
Exhibit 13

Bedrock Computer Technologies, LLC v. Softlayer Technologies, Inc. et al Doc. 846 Att. 1

Dockets.Justia.com

http://dockets.justia.com/docket/texas/txedce/6:2009cv00269/116887/
http://docs.justia.com/cases/federal/district-courts/texas/txedce/6:2009cv00269/116887/846/1.html
http://dockets.justia.com/

PX-1
6 :09-cv-269-LE D

BTEX0000159

United States Patent fI9J

Nemes

[54] MKfHODS AN)) APPARATUS FOR
INFORMATION STORAGE AND RETRIEVAl.
USING A HASHING TECHNIQUE WITH
EXTERNAL CHAINING AN)) ON-THE-FLY
REMOVAL OF EXPIRED DATA

f76] Inventor: RJchard Michael Nemes, 1432 E. 35th
S1., Brooklyn, N.Y. 11234-2604

[21] App!. No.: 775;864

[22] Filed: Jan. 2, 1997

[51] Int. CI. 6
.. G06F 17/30

[52J U.S. CI. 707/206; 7(J7/1; 707/100;
707/10l; 707/202

f58] Field of Search 70711,200--206,
707/2, 100--103

[56 J Referencl."S Cited

5,121,495
5,202,981
5,287,499

U.S. PATENT DOCUMENTS

6/1992 Nemes .. 707/3
4/1993 Shackelford 707/1
2/1994 Nemes 7071206

OUIER PUBLICATIONS

DE Knuth, The Art of Computer Programmin& vol. 3,
Sorting and Searching, Addison-Wesley, Reading, Massa
chusetL .. , 1973, pp. 506--549.

II11I1 111
USOO5893120A

[11) Patent Number:

[45] Date of Patent:

5,893,120
Apr. 6, 1999

R.L. Kruse, Data Structures and Program Design, Second
Edition, Prentice-llall, Englewood Cliffs, New Jersey, 1987,
Section 6.5, "Hashing," and Section 6.6, Analysis of Hash
ing, pp. 198-215.
D. F. Stubbs and N.W. Webre, Data Structure with Abstract
Data Types and Pascal, Brooks/Cole Publishing Company,
Monterey, California, 1985, Section 7.4, "Hased Implemen
tations," pp. 310--336.

Primary Examiner-:lllOmas G. Black
Assi'i[ant Examiner-Hosain T. Alam

[57) ABSTRACT

A method and apparatus for performing storage and retrieval
in an information storage system is discloscd that uses the
hashing technique with the external chaining method for
collision resolution. In order to prevent performance dete
rioration due to the presence of automatically expiring data
items, a garbage collection technique is used that removes
all expired records stored in the system in the external chain
targeted by a probe into the data storage system. More
particularly, each in-.ertion, retrieval, or deletion of a record
is an occasion to search an entire linked-list chain of records
for expired items and then remove them. Because an expired
data item will not remain in the system long term if the
system is frequently probed, it is u.-.eful for large information
storage systems that arc heavily used, require the fast access
provided by ha.·.,hing, and cannot be taken off-line for
removal of expired data.

8 Claims, 6 Dr.twing Shccts

BTEX0000160

u.s. Patent Apr. 6, 1999 Sheet 1 of 6 5,893,120

15

RANDOM
ACCESS 1
MEMORY

INPUT- CENTRAL DISK
OUTPUT t+-+-Jl-'t1ul.Il:::;SINGI-+--+-I CONTROL +-1

UNIT UNIT

14 10

PRINTER
6 FIG. 1

USER
ACCESS

SOFTWARE 20

OPERATING GENERAL
SYSTEM UTILITY

SOFTWARE SOFTWARE 22

21
25

APPLICATION APPLICATION APPLICATION
SOFTWARE SOFTWARE -...... "' ... __ . SOFTWARE

1 2 N

23 24

FIG. 2

BTEX0000161

u.s. Patent

SAVE
POINTER TO

LIST ELEMENT

NO

ADVANCE TO 41
NEXT

ELEMENT

Apr. 6, 1999

REMOVE
REMOVE
RECORD
(FIG. 4)

Sheet 2 of 6

J---30

HASH 31
SEARCH

KEY

GET HEAD 32
OF TARGET

LIST

YES

"---35 RETURN
SUCCESS

---37

FIG.3

5,893,120

34

NO
36

RETURN
FAILURE

BTEX0000162

u.s. Patent Apr. 6, 1999 Sheet 3 of 6 5,893,120

YES

ADJUST
HEAD PTRTO

BYPASS
ELEMENT

DE-ALLOCATE
LIST ELEMENT

TO BE REMOVED

STOP

START ~50

51

ADVANCE PTR
TO ELEMENT
FOLLOWING

ONE TO REMOVE

56

FIG. 4

NO

53

ADJUST
PREDECESSOR'S

PTRTO
BYPASS ELEMENT

BTEX0000163

u.s. Patent

YES

PUT RECORD
IN LIST ELEMENT 73
RETURNED BY
SEARCH·TABLE

RETURN
REPLACED

STOP -75

Apr. 6, 1999

RETURN
FULL

FIG. 5

Sheet 4 of 6 5,893,120

YES
78

ALLOCATE
NEW LIST
ELEMENT

79
COpy RECORD

INTO NEW
LIST ELEMENT

o
INSERT NEW

LIST ELEMENT
INTO TARGET

LIST
1

RETURN
INSERTED

BTEX0000164

u.s. Patent

COpy
RECORD

RETURN
SUCCESS

STOP

Apr. 6, 1999 Sheet 5 of 6

YES

START ~90

SEARCH-TABLE
SEARCH FOR
RECORD AND

CLEAN TARGET
LIST

FIG. 6

RETURN
FAILURE

5,893,120

BTEX0000165

u.s. Patent

REMOVE
DELETE

ELEMENT
(FIG. 4)

RETURN
SUCCESS

STOP

Apr. 6, 1999 Sheet 6 of 6

YES

~100

SEARCH-TABLE
SEARCH FOR
RECORD AND

CLEAN TARGET
LIST

106

FIG. 7

102

NO

RETURN
FAILURE

5,893,120

103

BTEX0000166

5,893,120
1

METHODS AND APPARATUS FOR
INFORMATION STORAGE AND RETRIEVAl.

USING A HASHING TECHNIQUE WITH
EXTERNAL CHAINING AND ON·THE-FLY

REMOVAL OF EXPIRED DATA

CROSS-REFERENCE TO RELATED
APPLICATIONS

Not Applicable

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

Not Applicable

REFERENCE TO A MICROFICHE APPENDIX

Not Applicable

BACKGROUND OF THE INVENTION

2
Hall, Incorporated, Englewood ClifTs, N.J., 1987, Section
6.5, "IIashing," and Section 6.6, "Analysis of Hashing," pp.
198~215, and in Data "·;tructures with Abstract Data Types
and Pascal, by D. F. Stubbs and N. W. Webre, Brooks/Cole

5 Publishing Company, Monterey, Calif., 1985, Section 7.4,
"Hashed Implementations," pp. 310-336.

Some forms of information are such that individual data
items, after a limited period of time, become obsolete, and
their presence in the storage system is no longer needed or

10 de.<;ired. Scheduling activities, for example, involve data that
become obsolete once the seheduled event has occurred. An
automatically-expiring data item, oncc it expires, needlessly
occupies computer memory storage that could otherwise be
put to use storing an unexpired item. Thus, expired items

15 must eventually be removed to reclaim the storage for
subsequent data insertions. In addition, the presence of many
expired items results in needlessly long search times since
the linked lists associated with external chaining will be

This invention relate.<; to information storage and retrieval 20

systems, and, more particularly, to the use of hashing
techniques in such systems.

longer than they otherwise would be. 'lbe goal i<; to remove
these expired items to reclaim the storage and maintain fast
access to the data.

The problem, then, is to provide the speed of access of
hashing techniques for large, heavily used infonnation stor
age systems having expiring data and, at the same time,

Information or data stored in a computer-controlled stor
age mechanism can be retrieved by searching for a particular
key value in the !;tored records. The stored record with a key
matching the search key value is then retrieved. Such
searching techniques require repeated access to records into
the storage mechani<;m to pcrfonn key comparisons. In large
storage and retrieval systems, such searching, even if aug
mented by efficient search procedures such as the binary
search, often requires an excessive amount of time due to the
large number of key compari<;ons required.

Another well-known and much faster way of storing and
retrieving information from computer storage, albeit at the
expense of additional storage, is the so-called "hashing"
technique, also called seatter-storage or key-transfonnation
method. In such a system, the key is operated on by a
hashing function to produce a storage address in the storage
space, called the hash table, which is a large one
dimensional array of record locations. 'Ibis storage address
is then acccssed directly for the desired record. Hashing
techniques are described in the classic text by D. E. Knuth
entitled The Art of Computer Programmin& Volume 3,
Sorting and Searching, Addison-Wesley, Reading, Mass.,
1973, pp. 506-549.

Hashing functions are designed to translate the universe

25 prevent the performance degradation resulting from the
aecumulation of many expired records. Although a hashing
technique for dealing with expiring data is known and
di<;closed in U.S. Pat. No. 5,121,495, issued Jun. 9, 1992,
that technique is confined to linear probing and is entirely

3() inapplicable to external chaining. The procedure shown
there traverses, in reverse order, a consecutive sequence of
records residing in the hash table array, continually relocat
ing unexpired records to fill gaps left by the removal of
expired ones.

]5
Unlike arrays, linked lists leave no gaps when items from

it are removed, and furthennore it is not possible to effi
ciently traverse a singly linked list in reverse order. 'Ibere are
significant advantages to external chaining over linear prob-

40 ing that sometimes make it the method of choice, as dis
cussed in considerable detail in the aforementioned texl<;,
and so hashing techniques for dealing with expiring data that
do not use external chaining prove wholly inadequate for
certain applications. For example, if the data records are

45 large, considerable memory can be saved using external
chaining instead of linear probing. Accordingly, there is a
need to develop hashing techniques for external chaining
with expiring data. 'lbe methods of the above-mentioned
patent are limited to arrays and cannot be used with linked

of keys into addresses unifonnly distributed throughout the
hash table. 'lypical hashing functions include truncation,
folding, transposition, and modulo arithmetic. A di<;advan
tage of hashing is that more than one key will inevitably
translate in the same storage address, causing "colli<;ions" in
storage. Some form of collision resolution must therefore be
provided. For example, the simple strategy called "linear
probing," which eonsisl<; of searching forward from the 55

initial storage address to the first empty storage location, is
often used.

50 lists due to the significant difference in the organization of
the computer's memory.

BRIEF SUMMARY OF 111E INVEN'llON

In accordance with the illustrative embodiment of the
invention, these and other problems are overcome by using
a garbage collection procedure "on-the-lly" while other
types of access to the storage space arc taking place. In
particular, during normal data insertion or retrieval probes
into the data store, the expired, obsolete records are identi-

Another method for resolving collisions is called "exter
nal chaining," In this technique, each hash table location is
a pointer to the head of a linked li<;t of records, all of whose
keys translate under the hashing function to that very hash
table address. The linked list is itself searched sequentially
when retrieving, inserting, or deleting a record. Insertion and
deletion are done by adjusting pointers in the linked list.
External chaining is discussed in considerable detail in tbe
aforementioned text by D. E. Knuth, in Data Structures and
Program Design, Second Edition, by R. L Kruse, Prenticc-

60 lied and removed from the external chain linked list.
Specifically, expired or obsolete records in the linked list
including the record to be accessed are removed as part of
the nonnal search procedure.

'Ibis incremental garbage collection technique has the
65 decided advantage of automatically eliminating unneeded

records without requiring that the information storage sys-"
tem be taken off-line for such garbage collection. Tbi<; is

BTEX0000167

5,893;120
3

particularly important for information storage systems
requiring rapid access and continuous availability to the user
population.

More specifically, a method for storing and retrieving
information reeords using a linked list to store and provide
access to the records, at le<L-<;t some of the records automati
cally expiring, is disclosed. The method accesses the linked
list of records and identifies at least some automatically
expired ones of the records. It also removes at least some
automatically expired ones of the record<; from the linked Ii<;t
when the linked list is accessed. Furthermore, the method
provides for dynamically determining maximum numher of
expired ones of the records to be removed when the linked
list is accessed.

BRIEF DESCRIPTION OF TIlE SEVERAL
VIEWS OF TIlE DRAWING

Acomplete understauding of the present invention may be
gained by considering the following detailed description in
conjunction with the accompanying drawing, in which:

FIG. 1 shows a general block diagram of a computer
system hardware arrangement in which the information
storage and retrieval system of the present invention might
be implemented;

PIG. 2 shows a general block diagram of a computer
system software arrangement in which the information stor
age and retrieval system of the present invention might find
use;

BG. 3 shows a general flow chart for a table searching
operation that might be used in a hashed storage system in
accordance with the present invention;

FIG. 4 shows a general flow chart for a linked-list element
remove procedure that forms part of the table searching
operation of FIG. 3;

FIG. 5 shows a general flow chart for a record insertion
operation that might be used in a hashed storage system in
accordance with the present invention;

FIG. 6 shows a general flow chart for a record retrieval
operation for use in a hashed storage system in accordance
with the present invention; and

FIG. 7 shows a general flow chart for a record deletion
operation that might be used in a hashed storage system in
accordance with the present invention.

To facilitate reader understauding, identical reference
numerals are used to designate elements common to the
figures.

DETAILED DESCRIPIlON OF mE
INVENTION

1<1G. 1 of the drawings shows a general block diagram of

4
Central Processing Unit (CPU) 10 also controls an Input!

Output (I/O) controller 14 that, in tum, provides access to a
plurality of input devices such as CRT (cathode ray tube)
terminal 15, as well <L-<; a plurality of output devices such as

5 printer 16. 'Ierminal 15 provides a meehanism for a com
puler user to introduce instructions and commands into the
computer system of FIG. 1, and may be supplemented with
other input devices such ao; magnetic tape readers, remotely
located terminals, optical readers, and other types of input

!O devices. Similarly, printer 16 provides a mechanism for
displaying the results of the operation of the computer
system of HG. 1 for the computer user. Printer 16 may
similarly be supplemented by line printers, cathode ray tube
displays, phototypesetters, laser printers, graphical plotten;,

15 and other types of output devices.

The constituents of the computer system of FIG. 1 and
their cooperative operation are well-known in the art and are
typical of all computer systems, from small personal com
puters to large mainframe systems. 1be architecture and

20 operation of such systems are well-known and will not be
further described here.

FIG. 2 shows a graphical representation of a typical
software a(Chitecture for a computer system such as that
shown in FIG. 1. The software of FIG. 2 comprises a user

25 acce..<;s mechanism that, for simple personal computers, may
consist of nothing more than turning the system on. In larger
systems, providing scrvice to many users, login and pass
word procedures would typically be implemented in user
access mechanism 20. Once user access mechanism 20 has

30 completed the login procedure, the user is placed in the
operating system environment 21. Operating system 21
coordinates the activities of all of the hardware components
of the compuler system (shown in FIG. 1) and provides a
number of utility programs 22 of general use to the computer

35 user. Utilities 22 might, for example, comprise basic file
access and manipUlation programs, system maintenance
facilities, and programming language compilers.

The computer software system of JiIG. 2 typically also
40 includes application programs such as application software

23, 24, ... , 25. Application software 23 thwugh 25 might,
for example, comprise a text editor, document formatting
software, a spreadsheet program, a database management
system, a game program, and so forth.

45 The present invention is concerned with information
storage and retrieval. It can be application software packages
23-25, or used by other parts of the system, such as user
access software 20 or operating system 21 software. The
information storage and retrieval technique provided by the

50 present invention are herein disclosed as flowcharts in FIGS.
3 through 7, and shown as PA'iCAL-like pseudocode in the
APPENDIX to this specification.

a computer hardware system comprising a Central Process
ing Unit (CPU) 10 and a Random Access Memory (RAM) 55
unit 11. Computer programs stored in the RAM 11. are
accessed by CPU 10 and executed, one instruction at a time,

Before proceeding to a description of one emhodiment of
the present invention, it is first useful to discuss hashing
techniques in general. Many fast techniques for storing and
retrieving data are known in the prior art. In situations where
storage space is considered cheap compared with retrieval
time, a technique called h<L-'>hing is often used. In classic
hashing, each record in the information storage system
includes a distinguished field unique in value to each record,
called the key, which is used as the basis for storing and

by CPU 10. Data, stored in other portions of RAM 11, are
operated on by the program instructions accessed by CPU 10
from RAM 11, all in accordance with well-known data 60

processing techniques.
Central Processing Unit (CPU) 10 also controls and

accesses a disk controller unit 12 that, in tum, accesses a
digital data stored on one or more disk storage units such as
disk storage unit 13 until required by CPU 10. At thi<; time, 65

such programs and data are retrieved from disk storage unit
13 in block" and stored in RAM 11 for rapid access.

retrieving the associated record. Taken as a whole, a hash
table is a large, one-dimensional array of logically
contiguous, consecutively numbered, fixed-size storage
units. Such a table of records is typically stored in RAM 11
of FIG. 1, where each record is an identifiable and addres-
sable location in physical memory. A hashing function

BTEX0000168

5,893,120
5

translates the key into a hash table array subscript, which is
used as an index into the array where searches for the data
record hegin. The ha<;hing function can be any operation on
the key that rcsulL-; in subscripts mostly unifmmly distrih
uted across the table. Known hashing functions include 5

truncation, folding, transposition, modulo arithmetic, and
combinations of these operations. Unfortunately, hashing
Cunctions generally do nol produce unique locations in the
hash tahle, in that many distinct keys map to the same
location, producing what are called collisions. Some form of 10

collision resolution is required in all hashing systems. In
every occurrence of collision, finding an alternate location

6
successful and returns success in box 35, followed by the
procedure's termination in terminal box 37. If not, box 36 is
entered where failure is returned and the procedure again
terminates in box 37.

If the end of the list has not been reached as determined
by decision box 33, decision box 38 is entered to determine
if the record pointed to has expired. Ihis i" determined by
comparing some portion of the contents of the record to
some external condition. A timestamp in the record, for
example, could be compared with the current time-of-day
value maintained by all computers. Alternatively, the occur
rence of an event can be compared with a field identifying
that event in the record. In any case, if the record has not
expired, decision box 39 is entered to determine if the key

for a collided record i" necessary. Moreover, the alternate
location mllst be readily reachable during future searches for
the displaced record.

A common collision resolution strategy, with which the
present invention i" concerned, i" called external chaining.
Under external chaining, each hash table entry stores all of

15 in this record matches the scarch key. If ii docs, the address
of the record is saved in box 40 and box 4l is entered. If the
record docs not match the search key, the procedure
bypasses box 40 and proceeds directly to box 41. In box 41,

the records that collided at that location by storing not the
records themselves, but instead a pointer to the head of a 20

linked list of those same records. Such linked lists arc
formed by storing the records individually in dynamically
allocated storage and maintaining with each record a pointer
to the location of tbe next record in the chain of collided
records. When a search key is hashed to a hash table entry, 25

the pointer fonnd there is used to locale the first record. If the
search key does not match the key found there, the pointer
there is used to locate the second record. In this way, the
"chain" of records is traversed scquentially until the desired
record is found or until the end of the chain is reached. 30

Deletion of records involves merely adjusting the pointers to
bypass the deleted record and returning the storage it occu
pied to the available storage pool maintained by the system.

Hashing techniques have been used classically for very
fast access to static, short term data such as a compiler 35

symhol table. Typically, in such storage systems, deletions
are infrequent and the need for the storage system disappears
quickly. In some common types of data storage systems,
however, the storage system is long lived and records can
become obsolete merely by the passage of time or by the 40

occurrence of some event. If such expired, lapsed, or obso
lete records arc not removed from the system, they will, in
time, seriously degrade the performance of the retrieval
system. Degradation shows up in two ways. First, the
presence of expired records lengthens search times since 45
they cause the external chains to be longer than they
otherwise would be. Second, expired records occupy
dynamically allocated memory storage that could be
returned to the system memory pool for useful allocation.
Thus, when the system memory pool i., depleted, a new data 50

item can be inserted into the storage system only if the
memory occupied by an expired one is reclaimed.

Referring then to PIG. 3, there is shown a flowchart of a
search table procedure for searching the hash table prepa
ratory to inserting, retrieving, or deleting a record, in accor- 55

dance with the present invention, and involving the dynamic
removal of expired records in a targeted linked list. Starting
in box 30 of the search table procedure of FIG. 3, the search
key of the record being searched for is ha<;hed in box 31 to
provide the subscript of an array element. In box 32, the hash 60

table array location indicated by the subscript generated in
box 31 is accessed to provide the pointer to the target linked
list. Decision box 33 examines the pointer value to deter
mine whether the end of the linked list has been reached. If
the end has been reached, decision box 34 t<; entered to 65

determine if a key match was previously found in decision
box 39 (as will be described below). If so, the search is

the procedure advances forward to the next record in the
linked list and the procedure returns to box 33.

If decision box 38 determines that the record under
question has expired, box 42 is entered to perform the
on-the-fly removal of the expired record from the linked list
and the return of the storage it oC('"Ilpies to the system storage
pool, as will be described in connection with FIG. 4. In
general, the remove procedure of box 42 (FIG. 4) operates
to remove an element from the linked list by adjusting its
predecessor's pointer to bypass that clement. (However, if
the element to be removed is the first clement of the li"t, then
there is no predecessor and the hash table array entry is
adjusted instead.) On completion of procedure remove
invoked from box 42, the search table procedure returns to
box 33.

Ii can be seen that the search table procedure of HG. 3
operates to examine the entire linked list of records of which
the searched-for record is a part, and to remove expired
records, returning storage to the storage pool with each
removaL If the storage pool is depleted and many expired
records remain despite such automatic garbage collection,
then the insertion of new records is inhibited (boxes 76 and
77 of FIG. 5) until a deletion is made by the delete procedure
(FIG. 7) or until the search table procedure has had a chance
to replenish the storage pool through its on-the-fiy garbage
collection.

Though the search table procedure as shown in FIG. 3,
implemented in the APPENDIX as PASCAL-like
pseudocode, and described above appears in connection
with an information storage and retrieval system using the
hashing technique with external chaining, its on-the-fly
removal technique while traversing a linked list can be used
anywhere a linked list of records with expiring data appears,
even in contexts unrelated to hashing. A person skilled in the
art will appreciate that this technique can be readily applied
to manipulate linked lists not necessarily used with hashing.

The search table procedure shown in FIG. 3, implemented
as pseudocode in the APPENDIX, and described above
traverses the entire linked list removing all expired records
as it searches for a key matcb. The procedure can be readily
adapted to remove some but not all of the expired records,
thereby shortening the linked list traversal time and speeding
up the search at the expense of perhaps leaving some expired
records in the list. For example, the procedure can be
modified to terminate when a key match occurs. (PA.<iCAL
like pseudocode for this alternate version of search table
appears in the APPENDIX.) Ihc implementor even has the
prerogative of choosing among these strategies dynamically

BTEX0000169

5,893,120
7 8

5 begins at staring box 70 from which box 71 is entered. In
box 71, the search table pfOcedure of FIG. 3 i., invoked with
the search key of the record to be inserted. As noted in
connection with FIG. 3, the search table procedure finds the

at the time search table is invoked by the caller, thus
sometimes removing all expired records, at other times
removing some but not all of them, and yet at other times
ehoosing to remove none of them. Such a dynamic runtime
decision might be based on factors such as, for example,
how much memory is available in the system storage pool,
general system load, time of day, the number of records
currently residing in the information system, and other
factors both internal and extemalto the information storage
and retrieval system itself A person skilled in the art will
appreciate that the technique of removing all expired records
while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records arc
removed, and that the decision regarding if and how many
records to delete can be a dynamic one.

5 linked list element whose key value of the (ecord contained
therein matches the search key and, at the" same time,
removes expired records on-the-fly from that linked list.
Decision box 72 is then entered where it is determined
whether the search table procedure found a record with
matching key value. If so, box 73 is entered where the record

10 to be inserted is put into the linked list clement in the
position of the old record with matching key value. In box
74, the insert procedure reports that the old record has heen
replaced by the new record and the procedure terminates in

In FIG. 4 there is shown a flowchart of a remove proce
dure that removes a record from the retrieval system, either

15
terminal box 75.

Returning to deci.,ion box 72, if a matching record is not
found, decision box 76 is entered to determine if there is
sufficient storage in the system storage pool to accommodate
a new linked list element. If not, box 77 is entered to report
that the storage system is full and the record cannot be

20 inserted. Following that, the procedure terminates in termi
nal box 75.

an unexpired record through the delete procedure as will be
noted in connection with FIG. 7, or an expired record
through the search table procedure as noted in connection
with FIG. 3. In general, this is accomplished by the invoking
procedure, being either the delete procedure (FIG. 7) or the
search table procedure (FIG. 3), passing to the remove
procedure a pointer to a linked list element to remove, a
pointer to that element's predecessor element in the same 25

linked list, and the subscript of the hash table array location
containing the pointer to the head of the linked list from
which the element is to be removed. In the case that tbe
element to be removed is the first element of the linked list,
the predecessor pointer passed to the remove procedure by 30
the invoking procedure has the NIL (sometimes called
NULL, or EMPTY) value, indicating to the remove proce
dure that the element to he removed has no predecessor in
the list. The invoking procedure expects the remove
procedure, on completion, to have advanced the passed
pointer that originally pointed to the now-removed clement 35
so that it points to the successor element in that linked list,
or NIL if the removed element was the final element. (The
search table procedure of FIG. 3, in particular, makes use of
the remove procedure's advancing this passed pointer in the
de..<;eribed way; it is made use of in that box 33 of FIG. 3 is 40

entered directly following completion of box 42, as was
de..<;eribed above in connection with FIG. 3.)

The remove procedure causes actual removal of the
designated element by adjusting the predecessor pointer so
that it bypasses the element to be removed. In the case that 45
the predecessor pointer has the NIL value, the hash table
array entry indicated by the passed subseript plays the role
o[the predecessor pointer and is adjm;ted the same way in
its stead. Following pointer adjustments, the storage occu
pied by the removed element is returned to the system 50
storage pool [or future allocation.

Beginning, then, at starting box 50 of FIG. 4, the pointer
to the list element to remove is advanced in box 51 so that
it points to its successor in the linked list. Next, decision box
52 determines if the element to remove is the first element 55
in the containing linked list by testing the predecessor
pointer [or the NIL value, as described above. If so, box 54
is entered to adjust the linked list head pointer in the hash
table array to bypass the first element, after which the
procedure continues on to box 55. If not, box 53 is entered
where the predecessor pointer is adjusted to bypass the 60

element to remove, after which the procedure proceeds, once
again, to box 55. Finally, in box 55 the storage occupied by
the bypassed element i<; returned to tbe system storage pool
and the procedure terminates in terminal box 56.

FIG. 5 shows a detailed flowchart of an insert procedure 65
suitable for use in the information storage and retrieval
system of the present invention. 'Ine in.,<;ert procedure of FIG.

If decision box 76 determines that sufficient storage can
be allocated from the system storage pool for a new linked
list element, then box 78 is entered where the actual memory
allocation is made. In box 79, the record kl he inserted is
copied into the storage allocated in box 78, and box 80 is
entered. In box 80, the linked list clement containing the
record copied into it in box 79 is inserted into the linked list
to which the contained record hashed. The procedure then
report<; that the record was inserted into the information
storage and retrieval system in box 81 and the procedure
terminates in box 75.

FIG. 6 shows a detailed flowchart of a retrieve procedure
used to retrieve a record from the information storage and
retrieval system. Starting in box 90, the search table proce
dure of FIG. 3 is invoked in box 91, using the key of the
record to be retrieved as the search key. In decision box 92
it is determined if a record with a matching key was found
by the search table procedure. If not, box 93 is entered to
report failure of the retrieve procedure, and the procedure
terminates in terminal box 96. If a matching record was
found, box 94 is entered to copy the matching record into a
record store for processing by the calling program, box 95
is entered to return an indication o[successful retrieval, and
the procedure terminates in terminal box 96.

FIG.7 shows a detailed flowchart of a delete procedure
useful for actively removing records from the information
storage and retrieval system. Starting at box 100, the pro
cedure of FIG. 7 invokes the search table procedure of FIG.
3 in box 101, using the key ofthc record to be deleted as the
seareh key. In decision box 102, it is determined if the search
table procedure was able to find a record with matching key.
If not, box 103 is entered to report failure of the deletion
procedure, and the procedure terminate..<; in terminal box
106. If a matching record was found, as determined by
decision box 102, the remove procedure of PI G. 4 is invoked
in box 104. A<; noted in connection with HG. 4, the remove
procedure causes removal of a designated linked list element
from it., containing linked list. Box 105 is then entered to
report successful deletion to the calling program, and the
procedure terminates in terminal box 106.

The attached APPENDIX contains PASCAL-like
pseudocode listings for all of the programmed components
necessary to implement an information storage and retrieval
system operating in accordance with the present invention.
Any person o[ordinary skill in the art will have no difficulty
implementing the disclosed system and procedures shown in
the APPENDIX, including programs for all common hard
ware and system software arrangements, on the basis of this

BTEX0000170

5,893,120
9 10

description, including flowcharts and information shown in
the APPENDIX.

present invention. It is al'>O clear to those skilled in the art
that the invention can be used in diverse computer
applications, and that it is not limited to the use of hash
tables, but is applicable to other techniques requiring linked
lists with expiring records.

It should also be clear to those skilled in the a.rt that other
embodiments of the present invention may be made by those
skilled in the art without departing (rom the teachings of the

Appendix

Functions Provided

The following functions are made availahle to the applimtion progrnm:
1. insert (record: record_type)

Returns replaced if a record a.soci.ted with r"",rd.key was found and
subsequently replaced.
Returns inserted if a record associated with record.key was not round and the
passed record wa.< subsequelltly inserted.
Returns full if" record associated with record.key was not found and the passed
record could not be inserted because DO memory is available.

2. retrieve (record: record .. type)
Returns SUCCess if record ••• oc;.ted with record.key W3.< rOllnd .nd assigned to
record.
Returns failure if search was unsuccessful.

3. delete (record. key: rccordJey._typc)
Returns success if record ass<x:iated with record . ..key was found and subse
quently deleted.
Returns failure if not found.

Definitions

'lbe following formal definitions are required for specifying the insertion, retrieval, and deletion
procedures. They are global to all procedures and functions shown below.
1. const tabl" . ..siz.c
2" type list_element_pointer ~ 1 list_element
3. type list ... clement ~

record

end

record .conten!s: record _type;
neJ[t: Jist_dcment-pointcr

f* Size of bash table. */
r Pointer to elements of linked list. */

/" Each element of linked list. 0'

1* Singly-linked list. *f

4. var table: array [0 ... table .. _size - 1J of list_elemenLpointer r Hash table. Of '* Eaeh array entry i. pointer to head of list. "'
Initial stale of table: tablefi] m nil Vi 0 ,; i < tableJi7.e /. Initially empty. *'

Insert Procedure

function insert (record: record ,type): (replaced, inserted, full);
var position: lisL .. elcmc:nt_pointer,

dummy-pointer: list_element pointer;
index: 0 ... table ..size - 1;

" Poinler into list of found record, "' '* Or new element if not fOWld. */
/* Don't need position'. predecessor. *f

f* ·Thble index mapped to by hash function .• f
begin

if seareh."_table (record.key, position, dummy_pointer, index)
then begin

positiont .recOld_contents :~ "'-COrd;
return (replaced)

end
else

if no memory available then return (full)

end

else begin
new(position);
po.ition t .record contents:= record;
po.ition t .next :~ table[index];
tablc[indcxJ :- position;
return (inserted)

end

f* insert *'
Retrieve Procedure

fO Record already exist? *'
'" Yes, update it with passed record. *f

1* No, insert new record at head of lis!, .,

1* if memory .vailahle to do so. *'
f* Memory is available for a node. *'
'* Dynamically allocate new node. * f '* Hook it in .• ,

'* else begin .,

function retrieve (var record: record . .,lype): (success, failure);
vaf position: lisl_elemenLpointer; ,. P"int.er into list of found record .• , '* Don'l need position's predecessor. *'

f" IJon'l need ~~ble index mapped to by hash function. *' durnmy-pointer: list_clement_pointer,
durnmy.-'ndex: 0 ... table size - 1;

begin
if """reLlable (record key, position, dummy_pointer, dummy

then begin
record ~= position f .record l."tmlcnts;

return (success)
end

index)

else return (failure)
end f* retnL"Vc */

'* Record <",~,t? *'
r Yes, return it to caller. */

'* No, R1"'rt failure. '.j

BTEX0000171

5,893,120
11

-continued

Appendix

Delete Procedure

funclion delete (reconL_ key: record_key_type): (success,wilure);
vat position: list_eleiIlcnl._pointer; " Pointer into list of found record. "'

" Points to pooition's predecessor. ./
/* Tahlc index mapped to by hash function_ '/

previous ___ position: lisL clcment-pointer;
index: 0 . __ lahle_size - 1;

hcgin
ir ""arcLtable (r=rd_key, position, previous_position, index)

then hegin

cud

remove (positi.on, previous_po..o;;itiofi, index);
return (success)

end
else return (failure)

/* delete */
Search Thble Procedure

function search lahle (record __ key: recordJey __ typc;
Vat position: list_dcmenL pointer;
vat previous_posilion: lisl_elerncnl __ pointer;
vat index: 0 ... table--"izc - 1): boolean;

1* Record exist? ./
/* Yes, remove it. */

r No, report failure. '/

/' Search tahle for recordJey and delete expired records in target list; if found, position is made to
point 10 located record and previous_position to its predecessor, and TRUE is returned; otherwise
EAI SE is returned_ index is set to lahle subscript thaI is mapped to by hash function in either
case. */

var 1': lisLelement _ pointer;
previous_po list elemcnl-pointer;

begin
index := hash (recordJcy);
p :~ tablc[indexJ;
previous_p :c:: nil;

r Used for traversing chain. "/
1* Points to 1". predecessor. */

1* hash return. value in the range 0 __ . table--"ize - 1. '/
1* InitialiZation before loop. "

'" Ditto .,
I" Ditto ./

1* Ditto "'

position := nil;
previous_position ~"="\ nil;
while p .. nil /" HEART OF Tim TECHNIQUE: Trnverse entire list, deleting */

/. expired records as we search. '/
begin

if pt .recorLcontents is expired
then remove (p, previous-p, index) /* ON-TIiE-FLY REMOVAL OF EXPIRED RECORD! "'

end;

else begin
if position ~ nil then if pt .record ___ contents.key ~ re~"rdJey

then begin position :~ p; previous_position :~ previous-p end;

previuus-p :M P;
p :~ p1 .next

end

I" If this is record wanted,'/

r save ita posilion. "/
,. Advance to .,

1* ne"t record. "'
'* else begin */

return (posilion .. nil)
end

1* Return TRUE if record located, olherwise FAL<;K '/
r search_ .lable */

Alternate Version of Search 'lable Procedure

function scarcLtable (recordJey: recot<L.k.cy_typc;
var position~ 1ist_element_pointer;
var previous __ position'list_element-P"inter;
var index: 0 ... table_size - 1): boolean;

1* SAME AS VERSION SHOWN ABOVllllXCEPT 11IAT Hili SEARCH 'nlRMINATES IF
RECORD IS FOUND, INSTEAD OF ALWAYS TRAVERSING TIlE ENTIRE CHAIN .• ,

var p: list_element pointer; 1* Used for traversing chain. '/
previollS-P: lisLelement_pointer; r Points to p'. predecessor_ */

begin
index :~ hash (record_key);
p :~ mblc[index];
previ()us-p :~ nil;
position ;:;:;: nil;
previous---position :~ nil;
while p .. nil

hegin
if pf .record_contents is expired

then remOve (p, previouL_p, index)
else begin

1* hash returns value in the range 0 ... table_si7.e - 1. "
1* luiliaJization before loop. '/

1* Ditto ./

,. Ditto "'
/" Diuo '/

/* HEARl' OF WE TECHNIQUE: 'I'rsv,,,,,. list, deleting '/
1* expired recoId.~ as we search. *1

/. ON-TIlE"FLY REMOVAt.. OF EXPIRED RECORDI '/

if p f .rccord_coutents.key ~ rccordJeY
then begin

,. If tbis is record wanted:,
1* save ita posilion. "/

position :~ 1';
previous position:N previouB, ~p;
r.turn (true)

end;
previous_p :- 1';
p :- p1 .next

1* We found the record, so terminate search. '/

,. Advance to "

'" next record. */

12

BTEX0000172

5,893,120

end
cnd;
rdum (false)

cnd

13
-continued

Appendix

1* seareLlable *'
Remove Procedure

procedure remove (vaT clem lo del: li$t __ clement-pointer;
previous ___ elem, Iist._element_pointer;
index, 0 ... table_size - 1);

14

'* else begin *'
'* Reeon\ not found .• ,

'* Ddctc c1em_w_dd f from list, advancing elem. __ w_del to next element. previous __ eIem points La
cJcJIL.tn_del's predecessor, or nil if eJenLLo_del f is 1"' denlent in list. *'

var P' JisLelemcnL.pointer; r Save pointer to clcm_to_del for disposal. *'
hegin

p , ~ dem_tn_del; 1* Save so we can dispose when finished adjusting pointers. *'
c1effi_tn_del , ~ eIent to. del f .next;
if previous_elem ~ nil

then table[index] :- elenl. to del
else prcvious __ eJem f .next :- dem_to_del;
dispose (P)

1* Deleting 1" elemenl requires changing *' ,0 hcad pointer, as opposed tn .,
/* predecessor's neAL pointer. */ '* Dynamically de-allocate node .• ,

end 1* remove*!

I claim:
1. An information storage and retrieval system, the system

comprising:
a linked list to store and provide access to record,; stored

in a memory of the system, at least some of the records
automatically expiring,

a record search means utilizing a search key to access the
linked list,

the record search means including a means for identifying
and removing at least some of the expired ones of the
record<; from the linked list when the linked list is
aecessed, and

means, utilizing the record search means, for accessing
the linked list and, at the same time, removing at least
some of the expired ones of the records in the linked
list.

2. 1be information storage and retrieval system according
to claim 1 further including means for dynamically deter
mining maximum number for the record search meanS to
remove in the acces.<;ed linked list of records.

3. A method for storing and retrieving information records
using a linked Ii';t to store and provide acce.o;s to the record,;,
at least some of the records automatically expiring, the
method comprising the steps of:

accessing the linked list of records,
identifying at least some of the automatically expired ones

of the records, and

removing at least some of the automatically expired
records from the linked list when the linked list is
accessed.

25

30

35

technique to store the records with same hash address,
at least some of the records automatically expiring,

a record search meanS utilizing a search key to access a
linked list of reo)rds having the same hash address,

the record search means including means for identifying
and removing at least some expired ones of the record,;
from the linked list of records when the linked list is
accessed, and

meal<;, utilizing the record search means, for inserting,
retrieving, and deleting record,; from the system and, at
the same time, removing at least some expired ones of
the records in the accessed linked list of rccords.

6. The information storage and retrieval system according
to claim S further including means for dynamically deter
mining maximum number for the record search means to

40 remove in the accessed linked list of records.
7. A method for storing and retrieving information record,;

using a hashing technique to provide access to the records
and using an external chaining technique to store the record,;
with same hash address, at least some of the records auto-

45 matically expiring, the method comprising the steps of:

50

accessing a linked list of record,; having same hash
address,

identifying at least some of the automatically expired ones
of the records,

removing at least some of the automatically expired
records from tbe linked list when the linked list is
accessed, and

4. 1be method aecording to claim 3 further including the
step of dynamically determining maximum number of 55

expired ones of the records to remove when the linked list

inserting, retrieving or deleting one of the records from
the system following the step of removing.

8. The method according to claim 7 further including tbe
step of dynamically determining maximum number of
expired ones of the records to remove when the linked list
is accessed.

is accessed.
S.An information storage and retrieval system, the system

comprising:
a hashing means to provide access to records stored in a 60

memory of the system and using an external chaining * * * * *

BTEX0000173

