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Abstract. The design and implementation of a continuous media player for Unix work-
stations is described. The player can play synchronized digital video and audio read
from a file server. The system architecture and results of preliminary performance ex-
periments are presented.

1. Introduction

Our goal is to develop a portable user interface and continuous media support library
that can be used to implement a variety of multimedia applications (e.g., hypermedia
. systems, video conferencing, multimedia presentation systems, etc.). A key component

of these applications is a continuous media (CM) player that can play scripts composed
of one or more synchronized data streams. Example data streams are: digitized video or
audio, animation sequences, image sequences, and text.

The initial application we are implementing to test our abstractions is a video
browser that allows a user to play high quality videos stored in a large database on a
shared file server. Figure 1 shows a screen dump of the browser interface. The window
on the left lists videos in the database, and the window on the right plays the video. The
VCR controls below the video window allow the user to play the video forwards or
backwards at several speeds or to access a particular position using the thumb in the
slider.

The player runs on a Sun Sparcstation with a Parallax XVIDEO board which has a
JPEG CODEC chip. The video stream is stored as a sequence of JPEG frames, and the
audio stream is stored in a standard Sparc audio file.

The system has a flexible architecture that will allow other data representations and
decompression technologies to be added. For example, we have implemented an MPEG
video decoder in software that will be added to the system, and we are anxiously await-
ing compression hardware for other Unix workstations.

A special-purpose datagram protocol was implemented to send CM packets from
the file server to the client workstation. The current implementation runs on UDP, but it
was designed to use the real-time IP protocol being developed by another research
group at Berkeley [18]. We have run the player on a conventional ethemnet and FDDI
network.

The remainder of the paper describes the design and implementation of the player,
the results of some initial performance experiments, and related work.

* This research was supported by the National Science Foundation (Grant MIP-9014940) and the
Semiconductor Research Corporation with a matching grant from the State of California’s MI-
CRO program. Additonal support was provided by Fujitsu America and Hewleti-Packard.
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Figure 1. CM player user interface.

2. System Architecture

Figure 2 shows the architecture of the player. The playback application controls the
user interface and the CM Server process. The application is responsible for creating
windows, responding to input events, and sending commands to the CM Server.

The CM Server receives CM data from the CM Source and dispatches it to the ap-
propriate output device (e.g., the DSP chip to play audio or the video window to play
video). The CM Server has a time-ordered play queue o synchronize the playing of au-
dio and video packets. It communicates with CM Source processes on the file server
through interprocess communication channels, and it communicates with the X server
through shared memory. The system clocks on the different systems are synchronized
by the Network Time Protocol (NTP) [11] so that actions in the CM Server and Sources
can be synchronized.

The CM Server will eventually be merged with the X server as in the ACME Server
[11, but for now it is convenient to separate the functionality for several reasons. First,
it makes the CM Server easy to change. Second., it reduces maintenance when a new X
server is delivered since we do not have to retrofit our changes. Lastly, source code for
the X server is not required which is important because we want to use commercial
video boards. Commercial video boards usually include a modified X server for which
source code is often difficult to obtain.

The CM Source processes read CM data and send it to the CM Server. CM data is
sent in 8k packets on a UDP connection. We have implemented retransmission and
adaptive flow control to improve reliability, throughput. and playback quality. Eventu-
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Figure 2. CP Player Architecture.

ally, we will implement a single CM Source server process rather than using a separate
process for each stream.

Meta data about scripts is stored in a database. The raw CM data is stored in binary
large object (biob) files. The meta data is separated from the raw CM data so that differ-
ent scripts can include overlapping clips without having to make a copy of the CM data.

The remainder of this section describes the CM data model, the CM server abstrac-
tions. the CM network protocol, and their implementation.

2.1 CM Data Model

Figure 3 shows a logical picture of a script. Each stream is composed of a sequence
of clips that represent a sequence of frames. A frame is a playable unit such as an image,
a frame of video, or a block of audio samples. A clip is a contiguous sequence of frames
stored in a blob file. The script has a logical time system (LTS) to which frames are syn-
chronized.

CM data is stored in files and the meta data that represents the script is stored in a
separate database. The database design for the meta data is shown in figure 4. The
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Figure 3. Script representation.




type cmtype: (AUDIO, VIDEO, ANIMATION, IMAGE, UNKNOWN)
type cmformat: (JPEGPLX, SPARCAUDIO, GIF, MPEGPARIS, ...)

class SCRIPT(scriptOID: cid, name: string, OWner, string, source:string,
duration: 1tst imeperiod, micon: image, comment: string)

class STREAM(streamOID: oid, name: st ring, type: cmtype, script: oid)

class STREAMREP(format: cmformat, maxBufferSize: integer,
maxFrameRate: i nteger, minFrameRate: integer, imageWidth: 1nteger,
imageHeight: integer, imageDepth: integer, audioSampleRate: 1nceger,
clipSeq: o1d)

class CLIPSEQ(clipSeqOID: oid, seqNum: integer, blob: oid, startFrame:
integer, endFrame: 1nteger, duration: I tst imeperiod)

class BLOB(blobOID: 0id, name: string, numFrames: integer, type: cmtype,
format: cmformat)

class VIDEOBLOB(frameRate: i nteger, width: integer, height: 1nteger,
depth:1nteger, maxFrameSize: integer) inherits from (BLOB)

class JPEGPLXBLOB(qFactor: integer, timecode[]: ¢t imecode, startTime[]:
1tst ime, endTime[]: 1t st 1me, framef]: byteoffset)
inherits from (VIDEOBLOB)

class MPEGPARISBLOB(startTime[]: 1cst1me, forwardEndTime([]: icstime,
reverseEndTime[]: It st ime) inherits from (VIDEOBLOB)

class AUDIOBLOB(sampleRate: 1nceger) inherits from (BLOB)
class SPARCAUDIOBLOB() inherits from (AUDIOBLOB)

class GIFBLOB(width: integer, height: integer, depth: integer,
colorTable[]:color) inherits from (BLOB)

Figure 4. Database design for script meta data.

schema is specified using an object-oriented data model with inheritance, object identi-
fiers. and user defined attribute types including arrays. Several points should be noted
about the design. First, a stream may have several representations (c.f. STREAMREP)
so a script can be played on workstations with different compression hardware and out-
put devices.

Second, time is represented either by a timecode (i.e.. hours:mins:secs:frame) or an
LTS time. Script and clip durations are stored so that applications can support a slider
and operations o seek to a particular time. Video clips include a start and end time for
each frame to support playing forwards and backwards using the mapping from logical
time (i.e.. LTS time) to system time described below. MPEG clips need both a forward
and reverse end time 1o recover synchronization on dropped frames.

Third. an instance of a BLOB class such as JPEGPLXBLOB. SPARCAUDIOBLOB.
and GIFBLOB represents a blob file that contains data in that format. We expect this
meta data 10 be replicated in the blob file. The design accommodates the addition of new
file types such as Apple’s Quicktime files [14].



Lastly, we expect blob files to move between different levels of a storage hierarchy
that will include local disks at a workstation, large video file servers, and near-line ter-
tiary stores such as an optical disk or a robot tape jukebox. The mapping from the name
of a blob file to a location on which it resides will be handled by a dynamic name server.

2.2 CM Server Abstractions

The CM Server is an event driven process that uses a time-ordered priority queue.
Events come from many sources including system clock events, network events (e.g..
receive packet or remote procedure calls), X events, and idle events (e.g., software de-
compression processing). The Server receives packets from the CM source, performs re-
quired local processing (e.g., assembles data from several packets into playable units,
requests retransmission of missing packets, etc.), calculates the system time at which
frames should be played, and queues the play request. Every queued play request has a
time period during which it must be executed that is represented by an earliest start time
and a latest start time.

At some later time, provided the Server was able to process the queued play request
within the designated time period, the request is executed. Examples of play requests are
“put image in video window " or “‘send packet to audio device.” If the Server gets behind.,
the late request is dropped.

An impontant feature of the system is that audio frames will be played at the right
time regardless of whether the synchronized video frames are played because audio play
requests are given high priority. Consequently, audio plays smoothly even when video
frames are being dropped.

The mapping from logical time to system time is

LTS = Speed x (SystemClock — Starr)
where Speed is the rate at which the script is being played and Start is the SystemClock

time for LTS equal zero. The advantage of this abstraction is that conventional VCR con-
trols can be implemented by setting the Speed and Start variables as follows:

Function Implementation
stop/pause Speed :=0

play forward Speed := 1

play backward Speed := -1

gotw lis Start := now - Uts

step forward Start := Start + 1 / fps
step backward Start := Start - 1 / fps
fast forward Speed := 2.5

fast reverse Speed ;= -2.5




Speed represents the relationship between LTS time and SystemClock time. Speed equal
one means LTS time advances at a real-time rate, Speed equals 2 implies that LTS time
should advance at twice the rate of SystemClock time, and so forth. This definition is bet-
ter than using frame rate as a metric for speed because frames per second (fps) can vary
during a stream.

Notice that the fast forward and backward speed can be varied. This capability allows
an application to implement a jog-shuttle control similar to the mechanical controls found
on some video tape recorders. _

Another feature implemented in the CM Server to produce high quality user inter-
faces is resampling audio data in real-time so that synchronized sound can be played
when playing a script backwards or forwards at speeds other than normal. Taken together,
prioritizing audio packets higher and audio resampling produce a perceptibly better user
interface.

2.3 CM Network Protocol

The CM network protocol was implemented when we discovered that a normal TCP
- connection incurred too much overhead and was 100 slow.

CM Source processes send packets one second before they are needed. This delay is
insignificant when the user begins to play the script, but it gives the Server a buffer
against delayed packets due to network or file server load. Our experience has been that
audio packets always are delivered on time, but that video packets are often delayed be-
cause the data volume and rate is beyond the capabilities of the system. This point is dis-
cussed in more detail in the next section. The CM Server periodically requests
retransmission of lost packets.

The Server uses an adaptive feedback algorithm to match packet flow to the available
resources.! The flow rate is based on the fps being played. Every 300 msec the CM Server
calculates a penalry of 10 points if a frame is queued, but not played (i.e., missed) and 10
points if two consecutive frames are missed. For example, if two consecutive frames are
missed, the penalry is 30 points. In addition, a 10 penaity is assessed if a frame was lost
in the network. The maximum allowable penalty in a time period is 100 points. Thus. a
penalty of 0 means every frame was piayed and a penalty of 100 means many frames
were missed.

The penalry is sent to the CM Source. Each stream has a minimum and maximum
frame rate specified either in the database or when play was initiated. The CM Source
also maintains a current frame rate at which the stream is being played. The Source uses
the penalry to adjust the current frame rate as follows

1 . !
pend ty) + minimumRate x (penal Y

100 100 )

currentRate = currentRate x (1 -

Thus if the penalty is 0, no adjustment is made. If the penalty is between 0 and 100, the
current rate is reduced. If the penalry is 100, the current rate is set (0 the minimum rate.

! The real-time IP protocol will guarantee a bandwidth when the connection 1s established. How-
ever. this adaptive mechanism will still be required because the delivery rate that can be guaranteed
may be below the rate required by the script.



At the same time the CM Source periodically increments the current rate until the max-
imum rate is achieved. The effect of this algorithm is to slow the rate quickly when the
system is overloaded and to increase it incrementally to an achievable throughput. The
system may be overloaded because of contention with other processes or because the
video being played requires 0o much bandwidth. This point is discussed in more detail
below.

We believe that reduced variability in the frame rate produces higher quality video
playback than minimizing the number of dropped frames. Users are more sensitive 1o
random frame drops than to regular drops. Consequently, the adaptive algorithm at-
tempts to reduce the variation of fps played.

2.4 Implementation

All processes in the player are implemented with the Tool Command Language (Tcl)
and the Tcl Toolkit (Tk) [12, 13]. Altogether, the player is approximately 20K lines of
code of which 10% is written in Tcl. The application process uses both Tcl and Tk, in-
cludes 1.7K lines of code. and requires 1.5 MBytes at runtime. The CM Server and
Source only use Tcl and a library of Tcl and C code developed for distributed applica-
tions (e.g.. an RPC mechanism, client/server abstractions, CM abstractions, etc.). The li-
brary is 9K lines of C code. The CM Server and Source each have 500 lines of Tcl code
and 4K lines of C code. The Server requires 1.8 MBytes at runtime and each Source is
about 0.6 MBytes at runtime.

The majority of the communication between processes is accomplished by sending
Tcl commands to a remote process to be executed. These commands are sent as strings,
evaluated by the embedded Tcl interpreter in the remote process, and a string-valued re-
sult is returned. This mechanism is a simple remote procedure call (RPC). The applica-
tion was very easy to develop because remote commands could just be defined and sent
rather than requiring the definition of a shared header file that was compiled by a stub
compiler as in other RPC mechanisms. Another advantage of Tcl/Tk is that it is very easy
to prototype abstractions in Tcl, and when a time critical abstraction is discovered. it can
be recoded in C. The entire application was written in under 10 person-months.

3. Performance

This section reports the results of some preliminary performance experiments. Two
video scripts were used: *“The Adventures of Andre and Wally B” and *“Tony De Peltrie”
{4]. Both are 24 fps computer graphics generated videos. Wally was digitized at 320 by
240 pixels and Tony was digitized at 640 by 480 pixels. Both streams were JPEG com-
pressed using the XVIDEO board. The following table shows the static size of the data.

Total .. . StdDev
Video Number Minimum | Maximum Average KB/
KB/Frame | KB/Frame | KB/Frame
Frames Frame
Wally 1806 7.7 127 11.3 1.3
Tony 2530 128 249 209 1.6
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Figure 5. Frame size versus time plot.

Figure 5 plots frame size versus time. Notice that Wally remains somewhat constant at
12K B/frame whereas Tony varies between 13KB/frame and 25KB/frame.

When we play these videos, all audio packets are received and played at the right
time, but depending on which video is being played and the system load at the time,
video frames are dropped. Wally plays correctly most of the time, but Tony always
drops many frames. The problem is the maximum throughput required to play the vid-
eos. For example, the maximum throughput required by Wally is 305KB/sec (2.4 Mbit/
sec) whereas Tony requires S98KB/sec (4.8 Mbit/sec). The problem is either in the net-
work or the file server, because essentially all frames received by the CM Server are
played (e.g., one video frame is received but not played about every 2 seconds). We ran
experiments on both ethernet and FDDI networks and the same problems were ob-
served. so it is not the throughput on the network. Since essentially all packets sent by
the server are successfully received, we conclude that the bottleneck is in the file server.

Figure 6 shows the effect of varying the requested play rate of the Tony video with-
out the adaptive frame rate control algorithm. The figure plots the number of frames
played per second at requested playback rates of 12, 16, and 24 fps versus time. As you
can see, at 12 and 16 fps most frames are played but that many frames are dropped at
24 fps. Further investigation suggests that the problem is the number of packets per sec-
ond that must be sent by the CM Source. The limiting factor appears (0 be the overhead
of sending a packet.

Figure 7 plots the requested frame rate, shown by the thick line, and the actual frame
rate, shown by the thin line, with the adaptive frame rate controt algorithm. This plot
shows the requested frames and the played frames when playing Tony with bounds of
11 to 16 fps. You can see that the play rate closely follows the requested rate. Although
it does not show in these graphs, the quality of the video is perceptibly better when rate
control is used. However, playback could still be improved if predictive data on the
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Figure 7. Frames played versus time with adaptive control

bandwidth that will be required during the next few seconds-was available so the feed-
back algorithm could begin reducing the frame rate in anticipation of a change in the
required bandwidth.

4. Related Work

Many groups are working on multimedia applications that include playing contin-
uous media [1, 2, 3. 6, 7. 8, 14, 15, 19]. None of these systems report an application-



level adaptive control algorithm to vary frame rate dynamically. More research 1s
needed to validate the claims made here and 1o explore algorithms that look ahead at
future resource requirements as suggested by Little and Ghafoor [9]. In addition, we be-
lieve that this system is the first one to use NTP and globally synchronized clocks to
synchronize transmission of CM data between processes on different machines. The
LTS abstraction we used is similar to an analogous abstraction used in Apple’s Quick-
time.

The synchronization model is similar to the time-based models described by others.
We eventually plan to add hierarchical synchronization similar to the model suggested
by Steinmetz [16].

Lastly, the data model we developed uses ideas from many sources including (5, 10,
14, 17]. One important point in our design is the replication of meta data in a database
that will allow us to manage a tertiary store where CM data can be archived.

§. Conclusions

The design and implementation of a CM player was described. The player uses a
globally synchronized clock to synchronize the process that plays the CM data on a cli-
ent with the file server processes that delivery the data. This design along with synchro-
nizing streams on a logical time system simplified the implementation and made it
possible to play audio packets correctly even when video packets were being dropped.
Lastly, preliminary performance experiments were reported that illustrate the need for
adaptive control of the rate at which video is played and the effect of a simple feedback
control algorithm.
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