

35

- 9 -

empty, decision box 40 is entered to determine if the
record in that cell has expired. This is determined by
comparing some portion of the contents of the record to
some external condition. A timestamp in the record, for
example, could be compared with the time-of-day.
Alternatively, the occurrence of an event can be compared
with a field identifying that event in the record. In any
event, if the record has not expired, decision box 41 is
entered to determine if the key in this record matches the
search key. If it does, the cell location is saved in
box 42 and the procedure returns to box 33. If the record
key does not match the search key, the procedure returns
directly to box 33.

If decision box 40 determines that the record
has expired, box 43 is entered to perform a non-
contaminating deletion of the expired record, as will be
described in connection with FIG. 4. 1In general, the
procedure of box 43 (FIG. 4) operates to move a record-at%ﬁwhd
the end of the chain into the position of the record which
has expired, thereby removing the expired record and, at
the same time, closing the search chain.

It can be seen that the search table procedure

of FIG. 3 operates to examine the entire chain of records
of which the searched-for record is a part, and to delete
expired records by chain-filling rather than by marking
such records as deleted. 1In this way, contamination of
the storage space by expired records is removed in the
vicinity of each new table search. If contamination
becomes too large even with such automatic garbage
collection, then the insertion of new records can be
inhibited until the search table procedure has had a

chance to remove a sufficient number of expired records to
render the operation of the system sufficiently efficient.
The search table procedure illustrated generally
in FIG. 3 is implemented in the Appendix as PASCAL-like
pseudocode. Source code suitable for compilation and

execution on any standard hardware and software computing

TELECORDIA00000254

-

R. M. Nemes _ase 2

10

15

20

25

30

35

- 10 -

system can readily be devised from this pseudocode and the
flowcharts of the figures by any person of ordinary skill
in the art.

In FIG. 4 there is shown a flowchart of a remove
procedure which removes records from the database, either
records to be deleted or expired records. In general,
this is accomplished by traversing the chain of the record
to be removed in a forward direction searching for a
record whose key hashes at or behind the cell to be
removed. When such a record is found, it is copiéd to the
cell of the record to be removed. The copied record is
then taken as the record to be removed and the process
continued until the end of the search chain is reached{4‘f’ sdHe,
The remove procedure of FIG. 4 might comprise a portion of An
the data base manager program 23 of FIG. 2.

Starting at starting box 50 of FIG. 4, the %fj&wﬁgq
procedure is entered with the location of a cell to be
removed which is called the base cell. Initially, box 51
is entered where the load fasker of the table is adjusted
to reflect the removal of one record. The load faeteyr, of

course, is the érﬁgtiﬁﬁal:pefétcﬁzéiifﬁéiteﬁai‘table which

4= occupied with records. As previously noted, this load

—fgeter can be used to disable the insertion of new records

until the load faetor has reached a low enough value to
permit efficient searching. In box 52, the procedure of
FIG. 4 advances to the next cell in the chain beyond the
base cell. 1In decision box 53 this cell is tested to sece
if it is empty. If it is émpty, the end of the chain has
been reached and box 54 is entered to mark the base cell
as empty. Decision box 55 is then entered to determlne if
a record was found(whf%ﬁdﬁg%gﬁéd the search key and, if
so, the procedure is terminated in terminal box 56. If a
matching record was not found, decision box 57 is entered
to determine if the base cell is ahead of the hash
location of the search key. If not, the procedure is
terminated in box 56. If the base cell does hash ahead of
the search record, then the base cell can be used for

TELECORDIA00000255

R. M. Nemes ~ase 2

storing a new record. In box 58, the location of this ﬁmpﬁi

cell is therefore saved as a possible insertion site.
Returning to box 53, if the next cell is not

empty, box 59 is entered to determine if the record in

5 this cell hashes ahead of the base cell. If so, box 52 is
re-entered to advance to the next cell in the chain. If
this next cell hashes at or behind the base cell, however,
box 60 is entered to copy the contents of this next cell
to the base cell, thereby obliterating (removing) the base

10 cell contents. Box 61 is then entered to test if the
search table procedure found a matching record. If not,

box 52 is re-entered to advance to the next cell. If a
matching record was found, decision box 62 is entered to
test if the matching record is the base cell record. If

15 not, box 52 is re-—entered to advance to the next cell. If
the matching record is the base cell,, however, box 63 is
entered to store the location of thej%gég'cell as the
position of the matching record and then box 52 is re-
entered to advance to the next cell in the search chain.

20 It can be seen that the procedure of FIG. 4
operates to examine the entire search chain and to move
records from later positions in the chain to vacated
positions in the chain such that the chain is entirely
closed at the end of the procedure. That is, no empty

25 <cells are left to erroneously break up a search chain. As
noted in connection with FIG. 3, expired records are
subjected to the remove procedure of FIG. 4. As will be
noted in connection with FIG. 7, records to be deleted
from the data base are also subjected to the remove

30 procedure of FIG. 4.

The remove procedure illustfated geherally in

FIG. 4 is implemented in the Appendix as PASCAL-like
pseudocode. Source code suitable for compilation and
execution on any standard hardware and software computing

35 system can readily be devised from this pseudocode and the
flowchart of FIG. 4 by any person of ordinary skill in the
art. '

TELECORDIA00000256

R. M. Nemes cCase 2

12.

In FIG. 5 there is shown a detailed flowchart of
an insert procedure suitable for use in the information
storage and retrieval system of the present invention.

The insert procedure of FIG. 5 begins as starting box 70

5 '‘from which box 71 is entered. 1In box 71, the search table
procedure of FIG. 3 is invoked with the search key of the
record to be inserted. As noted in connection with

FIG. 3, the search table procedure locates the target cell
1ocat10n and, if part of a search chain, removes all

10 expired cells from that search chain. Decision box 72 is
then entered where it is determined whether or not the
search table procedure found a record with a matching key.

If so, box 73 is entered where the record to be inserted
'S —im put into the storage table in the position of the old
15 record with a matching key. 1In box 74, the insert
procedure reports that the old record has been replaced by
the new record and the procedure is terminated in terminal
box 75.
Returning to decision box 72, if a matching
20 record is not found, decision box 76 is entered to
determine if the table 1load Engemnto ‘below a
preselected threshold \quqkﬂgriéugikgﬁgﬁgﬁér is not below
the threshold, the storage table is too full to be accessed
efficiently, and box 77 is entered to report that the the
25 table is full and the record cannot be inserted. The
procedure then terminates in terminal box 75. If the load
Beder is below the threshold, box 78 is entered where the
record to be inserted is placed in the empty cell position
found by the search table procedure. In box 79, the load
30 -fsetor is adjusted to reflect the addition of one record
to the storage table, the procedure reports that the

record was inserted in box 80 and the procedure terminated
in box 75.
The insert procedure illustrated generally in
35 FIG. 5 is implemented in the Appendix as PASCAL-like
pseudocode. Source code suitable for compilation and
execution on any standard hardware and software computing

TELECORDIA00000257

ST

R. M. Nemes _ase 2

10

15

20

25

30

35

- 13 -

system can readily be devised from this pseudocode and the
flowcharts of the FIG. 5 by any person of ordinary skill
in the art.

In FIG. 6 there is show a detailed flowchart of
a retrieve procedure which is used to retrieve a record
from the data base 24 of FIG. 2. Starting in box 90, the
search table procedure is invoked in box 91, using the key

of the record to be retrieved as the search key. 1In
box 92 it is determined if a record with a matching key
was found by the search table procedure. If not, box 93

is entered to report failure of the retrieve procedure and
the procedure is terminated in box 96. If a matching
record was found, box 94 is entered to co y atching
record into a buffer store for proce551ng, qjaﬁ%/mﬁtered
to return an indication of successful retrleval and the
procedure terminated in box 96.

The pseudo-code for the retrieve procedure of
FIG. 6 is included in the Appendix. Executable code for
all common hardware and system software arrangements can
readily be devised by those skilled in the art from the
flowchart and the pseudo-code.

In FIG. 7 there is shown a detailed flowchart of
a delete procedure useful for actively removing records
from the data base 24 of FIG. 2. Starting at box 100, the
procedure of FIG. 7 first invokes the search table
procedure of FIG. 3 in box 101, using the key of the
record to be deleted as the search key. 1In box 102, it is
determined if the search table procedure was able to
locate a record with a matching key. If not, box 103 is
entered to report failure of the deletion procedure and

the procedure is terminated in box 106. If a matching
record was found, as determined by box 102, the remove
procedure of FIG. 4 is invoked in box 104. As noted in
connection with FIG. 4, this procedure removes the record
to be deleted and, at the same time, closes the search
chain. Box 105 is then entered to report successful
deletion to the calling program and the procedure is

TELECORDIA00000258

TN

R. M. Nemes Jase 2

terminated in box 106.
The delete procedure illustrated generally in
FIG. 7 is implemented in the Appendix as PASCAL-like
pseudocode. Source code suitable for compilation and
5 execution on any standard hardware and software computing
system can readily be devised from this pseudocode and the
flowchart of FIG. 7 by any person of ordinary skill in the
art.
The attached Appendix contains pseudocode
10 1listings for all of the programmed functions necessary to
implement a data base manager 23 (FIG. 2) operating in
accordance with the present invention. These listings
follow the flowcharts of FIGS. 3-7 and further explain and
elucidate the flowcharts. Any person of ordinary skill in
15 the art will have no difficulty implementing these
functions in any desired program language to run on any
desired computer hardware configuration.
It should also be clear to those skilled in the
art that further embodiments of the present invention may
20 be made by those skilled in the art without departlng from
the teachings of the present 1nventlon.

TELECORDIA00000259

s

R. M. Nemes case 2

- 15 -

APPENDIX

Functions Provided

The following functions are made available to the
application program:

5 insert (record: record type)

Returns replaced if a record associated with record.key
was found in the table and subsequently replaced.

Returns inserted if a record associated with record.key
was not found in the table and the passed record was
10 subsequently inserted.

Returns full if a record associated with record.key was
not found in the table and passed record could not be
inserted because load factor has reached max load factor.

retrieve (record: record type)

15 Returns success if record associated with record.key was
found in the table and assigned to record.

Returns failure if search was unsuccessful.

delete (record key: record key type)

Returns success if record associated with record key was
20 found in the table and subsequently deleted.

Returns failure if none found.

TELECORDIA00000260

T

R. M. Nemes cJlase 2

16
Definitions
The following formal definitions are required for
specifying the insertion, retrieval, and deletion
algorithms:

5 const table size /* size of hash table */

const max load factor /* 0 < max load factor < 1 */

var table: array[0 .. table size-1] of record type;
/* hash table */

var load: 0 .. table size-1;
10 /* number of occupied entries of
hash table array (initially 0) */

TELECORDIA00000261

10

15

20

——

M. Nemes Jase 2

Algorithms

Algorithms for the functions described above are
given below:

function insert (record: record type):
(replaced, inserted, full);

var position: 0 .. table size-1;

/* position in table to update or

insert (returned by search table) */

begin

if search table (record.key, position)

then begin

table[position] := record;
return (replaced)

end

else if load/table size < max load factor

then begin

load := load+l;

table[position] := record;
return (inserted)

end
else return (full)

end /* insert */

TELECORDIA00000262

P Ce

R. M. Nemes ase 2

function retrieve (var record: record type): (success, failure).

var position: 0 .. table size-1;
/* position in table where record
resides (returned by search table) */

5 begin

if search table (record.key, position)

then begin
record := table[position];
10 return (success)
end

else return (failure)

end /* retrieve */

TELECORDIA00000263

R. M. Nemes _ase 2

- 19 -~

function delete (record key: record key type):
~(success, failure); _

var position: 0 .. table size-1;
/* position in table where record
5 resides (returned by search table) */

dummy variable: 0 .. table size-1;

A art e arquneS I jumweane e o ae oo £/

begin

if search table (recordbkey, position)

10 then begin

remove (position, true, dummy variable,
dummy variable) ;

return (success)

end
15 else return (failure)

end /* delete */

TELECORDIA00000264

—

R. M. Nemes .ase 2

10

15

20

25

20

function search table (recoxrd key: record'key type;
var position: 0 .. table size-1): boolean;

/* search table for record key and delete expired

expired records in target chain; position is set to
index of found record or appropriate empty cell 37/

var i: 0 .. table size-1;
/* used for scanning chain, both forwards & backwards%@/

pos empty: 0 .. table size-1;
/* index of leftmost empty cell to right of position */v/

is rec found: boolean;
/* indicates whether search is successful */

begin
position := hash (record key) ;
is rec found = false;

if table[position] is not empty then

begin
1 := position; /% loop initialization */
repeat /* scan forward to end of chain

containing table[position] */

i1 := (i+1) mod table size
until (table[i] is empty):;

pos empty := i;

i := (i-1+table size) mod table size;

TELECORDIA00000265

s

R. M. Nemes _ase 2

- 21 -

while (table[i] is not empty) do
/*scan chain in reverse,
deleting expired entries */

begin
5
if table[i] is expired then NQ%H&
=22 o= “
remove (i, is rec found, o ' /; L Shae [
/
position, pos emptyf///////J e “F
. élse if table[i].key = record key
10
then begin
: is rec found := true;
} ‘e —position := i
15] .
R end;
i := (i-1l+table size)a»;
mod table size
end; /* while *x/
20 if not is rec found then position := pos empty

end; /* then */

return (is rec found)

~end /* search table */

TELECORDIA00000266

o

R. M. Nemes cCase 2

22.

procedure remove (cell to del:

0 .. table size-1; is rec found: boolean;
var pos of search rec, pos empty: 0 .. table size-1:

/* Delete table[cell to del] */

5 var i, j: 0 .. table size-1;
begin
load := load-1;

do forever

10 i := cell to del; /* save position of emptied slot #*/

repeat /* scan forward loocking for a
record to fill hole in chain */

cell to del := (cell to del+l) mod table size;

if table[cell to del] is empty

15 then begin
table[i] := empty;

if not is rec found then

if (pos of search rec < i < pos empty)
20 or (i< pos empty < pos of search rec)

or (pos empty< pos of search rec <
1) then pos empty := i;

return

end;

TELECORDIA00000267

oS

R. M. Nemes _ase 2

j := hash (table[cell to del].key)

until (j < i < cell to del)
or (i < cell to del < j)
or (cell to del< j < i);

5 table[i] := table[cell to del];
/* use table[cell to del] to plug hole in chain */

if (is rec found) and
(pos of search rec = cell to del)

then pos of search rec := i

10 end

end /* remove */

TELECORDIA00000268

o

R. M. Nemes _ase 2

24

What is claimed is:

1. An information storage and retrieval system
using hashing techniques to provide rapid access to the
records of said system and utilizing a linear probing

5 technique to store records with the same hash address,
said system comprising

a record search means utilizing a search key to
access a chain of records having the same hash address,

‘ means for removing all expired records from said
10 chain of records, and 7

means, utilizing said record search means, for
inserting, retrieving and deleting records from said
system.

‘ 2. The information storage and retrieval system
15 according to claim 1 further comprising

means for recursively moving a record from a
later position in said chain of records into the position
of one of said expired records.

3. The information storage and retrieval system

20 according to claim 1 further including

means for inhibiting the insertion of new
records into said system when the available storage space
falls below a preselected value.

4. The information storage and retrieval system

25 according to claim 3 wherein

means for re-enabling the insertion of new
records into said system when the available storage space
rises above said preselected value.

5. An automatically decontaminating hashed
30 storage table comprising ' '
means for accessing said storage table for
inserting, retrieving and deleting records, and
means for automatically removing expired records
from said table each time said table is accessed.

TELECORDIA00000269

o

R. M. Nemes _ase 2

10

15

20

25

30

- 25 -

6. A method for storing and retrieving
information records using hashing techniques to provide
rapid access to said records and utilizing a linear
probing technique to store records with the same hash
address, said system comprising

, accessing a chain of records having the same
hash address,
removing all expired records from said chain of

records, and

utilizing said record search means, for
inserting, retrieving and deleting records from said
systen. '

7. The method according to claim 6 further
comprising the step of

moving a record from a later position in said
chain of records into the position of one of said expired
records.

8. The method according to claim 6 further
including the step of

inhibiting the insertion of new records into
said system when the available storage space falls below a
preselected value.

9. The method according to claim 8 further
comprising the step of

re-enabling the insertion of new records into
said system when the available storage space rises above
said preselected value.

10. A method for automatically decontaminating a
hashed storage table comprising the steps of

accessing said storage table for inserting,
retrieving and deleting records, and

automatically removing expired records from said
table each time said table is accessed.

TELECORDIA(00000270

1/6

FIG. 1
f5
CRT sl
TERMINAL RAM 3
"""") 5 st o St
1/0 T DISK | DISK
CONT. CONT. STORE
-------- 3
16 :
|
PRINTER
FIG.2
520
ACCESS
25 21
S 1 S 522
USER OPERATING
APPLICATION [~ | SYSTEM [~ 1 UTILITIES

DATA
BASE

&

MANAGER

TELECORDIA00000271

SEARH-TARLE —

& 3

HASH
SEARCH
Key

ADVANCE.
FORWA R
PAST END

CF TARGET CUAIN]

Y /

SAVE CELL
LocaTiond

H
MOVE Baci.

— 32

OMNE CELL } 33

Is4

ceLL

¢/0

RECOED
Ex P?l RED

NES

\E’%‘_’W/

NOC
, i remOC
XTI =DE AT
7 M DEHETE ENTRy | Vst
UsHdterdoTes

in Bevdd

Y

SAVE LeC AT
OF EMPTY CELL
M WwaiCH PRoRY
CAN Be
BUSEETED

-3

RETURM
FAILLPE

—

55

TELECORDIA(00000272

ADJUST TABLE

LOMD 1o peRECT| 4 | g
DELETIOM OF
ONE Recoed

g

[

ADVAMCE. <
TO Meyr L
CeLL

COPY REWRD
1o Bhse cetL b b0
AND MACE ThiS

THE BASE cELL

AHEAD OF
ORI6{ADL HASH

Base el | <°

Fos(Tion Berones|
RETION 1) wier|
NEW RECORD
CAv BE
INSERTED

| FORMER Basg cel (,3
BEcoMES 1
s o OF
MATCHED RECORD
/

TELECORDIA00000273

INSERT
' (D _ 70
START - «
| .
_SEACU-TABLE])
s H Fo 7
Eaeg‘saag w-m%uz —
AMD CLEAN
TARGBT CUAIA
7
REtoRD
Nes oD No
\7/
Y | b
PUT RECORD —
Ce@e;gﬁ'—e SAVED
T By sEamH-TARE]
v
RETURN _/7¢ RETORY
ADIAT TRELE
LORD TO pERET_ 5
OME. ADDITIOKA; f
RecoeDd
RETURN {
INSERTED | b
. Y |

TELECORDIA00000274

REeTRIENVE.
Fré. b

RETORM
FallLURE

73

TELECORDIA00000275

DELETE. /4. 7

RELORDS (A TARLE. -
AND CLBAM
TAPLET CHAIN
/J/L/
VES 02 MO
FoUND
N
y 4L ,
BT TE
DELETE EMRY /)0\7/
sz ——(F(G.)

b0 2

Retoray
FAILLR B

RETOPN
Succpss

e

) o
‘ sSTOoP)

TELECORDIA(00000276

