Bedrock Computer Technologies, LLC v. Softlayer Technologies, Inc. et al Doc. 845 Att. 8

Exhibit 7

Dockets.Justia.com

http://dockets.justia.com/docket/texas/txedce/6:2009cv00269/116887/
http://docs.justia.com/cases/federal/district-courts/texas/txedce/6:2009cv00269/116887/845/8.html
http://dockets.justia.com/

9 "ON 956D]

AIAT-69700-49-60

860 'ON qIUXy

nquyxy Ssyuepuspq

512 SEARCHING

L HASHING 513

culty is to look more closely at the structure underlying Theorem S; for sh
progressions of keys, ouly the first few partial quotients of the continued frig¢
tion representation of § are relevant, and small partial quotients corrcspond£
good distribution propertics. Therefore we find that the best values of 'lie i
the ranges ‘

chould be a power of 2, sny M = 2", and we make use of an mth degree poly~
Lomial P(@) = a™ +_pm_1x"‘_1 v po. An n-digit binary key K =

o ... kiko)s can be regarded as the polynomial K(z) = ky_1&" ™" 4|
- i+ ko, and we compute the remainder .

— m—1 v e
b<o<fn 3<0<3 $<0<3 H<O<E . Kee) mod P@) = hnge™™" ook hap o
using polynomial arithmetic modulo 2; then h(K) = (Ap_1 .. Chihg)e. T Px)
i« chosen properly, this hash function can be guaranteed to avoid collisions
between nearly-equal keys. Ior example if » = 15, m = 10, and

P@) = a0 +ab+ a2t fat o+t (10)

it can be shown that A(K) will be unequal to A(K3) whenever Ky and Ky arc
distinet keys that differ in fewer than seven bit positions. (Secc exercise 7 for
further information about this scheme; it is, of course, more suitable for
hardware or microprogramming implementation than for software.)

It has been found convenient to use the constant hash function A(K) = 0
when debugging a program, since all keys will be stored together; an efficient
h(K) can be substituted later.

A value of A ean be found so that each of its bytes lies in a good range and i
not too close to the values of the other bytcs or their complements, e.g., ‘

A= |4 [61]25]|42]33|71|. (9

Such a multiplier can be recommended. (These ideas about multiplicativ
hashing are due largely to R. W. Floyd.) :

A good hash funetion should satisfy two requirements:
a) Its computation should be very fast.
b) It should minimize collisions.

Property (a) is somewhat machine-dependent, and property (b) is data-depor
dent. If the keys were truly random, we could simply extract a few bits fron
them and use these bits for the hash function; but in practice we nearly alwas
need to have a hash function that depends on all bits of the key in order |
satisfy (b). .

So far we have considered how to hash one-word keys. Multiword or var
able-length keys can be handled by multiple-precision extensions of the abo
methods, but it is generally adequate to speed things up by combiningﬂlé
individual words together into a single word, then doing a single multiplicati
or division as above. The combination ecan be done by addition mod w, or by
“oxclusive or” on a binary computer; both of these operations have th
advantage that they are invertible, i.e., that they depend on all bits of bo
arguments, and exclusive-or is sometimes preferable because it avoids arit
metic overflow. Note that both of these operations are commutative, 50 th
(X, Y) and (Y, X) will hash to the same address; G. D. Knott has suggested
avoiding this problem by doing a cyclic shift just before adding or exelusive
oring. o
Many more methods for hashing have been suggested, but none of these
has proved to be superior to the simple division and multiplieation methods
described above, For a survey of some other methods together with detailed
statistics on their performance with actual files, sce the article by V. Y. Lut,
P. 8. T. Yuen, and M. Dodd, CACM 14 (1971), 228-239. .

Of all the other hash methods that have been tried, perhaps the most inter=
esting is a technique based on algebraic coding theory; the idea is analogous to
the division method above, but we divide by a polynomial modulo 2 instead of
dividing by an integer. (As observed in Section 4.6, this operation is analogous

v

to division, just as addition is analogous to exclusive-or.) For this method,

Collision resolution by ““chaining.”” We have observed that some hash addresses
will probably be burdened with more than their share of keys. Perhaps the
most obvious way to solve this problem is to maintain M linked lists, one for
sach possible hash code. A LINK field should be included in each record, and
there will also be M list heads, numbered say from 1 through M. After hashing
the key, we simply do a sequential search in list number A(K) + 1. (Cf. cxer-
‘¢ise 6.1-2. The situation is very similar fo multiple-list-insertion sorting,
Program 5.2.1M.)

Figure 38 illustrates this simple chaining scheme when M = 9, for the
secuence of seven keys

K — EN, TO, TRE, FIRE, FEM, SEKS, SYV (11)
(i.e., the numbers 1 through 7 in Norwegian), having the respective hash codes
WME)+1=3, 1, 4 1, 5 9 2 (12)

The first list has two elements, and three of the lists are empty.

Chaining is quite fast, because the lists are short. If 365 people are gathered
together in one room, there will probably be many pairs having the same birth-
day, but the average number of people with any given birthday will be only 1!
“In general, if there are N keys and M lists, the average list size is N/M; thus
hashing decreascs the amount ol work needed for sequential searching by
roughly a factor of M.

This method is a straightforward combination of techniques we have
diseussed before, 0 we do not need to formulate a detailed algorithm for chained
scatter tables. It is often a good idea to keep the individual lists in order by
~key, o that insertions and unsuccessful searches go faster. ThREFGOOHOOS:

514 SEARCHING 4 HASHING 515

HEAD[1]: o——>{T0 [[o——[rme | 4]
HEAD [2]: —t—>svv [a |
HEAD(3]: | e
HEAD[4]: | o——»@

L. [Flash.] Seti = () -+ 1. (Now 1 < § < M)
2. [Is there a list?] If TABLE[{] is empty, go to C6. (Otherwisc TABLE[Z] is
~ occupied; we will look at the list of occupied nodes which starts here.)

L [Compare.] If K = KEY[/], the ulgorithm terminates successtully.
ok [Advance to next.] If LINK[]] # 0, sct ¢ LINK[Z] and go back to step C3.

HEAD [5]: o— FEM A

HEAD [6]: A i
HEAD[7}: A |ﬁ ‘Tash
BEADIS): | A

s font \ Na

2. s there a list? 1

ot |

€3, C . C4, Advance Cs. Find | C6. Insert
Fig. 38. Scparatc chaining. s, ompure to next Tind empty node new key
; K =KEY[i) of list R=0 i
to make the lists ascending, the TO and FIRE nodes of Fig. 38 would be inte SUCCESS OVERFLOW

changed, and all the A links would be replaced by pointers to a dummy recor
whose key is o. (Cf. Algorithm 6.1T.) Alternatively we can make use ‘of th
“self-organizing file” concept discussed in Section 6.1; instead of keeping t
lists in order by key, they may be kept in order according to the time of mos
recent occurrence. ,
For the sake of speed we would like to make M rather large. But wheén
is large, many of the lists will be empty and much of the space for the M li;
heads will be wasted. This suggests another approach, when the records a
small: We can overlap the record storage with the list heads, making room fc
a total of M records and M links instead of for N records and M -- N link «
Sometimes it is possible to make one pass over all the data to find out which
list heads will be used, then to make another pass inserting all the “overflow
records into the empty slots. But this is often impractical or impossible; ¢ \
we would rather have a technique that processes each record only once whe
first cnters the system. The following algorithm, due to F. A. Williams [C'A
2, 6 (June 1959), 21-24], is a convenient way to solve the problem. '

Fig. 39. Chained scatter table search and insertion.

C5. [Find empty node.] (The search was unsuccessful, and we want to find an
empty position in the table) Decrcase R one or more times until finding
a value such that TABLE[R] is empty. If R = 0, the algorithm terminates
with overflow (there are no empty nodes left); otherwise set LINK[Z] < R,
1< R.

C6. [Insert new key.] Mark TABLE[Z] as an occupied node, with KEY[7] < K and
LINK[i] « 0. B

This algorithm allows several lists to coalesce, so that records need not be
moved after they have been inserted into the table. For example, see [lig. 40,
where SEKS appears in the list containing TO and FIRE since the latter had

dlre’Ldy been inserted into position 9.

: TABLE [1]: TO

Algorithm C (Chained scatter table search and insertion). "This algorithm scarch TABLE (2): | svv I T
an M-node table, looking for a given key K. If K is not in the table and th Lz | en A
table is not full, K is inserted. : TABLE[4]: | TRE A

The nodes of the table are denoted by TABLE[:], for 0 < ¢ < M, and the ThpLE(s): | T 7y
are of two distinguishable types, empty and occupied. An occupied node contan TABLE|6]:
a key field KEY[¢], a link field LINK[¢], and possibly other fields. TABLE[T]: |

The algorithm makes use of a hash function (K). An auxiliary meable rapLE[S]: | SEKS 1
R is also used, to help find empty spaces; when the table is empty, we have raprE|9): | FIRE o——?_/

R = M -1, and as insertions arc made it will always be true that TABLE[j] 18 is
occupied t01 all 7 in the range R < 7 < M. By convention, TABLE[Q] will alw‘WS

Fig. 40. Coalesced chaining.
be empty.

DEF00006596

516 SEARCHING

In order to see how this algorithm compares with others in this chapt
we can write the following MIX program. The analysis worked out below indi
cates that the lists of occupied eells tend to be short, and the program has bem
designed with this fact in mind.

Program C (Chained scaller table search and insertion). TFor convenience; ki
keys are assumcd to be only three bytes long, and nodes are represented. y
follows:

empty |(—|1[0]0[0]|0

(13

oceupicd -+ LINK KEY
|

The table size M is assumed to be prime; TABLE[Z] is stored in location TABLE ;
rll =72,rA = K,

01 KEY EQU 3:5
02 LINK EQU 0:2
K

03 START LDX 1 Ci. Hash.

04 ENTA 0O 1

05 DIV =M= 1

06 STX %+1(0:2) 1

07 ENTL « 1 i W(K)

08 INC1 1 1 41,

09 LbA K 1

10 LD2 TABLE, 1 (LINK) 1 C2. Isthere a lusi?

11 J2N 6F 1 To C6 if TABLE[7] empty:
12 CMPA TARLE, 1 (KEY) A 3. Compare.

13 JE SUCCESS A Ixit if K = KEY[:].

14 J2Z BF A - 81 To C5 if LINK[¢] = 0.

16 4H ENT1 0,2 C—1 Ch. Advance to next,

16 CMPA TABLE, 1 (KEY) C—1 C8. Compare.

17 JE SUCCESS C—1 Exit if K = KEY[1].

18 . LD2 TABLE,1(LINK) C — 1 — 82

19 J2NZ 4B C —1— 82 Advance if LINK[z] # 0.
20 BH LD2 R A—8 C5. Find emply node.

21 DEC2 1 T R«—R—1.

22 LDX TABLE, 2 T

23 JXNN #-2 T Repeat until TABLE[R] empty
24 J2Z DVERFLOW A8 Exit if no empty nodes left
25 STR TABLE, 1 (LINK) A —8 LINK[Z] < R.

26 ENT1 0,2 A—8 7 < R.

27 ST2 R A—S8 Update R in memory.

28 6H STZ TABLE, 1(LINK) 1— S8 CB. Insert new key.

29 STA TABLE,1(KEY) L—8 KEY[i] — K. §

The running time of this program depends on

€' = number of table entries probed while scarching;
A = 1if the initial probe found an occupicd node;

/ 1 k 2\
Ov=% 2. (+M>~1+ <(1+ﬁ> —1-

6.k HASHING 517

S = 1if successful, 0 if unsuccessful;
T = number of table entries probed while looking for.an empty space.

' !Hue S = 81+ 52, where S1 == 1if successful on the first try. The total running
~time for the bczuchmg phase of Program C is (7C -| 44 -| 17 — 38 -|- 281w,
* ‘and the insertion of a new key when S = 0 takes an additional (84 + 4T + 4)u.

Suppose there are N keys in the table at the start of this program, and let
a = N/M = load factor of the table. (14)

Then the average value of A in an unsuccessful search is obviously «, if the

hash function is random; and exercise 39 proves that the average value of ¢

“in an unsucecessful search is

N
Ch=1+ 1<< T+- > —1— 2,5) 14 3(" — 1 —2a). (15)

- Thus when the table is half full, the average number of probes made in an un-

successful search is about (e 4+ 2) = 1.18; and even when the table gets
completely full, the average number of probes made just before inserting the
final item will be only about (2 -+ 1) = 2.10. The standard deviation is also

~small, as shown in exercise 40. These statistics prove that the lists stay short

even though the algorithm occasionally ollows them to coalesce, when the hash

~function is random. Of course €' can be as high as N, if the hash function is

bad or if we are extremely unlucky.

In a successful search, we always have A = 1. The average number of
probes during a successful search may be computed by summing the quantity
C 1 4 over the first N unsuccessful searches and dividing by ¥, if we assume
that each key is equally likely. Thus we obtain

1N —1
) taw

~ 1—I—§1& (@ — 1 — 2a) + 1 (16)

0<k<N

as the average number of probes in a random successful search. Even a full
table will require only about 1.80 probes, on the average, to find an item!
Similarly (see exercise 42), the average value of S1 turns out to be

Sly =1— (N — 1)/M) ~ 1 — e (17)

At first glance it may appear that step C5 is inefficient, since it has to search
scquentially for an empty position. But actually the total number of tuble
probes made in step C5 as a table is being built will never exceed the number
of items in the table; so we make an average of at most one of these probes per
insertion! Exercise 41 proves that 7 is approximately «e® in a random unsuc-
cessful search.

It would be possible to modify Algorithm C so that no two lists coalesce,
but then it would become necessary to move rccords around®EFRRO0ER8Fe

518 SEARCHING HASHING 519

consider the situation in Fig. 40 just before we wanted to insert SEKS
position 9; in order to keep the lists separate, it would be necessary to:m
FIRE, and for this purpose it would be necessary to discover which node inh
to FIRE. We could solve this problem without providing two-way linkage b
using circular lists, as suggested by Allen Newell in 1962, since the lists ay
short; but that would probably slow down the main search loop because step‘c
would be more complicated. IExercise 34 shows that the average number:
probes, when lists aren’t coalesced, is reduced to ‘

“ The nodes of the tuble are denoted by TABLE[:], for 0 < 7 < 3, and they
. of two distinguishable types, empty and occupied. An occupied node con-
2ins o key, called XEY[¢], and possibly other fields. An auxiliary ‘variame N is
1sed to keep track of how many nodes are occupied; this variable is .(:o.nsldered
. ‘toﬁbe pait of the table, and it is increased by 1 whenever a new key is lnse}"ted.
_ This algorithm makes use of a hash function A(K), and it uscs the linear
robing sequence (20) to address the table. Modifications of that sequence
& discussed below.

1. [Hash.] Set 7« A(K). Now0 < ¢ < M)

2 [Compare.] If KEY[7] = K, the algorithm terminates successfully. Otherwise
if TABLE]7] is empty, go to L4.

3. [Advance to next.] Set?« ¢ — 1;if now ¢ < 0, set ¢ < i - M. Go back
to step L2.

[Insert.] (The search was unsuccessful) 1f N= M -- 1, the algorithm
terminates with overflow. (This algorithm considers the table to be full
when N= M — 1, not when N = M; see exercise 15.) Othcrwise set
N « N - 1, mark TABLE[{] occupied, and set KEY[i] « K.

W’
Cy = (1 —]le> + % e "t a (unsuccessful search); (18

Oy = 1+ —Z%TTI =14+ %a (successful search).

l

This is not enough of an improvement over (15) and (16) to warrant chang
the algorithm. ‘
On the other hand, Butler Tampson has obscrved that most of the sp
actually needed for links can actually be saved in the chaining method,; if W
avoid coalescing the lists. This leads to an interesting algorithm which i
discussed in exercise 13.
Note that chaining can be used when N > M, so overflow is not a seric
problem. If separate lists are used, formulas (18) and (19) are valid for o >
When the lists coalesce as in Algorithm C, we can link extra items into an aux

. Figure 41 shows what happens when the seven example keys (11) arc
nserted by Algorithm L, using the respective hash codes 2, 7, 1, 8, 2, 8, 1: The
ast three keys, FEM, SEKS, and SYV, have been displaced from their initial loca-
ions A(K).

iliary storage pool; I.. Guibas has proved that the average number of probes ¢ 04 rEM
insert the (M |- L + 1)st item is then (L/2M - 1)((1 + 2/M)™ - 1) + 1, 1| TRE
EN

Collision resolution by “open addressing.” Another way to resolve the problent z

of collisions is to do away with the links entircly, simply looking at various 4
cutries of the table one by one until either finding the key K or finding an empty 5 | swv
position. The idea is to formulate some rule by which every key K determine 6 | sexs
a “probe sequence,” namely a scquence of table positions which are to be'n} 7 1o
spected-whenever K is inserted or looked up. If we encounter an open positior 8 | Fire

while searching for K, using the probe sequence determined by K, we ecat
conclude that K is not in the table, since the same scquence of probes will be.
made every time K is processed. This general class of methods was named
open addressing by W. W. Peterson [IBM J. Research & Development 1 (1957)
130-146).

The simplest open addressing scheme, known as linear probing, nses th
eyclic probe sequence ‘

Fig. 41. Linear open addressing,.

Program L (Open scatter table search and insertion). This program deals with
full-word keys; but a key of 0 is not allowed, since 0 is used to signal an empty
position in the table. (Alternatively, we could require the keys to be non-
_negative, letting empty positions contain - -1.) Thc table size M is assumed
to be prime, and TABLE[?] is stored in Jocation TABLE + 7 for 0 < 7 < M. lj‘or
- speed in the inner loop, location TABLE — 1 is assumed to contain 0. Locatlon
VACANCIES is assumed to contain the value M — 1 — N;and rA = K, rll =+,

In order to speed up the inncr loop of this program, the test “¢ < 0” has
been removed [rom the loop so that only the essential parts of steps L2 and L3
remain. The total running time for the searching phase comes to (7€' + 9K -+

21 — 4S)u, and the insertion after an unsuc:essful search addspmogriiesYys

ME), RE) — 1, ..., 0, M — 1, M — 2, ... h(K) -1 (20)

as in the following algorithm.

Algorithm L (Open scatler loble search and insertion). This algorithm searches ;
an M-node table, looking for a given key K. If K is not in the table and the
table is not full, K is inserted.

