

EXHIBIT C

Eolas Technologies Incorporated v. Adobe Systems Incorporated et al Doc. 1301 Att. 2

Dockets.Justia.com

http://dockets.justia.com/docket/texas/txedce/6:2009cv00446/118976/
http://docs.justia.com/cases/federal/district-courts/texas/txedce/6:2009cv00446/118976/1301/2.html
http://dockets.justia.com/

Interactive Editing Systems: Part I I

NORMAN MEYROWITZ AND ANDRIES VAN DAM

Department of Computer Scwnce, Brown Unwers~ty, Prowdence, Rhode Island 02912

This article, Part II of a two-part series, surveys the state of the art of computer-based
interactwe editing systems. This paper is a survey intended for a varied audience,
including the more experienced user and the editor-designer as well as the curious novice.
It presents numerous examples of systems in both the academic and commercial arenas,
covering line echtors, screen editors, interactive editor/formatters, structure editors,
syntax-directed editors, and commercial word-processing editors. We discuss pertinent
issues in the field, and conclude with some observations about the future of interactive
editing. The references for both parts are provided at the end of Part II.

Categories and Subject Descriptors: D 2.2 [Sof tware Engineer ing]: Tools and
Techniques--user interfaces, D.2.3 [Sof tware Engineer ing]: Codingmprettyprinters;
program editors; H.4.1 [Informat ion Sys tems Applications]: Office Automation--
equipment; wordprocess~ng; 1.7.0 [Text Processing]: General; 1.7.1 [Text Processing]:
Text Editing--languages; spelling; 1.7.2 [Text Processing]: Document Preparation--
format and notatton ; languages; photocomposition; 1.7.m [Text Processing]:
Miscellaneous

General Terms: Demgn, Human Factors, Languages

Additional Key Words and Phrases: Syntax-directed editors, structure editors

INTRODUCTION

Part I of this series (pp. 321-352) provides
a reasonably comprehensive introduction
to text editing, presenting definitions and
an overview of the field.

Part II presents technical det~il.q of spe-
cific editors, using the terminology and con-
cepts laid out in Part I. It is intended for a
broader audience, including those quite fa-
miliar with the concepts covered in the first
half as well as those comfortable with the
editors in their own computing environ-
ments but not necessarily familiar with the
range of editors available. This part surveys
editors available in the academic and com-
mercial realms, providing points of depar-
ture for further investigation rather than
an exhaustive point-by-point comparison.
We discuss unresolved issues in the field,
and examine the future of editing. The ref-
erence list and bibliography at the end of
Part II provide material for further reading.

1. IMPLEMENTATIONS

This survey discusses a wide variety of ed-
itors used in academic and commercial cir-
cles. Our purpose is not to provide a de-
tailed point-by-point comparison; our cov-
erage from editor to editor is not necessarily
consistent in either subject matter or depth.
Rather, using the terminology of our tuto-
rial, "Interactive Editing Systems: Part I,"
(pp. 321-352) we attempt to illustrate the
capabilities outlined in Part I, Section 3, of
that tutorial by briefly describing the dis-
tinctive features of each editor or class of
editors. While a taxonomy of the interactive
editor--one in which we could compare the
genealogy, purposes, and features of various
systems--would be useful, it is difficult to
construct. Terminology for categorizing ed-
itors is far from standard, a fact that often
leads to identical labels for less than iden-
tical software and hardware. The history of
editing contains many parallel develop-

Permission to copy without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific permission.
© 1982 ACM 0010-4892/82/0900-0353 $00.75

Computing Surveys, Vol. 14, No. 3, ~eptember 1982

JYW
Highlight

JYW
Highlight

354 • IV. Meyrowitz and A. van Dam

CONTENTS

INTRODUCTION
1. IMPLEMENTATIONS

I.I Line-Oriented Editors
1.2 Stream Editors
1 3 Dmplay Editors
1.4 Graplucs-Based Interactive Editor/Formatters
1 5 General-Purpose Structure Editors
1 6 Syntax-Directed Editors
L7 Word Processors
1.8 Integrated Environments

2. ISSUES
2.1 The State of Editor Design
2 2 The Modeless Environment
2 3 Instant Editor/Formatters versus Batch For-

matters
2 4 Structure/Syntax-Directed Editors versus

"Normal" Editors
3 CONCLUSION

3 1 Desiderata for Today's Editor
3 2 Standardization
3 3 The On-Line Commumty

POSTSCRIPT
ACKNOWLEDGMENTS
REFERENCES
BIBLIOGRAPHY

ments and much cross-fertilization of ideas;
a strict ordering or categorization is thus
impossible. Informally, then, we shall be
looking at editors from the viewpoint of the
target applications I for which they were
designed, the elements and their opera-
tions, the nature of the interface, and the
system configuration. These categories do
not form strictly independent axes; the
choice of one frequently influences the
choice of another.

"Target applications" are the high-level
entities that the editor manipulates, for ex-
ample, manuscripts, programs, or pictures.
"Elements" are the units of target data that
may be manipulated by the user. For ex-
ample, a user may manipulate a program in
the units of single lines of text, of individual
programming language constructs, or of in-
dividual nodes in a parse tree. User
"operations" fall into several subcategories.
Editing operations allow the user to manip-
ulate the target elements. Traveling oper-

In this paper, italic type is used to introduce concepts
and terms. Sans serif type is used to set off editor
commands Boldface type is used for emphasis.

ations allow the user to browse through a
document. Viewing operations allow the
user to control what subset of target data is
presented to the user and how it is format-
ted; for example, text may be viewed as
single lines, as full-screen pages, as a pret-
typrinted program, or as a facsimile of a
typeset document. "Interface" defines the
interaction language, input devices, and
output devices with which the user per-
forms these operations. "Configuration" de-
scribes the architecture of the systems on
which the editor can run.

For compatibility with popular terminol-
ogy, we review some of the most common
terms that are used in this section. A text
editor is one of the basic components of a
text-processing system, which is concerned
not only with creation and maintenance but
also with formatting and interactive presen-
tation of text. In addition to a text editor,
a text-processing system includes a text for-
matter, concerned with the layout and ty-
pography of the text, and various text util-
ities such as spelling correctors that aid in
analyzing and preparing the text. Word
processing is a commercial synonym for
text processing. An office automation sys-
tem typically combines a word-processing
system with utilities such as database man-
agement, information retrieval, electronic
mail, and calendar management. Program
editors operate on programs, whether rep-
resented in textual form or in another can-
onical form, such as a parse tree or an
abstract syntax tree. Picture or graphics
editors facilitate the creation and revision
of computer-based graphics. A new devel-
opment in the text-processing field is the
document preparation system, which inte-
grates text editing, picture editing, and for-
matting. A voice editor is a specialized in-
teractive editor in which the target is digi-
tally encoded voice. A forms editor is an
interactive editor that allows users to create
and to fill in business forms conveniently.
An interactive editor/formatter, often
called a "what-you-see-is-what-you-get"
editor/formatter, allows the user to edit a
facsimile of the printed page such that the
changed text is reformatted instantane-
ously. On standard alphanumeric terminals,
the facsimile represents a monospaced,
typewriter page. On high-resolution raster

Computing Surveys, Vol. 14, No. 3, September 1982

Interactive Editing Systems: Par t H • 355

graphics displays, the facsimile represents
a proportionally spaced, typeset page, with
a variety of typefaces, sizes, and weights,
and such nontextual material as equations,
line drawings, and even photographs. The
goal of the universal or virtual editor, a
current topic of research, is to generalize
and integrate previously target-dependent
software, providing a uniform way to ma-
nipulate seemingly dissimilar targets such
as manuscript text, program text, pictures,
and digitized voice. A structure editor is a
special type of virtual editor that gains its
generality by imposing the same structure
on different targets. For example, a struc-
ture editor based on hierarchy may allow
the user to impose this tree structure on
diverse targets and edit them with the same
tree-editing primitives {e.g., delete subtree,
move current subtree up 1 level, d isp lay all
s ibl ings of node). A syntax-directed editor
is based on the same principles as a struc-
ture editor but imposes the syntactic struc-
ture of a particular language, rather than a
general-purpose structure, on the target.

1.1 Line-Oriented Editors

Line-oriented editors are covered here sim-
ply to round out our treatment of common
editors. We do not, however, advocate the
continued production or use of these edi-
tors. The conceptual model presented with
line editors is that of editing virtual card
images; the line editor constantly visits the
limitations of this outdated representation
of data on the user. Notable drawbacks are
pattern searches and edits that do not cross
line boundaries, and overflow and subse-
quent truncation of fixed-length lines. The

continued dependence on the card analogy
illustrates an important design flaw in
many editors: they adhere to outmoded
conventions even though those conventions
unnecessarily limit the technology of the
day. Unlike the TECO stream model below,
where lines are simply an optional filtering
presented to the user as a service, line edi-
tors force this limited view on the user.

1.1.1 IBM' s CMS Editor

IBM's CMS editor (ca. 1967) is a classic
example of a fixed-length line-oriented ed-
itor with a textual interface, designed for a
time-sharing system in which terminals
lack cursor motion keys and function keys.
It presents the user with a one-line editing
buffer (the amount o f the document that
can be edited at a given time), although this
is extended for some operations. Similarly,
it presents a corresponding one-line viewing
buffer (the amount of the document that is
used to construct the display). The display
is a simple mapping of the one-line viewing
buffer to a one-line window; it is typically
updated after the execution of each com-
mand. (A more thorough explanation of the
editing buffer, viewing buffer, and window
model is presented in Part I, Section 1.)
Traveling is done with line granularity, us-
ing absolute and relative 0otos to varying
internal line numbers and using context
pattern matching. The input language is
textual with two major modes: input and
edit mode. Typically the user spends most
time in edit mode, with input mode re-
served for bulk input of text. The prefLx
syntax is generally consistent across com-
mands:

command~scope~optional destmation/optional parameters

The commands are full English words; the user does not have to remember abbreviations,
although the system will accept the smallest possible unambiguous abbreviation. Most
commands operate on the line units, and within lines as well, if so specified by the scope.

We now show some simple editing using the CMS editor. Assume that we are in edit
mode and that the following section of a program, which computes the sum of two
matrices, is to be modified to compute the difference of the two matrices:

ADD: PROCEDURE;
FOR ROW = 1 TO N DO;

FOR COLUMN = 1 TO M DO;
C(ROW, COLUMN) = A(ROW, COLUMN) + B(ROW, COLUMN);

END;
END;

Computing Surveys. VoL 14, No. 3, September 1982

356 • N . M e y r o w i t z a n d A . v a n D a m

The following sequence of interactions with the editor would provide the necessary
changes (the user's requests are preceded by the system prompt character ">"):

>find/add:
ADD: PROCEDURE;
>change/add/subtract
SUBTRACT: PROCEDURE;
>next 3

C(ROW, COLUMN) = A(ROW, COLUMN) + B(ROW, COLUMN);
>change /+ / -

C(ROW, COLUMN) = A(ROW, COLUMN) - B(ROW, COLUMN);
>top
>change /add /sub t rac t / * •

The routine ADD is first located by using
the column-dependent find command that
searches for the string "ADD:" beginning in
the first position of a line. (The locate com-
mands, after searching for a pattern that
does not exist, travel to and leave the buffer
either at the beginning or end of the file,
frustrating the user who has erroneously
specified a search pattern and must man-
ually grope back to the former location.)
The current line pointer now points to the
line "ADD: PROCEDURE"; this line is
echoed on the screen. The next user
command, change~add~subtract, affects
only the contents of the buffer: the first
occurrence of "ADD" is replaced by
"SUBTRACT." For appropriate types of
files, the editor does automatic lowercase
to uppercase translation. If the maximum
line length of 132 characters is exceeded,
the editor will truncate the line. Line num-
bers in the CMS editor are varying. Travel
is specified relatively with next (next 3
moves the current pointer and hence the
editing and viewing buffers three lines down
from the current location), or absolutely
with goto (goto 276 moves the current
pointer to the 276th line of the document).
The c h a n g e / + / - command changes the
" + " to a " - " . The top command moves
the current line pointer to the first line of
the file. The "* *" operand of the final
change specifies the replacement of all oc-
currences of "ADD" in all lines--this is a
global change that will affect the entire file.

The CMS editor provides the ability to
set up logical tab stops--tabs implemented
in the editor software rather than in ter-
minal hardware--so that tabs may be spec-
ified by typing a user-chosen logical tab
character in the input stream. Certain in-

staUation-specific enhancements of the
basic CMS editor allow the user to undo
the most recent command, shorten the
scope specification by using ellipses (.. .),
and do automatic indentation tailored to
language-dependent needs [BRow81].

One of the most confusing attributes of
the CMS editor are its two modes. Edit
mode gives the user access to all the func-
tional capabilities of the editor, including
the capability to switch to input mode. In-
put mode, however, only gives the user two
options: typing in text, which is simply in-
serted into the file at the current line
pointer, or pressing dual carriage returns,
which returns the user to edit mode. (A
blank line is entered by typing at least one
space.) Even if the text that the user types
in input mode is a command, it is not exe-
cuted. To get into input mode, the user
types the command input while in edit
mode (if the file is new, the user is auto-
matically placed in input mode on invoca-
tion of the editor). Often, a user might type
a sequence like

locate/bull
next 3
type

only to discover, after some pondering, that
the system is in input mode and that these
commands were not executed but were ac-
tuaUy inserted into the file as text. The
"f'Lx" is to get into edit mode, move the
current pointer up n lines to the first erro-
neous line, delete n lines, move up 1 to
reposition the pointer to the location from
which the erroneous commands were first
issued, and finally reissue the commands as
commands.

Computing Surveys, Vol. 14, No. 3, September 1982

Interactive Editing Systems: Part H • 357

Command Page Form Arguments

Alter I 2-27 A
Copy 2 2-40 C

Delete 2-43 D
End 2-44 E

Overwrite input t'de EB
No output f'de EQ
Stnp hne numbers ES
No numbers, no pages El"

Fred 3 2-46 F
Help 2-51 H
Input* 2-52 1

Join 2-55 J
Kill page mark 2-56 K
Ltst:LP or file 2-57 L

Mark 2-58 M
reNumber 2-59 N
Print terminal 2-61 P
Replace* 2-63 R

Substitute s !2-65
Transfer :2-69
Save World 2-73
eXtend 6 2-74
Move Position 2-76
Gwe Parameter 2-77
Set Parameter 2-78
Command Fde 2-79
Print next line
Print prevmus hne

i Enter Alter mode
2 Enter Copy-f'de mode (ff/C).
3 Enter Alter mode (ff ,A).

S
T
W
X

/
@

('zz3

[rangel
posmon [= fde-spec] ,range [,increment ! [,increment2]]
pomionffile-spee/C
[range]
IBI [Qi lsl ITI [file-specl

I[s tnngl~Irangel] [,A] [,N! [,El [,hi l,-I
[:nl
[posmonl [,mcrementl
[posmon] [,increment]
Iposmonl [;!nl
[posmoni
/page
[rangel,Sl i,Pl:file-spec] l]
[range] [,[Sl [,F:file.spec] 1
[posmon]
[incrementl [,[range] [,start]]
[range] [,S]
[range] [,increment]
[range] [,increment]
irangel [,!n]
[[oldst rmg("Fff-)newstnng] (' ~ [range] I,Vl I,N] I,E]]
posmon,range [,increment I [,increment2]]
I81 [file-spec]
[range] [,N]
posmon
parameter
parameter[n]
file-spec

* Enter Input mode.
s Enter Decide mode 0f ,D).

Enter Aher/msert mode.

Figure 1. SOS commands (From DmI78. Copyright 1978 Digital Equipment Corporation. All rights reserved.
Reprinted with permission.)

1.1.2 SOS

SOS [DIGI78], like the C M S editor, is a line
edi tor designed for edi t ing on "glass tele-
t y p e s " - - d i s p l a y te rmina ls underut i l ized as
h a r d - c o p y te rmina l e m u l a t o r s - - o n a t ime-
shar ing system, specifically a wide range o f
Digital E q u i p m e n t Corpo ra t i on compute r s .
T h e inpu t language is t ex tua l and is ve ry
similar to the C M S editor. T h e c o m m a n d s ,
as shown in Figure 1, a re t y p e d in prefix
no ta t ion (ve rb /noun) . T h e m a j o r un i t of
man ipu l a t i on is t he line.

Unlike the CMS editor, SOS attaches
f ixed, visible line numbers to each line in
a file being edited. T:y~ically a file is stored
with these numbers, but special commands
allow it to be stored without numbers and
enable the numbers to be regenerated at
the beginning of the next editing session.
The editing buffer defaults to one line, al-
though for most SOS commands a user can
specify a line number or range of line num-
bers to expand this editing buffer. The de-
fault viewing buffer is a line; the window is

Computing Surveys, VoL 14, No. 3, S~ptember 1982

358 • N. M e y r o w i t z a n d A . v a n D a m

simply a mapping of this line to the output
device.

For selection and organization purposes,
SOS goes one step farther and allows the
user to create logical pages within a file,
using the page mark command. This essen-
tially divides the file into subfiles that are
independently sequence numbered. SOS
maintains a current position pointer made
up of the current page number and the
current line number.

SOS is a highly modal editor, with the
following seven different modes of opera-
tion (see Figure 2):

• Inpu t mode, in which SOS accepts the
text being typed and inserts it into the
file;

• R e a d - o n l y mode, in which a user can
travel through a file but not modify it;

• Edit mode, in which the user spends
much of the editing session performing
editing, traveling, and viewing operations;

• Copy-file mode, in which the user can
copy part or all of a file into another one;

• Al ter mode, in which a user can perform
character-by-character intraline editing
without pressing carriage return to exe-
cute the command; it is a textual approx-
imation to display editing without cursor
keys;

• A l t e r / i n s e r t mode, in which the user
can insert characters such as control
characters that have special meaning to
the editor;

• Decide mode, in which the user can
make case-by-case decisions for substi-
tute commands. In fact, decide mode has
two submodes, decide a l ter and decide
a l t e r / in se r t . These two modes differ
from al ter mode and a l t e r / i n s e r t
mode primarily in that they, upon re-
turning from the submodes, leave the
user in decide mode rather than edi t
mode.

Al ter mode is the most unusual of the
modes. It simulates the intraline editing
that is easily provided on display editors,
and provides access to elements other than
lines. The command syntax is postfix
(noun/verb) and infix (noun/verb/noun),
not prefix. Commands allow the user to
skip forward and backward by characters
and words, delete characters and words,

capitalize and uncapitalize characters, de-
lete all characters until the occurrence of a
particular character, and so on. Unfortu-
nately, the user must explicitly enter a l te r
mode to take advantage of these facilities.

As Figure 2 shows, the transitions from
mode to mode are almost mazelike; the user
can easily become trapped in a remote area
of the system. For instance, in decide al-
t e r / i n s e r t mode ESC brings one to de-
cide a l ter mode, typing carriage return
brings one to decide mode, typing CTRL-
C brings one to edi t mode, and typing
CTRL-Y brings one to DCL, the operating
system command interpreter. In decide al-
t e r mode, these command bindings
change. While CTRL-C and CTRL-Y remain
the same, now carriage return and linefeed
bring the user to decide mode, and both I
and R bring the user to decide a l t e r / i n -
se r t mode. In decide mode CTRL-C and
CTRL-Y still perform the same, but E, Q,
and G also bring the user to edi t mode.
This time A, as opposed to ESC, will bring
the user to decide a l te r mode. The re-
maining transitions, as shown in Figure 2,
are no less inconsistent and confusing.

Not only are the mode transitions diffi-
cult, but the actual command mnemonics
for similar commands differ substantially
from mode to mode. For example, in e d i t
mode, the f (find) command allows the user
to search for and move the editing buffer to
the first line that contains a specified pat-
tern; the s (substitute) command allows the
user to replace an occurrence of an old
pattern with a newly specified pattern. In
a l te r mode the s now stands for skip and
allows the user to find the next occurrence
of a specified character; c (change) allows
the user to change the next n characters in
the line; t no longer exists.

SOS has some interesting concepts: pow-
erful scope specification as a suffix to com-
mands; a regular-expression pattern-
searching facility, as shown in Figure 3; a
query-replace user dialogue set up by de-
cide m o d e ; user-selectable toggles to indi-
cate the level of experience of the user and
to control the verbosity of prompts; and
more. Yet the sheer complexity of the user
interface often makes the system undesir-
able for even the most dedicated of users.
We feel that SOS is a classic example of a

Computing Surveys, VoL 14, No. 3, September 1982

Interactive Editing Systems: Part H • 359

EDITh le (~)
(fde exists)

EDIT f , l e (~)
(no file exists)

EDIT fde
/READONLY(~)

DCL $

IL

_[input
I-

. , [Read-only

J Decide Alter

j ~ - ~ n n n n n

I

@ ~ D insert]

4

nnnnn

I t

I
~Copy-file e~)!~

C*

E~

t(~i)
a~

s. ,D(~D

EDIT
~t

c.../c~D

Figure 2. SOS modes. The paths among the various SOS modes and submodes of operation are marked by
arrows. Prompts are shown m boldface type. (From DmI78 Copyright 1978 Digital Equipment Corporation. All
rights reserved. Reprinted wlth permission.)

powerful nucleus crippled by a poor user
interface.

1.1.3 UNIX ed

The UNIX text editor, ed [KERN78a,
KERN78b], is a variable-length line editor

similar to both the CMS editor and SOS.
Ed's commands, like those in SOS, are only
one or two characters long. It has a single-
line viewing buffer but, like SOS, ed allows
the user to expand the editing buffer for a
command by specifying a range of line num-

Computing Surveys, Vol. 14, No. 3, September 1982

360 • N. Meyrowi t z and A. van D a m

Con- Internal Meaning
StEUCt represen-

tation

Find-string constructs:
? / ~ Ma tch
?: I Match
?< ~ Match
?%x ~ Match
?)x (~ Match
?ix ~ Match
?9 ~ Match
?! (~ Match
?& (6~7~ Match
?2 (6~ Match
?+ (D~7~ Match
?> ~ Match
?7c (G~) Match

any character
any separator
a space or tab
any character except x
0 or more of the character x
1 or more of the character x
any alphanumeric character
any letter (A-Z, a-z)
any uppercase letter (A-Z)
any lowercase letter (a-z)
any decimal digit (0-9)
beginning or end of line
internal representation of c

Substitute-string constructs:
?" (~ Substitute
?*n?* ~ Substitute

next string matched
nth string matched

Figure 3. SOS regular expression metanotation. (From DIGI78 Copyright 1978 Digital Eqmpment Corpora-
tion. All rights reserved. Reprinted w,th permission)

hers in the form starting, ending as an op-
tional prefix to each command. Thus, to
perform the above change from add to sub-
tract on the first 50 lines of a file, we use
the ed substitute command:

1,50s/add/subtract/

The special metacharacter "$ " indicates
the last line of the file. Thus prepending a
" t , $" to a command causes the buffer for
tha t command to be the entire file. To
move a number of lines, we simply say

1,10m/insert after this/

This will move lines 1 through 10 to follow
the first line in the document tha t contains
the string "insert after this". Lines in ed are
of variable length so tha t t runcat ion prob-
lems are solved.

A powerful feature of ed is its facility for
user-specified regular expressions in pat-
terns defining the scopes of operat ions (as
opposed to o ther editors, which use regular
expressions simply for sea rch commands).
(This feature has been available since NLS,

but has become more common in other
editors since its implementa t ion in ed and
SOS.) Th e user is supplied with the meta-
characters

* $ ^ . [l \
with which to form regular expressions
specifying the content of the pat tern. Th e
" . " is the Kleene star. Thus a character "n"
followed by a "*" tells the editor to match
the first character string containing a zero
or more occurrences of "n". Th e "$" meta-
character in this use matches the end of the
line, while the caret companion matches
the beginning of the line. A "." matches any
character. Th e " \ " escape character allows
one of the metacharac te rs to be used as an
actual character . Finally, the "[]" pair al-
lows the user to specify a range of charac-
ters to be matched: [a-j] would match the
first string (a single character) containing
one of the letters lowercase "a" through
lowercase "j"; [nkm] would match the first
string with ei ther an n or a k or an m. If the
user wanted to find the first line beginning
with a capital le t ter followed by a vowel in

Computing Surveys, Vol. 14, No. 3, September 1982

the text of the Ogden Nash poem

I th ink that | shall never see
A bi l lboard lovely as a t ree
Perhaps unless the bil lboards fall,
I'll never see a tree at all.

the user would specify the search (using /
as the find command)

/ * [A-Z] [ae lou] /

The "requires the pattern to be matched to
start at the beginning of the line; the [A-Z]
requires the first character of the pattern
to be matched to be a capital letter; the
[aeiov] requires the next character of the
pattern to be matched to be a lowercase
vowel. Upon executing this command from
the top of the file, ed would find (and move
the current pointer to)

Perhaps unless the bil lboards fall,

One interesting feature in ed is the ability
to reference the scope of an operation in-
directly in another operand of that opera-
tion. For instance, to parenthesize the en-
tire line above, one would type

s/ . , / (a) /

The ".*" is metanotation that means
"match all characters on the current line."
The "&" is metanotation that is shorthand
for "all that were matched."

As in the CMS editor, lines in ed have
varying internal numbers. Thus traveling is
done as in the CMS editor, with both ab-
solute and relative specifications and with
context pattern specification as well. A
time-saving feature is the use of a simple
carriage return in edit mode (with nothing
else on that line) as an implicit next 1
command. The user is given an explicit
symbol called the dot to reference the cur-
rent line pointer that can be used in arith-
metic expressions to change the scope of an
operation. For example,

. - 1 0 , . + 7 p

tells ed to print the 10 lines before the
current position, the line at the current
position, and the 7 lines after the current
position, ed also allows the user to mark a
specific line with a single lowercase char-
acter for later reference. The user simply
types the save pos i t ion command (abbre-
da ted k) followed by a single character

Interactive Edit ing Systems: Par t H ° 361

label, as in

kx

and the current line is now referenced with
"x". To travel to that fine, the user simply
types , the golo saved-position com-
mand, followed by the label
'×

and immediately is returned to that saved
position. Like the CMS editor, ed has two
main modes, edit mode and append mode,
and the associated problems of two modes.
In fact, these problems are compounded by
the fact that ed is, as characterized by
Norman, "shy":

Ed's major property is his shyness; he doesn't like to
talk. You invoke Ed by saying, reasonably enough,
"ed." The result is silence: no response, no prompt, no
message, just silence. Novices a r e n e v e r s u r e what tha t
silence means. Ed would be a bi t more likeable if he
answered " thank you, here I am," or at least produced
a prompt character, but in UNIX, silence is golden.
No response means that everything is okay; if some-
thing had gone wrong, i t would have told you.
[NORM81, p. 144. Reprinted with permission of Data.
matron® magazine, @copyright by TECHNICAL PUB-
LISHING COMPANY, a DUN ~ BP, ADSTREET COMPANY
(1981), all rights reserved.]

In the edit/append mode dichotomy, this
silence causes major confusion. To add text
to the file, the user issues the " a " command
to append, followed by a carriage return.
Unlike the CMS editor, ed gives no indica-
tion that it is now in append mode; it just
waits for the user to input text, like the
CMS editor. To return to edit mode, the
user types a line with only a "." on it and
follows it with a carriage return. As Norman
points out, this is not an oversight, but in
fact is acknowledged, rather flippantly, in
the documentation:

Even experienced users forget tha t terminating "."
sometimes. If ed seems to be ignoring you, type an
extra line with just "." on it. You may then find
you've added some garbage lines to your text, which
you'll have to take out later. [I~RN78a, p. 2]

One of the designers of UNIX system
software defends the terseness of UNIX
commands by citing their contribution to
an important capability of UNIX: the abil-
ity to easily use the output of one program
as the input to another [L~.SKS1]. But si-
lencing a user-oriented interactive program

Computing Surveys, Vol. 14, No. 3, September 1982

362 • N. Meyrowitz and A. van Dam

so that its output may be used by another
program seems to us a large price to pay.
In fact, UNIX easily allows the user to
select just which output should be passed
on to another program as standard input;
careful programming can ensure that user
prompts and status information can be in-
terspersed with standard output without
interfering with it.

While ed is a powerful line editor, it is
questionable whether the interface, which
requires the user to memorize small, non-
mnemonic, and often obscure command
names and, more critically, to "guess" the
status of the system, is proper for a general-
purpose audience. In fact, this editor was
developed not for a large community, but
for a group of a half-dozen computer science
researchers familiar with the notions of reg-
ular expressions and file organization who
were designing the operating system and
file system in which the editor would run;
they wanted maximum keystroke efficiency
and minimum distraction. While the ed line
editor has illuminated several important
concepts in editing, it nevertheless repre-
sents a decreasingly popular breed of edi-
tors.

1.2 Stream Editors

Stream editors act upon a document as a
single, continuous chain of characters, as if
the entire document were a single, indefi-
nitely long character string, rather than act
upon fixed-length or variable-length lines.
By doing so, they avoid line editor problems
such as truncation and inability to perform
interline searching or editing. TECO, de-
scribed below, is the most popular editor of
this category.

1.2.1 TECO

TECO, the Text Editor and COrrector (ca.
1970), is an interpreter for a string process-
ing language. TECO can be used interac-
tively as a stream-oriented editor; its basic
commands can also be used as building
blocks to provide quite elaborate editing
operations. Many variations exist (DEC
TECO and TENEX TECO are two), with
varying capabilities and syntax. The con-
ceptual model considers a document to be
a sequence of characters, possibly broken

Computing Surveys, Vol. 14, No. 3, September 1982

into variable-length virtual pages by form-
feed characters, and into virtual lines by
line-end characters. Pages may be com-
bined in an in-core editing buffer consid-
ered to be simply a varying-length string
whose length may grow up to the in-core
memory available.

The interface is based on typed input,
typically consisting of single-character
command syntax of the form

[argument][single character command]

Commands can be combined to form se-
quences. Regardless of whether the user
specifies a single or combined command,
TECO does not interpret the command
string until the user presses the ESG key.
In the ensuing examples, the terminating
ESG is implied. The editing buffer is the
amount of the file in memory. The viewing
buffer on the document defaults to the null
viewing buffer. The document is displayed
only upon explicit command; the user can
specify a viewing buffer of any size, as ex-
plained below.

TECO maintains the current position as
a value called point (symbolized by ".",
which simply contains the number of char-
acters in the buffer to the left of it. This
pointer can be positioned absolutely (by a
numeric value), relatively (by a positive or
negative character or line displacement), or
by pattern searches. For example, in TE-
NEX TECO [BBN73], 0J or BJ jumps the
pointer to the top of the buffer, ZJ jumps
the pointer to the end of the buffer, 43J
jumps to the 43rd character of the buffer,
. - 9 or - 9 C moves the pointer backward
nine characters, and 17;BJ jumps to the
top of page 17. The symbols Z, B, and . are
not simply command modifiers but are reg-
isters that contain the point for the end of
the buffer, the point for the beginning of
the buffer, and the current point, respec-
tively; thus the above commands using
these registers resolve to an absolute char-
acter address.

Although TECO is character oriented,
special commands allow the user to edit a
document in terms of a line model. Again,
using appropriate register values, L moves
the pointer to the beginning of the next
line, - L moves the pointer to the beginning
of the previous line, 0L moves the pointer

Interactive Edit ing Systems: Par t H • 363

to the beginning of the current line. Simi-
larly, :L moves to the end of the current
line, while - : L moves to the end of the
previous line. Line-oriented printing com-
mands are provided as well; 7T prints the
characters from the pointer until the begin-
ning of the seventh line after the pointer, T
prints the segment of the current line after
the pointer. We stress that lines are an
abstraction provided to the user; the text is
stored not as lines, but simply as sequences
of characters that are interpreted as lines
by a filter that understands special line-end
delimiters. A more complicated filter, for
instance, might be able to extract program-
ming language constructs from the stream.

Fundamental commands such as insert,
delete and context search are supplied.
INow is the time(CTRL-D) inserts the string
"Now is the time" before the current
pointer. 5D deletes the five characters after
the pointer. Sgood(CTRL-D) finds the first
match for "good" after the current pointer
and moves the pointer there; similarly,
Rgood(CTRL-D)bad(CTRL-D) replaces the
first occurrence of "good" with "bad."

Importantly, TECO also supports com-
mands for conditional execution to aid in
creating more complex commands. Q-reg-
isters are available for holding any numeric
or string value. Simple uses include per-
forming arithmetic and moving or copying
strings. To move a string of text, for exam-
ple, the string is first saved in a Q-register
and then deleted from the buffer (in some
versions, the deletion is automatic). Next,
the character pointer is moved to a new
location and the contents of the Q-register
are copied into the buffer at this new point.

If a Q-register contains text, the text may
be interpreted as a command string. Thus,
TECO can be used as a programming lan-
guage to build editing commands. Higher
level commands are created by joining to-
gether many lower level operations. Con-
sider the pseudocode for a global change
operation with query and replace prompt-
ing:

WHILE (pattern is found in source)
IF user response = " Y " THEN

substitute newstring for pattern
END

With this pseudocode in mind, to query and
replace "good" with "bad," one could write

the TECO code
J (Sgood(CTRL-D) ;VI"T-tIY' "E-4c
Rgood(CTRL-D)bad(CTRL-D)')

J puts the pointer at the beginning of the
buffer. The () pair are loop delimiters,
indicating that the commands inside the
loop should be executed repeatedly.
Sgood(CRTL-D) is the search command
that we have seen previously. Upon failure
of the search, ; V skips to the end~ of the
loop construct. The ~T is a "variable" .that
is assigned the value of a character typed
by the user, while the tTY is the value of
a capital Y. The subtraction expression,
TT-TTY, equals zero only when a Y is typed
in. Thus, if the preceding expression is
equal to zero, then the commands follow-
ing the E are run; otherwise everything
until a delimiting ' is skipped. The -4C
moves the pointer to just before the begin-
ning of good. Finally, the Rgood(CTRL-
D)bad(CTRL-D) perform~ the appropriate
replacement. The loop then repeats until
failure.

The raw power of TECO is evident from
the above example. The abstraction of text
(a continuous stream of text with a pointer)
is simple, especially for the programmer, as
it parallels the abstraction of computer
memory with associated program counter.
Continuing this analogy, TECO is to a text
stream what assembly language is to se-
quential computer memory. The TECO
language provides a powerful base for a
trained systems programmer or for a com-
piler's code generator; however, it does not
provide a reasonable high-level interface
for the average user, just as assembly lan-
guage does not provide a reasonable inter-
face for the casual (and even proficient)
programmer. The syntax is cryptic. While
all commands operate at the point, user
misconceptions of the exact point location
often result in off-by-one errors. TECO has
been used effectively as an implementation
language in several editors, most notably in
EMACS, described below. However, we be-
lieve that it is not a proper tool for either
knowledge workers or competent program-
mers because of its low-level orientation.

1.3 Display Editors

This category includes several editors
based on work done by Deutsch [DP, uT67]

Computing Surveys,.VoL 14, No. 3, September 1982

364 * N. Meyrowitz and A. van Dam

and on the work of Irons and Djorup
[IRON72], as well as several editors with an
Irons-like model. The simple Irons outline
for a CRT editing system has been the
backbone of many editors: NED [BILo77,
KELL77], bb [REIS81], PEN [BARA81], Z
[WOOD81], and sds [FRAS81]. We present a
general overview of the standard functions
available in this kind of editor and then
describe in more detail the unique features
of several specific instances. 2

In the Irons conceptual model, text is
conceived of as a quarter-plane extending
indefinitely in width and length, with the
topmost, leftmost character the origin of
the file. The user travels through this plane
by using cursor keys and changes charac-
ters by overtyping. At any time, the user
sees an accurate portrayal of the portion of
the file displayed. Text is input on the
screen at the position of the cursor. The
environment is "modeless"; since all typing
on the screen is considered text, commands
must be entered either through function
keys, control characters, and escape se-
quences, or by moving the cursor to and
typing in a special command line at the
bottom of the screen.

The command syntax is typically single-
operand postfix. Basic traveling and editing
primitives are provided, such as + / -
pages, + / - lines, + / - words, insert char-
acter, delete word, and back word. Some of
these may be preceded by an optional mod-
ifier. Thus, + page scrolls forward to the
next page, while 3 + page scrolls three
pages. Additionally, the editing and viewing
buffers can be moved left and right and
multiple windows support easy interfile ed-
iting. These editors make use of pick and
delete buffers; hence deleted text is not
discarded but is put in a buffer for possible
subsequent use for moving or copying text.
Functions such as delete, pick, and put may
be combined with element modifiers such
as character, word, line, and paragraph to
allow more familiar specification of deletes,
copies, and moves. A marking facility al-
lows the user to select with the cursor two
arbitrary points in the text to define a

2 In this general overview, the syntax used does not
reflect that of any given system, nor does an example
of a general operatmn imply that each system contains
that operation

Computing Surveys, Vol. 14, No, 3, September 1982

scope not easily specified with the element
modifiers.

For display, most of the Irons derivatives
use special algorithms to minimize the
amount of screen updating necessary.

1.3.1 Brown's bb

Brown's bb [REIs81] is a typical example
of the Irons model editor. Running under
the UNIX operating system on a VAX 11/
780, it makes use of a wide range of function
keys for interaction.

One of bb's extensions of the model is the
maintenance of an up-to-date temporary
file on disk along with a linked list of
changes that have been made to the old
file. This change history serves as the back-
bone of the undo command, which is ca-
pable of reverting changes back to the be-
ginning of the editing session.

For travel, as well as providing the stand-
ard + / - keys, bb allows the user to save
positions in named buffers and to jump to
these positions with a goto command.

bb provides user manipulation of the in-
structions with the do facility. Rather than
providing a macro language, do provides a
mechanism for capturing and naming a
group of keystrokes. In general, a program-
ming-by-example facility is an extremely
elegant, powerful tool for both the novice
and the experienced user. The user does
not have to think in terms of a macro
language syntax (with associated variables,
flow-of-control constructs, and textual ver-
bosity), but defines the new operations in
terms of the same syntax that is used for
editing. Complex operations that are hard
to specify in a procedural macro are almost
trivial in terms of keystroke macros, where
the user simply executes the commands
while the system captures them. For ex-
ample, to fred all instances of a troff/me
italic formatting command--a separate line
of the form

.i "this will be italicized"

- -and change them to the TEX form

{\sl this will be italicized}

one could u se the following keystroke
macro (all capitalized words are commands
implemented as function keys or control

Interactive Edit ing Systems: Part H

sequences):

TOF [goes to top of Erie]
DOBEG [begins capturing keystrokes]
ENTER ^.l +REG-EXPR-SEARCH

[search forward for an
occurrence of ".1" which starts on a new line]

(\sl [type over existing ".!]
INSERT-SPACE [inserts needed space]
+ EOL [goes to end of line, 1 character past the

quote]
BACKSPACE [put cursor at end quote]
} [types right bracket over quote]
DOEND [finishes capturing keystrokes]

Now every time the user presses the DO
key, bb will perform all the keystrokes en-
tered between the DOBEG and DOEND
keys. bb does not support parameterized
keystroke macros or macros that prompt
for particular input and subsequently con-
tinue executing; hence one could not design
a general-purpose keystroke macro similar
to the special-purpose one above.

bb examines the file extension (file type)
of the current file and loads an internal
table with target-dependent information.
This allows bb to perform automatic in-
denting for various programming languages
and to recognize structural entities such as
paragraphs in documents. Like many of the
editors in this category, bb supports multi-
ple viewing buffers and windows, although
it only maintains a single editing buffer.

bb allows users to bind their own personal
keyboards to the standard commands by
modifying a control file. bb also supports an
invocation time profile, allowing personal-
ized defaults on startup. This is coupled
with a state-save facility that maintains
necessary parameters from session to ses-
sion. A help facility allows easy access to a
complete online manual. Screen manipula-
tion is performed by looking up terminal
capabilities in the UNIX termcap database
[JOY81] to determine output device char-
acteristics, and by using specialized screen-
optimization algorithms.

1.3.2 Yale's Z Edltor

Yale's Z editor [WOOD81] extends the gen-
eral Irons functionality by providing facili-
ties that aid in program creation while
maintaining the general-purpose function-
ality of the editor.

Editor commands are entered using con-

• 365

trol characters coupled with the cursor
keys. Function keys are not used; the de-
velopers dislike the fact that the user's hand
must be moved from the typewriter key-
board to use them. Software allows over-
loading of the standard ASCII character set
by using certain keys as shift keys. The
interaction language also supports the over-
loading of each editor command. Here, as
in most of the Irons derivatives, one com-
mand may be made to do slightly different
things by prefacing it with optional argu-
ments. For example,

arg string fSearch

searches forward for the next instance of
the pattern string and moves the cursor
there if successful. Each command may be
prefixed with the special command meta,
slightly altering the function of the com-
mand to which it is attached. For instance,
meta fSearch causes case-insensitive
searching.

For travel, Z remembers the last seven
buffer positions, allowing the user to review
previous contexts while the current one re-
tains the status quo. Like bb, Z allows the
user to put a "bookmark" on a certain spot
in the file for later return.

The unique features of Z are its solutions
to the program-editing task. Rather than
using the structure-oriented approach, in
which the editor has specific knowledge of
the syntax (and possibly the semantics) of
a target-programming language, the Z edi-
tor represents programs as text, offering
visual cues and a tight interface with exist-
ing compilers and debuggers to take the
place of the innate knowledge of syntax-
directed editors.

The designers of Z contend that "existing
structure-oriented program editors have
several disadvantages, such as increased
complexity in the implementation, a restric-
tive user interface, and poor support for
editing" [WOOD81, p. 4]. Their solution is
to represent the program as a text while
equipping the editor with knowledge of pro-
gram elements such as quoted strings, end-
of-line delimiters, and matching tokens
(such as begin/end) that signal indenta-
tion, as well as with indentation rules.

This representation allows Z to perform
many functions normally associated with
structure editors. Prettyprinting for block-

Computing Surveys, Vol. 14, No. 3, September 1982

366 ° N. M e y r o w i t z a n d A . v a n D a m

structured languages is done by examining
the last token on a line when the newline
key is pressed. If that token is in a table
that lists it as a token requiring subsequent
indentation or exdentation relative to the
previous line, the next line will be appro-
priately indented or exdented. This algo-
rithm gives the desired result most of the
time; a manual mode is offered to correct
any mistakes made by the automatic mode.
The matching token table also drives com-
mands that close off the most recently be-
gun matching unit, that find the end of the
nearest unit if already closed, and that skip
over the matching expressions as single
units. This is particularly useful in LISP
programming, where levels of parenthesi-
zation are hard to manipulate. Again, this
facility does not require the editor to have
syntactic knowledge of the target language,
but simply to maintain a table of matching
tokens.

Syntax-directed structure editors allow
the user to manipulate syntactic units as
single entities, as well as to view levels of
syntactic detail. Z provides analogous fea-
tures based on indentation level, which the
designers claim work because "all the im-
portant information about the block struc-
ture of a program is contained in the inden-
tation, provided the programmer is consis-
tent" [WooD81, p. 5].

The designers of Z chose to do neither
the syntactic checking nor the incremental
compilation often associated with syntax-
directed editors, as the philosophy is no t to
integrate the compiler directly into the ed-
itor. Feeling that "the programmer is the
person best able to decide when his pro-
gram is in a state ready for compilation"
and that "existing compilers are perfectly
able to locate errors" [WOOD81], the de-
signers of Z attempted to enhance commu-
nications between editor and compiler. The
user can execute the compile command
from the editor; this communicates with an
asynchronous process that formats the
compiler request per the target language,
puts the request on the processor queue,
appends error messages in a special Erie, and
returns a completion message to the editor
when done. The user can continue editing
while this is being done.

Z also provides a link to Multiple User

Forks, a program that maintains multiple
user contexts in parallel. This allows the
user to exit from Z into any of the other
forks (perhaps to read documentation or
check on the state of some running pro-
gram) and to return to Z without loss of
state.

1.3.3 EMACS

EMACS is an M.I.T. display editor de-
signed to be "extensible, customizable, and
self-documenting" [STAL80, STAL81]. Sev-
eral versions and dialects exist, most nota-
bly the Stallman version for the Tops-20
operating system (from which our examples
are derived), the Honeywell Multics version
[GREES0], and the UNIX version by James
Gosling of Carnegie-Mellon. Some versions
of this full-screen editor for time-sharing
systems are written in TECO; others are
written in the high-level language LISP. To
extend or customize the functionality, users
write routines in the same language as that
in which the standard editor functions are
written, rather than using an editor macro
language. Richard Stallman, the designer
of the first EMACS, feels that this capabil-
ity allows the user to transcend any limi-
tations imposed by the editor's implemen-
tots. The basis of the successful EMACS
strategy is that defining the extensions or
changes in the source language "is the only
method of extension which is practical to
use" [STAL81, p. 147]; it is unwise to main-
tain a "real" implementation language for
the implementors and a "toy" one for the
users. The user is able to bind many exten-
sions or changes in a library, which can be
loaded at invocation time. In fact, many of
the core facilities that exist today were orig-
inally user-written extensions and were
later adopted into the production system,
encouraging arbitrary growth rather than
design. EMACS does offer a keystroke ma-
cro facility with prompts, so that nonpro-
gramming users do have an alternative to
a programming language at their disposal.

In EMACS, every typed character is con-
sidered a command. The keys for printing
characters are bound, by default, to a com-
mand called self insert that causes that
character to be inserted into the text at the
cursor location. Generally, nonprinting
characters (control and escape sequences)

Computing Surveys, Vol. 14, No. 3, September 1982

Interactive Editing Systems: Part H • 367

invoke commands to modify the document.
The editing language accepts single-char-
acter commands and finds the current bind-
ing between command key and function in
a table. EMACS and other display editors
offer a quote facility that allows characters
typically used as commands to be inserted
as characters into a document. A few of its
many interesting features include a query
replace facility, transposition functions for
lines and words, and an automatic balanced
parenthesis viewer.

The windowing facilities are extensive as
well. The system supports multiple open
files and hence editing buffers 3 with asso-
ciated viewing buffers and windows. The
CTRL-X 2 command divides the screen into
two windows containing the viewing buffers
designated by the user. The cursor is in one
window at a time; CTRL-X 0 switches be-
tween windows. Special "narrowing" com-
mands serve to change the size of the view-
ing buffer and editing buffer while leaving
the window intact. The user marks one end
of a region, moves the cursor to the other
end, and issues the command CTRL-X N.
This range now defines the maximum range
of the editing buffer. If it is larger than a
window's worth of text, the viewing buffer
is set to a full window's size; otherwise, it is
set to the size of the editing buffer.

The fact that all keys (including alpha-
numerics) are bound to actions is very im-
portant, as the self insert action can be
extended to effect more complex results.
For example, one can extend the defmition
of the space character to insert itself and to
check to see if an automatic word wrap is
necessary. A more detailed use of the key
redefinition facility is the EMACS abbre-
viation package. Here, all the punctuation
characters are redefined to look at the pre-
vious word, to check for its existence in an
abbreviation table, and if it exists, to sub-
stitute the expanded word for the abbrevi-
ation as the user types.

EMACS offers ma jo r modes, editing en-
vironments tailored for editing a particular
kind of file. For example, t ex t mode treats
the hyphen as a word separator; LISP

3 Note tha t our use of the t e rm "edit ing buffer" here,
whde cons is ten t with our previous usage, differs
slightly f rom S ta l lman ' s t e rmmology m describing
E M A C S [STAL80, STAL81].

mode distinguishes between lists and s-
expressions. The major mode can automat-
ically define different key bindings for a
particular application. For example, in
many programming language major modes,
the tab key is redefined to provide auto-
matic indentation.

EMACS can keep a record of all key-
strokes typed in a session in a journal file.
If a system crash destroys a current editing
session, the user can instruct EMACS to
bring up an old version of the file and replay
the keystrokes from the journal file. The
user watches the changes being made, and
can stop the process at any time. (This
allows a primitive undo facility: the user
can replay up to a desired point and then
discard the rest of the changes that are no
longer wanted.)

Another interesting facility for program
editing is the TAGS package. The separate
program TAGS builds a TAGS table con-
taining the file name and position in that
file in which each application program func-
tion is defined. This table is loaded into
EMACS; specifying the command Meta,
function name causes EMACS to select the
appropriate file and go to the proper func-
tion definition within that file. Other special
libraries include DIRED, a subsystem for
editing a file system directory using the
full-screen display capabilities, and BABYL,
a complete message-handling subsystem.
INFO reads tree-structured documentation
files, performing the necessary operations
to travel from one node to the next.

EMACS has a very large and faithful
following in the academic research com-
munity. While the basic editor is not vastly
different in functionality from the Irons
model editors, the customized, application-
specific packages have "sold" the system.
To obtain a distribution of EMACS, one
must agree to redistribute all extensions
that one develops. By now, these extensions
are quite numerous and powerful. Thus it
is not the raw editor, but the editor and its
extensions that far exceed the capabilities
of most other editors. While the program-
ming language certainly cannot be used
competently by the average user, the avail-
ability of extensibility features for program-
mers has manifested itself in many powerful
facilities.

Computing Surveys, VoL 14, No. 3, September 1982

368 • N. M e y r o w ~ t z a n d A . v a n D a m

Extensibility, however, has negative
points. Although the major new packages
are distributed to all EMACS installations,
many customizations are personal ones.
This leads to situations in which two people
using EMACS have different syntax and
functionality. One set of keyboard bindings
might be different from the next {e.g., one
CTRL-D moves down one line, while an-
other deletes a line) or, alternatively, an
identical keyboard arrangement and appar-
ently identical functionality may have fine
distinctions that confuse a user from a dif-
ferent microcosm trying to use someone
else's EMACS (e.g., one GOTO END-OF-
WORD command might go to the last char-
acter in a word, preceding punctuation,
while another may go the first white space
following the word). Thus with extensibility
in any editor comes the price of widespread
divergence over various installations and
even over the same installation. The trade-
off between a large number of divergent but
customized dialects and a single, standard
language is unclear.

1.3.4 IBM's)(EDIT

XEDIT [IBM80] is IBM's screen editor for
their VM/CMS time-sharing system. Un-
like the Irons model editors just described,
XEDIT uses local terminal intelligence to
perform screen-editing operations. The
high-level conceptual model is the un-
bounded quarter-plane of text in which the
user views a rectangular region, yet XEDIT
still relies on the sequential card model in
some of its operations.

The display editing functions of XEDIT
only work on IBM 3270 or 3270-compatible
terminals. These terminals have a local
screen buffer memory and a special key-
board with keys that support editing on the
local buffer, such as add char, delete char,
and delete to end of line.

The user has several methods of com-
mand specification. The first is changing
the screen image by driving a cursor and
using the local editing capabilities. The user
is able to edit both the displayed text and
a status line that displays file name, record
length, and several other options. The user
changes the text and the status line by
simply inserting, deleting, or changing the

options field of each line. Pressing the EN-
TER key causes the contents of the editing
buffer to be sent to the host computer,
which determines the difference between
the terminal's local editing buffer and the
host's internal data structure, and updates
its internal data accordingly. This synchro-
nization between the screen buffer and the
internal data structure is an important com-
ponent of an editor using a terminal with
local intelligence. Note that throughout this
editing process, the host processor is not
signaled of any changes, regardless of how
long the user has been editing a screenful
of text, until the user presses the ENTER
key to transmit that screen.

Besides the display-editor-style com-
mands, XEDIT accepts typed commands
that are almost identical to those of the
CMS line editor; in fact, on non-3270 series
terminals, XEDIT operates essentially like
the CMS line editor. These commands,
typed in on a special command line, control
those operations that cannot be done using
the local editing buffer, including control
functions, such as reorganizing viewing
buffer-window mappings and ending a ses-
sion, search commands, and some types of
insert, move, and copy commands. Any of
these commands can be bound to the ten
function keys on the keyboard. XEDIT
cannot support selection by marking with
a cursor because the current position of the
cursor cannot be read by the CPU. While
it does allow textual specification of region
commands, it also provides the user with a
pref ix field before each line on the screen
(see Figure 4) to give additional function-
ality.

As we see in Figure 4a, the D on the line
beginning "THE HIPPOPOTAMUS" marks
this line for subsequent deletion. The 2a is
an instruction to add two blank lines after
this line. The DD is a grouping marker that
delimits the beginning and end of a region
of text to be deleted (the two DDs need not
be on the same screen of text). The single
A again stands for adding a blank line.
When the user presses ENTER, the screen
buffer is transmitted, and the host com-
puter interprets the prefix fields (as well as
any local editing), updates the internal data
structure appropriately, and redisplays the
updated text, as shown in Figure 4b.

Computing Surveys, Vol 14, No 3, September 1982

~ S FACTS AI F 80 TRUNC=80 SZZE=14 LINE=9 COLUHN=I

* ~ TOP OF FILE * * *
HE HIPPOPOTAHUS IS DISTANTLY RELATED TO THE PIG.
LEPHANT TUSKS CAN NEIGH HORE THAN 300 POUNDS.
AND CRABS FOUND IN CUBA CAN R~t FASTER THAN A DEER.

===== ELECTRIC EELS CAN DISCHARGE BURSTS OF 625 VOLTS,
=2a:=

: : = = =

==OO=

=DO==
==A:=

= = = = :

: = = = =

40 TIHES A SECOND.
THE ANCIENT ROHANS AND GREEKS BELIEVED THAT BEDBUGS HAl) HEDICINAL
PROPERTIES NHEN TAKEN IN A DRAFT OF NATER OR NINE.
STURGEON IS THE LARGEST FRESHNATER FISH AND CAN WEIGH 2250 POUNOS.
ANTS HAVE FIVE DIFFERENT HOSES, EACH ONE IS DESIGNED TO
I . . . + 1 + 2 + 3 + ~ + 5 • 6 ÷ 7 . . .

ACCOMPLISH A DIFFERENT TASK.
ALL OSTRICHES ARE POLYGAHOUS.
SNAKES LAY EGGS NITH NONBRZTTLE SHELLS.
THE PLATYPUS HAS A OUCK B ILL , OTTER FUR, NEBBED FEET, LAYS
EGGS, AND EATS ZTS OWN NEIGHT ZN NORHS EVERY DAY.

• ~ END OF FILE * * *

J
X E 0 I T 1 FILE /

/

A~HZMALS

_,-- = " = :

= " : : =

FACTS A! F BO TRUNC=BO 5IZE=13 LIWE=9 COLUIIH=I

* * * TOP OF FILE * *
ELEPHANT TUSKS CAN NEIGH HORE THAN 300 POUNOS.
LAND CRABS FOUND IN CUBA CAN RUN FASTER THAN A DEER.
ELECTRIC EELS CAN DISCHARGE BURSTS OF 625 VOLTS,
40 TIMES A SECOND.

THE ANCIENT ROMANS AND GREEKS BELIEVED THAT BEDBUGS HAD MEDICINAL
PROPERTIES WHEN TAKEN IN A DRAFT OF NATER OR WINE.
ALL OSTRICHES ARE POLYGAHOUS.
I . . . + 1 + Z + 3 + 4 + 5 + 6 + 7 . . .

===== SNAKES LAY EGGS WITH NOHBRZTTLE SHELLS.
===== THE PLATYPUS HAS A DUCK B ILL , OTTER FUR, WEBBED FEET, LAYS
===== EGGS, AND EATS ITS OWN WEIGHT IN WORMS EVERY DAY.
===== * * * END OF FILE * * *

X E D Z T I F

Figure 4. Add and delete with XEDIT prefix commands. (From IBM80, Reprinted by permission of the IBM
Virtual Machine/System Product: SYSTEM PRODUCT EDITOR'S GUIDE (SC24 5220-0). © 1980 by
International Business Machines Corporation.)

370 • N. Meyrowitz and A. van Dam

Figure 5 shows a similar move command
using the prefix fields. The mm is a grouping
marker, much like the DD above, to delimit
the beginning and end of a multiline region
of text to be moved, and the f is a marker
signaling the line after which the moved
text should be inserted.

XEDIT's local editing style offers both
advantages and disadvantages. The use of
the local 3270-series editing capabilities im-
plies that users need not worry about an
overloaded host system most of the time;
most of the intraline editing, and even some
of the block moving, as above, can be done
without intervention of the host CPU. The
editor is dependent upon the host system
only when a screenful of text must be trans-
mitted or a textual command (like search)
must be executed. On the other hand, the
local buffer offers no safety; if the host
system crashes while a user is screen edit-
ing, all modifications on the local buffer are
lost. More specific to XEDIT, the inability
to do region selection within lines (because
marking without CPU intervention is im-
possible on the 3270) reduces the generality
of the editor. Additionally, the several
styles of commands (typed, cursor driven,
prefix field) can confuse a novice user.

1.4 Graphics-Based Interactive Editor/
Formatters

1.4, 1 Xerox PARC's Bravo

Xerox PARC's Bravo (ca. 1975) is one of
the first of the interactive editor/formatters
based on the display of high-resolution, pro-
portionally ~spaced text. Bravo allows the
creation and revision of a document con-
taining soft-typeset text with justification
performed instantly by the system. The
conceptual model is of a continuous scroll
of typeset text that can be paginated when
desired.

Bravo runs on Xerox's Alto, a 16-bit min-
icomputer with a raster graphics "portrait"
display (roughly 8½ × 11 aspect ratio) of
606 × 808 pixel resolution. This high-reso-
lution pixel-addressable display allows
more complex visual cues (overlapping win-
dows, typeset facsimile text, graphics) than
does the alphanumeric CRT terminal. A
mouse drives a cursor and offers three but-

tons (called left, middle, and right) that can
be read independently of the cursor.

Bravo offers a mix of graphical and key-
board user interfaces. By moving the
mouse, the user drags the cursor across the
screen. The cursor addresses characters,
special "menu" items, and other selectable
elements on the screen. The interaction
language is modal: the user can be in either
command mode, in which text elements can
be selected and commands initiated, or typ-
ing mode, in which keyboard text is entered
into the document. Because of the modes,
the user can specify commands with single
alphanumeric characters; unlike many dis-
play editors, alphanumeric characters are
not entered into the document unless the
user is in typing mode. Commands not in-
voked with single alphanumeric keys are
invoked with control characters.

As shown in Figure 6, the Bravo screen
is divided into several areas. The system
window contains information concerning
what the user has just done and what can
be done at present. The document window
contains a viewing buffer's worth of the
document text scroll. The line bar and
scroll bar are graphical entities that help
the user travel through the document.

To travel in Bravo, the mouse is used to
move a double-headed arrow cursor along
the scroll bar, a vertical strip at the left side
of the document. Pressing the left button
on the mouse while the arrow is pointing to
a line in the document's window causes that
line to become the top line in the window;
pressing the right button causes the top line
in the window to move to the line the cursor
is at. For more extensive traveling, one is
supplied with a graphical thumbnail that
moves along the scroll bar, and a bookmark
that indicates the approximate current po-
sition in the document on a graphically
displayed linear continuum from "front
cover" to "back cover." If the user is half-
way through the document, for instance,
the bookmark indicates a point halfway
across the continuum. To travel to a part
of the document preceding what is being
viewed, the user simply places the thumb-
nail somewhere before the bookmark on
the continuum and presses the middle but-
ton; the document will "fall open" at the
corresponding position in the text. By plac-

Computing Surveys, Vol 14, No. 3, September 1982

A N • I H A L S FACTS AI V 132 TRUNC=132 SIZE:22 LINE:tO C O L U H N - ' Z ~

===== CHAMELEONS, REPTILES THAT LIVE IN TREES, CHANGE THEIR COLOR WHEN 1
===== EMOTIONALLY AROUSED.
===== THE GUPPY IS NAMEO AFTER THE REVEREND ROBERT GUPPY~ WflO FOUND THE F I S t l

:= :== ON TRINIDAD IN 1866.
===:= AN AFRICAN ANTELOPE CALLED THE SITATUNGA HAS THE RARE ABILITY TO
==: := SLEEP UNDER WATER.
==mm= THE KILLER WHALE EATS DOLPHINS, PORPOISES, SEALS, PENGUINS, AND
:==== SQUID.
===== ALTHOUGH PORCUPINE FISHES BLOW THEHSELVES UP AND ERECT THEIR $PINES~
===== THEY ARE SOHETIMES EATEN BY SHARKS. NO ONE KNOWS WHAT EFFECT THIS

J . . . + I + 2 + 3 + 4 + S • 6 + 7 . . .

===m~ HAS ON THE SHARKS.
===== A LIZARD OF CENTRAL AMERICA CALLED THE BASILISK CAN RUN
=:=== ACROSS WATER.

= _ - _ _ , , -

. . - - . . - - . .

OCTOPI HAVE LARGE BRAINS AND SHOW CONSIDERABLE CAPACITY F O R

LEARNING.
THE LION ROARS TO ANNOUNCE POSSESSION OF A PROPERTY.
A FISH CALLED THE NORTHERN SEA ROBIN MAKES NOISES LIKE & NET
FINGER DRAWN ACROSS AN INFLATED BALLOON. /

STINGAREES, FISH FOUND IN AUSTRALIA, CAN WEIGH UP TO 800 POUNDS. /
/

X E O I T I FILE I

= = : = :

= = = = =

= : : = =

= : = = :

= : : = =

= = : = :

FACTS AI V 132 TRUNC=132 SIZE=22 LINE=7 C O L U t t N = ~

* * * TOP OF FILE * * *
CHAMELEONS, REPTILES THAT LIVE IN TREES, CHANGE THEIR COLOR NNEN
EMOTIONALLY AROUSED.
THE GUPPY IS NAHED AFTER THE REVEREND ROBERT GUPPY, WHO FOUN~ THE FISH
ON TRINIDAD IN 1866.
AN AFRICAN ANTELOPE CALLED THE SITATUNGA HAS THE RARE ABILITY TO
SLEEP UNDER WATER.
A LIZARD OF CENTRAL AHERICA CALLED THE BASILISK CAN RUN
I . . . + 1 • £ * 3 • 4 ~ 5 ÷ 6 + 7 , . .

ACROSS WATER.
OCTOPI HAVE LARGE BRAINS AND SHOW CONSIDERABLE CAPACITY FOR
LEARNING.
THE l IO t l I,.~RS TO ANNOUNCE POSSESSION OF A PROPERTY.
THE KILLER WHALE EATS DOLPHINS, PORPOISES, SEALS, PENGUINS, AND

: : = : : SQUID.
= = = = = ALTHOUGH PORCUPINE FISHES BLOW THEMSELVES UP AND ERECT THEIR SPINES,

===== THEY ARE SOHETIHES EATEN BY SHARKS. NO ONE KNOWS WHAT EFFECT THIS j
HAS ON THE SHARKS. ~ /

= = =

X E D I T

Figure 5. Move with XEDIT prefix commands. (From IBMS0. Reprinted by permission of the IBM Virtual
Machine/System Product" SYSTEM PRODUCT EDITOR'S GUIDE (SC24 5220-0). © 1980 byrInternational
Business Machines Corporation.)

372 • N. Meyrowi t z a n d A. van D a m

Figure 6. Bravo display. (Courtesy Xerox Corporation.)

ing the thumbnail after the bookmark on
the continuum, the user can similarly travel
through the remainder of the document.

Bravo uses a postfix/infLX interaction
syntax: a selection is followed by the com-
mand, followed by an optional argument .
For example, deletion works by selecting

the scope and pressing the D key, while
insertion works by selecting the scope,
pressing the J key, typing the desired text,
and finally pressing the ESC key.

Selection operates on four main ele-
ments: characters, words, lines, and para-
graphs. The left and middle buttons of the

Computing Surveys, Vol. 14, No. 3, September 1982

Interactive Editing Systems: Part H • 373

mouse are used to select items, while the
right button is used to extend those selec-
tions. With the cursor in the text area, the
left button would cause the addressed char-
acter to be selected as the scope, while the
middle button would cause the addressed
word to be selected. To select the large
elements, the user moves the cursor into
the line bar. In the line bar, the left button
selects a line and the middle button selects
a paragraph. Extending the selection allows
the user to specify a scope that lies between
two of the entities addressed. Thus, clicking
left in the text area would cause a single
character to be selected; clicking right at
some other character would cause all the
text between (and including) the two se-
lected characters to be selected. Similarly,
a middle nght sequence would select all the
text between and including two words. In
the line bar, a left right sequence selects all
the text between and including two lines; a
middle right sequence selects all the text
between and including two paragraphs.

Operations are typically performed on
the current selection. To delete a word, the
user simply selects a word by clicking the
middle button and then types D to execute
the delete command. Similarly, to delete all
the text between and including two para-
graphs, the user clicks middle right in the
line bar and types D. Changes are done
analogously. To replace a word, the user
clicks middle and types R. Bravo deletes
the selected word and puts the user into
insert mode; everything the user types until
the ESC key is pressed is inserted in place
of the old word. The Append and Insert
commands allow the user to add text in a
similar manner without first deleting a se-
lection. Bravo supplies an undo facility that
undoes only the last operation.

Files are never saved until the user ex-
plicitly saves them. However, Bravo keeps
a transcript of the operations that have
occurred in the editing session. One can run
BravoBug with the transcript against the
old version of the file to interactively replay
the editing session. The user is given the
choice of single-stepping through each
change or running the entire transcript,
stopping whenever desired.

At the time of its introduction, the most
innovative features of Bravo were its inter-

active formatting facilities. Bravo's unit for
specifying the formatting attributes of text
is the look. Each character in the document
has associated with it particular looks; the
looks of any character can be displayed by
selecting that character and typing L ?. The
looks specify a large assortment of type
attributes: font style, point size, subscript-
ing, superscripting, centering, justification,
nested indenting, and leading (interline
spacing), to name a few, are attributes that
the user can change by typing L, followed
by a one-character operand. Other look at-
tributes cannot be changed directly by com-
mand but are constrained by previous for-
matting attributes. As soon as a look com-
mand is executed, the document is dynam-
ically reformatted to effect the revision--
the document is up-to-date in both format
and content at all times. A special page
format mode allows the user to see the
document paginated as it will be printed.

Bravo does not allow integrated graphics,
but provides output that can be postpro-
cessed to add pictures from the PARC in-
teractive picture-editing systems [BAUD78,
NEWM 78, BOWM81].

1 4.2 Xerox Star

Star [SEYJ81, XERO82, SMIT82], Xerox's
commercial successor to the Bravo, is, in
terms of its user interface, the most ad-
vanced commercial product for office au-
tomation on the market at the time of this
writing.

Like the Alto, the 8010 work station on
which Star runs is a personal computer
with access to shared resources such as file-
and printer-servers via an Ethernet net-
work. It has a "landscape" 13½ × 10½ inch
screen with a resolution of 1024 × 809 pix-
els, capable of displaying both a full page of
a document and a large menu area.

Several design goals are important to the
understanding of Star's interface and func-
tionality:

• The designers determined that users
should simply point to specify the task
they want to invoke, rather than remem-
ber commands and type key sequences.
They believed that the user should not
need to remember anything (of conse-
quence) to use the system.

Computing Surveys, Vol. 14, No. 3, September 1982

374 • N. M e y r o w i t z a n d A . v a n D a m

• An important consideration was the de-
velopment of an orthogonal set of com-
mands across all user domains; the copy
command in the text formatter, for ex-
ample, should have similar semantics to
one in the statistical graphing package.

• The system was designed to operate by
"progressive disclosure." Star strives to
present the user with only those com-
mand choices that are reasonable at any
given juncture.

• Finally, Star is an interactive editor/
typesetter; the screen is, for the most
part, a facsimile of what the final docu-
ment will look like.

The Star development team, which
worked several years considering possible
models, remarks:

The designer of a computer system can choose to
pursue familiar analogies and metaphors or to intro-
duce enttrely new functmns requiring new ap-
proaches. Each optmn has advantages and disad-
vantages. We decided to create electronic counter-
parts to the physical objects in an office: paper,
folders, file cabinets, mail boxes, and so on- -an
electronic metaphor for the office. We hoped this
would make the electronic "world" seem more fa-
miliar, less alien, and require less training (Our
imtial expermnces with users have confirmed this.)
We further decided to make the electronic analogues
be concrete objects. Documents would be more than
file names on a disk; they would also be represented
by pictures on the display screen [From "Designing
the Star user interface" by D. C. Smith, C Irby, R.
Kimball, B. Verplank, and E. Harslem in April 1982
issue of BYTE magazine, © 1982 Byte Pubhcations,
Inc. Used with permission of Byte Publications,
Inc.]

The high-level conceptual model of the
environment is that of a desk top on which
multiple documents can be manipulated si-
multaneously. Star uses a two-button
mouse and a postfix interaction syntax.
Rather than presenting the user with a
simple textual menu or list of available
options and files, Star presents graphical
icons that resemble the entity to which the
user is referring (see Figure 7).

To open a file for editing, the user simply
points to the iconic file drawer that sym-
bolically holds the document {noun selec-
tion) and issues the open command (verb
selection). Choosing open causes a file
drawer directory, containing identifiers for
Computing Surveys, Vol. 14, No 3, September 1982

file folders and individual documents, to fill
part of the screen. The user can open, copy,
move or delete any of these folders or doc-
uments; touching copy, for example, causes
a new document icon to be placed on the
user's "desk top" area on the screen. Se-
lecting this icon and opening it causes the
editor to open a window that is large
enough to hold a facsimile of an 8½ x l l -
inch page (see Figure 8). Editing operations
similar to those provided by Bravo can be
performed in this window. The interface,
however, does not use control characters.
Mouse buttons and function keys provide
the most frequently used commands; a
menu of window-specific commands ap-
pears in the window banner at the top of
the window for selecting with the cursor,
and a menu of infrequently used system
commands is available by selecting a menu
icon in the upper right comer of the screen.

Traveling buttons located on the bottom
and right borders of each window, as shown
in Figure 8, are selected with the mouse.
The F- on the bottom makes sure that the
left margin of the document is in view while
the -q makes sure the right half of
the document is in view. The ---) scrolls
the document to the right, the (-- scrolls
the document to the left, the $ scrolls the
document downward, and the t scrolls the
document upward. P goes to the previous
document page, while N goes to the next
document page.

Other icons include a printer icon, a
floppy disk icon, and an in/out box icon. To
print a file one simply selects the appropri-
ate document icon and places it on top of
the printer icon. The programmable cursor
changes to an hourglass to indicate that
processing is taking place. Similarly, elec-
tronic mail is sent by placing a document
icon on the out box and is received by
selecting the in box.

As in Bravo, the mouse is used to drive
the cursor and select elements. Selections
are performed with the left mouse button
and can be adjusted with the right mouse
button. To select a character in the text,
the user clicks the left button. Subse-
quently, when the right mouse button is
held down, all the characters between the
selected point and the current position of
the cursor will be highlighted in reverse
video; when the nght button is released, the

Interactive Editing Systems: Part H • 375

Figure 7. Star icons. (Courtesy Xerox Corporation.)

highlighted area becomes the selection.
Two left button clicks select the word con-
taining the cursor; holding down the right
mouse button extends the selection to in-
clude full words between the selection
points and the cursor. Three left button
clicks select the sentence containing the
cursor; holding down the right mouse but-
ton extends this selection by sentences.
Four left mouse button clicks select the

paragraph containing the cursor; holding
down the right mouse button extends the
selection by paragraphs. A fifth left button
click returns to the original character selec-
tion.

Most commands are postfix, requiring
simply the selection of an icon or a region
of text followed by the issuance of a com-
mand using a function key or menu selec-
tion. Commands such as find, move, and

Computing Surveys, Vol. 14, No 3, September 1982

~3

a~
o
=l
Q)

U.

Interactive Editing Systems: Part H • 377

(a)

(b)

Figure 9. (a) Search operation; (b) search and replace operation. (Courtesy Xerox Corporation.)

copy that need multiple operands are spec-
ified in infix or prefix, as appropriate. To
perform a find, the user presses the find
function key and is given a find property
sheet to fill out, as shown in Figure 9a. The
user fills in the Search for box by typing a
search pattern and specifies other attri-
butes of the search by selecting various
options on the property sheet with the
mouse. (Here TEXT, IGNORE CASE, and
ENTIRE DOCUMENT are selected.) The op-
tions that are selected remain selected from
search to search until the user explicitly
alters them. To perform the search, the
user selects the Start button in the window

menu. While Star is searching, it displays
the message "Searching . . . " as feedback
for the user. The ? and Cancel button pro-
vide help and abort the search, respectively.

The search and replace operation uses
the same property sheet. Picking the
CHANGE IT button on the find property
sheet brings into view a second set of prop-
erties. The user can now type in the pattern
to Change to and specify what should be
altered and whether the replacement
should be done with confirmation. When
performing these operations, the message
"Substituting . . . " provides needed feed-
back.

Computing Surveys, Vol. 14, No. 3, September 1982

378 • N Meyrowitz and A. van Dam

Font

Size

Face

Position

E

ntificThin] ~

 ,oER.,.EI I"R'KEO "I /
13 X u X oT.~RI b:4,1,× I x01x ix °lx×olx×01

I ~ :

Figure 10. Character property sheets. (Courtesy Xerox Corporation.)

Like Bravo, Star performs instant for-
matting and justification in the proper type
size and style. Associated with each ele-
ment (an element being any entity from a
character to the entire document itself) are
property sheets that contain status infor-
mation for that element (see Figure 10).
Initially, attributes in property sheets have
system-assigned default values. To change
the typeface of a particular character, the
user selects the character, presses the props
key, points to the desired typeface in the
property sheet and closes it. The change
takes effect immediately. (Note that the
property sheet is presented in the same
kind of window as a normal document. In
fact, to see all the available typefaces in
this example, the user would have to scroll
the document to the left with one of the
scroll symbols.) Star enables the user to
define a standard collection of property
sheets to provide document templates
(style sheets), as in a database-driven for-
matter such as Scribe. The user simply
copies the template and enters the new
text, assured that the basic format is
properly defined. The designers compare
this to tearing off a standard form from a
preprinted pad [SMIT82].

Star provides a drawing package, the re-
sults of which can be integrated into a

Computing Surveys, Vol. 14, No. 3, September 1982

document (see Figure 11). The user selects
lines, boxes, shading patterns, and other
primitives from a menu and uses these to
draw on a user-determined grid. Just as
selections can be extended, several graphic
items can be selected at once by holding
down the appropriate mouse buttons. Users
are also allowed to define clusters of graph-
ical items to form new "primitives." Graph-
ics can be scaled up or down to fit in a fixed
space in a document. Star also provides
packages for making and editing bar charts
and spread sheets, and for retrieving infor-
mation through a relational database sys-
tem. The designers have stressed what we
believe to be a vitally important concern:
that all the packages have consistent inter-
faces, as users especially want a particular
command to behave in a consistent way in
the provided multiview environment.
Whether in the text editor, the graphics
editor, or the chart maker, the user issues
commands by selecting the object of the
operation and issuing the appropriate com-
mand through function keys or menu but-
tons. To delete a word, one selects the word
and presses the delete key; to delete a rec-
tangle, one selects the rectangle and presses
the delete key.

Besides its carefully crafted user inter-
face, Star provides some interesting solu-

Interactive Editing Systems: Part H ° 379

Figure 11. Star graphics. (Courtesy Xerox Corporation.)

tions to typical online manuscript-prepa-
ration problems. Mathematical and foreign-
language typesetting in most systems in-
volves using escape/control sequences or
long English-language mnemonics to rep-

resent the special characters. Star presents
the virtual keyboard, a graphical represen-
tation of the keyboard on the screen. To
use a key, one simply points at it or presses
the corresponding physical key. Star has

Computing Surveys, Vol. 14, No. 3, September 1982

380 • N Meyrowitz and A. van Dam

knowledge of mathematical symbols and
can construct complex equations and for-
mulas as they are typed, changing the size
of the symbols used as equations get larger
or smaller. Editing continually adjusts the
horizontal and vertical spacing and place-
ment of subscripts and superscripts.

1.4.3 ETUDE

ETUDE [HAMM81] is a document produc-
tion system designed with twin goals: "to
extend the functionality of conventional
word processing systems while r educ ing
the complexity of the user interface." Un-
like Bravo or Star, ETUDE uses prefix
syntax:

act ion modif ier e l ement

where an action might be move or delete,
a modifier might be a number or a word
like start-of or next, and an element might
be paragraph, word, document. The design-
ers feel that the prefix syntax, as in "delete
3 words," more closely approximates nat-
ural language, and thus is preferable.

Like Bravo and Star, ETUDE is an in-
teractive editor/formatter, providing type-
set, formatted text on a stand-alone work
station with a bit-mapped screen. ETUDE
has adopted a Scribe-like method for de-
scribing formatting, switching the burden
of complex formatting from the user to a
document database that contains standard
formats for a range of documents and doc-
ument components. In a letter, for example,
the ETUDE system will do special format-
ting for the returnaddress, address, salu-
tation, body, and signature. While ETUDE
always keeps the up-to-date formatted doc-
ument on the screen, it uses the left margin
of the screen as a format window to place
formatting descriptor tags that indicate the
type of high-level action that has been
taken on a particular section of text (see
Figure 12). This technique attempts to
bridge the gap between the unformatted
but explicitly expressed formatting code,
and the displayed facsimile page that, once
formatted, often does not contain informa-
tion about the act that caused the format-
ting to occur. (A more detailed discussion
of the interactive versus batch formatting
question is presented in Section 5.)

The user interface is designed for various
levels of expertise. The user can call a menu
to the screen at any time and select a com-
mand with cursor keys or a pointing device.
Alternatively, the user can type a command
to perform the same action--or use spe-
cialized function keys provided for the most
widely used commands.

The system provides a cancel command
to abort the current operation, an again
command to execute the current command
again, and an indef'mitely deep undo facil-
ity. The same tree structure that keeps
track of the undo history is used in a help
command that creates windows to show the
user the session's history and what options
are currently available. When the help com-
mand is invoked, the user is presented with
descriptions of a few past operations plus
what is currently being done.

1.5 General-Purpose Structure Editors

Structure editing, pioneered by Englebart
with NLS, has been "rediscovered" as an
alternative to standard character-oriented
methods of editing. Since most target ap-
plications have some innate structure (e.g.,
manuscripts are composed of chapters, sec-
tions, paragraphs), the philosophy of struc-
ture editors is to exploit this "natural" or-
dering to simplify editing. The most com-
mon representation is a hierarchy of ele-
ments. Standard operations on this tree
structure, as taken from XS-1 [BURK80],
are shown in Figure 13.

1.5.1 NLS/AUGMENT

NLS was a product of research at Stanford
Research Institute (now renamed SRI, In-
ternational) between the early 1960s and
late 1970s. Renamed AUGMENT and mar-
keted by Tymshare, Inc., NLS is one of the
seminal efforts in the field of text editing
and office automation; indeed, many of its
features are being reexamined and reimple-
mented today--almost 20 years since the
inception of the NLS project. For example,
NLS introduced the notion of conceptual
models for the editing and authoring pro-
cesses, (tree-) structured editing, element
modifiers for the editing and viewing oper-
ations, device-independent interaction syn-
tax, the mouse as a cursor manipulation

Computing Surveys, Vol 14, No 3, September 1982

4/1~ lU:lu R i=x5 M=21437"/ (;C=2 I.= O 546 D,)cumcnt: lc t tenl~dyTet t
I l hos : ~ J | . c t l c r

r~ lurz~ddr~= M I T LaL'oratory for
Computer Science
545 Technology .Square
Room 217
• Cambridge. MA 02139

March I0. 1980

add ross John Jones
Wor ld Wide Word Processing Inc.
1378 Royal Avenue
Cupert ino. CA 95014

salutation Dear John:

body. pcragrap

paragr.,ph

number, item

We are pleased to heat of your interest in our ETUD•
text formatt ing system, which is now avail~le for
demonstrat ion. Enclosed you will find a copy of our
working paper entitled AnlnteractiveEcfitorandForrnatter.
which will give you an overview of some of the goals of
our research. This research is funded by a contract with
Exxon Enterprises Inc.

Our efforts have been guided by a number of genera]
principles:

I. E T U D E should be easy to use. The system
should respond in a reasonable manner.
regardless of the user's input. In particular.
the user should not be reluctant to try •
command, for feat of losing the current
document.

item 2. A user of ETIIDI~ should not be concerned
with the details of a document'= forma.in 3

Figure 12. ETUDE screen. (Courtesy M I.T. Laboratory for Computing Science)

Ol>eration

INSERT

DELETE

COPY
MOVE

SPLIT
MERGE

E f f e c t on Tree

Insert a new site (with empty data
collection) into a specif ied flap

Delete a subtree (nodes and data)

Copy a subtree to a specif ied gap
Move a subtree to a specif ied gap

Split a node and its data into two
Merge two nodes and their data

EXPAND Insert an intermediate level in the tree
SHRINK Delete an intermediate level of the t ree
ORDER Permute the nodes on a t ree level

Figure 13. Tree editor functions of a
structure editor. (Adapted from BURK80.)

382 • N. Meyrowitz and A. van Dam

device, sophisticated browsing and viewing
mechanisms, intermixed text and graphics,
and even multiperson, distributed editing.
At a spectacular, landmark demonstration
of the system at the 1968 Fall Joint Com-
puter Conference in San Francisco, text,
graphics, and live video of Douglas Engel-
bart in San Francisco and his colleagues 20
miles away in Menlo Park were superim-
posed on multiple viewports on the (video
projected) screen, as they were working
together and explaining what they were
doing. "Chalk-passing" protocols were
demonstrated for synchronizing multiple
users. This demonstration was a forerunner
of graphics- and sound-based teleconfer-
encing.

NLS/AUGMENT clearly embodies
much more than just a text editor. Its aim
is to provide a new way of thinking and
working by utilizing the power of the com-
puter in all aspects of one's work:

We are concentrating fully upon reaching the point
where we can do all of our work on line--placing in
computer store all of our specifications, plans, de-
signs, programs, documentation, reports, memos,
bibliography and reference notes, etc., and doing all
of our scratch work, planning, designing, debugging,
etc. and a good deal of our intercommunication, via
consoles [ENcE68, p. 396 Reprinted by permission
AFIPS Press]

Regardless of the subject matter, all NLS
information is stored in a hierarchical out-
line structure of the form

1 o , °

l a . . .
l b . .

l b l . . .

l b l a . . .

I b 2 . . .

l b 3 . . .
l b 4 . . .

l b 5 . . .
2 . .

2 a . . .

3 . .

4 . .

4 a . . .

4 a l .

4 a 2 . . .

Statements can be nested an arbitrary
number of levels. Each statement has as-

sociated with it a statement number of the
form shown above; these are the main
means of referencing the statements from
other parts of the text. One statement may
be a substatement of another statement
(la l is a substatement of la), one may be
the source of another (la is the source of
laD, one may be the predecessor of another
(4al is the predecessor of 4a2), or one may
be the successor of another (4a2 is the
successor of 4al). NLS provides modifiers
to reference not only text elements but
structure elements as well. A statement is
a text node of up to 2000 characters. A
branch is a statement and all its substate-
ments. A plex is a branch plus all the other
branches with the same source. The plex of
4al is 4al and 4a2; the plex of 4a2 is the
same. A group is a subset of a plex; it
consists of all the branches of a plex that
lie between and include two branches. The
group of lb2 and lb4 includes lb2, lb3, and
lb4.

The hierarchy is useful for programs as
well as for documents since it can be used
to model the block structure of the pro-
gram. Viewspecs allow levels of detail in
the outline structure to be made invisible;
the viewspecs effect information hiding,
the selective display or nondisplay of exist-
ing material based on attributes provided
by the user.

NLS/AUGMENT allows the user to cre-
ate a hypertext by superimposing on the
structure a network of links that point to
various discrete statements in this docu-
ment. In general, these links are specified
by the identifier

(h o s t , o w n e r , f i l e , s t a t e m e n t)

which allows the linking of documents over
multiple computers.

Commands in NLS/AUGMENT can be
executed by using a mouse to select from a
menu on the screen, by using the keyboard,
or by using both the keyset (described in
Part I, Section 2) with one hand to enter
the command, and the mouse with the
other to make a selection.

The editing commands are quite exten-
sive, providing the first attempt at an or-
thogonal command syntax with element
modifiers. For instance, the insert com-

Computing Surveys, Vol 14, No. 3, September 1982

Interactive Editing Systems: Part H • 383

mand can be modified, with nouns such as
word, sentence, and branch. As in most
structure editors, the commands are di-
vided into those that operate on the struc-
ture (such as move) and those that operate
on the text. NLS/AUGMENT provides a
very large repertoire of both. Most standard
tree manipulations, such as locating or de-
leting the next node or the previous one,
locating the first subnode, and rearranging
neighboring nodes, are allowed. The move
and copy structure commands provide dy-
namic renumbering of sections and updat-
ing of links throughout the document if
necessary.

The system provides the ability to embed
control codes in special delimiters within
the text both for formatting options such as
font changes and for traveling information
(links, annotations). These codes can be
edited like regular text until they are in-
voked by special commands (a link is not
operable until the jump command is in-
voked). Viewspec parameters allow one to
turn off viewing of these special codes as
desired.

A journaling facility provides extensive
archiving power for past on-line conversa-
tions and teleconferences. Tymshare's com-
mercial version of AUGMENT makes use
of TYMNET, a transcontinental satellite
network, to satisfy one of the original goals
of the project: the sharing of knowledge
across great distances. In fact, it is not
uncommon for someone in New York to
compose a document by making several
links to an existing document belonging to
a colleague in California.

At its time of introduction, NLS was
unusual not only in terms of its functional-
ity but also because of the software engi-
neering environment in which it was pro-
duced. This environment included compiler
compilers, systems implementation lan-
guages, and command language inter-
preters.

1 5.2 Burkhart/Nlevergelt Structure Editor

Burkhart and Nievergelt at the Institute
for Information in Zurich have designed a
family of structure-oriented editors called
XS-1 [BuRK80]. The designers contend
that the basic sets of editing operations,

regardless of the target being manipulated,
are similar, and that "a universal structure
defined on all data within a system" ex-
ploits that similarity to its greatest advan-
tage. As in NLS, the structure of data of all
types in XS-1 is represented as a tree, with
the nodes ("sites") representing subsets of
data. Like many structure editors of its
kind, the core of the XS-1 system is a
flexible tree editor that allows the user to
manipulate the elements at the site (node)
level. Fundamental to the XS-1 philosophy
is the belief that the user works only on a
restricted set of data and with a restricted
set of commands at any one time. There-
fore, the system supports progressive dis-
closure, explicitly showing the user the
valid command repertoire and operation
targets at any given moment. The user al-
ways has the familiar tree operations avail-
able at all times.

XS-1 provides the user with standard
structure editor methods of travel through
the explore command. Here, the user can
use relative motion to traverse up, down,
left, or right in the tree. As well, absolute
motion allows the user to move explicitly to
something by specification of an identifier
such as a name.

The tree editor follows several basic prin-
ciples. After the completion of any opera-
tion, the integrity of the tree structure is
guaranteed. (This may be accomplished by
attaching target-specific syntax rules to op-
erations, making a syntax-directed editor.)
XS-1 provides the ability to specify differ-
ent views of the same targets, such as a tree
structure of a program or an indented view
of the same program.

An important aspect of XS-1 is the com-
bination of the same target-independent
tree editor with target-dependent back ends
to create multiple editors. One is a docu-
ment editing/formatting system. Here, the
author sees on the screen a rectangular
window into the text and a text cursor. All
high-level operations (move, copy, etc.) are
handled by the target-independent tree ed-
itor; only a small set of text editing primi-
tives at the character, word, or sentence
levels is provided. The command set is con-
sistent between targets; operations pro-
vided by the universal editor are also pro-

Computing Surveys, Vol. 14, No. 3, September 1982

384 • N. Meyrowi tz a n d A. van D a m

vided for specific target -dependent modes,
enabling the user to deal with a relatively
small set of operations tha t do "obvious"
things. For example, a move command in a
text editor would move the selected text
f rom source to destination, while a move
command in a graphics editor would move
the selected graphics object f rom source to
destination. Tex t formatt ing is done by ap-
pending a formatt ing descriptor to each
site; these can be edited by the tree editor
as well.

1.5.3 Fraser's s

Fraser's s [FRAs80] is an attempt to provide
standard editing primitives tha t can be used
to build a var ie ty of editors, s allows the
programmer quickly to create different
front ends for a text editor so tha t various
targets can be modified using existing edit-
ing routines.

T he philosophy behind s is tha t many
computer ut i l i t ies-- interact ive debuggers,
file system utilities, even t ick-tack-toe
games- -a re simply editors in tha t they ac-
cept a part icular input syntax and modify
the existing representa t ion and /o r s tate of
their part icular data. Ra the r than produc-
ing languages and scanners for each appli-
cation, s a t tempts to use a generalized
s t ructure and a generalized text editor nu-
cleus for editing all applications.

One application allows the user to edit
UNIX i nodes, complex (18-field) data
s t ructures containing pointers and infor-
mat ion about a file block from the U N I X
file system. When the system crashes or a
disk block becomes unusable, the systems
programmer occasionally has to go into the
file system and manual ly change pointer
values from a dump-type format, s pro-
vides a screen-based view of the file descrip-
tor, allowing the user to edit each of the
fields, which are represented one per line.
An overstrike, for example, is t ranslated
into a call to the nucleus rout ine fetch to
retr ieve the appropriate field and a call to
the nucleus rout ine change to update the
field. The deletion of a field would be per-
formed with a call to the nucleus routine
delete.

Another interesting use of s is as a UNIX
file directory editor. The UNIX Is -I corn-

mand provides a listing of file attr ibutes:

d r ~ x - x r - x 2 nk~ 224 I t y 9 15"27 bBACIICUP
- r v - r - - r - - 1 nlm 36585 M~y 2 16:42 8ec~ lon l .~ez
- rs~xuzr~z 1 nlm 16T14 Apr 25 1T 11 8ec~lon2 ~ez
- r e - r - - z - - 1 aim 48414 Mly 2 16 '44 l e ¢ ~ l o : 3 . t e x
- r w - r - - r - - 1 n]~ 55282 ~ l y 6 00"23 8ec~lon4t ~ez
- z v - r - - r - - 1 him 20113 KLy 6 O0 49 |ec t l on412 ~ox
- r l - r - - r - - I ~ 9209 May 9 24 50 |ecL lon4b.~oz
- r w - r - - r - - 1 him 22049 I t 7 9 14"20 8ec~lon4c ~ez
- r w - r - - z - - 1 ~ 26958 J a y 6 02 24 8ec~lon4d ~ex
-rw-rv I ~ m 3362 %ty 9 15 10 l e c t l on4e ~ox
- r w - r v I ~ 16541 l l y T 11 13 8ec~lo=5.~ex

T h e first field contains a d if tha t en t ry is
a directory; this field is not editable. T h e
next nine fields contain r, w, and x for read,
write, and execute privileges for the owner,
the group, and for all others, respectively,
with a - indicating no access. Th e next
field, the link count, is not editable. Th e
next field contains the owner of the file.
The rest of the fields are not editable, ex-
cept for the last entry, the actual file name.

Ra the r than forcing the user to use the
UNIX shell commands for performing re-
naming (mv oldname newname), deleting
(rm filename), changing ownership (chown
filename), and changing access rights
(chmod a + rwx filename to allow all to read,
write, and execute the file), the s directory
editor allows the user to edit the listing
directly, barring protec ted fields. Delet ing
the characters, r, w, or x removes read,
write, and execute access for the corre-
sponding parties; overstriking a - with r,
w, or x adds access. Typing over the owner
name changes the owner, typing over the
file name changes the file name. Delet ing
an entire line deletes tha t file.

A different f ront end allows the user to
edit the state of a simple pedagogical com-
puter. Ra the r than having the s tudent sub-
mit punched cards in batch mode and easier
and cheaper than having a physical labo-
ra tory machine, an s f ront end was wri t ten
representing the machine archi tecture as
editable lines and allowing the s tudents to
modify the appropriate fields. While the
goals of the i node and machine applications
are different, the primitives to edit them, at
least from a system view, are the same.

While the s editor was a l imited experi-
ment , its ramifications are wide ranging.
Many applications, especially ones tha t are
computer based, have some aspect tha t re-
quires editing. We feel tha t Fraser 's basic

CompuUng Surveys, Vol 14, No. 3, September 1982

Interactive Editing Systems: Part H ° 385

premise--when changing a file name in a
file system, when adding a user to a mailing
list, or when editing a UNIX i node as
above, there is no reason why the user
should have to resort to special mainte-
nance programs--will be an important goal
in the future of editing. As Fraser's s has
shown, a general-purpose editor can be used
to give the user a far more common inter-
face across diverse applications than typi-
cally exists today. Moreover, with an appro-
priate interface, one can perform editing on
a graphical representation of the target
rather than on an unfamiliar, textual rep-
resentation.

1.5.4 Walker's Document Editor

Walker's Document Editor is an attempt to
design an editor for the preparation of com-
plex documents such as technical manuals.
An initial goal of the system was to
"develop a structured description for doc-
uments . . . distinct from any particular
commands in the document source"
[WALK81b, p. 44]. The Document Editor
uses EMACS as a base text editor and
Scribe as a document-description database
and compiler.

The Document Editor operates on a
"document" as a collection of files in Scribe
manuscript file form; it infers the structure
of the document from the tags in the file
being edited. The specialized functions for
technical writing provided by the Docu-
ment Editor are actually extensions to
EMACS in the form of a user library.

The Document Editor provides four ma-
jor categories of document structure editing
commands: locators, selectors, mutators,
and constructors. Locator commands allow
the user to specify places in the document;
these include commands to go up and down
a structural level (e.g., from section to sub-
section), to go to the next or previous item
at the same structural level, and to go to
the next structural element of any type.
Selector commands allow the user to deter-
mine the current makeup of the document
by checking the status of the parts and the
structure of the document at various (user-
specified) levels. Mutators revise the struc-
tural makeup of the document, providing
functions such as change structural level
(e.g., make a chapter a section). Construc-

tors allow the user to create and copy struc-
tural elements.

The Document Editor uses Scribe's
cross-referencing commands for maintain-
ing cross-references for section numbers,
table numbers, and other document infor-
mation. This facility provides a follow
CREF (cross-reference) pointer function to
allow the user to view the target of the
cross-reference. More interestingly, it con-
tains the find all fingers function, which
allows the user to see which cross-reference
pointers in the document point to a partic-
ular spot in a document. This forms a ru-
dimentary hypertext capability [NELS67,
vAND71a], but requires the high computa-
tional overhead of being extrapolated from
Scribe, rather than being an editor primi-
tive.

The Document Editor uses the cross-ref-
erence capabilities to provide functions that
manage the task of creating an index for a
document. For traveling, the user can fol-
low an index pointer and examine all the
fingers pointing to a location, as well as
make an index entry, show index symbols,
and find all the index symbols containing a
particular word.

The Document Editor runs Scribe as an
underlying formatting process. The editor
itself, EMACS, does not present the for-
matted text for the user to edit. As dis-
cussed in more detail in Section 2, Walker
contends that for large documents, one has
little interest in anything but the content
and the formatting abstractions (as op-
posed to the actual formatting) during most
of the life of the document. However, the
Document Editor does provide the func-
tions for compiling those parts of the doc-
ument that have actually changed, while
conforming to the formatting constraints of
the entire document (proper page numbers,
indentation levels, margins, typefaces).
This alleviates the cost of recompiling an
entire document because of minor editing
changes.

1.6 Syntax-Directed Editors

Syntax-directed editors attempt to increase
the productivity of the programmer by re-
moving the time-consuming process of
eliminating syntax errors. Syntax editors

Computing Surveys, Vol. 14, No. 3, September 1982

386 • N. Meyrowi tz a n d A. van D a m

are structure editors that ensure that the
structure always is constrained to preserve
syntactical integrity. Often syntax-directed
editors do not merely recognize the syntax
and translate the user's actions into linear
text, but instead parse the input into an
intermediate form that can be used to gen-
erate code. Here the editor is both a tool
for the programmer and a tool for the com-
piler/interpreter. We give some prototypi-
cal examples below.

I. 6. 1 Hansen's EMIL Y

Hansen's EMILY [HANs71] is one of the
earliest syntax-directed editors. Rather
than typing in arbitrary text, the user cre-
ates and modifies text by graphically se-
lecting units of text (templates) that are
constructs in a programming language.
Text is created with a sequence of selec-
tions. The screen is divided into three areas:
text, menu, and message. The text area in
the upper two-thirds of the screen displays
the text under construction as a string that
contains the nonterminals (nonatomic en-
tities) of the program, highlighted by un-
derlining. The current nonterminal is en-
closed in a rectangle. The menu in the lower
third of the screen displays a set of possible
replacements for the current nonterminal.
The user selects a replacement rule and the
system makes the substitution, locates a
new current nonterminal, and displays a
new set of choices. The message area is
used for entering identifiers and also dis-
plays status and error messages. Assuming
a partial PL/I- type grammar like

(STMT) ::= (VAN) = (EXPR); I
IF (EXPR) THEN (STMT)I
DO; (STMT,) END;

(STMT*) ::= (STMT)I(STMT) (STMT,)
(EXPR) ::= (EXPR) + (EXPR)I(VAR)
(VAN) ::= id

where symbols surrounded by "{" and ")"
are nonterminals, an IF statement might be
created in the following manner.

The current (boxed) nonterminal is
I(STMT)I, and the menu displays the three
choices

(VAN) = (EXPR);
IF (EXPR) THEN (STMT)
DO; (STMT*) END;

The user selects the second with a light pen
and gets the expansion

IF ~ THEN
(STMT)

The current nonterminal is now ~ ,
and the menu displays the possible expan-
sions for this. Subsequent derivations to
arrive at the appropriate iF clause are

IF ~ THEN
(STMT)

IF FIRSTTIME THEN

IF FIRSTTIME THEN DO;
I('STMT*)I

END;

IF FIRSTTIME THEN DO,
FIRSTTIME -- FALSE;
SYMBOLS = NULL;
ENDTIME = DAYMINUTES + 10;

END;

Since a syntax imposes a hierarchical
structure on text, EMILY can be used for
any hierarchical text structure. Each selec-
tion from the menu generates a node with
space for one pointer for each nonterminal
in the replacement string. When a nonter-
minal is replaced, the corresponding space
is filled in with a pointer to the node gen-
erated for the replacement. Each nonter-
minal thus generates a subtree of nodes
that is presented on the display, through a
tree-walking display routine, as a string of
text.

As in NLS, the user can change the view
of the text, so that the string generated by
any nonterminal is represented by a single
identifier called a holophrast. For example,
the iF statement above could be displayed
with all text generated from the (STMT*)
represented by a holophrast. In larger pro-
grams, this feature means that the user can
view the structure of the text without view-
ing the details. Alternatively, the user can
descend into the structure and view the
details in full.

Text is also modified in terms of its struc-
ture. The text represented by any holo-
phrast can be deleted, moved, or copied.
When text is deleted, it is not destroyed
immediately, but is automatically moved to

Computing Surveys, VoL 14, No. 3, September 1982

In terac t ive E d i t i n g Sys tems: P a r t H • 387

a special system fragment called *DUMP*.
If a mistake is discovered before the next
text modification is made, the deleted text
can be retrieved from this dump.

EMILY is a pure syntax-directed editor.
Statements are derived by the menu-pick-
ing scenario down to the lowest level, for
example, the identifier. This makes the ed-
iting awkward, since the user must often
traverse long derivations to type in a simple
identifier or assignment statement.

1.6.2 Cornel/Program Synthestzer

Much work in individual areas was done
after EMILY, most notably the MENTOR
[DoNz75, DONZ80] tree-manipulation and
programming environment, the CAPS di-
agnostic programming system [WILC76],
and the INTERLISP Programmer's Assis-
tant [TEIW77]. The Cornell Program Syn-
thesizer [TEIT81a, TEIT81b], running on
both the Terak (LSI-11 based) personal
computer and the VAX family of com-
puters, combines many of the ideas from
these and other projects into a syntax-di-
rected editor and programming environ-
ment for PL/CS, and more recently,
PASCAL.

In the Synthesizer, designed for simple
terminals which use cursor keys as the only
locator device, the user types textual com-
mands that represent the set of possible
expansions of the current nonterminal. The
set of possible commands can be displayed
in an optional window so that the user need
not memorize the command sequences. The
synthesizer differs markedly from EMILY
in that it is not a pure derivational syntax-
directed editor. Rather, the synthesizer is a
hybrid between the traditional structure
editor and the character-string text editor.
Thus common elements such as identifiers,
expressions, and assignment statements do
not have to be considered as elements of a
tree structure, nor do they have to be edited
and stored as such.

The user is presented with three types of
high-level entities. Templa tes are program
constructs that need to be filled in. Place
holders are tags in the template describing
the parts that need to be completed, and
these are the only parts of templates that
can be altered. Phrase s are pieces of text,

not structure, that are typed in to replace
place holders.

To start a PL/CS program editing ses-
sion, the user types .main followed by a
carriage return to obtain the template for
a PL/CS main program. 4 This template is
of the form

/ * comment , /
file-name: PROCEDURE OPTIONS (MAIN);

{declaration}
{statement}
END file-name;

The user can position the cursor at the
place holder comment and type a phrase
containing the text of a comment. Now the
user positions the cursor at the place holder
for the nonterminal declaration. Since this
is a nonterminal (indicated by the braces),
the user must select an applicable template
for further derivation. At this point, the
user can type *fx for a fixed variable, *fl for
a float variable, *bt for a bit variable, °ch
for a character variable, or *c for a com-
ment. For our example we choose °fx. This
expands to the template

DECLARE (list-of-variables) FIXED [attributes];

The cursor is moved to the list-of-variables
place holder, and a phrase containing the
name of the variable is typed in. This name,
typed in as text, not as structure, is parsed
for syntactic correctness upon pressing car-
riage return, and is stored and manipulated
as text. If an illegal variable name is typed,
this phrase is highlighted in reverse video
and flagged internally. If the attributes are
not inserted, the square brackets indicate
that default values will be used. The dec-
laration nonterminal is now completely de-
fined, and the user moves on to expand the
statement nonterminal, for which there are
13 possible templates. Typing °ie generates
the template

IF (condition)
THEN ~tatement
ELSE statement

(The box here indicates the current cursor
position.) Typing *p at this position gener-

4 o, long, clip, delete, left, right, up, down, and diagonal
are function keys on the synthesizer keyboard.

Computing Surveys, "CoL 14, No, 3, September 1982

388 • N. M e y r o w i t z a n d A. van D a m

ates the PUT template, giving

IF (condit ion)
THEN PUT SKIP LIST (gist-of-expressions);
ELSE statement

The user could then type a phrase like
" 'min = ',beta " t o fill in the place holder.

The user uses the left, right, up, and down
cursor keys to traverse the structure. In
fact, the key names do not represent the
true functions attached to those keys. Right
and down both move the cursor forward
through the program; left and up move it
backward through the program. Rather
than moving character by character, these
keys move the cursor one program element
(template beginning, place holder, or
phrase) at a time. Left and right, addition-
ally, stop at each individual character in a
phrase. In an expanded template like the
one above, the cursor would stop at the
underscored places when using up and
down:

IF (alpha < beta)
T"~=-NPUT SKIP LIST ('rain = ',beta);
ELSE ~atement

m

and at these underscored places when using
left and r ight:

IF (alpha < beta)
THEN PUT SKIP LIST ('mm = ',beta);
ELSE ~atement

The two-key sequence long down (up)
moves the cursor to the next (previous)
structural element of the same level. Other
keys move the cursor to the nearest enclos-
ing structure template and to the beginning
of the program.

Insertion and deletion are based on the
pick, put, and delete buffer concepts. The
user positions the cursor at an appropriate
template or phrase, and then issues the
delete command to delete that template
(including, of course, all subtemplates) or
phrase and store it in the delete buffer.
Similarly, clip will store a copy of the se-
lected entity in the clip buffer, but not
delete the original. The insert command
allows the reinsertion of the deleted or
clipped text at the current cursor position.
In the above example, if the cursor were
positioned at the P in "PUT," the sequence
delete, down, insert would result in the

program segment

IF (alpha < beta)
THEN statement
ELSE PUT SKIP LIST ('ram -- ', beta);

Correcting mistakes can only be done by
preserving structural integrity. Assume the
following incorrect code segment:

/ , compute factorials from 1 to 10 nonrecur-
sively , /
a = 0 ;
DO WHILE (a < 10);

a = a + l ;
fact = 1;
PUT SKIP LIST (a,' Factorial = ') ;
temp = a;
END;

DO UNTIL (temp = 1);
fact = fact * temp;
temp = temp - 1;
END;

PUT SKIP LIST (fact);

The traditional programmer, realizing that
the END of the DO-WHILE loop should
properly come at the end of all of this code
(nesting the DO-UNTIL and the PUT SKIP
LIST), would move the END statement to
the end of the code with a single move
command or a delete/put sequence to
achieve

/ , compute factor=als from 1 to 10 nonrecur-
swely , /
a = O ;
DO WHILE (a < 10);

a = a + l ;
fact = 1 ;
PUT SKIP LIST (a,' Factorial = ') ;
temp = a;
DO UNTIL (temp = 1);

fact = fact • temp;
temp = temp - 1,
END;

PUT SKIP LIST (fact);
END;

In a syntax-directed editor, since the END
is part of the DO-WHILE template, it cannot
be separately moved. Instead of moving the
END forwards, the equivalent backward
move of the two following statements must
be done. To perform the desired alteration,
the user would have to position the cursor
at the start of the DO-UNTIL template,
press long delete, move the cursor to the
last element in the list of structures to be
moved (the PUT SKIP LIST (fact) state-

Computing Surveys, Vol. 14, No. 3, September 1982

Interactive Editing Systems: Part H • 389

ment), signal completion of the selection by
typing o, move the cursor to the structural
element after which the new part should be
inserted (the temp = a; phrase), press car-
riage return to open a statement place
holder, and issue °ins DELETED to position
the desired text in the desired spot. While
this is certainly more complicated than the
traditional method, the interface is partially
to blame. A pointing device that would
easily allow selection of elements and ex-
tension by structural or contiguous units
would eliminate many of the keystrokes
above. Even without the pointing device,
one could imagine extending the starting or
ending portions of a template to encompass
contiguous statements.

Even if many syntax-directed editing
techniques are nominally longer than tra-
ditional techniques, the excess time must
be weighed against the time saved by en-
suring that a program is syntactically cor-
rect every step of the way. One major time-
wasting operation that is avoided is the
back mapping of frequently inscrutable
syntax-error messages to the source lines,
all too often a heuristic and frustrating
process. Indeed, an important contribution
of the Synthesizer project was the concept
of the syntax-directed editor as an integral
part of a programming environment. The
Synthesizer is not typically used to create
text files that will later be passed to a
standard compiler, but rather as an editor
that will create a representation of a pro-
gram suitable for on-line interpretation.
The Synthesizer allows the user to run a
program and watch the cursor step through
the lines of code as they are being executed,
much like the "bouncing ball" familiar to
cartoon watchers. Information hiding (such
as seeing only the comments or top-level
templates) still allows single-step viewing
of the program in which the cursor jumps
from one visible high-level unit to the next;
the user does not have to watch the low-
level details, for example, the inner work-
ings of a loop. Uninitialized variables are
flagged, type checking is enforced interac-
tively, and duplicate declarations are pro-
hibited, all at edit time, rather than at
compile time. Invalid phrases are high-
lighted as soon as the user types them in. A
syntax-directed approach avoids the time-

consuming back-mapping error messages
from a batch compiler to the proper lines
in the source file by generating the error
messages interactively, with the offending
program components highlighted. Pro-
grams are incrementally compiled, allowing
the user to reedit and experiment with
small parts of a program without waiting
for an extensive recompilation. In fact, the
approach taken with the Synthesizer allows
the suspension of program state, the correc-
tion and incremental compilation of a por-
tion of the program, and the resumption of
the program.

Templates can be input only in a struc-
turally sound manner, while phrases, typed
textually, are allowed to be erroneous.
When editing, the user does not need to
expand all nonterminals or remove all er-
rors in phrases. An incomplete or erroneous
program can be run at any time. However,
these irregularities are highlighted from the
moment they are input until the moment
they are corrected; the synthesizer relaxes
some of its constraints, but warns the user
accordingly. In both cases, the program will
run normally until the error or unfinished
program construct is encountered. When
this is encountered, the user is free to cor-
rect or insert the code and continue the
execution.

The program is stored as a combination
of a parse tree for the templates, and as
actual text for the phrases. The pretty-
printed code that the user sees is actually
an interactively generated view of the in-
ternal data structure.

Currently, a Synthesizer Generator is
being developed which will allow a com-
plete syntax-directed editor to be generated
from a formal description of the syntax. We
point the reader to the GANDALF project
at Carnegie-Mellon University [HABE79,
NOTK79, FEIL80, MEDI81] for a description
of a similar syntax-directed editor and edi-
tor-generator project.

1.6.3 Fraser's sds

Fraser's sds is a general structure editor
driven by a grammar that describes a hier-
archical data structure. Our interest in it
results from the stress that has been put
upon imposing a syntax on targets that are
not necessarily programs, and upon the

Computing Surveys, Vol. 14, No. 8, September 1982

390 • N. Meyrowi t z a n d A. van D a m

generation of the editor from a procedural
description.

The user-viewable part of sds is a screen
editor which displays a current record of
some tree structure. The cursor keys down,
up, left, r ight and home allow the user to
move down to a node field, back up, left or
right to adjacent fields, or to the root of the
structure. Other commands consist of typ-
ing a period followed by the name of a
nonterminal, the technique used in the Cot-
nell Program Synthesizer. This causes the
editor to allow the user to enter the first
field of this new nonterminal. The user can
either enter another nonterminal designa-
tion or, if applicable, simply type a string
that will become a terminal or leaf node. As
well, sds provides target-independent com-
mands such as .w (.r), which write (read) a
subtree to (from) a file, .hide(.show), to
suppress (exhibit) detail of a subtree, .pick,
which saves a pointer to the current node,
and .put, which substitutes the current
node with the previously picked node.

The target-specific editor is written using
a formal syntax description similar to that
used for the YACC compiler-compiler of
Johnson [JOHN75]. The entire grammar for
an sds binary tree editor is captured in one
line: 5

tree - value tree tree : dotree(value, tree, tree2)

The phrase before the colon is the gram-
matical description of tree, the only pro-
duction in the grammar of binary trees. The
portion after the colon is SNOBOL4 code
to perform an action (tree2 is the second
argument named tree, treen would be the
SNOBOL argument for the nth tree token
in a production list). In this example, the
dotree subroutine contains SNOBOL code
to display the value and the two subtrees
in graphical form. Note that to change the
representation of a binary tree node to one
in which the value lay between the two tree
pointers, one would simply have to change
the production to transpose the words
"value" and "tree":

tree = tree value tree : dotree(value, tree, tree2)

S im i l a r l y , t he d o t r e e r o u t i n e cou ld be
changed to store the binary tree in a disk-

s Examples are adapted from FRAS81.

oriented form or to print it in an indented
representation; the actions are independent
of the creation routines of sds.

A document editor has also been written
in sds. Of course, this implies the construc-
tion of a hierarchical grammar for a docu-
ment, coupled with action rules for each
production. A sample grammar for a small
document system looks like

paper = t,tle sect:center(bt le) nl nl
generate(sect)

sect = header pp sect: header nl nl put(pp)
generate(sect)

pp ffi text pp:break(text) nl generate(pp)

To the right of the colons lie production-
specific SNOBOL code. We are concerned
here only with the productions to the left
of the colon.

To use this editor, the user would enter
textual commands to create various levels
of the subtree as follows. The prompt line
gives the user an idea of location in the
structure. The last item on the line is the
current field (item on the right side of the
production), while the preceding items are
the types (items on the left side of the
production) which brought the user to that
field, that is, the successive nodes of the
tree branch. The root name paper is im-
plied at the beginning of each line.

First, the user types .paper, telling sds to
begin a node of type paper, the root of the
structure:

p r o m p t :
u s e r : .paper

The next prompt asks the user to type in a
title and go to the next part of the produc-
tion:

p r o m p t : tit le
u s e r : Interacbve Editing Systems

sds is now ready to perform the sect pro-
duction, but requires the user to issue the
explicit command to create the section:

p r o m p t : sect
u s e r : .sect

Having created the .sect record, the system
prompts the user to fill in the header field:

p r o m p t : sect header
u s e r : Introduction

Computing Surveys, Vol 14, No. 3, September 1982

Interactive Edit ing Systems: Part H • 391

The user is now prompted to create a .pp
record, and again must issue an explicit
command:

p r o m p t : sect pp
u s e r : .pp

The user is prompted to enter text. In this
mode, he is provided with a target-depen-
dent text editor based on the Irons model:

p r o m p t : sect pp text
user: The interactive edItor has become an
essentIal...

Upon terminating the paragraph, the user
is prompted to create another, as the pp
production is recursive:

prompt : sect pp pp
user: .pp

The user then types in the appropriate text:

prompt : sect pp text
user: Though the editor has always been
deemed...

The command up goes up one level in the
structure. This causes a production (pp =
text pp) to be completed and an action to
be performed, in this case, formatt ing of a
paragraph:

prompt : sect pp pp pp
u s e r : up

We go up one more level of the tree, for-
matting the first paragraph.

p r o m p t : sect pp pp
u s e r : up

While the user is entering text, sds is per-
forming syntax checking, flagging and pro-
hibiting invalid structure at any point in
the document.

Initial reaction to document creation by
structure centers on the apparent
"wordiness" necessary to get the job done,
but Fraser contends that the explicit struc-
ture is almost identical to what one does
implicitly with a compiler-based document
language. In fact, the .w command would
store the above paper as

.paper
Interactive Editing Systems
.sect
Introduction
.PP

The interactive editor has become an essen-
tial...
.pp
Though the editor has always been deemed...

A third application for sds is as a picture
editor for simple line drawings. The struc-
ture editor, using the small six-line gram-
mar described in FRAS81, would create the
multicolor letter "T" with the structure

.branch

.color
blue
.line
0,20 20,20
.color
.red
.line
10,0 10,20

Other grammars used by sds include one
for a subset of C [KER~78c].

1.7 Word Processors

1.7. 1 WordStar

WordStar [MICRSl] is one of the most pop-
ular word processing programs available for
home computer systems. It runs on a vari-
ety of systems under the CP/M operating
system, using the CP/M file system to
maintain its fries.

The conceptual model of text in Word-
Star is the quarter-plane of the Irons model.
Control key combinations (special prefix
characters are used as software shift keys
to provide a large set of commands), func-
tion keys and cursor keys are used for com-
mand specification. WordStar combines the
quarter-plane model with a "virtual type-
writer" model. The user is presented with
a ruler line that simulates tab rack and
margin ruler on conventional typewriters,
and with commands to move virtual margin
keys forward and backward on this ruler
line. WordStar divides the file into logical
pages that default to contain 55 lines (the
number of fines on an 8~ × l l- inch page,
excluding margins). Most importantly,
WordStar provides modest interactive edi-
tor/formatter capabilities for justified,
monospaced text. As the user types in text,
the lines are automatically justified. When
text is changed, rejustification is not auto-
matic, but is done on a per-paragraph or
per-document basis by user command.

Computing Surveys, Vol. 14, No. 3, September 1982

392 • N. Meyrowi t z a n d A. van D a m

^Q A:TEST.DOC PAGE 1 LINE 3 COL 19
^ Q PREFIX (to cancel pre f ix , hit SPACE bar)

CURSOR: S = l e f t S~de screen E=top screen
R = b e g m n i n g f i le C = e n d f i le

Xffi b o t t o m D = r ight enD l ine
0-9, B, K, V, P = to m a r k e r

SCROLL: Z f c o n t m u o u s up Wf f i con t l nuous d o w n
DELETE TO END LINE: D E L = l e f t Y = n g h t

!FIND, REPLACE. F= f ind a st r ing A = f ind and subst=tute
REPEAT NEXT C O M M A N D . Q = r e p e a t unti l key hit
L ! i ! ! i ! ! I ! ! ! ! R

th=s is text en te red by the user.
1'he qu ick b r o w n fox j u m p e d ove r the lazy dog.
a b c d e f g h q k l m n o p I I

Figure 14. WordStar screen. (From MICR81. Reprinted with permission.)

The screen is set up to provide extensive
feedback to the user. The first line is a
status line: it presents the file name of the
document, the current page number, and
the current line and column at which the
cursor points; as soon as the cursor is
moved, the latter values are changed. As
well, the beginning of this line is used to
echo the typed command. For instance, as
in Figure 14, if the user types CTRL-Q on
the keyboard, the textual representation AQ
is shown on the screen. The next few lines
on the screen (above the ruler line) repre-
sent the current options. Here, since CTRL-
Q was typed, the AQ prefix options are dis-
played in the help area. The user then
chooses one of the ^Q suffixes, which rep-
resent commands. A more sophisticated
user can avoid this extensive prompting in
two ways. First, if the entire command, say
CTRL-QF is typed together quickly, it is
executed without displaying the ^Q options.
More explicitly, the user is given commands
to change help levels. These help levels
range from displays for the novice, contain-
ing complete options, to those for the ex-
pert, containing no options at all. The full
set of WordStar commands is shown in
Figure 15. WordStar makes sure that the
user has noticed an error by requiring an
acknowledgment--by default hitting the
ESC key--to resume operation.

As in the Irons model, editing is done on
the displayed viewing buffer/editing buffer
by driving the cursor around and typing.
WordStar offers both insert mode and
typeover mode.

A major flaw of WordStar is the lack of
an undo facility: once a command is exe-
cuted, it cannot be reverted. This reduces
the freedom of experimentation that an
author should have. The only recourse that
a user has is "undoing" an entire session
with an abort command.

A problem with WordStar, and with most
microcomputer editors, is lack of both main
memory and disk space. WordStar, for in-
stance, has its own paging routines to bring
parts of documents in and out of memory.
If the disks are of reasonable capacity, this
offers no problem. However, for small sys-
tems with floppy disks and consequently
small disk capacity, the amount of the disk
needed for paging leaves little room for
document storage. This causes, in some
systems, the unfortunate situation in which
a document that is being edited cannot be
stored back on disk.

1.7.2 CPT SO00

OPT is a representative example of a com-
mercial stand-alone word processing sys-
tem. The Disktype 8000 has a page-size,
monospace display, and two floppy disks to
store files. CPT was the first word-process-
ing system to offer an 8} x l l-inch white
screen with black characters, simulating a
piece of paper in a typewriter [SEYP79]. In
fact, the typewriter metaphor is consis-
tently applied. A few lines up from the
bottom of the page is the typing line, meant
to simulate the paper bail on the platen of
a typewriter. Input takes place on the typ-
ing line only.

Computing Surveys, Vol. 14, No. 3, September 1982

A
"0

_..m® ~- -

. ~ z .. ~ ~.

~ - O " @~- ~ ~ ' ~ - ' r ~ O ®

Z I,D

Z .I
rr _~
D

O l - - m _

u, j ,,r" t . . Z r ' . I.U u . " r ~ ~ Z 0 0 . ,,," X >-

= E - z ~
~ ~o~®

M.
~ o

"o ~ z

- . E ~ o ~ -~
= ~- -0 =,~ ~. Z ,^ ~ c o~

~ o ~_~ § o _~ ~_ ,- ~ o o_ ~ . m'E ~.

-_~z >~oE~ =E : = - : _ :~= ~0~ T M o ~ - - ,.-- ~ - - ~, - - -

~ ~oooooo~8~ooo ~ < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <
z

~ ~- ~.: o

~ ' ~ : - ~ u ~ . c <. , ~ = o
CL : U J ~ w z ~ o ~ :0

LUn" n" OU- ~ 0 " 0
00~----000 O m X X ~ ' . ~ X ~ x=

C
CO - - ~

~ ; ~ ~_ ~ ° o _ ~
=-- O0(D~ c ~

0"~ ~" ~r mu.O. el-- o.~r

~ m- n" _ 0 ~ _ ~, "o ® LU E cp ~ ®
~'"""6~ ~:-~:-'r E.,:.:,.:'"~

< < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <

I
c~

"0

o

00

~ E = ~ o ~ =
• ~ ' E ' ~ = = =o-=-

~ @ ~,,-~ ~. 0 ~
,.. I= • . . 0 ' ~ . . ¢~

O O t ~ O 0 ¢: , u ~

~ . O O ~ r O O O r ~ O O

I~. % Q. 0 IT" {/J, > ~ X)* N ~'
0 0 0 0 0 0 0 0 0 0 0 0

zO~.~_~.® ~ ~
0 : : : ' = - ~ - - a ~ c " " o " ~

~ N . o ~ = , . o _ ~ o o o o

,'-t > ~ ~" 0 LU 0 n" ~ ¢.~ 0 (,)

0000 ~ . 0 0 0 0 0 0

T-

2

U=

394 • N. Meyrowitz and A. van Dam

No standard cursor keys exist on the
CPT. Rather, the space bar moves the cur-
sor forward on the typing line and the back-
space key moves it backward. There is no
need for up and down cursor movement,
since it is the document that travels up and
down past the typing line. Therefore keys
are provided to scroll the document up and
down. Margins are set by moving right and
left markers on the typing line. Five other
keys specify character, word, line, para-
graph, and page elements for commands
like delete, skip, move, and insert.

CPT provides three input modes. Manual
mode simulates a typewriter; when the user
reaches the right margin, a bell rings.
Wraparound mode provides automatic car-
riage returns when the right margin is ex-
ceeded. Hyphenation mode performs auto-
matic hyphenation when a word reaches a
system-defined "hot zone," using an algo-
rithm aided by an exceptions dictionary.

One interesting feedback mechanism of
CPT is its error message facility. In the
center of the status line at the bottom of
the screen is a 20-character area reserved
for error messages. Rather than having
terse error messages in this area, and as an
alternative to removing some of the possi-
bly offending text from the display to make
room for a wordy error message, CPT rolls
the lengthy error across this area like a
captioned bulletin at the bottom of a tele-
vision screen.

1.7.3 NBI System 3000

The NBI System 3000 is another popular
commercial word-processing system. It has
a stand-alone processor, with file storage on
floppy disk. Its conceptual model is very
similar to that of WordStar described ear-
lier. The interface uses a combination of
option sheets and function keys; the display
is a mapping of a screen-sized viewing
buffer to a full-screen viewport. The user
alters the documents by driving a cursor
around the screen with cursor keys, over-
striking characters or using appropriate
function keys to effect the changes. Like
WordStar, the NBI System 3000 supplies
the user with option sheets to show avail-
able operations. It does not, however, offer
the help level commands of WordStar. In

some cases, the user can operate without
calling up an option sheet at all, and in
other cases, as in WordStar, if the user is
"faster" than the option sheet, it is not
called up at all.

NBI presents an interesting alternative
to the insert mode versus overstrike mode
"controversy." When the cursor is posi-
tioned over a character, typing will over-
write that character. When the cursor is
positioned over a space, typing will invoke
insert mode and all characters to the right
of the cursor will be pushed to the right as
necessary. NBI provides an extensive
search and replace facility, allowing the
user to perform case-insensitive searches
and replacements on a case-by-case basis.

Along with these advantages are several
inconsistencies. The commands set is not
consistent. The line delete command will
delete the line in which the cursor is posi-
tioned, regardless of where the cursor lies
in that line, while the word delete command
will only delete a word if the cursor is
positioned at the first character of that
word. Although complete region selection
and associated copying, moving, deletion,
and storage are available, NBI provides no
feedback as the areas are selected.

1.8 Integrated Environments

1.8. 1 RIG, Apollo

The Rochester Intelligent Gateway (RIG)
user interface [LANT79, LANT80] and the
similar Apollo Aegis user interface [APOL82]
are two examples of a relatively new trend
in editing systems, one in which the editor
is an integrated part of the interface pre-
sented to the user, rather than a user-in-
voked utility program.

Both the RIG and Apollo systems are
based on the concept of a display or window
manager as the primary interface to the
system. These display managers give the
user the ability to create windows on the
display surface, move these windows
around, and change their size. On the
Apollo these windows can overlap; in RIG
the windows do not overlap but simply
partition the display screen (see Figure 16).

As in Star, the windows are meant to
simulate pieces of paper on a desk. More

Computing Surveys, VoL 14, No. 3, September 1982

Interactive Editing Systems: Part H ° 395

4 entries listed.
$ hardblt.bln

$ Is mbx

Dmectc@g "/sgs/mbx":

dox_helpep

entrg.
tserr abstractl, rex

$ Icnode

The node ID of thls node is IF.
G other nodes responded,

Node ID Boot t,me Current tme

1F 1982109/11 13.3h22 1992/09/13 9:38:5

:an.at:d .u ,r :x :
an: at d 'u r x .
an:a t d .c :a . a l - I
an, a t . d w 'P "x

. a n ' a t : d c a . a l ' l

bm tgpe conc na~e

asc F2 n~l $1ogon
BSC vl rill abstractt, tex

bltBap
bm und nll bp.bln

calc

\ c t r l l n e { \ b f ABSTRACT}
\vsk lp2Opt

m m
Command'

Many daily tasks, whether done wi th convent l
or wi th computers, can be v i e w e d as { \ t e edl
s ta te of some
target ent i ty
is changed by the user.
This art icle, Part I of a t w o - p a r t series, examl
Interact ive editing sys tems} , which
a l low
users to change the state of targets such as m

I

Figure 1 6 . A p o l l o p a d s .

specifically, the window shows a rectangu-
lar portion of a two-dimensional pad (see
Figure 16), an unbounded quarter-plane of
text. Editing functions much like those in
Irons model editors are supplied to manip-
ulate items in the pad.

So far, the systems sound much like a
standard multiwindow editor. In fact, one
of the two types of windows, the editing
w~ndow, fits that model exactly. The other
type of window, the process window, is an
editing window with an arbitrary user or
system process attached to it. The process
window has both a large outputpad window
on top and a smaller input pad window
directly underneath. For interactive pro-

cesses, input is typed into the input pad
and, much like a typewriter, when a car-
riage return is pressed, this text scrolls up
over the "typing bar" into the output pad.
In addition, output from the interactive
process is written directly to the output
pad. The result is a complete transcript,
simulating output on a hard-copy terminal,
of the interactive session. Multiple windows
on the screen may be active at once; the
user may be reading electronic mail in one
process window, editing the file referenced
in the mail in an editing window, and com-
piling that file in another process window.
Returning to our editing concerns, we note
that the output pad allows all editing func-

Comput ing Surveys, Vol. 14, No, 8, Sep tember 1982

396 • N. Meyrowi t z a n d A. van D a m

tions (although often the system makes the
pad's contents read-only so that they can
be perused or selected but not altered). The
user can now travel through the entire con-
tents of an interactive session, and actually
select previous input and output from the
output pad and use it as input elsewhere in
the system. For instance, the user might
select a code fragment directly from the
electronic mail window and insert it in the
open editing window.

The major use made of this model is to
tie to a process window the operating sys-
tem command interpreter process. Now,
the user types operating system commands
into the input pad, and both this input and
the output of the system programs invoked
are stored in the output pad. Commands
can be reexecuted simply by selecting their
text in the output pad and inserting it in
the input pad. Output from a program that
is lying in an output pad can be selected
and stored in a file. In fact, an entire output
pad can be saved as a file if the user wants
a transcript of an interactive session.

The ramifications of this concept are
wide ranging, much like the concepts im-
parted by the Star interface, but in the
framework of a general-purpose computing
system, rather than an office automation
system. The editor does not create a pre-
emptive environment [SwIN74] in which
functions normally available to the user are
suddenly cut off. Since the editor is now
above the command interpreter (rather
than being an applications program in-
voked by the command interpreter), the
user can freely issue system commands in-
terspersed with editing commands. No
longer does the user have to leave the editor
to do something as simple as reading elec-
tronic mail or listing the files in a directory;
the user simply switches windows momen-
tarily, executes the appropriate command,
and returns to the previous window.

1.8.2 Smalltalk-80

Smalltalk-80, a research product of Xerox
PARC's Software Concepts Group (origi-
nally the Learning Research Group), pro-
vides an even more integrated environment
than described above. In fact, the paradigm
of overlapping windows was developed as

part of the Smalltalk-80 project [LRG76].
Composed of an object-oriented program-
ming language and an integrated user
interface, the Smalltalk-806 [GoLA82,
GoLA83] system currently runs on several
Xerox personal work stations (the Xerox
1100 Scientific Machine and the Dorado)
with bit-mapped raster displays and three-
button mice (see Figure 17). The aim is to
give the user an interface in which editing
commands are always applicable and other
capabilities that the user desires are at hand
as well. Anything on the screen may be
edited: document text, commands, program
code, and so on. The user does not become
trapped in modes (as in SOS above), but
always has a full range of choices at any
point in the editing session.

The conceptual model provided by the
Smalltalk-80 user interface [GoLA82] is one
of views, represented as labeled, rectangu-
lar, possibly overlapping pieces of paper on
a desk top. A view is a particular way of
displaying the information of a task or
group of tasks for user inspection, altera-
tion, storage, and retrieval of information.
The views most used are standard system
views, on which operations to alter size,
location, label, and level of detail are de-
fined.

Menus are the other important entity in
the Smalltalk-80 user interface. They exist
in two varieties: fixed and pop-up. A fixed
menu is a subview of a displayed view; the
user moves a cursor over the menu items
with a mouse and selects an item by press-
ing the leftmost mouse button. This action
highlights the selection. Releasing the but-
ton invokes the selected command. A pop-
up menu appears directly under the cursor
when the user holds down one of the other
mouse buttons. As the cursor is moved
around the menu, the item underneath the
cursor is suitably highlighted. Upon releas-
ing the button, the item is selected and the
menu disappears.

Since the screen space available to pre-
sent a view may not be large enough to
contain all the information that needs to be
presented, Smalltalk-80 provides the scroll
bar, a special type of menu that allows the

6 Smalltalk-80 is a t rademark of the Xerox Corpora-
tion.

Computing Surveys, Vol. 14, No 3, September 1982

Interactive Edit ing Systems: Part H • 397

Figure 17. Smalltalk-80 screen and mouse. (Courtesy Xerox Corporation.)

user to select what portion of the view is to
be made visible. It supports three general
operations: scroll up, scroll down, and jump.
The scroll bar is displayed as a vertical
white rectangle that appears out to the left
of a view's rectangle when that view is being
used. This white rectangle represents the
document continuum. Inside this rectangle
is a smaller, gray rectangle. This represents
the viewing buffer of the document, the
amount of the document that is currently

being viewed. For example, in Figure 18a,
the gray bar indicates that about the last
half is being viewed; in Figure 18b, the first
half is being viewed; in Figure 18c, the
entire document is being viewed. To jump
to a particular place in the document, the
user puts the cursor in the gray rectangle,
holds down the leftmost button, and drags
the gray rectangle up and down by moving
the mouse. Moving the rectangle simulates
changing the placement of the viewing

Computing Surveys, Vol. 14, No. 3, September 1982

398 ° N. Meyrowi t z a n d A. van D a m

w

U

,N

(a) (b) (c)
Figure 18. Smalltalk-80 scroll bar. (Courtesy Xerox
Corporation.)

buffer on the document. Upon releasing the
button, the view is changed to reflect this
viewing buffer placement. To scroll down
(up) the user places the cursor on the left
(right) of the gray rectangle, and the cursor
automatically changes to a down (up) ar-
row. Upon pressing the leftmost button for
downward scrolling, the line of text closest
to the line of text at the top of the view is
moved to the cursor position. Upon press-
ing the leftmost button for upward scroll-
ing, the line of text closest to the cursor is
moved to the top of the view. Other menus
include confirmers, which allow a user to
select one of two displayed choices, and
prompters , which allow the user to "fill in
the blank" in response to a question or
message.

To edit text in a system-specified view,
the user makes extensive use of the mouse
and the supplied menus. Pressing and re-
leasing ("clicking") the leftmost button on
the mouse causes a caret to appear in the
intercharacter gap closest to the cursor.
This essentially selects a zero-length string.
If the user continues to hold down the
leftmost button, all the characters between
the initial caret and the current position of
the cursor are highlighted in reverse video.
Releasing this button causes the high-
lighted text to become the active selection.
Two clicks on the leftmost button while the
cursor remains stationary select the word
on which the cursor lies, unless the cursor
is at the beginning or end of the document,
in which case the entire document is se-
lected, or unless the cursor lies just after
(before) a left (right) parenthesis, square
bracket, angle bracket, single quote, or dou-
ble quote, in which case the text between
the delimiter pair is selected.

Replacement fits naturally with the con-
cept of selection. Inserting characters is
simply a form of replacement. The user
moves the cursor to the gap in which the
string is to be inserted, does a single click
to get the caret, and begins typing, which
causes characters to be inserted at this spot:
the user is essentially replacing the zero-
length string with the string being typed
(see Figure 19). If a larger area is selected,
the typed-in text replaces the selection (the
first typed character causes the deletion of
the selected area).

Copying and moving are done analo-
gously. The proper selection is made and
either the copy or the cut button is selected
from the pop-up view menu controlled with
the middle mouse button. Both commands
store the selected text in a paste buffer;
copy leaves the selected text unscathed,
while cut deletes it. Now the user is free to
perform any action; the copy and cut are
finished. When desired, the user simply se-
lects a destination point, selects the paste
command in the menu, and the proper in-
sertion is made. If the user has just selected
and replaced text, again, another command
in the pop-up menu, will hunt for the next
occurrence of the pattern that was selected
and replace it with the text used for the
replacement. If the user selects text and
then issues the again command, the system
will simply search forward for the selected
pattern, and if found, select it so the user
may cut it or replace it (see Figure 20). An
undo command allows the reversal of the
previously issued command.

Most SmaUtalk-80 commands are issued
by either clicking a mouse button, or by the
dual motion of first pressing a mouse button
to select a menu item and then releasing
the button to invoke the associated com-
mand. When a command is not available
this way, the user simply finds some empty
view space, types in the appropriate com-
mand, selects it, and then issues the dolt
command. Later on, one may come back,
edit that command in the normal way, and
reissue it. Thus commands are edited as
easily as text; indeed, commands are simply
text. The printlt command is identical to
dolt, with the exception that any output
result is placed immediately after the corn-

Computmg Surveys, Vol 14, No. 3, September 1982

Interactive Edit ing Systems: Par t H • "399

VorksDace

Fq [.l
. i

This is some existing text.AThe care t indicates the
location at which insertion takes place.

(a)

. le existing tex t • Simply type to insert

(b)

Figure lg . Insertion m SmaUtalk-80. (Courtesy Xerox Corporation.)

mand text to which printlt was applied and
this result is automatically selected.

The environment supports a wide range
of tools for the development of Smalltalk-
80 programs. While most are beyond the
scope of this paper, we mention browsers
as an interesting method for traversing
hierarchies. Objects in the Smalltalk-80
language are built hierarchically. For in-
stance, number is a class n a m e that is in
the browser class ca t ego ry numeric ob-
jects. Similarly, the operation of absolute
value is a message selector that is in the
browser numeric-number m e s s a g e cate-
gory arithmetic. To find information about
these quickly, the user simply selects nu-
meric objects in the class category subview
in the browser, which brings up the appro-
priate classes in the class name subview.
The user next selects Number in the class
name view, which brings up the appropriate
method categories in the message category
subview. The user than selects arithmetic,
which brings up all appropriate messages in
the message selector subview. Choosing one
of these message selectors, for example abs,
causes the Smalltalk-80 procedure for that
method to be brought up in the editing view

below (see Figure 21a). The user is free to
edit this procedure using the editing facili-
ties described earlier. Pointing to an item
in a subview further up the hierarchy re-
places the subviews below, and allows the
user to browse through new definitions. For
instance, as in Figure 21b, selecting trun-
cation and round off in the class category
subview causes a new message category
subview to be generated and the message
selector subview to be changed. Subse-
quently, selecting truncated causes a new
procedure to appear in the editing subview.

The browser is important not only for its
convenient techniques for tree traversal,
but for its notion of letting a user browse
through an entire collection of information,
examining and editing it at will. A browser-
like interface would be attractive in other
environments as well, such as that of ex-
amining a file system hierarchy or travers-
ing a hierarchically structured menu sys-
tem. Indeed, the access to local and remote
files is provided in the Smalltalk-80 system
through appropriate browsers in which file
name patterns are specified and file names
are selected for reading, retrieving, or edit-
ing.

Computing Surveys, Vol. 14, No. 3, September 1982

JYW
Highlight

JYW
Highlight

JYW
Highlight

Vorksoace

(a)

I°t !!
f I

This is sor~ne e x i s t i n g t e x t - , -

~ ~ T h e c a r e t i n d i c a t e s t h e l o c a t i o n a t w h i c h

i n s e r t i o n t a k e s p l a c e .

Eorks~ace

(b)
i I

7 : u

~/orks~ace I a g a m
U P i d O

This is s o m e e x i s t b ~ : - v , , , - , -

~ ~ T h e c BrdR~ i c a t e s t h e l o c a t i o n a t w h i c h
i n s e r t i o n t a k e s p la p a s t e

d o l t
printlt
, g C C ~ t
C a Pl,: @l

¥orks]oace

(c)

n Ji
I1

F ! ! :
!

This is s o m e e x i s t i n g t e x t . AThe c a r e t i n d i c a t e s the
l o c a t i o n a t w h i c h i n s e r t i o n t a k e s p l a c e .

(d) uI =e existing tex t . The care t indicates the
location at which insertion takes place:~

(e)

This is s o m e e x i s t i n g tq cop). ' c a r e t i n d i c a t e s t h e
c a j r

l o c a t i o n a t w h i c h i n s e r l ~ l ~ n ~ e s p l a c e . .

d o l t
F, rintlt
5 ,: C ~ F' t
C ,9 DC @I

~ ' o r k s o a c e

(f)

F1

. o

This is some existing tex t , The care t indicates the
location at which insertion takes p l a c e . ~

s e r t c h a r a c t e r ~

Figure 20. Cut and pas te in Smalltalk-80. (a) T h e user selects the text to be moved
(b) T h e user holds down the middle mouse b u t t o n and the pop-up m e n u appears . T h e
user moves the cursor over the cut but ton , which is appropr ia te ly highl ighted. (c)
Releas ing t he m o u s e bu t t on causes the selected text to be removed. (d) T h e use r selects
the re inser t ion poin t with the left m o u s e but ton . (e) T h e use r holds down the middle
m o u s e bu t t on and the pop-up m e n u appears . T h e user moves t he cursor over t he paste
but ton, which is appropr ia te ly highlighted. (f) Releas ing the middle m o u s e bu t t on causes
the previously cu t text to be pas t ed in a t the select ion point. (Cour tesy Xerox Corpo-
ration.)

(a)

System Browser I
I L' | I 1 l l I ;] d ~ ~ LI I I l l ~I;~ ~ ' l i

Collections-Abstrac
Collections-Unorder
Collections-Sequen(
Collections -Text
Collections -Arrayed
Collections -Stream,,
Collections -Support
Graphics -Primit ives

2bs

Interactive Editing Systems: Part II • 401

Fraction
Integer
LargeNegativelnteg
LargePositivelntege

Random
Smalllnteger

n s t a n c e i H ~ ' ~

• w w . m m i m • ~ u m i i m n m m ~ =

r . l =1 [i =] l - n t~ t [~

mathematical funct ions ÷
test ing
truncation and round off /
coercing I !
convert ing Lb,' I
intervals negated
print ing quo:

"Answer a Number that is the absolute value (posit ive magnitude) of the
rece iver . "

self (0
ifTrue: [t se l f negated]
ifFalse: [~sel f]

Z r l J n C a t e (

(b)

I : : ~ ' ~ (;] I ' l I ; i I1[1 lq,F~[; -] |

II k~l I i I i t T ~] d [e,]~ ~ L I I I1] i I ~ id~',li

Collections-Abstrac
Collections-Unorder
Collections-Sequenc
Collections -Text
Collections -Arrayed
Collections -Streams
Collections -Support
Graphics-Primit ives

Fract ion
!Integer
LargeNegativelnte L
LargePositivelntege

Random
Smalllnteger

~stance i e ~ l ~

ar i thmet ic
mathematical funct ions
test ing

coercing
convert ing
intervals
print ing

. t r u n c a t e d
"Answer an i n t ege r n e a r e s t t he r e c e i v e r t o w a r d ze ro . "

• se l f quo: 1

ceiling
floor
rounded
roundTo:

t runcateTo:

Figure 21. Smalltalk-80 browser. (Courtesy Xerox Corporation.)

Computing Surveys, Vol. 14, No. 3, September 1982

402 • N. Meyrowi t z and A. van D a m

2. ISSUES

2.1 The State of Editor Design

While much is written about "the desirable
human interface," most of it {unsupported)
personal opinion, very little experimen-
tation in determining the optimal editor
interface has been done. Typically, editor
design is based not on concrete experimen-
tal results, but on market pressure to design
systems that conform to today's often worn
technology (such as 24 × 80-character ter-
minals, and half-duplex communication to
time-sharing systems). Rather than con-
centrating on desired functionality and ease
of use, the editor designer is then forced to
devote large amounts of time to molding
the user interface to the constraints of par-
ticular classes of limited input and output
devices, producing a far from optimal inter-
face.

In our editing model, the lexical phase of
the command language processor, which
composes tokens from lexemes, is followed
by a syntactic phase, which parses sen-
tences of these atomic tokens. In principle,
we want each token's appearance and
meaning to be unambiguous in all contexts,
and its user image to be unique, easily
remembered, and unobtrusive. For typed
command languages, this is not the case:
the user must correctly spell or abbreviate
the needed tokens, usually from memory,
and the system must be in the appropriate
"command" mode so that command tokens
are accepted as such, and not as literal text.
In control-key interfaces, tokens are com-
posed by overloading the alphanumeric
keyboard with control or prefix keys to
form cryptic combinations.

If tokens are atomic entities unto them-
selves, why do we need a lexical component
to compose them at all? In fact, the token
composition phase is one of the most
treacherous parts of a user interface, and is,
for all practical purposes, unnecessary with
modern technologies. The pure function
key interface, for example, assigns a token
to a particular key; composition of tokens
is not necessary. The flaw in this technique
is that the number of function keys grows
linearly with the number of tokens; a many-
function editor would need a massive, un-
tenable keyboard. One type of interface
that begins to satisfy the criteria of atomic
Computing Surveys, Vol 14, No. 3, September 1982

tokens without incurring the expense of
linear growth of input devices is the menu
interface, more explicitly, one that uses
pop-up menus in temporary viewports and
selection devices like the mouse (see Small-
talk-80 in Section 1). In general, menus
supply composed tokens in a form the user
easily recognizes. No memorization of to-
kens is needed, since the necessary images
appear as needed; the user simply points to
the appropriate image and selects it. The
menu presents to the user only those tokens
that are viable at any particular time, un-
like the function keyboard, which is obliged
to have all tokens at all times to avoid
overloading. The menus are unobtrusive;
when not in use they disappear and only
pop up when called. Another interface sat-
isfying this criterion is the Star interface.
Star eliminates the problem of overloading
commands by having a small set of general-
purpose function keys such as open, move,
and find that provide the majority of tokens
needed, a rich set of icons that serve as
tokens as well, property sheets and option
sheets that provide consistent access to to-
kens as well as a consistent method for
composing new tokens in these sheets, and
finally, window-specific menus containing
selectable command tokens.

Design techniques pose another problem.
Many editors in production today have
been designed b y programmers for pro-
grammers, and have been foisted upon the
general public with little apparent regard
for its needs. Many others appear to have
been designed by nonprogrammers for non-
programmers, and show little evidence of
proper software engineering and language
design principles, such as consistent user
instruction sets and consistent syntax.
Clearly few editors have been designed by
rigorousexamination of reasonable choices
in interface and functionality, and even
fewer are backed by a well-explained con-
ceptual model. Rather, editing design has
been ad hoc, with the editor often becoming
a potpourri of contradictory techniques and
functions, copying and inheriting poor de-
sign from previous systems ("we can always
change it or write another one"). It is time
that editor designers, like programming lan-
gnage designers, commit their conceptual
models and user interfaces to paper before
implementation. This requires extensive

Interactive Editing Systems: Part H • 403

search of the literature, analysis of alter-
natives, and experimental validation of
ideas, all traditional actions in science and
engineering but disappointingly rare in this
field.

2.2 The Modeless Environment

There has been much recent interest in so-
called "modeless environments" [TEsL81].
In fact, the term "modeless" is a bit of a
misnomer since no system can be truly
without modes. What is intended is that
modes be minimized, and that designers
move away from implementing special-pur-
pose context-sensitive states and com-
mands of the type that SOS has. The pri-
mary problem with modes is that they lock
the user into a specialized and typically
highly restricted functionality while in the
mode, preempting the use of the normal set
of functions and thereby severely limiting
flexibility. With current techniques for
command specification there is often a sec-
ond problem, that of assigning different
meanings to user actions as a function of
the mode, as is the case in overloaded key-
boards.

The goal of the modeless editor is to
allow the user to have the flexibility to
travel and to select operands without hav-
ing to commit to a particular function and
the particular options that it allows. In
particular, the postfix form of command
specification in which the operands precede
the command is more conducive to mini-
mizing modes than the prefix form. The
latter is typically used to put the user in a
temporary mode and then prompt for the
operand(s): for example, move puts the user
in a mode that requires the user to specify
the source and then the destination. This
style of guided dialogue, while useful for
novices, is often frustrating and annoyingly
time consuming for experts. Furthermore,
it enforces sequential specification of mul-
tiple operands, without providing the abil-
ity to edit them. Worst, of course, is that
the user is locked into the dialogue, and
cannot leave to browse or to collect infor-
mation with which to complete the com-
mand (see Tesler's painfully amusing ex-
ample in TESL81).

With postfix syntax, the user spends most
time browsing and selecting without corn-

mitring to a particular function. When the
function is specified, it is executed indivisi-
bly and the user is back immediately in the
familiar and universal operand selection
"mode," free to browse, to create other
window/viewport combinations, and to se-
lect and revise selection of operands before
specifying another operation. It would be
possible to allow the user to escape from a
temporary operation mode in prefix inter-
action, but a great deal more status saving
would be required.

In the case in which certain commands
require more than a single operand followed
by an operator, there are several alterna-
tives in a postfix system: (1) split a com-
pound operation into smaller primitive op-
erations that fit the postfix constraint (as
in two single-operand cut and paste com-
mands to replace move); (2) allow multiple
selection of operands, although this be-
comes difficult if the order of specification
is important; (3) allow the use of familiar
editing functions for specifying parameters
and for setting attributes by letting the user
fill out a form and then execute a command
based on this form; and (4) temporarily
switch to infix specification. For an example
of the last alternative, a move command
that takes both a source and a destination
would be specified in the normal way by
selecting first the source and then move.
Then, the system would enter temporary
move mode, ask the user to select the des-
tination, execute the move command, and
return to the familiar operand selection
mode.

The Star system uses the third alterna-
tive above, providing option sheet forms
that do not preempt the user (as shown in
Section 1). To issue the find command, for
example, the user presses the find key, gets
the option sheet, fills in the appropriate
parameters, and then issues a command
that actually does the search. Using the
form metaphor, the user has the ability to
select information from other parts of a
screen as input to the form, and of course,
has the ability to edit the form as well. In
fact, the form can be used to simulate a
dialogue. As the user fills in particular in-
formation or toggles particular attributes,
the system can provide further fields to be
filled in. If the user goes back and edits one
of the fields, all of the field values that

Computing Surveys, Vol. 14, No. 3, September 1982

404 • N. M e y r o w i t z a n d A . v a n D a m

depended upon one particular field value
may be undone. (See the example of Star
query-replace in Section 1.) Not only does
the form metaphor simulate interactive dia-
logues, but it obviates the sequentiality and
noneditability problems of conventional
dialogues. Why then is filling in a form not
considered a "dangerous mode"? In fact,
form filling is a mode of sorts, yet familiar
functions can be used to edit it. Most im-
portantly, the user can leave the context of
the form, issue other commands, and return
without loss of context.

2.3 Instant Editor/Formatters versus Batch
Formatters

The classical separation between form and
content enforced by batch formatting is
becoming increasingly less desirable. Space
and layout constraints often force altera-
tion of content to make text fit. Further-
more, text can be interpreted in a surpris-
ingly different way when typeset than when
it is printed as draft copy on a line printer.
This, of course, is the reason it is typeset at
all. That computer ~cientists, reporters,
copy editors, and even professional printers
have tolerated the system of marked up
alterations and specifications on typewrit-
ten copy or bad facsimiles of a final typeset
galley is a result of economics and not an
implicit confirmation of that system. The
typesetting conventions that make it easier
to understand text in printed form make it
correspondingly easier to understand the
on-line form. For all these purposes and
especially for complex formatting tasks (ta-
bles, equations), interactive formatting is
clearly highly desirable.

Yet, there is a strong camp advocating
continued use of batch formatting systems,
with possible soft-copy review, to allow
maximum flexibility and power, especially
in terms of multiple interpretations of
markup tags (e.g., those that indicate dif-
ferent document styles and output devices).
Allen et al. [ALLE81] advocate the use of
soft-copy output that is later more precisely
formatted by a document compiler. They
contend that the interactive user does not
need a finely formatted document, but sim-
ply one that approximates the final printed
result. The interactive system does not

need to perform expert formatting; this is
left to a batch document compiler. The
underlying notion is that no matter how
accurate interactive formatting systems can
become, those (batch) methods that spend
more time will produce higher quality out-
put.

Still, interactive editor/formatters seem
to have compelling advantages over editors
that have a separate, editable representa-
tion for formatting effects, and certainly
over the separate interactive editing/batch-
compiling method. The ability to experi-
ment with different formats is clearly in-
valuable to both author and transcriber,
providing that there are no serious restric-
tions resulting from this facility. Having to
"program" formatting effects is a mental
burden and requires sophisticated, compli-
cated code all too often; debugging a se-
quence of formatting codes is difficult un-
less a formatted copy of the same document
exists for comparison.

On the other hand, the problem with
some interactive editor/formatters, often
called "what-you-see-is-what-you-get" edi-
tors is that, as Brian Kernighan has re-
marked, "what you see is all you've got."
That is, it is just as uninformative and
unhelpful to give a user a view of a beauti-
fully formatted document with no clues as
to how or why the formatting was effected
as it is to give the user a file laden with
complicated formatting codes without the
rules for what these formatting codes will
do. However, the stripping of formatting
information is not necessary to interac-
tively produce a finely formatted docu-
ment. Referring back to our editor model
in Part I, Section 1, we can interpret the
finished document page as simply one of
many useful views, but not the only one to
which the user should be restricted. In fact,
the property sheet of Star and the margin
tags of E T U D E are simply specially tai-
lored views of the document data structure.
In particular, structure editing can be nicely
done on representations that stress the
structure and suppress formatting infor-
mationmone can rearrange sections in an
outline much more easily if only the section
headings and the first line of each section
are displayed, as in NLS. Also, as Jan
Walker has pointed out [WALK81a], it is

Computing Surveys, Vol 14, No. 3, September 1982

Interactive Editing Systems: Part H • 405

often important to know why a particular
formatting effect is apparent; it is useful to
be able to interrogate and alter the higher
level document object specification that
caused the effect.

The principle of multiple views, one that
has been sorely underutilized in the
hundreds of editors that have been created,
shows that a completely reasonable solu-
tion to satisfy both camps is to provide
whatever views each desires. The batch
community might get a view that allows
them to edit textual descriptions of format-
ting, equations, and tables, while the inter-
active community might be given a view
that allows interactive specification of ta-
bles and equations, as well as of the tradi-
tional simple (and local) formatting effects.
Except for the additional implementation
time, there is no reason to restrict the user
to editing a single interpretation or view;
the multiple-viewing principle needs to be
adopted in systems of the future.

2.4 Structure/Syntax-Directed Editors
versus "Normal" Editors

With the increase in the number of struc-
ture editors, several designers have ex-
plained the rationale behind what seems at
first to be a restrictive concept.

Advocates of structure editors claim that
the specification of target data as well-con-
nected, well-defined units enhances the
user's powers of creativity and composition.
Engelbart, describing a key idea in NLS,
writes:

With the view that the symbols one works with are
supposed to represent a mapping of one's associated
concepts, and further that one's concepts exist in a
"network" of relationships as opposed to the essen-
trolly linear form of actual printed records, it was
deoded that the concept-mampulation aids deriva-
ble from real-tn-ne computer support could be ap-
preciably enhanced by structuring conventions that
would make explicit (for both the user and the
computer) the various types of network relation-
ships among concepts . We have found that in
both offline and online computer aids, the concep-
tion, stipulation, and execution of significant manip-
ulations are made much easier by the structuring
conventions . . . We have found it to be farrly
universal that after an initial period of negative
reaction in reading explicitly structured material,
one comes to prefer it to material printed in the

normal form. [ENGE68, pp. 398-399. Reprinted by
permission AFIPS Press]

Burkhart and Nievergelt [BURS80] con-
cur with the view that while the structuring
seems to be a restriction on the user (es-
pecially the novice), who may not want to
be forced to keep track of the data hierar-
chically, the structuring would ultimately
be performed anyway, "into chapters and
paragraphs, procedures and modules, sub-
pictures and patterns, as the semantics of
the data may suggest."

Using his Cornel] Program Synthesizer
as an example, Teitelbaum claims the value
of the syntax-directed editor to be the fact
that a program being developed is always
structurally sound, even if not complete.
The use of structural templates eliminates
mundane program development tasks. In-
dentation and prettyprinting are automatic,
typographical errors are possible only in
user-typed phrases, not in system-supplied
templates, and such errors can be easily
caught at run time. The templates save
keystrokes, as one typed command may
generate a long template. Place holders in
the templates act as prompts, guiding the
user along the proper path. The user never
needs to get mired in low-level syntactic
detail--the constructs are always concep-
tualized as abstract units, not as streams of
tokens.

On the other side, Woods [WOOD81]
claims that a good "standard" editor can do
95 percent of the program editing that a
syntax-directed editor can, at much smaller
development and computation costs. He
claims that syntax-directed editing con-
strains the user interface, complicating op-
erations that are normally easy in a stand-
ard editor. This is true of some operations
in the available interfaces today, but is not
an intrinsic restriction on future interfaces.
He further claims that the syntax-directed
approach promotes a multitude of editors.
This is only partially true; editor generators
such as the Cornel] Synthesizer Generator,
the GANDALF/ALOE project [NOTS79,
FEILS0, MEDI81], and sds show that editors
for very different targets can have the same
basic editing operations. In fact, the regu-
larity of the structure editor introduces the
ability to produce formal descriptions to
generate special-purpose editors. This par-

Computing Surveys, Vol. 14, No. 3, September 1982

406 • N Meyrowitz and A. van Dam

allels the trend to create parser generators
and compiler generators from formal de-
scriptions. Woods's claim that the represen-
tation and editing of a program as a parse
tree makes an editor harder to implement
is certainly true; yet, again, the syntax-di-
rected editor eliminates the need for a par-
ser completely.

Notkin points out that syntax-directed
editing may change the way that program-
ming is taught and described [NOTK79]. For
instance, "nitty-gritty" details such as
placement of statement delimiters like
semicolons could be eliminated entirely,
since the templates will carry whatever in-
formation is necessary to create a structur-
ally correct program.

Morris and Schwartz [MORR81, p. 29],
among others, contend that syntax-directed
editors are "profligate consumers of com-
puter resources Parsing consumes pro-
cessing power, the parse tree devours stor-
age, and there is no solution but to supply
plenty of each." With high-performance
personal work stations that possess virtual
memory, however, this is no longer a very
important consideration.

We believe that given adequate machine
resources and a well-engineered human in-
terface (perhaps a two-dimensional syntax
with interesting icons), there are many rea-
sons to prefer a syntax-directed approach
to editing. However, we know of no formal
determination of trade-offs between "nor-
mal" editors and structure/syntax-directed
editors. We hope that controlled experi-
ments in this area will result in the neces-
sary data for an objective, informative eval-
uation of the utility of structure/syntax-
directed editors.

3. CONCLUSION

3.1 Desiderata for Today's Editor

As in programming languages and most
computer systems, the "desirability" of the
syntax and semantics associated with an
interactive editor is largely a matter of in-
dividual taste. Often, however, constraints
imposed by old techniques and methodol-
ogies and acceptance of outmoded technol-
ogies (e.g., 300-baud "glass teletypes") force
inferior modes of communication. Without
being unduly constrained by the limitations

Computing Surveys, Vol 14, No 3, September 1982

of old-fashioned technology, we suggest our
design criteria for an ideal interactive editor
within the limits of today's modem tech-
nology. Such an ideal editor should have

• A well-defined, consistent conceptual
model, rather than a seemingly haphaz-
ard organization. The user must be fa-
miliar and comfortable with the
"philosophy" behind the system.

• Documentation, both on-line in a help
facility and off-line in manuals, which
explains the conceptual model as well as
the details of the user interface and the
functions of the system.

* A clear and concise user interface that is
easy to learn and to use and that provides
consistency across different targets such
as text, pictures, and voice. Indeed, a good
test of an efficient and pleasing interface
is that authors will use the system to
compose and revise manuscripts them-
selves. We believe that the author should
not need to involve others (experts or
"wizards" to advise, secretaries to make
changes) in any phases of document cre-
ation or editing.

• An "infinite" undo/redo capability, ena-
bling an author to experiment without
concern of loss or damage to a document.

• Fast response time. No noticeable delay
should exist for all but the most complex
commands.

• Powerful facilities, with few restrictions
and exceptions, to make possible every-
thing that one can do to hard copy with
red pencil, ruler, scissors, and tape.

• Facilities that take advantage of com-
puter capabilities to compensate for hu-
man limitations. Examples of existing fa-
cilities include global substitution of one
pattern for another throughout a docu-
ment, replication of a standard phrase or
paragraph, and automatic renumbering
of sections or references after (or while)
a file is edited. Some of these facilities
may duplicate human processes; others
may be functions that are available only
with the power of a computer.

• User access to shared information and
files under controlled conditions (useful
for a pool of researchers or documentors
working in the same area, or for common
access to dynamically updated manage-
ment information).

Interactive Editing Systems: Part H ° 407

* The ability to mix targets, such as text,
graphics, programs, and forms, with ease.

• T h e ability to have mult iple contexts on
the same display surface, allowing the
user to browse th rough and use a large
assor tment of familiar utilities and docu-
ments in an editing session. T h e editor
should not force the user into a smaller,
less powerful env i ronment in which nor-
mal ly provided sys tem functions are
preempted . In fact, the edi tor should be
par t of a larger, in tegrated envi ronment ,
allowing the user, in the middle of an
editing session, to obta in informat ion by
looking through the file system, to use a
desk calculator utility, or to re t r ieve an
electronic mail message or a piece of da ta
f rom a da tabase system, with t r ansparen t
re turn to the editing context.

• The ability to edit a close facsimile of the
final composition, layout, and typography
of the document wi thout significant im-
pac t on compute r response time.

3.2 Standardization

Several A N S I (American Nat ional Stand-
ards Inst i tute) and ISO (Internat ional Or-
ganization for Standardizat ion) commi t t ees
{ANSI X3J6 and X3V1, I S O / T C 97/SC 5/
E G C L P T) are considering s tandardizat ion
of generic m a r k u p languages, text-process-
ing languages, text formatt ing, text editing,
and text structures. We consider the agree-
m e n t upon a s tandard editor, unfortu-
nately, as unrealistic at this time. W h a t is
needed first is a s tandard reference model
for editing (e.g., one based on the f rame-
work in Pa r t I, Sect ion 1). T h e acceptance
of a t least an inter im reference model on
which to base fur ther research and devel-
opmen t of editors will be helpful for a pro-
ductive interchange of ideas in the editing
field.

Another step toward s tandardizat ion
would be the definition of a set of opera-
tions, called a vir tual editing protocol
(VEP) [MAXE81, WILD82] t ha t acts upon
any medium, such as text, graphics, or
voice. The V E P would not define h o w op-
erat ions are per formed on the medium, but
s imply what generic operat ions can be done
on all media. T h e vir tual edi tor for each
med ium accepts the med ium- independen t

VEP and t rans la tes it to medium-depen-
dent operations.

3.3 The On-Line Community

Jus t over ten years ago, in our first survey
of the field, we concluded

On-line composition and editing of programs, cou-
pled with interactive debugging, has become an
established, cost-effective use of computers. Simi-
larly, minor text editing, such as the correction of
typographical errors in memoranda, is cost-effective,
since only teletypewriter consoles and minimal ser-
vice from the CPU are requited. In contrast, the
imaginative use of computers for on-line composi-
tion and extensive manipulation of free-form text is
still m the early stages of experimentation and user
conversion. This is due partially to the high cost of
CRT terminals that provide the human factors es-
sential to general-purpose editing, partially to the
high cost of system resources and implementation
time for the sophisticated programs required, and
partially to the long time requited to wean users
from traditional off-line hard-copy processes.

Hardware prices are coming down steadily, how-
ever, and as more users switch to on-line thinking,
creating, and manipulating, the use of computers
will become increasingly accepted (and judged cost-
effective), hopefiflly to the same extent that numer-
real and data processing applications are already
considered to be a legitimate use of the computer.
[vAND71b, p. 113]

In the ensuing decade, this hope for the
large-scale introduct ion of text processing
was realized, as a resul t of rapidly decreas-
ing hardware prices, the acceptance of
word-processing sys tems in business, the
introduct ion of personal compute r s in
hundreds of thousands of homes and of-
rices, and the rapid growth of software for
interact ive editing. Regre t tably , m u c h text
processing today is still done by transcrip-
tion f rom hard copy r a the r than by au thors
composing and editing on line. Th is is due
in par t to generally poor interfaces (limited
windows on a lphanumer ic screens and t ran-
script ion-oriented software), and in pa r t to
cultural resistance: typing, unfor tunate ly , is
not a universal skill and is still too often
considered an inappropr ia te act ivi ty for
executives and o ther high-level decision
makers .

For the remainder of the decade and
indeed the century we see an ever-increas-
ing infil tration of editors. In one fo rm or
ano ther they will become a fundamenta l

Computing Surveys, Vol. 14, No. 8, September 1982

408 • N. M e y r o w i t z a n d A . v a n D a m

tool of modern communication in all walks
of life. They will be the key user interface
to the work stations that will be used in the
office, the classroom, the home, and any
other place in which information is entered,
edited, and communicated. They will in-
creasingly be used for do-it-yourself, high-
quality document production with sophis-
ticated typesetting effects, as well as for on-
line browsing, studying, composing, and
communicating.

As terminals and work stations become
widely available and personal (i.e, become
part of one's office or study furniture that,
like a clock radio, are rarely, if ever, turned
off) increasingly more of one's daffy activi-
ties will be accomplished via the computer,
increasingly less via traditional paper and
mechanical communication. There is, in
fact, a kind of "critical mass" phenomenon,
in which a knowledge worker switches from
hard copy to soft copy for most purposes,
given the full-time availability of powerful
local services and a high-performance in-
formation- and resource-sharing network.
At that point, the Bush-Engelbart-Nelson
visions of on-line communities will become
commonplace realities and editors will be
the key interface to all manner of document
preparation and communication. We expect
these editors to be suitable both for stream
and structure editing, and for targets as
diverse as text, pictures, and voice. The
more intelligence the editor has of both the
form and content of the manuscripts, the
more powerful its capabilities will be.

Just as advances in technology in the
past decade have provoked a marked
change in editors, so will advances in inter-
computer communication, speech synthesis
and understanding, and character and
handwriting recognition again change the
way in which editors are implemented.

Imagine the following scenario. Families,
businesses, and individuals will receive a
symbolic computer address much as one
receives a telephone number. A user any-
where in the world with access to this ad-
dress will be able to access the files at that
network address as if they were on that
user's own machine (subject to any confi-
dentiality and security restrictions im-
posed). Interdocument links will be made
easily by including this user address as the

first search criterion in the link address.
Multiperson collaborations will become
economically and technically feasible, and
will make distributed knowledge work an
attractive alternative to physical travel.
Tymshare's AUGMENT and Nelson's
Xanadu 7 system are ongoing projects to
bring these concepts and many other ad-
venturous document organization ideas to
the general public. Nelson provides both an
interesting history of the development of
hypertext systems and a description of the
Xanadu technical and organizational plans
in NELS81.

Each user will have a personal work sta-
tion with a high-resolution (several-
hundred-points-per-linear-inch) bit-map
display packaged in a flat, notebook-style
package easily moved about a desk or car-
ried in a briefcase [LRG76, KAY77,
GRID82]. Interaction may be done in many
ways. A wireless mouse or a touch-sensitive
screen will allow for cursor movement. The
cursor may be used not only for selection
of entities from a menu, but also for drawing
proofreader's symbols on a document or for
entering text into the document. A symbol
recognition program will understand the
drawn symbols and perform the appropri-
ate operation. If a symbol is inscrutable or
ambiguous, the editor may notify the user
using voice output. The user will have the
choice of redrawing the symbol, or alter-
nately, vocally inputting the commands (as
well as, later, even natural-language text).
While currently experimental and unport-
able, the use of eye-tracking schemes
[BOLT80, BOLTS1] may allow the editor to
determine at what (large) area the user is
looking, enabling it to correctly understand
commands such as "delete this paragraph."

Before the turn of the century, the edit-
ing systems are likely to have taken the
place of pen, paper, and typewriter--and
not only for manuscript composition. For
example, banks will have editors with pre-
printed "forms" that the user fills out using
a keyboard or even natural handwriting.
Documents will be interactive, compiled on
demand especially for the requester. They
will be further personalized with on-line

7 X a n a d u is a r e g i s t e r e d t r a d e m a r k .

Computing Surveys, Vol 14, No 3, September 1982

In teract ive Ed i t i ng Sys tems: P a r t H ° 409

annotation. Most important, schoolchildren
will learn to both read and write with the
editor and a nationwide library of on-line
books.

In fact, much of the technology for the
near-term editor of the 1980s is in place.
Among the hardware are bit-mapped per-
sonal work stations, pointing devices, pre-
cision laser printers, and digital photo-
typesetters; among the software are multi-
window text and graphics editors, interac-
tive formatters/typesetters, iconographic
communications, and modeless environ-
ments. The key issue of the 1980s is the
willingness of users and manufacturers to
discard existing techniques for even better-
researched, better-understood, and better-
developed metaphors of user interaction.

In the broadest sense, most actions that
people perform are editing operations of
one form or another. In moving a car from
here to there, making a shopping list, or
playing chess, a person modifies or edits
the state of some entity. In computing, most
of the actions that people perform are ed-
iting operations as well. It is inevitable that
the interactive editor will soon enter a new
generation, a generation in which it forms
the primary interface to the computer.

POSTSCRIPT

The majority of this document was edited
using the bb editor running on a VAX 11/
780 under Berkeley UNIX 4.1. Some parts
of the document were occasionally edited
using the Apollo editor, BBN's PEN editor,
and Brown's CMS Editor. Besides these,
the authors at one time or another have
used ed, ex, vi, EMACS, SOS, the Cornell
Program Synthesizer, FRESS, NLS,
TECO, XEDIT, WordStar, Bravo, and
Star.

Formatting was initially done using the
TROFF package under UNIX. A revised
version was translated to TEX by the use of
keystroke macros in bb and through hand
translation for some parts. No interactive
formatting was available; the authors had
to rely on hard-copy printouts from a Var-
ian electrostatic printer-plotter (approxi-
mately 5 pages/minute) to see the format-
ting that the TEX codes had produced. The
text consists of approximately 100, single-

spaced, 12-inch high pages. With around 50
drafts of the paper over more than two
years, we have regrettably used just under
one mile of paper to produce a final draft,
excluding the reams of paper used in dupli-
cating review copies.

Communication of machine-readable
files and electronic mail was done through
the uucp inter-UNiX telephone network
and through the Arpanet.

ACKNOWLEDGMENTS

The authors would like to thank the numerous people
who have contributed their time and thoughts to the
production of this paper, especially Steve Derose,
Doug Engelbart, Joan Haber, Phil Hutto, Barb Meier,
Steve Reiss, Terry Roberts, Katy Roth, Dawd Smith,
Tim Teltelbaum, Jan Walker, and Nicole Yankelovich.
We also thank the numerous researchers whose sys-
tems we have used as examples, and apologize for any
misrepresentations tha t may appear. A special men-
tion goes to Trina Avery and Debbie van Dam for
their outstanding copy editing and proofreading of
multiple versions of the document, and to Steve Fei-
ner, for his customary incisive comments and technical
questions tha t resulted in more accurate explanations
and descriptions. Janet Incerpi cheerfully answered
our questions about and suffered our tirades over
TE~ Rachel Rutherford's meticulous reading pointed
out hundreds of places where we could clarify points
for the reader; her dehghtful comments on the final
draft were an important barometer as to how well we
were achieving our goals. We gratefully acknowledge
the revmwers, whose detailed critiques guided us to-
ward a completely reorganized, clearer document. Fi-
nally, many thanks go to Adele Goldberg, who pro-
wded us with patience and understanding beyond the
call of duty, immediate turnaround despite our some-
what more sluggish speed, and most important, nu-
merous critical and editorial comments tha t improved
the paper.

This research was sponsored in part by IBM under
a research contract.

ACHU81

ALLE81

REFERENCES

ACHUGBUE, J.O. "On the line breaking
problem in text formatting," in Proc.
ACM SIGPLAN/SIGOA Conf. Text Ma-
nipulation (Portland, Ore., June 8-10,
1981), ACM, New York, 1981, pp. 117-
122.
ALLEN, T., NIX, R., AND PERLIS,
A. "PEN: A hierarchical document edi-
tor," in Proc. ACM SIGPLAN/SIGOA
Conf. Text Manipulatmn (Portland, Ore,
June 8-10, 1981), ACM, New York, 1981,
pp. 74-81.

Computing Surveys~.Vol. 14, No. 3, September 1982

410

APOL82

ARCH81

ARNO80

BARA81

BAUD78

BILO77

BBN73

BOLT80

BOLT81

BOWM81

BROW81

BURK80

BUSH45

CARM69

CATA79

CHAM81

• N. Meyrowi t z and A. van D a m

APOLLO COMPUTER INC. Apollo system
user's guide, Release 4.0, Chelmsford,
Mass., Apr. 1982. COLE69
ARCHER, J. "The design and implemen-
tation of a cooperative program develop-
ment environment," Ph.D. dissertation,
Dep. of Computer Science, Cornell Univ.,
Ithaca, N.Y., Aug. 1981.
ARNOLD, C. R.C. "Screen updating and COME67
cursor movement optumzation: A library
package," Dep. of Electrical Enganeenng CRIS65
and Computer Science, Univ. of Califor-
ma, Berkeley, Calif, Sept. 1980.
BARACH, D. R., TAENZER, D. H., AND
WELLS, R.E. "Design of the PEN video DEUT67
editor display module," in Proc ACM
SIGPLAN/SIGOA Conf. Text Man~pu-
latmn (Portland, Ore., June 8-10, 1981), DIGI78
ACM, New York, 1981, pp. 130-136
BAUDELAIRE, P C. "Draw," in Alto
user's handbook, Xerox Palo Alto Re- DONZ75
search Center, Palo Alto, Calff, Nov.
1978, pp. 97-128.
BILOFSKY, W. "The CRT text editor
NED--Introduction and reference man-
ual," R-2176-ARPA, Rand Corp., Santa
Momca, Calif, Dec. 1977. DoNz80
BOLT BERANEK AND NEWMAN
INC. T ENEX text editor and corrector
manual, Cambridge, Mass., Oct. 1973.
BOLT, R. A. "'Put-that-there': Voice
and gesture at the graphics interface," EMEL81
Comput. Gr. 14, 3 (Aug. 1980), 262-270.
BOLT, R. A. "Gaze-orchestrated dy-
namic windows," Comput. Gr. 15, 3 (Aug. ENGE63
1981), 109-119.
BOWMAN, W., AND FLEGAL, B "Tool-
Box: A Smalltalk illustration system,"
B Y T E 6, 8 (Aug. 1981), 369-376.
BROWN UNIVERSITY COMPUTER CEN- ENGE68
TER User's guide to the Brown CMS
editor, Brown Univ., Providence, R. I.,
Apr 1981.
BURKHART, H., AND NIEVERGELT, J.
"Structure-oriented editors," Rep. 38, ENGE73
Eidgenossische Technische Hochschule
Zurich, Institute fur Informatlk, Zurich,
Switzerland, May 1980.
BUSH, V. "As we may think," The At-
lantw Monthly 176, 1 (July 1945), ENGE78
101-108.
CARMODY, S., GROSS, W., NELSON, T H,
RICE, D E., AND VAN DAM, A. "A hy-
pertext editing system for the /360," in
Pertinent concepts m computer graphws, FAJM73
M. Faiman and J. Nievergelt, Eds., Uni-
versity of Illinois Press, Urbana, Ill., 1969,
pp. 291-330.
CATANO, J. "Poetry and computers: Ex- FEIL80
perimenting with the communal text,"
Comput Hum. 13 (1979), 269-275.
CHAMBERLIN, D. D., KING, J C., SLUTZ,
D. R, TODD, S J. P., AND WADE,
B.W. "JANUS' An interactive system FEIN82
for document composltmn," in Proc ACM
SIGPLAN/SIGOA Conf. Text Man~pu-

latlon (Portland, Ore., June 8-10, 1981),
ACM, New York, 1981, pp. 82-91.
COLEMAN, M. "Text editing on a grapfuc
display device using hand-drawn proof-
reader's symbols," in M. FaLman and J.
Nievergelt (Eds.), Pertment concepts ~n
computer graphics, University of Illinois
Press, Urbana, Ill., 1969, pp. 282-290.
CoM-SHARE, INC. QED reference man-
ual, Ann Arbor, Mich, 1967
CRISMAN, P. A., ED. The compatible
time sharing system: A programmer's
guide, 2nd ed., M.I.T. Press, Cambridge,
Mass., 1965.
DEUTSCH, P., AND LAMPSON, B "An on-
line editor," Commun. ACM 10, 12 (Dec.
1967), 793-799, 803.
DIGITAL EQUIPMENT CORPORATION
VAX-11 text editing reference manual,
Maynard, Mass., Aug. 1978.
DONZEAu-GoUGE, V., HURT, G., KAHN,
G., LANG, B., AND LEVY, J J. "A struc-
ture oriented program editor: k first step
towards computer assmted program-
ming," Tech. Rep., IRIA-LABORIA, Roc-
quencourt, France, Apr 1975.
DONZEAU-GOUGE, V., HURT, G., KAHN,
G., AND LANG, B. "Programming envi-
ronments based on structured editors:
The MENTOR experience," Teeh. Rep.,
INRIA, Rocquencourt, France, May 1980
EMBLEY, D. W., AND NAGY, G
"Behaxaoral aspects of text editors," Corn-
put Surv 13, 1 (Mar. 1981), 33-70
ENGELBART, D.C. "A conceptual frame-
work for the augmentation of man's intel-
lect," in V~stas ~n informatmn handhng,
P. Howerton, Ed., Spartan Books, Wash-
ington, D.C., 1963, pp. 1-29.
ENGELBART, D. C., AND ENGLISH, W. K.
"A research center for augmenting human
intellect," in Proc. Fall Jt. Computer
Conf., vol 33, AFIPS Press, Arlington,
Va., fall 1968, pp. 395-410
ENGELBAET, D. C., WATSON, R. W., AND
NORTON, J .C. "The augmented knowl-
edge workshop," m Proc. Natmnal Com-
puter Conf., vol. 42, AFIPS Press, Arhng-
ton, Va, 1973, pp. 9-21.
ENGELBART, V.C. "Toward integrated,
evolutionary office automation systems,"
in Proc. Jt Engtneermg Management
Conf. (Denver, Colo., Oct. 16-18, 1978),
IEEE, New York, pp. 63-68.
FAJMAN, R. "WYLBUR: An interactive
text edltmg and remote job entry system,"
Commun. ACM 16, 5 (May 1973), 314-
322.
FELLER, P. H., AND MEDINA-MORA,
R. "An incremental programmmg envi-
ronment," Tech. Rep. CMU-CS-80-126,
Dep. of Computer Science, Carnegie-Mel-
lon Univ., Pittsburgh, Pa., Apr. 1980.
FEINER, S., NAGY, S., AND VAN DAM,
A. "An expernnental system for creating
and presenting interactive graphmal doc-

Computing Surveys, Vol. 14, No, 3, September 1982

FINS80

FOLE82

FRAsS0

FRAS82

FURU82

GoLA79

GoLA82

GoLA83

GoLC81

GosLS1

GREES0

GRID82

GSPC79

HABE79

HAMM81

Interactive Editing Systems: Part H , 4 1 1

uments," Trans. Gr. 1, 1 (Jan. 1982),
59-77.
FINSETH, C.A. "A theory and practice
of text editors," Tech. Memo. 165, Labo-
ratory for Computer Science, Massachu-
setts Institute of Technology, Cambridge, HANS71
Mass., June 1980.
FOLEY, J. D., AND VAN DAM, A. Fun-
damentals of mteraetwe computer
graphws, Addison-Wesley, Reading, HEROS0
Mass., 1982.
FRASER, C.W. "A generalized text edi-
tor," Comrnun. ACM 23, 1 (Mar 1980),
27-60. IBM67
FRASER, C W. "Syntax-dtrected editing
of general data structures," in Proe. ACM
SIGPLAN/SIGOA Conf. Text Mantpu- IBM69
latton (Portland, Ore., June 1981), ACM,
New York, 1981, pp. 17-21.
FURUTA, R., SCOFIELD, J., AND SHAW, IBM70
A. "Document formatting systems" Sur-
vey, concepts, and issues," Comput. Surv.
14, 3 (Sept. 1982). IBMS0
GOLDBERG, A., AND ROBSON, D "A
metaphor for user interface design," in
Proc. 12th Hawan Int. Conf. System Sct.
ences, vol. 6, no. 1, 1979, pp. 148-157. IMAG81
GOLDBERG, A. "The Smalltalk-80 sys-
tem- A user grade and reference manual," IRON72
Xerox Palo Alto Research Center, Palo
Alto, Calif., Mar. 1, 1982; SmalltalkSO:
The mteractwe programming enwron- JOHN75
ment, Addison-Wesley, Reading, Mass., to
appear in 1983.
GOLDBERG, A, AND ROBSON, D. JoYS0a
Smalltalk-80: The language and ~ts ~m-
plementat~on, Addison-Wesley, Reading,
Mass., to appear in 1983.
GOLDFARB, C. F "A generalized ap-
proach to document markup," m Proc. JoYS0b
ACM SIGPLAN/SIGOA Conf. Text Ma-
ntpulatmn (Portland, Ore., June 8-10,
1981), ACM, New York, 1981, pp. 68-73.
GOSLING, J. "A redisplay algorithm," in
Proc. ACM SIGPLAN/SIGOA Conf. JOY81
Text Man~pulatmn (Portland, Ore., June
8-10, 1981), ACM, New York, 1981, pp.
123-129.
GREENBERG, B. S. "Multics EMACS:
An experiment in computer interaction,"
in 4th Annu Honeywell Software Conf KAY77
(Mar. 1980).
GRID SYSTEMS CORPORATION. Com-
pass computer, Mountain View, Calif., KELL77
March 1982
GSPC, "Status report of the graphm
standards planning committee," Comput
Gr. 13, 3 (Aug. 1979).
HABERMANN, A.N. "An overview of the
Gandalf Project," Comput Sc~. Res. Rev.
1978-79, Carnegm-Mellon Univ., Pitts-
burgh, Pa., 1979
HAMMER, M., ILSON, R, ANDERSON, T.,
GILBERT, E. J., GOOD, M., NIAMIR, B.,
ROSENSTEIN, L., AND SCHOICHET,
S. "The nnplementation of Etude, an

KERN78a

KERN78b

KERN78C

integrated and interactive document pro-
duction system," in Proe. ACM SIG-
PLAN/SIGOA Conf. Text Manipulation
(Portland, Ore., June 8-10, 1981), ACM,
New York, 1981, pp. 137-146.
HANSEN, W.J. "Creation of hierarchic
text with a computer display," Rep.
ANL7818, Argonne National Laboratory,
Argonne, Ill., July 1971.
HEROT, C., CARLING, R., FRIEDELL, M.,
AND KRAMLICH, D. ~'A prototype spatial
data management system," Comput. Gr.
14, 3 (July 1980), 63-70.
INTERNATIONAL BUSINESS MACHINES
Magnetic tape selectric typewriter, New
York, 1967
INTERNATIONAL BUSINESS MACHINES
A conversational, eontext-dweeted edi-
tor, Cambridge, Mass., July 1969.
INTERNATIONAL BUSINESS MACHINES
System~360 administrative terminal sys-
tem, 1970.
INTERNATIONAL BUSINESS MACHINES
IBM virtual machine/system product:
System product editor user's guide, White
Plains, N. Y., July 1980.
IMAGE DATA PRODUCTS, LTD. The ~m-
age data tablet, Bristol, England, 1981.
IRONS, E. T., AND DaORUP, F. M "A
CRT editing system," Commun. ACM 15,
1 (Jan. 1972), 16-20.
JOHNSON, S. "YACC--Yet another
compiler-compiler," Bell Laboratories,
Murray Hill, N. J., 1975.
JoY, W., AND HORTON, M. "Ex reference
manual--Version 3.1," Dep. of Electrical
Engineering and Computer Science, Univ
of California, Berkeley, Calif., Sept. 16,
1980.
JoY, W., AND HORTON, M. "An intro-
duction to display editing with Vi," Dep.
of Electrical Engineering and Computer
Science, Univ. of California, Berkeley,
Calif., Sept. 16, 1980.
JoY, W., AND HORTON, M. "TERM-
CAP," in UNIX programmer's manual,
7th ed., Berkeley Release 4.1, Dep. of
Electrical Engineering and Computer Sci-
ence, Univ. of Califorma, Berkeley Cahf,
June, 1981.
KAY, A., AND GOLDBERG, A. "Personal
dynamic media," Computer 10, 3 (Mar.
1977), 31-43.
KELLY, J. "A guide to NED' A new on-
line computer editor," Rep. R-2000-
ARPA, Rand Corp., Santa Monica, Calff,
July 1977.
KERNIGHAN, B.W. "A tutorialintroduc-
tion to the UNIX echtor," Bell Laborato-
lies, Murray Hill, N. J., Sept. 28, 1978.
KERNIGHAN, B. W. "Advanced editing
on UNIX," Bell Laboratories, Murray
Hill, N. J , Aug. 4, 1978.
KERNIGHAN, B. W,, AND RITCHIE, D. M.
The C programming language, Prentice-
Hall, Englewood Cliffs, N. J., 1978.

Computing Surveys, Vol. 14, No. 3, September 1982

412

KEEN82

KNUT79

LAMP78

LANT79

LANT80

LESK81

LRG76

M~xE81

McCA67

MEDI81

MEYR81

MICE81

MONT82

MORRS1

N. Meyrowitz and A. van Dam

KERNIGHAN, B. W., AND LESE, M.E. In NELS67
Document preparation systems, J. Niev-
ergelt, G. Coray, J. Nicoud, and A. Shaw,
Eds., North-Holland Publ., Amsterdam
and New York, 1982.
KNUTH, D.E. TEX and metafont= New NELS74
dwecaons in typesetting, Digital Press,
Bedford, Mass., Dec. 1979.
LAMPSON, B. W. "Bravo manual," in NELS81
Alto user's handbook, Xerox Palo Alto
Research Center, Palo Alto, Calif., Nov NEWM78
1978, pp. 31-62.
LANTZ, K., AND RASHID, R. "Virtual ter-
minal management in a multiple process
environment,'j' in Proc. 7th Symp. Oper. NEWM79
ating Systems Principles (Pacific Grove,
Calif., Dec. 10-12, 1979), ACM, New York,
1979, pp. 86-95. NORM81
LANTZ, K "Uniform interfaces for dis-
tributed systems," Computer Science
Dep., Univ. of Rochester, Rochester, NOTE79
N. Y, May 1980.
LESK, M. "Another view," Datamation
27, 12 {Nov. 1981), 146.
LEARNING RESEARCH GROUP "Personal
dynamic media," Tech. Rep. SSL-76-1, PRUS79
Xerox Palo Alto Research Center, Palo
Alto, Calif., Mar. 1976.
MAXEMCHUCK, N. F., AND WILDER, H.A. REIDS0a
"Virtual editing: I. The concept," m Proc.
2nd Int. Workshop on Office Information
Systems (Couvent Royal de St. Maximin,
Oct. 13-15), Elsevier North-Holland, New
York, 1982, pp. 161-172. REID80b
MCCARTHY, J., Dow, B., PELDMAN, G.,
AND ALLEN, J. "THOR--A display
based timesharing system," m Proc.
Spring Jr. Computer Conf vol. 30, AFIPS
Press, Arlington, Va., Spring 1967, pp. REIDS0C
623-633.
MEDINA-MoRA, R., AND NOTKIN, D. S.
"ALOE users' and Lmplemantor's guide," REIS81
Tech. Rep., Dep. of Computer Scmnce,
Carnegie-Mellon Umv., Pittsburgh, Pa,
Nov. 1981.
MEYROWITZ, N., AND MOSER, M. RICE71
"BRUWIN: An adaptable deslgn strategy
for window manager/virtual ternnnal sys-
tems," in Proc. 8th Symp. Operating Sys-
tems Principles (Pacific Grove, Calif.,
Dec. 14-16, 1981), ACM, New York, 1981,
pp. 180-189. RoBG79
MICROPKo WordStar user's guide,
MicroPro International Corp., San Ra-
fael, Cahf., 1981.
MONTGOMERY, E.B. "Bringing manual
input into the 20th Century: New key-
board concepts," IEEE Comput. 15, 3 SKY J81
(Mar. 1982), 11-18.
MORRIS, J. M., AND SCHWARTZ, M.D. SEYP79
"The design of a language-directed editor
for block-structured languages," in Proc.
ACM SIGPLAN/SIGOA Conf. Text Ma-
mpulation (Portland, Ore., June 8-10, SMIT82
1981), ACM, New York, 1981, pp. 28-33.

NELSON, T. H. "Getting It out of our
system," In lnformatton retrieval: A crit-
ical review, G. Schecter, Ed., Thompson
Book Co., Washington, D. C., 1967, pp.
191-210.
NELSON, T. H. Computer hb/dream
machmes, Hugo's Book Service, Chicago,
Ill., 1974.
NELSON, T.H. Literary machines, T. H.
Nelson, Swarthmore, Pa., 1981.
NEWMAN, W. M. "Markup," in Alto
user's handbook, Xerox Palo Alto Re-
search Center, Palo Alto, Cahf., Nov.
1978, pp. 85-96.
NEWMAN, W., AND SPROULL, R. Prin-
ciples of interactwe computer graphws,
McGraw-Hffi, New York, 1979
NORMAN, D A. "The trouble with
UNIX," Datamatmn 27, 12 (Nov. 1981),
139-150.
NOTKIN, D S., AND HABERMANN, A. N.
"Software development envlronmant is-
sues as related to Ada," Dep. of Computer
Science, Carnegie-Mellon Umv., Pitts-
burgh, Pa., 1979.
PRUSKY, J. N. FRESS resource man-
ual, Dep. of Computer Science, Brown
Univ., Providence, R. I., 1979.
REID, B K. "A high-level approach to
computer document formatting," in Proc
7th Annu. ACM Syrup. Programming
Languages (Jan. 1980), ACM, New York,
1980, pp. 24-30.
REID, B.K. "Scribe: A document speci-
fication language and its compiler," Ph.D.
dissertation, Dep. of Computer Science,
Carnegie-Mellon Univ., Pittsburgh, Pa.,
1980.
REID, B. K., AND WALKER, J.H. Scribe
user's manual, 3rd ed., Unilogic, Ltd.,
Pittsburgh, Pa., 1980.
REISS, S. P., LUSTIG, M., AND MEDVENE,
L. bb user's guide, Dep. of Computer
Science, Brown Univ., Providence, R. I.,
1981.
RICE, D. S., AND VAN DAM, A "An in-
troduction to information structures and
paging considerations for on-line text ed-
iting systems," in Advances m informa-
tmn systems science, J. Tou, Ed., Plenum
Press, New York, 1971, pp. 93-159
ROBERTSON, G, MCCRACKEN, D., AND
NEWELL, A. "The ZOG approach to
man-machne commumcation," Tech.
Rep. CMU-CS-79-148, Dep. of Computer
Science, Carnegie-Mellon Univ., Pitts-
burgh, Pa., Oct. 1979.
SEYBOLD, J. "Xernx's 'Star,' " Seybold
Rep. 10, 16 (Apr. 27, 1981).
SEYBOLD, P. B. "The CPT 8000 and
6000 word processing systems," Seybold
Rep. Word Process. 2, 1 (Feb. 1979), 1-
16.
SMITH, D. C., IRBY, C., KIMBALL, R., VER°
PLANE, B., AND HARSLEM, E. "De-

Computing Surveys, Vol 14, No 3, September 1982

STALS0

STAL81

SUTH63

SWIN74

SYMBSI

TEIT81a

TEIT81b

TEIW77

TESL81

TILB76

TOLL65

VAND71a

VAND71b

VIP69

WALK81a

WALK81b

Interactive Edit ing Systems: Par t H * 413

signing the Star user interface," BYTE 7, WILC76
4 (Apr. 1982), 242-282.
STALLMAN, R.M. "EMACS manual for
TWENEX users," AI Memo. 556, Artifi-
cial Intelligence Laboratory, Massachu-
setts Institute of Technology, Cambridge, WILD82
Mass., Aug. 17, 1980.
STALLMAN, R.M. "EMACS: The exten-
slble, customizable self-documenting dis-
play echtor," in Proc. ACM SIGPLAN/
SIGOA Conf. Text Manipulatmn (Port-
land, Ore., June 8-10, 1981), ACM, New WOOD81
York, 1981, pp. 147-156.
SUTHERLAND, I.E. "THOR--A display
based timesharing system," in Proc.
Spring Jt. Computer Conf., vol. 23, Spar-
tan, Baltimore, 1963, p. 329. XERO82
SWINEHART, D. "Copilot: A Multiple
process approach to interactive program-
ming systems," Ph.D. dissertation, Stan-
ford Artificml Intelligence Laboratory
Memo. AIM-230, Stanford Univ., Palo
Alto, Calif., July 1974. ALBE79
SYMBOLICS, INC. Symbohcs software,
Woodland Hills, Calif., 1981.
TEITELBAUM, T., AND REPS, T. "The
Cornell program synthesizer- A syntax-di-
rected programming environment," Com-
mun. ACM24, 9 (Sept. 1981), 563-573. BEAC81
TEITELBAUM, T., REPS, T, AND HOR-
WlTZ, S. "The why and wherefore of the
Cornell program synthesizer," in Proc.
ACM SIGPLAN/SIGOA Conf. Text Ma-
nipulation (Portland, Ore., June 1981),
ACM, New York, 1981, pp. 8-16.
TEITELMAN, W. "A display oriented
programmer's assistant," Rep. CSL-77-3, BORX79
Xerox Palo Alto Research Center, Palo
Alto, Calif., Mar. 1977.
TESLER, L. "The Smalltalk environ-
ment," BYTE, 6, 8 (Aug. 1981), 90-147. BORK81
TILBROOK, D. "A newspaper page lay-
out system," M. Sc. thesis, Dep. of Com-
puter Science, University of Toronto, To-
ronto, Canada, 1976.
TOLLIVER, B. "TVEDIT," Stanford BURK81
Time-Sharing Memo. No. 32, Dep. of
Computer Science, Stanford Univ., Palo
Alto, Calif., 1965.
VAN DAM, A. FRESS (file retrwval and
editing system), Text Systems, Barnng-
ton, R. I., July 1971.
VAN DAM, A., AND RICE, D.E. "On-line BUSH67
text echtmg: A survey," Comput. Surv. 3,
3 (Sept. 1971), 93-114.
VIP SYSTEMS VIPcom user's guide, CARD76
Washington, D. C., 1968.
WALKER, J. H. Personal commumca-
tmn, July 1981
WALKER, J . H . "The document editor:
A supporting enwronment for preparing
technical documents," in Proc ACMSIG-
PLAN/SIGOA Symp. Text Man~pula-
tmn (Portland, Ore., June 8-10, 1981),
ACM, New York, 1981, pp. 44-50

WILCOX, T. R., DAvis, A. M., ANl) TIN-
DALL, M.H. "The design and implemen-
tation of a table-driven, interactive diag-
nostic programming system," Commun.
ACM 19, 11 (Nov. 1976), 609-616
WILDER, H. A., AND MAXEMCHUCK,
N.F. "Virtual editing: II. The user in-
terface," in Proc. SIGOA Conf. Offwe Au.
tomatmn Systems (Philadelphia, Pa.,
June 21-23, 1982), ACM, New York, 1982,
pp. 41-46.
WooDs, S.R. "Z--The 95 percent pro-
gram editor," in Proc. ACM SIGPLAN/
SIGOA Conf. Text Manipulation (Port-
land, Ore., June 8-10, 1981), ACM, New
York, 1981, pp. 1-7.
XEROX CORPORATION. 8010 Star mfor.
mation system reference guide, Dallas,
Tex., 1982.

CARD78a

CARD78b

BIBLIOGRAPHY

ALBERGA, C. N., BROWN, A. L., LEEMAN,
G. B. JR., MIKELSONS, M., AND WEGMAN,
M . N . "A program development tool,"
Tech. Rep. RC 7859, IBM Thomas J.
Watson Research Center, Yorktown
Heights, N.Y., Sept. 1979.
BEACH, R. J., BEATTY, J. C., BOOTH,
K. S., AND WHITE, A. R. "Documen-
tation graphics at the University of Wa-
terloo," in Int. Conf. Research Trends m
Document Preparation Systems (Lau-
sanne, Switzerland, Feb. 27-28, 1981),
Swiss Institutes of Technology, Lausanne
and Zurich, pp. 123-125.
BORK, A. "Textual taxonomy," Educa-
tional Technology Center, Physics Dep.,
Univ. of California, Irvine, Calif., Oct. 4,
1979.
BORKIN, S. A., AND PRAGER, J. M.
"Some issues in the design of an editor-
formatter for structured documents,"
Tech. Rep., IBM Cambridge Sc~entLfic
Center, Cambridge, Mass., Sept. 1981.
BURKHART, H., AND STELOVSKY,
J. "Towards an integration of editors,"
in Int. Conf. Research Trends in Docu-
ment Preparation Systems (Lausanne,
Switzerland, Feb. 27-28, 1981), Swiss In-
stitutes of Technology, Lausanne and Zu-
rich, pp. 9-11.
BUSH, V. "Memex revisted," in Science
Is Not Enough, V. Bush, Ed., William
Morrow, 1967, pp. 75-101.
CARD, S. K., MORAN, P., AND NEWELL,
A. "The manuscript echting task: A rou-
tine cognitive skill," Rep. SSL-76-8, Xerox
Palo Alto Research Center, 3333 Coyote
Hill Road, Palo Alto, Calif., Dec. 1976.
CARD, S .K. "Studies in the psychology
of computer text editing," Rep SSL-78-1,
Xerox Palo Alto Research Center, Palo
Alto, Calif., Aug. 1978
CARD, S. K., ENGLISH, W. K., AND BURR,

Computing Surveys, Vol. 14, No. 3, September 1982

414

CARD~0

CHER81

COUL76

DZID78

ELLIS0

EMBL78

ENGL67

FEIN81a

FEIN81b

FINS82

FRAS79

FREI78

GoLAS0

N. Meyrowitz and A. van Dam

B . J . "Evaluation of mouse, rate-con-
trolled isometric joystick, step keys, and
text keys for text selection on a CRT,"
Ergonomics 21 (1978), 601-613.
CARD, S. K., MORAN, P. T., AND NEWELL,
A. "The keystroke-level model for user
performance time with mteractlve sys-
tems," Commun ACM 23, 7 (July 1980),
396-410.
CHERRY, L. "Computer aids for
writers," in Proc. ACM SIGPLAN/
SIGOA Conf. Text Manipulation (Port- HANS68
land, Ore, June 8-10, 1981), ACM, New
York, 1981, pp. 61-67.
COULOURIS, G. F., DURHAM, I., HUTCH-
INSON, J. R., PATEL, M. H., REEVES, T,
AND WINDERBANK, D. G. "The design HAYE81
and impleme~ntatmn of an interactive doc-
ument editor," Soflw. Pract. Exper. 6, 2
(May 1976), 271-279.
DZIDA, W., HERDA, S., AND ITZFELDT, HAZE80
W.D. "User-perceived quality of inter-
active systems," IEEE Trans. Softw Eng.
SE-4, 4 (July 1978), 270-276. JONG82
ELLIS, C., AND NUTT, G "Office infor-
mation systems and computer science,"
Comput. Surveys 12, 1 (Mar. 1980), 27-60. KERN75
EMBLEY, D W., LAN, M. T., LEINBAUGH,
D. W., AND NAOY, G. "A procedure for
predicting program editor performance
from the user's point of view," Int J. KERN81
Man-Mach. Stud. 10, 6 (Nov. 1978), 639-
650.
ENGLISH, W. K., ENGELBART, D. C., AND
BERMAN, M.L. "Dmplay-selection tech-
niques for text mampulation," IEEE LzDES0
Trans. Hum Factors Electron. HFE-8, 1
(Mar 1967), 5-15.
FEINER, S, NAGY, S., AND VAN DAM,
A. "An integrated system for creating
and presenting complex computer-based
documents," Comput. Gr. 15, 3 (Aug. LEDG80
1981), 181-189.
FEINER, S., NAGY, S., AND VAN DAM,
A. "Online documents combining pro- LEEK76
tures and text," m Proc. Int. Conf. Re-
search and Trends m Document Prepa-
ration Systems (Lausanne, Switzerland, MACD80
Feb 27-28, 1981), Swms Institutes of
Technology, Lausanne and Zurich, pp.
1--4.
FINSETH, C.A. "Managing words' What
capabilities should you have with a text MACL77
editor?," BYTE 7, 4 (Apr. 1982), 242-282.
FRASER, C. W. "A compact, portable
CRT-based text editor," Softw. Pract. Ex-
per. 9, 2 (Feb 1979), 121-125. MIKE81
FREI, H. P., WELLER, D. L., AND WIL-
LIAMS, R "A graphics-based program-
ming-support system," Comput. Gr. 12, 3
(Aug. 1978), 43-49
GOLDBERG, A., AND ROBSON, D.
"Sharing problems: Personal computers
as interpersonal tools," Keynote Address
at the SIGSMALL/PC Syrup. (Palo Alto,

GooM81

GooN75

MUKH80

Calif., Sept. 1980), Xerox Palo Alto Re-
search Center, Palo Alto, Calif., 1980.
GOOD, M. "Etude and the folklore of
user interface design," in Proc. ACMSIG-
PLAN/S[GOA Symp. Text Man~pula.
tion (Portland, Ore., June 8-10, 1981),
ACM, New York, 1981, pp. 34--43.
GOODWIN, N.C. "Cursor positioning on
an electronic display using lightpen, light-
gun or keyboard for three basic tasks,"
Hum. Factors 17, 3 (June 1975), 289-295.
HANSEN, W . J . "User engineering prin-
ciples for interactive systems," m Proc.
fall Jt. Computer Conf., vol. 39, AFIPS
Press, Arhngton, Va., fall 1968, pp. 395-
410.
HAYES, P., BALL, E., AND REDDY,
R. "Breaking the man-machine com-
munication barrier," Computer 14, 3
(Mar. 1981), 19-30.
HAZEL, P. "Development of the ZED
text editor," Softw Pract. Exper. 10, 1
(Jan. 1980), 57-76
JON6, S. "Designing a text editor? The
user comes first," B Y T E 7, 4 (Apr 1982),
284-300.
KERNIGHAN, B. W., AND CHERRY, L. L.
"A system for typesetting mathematms,"
Commun. ACM 18, 3 (Mar. 1975), 182-
193.
KERNIGHAN, B. W. "PIC--A language
for typesetting graphics," in Proc. ACM
SIGPLAN/SIGOA Conf. Text Manipu-
lation (Portland, Ore., June 8-10, 1981),
ACM, New York, 1981, pp. 92-98.
LEDERMAN, A. "An abstracted bibliog-
raphy on programming environments,"
Dep. of Electrical Engineenng and Com-
puter Science, Massachusetts Institute of
Technology, Cambridge, Mass, June
1980.
LEDGARD, H. "The natural language of
interactive systems," Commun. ACM 23,
10 (Oct. 1980), 556-563.
LESK, M. "TBL--A program to format
tables," Tech. Rep. 49, Bell Laboratomes,
Murray Hill, N. J., 1976.
MACDONALD, N. H, FRASE, L. T., AND
KEENAN, S. A. "Writer's workbench:
Computer programs for text editing and
assessment," Bell Laboratories, Pmcata-
way, N. J., 1980.
MACLEOD, I.A. "Design and implemen-
tation of a display-oriented text editor,"
Softw. Pract. Exper. 7, 6 (Nov. 1977), 771-
778.
MIKELSONS, M. "Prettyprmting m an
interactive programming environment,"
in Proc ACM SIGPLAN/SIGOA Conf.
Text Manipulation (Portland, Ore., June
8-10, 1981), ACM, New York, 1981, pp.
108-116.
MUKHOPADHYAY, A. "A proposal for a
hardware text processor," in Papers 5th
Workshop on Computer Architecture for

Computing Surveys, Vol. 14, No 3, September 1982

Interactive Editing Systems: Part H • 415

NASS73

NBI81

OSSA76

PETE80

REID81

RoBT79

SAND78

SEYP78

SNEE78

Non-Numerw Processing (Pacific Grove,
Calif., Mar. 11-14, 1980), ACM, New
York, pp. 57-61 STRO81
NASSI, I., AND SHNEIDERMAN, B.
"Flowchart techniques for structured pro-
gramming," ACM SIGPLAN Not. 8, 8
(Aug. 1973), 12-26.
NBI, INc. System3OOOoperator'sgu~de,
Boulder, Colo., Mar. 1981. SUFRS1
OSSANNA, J. "NROFF/TROFF user's
manual," Tech. Rep. 54, Bell Laborato-
ries, Murray Hill, N. J., 1976.
PETERSON, J. L. "Computer programs
for detecting and correcting spelling er- TESL79
rors," Commun. ACM 23, 12 (Dec 1980).
REID, B. K., AND HANSON, D. "An an-
notated bibliography of background ma- THIM78
terial on text mampulation," in Proc.
ACM SIGPLAN/SIGOA Conf. Text Ma-
n~pulatmn (Portland, Ore., June 8-10,
1981), ACM, New York, 1981, pp. 157- TURB81
160.
ROBERTS, T. "Evaluation of computer
text editors," Rep. SSL-79-9, Xerox Palo
Alto Research Center, Palo Alto, Calif.,
Nov. 1979.
SANDEWALL, E. "Programming in an in- VANW81
teractive environment: The LISP experi-
ence," ACM Comput. Surv 10, 1 (Mar.
1978), 35-71.
SEYBOLD, P B. "Tymshare's augment.
Heralding a new era," Seybold Rep. Word WHIT81
Process. 1, 9 (Oct. 1978), 1-16.
SNEERINOER, J. "User-interface design
for text editing: A case study," Softw.

Pract. Exper. 8, 5 (Sept.-Oct. 1978), 544-
557.
STROMFORS, O., AND JONESJO, L. "The
implementation and experiences of a
structure-oriented text editor," m Proc.
ACM SIGPLAN/SIGOA Conf. Text Ma-
nipulatmn (Portland, Ore., June 8-10,
1981), ACM, New York, 1981, pp. 22-27.
SUFRIN, B. "Formal specification of a
display editor," Tech. Monogr. PRG-21,
Programming Research Group, Comput-
ing Laboratory, Oxford University, June
1981.
TESLER, L. "Home text editing: A tuto-
rial," Xerox Palo Alto Research Center,
Palo Alto, Calif., 1979.
THIMBLEBY, H. "Character oriented
text editing," Computer Systems Labora-
tory, Queen Mary College, London Uni-
versity, London, England, Nov. 1978.
TURBA, T.N. "Checking for spelling and
typographical errors in computer-based
text," in Proe. ACM SIGPLAN/SIGOA
Conf. Text Manipulation (Portland, Ore.,
June 8-10, 1981), ACM, New York, 1981,
pp. 51-60.
VAN WYE, C.J . "A graphics typesetting
language," in Proc. ACM SIGPLAN/
SIGOA Conf. Text Manipulation (Port-
land, Ore., June 8-10, 1981), ACM, New
York, 1981, pp. 99-107.
WHITE, A.R. "Pic--A C-based illustra-
tion language," Dep. of Computer Sci-
ence, Univ of Waterloo, Waterloo, On-
tario, Canada, 1981.

Received August 1981; final revts~on accepted June 1982.

Computing Surveys, Vol. 14, No. 3~September 1982

