Bedrock Computer Technologies, LLC v. Softlayer Technologies, Inc. et al Doc. 845 Att. 9

Exhibit 8

Dockets.Justia.com

http://dockets.justia.com/docket/texas/txedce/6:2009cv00269/116887/
http://docs.justia.com/cases/federal/district-courts/texas/txedce/6:2009cv00269/116887/845/9.html
http://dockets.justia.com/

9 "ON 3sEDf

.
.

AAT-69700-42-60

801 "ON MqIUXH

202 Tables and Informatlon Retrieval

sample hash function

1. Linear Probing

2. Clustering

example of clustering

CHAPTER 6

function Hash(x: keytype): integer;
var

i 1..8;

h: integer;
begin

h:=0;

fori=1to B8 do

h == h + ord(x[i});

Hash = h mod hashsize

end;

We have simply added the integer codes corresponding to each of the eight
characters. There is no reason to believe that this method will be better (or worse),
however, than any number of others. We could, for example, subtract some of the
codes, multiply them in pairs, or ignore every other character. Sometimes an applica-
tion will suggest that one hash function is better than another; sometimes it requires
experimentation to settle on a good one.

6.5.3 Collision Resoluiion with Open Addressing

The simplest method to resolve a collision is to start with the hash address (the
location where the collision occurred) and do a sequential search for the desired
key or an empty location. Hence this method searches in a straight line, and it is
therefore called linear probing. The array should be considered circular, so that
when the last location is reached, the search proceeds to the first location of the

array.

The major drawback of lincar probing is that, as the table becomes about half full,
there is a tendency toward clustering; that is, records start to appear in long strings
of adjacent positions with gaps between the strings. Thus the sequential searches
needed to find an empty position become longer and longer. For consider the example
in Figure 6.11, where the occupied positions are shown in color. Suppose that there
are n locations in the array and that the hash function chooses any of them with
equal probability 1/n. Begin with a fairly uniform spread, as shown in the top diagram.

If a new inscrtion hashes to location b, then it will go there, but if it hashes to -

Jocation @ (which is full), then it will also go into b. Thus the probability that b
will be filled has doubled to 2/n. At the next stage, an attempted insertion into
any of locations g, b, ¢ or d will end up in d, so the probability of filling d is
4/n. After this, e has probability 5/n of being filled, and so as additional insertions
are made the most likely effect is to make the string of full positions beginning at
location a longer and longer, and hence the performance of the hash table starts to
degenerate toward that of sequential search.

SECTION 6.5

3. Increment Functions

4. Quadratic Probing

number of distinct

Hashing 203

c d 8 f

Figure 6,11, Clustering in a hash table

The problem of clustering i i i ility; i
g 1s essentially one of instability; if a few keys h
. i 2
;andon'llly.tf) be near each ot}‘ler, then it becomes more and more likely zhat gtizl;
eys will join them, and the distribution will become progressively more unbalanced

If we are to avoid the problem of clustering, then we must use some more sophisticated
way to select the sequence of locations to check when a collision occurs.pT};chaaie
:r}'llzny Wazs to‘.d'O s0. One, 'called rehgshirlg,. uses a second hash function to obtain
second position to consider. If this position is filled, then some other method i
gzeic?htoﬁgett }t]hehtl;ird position, and so on. But if we have a fairly good sprealg
e first has unction, then little is to be gained b i
hash funcllon. We will do just as well to find a morg sophistfcai:dlr\:viifp(e)rflccll‘:;rrsgﬁﬁnd
the distance to move from the first hash position and apply this method, whate o
the first hash location is. Hence we wish to design an increment functioil that (:I:;

depend on the key or on th) h
clustering. Y ¢ number of probes already made and that will avoid

;I,f Elelrehis _f :o;lis}li)r; at hash address %, this method probes the table at locations
s s v+« ., that is, at locations & + i2 (mod hashsi j ==
2, That is, the increment function is i2. ¢ ey for i = 4
This meth.od spbstantially reduces clustering, but it is not obvious that it will
p}:obe all l_ocatlons in tl'}e. table, and in fact it does not. If hashsize is a power of 2,
then relatively few POSIthnS are probed. Suppose that hashsize is a prime. If Wl;
reach the same location at probe i and at probe j, then .

h =+ i?

h + j2 (mod hashsize)
s0 that
(i —)¢ +j) =0 (mod hashsize).

(S;gce hashsiz'e is a prirr.w, it must divide one factor. It divides i — j only when j
H1 ersl fron? z. by a. mulltlple of hashsize, so at least hashsize probes have been made.

gghmze dlyl.des i+ j,'howevcr, when j = hashsize — i, so the total number of
distinct positions that will be probed is exactly

(hashsize + 1) div 2.

DEF00006814

8. Deletions

special key

linked storage

space saving

collision resolution

206 Tables and Information Retrieval

CHAPTER 6

Up to now we have said nothing about deleting items from a hash table. At first
glance, it may appear to be an easy task, requiring only marking the deleted location
with the special key indicating that it is empty. This method will not work. The
reason is that an empty location is used as the signal to stop the search for a target
key. Suppose that, before the deletion, there had been a collision or two and that
some item whose hash address is the now-deleted position is actually stored elsewhere
in the table. If we now try to retricve that item, then the now-empty position will
stop the search, and it is impossible to find the item, even though it is still in the
table.

One method to remedy this difficulty is to invent another special key, to be

placed in any deleted position. This special key would indicate that this position is

free to receive an insertion when desired but that it should not be used to terminate

the search for some other item in the table. Using this second special key will, however, -,

make the algorithms somewhat more complicated and a bit slower. With the methods

we have so far studied for hash tables, deletions are indeed awkward and should be

avoided as much as possible.

6.5.4 Collision Resolution by Chaining

Up to now we have implicitly assumed that we are using only contiguous storage
while working with hash tables. Contiguous storage for the hash table itself is, in
fact, the natural choice, since we wish to be able to refer quickly to random positions
in the table, and linked storage is not suited to random access. There is, however,
no reason why linked storage should not be used for the records themselves. We
can iake the hash table itself as an array of pointers to the records, that is, as an
array of list headers. An example appears in Figure 6.12.

It is traditional to refer to the linked lists from the hash table as chains and
call this method collision resolution by chaining.

1. Advantages of Linked Storage

There are several advantages to this point of view. The first, and the most important
when the records themselves are quite large, is that considerable space may be saved.
Since the hash table is a contiguous array, enough space must be set aside at compilation
time to avoid overflow. If the records themselves are in the hash table, then if there
are many empty positions (as is desirable to help avoid the cost of collisions), these
will consume considerable space that might be needed elsewhere. If, on the other
hand, the hash table contains only pointers to the records, pointers that require
only one word each, then the size of the hash table may be reduced by a large
factor (essentially by a factor equal to the size of the records), and will become
small relative to the space available for the records, or for other uses.

The second major advantage of keeping only pointers in the hash table is that

it allows simple and efficient collision handling. We need only add a link field to:

each record, and organize all the records with a single hash address as a linked

list. With a good hash function, few keys will give the same hash address, so the

overflow

deletion

SECTION

6.5 Hashing 207

‘-IF ulf

Figure 6.12. A chained hash table

linked lists will be short and can be searched quickly. Clustering is no problem at
all, because keys with distinct hash addresses always go to distinct lists.

A third advantage is that it is no longer necessary that the size of the hash
table exceed the number of records. If there are more records than entries in the
table, it means only that some of the linked lists are now sure to contain more
than one record. Even if there are several times more records than the size of the
table, the average length of the linked lists will remain small, and sequential search
on the appropriate list will remain cfficient.

Finally, deletion becomes a quick and easy task in a chained hash table. Deletion
proceeds in exactly the same way as deletion from a simple linked list.

2, Disadvantage of Linked Storage

use of space

small records

These advantages of chained hash tables are indeed powerful. Lest you believe that
cl}aining is always superior to open addressing, however, let us point out one important
disadvantage: All the links require space. If the records are large, then this space is
negligible in comparison with that needed for the records themselves; but if the records
are small, then it is not.

Suppose, for example, that the links take one word each and that the items
themselves take only one word (which is the key alone). Such applications are quite
common, where we use the hash table only to answer some yes-no question about
the key. Suppose that we use chaining and make the hash table itself quite small,
with the same number n of entries as the number of items. Then we shall use 3n
words of storage altogether: n for the hash table, n for the keys, and #u for the
links to find the next node (if any) on each chain. Since the hash table will be ncarly
full, there will be many collisions, and some of the chains will have several items.

DEF00006816

208 Tables and Information Retrieval

3. Pascal Algorithms

declarations

initiulization

retrieval

insertion

CHAPTER 8

Hence searching will be a bit slow. Suppose, on the other hand, that we use open
addressing. The same 31 words of storage put entirely into the hgsh table will mean
that it will be only one third full, and therefore there will be relatively few collisions

and the search for any given item will be faster.

A chained hash table in Pascal takes declarations like

type
pointer = thode;
list = record head: pointer end;

hashtable = array [0 .. hashmax] of list;

The record type called node consists of an item, callefi info, and an additional field,
called next, that points to the next node on a hn]fed list.
The code needed to initialize the hash table is

for i := 0 to hashmax do H[il.head := nil;

We can even use previously written procedures to access the hash table. The

hash function itself is no different from that used with open addressing; for data -

retrieval we can simply use the procedure SequentialSearch (linked version) from
Section 5.2, as follows:
procedure Retrieve(var H: hashtable; target: keytype;)
var found: Boolean; var location: pointer); , ,
lfinds the node with key target in the hash table H, and returns with location
pointing to that node, provided that found becomes true}

begin)
SequentialSearch(H[Hash(target)}, target, found, location}

end;
Qur procedure for inserting a new entry will assume that the key does not appear

already; otherwise, only the most recent insertion with a given key will be retrievable. ;

Insert(var H: hashtable; p: pointer); ‘
Er:::ret:ur:':de pt ?nto the chained hash table H, assuming no other node with
key pt.nfo.key is in the table}
var
iz integer;
begin
i := Hash({pt.info.key);
pt.next := Hiil.head;
H[il.head == p
end;

{used for index in hash table}
{Find the index of the linked list for p1.)

{Insert pT at the head of the list.]
{Set the head of the list to the new itern.|

versions for open addressing, since collision resolution is not a problem.

As you can see, both of these procedures are significantly simpler than are the i

SECTION
Exercises
6.5

perfect hash functions

8.5 Hashing 209

E1. Write a Pascal procedure to insert an item into a hash table with open addressing
and linear probing.

E2. Write a Pascal procedure to retrieve an item from a hash table with open address-
ing and (a) lincar probing; (b) quadratic probing.

E3. Devise a simple, easy-to-calculate hash function for mapping three-letter words
to integers between 0 and n — 1, inclusive. Find the values of your function
on the words

PAL LAP PAM MAP PAT PET SET SAT TAT BAT

for n = 11, 13, 17, 19. Try for as few collisions as possible.

E4

Suppose that a hash table contains hashsize = 13 entries indexed from 0 through
12 and that the following keys arc to be mapped into the table:

10 100 32 45 58 126 3 29 200 400 O

(a) Determine the hash addresses and find how many collisions occur when
these keys are reduced mod hashsize.

(b) Determine the hash addresses and find how many collisions occur when
these keys are first folded by adding their digits together (in ordinary decimal
representation) and then reducing mod hashsize,

(¢) Find a hash function that will produce no collisions for these keys. (A hash
function that has no collisions for a fixed set of keys is called perfect.)

(@ Repeat the previous parts of this exercise for hashsize = 11. (A hash function
that produces no collision for a fixed set of keys that completely fill the
hash table is called minimal perfect.)

=
i

Another method for resolving collisions with open addressing is to keep a separate
array called the overflow table, into which all items that collide with an occupied
location are put. They can either be inserted with another hash function or
simply inserted in order, with sequential search used for retrieval. Discuss the
advantages and disadvantages of this method.

E6. Write an algorithm for deleting a node from a chained hash table.

E7. Write a deletion algorithm for a hash table with open addressing, using a second
special key to indicate a deleted item (see part 8 of Section 6.5.3). Change the
retrieval and insertion algorithms accordingly.

E8. With linear probing, it is possible to delete an item without using a second
special key, as follows, Mark the deleted entry empty. Search until another empty
position is found. If the search finds a key whose hash address is at or before
the first empty position, then move it back there, make its previous position
empty, and continue from the new empty position. Write an algorithm to imple-
ment this method. Do the retrieval and insertion algorithms need modification?

DEF00006817

