
CLAIM CHART EXHIBIT 12
"HYPERCARD AND QUICKTIME (MOVIE)"

E
olas T

echnologies Incorporated v. A
dobe S

ystem
s Incorporated et al

D
oc. 1348 A

tt. 13

D
ockets.Justia.com

http://dockets.justia.com/docket/texas/txedce/6:2009cv00446/118976/
http://docs.justia.com/cases/federal/district-courts/texas/txedce/6:2009cv00446/118976/1348/13.html
http://dockets.justia.com/

 1

INVALIDITY CLAIM CHART FOR U.S. PATENT NO. 5,838,906

 “HYPERCARD AND QUICKTIME (MOVIE)” 1 AS INTENDED TO BE USED IN A COMPUTER SYSTEM AND DEMONSTRATION OF
SAME, FURTHER INFORMED BY:

o THE COMPLETE HYPERCARD 2.0 HANDBOOK, 3RD EDITION [PA-00288603] [GOODMAN90];
o ERIC LEASE MORGAN. "IMPLEMENTING TCP/IP COMMUNICATIONS WITH HYPERCARD." INFORMATION

TECHNOLOGY AND LIBRARIES, DEC. 1992; 11, 4; ABI/INFORM GLOBAL. PP. 421-432. [MORGAN92] [PA-
00290482];

o JOHN R. POWERS, III. "MAC TO MAINFRAME WITH HYPERCARD." MACTUTOR, JUNE 1990 [PA-00288589]
[POWERS90];

o DAVID L. DRUCKER AND MICHAEL D. MURIE. "QUICKTIME HANDBOOK: THE COMPLETE GUIDE TO MAC MOVIE
MAKING." AUGUST 1992. [DRUCKER92] [PA-00289694];

o JERRY BORRELL ET AL. "MASTERING THE WORLD OF QUICKTIME." FIRST EDITION, RANDOM HOUSE, 1993
[BORRELL93] [PA-00328099]; AND

o DECLARATION OF DAN SADOWSKI (APPENDIX D TO THIS REPORT) [SADOWSKI11].
o THE BODY OF MY REPORT HAS A NARRATIVE DESCRIPTION OF AUGMENTS AND SHOULD BE CONSIDERED PART OF THIS

CHART, AND VISE-VERSA, FOR THIS AND ALL MY CHARTS.

Claim Text from ’906 Patent HyperCard and QuickTime (Movie)
906-1.a:
A method for running an application program in a
computer network environment, comprising:

HyperCard and QuickTime (Movie) discloses an application program. See, e.g.,
:

HyperCard is a computer program. It was installed onto a computer, such
as an Apple Macintosh computer, and launched as an executable program.
The videos that I am submitting along with this report show how this was
done. (See also Goodman at pp. 17-20) (describing installation and

1 For all asserted claims this reference is a 103 reference due to my understanding of the plain meaning of the limitations relating to “location” (e.g. 901-1.f and
906-1.g and 985-1.f and 985.1g) and the Court’s discussion of the issue on page 17 of its August 22, 2011 Order. Thus, for these particular limitations, the
reference is not anticipatory, but rather, as explained in the body of my report, this limitation would be combined with a prior art web browser like Mosaic,
CERN’s web browser, Viola, or MediaView. Likewise, to satisfy the HTML limitations in the ’985 patent, the reference must be combined with a web browser
or HTML teaching, such as Mosaic, CERN’s web browser, or Viola. For both all such limitations it would have been obvious to a person of ordinary skill in the
art at the time to do so as explained in the body of my report and the teachings, for example, of Tim Berners-Lee posted on the CERN website discussing the
Web and relating features and pointers to other browser technologies including HyperCard, Viola and MediaView. This was an obvious and natural extension of
prior hypermedia functions and features and an inevitable development in the marketplace at the time of the invention and based on the state of the art.

 2

Claim Text from ’906 Patent HyperCard and QuickTime (Movie)
operation of HyperCard on a computer); (Goodman at pp. xxxiii)
(describing that HyperCard is a computer program).

HyperCard and QuickTime (Movie) discloses a computer network environment.
See, e.g., :

HyperCard operating in a distributed hypermedia environment that
included clients and servers.
Specifically, stacks can be stored on or published to a file server and then
accessed by a user using HyperCard on a client workstation. (See
Goodman at pp. 737-739.) “On networks such as AppleShare and TOPS,
HyperCard sees file servers or other user’s published volumes just as
another disk drive attached to the Macintosh. If you have a button in a
stack on your own disk that is linked to a stack on a file server, the
pathname for that server stack will be stored in your Home stack’s
pathname cared for stacks…” (See Goodman at p. 737.) “If you develop
what we call information publishing stacks – those that come full of
information for users to browse through – you should be aware that such a
stack might be used on a network.” (See Goodman at p. 739.) Stacks
shared over a network “should be on the file server or, in the case of a
TOPS network, on a published volume.” (See Goodman at p. 738.). See
also [Sadowski11] at 54, 55, 60, 74, 76.
A network of computers containing HyperCard stacks is a distributed
hypermedia environment because HyperCard stacks contain hypermedia.
(See, e.g., Goodman at Chapter 52) (describing text, sound, animation, and
movies.) ("If you have a button in a stack on your own disk that is linked
to a stack on a file server, the pathname for that server stack will be stored
in your Home stack’s pathname card for stacks, just as it would be if it
were on your own hard disk").
As another example, HyperCard could interoperate with the TCP/IP
Internet. A software package called MacTCP and a set of XCMDs
provided with the HyperCard TCP Toolkit provided this functionality.

 3

Claim Text from ’906 Patent HyperCard and QuickTime (Movie)
(See Morgan at 421.)

906-1.b:
providing at least one client workstation and one
network server coupled to said network
environment, wherein said network environment is
a distributed hypermedia environment;

HyperCard and QuickTime (Movie) discloses a client workstation. See, e.g., :

HyperCard works in a distributed environment that includes clients and
servers.
Specifically, stacks can be stored on or published to a file server and then
accessed by a user using HyperCard on a client workstation. (See
Goodman at pp. 737-739; see also [Sadowski11] at 54, 55, 60, 74, 76.)
“On networks such as AppleShare and TOPS, HyperCard sees file servers
or other user’s published volumes just as another disk drive attached to the
Macintosh. If you have a button in a stack on your own disk that is linked
to a stack on a file server, the pathname for that server stack will be stored
in your Home stack’s pathname cared for stacks…” (See Goodman at p.
737.) “If you develop what we call information publishing stacks – those
that come full of information for users to browse through – you should be
aware that such a stack might be used on a network.” (See Goodman at p.
739.) Stacks shared over a network “should be on the file server or, in the
case of a TOPS network, on a published volume.” (See Goodman at p.
738.)
One mechanism by which stacks on a server were accessed from a client
was through buttons. (See Goodman at p. 737) ("If you have a button in a
stack on your own disk that is linked to a stack on a file server, the
pathname for that server stack will be stored in your Home stack’s
pathname card for stacks, just as it would be if it were on your own hard
disk")
Examples of HyperCard's client-server functionality are shown in the
videos I am submitting along with this expert report.

HyperCard and QuickTime (Movie) discloses a network server. See, e.g., :

HyperCard works in a distributed environment that includes clients and
servers.

 4

Claim Text from ’906 Patent HyperCard and QuickTime (Movie)
Specifically, stacks can be stored on or published to a file server and then
accessed by a user using HyperCard on a client workstation. (See
Goodman at pp. 737-739.) “On networks such as AppleShare and TOPS,
HyperCard sees file servers or other user’s published volumes just as
another disk drive attached to the Macintosh. If you have a button in a
stack on your own disk that is linked to a stack on a file server, the
pathname for that server stack will be stored in your Home stack’s
pathname cared for stacks…” (See Goodman at p. 737.) “If you develop
what we call information publishing stacks – those that come full of
information for users to browse through – you should be aware that such a
stack might be used on a network.” (See Goodman at p. 739.) Stacks
shared over a network “should be on the file server or, in the case of a
TOPS network, on a published volume.” (See Goodman at p. 738.) See
also [Sadowski11] at 54, 55, 60, 74, 76.
One mechanism by which stacks on a server were accessed from a client
was through buttons. (See Goodman at p. 737) ("If you have a button in a
stack on your own disk that is linked to a stack on a file server, the
pathname for that server stack will be stored in your Home stack’s
pathname card for stacks, just as it would be if it were on your own hard
disk").
Examples of HyperCard's client-server functionality are shown in the
videos I am submitting along with this expert report.

HyperCard and QuickTime (Movie) discloses a distributed hypermedia
environment. See, e.g., :

HyperCard operating in a distributed hypermedia environment that
included clients and servers.
Specifically, stacks can be stored on or published to a file server and then
accessed by a user using HyperCard on a client workstation. (See
Goodman at pp. 737-739.) “On networks such as AppleShare and TOPS,
HyperCard sees file servers or other user’s published volumes just as

 5

Claim Text from ’906 Patent HyperCard and QuickTime (Movie)
another disk drive attached to the Macintosh. If you have a button in a
stack on your own disk that is linked to a stack on a file server, the
pathname for that server stack will be stored in your Home stack’s
pathname cared for stacks…” (See Goodman at p. 737.) “If you develop
what we call information publishing stacks – those that come full of
information for users to browse through – you should be aware that such a
stack might be used on a network.” (See Goodman at p. 739.) Stacks
shared over a network “should be on the file server or, in the case of a
TOPS network, on a published volume.” (See Goodman at p. 738.). See
also [Sadowski11] at 54, 55, 60, 74, 76.
A network of computers containing HyperCard stacks is a distributed
hypermedia environment because HyperCard stacks contain hypermedia.
(See, e.g., Goodman at Chapter 52) (describing text, sound, animation, and
movies.) ("If you have a button in a stack on your own disk that is linked
to a stack on a file server, the pathname for that server stack will be stored
in your Home stack’s pathname card for stacks, just as it would be if it
were on your own hard disk").
As another example, HyperCard could interoperate with the TCP/IP
Internet. A software package called MacTCP and a set of XCMDs
provided with the HyperCard TCP Toolkit provided this functionality.
(See Morgan at 421.)

906-1.c:
executing, at said client workstation, a browser
application, that parses a first distributed
hypermedia document to identify text formats
included in said distributed hypermedia document
and for responding to predetermined text formats
to initiate processing specified by said text
formats;

HyperCard and QuickTime (Movie) discloses a browser application. See, e.g., :

HyperCard is a browser application because it displays hypermedia
documents and allows a user to browse through different parts of the
hypermedia documents and to other hypermedia documents using, for
example, buttons and links between cards and stacks.
As one example, HyperCard provided buttons, which were a navigational
tool used to browse through a HyperCard stack. (See Goodman at p. 35);
(Goodman at Chapter 11.)
The functionality of buttons could be specified using the HyperTalk
language. At the core of most HyperCard button activity is the link, which

 6

Claim Text from ’906 Patent HyperCard and QuickTime (Movie)
ties together one card with another card. That other card can be the next
card in the stack; a previously viewed card in the same or a different stack;
the first card in another stack; or a specific card in another stack. (See
Goodman at Chapter 12.) HyperCard also provided for linked text. (See
Goodman at 72.)
Buttons could link to cards or stacks on the same computer, or on a server
computer. (See Goodman at p. 737.)
Examples of all this functionality are shown in the videos I am submitting
along with this report.

HyperCard and QuickTime (Movie) discloses that the browser application parses
a hypermedia document. See, e.g., :

HyperCard used a platform-specific file format that was associated with
the old Macintosh operating system. Files having that format were said to
have two forks; a data fork and a resource fork. From [Sadowski11],
resources such as code, interface item definitions, icons, script code or text
were objects that were stored in the resource fork of an application file.
(See also Goodman at 741-742.)
Thus, HyperCard stacks were stored in such a file. On the file system the
stack is organized into segments; one segment for each card. Again, from
[Sadowski11], “The placement of the content for each card is dictated by
coordinates for that content found in that segment. When presented to the
HyperCard application, the content of the segment is parsed, the various
content objects are located along with their precise coordinates, and then
they are placed on the display in accordance with the coordinates.”
The videos that I am submitting along with this report show examples of
HyperTalk scripts associated with hypermedia cards.
Also, HyperTalk scripts are described at length in Goodman (see, e.g.,
Goodman at Chapter 20.)

HyperCard and QuickTime (Movie) discloses a hypermedia document with text

 7

Claim Text from ’906 Patent HyperCard and QuickTime (Movie)
formats. See, e.g., :

HyperCard used a platform-specific file format that was associated with
the old Macintosh operating system. Files having that format were said to
have two forks; a data fork and a resource fork. From [Sadowski11],
resources such as code, interface item definitions, icons, script code or text
were objects that were stored in the resource fork of an application file.
(See also Goodman at 741-742.)
Thus, HyperCard stacks were stored in such a file. On the file system the
stack is organized into segments; one segment for each card. Again, from
[Sadowski11], “The placement of the content for each card is dictated by
coordinates for that content found in that segment. When presented to the
HyperCard application, the content of the segment is parsed, the various
content objects are located along with their precise coordinates, and then
they are placed on the display in accordance with the coordinates.”
Several types of text objects were stored in the HyperCard hypermedia
document.
The videos that I am submitting along with this report show examples of
HyperTalk scripts associated with hypermedia cards.
Also, HyperTalk scripts are described at length in Goodman (see, e.g.,
Goodman at Chapter 20.)

906-1.d:
utilizing said browser to display, on said client
workstation, at least a portion of a first hypermedia
document received over said network from said
server,

HyperCard and QuickTime (Movie) discloses that a hypermedia document is
received from the server. See, e.g., :

HyperCard works in a distributed environment that includes clients and
servers. In such environments, HyperCard operating on a client computer
receives hypermedia cards from a server computer.
Specifically, stacks can be stored on or published to a file server and then
accessed by a user using HyperCard on a client workstation. (See
Goodman at pp. 737-739.) “On networks such as AppleShare and TOPS,
HyperCard sees file servers or other user’s published volumes just as
another disk drive attached to the Macintosh. If you have a button in a

 8

Claim Text from ’906 Patent HyperCard and QuickTime (Movie)
stack on your own disk that is linked to a stack on a file server, the
pathname for that server stack will be stored in your Home stack’s
pathname cared for stacks…” (See Goodman at p. 737.) “If you develop
what we call information publishing stacks – those that come full of
information for users to browse through – you should be aware that such a
stack might be used on a network.” (See Goodman at p. 739.) Stacks
shared over a network “should be on the file server or, in the case of a
TOPS network, on a published volume.” (See Goodman at p. 738.) See
also [Sadowski11] at 54, 55, 60, 74, 76.
HyperCard operating on a client received hypermedia cards from a server:
as one example, a button could be configured to retrieve hypermedia cards
from a server. (See Goodman at p. 737.) ("If you have a button in a stack
on your own disk that is linked to a stack on a file server, the pathname for
that server stack will be stored in your Home stack’s pathname card for
stacks, just as it would be if it were on your own hard disk"). See also
[Sadowski11] at 54, 55, 60, 74, 76.
Examples of HyperCard's client-server functionality are shown in the
videos I am submitting along with this expert report.

HyperCard and QuickTime (Movie) discloses that the browser displays a
hypermedia document. See, e.g., :

HyperCard displays cards that are part of stacks. Cards are hypermedia
documents because they can include a variety of media types, including
text, sound, animation, and movies. (See, e.g., Goodman at Chapter 52)
(describing text, sound, animation, and movies in cards.) The videos that I
am submitting along with this report show examples of text, animations,
movies, and interactive movies.

906-1.e:
wherein the portion of said first hypermedia
document is displayed within a first browser-
controlled window on said client workstation,

HyperCard and QuickTime (Movie) discloses that a hypermedia document is
displayed in a browser window. See, e.g., :

HyperCard displays hypermedia cards in a HyperCard window. By way

 9

Claim Text from ’906 Patent HyperCard and QuickTime (Movie)
of example, hypermedia cards displayed in the HyperCard window are
shown in Goodman at pp. 791-836. In addition, the videos I am
submitting along with this report show hypermedia cards displayed within
a HyperCard window.

906-1.f:
wherein said first distributed hypermedia
document includes an embed text format, located
at a first location in said first distributed
hypermedia document, that specifies the location
of at least a portion of an object external to the first
distributed hypermedia document,

HyperCard and QuickTime (Movie) discloses an embed text format at a first
location in a hypermedia document. See, e.g., :

HyperCard used a platform-specific file format that was associated with
the old Macintosh operating system. Files having that format were said to
have two forks; a data fork and a resource fork. From [Sadowski11],
resources such as code, interface item definitions, icons, script code or text
were objects that were stored in the resource fork of an application file.
Thus, HyperCard stacks were stored in such a file. On the file system the
stack is organized into segments; one segment for each card. Again, from
[Sadowski11], “The placement of the content for each card is dictated by
coordinates for that content found in that segment. When presented to the
HyperCard application, the content of the segment is parsed, the various
content objects are located along with their precise coordinates, and then
they are placed on the display in accordance with the coordinates.”
A HyperTalk script stored in the resource fork of a segment of a
HyperCard document is one type of embed text format and is discovered
at a first location when HyperCard parses the segment associated with a
card. Such a script could be:

on mouseUp
Movie <file name>, <window style>, <location>, <visible>, <layering>
end mouseUp

The Movie XCMD did not embed movie objects directly within a card,
but could show them in a borderless floating window. This was visually
similar to and an obvious variant of embedding.
(See Drucker, at 498.) "You would choose the borderless window style if

 10

Claim Text from ’906 Patent HyperCard and QuickTime (Movie)
you wanted your movie to look as if it were actually graphics blending
within the card, like an animation that grew out of objects sitting on the
card before the move started." (See Drucker at 499.) It would have been
obvious to provide for an embed text format in place of the borderless
style because the difference between embedding directly within the card or
overlaying a borderless window is merely a design choice.

HyperCard and QuickTime (Movie) discloses that the embed text format
specifies the location of an object. See, e.g., :

HyperCard used a platform-specific file format that was associated with
the old Macintosh operating system. Files having that format were said to
have two forks; a data fork and a resource fork. From [Sadowski11],
resources such as code, interface item definitions, icons, script code or text
were objects that were stored in the resource fork of an application file.
Thus, HyperCard stacks were stored in such a file. On the file system the
stack is organized into segments; one segment for each card. Again, from
[Sadowski11], “The placement of the content for each card is dictated by
coordinates for that content found in that segment. When presented to the
HyperCard application, the content of the segment is parsed, the various
content objects are located along with their precise coordinates, and then
they are placed on the display in accordance with the coordinates.”
A HyperTalk script stored in the resource fork of a segment of a
HyperCard document is one type of embed text format and is discovered
at a first location when HyperCard parses the segment associated with a
card. . Such a script could be:

on mouseUp
Movie <file name>, <window style>, <location>, <visible>, <layering>
end mouseUp

The Movie XCMD did not embed movie objects directly within a card,

 11

Claim Text from ’906 Patent HyperCard and QuickTime (Movie)
but could show them in a borderless floating window. This was visually
similar to and an obvious variant of embedding.
(See Drucker, at 498.) "You would choose the borderless window style if
you wanted your movie to look as if it were actually graphics blending
within the card, like an animation that grew out of objects sitting on the
card before the move started." (See Drucker at 499.) It would have been
obvious to provide for an embed text format in place of the borderless
style because the difference between embedding directly within the card or
overlaying a borderless window is merely a design choice.
The object in this script is a file, file name, stored elsewhere as a separate
file.

HyperCard and QuickTime (Movie) discloses an object that is external to a
hypermedia document. See, e.g., :

HyperCard used a platform-specific file format that was associated with
the old Macintosh operating system. Files having that format were said to
have two forks; a data fork and a resource fork. From [Sadowski11],
resources such as code, interface item definitions, icons, script code or text
were objects that were stored in the resource fork of an application file.
Thus, HyperCard stacks were stored in such a file. On the file system the
stack is organized into segments; one segment for each card. Again, from
[Sadowski11], “The placement of the content for each card is dictated by
coordinates for that content found in that segment. When presented to the
HyperCard application, the content of the segment is parsed, the various
content objects are located along with their precise coordinates, and then
they are placed on the display in accordance with the coordinates.”
A HyperTalk script stored in the resource fork of a segment of a
HyperCard document is one type of embed text format and is discovered
at a first location when HyperCard parses the segment associated with a
card. Such a script could be:

 12

Claim Text from ’906 Patent HyperCard and QuickTime (Movie)
on mouseUp
Movie <file name>, <window style>, <location>, <visible>, <layering>
end mouseUp

(See Drucker, at 498.)The object in this script is a file, fileName, which is
specified directly and is stored elsewhere as a separate file and is thus
external to the hypermedia (HyperCard) document.

906-1.g:
wherein said object has type information
associated with it utilized by said browser to
identify and locate an executable application
external to the first distributed hypermedia
document, and

HyperCard and QuickTime (Movie) discloses that the object has associated type
information. See, e.g., :

HyperCard used a platform-specific file format that was associated with
the old Macintosh operating system. Files having that format were said to
have two forks; a data fork and a resource fork. From [Sadowski11],
resources such as code, interface item definitions, icons, script code or text
were objects that were stored in the resource fork of an application file.
Thus, HyperCard stacks were stored in such a file. On the file system the
stack is organized into segments; one segment for each card. Again, from
[Sadowski11], “The placement of the content for each card is dictated by
coordinates for that content found in that segment. When presented to the
HyperCard application, the content of the segment is parsed, the various
content objects are located along with their precise coordinates, and then
they are placed on the display in accordance with the coordinates.”
A HyperTalk script stored in the resource fork of a segment of a
HyperCard document is one type of embed text format and is discovered
at a first location when HyperCard parses the segment associated with a
card. . Such a script could be:

on mouseUp
Movie <file name>, <window style>, <location>, <visible>, <layering>
end mouseUp

(See Drucker, at 498.)The object in this script is a file, file name, which is

 13

Claim Text from ’906 Patent HyperCard and QuickTime (Movie)
specified directly and is stored elsewhere as a separate file. In this case,
the syntax "Movie" is type information specifying that the object file name
is a Movie XCMD for a QuickTime movie object.

HyperCard and QuickTime (Movie) discloses that the browser uses type
information to identify and locate an executable application. See, e.g., :

HyperCard used a platform-specific file format that was associated with
the old Macintosh operating system. Files having that format were said to
have two forks; a data fork and a resource fork. From [Sadowski11],
resources such as code, interface item definitions, icons, script code or text
were objects that were stored in the resource fork of an application file.
Thus, HyperCard stacks were stored in such a file. On the file system the
stack is organized into segments; one segment for each card. Again, from
[Sadowski11], “The placement of the content for each card is dictated by
coordinates for that content found in that segment. When presented to the
HyperCard application, the content of the segment is parsed, the various
content objects are located along with their precise coordinates, and then
they are placed on the display in accordance with the coordinates.”
A HyperTalk script stored in the resource fork of a segment of a
HyperCard document is one type of embed text format and is discovered
at a first location when HyperCard parses the segment associated with a
card. Such a script could be:

on mouseUp
Movie <file name>, <window style>, <location>, <visible>, <layering>
end mouseUp

(See Drucker, at 498.)The object in this script is a file, file name, which is
specified directly and is stored elsewhere as a separate file. In this case,
the syntax "Movie" is type information specifying that the object file name
is a Movie XCMD for a QuickTime movie object. That type information

 14

Claim Text from ’906 Patent HyperCard and QuickTime (Movie)
is found in the embed text format. The thus-located XCMD is a compiled
executable application.
Through the XCMD, HyperCard invokes functionality from the
QuickTime software extension. (See Drucker at 4); (Borrell at 1-4.) This
software extension includes various software components that enable
playback of and interaction with QuickTime movies. (Borrell at 1-4.)

HyperCard and QuickTime (Movie) discloses that the executable application is
external to the hypermedia document. See, e.g., :

HyperCard used a platform-specific file format that was associated with
the old Macintosh operating system. Files having that format were said to
have two forks; a data fork and a resource fork. From [Sadowski11],
resources such as code, interface item definitions, icons, script code or text
were objects that were stored in the resource fork of an application file.
Thus, HyperCard stacks were stored in such a file. On the file system the
stack is organized into segments; one segment for each card. Again, from
[Sadowski11], “The placement of the content for each card is dictated by
coordinates for that content found in that segment. When presented to the
HyperCard application, the content of the segment is parsed, the various
content objects are located along with their precise coordinates, and then
they are placed on the display in accordance with the coordinates.”
A HyperTalk script stored in the resource fork of a segment of a
HyperCard document is one type of embed text format and is discovered
at a first location when HyperCard parses the segment associated with a
card. Such a script could be:

on mouseUp
Movie <file name>, <window style>, <location>, <visible>, <layering>
end mouseUp

(See Drucker, at 498.)The object in this script is a file, file name, which is

 15

Claim Text from ’906 Patent HyperCard and QuickTime (Movie)
specified directly and is stored elsewhere as a separate file. In this case,
the syntax "Movie" is type information specifying that the object file name
is a Movie XCMD for a QuickTime movie object. That type information
is found in the embed text format. The thus-located XCMD is a compiled
executable application which can be stored anywhere on a computer disk.
Through the XCMD, HyperCard invokes functionality from the
QuickTime software extension. (See Drucker at 4); (Borrell at 1-4.) This
software extension includes various software components that enable
playback of and interaction with QuickTime movies. (Borrell at 1-4.)

906-1.h:
wherein said embed text format is parsed by said
browser to automatically invoke said executable
application to execute on said client workstation in
order to display said object and enable an end-user
to directly interact with said object within a
display area created at said first location within the
portion of said first distributed hypermedia
document being displayed in said first browser-
controlled window.

HyperCard and QuickTime (Movie) discloses that the browser parses the embed
text format. See, e.g., :

HyperCard used a platform-specific file format that was associated with
the old Macintosh operating system. Files having that format were said to
have two forks; a data fork and a resource fork. From [Sadowski11],
resources such as code, interface item definitions, icons, script code or text
were objects that were stored in the resource fork of an application file.
Thus, HyperCard stacks were stored in such a file. On the file system the
stack is organized into segments; one segment for each card. Again, from
[Sadowski11], “The placement of the content for each card is dictated by
coordinates for that content found in that segment. When presented to the
HyperCard application, the content of the segment is parsed, the various
content objects are located along with their precise coordinates, and then
they are placed on the display in accordance with the coordinates.”
A HyperTalk script stored in the resource fork of a segment of a
HyperCard document is one type of embed text format and is discovered
at a first location when HyperCard parses the segment associated with a
card. Such a script could be:

on openCard
Movie <file name>, <window style>, <location>, <visible>, <layering>
end openCard

 16

Claim Text from ’906 Patent HyperCard and QuickTime (Movie)

The Movie XCMD did not embed movie objects directly within a card,
but could show them in a borderless floating window. This was visually
similar to and an obvious variant of embedding.
(See Drucker, at 498.) "You would choose the borderless window style if
you wanted your movie to look as if it were actually graphics blending
within the card, like an animation that grew out of objects sitting on the
card before the move started." (See Drucker at 499.) It would have been
obvious to provide for an embed text format in place of the borderless
style because the difference between embedding directly within the card or
overlaying a borderless window is merely a design choice.
The browser (HyperCard) parses the embed text format to cause the movie
file name to be played on the relevant card.

HyperCard and QuickTime (Movie) discloses automatic invocation of the
executable application. See, e.g., :

HyperCard used a platform-specific file format that was associated with
the old Macintosh operating system. Files having that format were said to
have two forks; a data fork and a resource fork. From [Sadowski11],
resources such as code, interface item definitions, icons, script code or text
were objects that were stored in the resource fork of an application file.
(See also Goodman at 741-742.)
Thus, HyperCard stacks were stored in such a file. On the file system the
stack is organized into segments; one segment for each card. Again, from
[Sadowski11], “The placement of the content for each card is dictated by
coordinates for that content found in that segment. When presented to the
HyperCard application, the content of the segment is parsed, the various
content objects are located along with their precise coordinates, and then
they are placed on the display in accordance with the coordinates.”
(See Borrell at 197.) A HyperTalk script stored in the resource fork of a
segment of a HyperCard document is one type of embed text format and is

 17

Claim Text from ’906 Patent HyperCard and QuickTime (Movie)
discovered at a first location when HyperCard parses the segment
associated with a card. . Such a script could be:

on openCard
Movie <file name>, <window style>, <location>, <visible>, <layering>
end openCard

(See Drucker, at 498.)The object in this script is a file, file name, which is
specified directly and is stored elsewhere as a separate file. In this case,
the syntax "Movie" is type information specifying that the object file name
is a Movie XCMD for a QuickTime movie object. That type information
is found in the embed text format. The thus-located XCMD is a compiled
executable application which can be stored anywhere on a computer disk.
The executable application, XCMD, displays the object, file name.
HyperCard provided for automatic invocation of executable applications,
without interactive action by the user, such as in the openCard script
above. (See, e.g., Goodman at pp. 347 – 348; 531, 709, 778, 809, 820 –
821) (giving examples of on openCard, on openStack, and on newCard).
One exemplary usage of QuickTime XCMDs in conjunction with the on
openCard event handler is set forth in Drucker at p. 505, and others are
demonstrated in the videos I am submitting along with this expert report.

HyperCard and QuickTime (Movie) discloses that the executable application
displays the object. See, e.g., :

HyperCard used a platform-specific file format that was associated with
the old Macintosh operating system. Files having that format were said to
have two forks; a data fork and a resource fork. From [Sadowski11],
resources such as code, interface item definitions, icons, script code or text
were objects that were stored in the resource fork of an application file.
Thus, HyperCard stacks were stored in such a file. On the file system the
stack is organized into segments; one segment for each card. Again, from

 18

Claim Text from ’906 Patent HyperCard and QuickTime (Movie)
[Sadowski11], “The placement of the content for each card is dictated by
coordinates for that content found in that segment. When presented to the
HyperCard application, the content of the segment is parsed, the various
content objects are located along with their precise coordinates, and then
they are placed on the display in accordance with the coordinates.”
A HyperTalk script stored in the resource fork of a segment of a
HyperCard document is one type of embed text format and is discovered
at a first location when HyperCard parses the segment associated with a
card. . Such a script could be:

on openCard
Movie <file name>, <window style>, <location>, <visible>, <layering>
end openCard

(See Drucker, at 498.)The object in this script is a file, file name, which is
specified directly and is stored elsewhere as a separate file. In this case,
the syntax "Movie" is type information specifying that the object file name
is a Movie XCMD for a QuickTime movie object. That type information
is found in the embed text format. The thus-located XCMD is a compiled
executable application which can be stored anywhere on a computer disk.
The executable application, XCMD, displays the object, file name.
Through the XCMD, HyperCard invokes functionality from the
QuickTime software extension. (See Drucker at 4); (Borrell at 1-4.) This
software extension includes various software components that enable
playback of and interaction with QuickTime movies. (Borrell at 1-4.)
"The QuickTime extension provides three major pieces of new system
software the Movie Toolbox the Image Compression Manager and the
Component Manager Application programs use these software modules to
let you play back or record QuickTime movies." (See Borrell at 2.)

HyperCard and QuickTime (Movie) discloses that the executable application
enables direct interaction with the object. See, e.g., :

 19

Claim Text from ’906 Patent HyperCard and QuickTime (Movie)

QuickTime enables direct interaction with the object.
By way of example, the Movie XCMD includes a controllerVisible
property, which indicates whether the standard controller (allowing play,
pause, rewind, fast forward, volume control, and slider bar control) is
visible. Also provided is the badge property: the badge enables pause and
play interaction. (See Drucker at 502); (Borrell at 7.)

Similarly, the QTMovie XCMD included a standard controller, unless the
noController option was selected (See Borrell at 201) or by using the
showController command (see Borrell at 203). As with the Movie
XCMD, QTMovie XCMD also provided a badge option. (See Borrell at
200) (Borrell at 7.)

Such a controller is shown below, annotated to indicate purpose.

As yet another option, suitable for use with both Movie XCMD and
QTMovie XCMD, one could create HyperCard buttons that would send
interactive commands to QuickTime software, thereby allowing users to
use those buttons for interaction.

By way of example for the Movie XCMD, one could program a
HyperCard button to play a movie using the send "play" syntax for that
button's HyperTalk script. (See Drucker at 504.)

Other commands include reverse, stepFwd, stepRev, and others. (See
Borrell at 203), all of which could be provided through HyperCard

 20

Claim Text from ’906 Patent HyperCard and QuickTime (Movie)
interactive buttons.

HyperCard and QuickTime (Movie) discloses that interaction with the object is
at a first location in the hypermedia document. See, e.g., :

HyperCard used a platform-specific file format that was associated with
the old Macintosh operating system. Files having that format were said to
have two forks; a data fork and a resource fork. From [Sadowski11],
resources such as code, interface item definitions, icons, script code or text
were objects that were stored in the resource fork of an application file.
(See also Goodman at 741-742.)

Thus, HyperCard stacks were stored in such a file. On the file system the
stack is organized into segments; one segment for each card. Again, from
[Sadowski11], “The placement of the content for each card is dictated by
coordinates for that content found in that segment. When presented to the
HyperCard application, the content of the segment is parsed, the various
content objects are located along with their precise coordinates, and then
they are placed on the display in accordance with the coordinates.”

A HyperTalk script stored in the resource fork of a segment of a
HyperCard document is one type of embed text format and is discovered
at a first location when HyperCard parses the segment associated with a
card. Such a script could be:

on openCard
Movie <file name>, <window style>, <location>, <visible>, <layering>
end openCard

(See Borrell at 197.) The object in this script is a file, fileName, which is
specified directly and is stored elsewhere as a separate file. The object is
displayed in a location that corresponds to the first location (e.g. the

 21

Claim Text from ’906 Patent HyperCard and QuickTime (Movie)
segment of the stack corresponding to the card). Interaction with the object
at the first location is provided by a standard controller which is associated
with the QTMovie XCMD. (See Borrell at 201, 203.)

Such a controller is shown below, annotated to indicate purpose.

906-2.a:
The method of claim 1, wherein said executable
application is a controllable application and further
comprising the step of: interactively controlling
said controllable application on said client
workstation via inter-process communications
between said browser and said controllable
application.

HyperCard and QuickTime (Movie) discloses interactive control via inter-
process communications between a browser and an application. See, e.g., :

HyperCard communicates with XCMDs, including the Movie and
QTMovie XCMD, using callbacks. (See, e.g., Goodman at pp. 751, 767;
see also [Sadowski11] at 54, 55, 60, 74, 76.) The XCMDs interoperate
with the QuickTime software extension to allow playback and interaction
with the movie object.

906-3.a:
The method of claim 2, wherein the
communications to interactively control said
controllable application continue to be exchanged
between the controllable application and the
browser even after the controllable application
program has been launched.

HyperCard and QuickTime (Movie) discloses ongoing inter-process
communications. See, e.g., :

HyperCard communicates with XCMDs using callbacks. (See, e.g.,
Goodman at pp. 751, 767; see also [Sadowski11] at 54, 55, 60, 74, 76.)
The callback-based communications are ongoing because they occur as a
user interacts with a movie object. The XCMDs interoperate with the
QuickTime software extension to allow playback and interaction with the
movie object.

 22

Claim Text from ’906 Patent HyperCard and QuickTime (Movie)
906-6.a:
A computer program product for use in a system
having at least one client workstation and one
network server coupled to said network
environment, wherein said network environment is
a distributed hypermedia environment, the
computer program product comprising:

HyperCard and QuickTime (Movie) discloses an application program in a
computer network environment. See evidence recited for 906-1.a.

HyperCard and QuickTime (Movie) also discloses a client workstation and a
network server in a distributed hypermedia environment. See evidence recited
for 906-1.b.

906-6.b:
a computer usable medium having computer
readable program code physically embodied
therein, said computer program product further
comprising:

HyperCard and QuickTime (Movie) discloses computer code physically
embodied on a medium. See, e.g., :

The computer on which HyperCard executes includes a computer usable
media having computer readable program code physically embodied
therein. As one example, the videos I am submitting along with this report
show HyperCard version 2.1 executing on Apple Macintosh IIsi
computers running a System 7.1 operating system.
(See also Goodman at pp. 17-20) (describing installation of HyperCard
onto a computer.)

906-6.c:
computer readable program code for causing said
client workstation to execute a browser application
to parse a first distributed hypermedia document to
identify text formats included in said distributed
hypermedia document and to respond to
predetermined text formats to initiate processes
specified by said text formats;

HyperCard and QuickTime (Movie) discloses a browser application that parses a
hypermedia document with text formats. See evidence recited for 906-1.c.

906-6.d:
computer readable program code for causing said
client workstation to utilize said browser to
display, on said client workstation, at least a
portion of a first hypermedia document received
over said network from said server,

HyperCard and QuickTime (Movie) discloses a hypermedia document received
from a server and a browser that displays the hypermedia document. See
evidence recited for 906-1.d.

906-6.e: HyperCard and QuickTime (Movie) discloses that the hypermedia document is

 23

Claim Text from ’906 Patent HyperCard and QuickTime (Movie)
wherein the portion of said first hypermedia
document is displayed within a first browser-
controlled window on said client workstation,

displayed in a browser window. See evidence recited for 906-1.e.

906-6.f:
wherein said first distributed hypermedia
document includes an embed text format, located
at a first location in said first distributed
hypermedia document, that specifies the location
of at least a portion of an object external to the first
distributed hypermedia document,

HyperCard and QuickTime (Movie) discloses an embed text format at a first
location in a hypermedia document; that the embed text format specifies the
location of an object; and that the object is external to the hypermedia document.
See evidence recited for 906-1.f.

906-6.g:
wherein said object has type information
associated with it utilized by said browser to
identify and locate an executable application
external to the first distributed hypermedia
document, and

HyperCard and QuickTime (Movie) discloses that the object has associated type
information, that the browser uses the type information to identify and locate an
executable application, and that the executable application is external to the
hypermedia document. See evidence recited for 906-1.g.

906-6.h:
wherein said embed text format is parsed by said
browser to automatically invoke said executable
application to execute on said client workstation in
order to display said object and enable an end-user
to directly interact with said object within a
display area created at said first location within the
portion of said first distributed hypermedia
document being displayed in said first browser-
controlled window.

HyperCard and QuickTime (Movie) discloses that the browser parses the embed
text format; that the browser automatically invokes the executable application;
that the executable application displays the object and enables an end-user to
directly interact with it; and that interaction with the object is at a first location in
the hypermedia document. See evidence recited for 906-1.h.

906-7.a:
The computer program product of claim 6, wherein
said executable application is a controllable
application and further comprising:
computer readable program code for causing said

HyperCard and QuickTime (Movie) discloses interactive control via inter-
process communications between a browser and an application. See evidence
recited for 906-2.a.

 24

Claim Text from ’906 Patent HyperCard and QuickTime (Movie)
client workstation to interactively control said
controllable application on said client workstation
via inter-process communications between said
browser and said controllable application.

906-8.a:
The computer program product of claim 7, wherein
the communications to interactively control said
controllable application continue to be exchanged
between the controllable application and the
browser even after the controllable application
program has been launched.

HyperCard and QuickTime (Movie) discloses ongoing inter-process
communications. See evidence recited for 906-3.a.

906-11.a:
The method of claim 3, wherein additional
instructions for controlling said controllable
application reside on said network server, wherein
said step of interactively controlling said
controllable application includes the following
substeps:

HyperCard and QuickTime (Movie) discloses additional instructions on the
server See, e.g., :

HyperCard interoperated with distributed applications. By way of
example, HyperCard provided for XCMDs that interoperated with
applications executing on server computers or network-connected devices.
These applications had additional instructions that allowed them to
execute on the server.
For example, HyperCard can connect to “any other computer (like a
bulletin board service, MCI Mail, or Dow Jones News Retrieval) that
offers asynchronous modem access” through HyperTalk script control.
(See Goodman at pp. 725 – 726. See also [Sadowski11] at 54, 55, 60, 74,
76.)
As another example, “HyperCard is also actively used in business as a tool
to design what are known as 'front ends' to information stored on IBM
(and other) mainframe computers.” (See Goodman at p. 726.) To
accomplish the connections to an IBM mainframe computer, external
commands (XCMDs), also called Application Programming Interfaces
(APIs), that link HyperCard to a 3270-style terminal (a terminal that is

 25

Claim Text from ’906 Patent HyperCard and QuickTime (Movie)
used to connect to IBM mainframe computers) are added to HyperCard.
These are typically supplied by the 3270-style hardware manufacturers.
(See, e.g., Goodman at p. 727.) Concentrix Technology, Inc. designed
front ends to IBM’s PROFS using Avatar, DCA and Tri-data APIs
(XCMDs). IBM’s PROFS is an electronic mail and group scheduling
program that runs on IBM mainframe computers. (See, e.g., Goodman at
p. 727 – 728.) These front ends together with IBM’s PROFS constitute a
distributed application.
Another example is described in [Powers], in which the author developed
software to enable a Macintosh to communicate with an IBM mainframe
computer from within HyperCard.
As another example, “HyperCard is also used extensively in business for
accessing Structured Query Language (SQL) databases, usually running
on mainframes or minicomputers (but also on database servers on local
area networks).” (See Goodman at p. 728.) The databases, e.g., Oracle
and Sybase, provide XCMD toolkits for HyperCard users to allow
HyperCard stacks to access, retrieve and write data to the databases. “The
HyperCard XCMDs extract the data, and regular HyperTalk scripting puts
the data into fields or draws graphs based on that data.” See, e.g.,
Goodman at pp. 727 – 728. The XCMD together with the application
executing on the databases (connected through network) constitute a
distributed application.

As another example in which a HyperCard XCMD served as a front end to
applications running on remote servers, [Morgan] discloses XCMDs that
enable TCP-based client-server interactions. The XCMD together with
the applications running on the remote servers constituted a distributed
application. Morgan discloses two examples: Mini-atlas and Listmanager.
“A connection is established using the TCPActiveOpen function, which
establishes a connection with the remote socket (a connection between
computer processors allowing them to communicate in a fast, reliable
manner) and returns a connection ID.” (See Morgan at 421.)

 26

Claim Text from ’906 Patent HyperCard and QuickTime (Movie)
“Alternatively, TCPPassiveOpen will allow a connection to be accepted
on a particular socket.” (See Morgan at 422.) “Mini-Atlas is a client for
the Geographic Name Server. The Geographic Name Server contains brief
information about most United States cities and geographic landmarks.”
(See Morgan at 422.) “Another, more interesting application is the
ListManager, a front end to LISTSERV programs operating electronic lists
such as PACSL, AUTOCAT, and LIBREF-L. ListManager automates the
procedures necessary to search the archives of these lists by keyword
Boolean queries, tum off mail from the list temporarily, retrieve a list of
the list's participants, or retrieve files from the lists.” (See Morgan at
423.).

906-11.b:
issuing, from the client workstation, one or more
commands to the network server;

HyperCard and QuickTime (Movie) discloses that the client issues commands to
the server. See, e.g., :

HyperCard interoperated with distributed applications. By way of
example, HyperCard provided for XCMDs that interoperated with
applications executing on server computers or network-connected devices.
HyperCard, through the XCMDs, issued commands to the applications
executing on the server computers.
For example, HyperCard can connect to “any other computer (like a
bulletin board service, MCI Mail, or Dow Jones News Retrieval) that
offers asynchronous modem access” through HyperTalk script control.
(See Goodman at pp. 725 – 726; see also [Sadowski11] at 54, 55, 60, 74,
76.))
As another example, “HyperCard is also actively used in business as a tool
to design what are known as 'front ends' to information stored on IBM
(and other) mainframe computers.” (See Goodman at p. 726.) To
accomplish the connections to an IBM mainframe computer, external
commands (XCMDs), also called Application Programming Interfaces
(APIs), that link HyperCard to a 3270-style terminal (a terminal that is
used to connect to IBM mainframe computers) are added to HyperCard.
These are typically supplied by the 3270-style hardware manufacturers.

 27

Claim Text from ’906 Patent HyperCard and QuickTime (Movie)
(See, e.g., Goodman at p. 727.) Concentrix Technology, Inc. designed
front ends to IBM’s PROFS using Avatar, DCA and Tri-data APIs
(XCMDs). IBM’s PROFS is an electronic mail and group scheduling
program that runs on IBM mainframe computers. (See, e.g., Goodman at
p. 727 – 728.) These front ends together with IBM’s PROFS constitute a
distributed application.
Another example is described in [Powers], in which the author developed
software to enable a Macintosh to communicate with an IBM mainframe
computer from within HyperCard.
As another example, “HyperCard is also used extensively in business for
accessing Structured Query Language (SQL) databases, usually running
on mainframes or minicomputers (but also on database servers on local
area networks).” (See Goodman at p. 728.) The databases, e.g., Oracle
and Sybase, provide XCMD toolkits for HyperCard users to allow
HyperCard stacks to access, retrieve and write data to the databases. “The
HyperCard XCMDs extract the data, and regular HyperTalk scripting puts
the data into fields or draws graphs based on that data.” See, e.g.,
Goodman at pp. 727 – 728. The XCMD together with the application
executing on the databases (connected through network) constitute a
distributed application.

As another example in which a HyperCard XCMD served as a front end to
applications running on remote servers, [Morgan] discloses XCMDs that
enable TCP-based client-server interactions. The XCMD together with
the applications running on the remote servers constituted a distributed
application. Morgan discloses two examples: Mini-atlas and Listmanager.
“A connection is established using the TCPActiveOpen function, which
establishes a connection with the remote socket (a connection between
computer processors allowing them to communicate in a fast, reliable
manner) and returns a connection ID.” (See Morgan at 421.)
“Alternatively, TCPPassiveOpen will allow a connection to be accepted
on a particular socket.” (See Morgan at 422.) “Mini-Atlas is a client for

 28

Claim Text from ’906 Patent HyperCard and QuickTime (Movie)
the Geographic Name Server. The Geographic Name Server contains brief
information about most United States cities and geographic landmarks.”
(See Morgan at 422.) “Another, more interesting application is the
ListManager, a front end to LISTSERV programs operating electronic lists
such as PACSL, AUTOCAT, and LIBREF-L. ListManager automates the
procedures necessary to search the archives of these lists by keyword
Boolean queries, tum off mail from the list temporarily, retrieve a list of
the list's participants, or retrieve files from the lists.” (See Morgan at
423.)

906-11.c:
executing, on the network server, one or more
instructions in response to said commands;

HyperCard and QuickTime (Movie) discloses that the server executes
instructions in response to client commands. See, e.g., :

HyperCard interoperated with distributed applications. By way of
example, HyperCard provided for XCMDs that interoperated with
applications executing on server computers or network-connected devices.
The applications on the server executed in response to commands from the
XCMDs.
For example, HyperCard can connect to “any other computer (like a
bulletin board service, MCI Mail, or Dow Jones News Retrieval) that
offers asynchronous modem access” through HyperTalk script control.
(See Goodman at pp. 725 – 726. See also [Sadowski11] at 54, 55, 60, 74,
76.)
As another example, “HyperCard is also actively used in business as a tool
to design what are known as 'front ends' to information stored on IBM
(and other) mainframe computers.” (See Goodman at p. 726.) To
accomplish the connections to an IBM mainframe computer, external
commands (XCMDs), also called Application Programming Interfaces
(APIs), that link HyperCard to a 3270-style terminal (a terminal that is
used to connect to IBM mainframe computers) are added to HyperCard.
These are typically supplied by the 3270-style hardware manufacturers.
(See, e.g., Goodman at p. 727.) Concentrix Technology, Inc. designed
front ends to IBM’s PROFS using Avatar, DCA and Tri-data APIs

 29

Claim Text from ’906 Patent HyperCard and QuickTime (Movie)
(XCMDs). IBM’s PROFS is an electronic mail and group scheduling
program that runs on IBM mainframe computers. (See, e.g., Goodman at
p. 727 – 728.) These front ends together with IBM’s PROFS constitute a
distributed application.
Another example is described in [Powers], in which the author developed
software to enable a Macintosh to communicate with an IBM mainframe
computer from within HyperCard
As another example, “HyperCard is also used extensively in business for
accessing Structured Query Language (SQL) databases, usually running
on mainframes or minicomputers (but also on database servers on local
area networks).” (See Goodman at p. 728.) The databases, e.g., Oracle
and Sybase, provide XCMD toolkits for HyperCard users to allow
HyperCard stacks to access, retrieve and write data to the databases. “The
HyperCard XCMDs extract the data, and regular HyperTalk scripting puts
the data into fields or draws graphs based on that data.” See, e.g.,
Goodman at pp. 727 – 728. The XCMD together with the application
executing on the databases (connected through network) constitute a
distributed application.

As another example in which a HyperCard XCMD served as a front end to
applications running on remote servers, [Morgan] discloses XCMDs that
enable TCP-based client-server interactions. The XCMD together with
the applications running on the remote servers constituted a distributed
application. Morgan discloses two examples: Mini-atlas and Listmanager.
“A connection is established using the TCPActiveOpen function, which
establishes a connection with the remote socket (a connection between
computer processors allowing them to communicate in a fast, reliable
manner) and returns a connection ID.” (See Morgan at 421.)
“Alternatively, TCPPassiveOpen will allow a connection to be accepted
on a particular socket.” (See Morgan at 422.) “Mini-Atlas is a client for
the Geographic Name Server. The Geographic Name Server contains brief
information about most United States cities and geographic landmarks.”

 30

Claim Text from ’906 Patent HyperCard and QuickTime (Movie)
(See Morgan at 422.) “Another, more interesting application is the
ListManager, a front end to LISTSERV programs operating electronic lists
such as PACSL, AUTOCAT, and LIBREF-L. ListManager automates the
procedures necessary to search the archives of these lists by keyword
Boolean queries, tum off mail from the list temporarily, retrieve a list of
the list's participants, or retrieve files from the lists.” (See Morgan at
423.)

906-11.d:
sending information from said network server to
said client workstation in response to said executed
instructions; and

HyperCard and QuickTime (Movie) discloses that the server responds with
information to the client. See, e.g., :

HyperCard interoperated with distributed applications. By way of
example, HyperCard provided for XCMDs that interoperated with
applications executing on server computers or network-connected devices.
In response to communication from the XCMD, the server application
responded with information to the client.
For example, HyperCard can connect to “any other computer (like a
bulletin board service, MCI Mail, or Dow Jones News Retrieval) that
offers asynchronous modem access” through HyperTalk script control.
(See Goodman at pp. 725 – 726. See also [Sadowski11] at 54, 55, 60, 74,
76.)
As another example, “HyperCard is also actively used in business as a tool
to design what are known as 'front ends' to information stored on IBM
(and other) mainframe computers.” (See Goodman at p. 726.) To
accomplish the connections to an IBM mainframe computer, external
commands (XCMDs), also called Application Programming Interfaces
(APIs), that link HyperCard to a 3270-style terminal (a terminal that is
used to connect to IBM mainframe computers) are added to HyperCard.
These are typically supplied by the 3270-style hardware manufacturers.
(See, e.g., Goodman at p. 727.) Concentrix Technology, Inc. designed
front ends to IBM’s PROFS using Avatar, DCA and Tri-data APIs
(XCMDs). IBM’s PROFS is an electronic mail and group scheduling
program that runs on IBM mainframe computers. (See, e.g., Goodman at

 31

Claim Text from ’906 Patent HyperCard and QuickTime (Movie)
p. 727 – 728.) These front ends together with IBM’s PROFS constitute a
distributed application.
Another example is described in [Powers], in which the author developed
software to enable a Macintosh to communicate with an IBM mainframe
computer from within HyperCard.
As another example, “HyperCard is also used extensively in business for
accessing Structured Query Language (SQL) databases, usually running
on mainframes or minicomputers (but also on database servers on local
area networks).” (See Goodman at p. 728.) The databases, e.g., Oracle
and Sybase, provide XCMD toolkits for HyperCard users to allow
HyperCard stacks to access, retrieve and write data to the databases. “The
HyperCard XCMDs extract the data, and regular HyperTalk scripting puts
the data into fields or draws graphs based on that data.” See, e.g.,
Goodman at pp. 727 – 728. The XCMD together with the application
executing on the databases (connected through network) constitute a
distributed application.

As another example in which a HyperCard XCMD served as a front end to
applications running on remote servers, [Morgan] discloses XCMDs that
enable TCP-based client-server interactions. The XCMD together with
the applications running on the remote servers constituted a distributed
application. Morgan discloses two examples: Mini-atlas and Listmanager.
“A connection is established using the TCPActiveOpen function, which
establishes a connection with the remote socket (a connection between
computer processors allowing them to communicate in a fast, reliable
manner) and returns a connection ID.” (See Morgan at 421.)
“Alternatively, TCPPassiveOpen will allow a connection to be accepted
on a particular socket.” (See Morgan at 422.) “Mini-Atlas is a client for
the Geographic Name Server. The Geographic Name Server contains brief
information about most United States cities and geographic landmarks.”
(See Morgan at 422.) “Another, more interesting application is the
ListManager, a front end to LISTSERV programs operating electronic lists

 32

Claim Text from ’906 Patent HyperCard and QuickTime (Movie)
such as PACSL, AUTOCAT, and LIBREF-L. ListManager automates the
procedures necessary to search the archives of these lists by keyword
Boolean queries, tum off mail from the list temporarily, retrieve a list of
the list's participants, or retrieve files from the lists.” (See Morgan at
423.)

906-11.e:
processing said information at the client
workstation to interactively control said
controllable application.

HyperCard and QuickTime (Movie) discloses that the client uses information
from the server to interactively control the application. See, e.g., :

HyperCard interoperated with distributed applications. By way of
example, HyperCard provided for XCMDs that interoperated with
applications executing on server computers or network-connected devices.
In such usage, HyperCard and the XCMD operating on the client used
information from the server.
For example, HyperCard can connect to “any other computer (like a
bulletin board service, MCI Mail, or Dow Jones News Retrieval) that
offers asynchronous modem access” through HyperTalk script control.
(See Goodman at pp. 725 – 726; see also [Sadowski11] at 54, 55, 60, 74,
76.)
As another example, “HyperCard is also actively used in business as a tool
to design what are known as 'front ends' to information stored on IBM
(and other) mainframe computers.” (See Goodman at p. 726.) To
accomplish the connections to an IBM mainframe computer, external
commands (XCMDs), also called Application Programming Interfaces
(APIs), that link HyperCard to a 3270-style terminal (a terminal that is
used to connect to IBM mainframe computers) are added to HyperCard.
These are typically supplied by the 3270-style hardware manufacturers.
(See, e.g., Goodman at p. 727.) Concentrix Technology, Inc. designed
front ends to IBM’s PROFS using Avatar, DCA and Tri-data APIs
(XCMDs). IBM’s PROFS is an electronic mail and group scheduling
program that runs on IBM mainframe computers. (See, e.g., Goodman at
p. 727 – 728.) These front ends together with IBM’s PROFS constitute a
distributed application.

 33

Claim Text from ’906 Patent HyperCard and QuickTime (Movie)
Another example is described in [Powers], in which the author developed
software to enable a Macintosh to communicate with an IBM mainframe
computer from within HyperCard.
As another example, “HyperCard is also used extensively in business for
accessing Structured Query Language (SQL) databases, usually running
on mainframes or minicomputers (but also on database servers on local
area networks).” (See Goodman at p. 728.) The databases, e.g., Oracle
and Sybase, provide XCMD toolkits for HyperCard users to allow
HyperCard stacks to access, retrieve and write data to the databases. “The
HyperCard XCMDs extract the data, and regular HyperTalk scripting puts
the data into fields or draws graphs based on that data.” See, e.g.,
Goodman at pp. 727 – 728. The XCMD together with the application
executing on the databases (connected through network) constitute a
distributed application.

As another example in which a HyperCard XCMD served as a front end to
applications running on remote servers, [Morgan] discloses XCMDs that
enable TCP-based client-server interactions. The XCMD together with
the applications running on the remote servers constituted a distributed
application. Morgan discloses two examples: Mini-atlas and Listmanager.
“A connection is established using the TCPActiveOpen function, which
establishes a connection with the remote socket (a connection between
computer processors allowing them to communicate in a fast, reliable
manner) and returns a connection ID.” (See Morgan at 421.)
“Alternatively, TCPPassiveOpen will allow a connection to be accepted
on a particular socket.” (See Morgan at 422.) “Mini-Atlas is a client for
the Geographic Name Server. The Geographic Name Server contains brief
information about most United States cities and geographic landmarks.”
(See Morgan at 422.) “Another, more interesting application is the
ListManager, a front end to LISTSERV programs operating electronic lists
such as PACSL, AUTOCAT, and LIBREF-L. ListManager automates the
procedures necessary to search the archives of these lists by keyword

 34

Claim Text from ’906 Patent HyperCard and QuickTime (Movie)
Boolean queries, tum off mail from the list temporarily, retrieve a list of
the list's participants, or retrieve files from the lists.” (See Morgan at
423.)

906-13.a:
The computer program product of claim 8, wherein
additional instructions for controlling said
controllable application reside on said network
server, wherein said computer readable program
code for causing said client workstation to
interactively control said controllable application
on said client workstation includes:

HyperCard and QuickTime (Movie) discloses additional instructions on the
server See evidence recited for 906-11.a.

906-13.b:
computer readable program code for causing said
client workstation to issue from the
clientworkstation, one or more commands to the
network server;

HyperCard and QuickTime (Movie) discloses that the client issues commands to
the server. See evidence recited for 906-11.b

906-13.c:
computer readable program code for causing said
network server to execute one or more instructions
in response to said commands;

HyperCard and QuickTime (Movie) discloses that the server executes
instructions in response to client commands. See evidence recited for 906-11.c.

906-13.d:
computer readable program code for causing said
network sever to send information to said client
workstation in response to said executed
instructions; and

HyperCard and QuickTime (Movie) discloses that the server responds with
information to the client. See evidence recited for 906-11.d.

906-13.e:
computer readable program code for causing said
client workstation to process said information at
the client workstation to interactively control said
controllable application.

HyperCard and QuickTime (Movie) discloses that the client uses information
from the server to interactively control the application. See evidence recited for
906-11.e.

 35

 36

INVALIDITY CLAIM CHART FOR U.S. PATENT NO. 7,599,985

 “HYPERCARD AND QUICKTIME (MOVIE)” 2 AS INTENDED TO BE USED IN A COMPUTER SYSTEM AND DEMONSTRATION OF
SAME, FURTHER INFORMED BY:

o THE COMPLETE HYPERCARD 2.0 HANDBOOK, 3RD EDITION [PA-00288603] [GOODMAN90];
o ERIC LEASE MORGAN. "IMPLEMENTING TCP/IP COMMUNICATIONS WITH HYPERCARD." INFORMATION

TECHNOLOGY AND LIBRARIES, DEC. 1992; 11, 4; ABI/INFORM GLOBAL. PP. 421-432. [MORGAN92] [PA-
00290482];

o JOHN R. POWERS, III. "MAC TO MAINFRAME WITH HYPERCARD." MACTUTOR, JUNE 1990 [PA-00288589]
[POWERS90];

o DAVID L. DRUCKER AND MICHAEL D. MURIE. "QUICKTIME HANDBOOK: THE COMPLETE GUIDE TO MAC MOVIE
MAKING." AUGUST 1992. [DRUCKER92] [PA-00289694];

o JERRY BORRELL ET AL. "MASTERING THE WORLD OF QUICKTIME." FIRST EDITION, RANDOM HOUSE, 1993
[BORRELL93] [PA-00328099]; AND

o DECLARATION OF DAN SADOWSKI (APPENDIX D TO THIS REPORT) [SADOWSKI11].
o THE BODY OF MY REPORT HAS A NARRATIVE DESCRIPTION OF AUGMENTS AND SHOULD BE CONSIDERED PART OF THIS

CHART, AND VISE-VERSA, FOR THIS AND ALL MY CHARTS.

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)
985-1.a:
A method for running an application program in a
distributed hypermedia network environment,
wherein the network environment comprises at
least one client workstation and one network
server coupled to the network environment, the

HyperCard and QuickTime (Movie) discloses an application program. See, e.g.,
:

HyperCard is a computer program. It was installed onto a computer, such
as an Apple Macintosh computer, and launched as an executable program.
The videos that I am submitting along with this report show how this was

2 For all asserted claims this reference is a 103 reference due to my understanding of the plain meaning of the limitations relating to “location” (e.g. 901-1.f and
906-1.g and 985-1.f and 985.1g) and the Court’s discussion of the issue on page 17 of its August 22, 2011 Order. Thus, for these particular limitations, the
reference is not anticipatory, but rather, as explained in the body of my report, this limitation would be combined with a prior art web browser like Mosaic,
CERN’s web browser, Viola, or MediaView. Likewise, to satisfy the HTML limitations in the ’985 patent, the reference must be combined with a web browser
or HTML teaching, such as Mosaic, CERN’s web browser, or Viola. For both all such limitations it would have been obvious to a person of ordinary skill in the
art at the time to do so as explained in the body of my report and the teachings, for example, of Tim Berners-Lee posted on the CERN website discussing the
Web and relating features and pointers to other browser technologies including HyperCard, Viola and MediaView. This was an obvious and natural extension of
prior hypermedia functions and features and an inevitable development in the marketplace at the time of the invention and based on the state of the art.

 37

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)
method comprising: done. (See also Goodman at pp. 17-20) (describing installation and

operation of HyperCard on a computer); (Goodman at pp. xxxiii)
(describing that HyperCard is a computer program).

HyperCard and QuickTime (Movie) discloses a computer network environment.
See, e.g., :

HyperCard operating in a distributed hypermedia environment that
included clients and servers.
Specifically, stacks can be stored on or published to a file server and then
accessed by a user using HyperCard on a client workstation. (See
Goodman at pp. 737-739.) “On networks such as AppleShare and TOPS,
HyperCard sees file servers or other user’s published volumes just as
another disk drive attached to the Macintosh. If you have a button in a
stack on your own disk that is linked to a stack on a file server, the
pathname for that server stack will be stored in your Home stack’s
pathname cared for stacks…” (See Goodman at p. 737.) “If you develop
what we call information publishing stacks – those that come full of
information for users to browse through – you should be aware that such a
stack might be used on a network.” (See Goodman at p. 739.) Stacks
shared over a network “should be on the file server or, in the case of a
TOPS network, on a published volume.” (See Goodman at p. 738, see also
[Sadowski11] at 54, 55, 60, 74, 76.)
A network of computers containing HyperCard stacks is a distributed
hypermedia environment because HyperCard stacks contain hypermedia.
(See, e.g., Goodman at Chapter 52) (describing text, sound, animation, and
movies.) ("If you have a button in a stack on your own disk that is linked
to a stack on a file server, the pathname for that server stack will be stored
in your Home stack’s pathname card for stacks, just as it would be if it
were on your own hard disk").
As another example, HyperCard could interoperate with the TCP/IP
Internet. A software package called MacTCP and a set of XCMDs

 38

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)
provided with the HyperCard TCP Toolkit provided this functionality.
(See Morgan at 421.)

HyperCard and QuickTime (Movie) discloses a client workstation. See, e.g., :

HyperCard works in a distributed environment that includes clients and
servers.
Specifically, stacks can be stored on or published to a file server and then
accessed by a user using HyperCard on a client workstation. (See
Goodman at pp. 737-739; see also [Sadowski11] at 54, 55, 60, 74, 76.)
“On networks such as AppleShare and TOPS, HyperCard sees file servers
or other user’s published volumes just as another disk drive attached to the
Macintosh. If you have a button in a stack on your own disk that is linked
to a stack on a file server, the pathname for that server stack will be stored
in your Home stack’s pathname cared for stacks…” (See Goodman at p.
737.) “If you develop what we call information publishing stacks – those
that come full of information for users to browse through – you should be
aware that such a stack might be used on a network.” (See Goodman at p.
739.) Stacks shared over a network “should be on the file server or, in the
case of a TOPS network, on a published volume.” (See Goodman at p.
738.)
One mechanism by which stacks on a server were accessed from a client
was through buttons. (See Goodman at p. 737) ("If you have a button in a
stack on your own disk that is linked to a stack on a file server, the
pathname for that server stack will be stored in your Home stack’s
pathname card for stacks, just as it would be if it were on your own hard
disk")
Examples of HyperCard's client-server functionality are shown in the
videos I am submitting along with this expert report.

HyperCard and QuickTime (Movie) discloses a network server. See, e.g., :

 39

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)

HyperCard works in a distributed environment that includes clients and
servers.
Specifically, stacks can be stored on or published to a file server and then
accessed by a user using HyperCard on a client workstation. (See
Goodman at pp. 737-739.) “On networks such as AppleShare and TOPS,
HyperCard sees file servers or other user’s published volumes just as
another disk drive attached to the Macintosh. If you have a button in a
stack on your own disk that is linked to a stack on a file server, the
pathname for that server stack will be stored in your Home stack’s
pathname cared for stacks…” (See Goodman at p. 737.) “If you develop
what we call information publishing stacks – those that come full of
information for users to browse through – you should be aware that such a
stack might be used on a network.” (See Goodman at p. 739.) Stacks
shared over a network “should be on the file server or, in the case of a
TOPS network, on a published volume.” (See Goodman at p. 738.) See
also [Sadowski11] at 54, 55, 60, 74, 76.

One mechanism by which stacks on a server were accessed from a client
was through buttons. (See Goodman at p. 737) ("If you have a button in a
stack on your own disk that is linked to a stack on a file server, the
pathname for that server stack will be stored in your Home stack’s
pathname card for stacks, just as it would be if it were on your own hard
disk").
Examples of HyperCard's client-server functionality are shown in the
videos I am submitting along with this expert report.

HyperCard and QuickTime (Movie) discloses a distributed hypermedia
environment. See, e.g., :

HyperCard operating in a distributed hypermedia environment that
included clients and servers.

 40

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)
Specifically, stacks can be stored on or published to a file server and then
accessed by a user using HyperCard on a client workstation. (See
Goodman at pp. 737-739.) “On networks such as AppleShare and TOPS,
HyperCard sees file servers or other user’s published volumes just as
another disk drive attached to the Macintosh. If you have a button in a
stack on your own disk that is linked to a stack on a file server, the
pathname for that server stack will be stored in your Home stack’s
pathname cared for stacks…” (See Goodman at p. 737.) “If you develop
what we call information publishing stacks – those that come full of
information for users to browse through – you should be aware that such a
stack might be used on a network.” (See Goodman at p. 739.) Stacks
shared over a network “should be on the file server or, in the case of a
TOPS network, on a published volume.” (See Goodman at p. 738.). See
also [Sadowski11] at 54, 55, 60, 74, 76.
A network of computers containing HyperCard stacks is a distributed
hypermedia environment because HyperCard stacks contain hypermedia.
(See, e.g., Goodman at Chapter 52) (describing text, sound, animation, and
movies.) ("If you have a button in a stack on your own disk that is linked
to a stack on a file server, the pathname for that server stack will be stored
in your Home stack’s pathname card for stacks, just as it would be if it
were on your own hard disk").
As another example, HyperCard could interoperate with the TCP/IP
Internet. A software package called MacTCP and a set of XCMDs
provided with the HyperCard TCP Toolkit provided this functionality.
(See Morgan at 421.)

985-1.b:
receiving, at the client workstation from the
network server over the network environment, at
least one file containing information to enable a
browser application to display at least a portion of
a distributed hypermedia document within a
browser-controlled window;

HyperCard and QuickTime (Movie) discloses a browser application. See, e.g., :

HyperCard is a browser application because it displays hypermedia
documents and allows a user to browse through different parts of the
hypermedia documents and to other hypermedia documents using, for
example, buttons and links between cards and stacks.
As one example, HyperCard provided buttons, which were a navigational

 41

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)
tool used to browse through a HyperCard stack. (See Goodman at p. 35);
(Goodman at Chapter 11.)
The functionality of buttons could be specified using the HyperTalk
language. At the core of most HyperCard button activity is the link, which
ties together one card with another card. That other card can be the next
card in the stack; a previously viewed card in the same or a different stack;
the first card in another stack; or a specific card in another stack. (See
Goodman at Chapter 12.) HyperCard also provided for linked text. (See
Goodman at 72.)
Buttons could link to cards or stacks on the same computer, or on a server
computer. (See Goodman at p. 737.)
Examples of all this functionality are shown in the videos I am submitting
along with this report.

HyperCard and QuickTime (Movie) discloses a file containing enabling
information. See, e.g., :

HyperCard used a platform-specific file format that was associated with
the old Macintosh operating system. Files having that format were said to
have two forks; a data fork and a resource fork. From [Sadowski11],
resources such as code, interface item definitions, icons, script code or text
were objects that were stored in the resource fork of an application file.
(See also Goodman at 741-742.)
Thus, HyperCard stacks were stored in such a file. On the file system the
stack is organized into segments; one segment for each card. Again, from
[Sadowski11], “The placement of the content for each card is dictated by
coordinates for that content found in that segment. When presented to the
HyperCard application, the content of the segment is parsed, the various
content objects are located along with their precise coordinates, and then
they are placed on the display in accordance with the coordinates.”
The script code found during parsing a segment is enabling information.
The videos that I am submitting along with this report show examples of

 42

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)
HyperTalk scripts associated with hypermedia cards.
Also, HyperTalk scripts are described at length in Goodman (see, e.g.,
Goodman at Chapter 20.)

HyperCard and QuickTime (Movie) discloses that the file is received at the
client workstation from the network server. See, e.g., :

HyperCard works in a distributed environment that includes clients and
servers. In such environments, HyperCard operating on a client
computer receives HyperCard files from a server computer.
Specifically, stacks can be stored on or published to a file server and then
accessed by a user using HyperCard on a client workstation. (See
Goodman at pp. 737-739.) “On networks such as AppleShare and TOPS,
HyperCard sees file servers or other user’s published volumes just as
another disk drive attached to the Macintosh. If you have a button in a
stack on your own disk that is linked to a stack on a file server, the
pathname for that server stack will be stored in your Home stack’s
pathname cared for stacks…” (See Goodman at p. 737.) “If you develop
what we call information publishing stacks – those that come full of
information for users to browse through – you should be aware that such a
stack might be used on a network.” (See Goodman at p. 739.) Stacks
shared over a network “should be on the file server or, in the case of a
TOPS network, on a published volume.” (See Goodman at p. 738). See
also [Sadowski11] at 54, 55, 60, 74, 76.
HyperCard operating on a client received hypermedia files from a server:
as one example, a button could be configured to retrieve hypermedia cards
from a server. (See Goodman at p. 737) ("If you have a button in a stack
on your own disk that is linked to a stack on a file server, the pathname for
that server stack will be stored in your Home stack’s pathname card for
stacks, just as it would be if it were on your own hard disk").
Examples of HyperCard's client-server functionality are shown in the
videos I am submitting along with this expert report.

 43

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)

HyperCard and QuickTime (Movie) discloses that the browser displays at least a
portion of a distributed hypermedia document. See, e.g., :

HyperCard displays cards that are part of stacks. Cards are hypermedia
documents because they can include a variety of media types, including
text, sound, animation, and movies. (See, e.g., Goodman at Chapter 52)
(describing text, sound, animation, and movies in cards.) The videos that I
am submitting along with this report show examples of text, animations,
movies, and interactive movies.

HyperCard and QuickTime (Movie) discloses that at least a portion of a
hypermedia document is displayed in a browser-controlled window. See, e.g., :

HyperCard displays hypermedia cards in a HyperCard window. By way
of example, hypermedia cards displayed in the HyperCard window are
shown in Goodman at pp. 791-836. In addition, the videos I am
submitting along with this report show hypermedia cards displayed within
a HyperCard window.

985-1.c:
executing the browser application on the client
workstation, with the browser application:

HyperCard and QuickTime (Movie) discloses a browser application executing
on the client workstation. See, e.g., :

HyperCard is a browser application because it displays hypermedia
documents and allows a user to browse through different parts of the
hypermedia documents and to other hypermedia documents using, for
example, buttons and links between cards and stacks.
As one example, HyperCard provided buttons, which were a navigational
tool used to browse through a HyperCard stack. (See Goodman at p. 35);
(Goodman at Chapter 11.)
The functionality of buttons could be specified using the HyperTalk
language. At the core of most HyperCard button activity is the link, which
ties together one card with another card. That other card can be the next

 44

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)
card in the stack; a previously viewed card in the same or a different stack;
the first card in another stack; or a specific card in another stack. (See
Goodman at Chapter 12.) HyperCard also provided for linked text. (See
Goodman at 72.)
Buttons could link to cards or stacks on the same computer, or on a server
computer. (See Goodman at p. 737.)
Examples of all this functionality are shown in the videos I am submitting
along with this report.

985-1.d:
responding to text formats to initiate processing
specified by the text formats;

HyperCard and QuickTime (Movie) discloses responding to text formats to
initiate processing specified by the text formats, i.e., parsing text formats. See,
e.g., :

HyperCard used a platform-specific file format that was associated with
the old Macintosh operating system. Files having that format were said to
have two forks; a data fork and a resource fork. From [Sadowski11],
resources such as code, interface item definitions, icons, script code or text
were objects that were stored in the resource fork of an application file.
(See also Goodman at 741-742.)
Thus, HyperCard stacks were stored in such a file. On the file system the
stack is organized into segments; one segment for each card. Again, from
[Sadowski11], “The placement of the content for each card is dictated by
coordinates for that content found in that segment. When presented to the
HyperCard application, the content of the segment is parsed, the various
content objects are located along with their precise coordinates, and then
they are placed on the display in accordance with the coordinates.”

985-1.e:
displaying at least a portion of the document
within the browser-controlled window;

HyperCard and QuickTime (Movie) discloses that the browser displays a
hypermedia document. See, e.g., :

HyperCard displays cards that are part of stacks. Cards are hypermedia
documents because they can include a variety of media types, including
text, sound, animation, and movies. (See, e.g., Goodman at Chapter 52)

 45

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)
(describing text, sound, animation, and movies in cards.) The videos that I
am submitting along with this report show examples of text, animations,
movies, and interactive movies.

HyperCard and QuickTime (Movie) discloses that a hypermedia document is
displayed in a browser window. See, e.g., :

HyperCard displays hypermedia cards in a HyperCard window. By way
of example, hypermedia cards displayed in the HyperCard window are
shown in Goodman at pp. 791-836. In addition, the videos I am
submitting along with this report show hypermedia cards displayed within
a HyperCard window.

985-1.f:
identifying an embed text format which
corresponds to a first location in the document,
where the embed text format specifies the location
of at least a portion of an object external to the file,
where the object has type information associated
with it;

HyperCard and QuickTime (Movie) discloses identifying an embed text format.
See, e.g., :

HyperCard used a platform-specific file format that was associated with
the old Macintosh operating system. Files having that format were said to
have two forks; a data fork and a resource fork. From [Sadowski11],
resources such as code, interface item definitions, icons, script code or text
were objects that were stored in the resource fork of an application file.
Thus, HyperCard stacks were stored in such a file. On the file system the
stack is organized into segments; one segment for each card. Again, from
[Sadowski11], “The placement of the content for each card is dictated by
coordinates for that content found in that segment. When presented to the
HyperCard application, the content of the segment is parsed, the various
content objects are located along with their precise coordinates, and then
they are placed on the display in accordance with the coordinates.”
A HyperTalk script stored in the resource fork of a segment of a
HyperCard document is one type of embed text format and is discovered
at a first location when HyperCard parses the segment associated with a
card. Such a script could be:

 46

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)
on mouseUp
Movie <file name>, <window style>, <location>, <visible>, <layering>
end mouseUp

The Movie XCMD did not embed movie objects directly within a card,
but could show them in a borderless floating window. This was visually
similar to and an obvious variant of embedding.
(See Drucker, at 498.) "You would choose the borderless window style if
you wanted your movie to look as if it were actually graphics blending
within the card, like an animation that grew out of objects sitting on the
card before the move started." (See Drucker at 499.) It would have been
obvious to provide for an embed text format in place of the borderless
style because the difference between embedding directly within the card or
overlaying a borderless window is merely a design choice.

HyperCard and QuickTime (Movie) discloses that the embed text format
corresponds to a first location in the hypermedia document. See, e.g., :

HyperCard used a platform-specific file format that was associated with
the old Macintosh operating system. Files having that format were said to
have two forks; a data fork and a resource fork. From [Sadowski11],
resources such as code, interface item definitions, icons, script code or text
were objects that were stored in the resource fork of an application file.
Thus, HyperCard stacks were stored in such a file. On the file system the
stack is organized into segments; one segment for each card. Again, from
[Sadowski11], “The placement of the content for each card is dictated by
coordinates for that content found in that segment. When presented to the
HyperCard application, the content of the segment is parsed, the various
content objects are located along with their precise coordinates, and then
they are placed on the display in accordance with the coordinates.”
A HyperTalk script stored in the resource fork of a segment of a
HyperCard document is one type of embed text format and is discovered

 47

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)
at a first location when HyperCard parses the segment associated with a
card. Such a script could be:

on mouseUp
Movie <file name>, <window style>, <location>, <visible>, <layering>
end mouseUp

The Movie XCMD did not embed movie objects directly within a card,
but could show them in a borderless floating window. This was visually
similar to and an obvious variant of embedding.
(See Drucker, at 498.) "You would choose the borderless window style if
you wanted your movie to look as if it were actually graphics blending
within the card, like an animation that grew out of objects sitting on the
card before the move started." (See Drucker at 499.) It would have been
obvious to provide for an embed text format in place of the borderless
style because the difference between embedding directly within the card or
overlaying a borderless window is merely a design choice.

HyperCard and QuickTime (Movie) discloses that the embed text format
specifies the location of an object. See, e.g., :

HyperCard used a platform-specific file format that was associated with
the old Macintosh operating system. Files having that format were said to
have two forks; a data fork and a resource fork. From [Sadowski11],
resources such as code, interface item definitions, icons, script code or text
were objects that were stored in the resource fork of an application file.
Thus, HyperCard stacks were stored in such a file. On the file system the
stack is organized into segments; one segment for each card. Again, from
[Sadowski11], “The placement of the content for each card is dictated by
coordinates for that content found in that segment. When presented to the
HyperCard application, the content of the segment is parsed, the various
content objects are located along with their precise coordinates, and then

 48

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)
they are placed on the display in accordance with the coordinates.”
A HyperTalk script stored in the resource fork of a segment of a
HyperCard document is one type of embed text format and is discovered
at a first location when HyperCard parses the segment associated with a
card. . Such a script could be:

on mouseUp
Movie <file name>, <window style>, <location>, <visible>, <layering>
end mouseUp

The Movie XCMD did not embed movie objects directly within a card,
but could show them in a borderless floating window. This was visually
similar to and an obvious variant of embedding.
(See Drucker, at 498.) "You would choose the borderless window style if
you wanted your movie to look as if it were actually graphics blending
within the card, like an animation that grew out of objects sitting on the
card before the move started." (See Drucker at 499.) It would have been
obvious to provide for an embed text format in place of the borderless
style because the difference between embedding directly within the card or
overlaying a borderless window is merely a design choice.
The object in this script is a file, file name, stored elsewhere as a separate
file.

HyperCard and QuickTime (Movie) discloses that the object is external to the
file containing enabling information. See, e.g., :

HyperCard used a platform-specific file format that was associated with
the old Macintosh operating system. Files having that format were said to
have two forks; a data fork and a resource fork. From [Sadowski11],
resources such as code, interface item definitions, icons, script code or text
were objects that were stored in the resource fork of an application file.
Thus, HyperCard stacks were stored in such a file. On the file system the

 49

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)
stack is organized into segments; one segment for each card. Again, from
[Sadowski11], “The placement of the content for each card is dictated by
coordinates for that content found in that segment. When presented to the
HyperCard application, the content of the segment is parsed, the various
content objects are located along with their precise coordinates, and then
they are placed on the display in accordance with the coordinates.”
A HyperTalk script stored in the resource fork of a segment of a
HyperCard document is one type of embed text format and is discovered
at a first location when HyperCard parses the segment associated with a
card. . Such a script could be:

on mouseUp
Movie <file name>, <window style>, <location>, <visible>, <layering>
end mouseUp

(See Drucker, at 498.) The object in this script is a file, file name, which is
specified directly and is stored elsewhere as a separate file and is thus
external to the file containing enabling information, the (HyperCard)
document.

HyperCard and QuickTime (Movie) discloses that the object has associated type
information. See, e.g., :

HyperCard used a platform-specific file format that was associated with
the old Macintosh operating system. Files having that format were said to
have two forks; a data fork and a resource fork. From [Sadowski11],
resources such as code, interface item definitions, icons, script code or text
were objects that were stored in the resource fork of an application file.
Thus, HyperCard stacks were stored in such a file. On the file system the
stack is organized into segments; one segment for each card. Again, from
[Sadowski11], “The placement of the content for each card is dictated by
coordinates for that content found in that segment. When presented to the

 50

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)
HyperCard application, the content of the segment is parsed, the various
content objects are located along with their precise coordinates, and then
they are placed on the display in accordance with the coordinates.”
A HyperTalk script stored in the resource fork of a segment of a
HyperCard document is one type of embed text format and is discovered
at a first location when HyperCard parses the segment associated with a
card. . Such a script could be:

on mouseUp
Movie <file name>, <window style>, <location>, <visible>, <layering>
end mouseUp

(See Drucker, at 498.)The object in this script is a file, file name, which is
specified directly and is stored elsewhere as a separate file. In this case,
the syntax "Movie" is type information specifying that the object file name
is a Movie XCMD for a QuickTime movie object.

985-1.g:
utilizing the type information to identify and locate
an executable application external to the file; and

HyperCard and QuickTime (Movie) discloses that the browser uses type
information to identify and locate an executable application. See, e.g., :

HyperCard used a platform-specific file format that was associated with
the old Macintosh operating system. Files having that format were said to
have two forks; a data fork and a resource fork. From [Sadowski11],
resources such as code, interface item definitions, icons, script code or text
were objects that were stored in the resource fork of an application file.
Thus, HyperCard stacks were stored in such a file. On the file system the
stack is organized into segments; one segment for each card. Again, from
[Sadowski11], “The placement of the content for each card is dictated by
coordinates for that content found in that segment. When presented to the
HyperCard application, the content of the segment is parsed, the various
content objects are located along with their precise coordinates, and then
they are placed on the display in accordance with the coordinates.”
A HyperTalk script stored in the resource fork of a segment of a

 51

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)
HyperCard document is one type of embed text format and is discovered
at a first location when HyperCard parses the segment associated with a
card. Such a script could be:

on mouseUp
Movie <file name>, <window style>, <location>, <visible>, <layering>
end mouseUp

(See Drucker, at 498.)The object in this script is a file, file name, which is
specified directly and is stored elsewhere as a separate file. In this case,
the syntax "Movie" is type information specifying that the object file name
is a Movie XCMD for a QuickTime movie object. That type information
is found in the embed text format. The thus-located XCMD is a compiled
executable application.
Through the XCMD, HyperCard invokes functionality from the
QuickTime software extension. (See Drucker at 4); (Borrell at 1-4.) This
software extension includes various software components that enable
playback of and interaction with QuickTime movies. (Borrell at 1-4.)

HyperCard and QuickTime (Movie) discloses that the executable application is
external to the file containing enabling information. See, e.g., :

HyperCard used a platform-specific file format that was associated with
the old Macintosh operating system. Files having that format were said to
have two forks; a data fork and a resource fork. From [Sadowski11],
resources such as code, interface item definitions, icons, script code or text
were objects that were stored in the resource fork of an application file.
Thus, HyperCard stacks were stored in such a file. On the file system the
stack is organized into segments; one segment for each card. Again, from
[Sadowski11], “The placement of the content for each card is dictated by
coordinates for that content found in that segment. When presented to the
HyperCard application, the content of the segment is parsed, the various

 52

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)
content objects are located along with their precise coordinates, and then
they are placed on the display in accordance with the coordinates.”
A HyperTalk script stored in the resource fork of a segment of a
HyperCard document is one type of embed text format and is discovered
at a first location when HyperCard parses the segment associated with a
card. Such a script could be:

on mouseUp
Movie <file name>, <window style>, <location>, <visible>, <layering>
end mouseUp

(See Drucker, at 498.) The object in this script is a file, file name, which is
specified directly and is stored elsewhere as a separate file. In this case,
the syntax "Movie" is type information specifying that the object file name
is a Movie XCMD for a QuickTime movie object. That type information
is found in the embed text format. The thus-located XCMD is a compiled
executable application which can be stored anywhere on a computer disk,
external to the file containing enabling information. Through the XCMD,
HyperCard invokes functionality from the QuickTime software extension.
(See Drucker at 4); (Borrell at 1-4.) This software extension includes
various software components that enable playback of and interaction with
QuickTime movies. (Borrell at 1-4.)

985-1.h:
automatically invoking the executable application,
in response to the identifying of the embed text
format, to execute on the client workstation in
order to display the object and enable an end-user
to directly interact with the object while the object
is being displayed within a display area created at
the first location within the portion of the
hypermedia document being displayed in the
browser-controlled window.

HyperCard and QuickTime (Movie) discloses that the browser parses the embed
text format. See, e.g., :

HyperCard used a platform-specific file format that was associated with
the old Macintosh operating system. Files having that format were said to
have two forks; a data fork and a resource fork. From [Sadowski11],
resources such as code, interface item definitions, icons, script code or text
were objects that were stored in the resource fork of an application file.
Thus, HyperCard stacks were stored in such a file. On the file system the
stack is organized into segments; one segment for each card. Again, from

 53

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)
[Sadowski11], “The placement of the content for each card is dictated by
coordinates for that content found in that segment. When presented to the
HyperCard application, the content of the segment is parsed, the various
content objects are located along with their precise coordinates, and then
they are placed on the display in accordance with the coordinates.”
A HyperTalk script stored in the resource fork of a segment of a
HyperCard document is one type of embed text format and is discovered
at a first location when HyperCard parses the segment associated with a
card. Such a script could be:

on openCard
Movie <file name>, <window style>, <location>, <visible>, <layering>
end openCard

The Movie XCMD did not embed movie objects directly within a card,
but could show them in a borderless floating window. This was visually
similar to and an obvious variant of embedding.
(See Drucker, at 498.) "You would choose the borderless window style if
you wanted your movie to look as if it were actually graphics blending
within the card, like an animation that grew out of objects sitting on the
card before the move started." (See Drucker at 499.) It would have been
obvious to provide for an embed text format in place of the borderless
style because the difference between embedding directly within the card or
overlaying a borderless window is merely a design choice.
The browser (HyperCard) parses the embed text format to cause the movie
file name to be played on the relevant card.

HyperCard and QuickTime (Movie) discloses automatic invocation of the
executable application. See, e.g., :

HyperCard used a platform-specific file format that was associated with
the old Macintosh operating system. Files having that format were said to

 54

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)
have two forks; a data fork and a resource fork. From [Sadowski11],
resources such as code, interface item definitions, icons, script code or text
were objects that were stored in the resource fork of an application file.
(See also Goodman at 741-742.)
Thus, HyperCard stacks were stored in such a file. On the file system the
stack is organized into segments; one segment for each card. Again, from
[Sadowski11], “The placement of the content for each card is dictated by
coordinates for that content found in that segment. When presented to the
HyperCard application, the content of the segment is parsed, the various
content objects are located along with their precise coordinates, and then
they are placed on the display in accordance with the coordinates.”
(See Borrell at 197.) A HyperTalk script stored in the resource fork of a
segment of a HyperCard document is one type of embed text format and is
discovered at a first location when HyperCard parses the segment
associated with a card. . Such a script could be:

on openCard
Movie <file name>, <window style>, <location>, <visible>, <layering>
end openCard

(See Drucker, at 498.)The object in this script is a file, file name, which is
specified directly and is stored elsewhere as a separate file. In this case,
the syntax "Movie" is type information specifying that the object file name
is a Movie XCMD for a QuickTime movie object. That type information
is found in the embed text format. The thus-located XCMD is a compiled
executable application which can be stored anywhere on a computer disk.
The executable application, XCMD, displays the object, file name.
HyperCard provided for automatic invocation of executable applications,
without interactive action by the user, such as in the openCard script
above. (See, e.g., Goodman at pp. 347 – 348; 531, 709, 778, 809, 820 –
821) (giving examples of on openCard, on openStack, and on newCard).
One exemplary usage of QuickTime XCMDs in conjunction with the on

 55

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)
openCard event handler is set forth in Drucker at p. 505, and others are
demonstrated in the videos I am submitting along with this expert report.

HyperCard and QuickTime (Movie) discloses that the executable application
displays the object. See, e.g., :

HyperCard used a platform-specific file format that was associated with
the old Macintosh operating system. Files having that format were said to
have two forks; a data fork and a resource fork. From [Sadowski11],
resources such as code, interface item definitions, icons, script code or text
were objects that were stored in the resource fork of an application file.
Thus, HyperCard stacks were stored in such a file. On the file system the
stack is organized into segments; one segment for each card. Again, from
[Sadowski11], “The placement of the content for each card is dictated by
coordinates for that content found in that segment. When presented to the
HyperCard application, the content of the segment is parsed, the various
content objects are located along with their precise coordinates, and then
they are placed on the display in accordance with the coordinates.”
A HyperTalk script stored in the resource fork of a segment of a
HyperCard document is one type of embed text format and is discovered
at a first location when HyperCard parses the segment associated with a
card. . Such a script could be:

on openCard
Movie <file name>, <window style>, <location>, <visible>, <layering>
end openCard

(See Drucker, at 498.)The object in this script is a file, file name, which is
specified directly and is stored elsewhere as a separate file. In this case,
the syntax "Movie" is type information specifying that the object file name
is a Movie XCMD for a QuickTime movie object. That type information
is found in the embed text format. The thus-located XCMD is a compiled

 56

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)
executable application which can be stored anywhere on a computer disk.
The executable application, XCMD, displays the object, file name.
Through the XCMD, HyperCard invokes functionality from the
QuickTime software extension. (See Drucker at 4); (Borrell at 1-4.) This
software extension includes various software components that enable
playback of and interaction with QuickTime movies. (Borrell at 1-4.)
"The QuickTime extension provides three major pieces of new system
software the Movie Toolbox the Image Compression Manager and the
Component Manager Application programs use these software modules to
let you play back or record QuickTime movies." (See Borrell at 2.)

HyperCard and QuickTime (Movie) discloses that the executable application
enables direct interaction with the object. See, e.g., :

QuickTime enables direct interaction with the object.

By way of example, the Movie XCMD includes a controllerVisible
property, which indicates whether the standard controller (allowing play,
pause, rewind, fast forward, volume control, and slider bar control) is
visible. Also provided is the badge property: the badge enables pause and
play interaction. (See Drucker at 502); (Borrell at 7.)

Similarly, the QTMovie XCMD included a standard controller, unless the
noController option was selected (See Borrell at 201) or by using the
showController command (see Borrell at 203). As with the Movie
XCMD, QTMovie XCMD also provided a badge option. (See Borrell at
200) (Borrell at 7.)

Such a controller is shown below, annotated to indicate purpose.

 57

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)

As yet another option, suitable for use with both Movie XCMD and
QTMovie XCMD, one could create HyperCard buttons that would send
interactive commands to QuickTime software, thereby allowing users to
use those buttons for interaction.

By way of example for the Movie XCMD, one could program a
HyperCard button to play a movie using the send "play" syntax for that
button's HyperTalk script. (See Drucker at 504.)

Other commands include reverse, stepFwd, stepRev, and others. (See
Borrell at 203), all of which could be provided through HyperCard
interactive buttons.

HyperCard and QuickTime (Movie) discloses that interaction with the object is
at a first location in the hypermedia document. See, e.g., :

HyperCard used a platform-specific file format that was associated with
the old Macintosh operating system. Files having that format were said to
have two forks; a data fork and a resource fork. From [Sadowski11],
resources such as code, interface item definitions, icons, script code or text
were objects that were stored in the resource fork of an application file.
(See also Goodman at 741-742.)

Thus, HyperCard stacks were stored in such a file. On the file system the
stack is organized into segments; one segment for each card. Again, from
[Sadowski11], “The placement of the content for each card is dictated by

 58

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)
coordinates for that content found in that segment. When presented to the
HyperCard application, the content of the segment is parsed, the various
content objects are located along with their precise coordinates, and then
they are placed on the display in accordance with the coordinates.”

A HyperTalk script stored in the resource fork of a segment of a
HyperCard document is one type of embed text format and is discovered
at a first location when HyperCard parses the segment associated with a
card. Such a script could be:

on openCard
Movie <file name>, <window style>, <location>, <visible>, <layering>
end openCard

(See Borrell at 197.) The object in this script is a file, fileName, which is
specified directly and is stored elsewhere as a separate file. The object is
displayed in a location that corresponds to the first location (e.g. the
segment of the stack corresponding to the card). Interaction with the object
at the first location is provided by a standard controller which is associated
with the QTMovie XCMD. (See Borrell at 201, 203.)

Such a controller is shown below, annotated to indicate purpose.

985-2.a:
The method of claim 1 where: the information to
enable comprises text formats.

HyperCard and QuickTime (Movie) discloses that the enabling information in
the file is text formats. See, e.g., :

 59

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)
 HyperCard used a platform-specific file format that was associated with

the old Macintosh operating system. Files having that format were said to
have two forks; a data fork and a resource fork. From [Sadowski11],
resources such as code, interface item definitions, icons, script code or text
were objects that were stored in the resource fork of an application file.
(See also Goodman at 741-742.)
Thus, HyperCard stacks were stored in such a file. On the file system the
stack is organized into segments; one segment for each card. Again, from
[Sadowski11], “The placement of the content for each card is dictated by
coordinates for that content found in that segment. When presented to the
HyperCard application, the content of the segment is parsed, the various
content objects are located along with their precise coordinates, and then
they are placed on the display in accordance with the coordinates.”
A HyperTalk script stored in the resource fork of a segment of a
HyperCard document is one type of enabling information.
The videos that I am submitting along with this report show examples of
HyperTalk scripts associated with hypermedia cards.
Also, HyperTalk scripts are described at length in Goodman (see, e.g.,
Goodman at Chapter 20.)

985-3.a:
The method of claim 2 where the text formats are
HTML tags.

HyperCard used a platform-specific file format that was associated with
the old Macintosh operating system. Files having that format were said to
have two forks; a data fork and a resource fork. From [Sadowski11],
resources such as code, interface item definitions, icons, script code or text
were objects that were stored in the resource fork of an application file.
(See also Goodman at 741-742.)
Thus, HyperCard stacks were stored in such a file. On the file system the
stack is organized into segments; one segment for each card. Again, from
[Sadowski11], “The placement of the content for each card is dictated by
coordinates for that content found in that segment. When presented to the
HyperCard application, the content of the segment is parsed, the various

 60

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)
content objects are located along with their precise coordinates, and then
they are placed on the display in accordance with the coordinates.”

The text format tags used by HyperCard, while not HTML, are
nonetheless tags that HyperCard can recognize to direct the way it lays out
each card associated with each segment in the stack. HTML was known to
the HyperCard developers but storing and reading binary data to and from
the resource fork achieved an efficiency and speed not possible by parsing
raw text.

The videos that I am submitting along with this report show examples of
HyperTalk scripts associated with hypermedia cards.
Also, HyperTalk scripts are described at length in Goodman (see, e.g.,
Goodman at Chapter 20.)

985-4.a:
The method of claim 1 where the information
contained in the file received comprises at least
one embed text format.

HyperCard and QuickTime (Movie) discloses that the enabling information in
the file includes an embed text format. See, e.g., :

HyperCard used a platform-specific file format that was associated with
the old Macintosh operating system. Files having that format were said to
have two forks; a data fork and a resource fork. From [Sadowski11],
resources such as code, interface item definitions, icons, script code or text
were objects that were stored in the resource fork of an application file.
Thus, HyperCard stacks were stored in such a file. On the file system the
stack is organized into segments; one segment for each card. Again, from
[Sadowski11], “The placement of the content for each card is dictated by
coordinates for that content found in that segment. When presented to the
HyperCard application, the content of the segment is parsed, the various
content objects are located along with their precise coordinates, and then
they are placed on the display in accordance with the coordinates.”
A HyperTalk script stored in the resource fork of a segment of a
HyperCard document is one type of embed text format. Such a script

 61

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)
could be:

on mouseUp
Movie <file name>, <window style>, <location>, <visible>, <layering>
end mouseUp

The Movie XCMD did not embed movie objects directly within a card,
but could show them in a borderless floating window. This was visually
similar to and an obvious variant of embedding.
(See Drucker, at 498.) "You would choose the borderless window style if
you wanted your movie to look as if it were actually graphics blending
within the card, like an animation that grew out of objects sitting on the
card before the move started." (See Drucker at 499.) It would have been
obvious to provide for an embed text format in place of the borderless
style because the difference between embedding directly within the card or
overlaying a borderless window is merely a design choice.
The videos that I am submitting along with this report show examples of
HyperTalk scripts associated with hypermedia cards.

985-5.a:
The method of claim 1 where the step of
identifying an embed text format comprises:
parsing the received file to identify text formats
included in the received file.

HyperCard and QuickTime (Movie) discloses that the embed text format is
identified by parsing the file containing enabling information. See, e.g., :

HyperCard used a platform-specific file format that was associated with
the old Macintosh operating system. Files having that format were said to
have two forks; a data fork and a resource fork. From [Sadowski11],
resources such as code, interface item definitions, icons, script code or text
were objects that were stored in the resource fork of an application file.
Thus, HyperCard stacks were stored in such a file. On the file system the
stack is organized into segments; one segment for each card. Again, from
[Sadowski11], “The placement of the content for each card is dictated by
coordinates for that content found in that segment. When presented to the
HyperCard application, the content of the segment is parsed, the various

 62

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)
content objects are located along with their precise coordinates, and then
they are placed on the display in accordance with the coordinates.”
A HyperTalk script stored in the resource fork of a segment of a
HyperCard document is one type of enabling information and is
discovered by parsing a segment.
Such a script could be:

on mouseUp
Movie <file name>, <window style>, <location>, <visible>, <layering>
end mouseUp

The Movie XCMD did not embed movie objects directly within a card,
but could show them in a borderless floating window. This was visually
similar to and an obvious variant of embedding.
(See Drucker, at 498.) "You would choose the borderless window style if
you wanted your movie to look as if it were actually graphics blending
within the card, like an animation that grew out of objects sitting on the
card before the move started." (See Drucker at 499.) It would have been
obvious to provide for an embed text format in place of the borderless
style because the difference between embedding directly within the card or
overlaying a borderless window is merely a design choice.
The videos that I am submitting along with this report show examples of
HyperTalk scripts associated with hypermedia cards.

985-6.a:
The method of claim 5 where the parsing is by a
parser in the browser.

HyperCard and QuickTime (Movie) discloses that the parser is in the browser
See, e.g., :

HyperCard includes a parser. “Making cards is a procedure accomplished
through the HyperTalk scripting language…” (See Goodman at p. 77.)
HyperCard parses the stacks to display their contents to users. “…
HyperCard is interpreting the handler while executing it.” (See Goodman
at p. 336.)

 63

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)

985-7.a:
The method of claim 1 where the processing
specified by the text formats is specified directly.

HyperCard and QuickTime (Movie) discloses that the text formats directly
specify the processing. See, e.g., :

HyperCard used a platform-specific file format that was associated with
the old Macintosh operating system. Files having that format were said to
have two forks; a data fork and a resource fork. From [Sadowski11],
resources such as code, interface item definitions, icons, script code or text
were objects that were stored in the resource fork of an application file.
(See also Goodman at 741-742.)
Thus, HyperCard stacks were stored in such a file. On the file system the
stack is organized into segments; one segment for each card. Again, from
[Sadowski11], “The placement of the content for each card is dictated by
coordinates for that content found in that segment. When presented to the
HyperCard application, the content of the segment is parsed, the various
content objects are located along with their precise coordinates, and then
they are placed on the display in accordance with the coordinates.”
A HyperTalk script stored in the resource fork of a segment of a
HyperCard document is one type of text format that directly specifies
processing.
The videos that I am submitting along with this report show examples of
HyperTalk scripts associated with hypermedia cards.
Also, HyperTalk scripts are described at length in Goodman (see, e.g.,
Goodman at Chapter 20.)

985-8.a:
The method of claim 1 where the correspondence
is implied by the order of the text format in a set of
all of the text formats.

HyperCard and QuickTime (Movie) discloses that the correspondence is implied
by the order of text formats. See, e.g., :

HyperCard used a platform-specific file format that was associated with
the old Macintosh operating system. Files having that format were said to
have two forks; a data fork and a resource fork. From [Sadowski11],
resources such as code, interface item definitions, icons, script code or text

 64

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)
were objects that were stored in the resource fork of an application file.
(See also Goodman at 741-742.)
Thus, HyperCard stacks were stored in such a file. On the file system the
stack is organized into segments; one segment for each card. Again, from
[Sadowski11], “The placement of the content for each card is dictated by
coordinates for that content found in that segment. When presented to the
HyperCard application, the content of the segment is parsed, the various
content objects are located along with their precise coordinates, and then
they are placed on the display in accordance with the coordinates.”
Correspondence is implied by the order in which HyperCard parses the
objects it finds in the segment that defines a card. This is generally in the
order that was specified by the creator of the card.
The videos that I am submitting along with this report show examples of
HyperTalk scripts associated with hypermedia cards. Also, HyperTalk
scripts are described at length in Goodman (see, e.g., Goodman at Chapter
20.)

985-9.a:
The method of claim 1 where the embed text
format specifies the location of at least a portion of
an object directly.

HyperCard and QuickTime (Movie) discloses that the embed text format
specifies the location of the object directly. See, e.g., :

HyperCard used a platform-specific file format that was associated with
the old Macintosh operating system. Files having that format were said to
have two forks; a data fork and a resource fork. From [Sadowski11],
resources such as code, interface item definitions, icons, script code or text
were objects that were stored in the resource fork of an application file.
Thus, HyperCard stacks were stored in such a file. On the file system the
stack is organized into segments; one segment for each card. Again, from
[Sadowski11], “The placement of the content for each card is dictated by
coordinates for that content found in that segment. When presented to the
HyperCard application, the content of the segment is parsed, the various
content objects are located along with their precise coordinates, and then
they are placed on the display in accordance with the coordinates.”

 65

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)
A HyperTalk script stored in the resource fork of a segment of a
HyperCard document is one type of embed text format and is discovered
at a first location when HyperCard parses the segment associated with a
card. Such a script could be:

on mouseUp
Movie <file name>, <window style>, <location>, <visible>, <layering>
end mouseUp

The Movie XCMD did not embed movie objects directly within a card,
but could show them in a borderless floating window. This was visually
similar to and an obvious variant of embedding.
(See Drucker, at 498.) "You would choose the borderless window style if
you wanted your movie to look as if it were actually graphics blending
within the card, like an animation that grew out of objects sitting on the
card before the move started." (See Drucker at 499.) It would have been
obvious to provide for an embed text format in place of the borderless
style because the difference between embedding directly within the card or
overlaying a borderless window is merely a design choice.
(See Borrell at 197.) The direct attribute displays the movie directly
embedded within the card window. (See Borrell at 197.)
The object in this script is a file, file name, which is specified directly and
is stored elsewhere as a separate file.

985-10.a:
The method of claim 1 where having type
information associated is by including type
information in the embed text format.

HyperCard and QuickTime (Movie) discloses that the type information is in the
embed text format. See, e.g., :

HyperCard used a platform-specific file format that was associated with
the old Macintosh operating system. Files having that format were said to
have two forks; a data fork and a resource fork. From [Sadowski11],
resources such as code, interface item definitions, icons, script code or text
were objects that were stored in the resource fork of an application file.

 66

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)
Thus, HyperCard stacks were stored in such a file. On the file system the
stack is organized into segments; one segment for each card. Again, from
[Sadowski11], “The placement of the content for each card is dictated by
coordinates for that content found in that segment. When presented to the
HyperCard application, the content of the segment is parsed, the various
content objects are located along with their precise coordinates, and then
they are placed on the display in accordance with the coordinates.”
A HyperTalk script stored in the resource fork of a segment of a
HyperCard document is one type of embed text format and is discovered
at a first location when HyperCard parses the segment associated with a
card. . Such a script could be:

on mouseUp
Movie <file name>, <window style>, <location>, <visible>, <layering>
end mouseUp

(See Drucker, at 498.) The object in this script is a file, file name, which is
specified directly and is stored elsewhere as a separate file. In this case,
the syntax "Movie" is type information specifying that the object file name
is a Movie XCMD for a QuickTime movie object. That type information
is found in the embed text format.

985-11.a:
The method of claim 1 where automatically
invoking does not require interactive action by the
user.

HyperCard and QuickTime (Movie) discloses that automatic invocation does not
require interactive action by the user. See, e.g., :

HyperCard used a platform-specific file format that was associated with
the old Macintosh operating system. Files having that format were said to
have two forks; a data fork and a resource fork. From [Sadowski11],
resources such as code, interface item definitions, icons, script code or text
were objects that were stored in the resource fork of an application file.
(See also Goodman at 741-742.)
Thus, HyperCard stacks were stored in such a file. On the file system the

 67

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)
stack is organized into segments; one segment for each card. Again, from
[Sadowski11], “The placement of the content for each card is dictated by
coordinates for that content found in that segment. When presented to the
HyperCard application, the content of the segment is parsed, the various
content objects are located along with their precise coordinates, and then
they are placed on the display in accordance with the coordinates.”
(See Borrell at 197.) A HyperTalk script stored in the resource fork of a
segment of a HyperCard document is one type of embed text format and is
discovered at a first location when HyperCard parses the segment
associated with a card. . Such a script could be:

on openCard
Movie <file name>, <window style>, <location>, <visible>, <layering>
end openCard

(See Drucker, at 498.) The object in this script is a file, file name, which is
specified directly and is stored elsewhere as a separate file. In this case,
the syntax "Movie" is type information specifying that the object file name
is a Movie XCMD for a QuickTime movie object. That type information
is found in the embed text format. The thus-located XCMD is a compiled
executable application which can be stored anywhere on a computer disk.
The executable application, XCMD, displays the object, file name.
HyperCard provided for automatic invocation of executable applications,
without interactive action by the user, such as in the on openCard – end
openCard script above. (See, e.g., Goodman at pp. 347 – 348; 531, 709,
778, 809, 820 – 821) (giving examples of on openCard, on openStack, and
on newCard). One exemplary usage of QuickTime XCMDs in
conjunction with the on open card event handler is set forth in Drucker at
p. 505, and others are demonstrated in the videos I am submitting along
with this expert report.

985-16.a: HyperCard and QuickTime (Movie) discloses computer code physically

 68

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)
One or more computer readable media encoded
with software comprising computer executable
instructions, for use in a distributed hypermedia
network environment, wherein the network
environment comprises at least one client
workstation and one network server coupled to the
network environment, and when the software is
executed operable to:

embodied on a medium. See, e.g., :

The computer on which HyperCard executes includes a computer usable
media having computer readable program code physically embodied
therein. As one example, the videos I am submitting along with this report
show HyperCard version 2.1 executing on Apple Macintosh IIsi
computers running a System 7.1 operating system.
(See also Goodman at pp. 17-20) (describing installation of HyperCard
onto a computer.)

HyperCard and QuickTime (Movie) discloses a client workstation and a network
server in a distributed hypermedia environment. See evidence recited for 985-
1.a.

985-16.b:
receive, at the client workstation from the network
server over the network environment, at least one
file containing information to enable a browser
application to display at least a portion of a
distributed hypermedia document within a
browser-controlled window;

HyperCard and QuickTime (Movie) discloses a browser application; a file
containing enabling information received from a server; that the browser
displays at least a portion of a distributed hypermedia document; and that the
display is in a browser-controlled window. See evidence recited for 985-1.b.

985-16.c:
cause the client workstation to utilize the browser
to:

HyperCard and QuickTime (Movie) discloses a browser application executing
on the client workstation. See evidence recited for 985-1.c.

985-16.d:
respond to text formats to initiate processing
specified by the text formats;

HyperCard and QuickTime (Movie) discloses parsing text formats. See evidence
recited for 985-1.d.

985-16.e:
display at least a portion of the document within
the browser-controlled window;

HyperCard and QuickTime (Movie) discloses displaying at least a portion of the
document within the browser-controlled window. See evidence recited for 985-
1.e.

985-16.f:
identify an embed text format corresponding to a
first location in the document, the embed text

HyperCard and QuickTime (Movie) discloses identifying an embed text format;
that the embed text format corresponds to a first location in a hypermedia
document; that the embed text format specifies the location of at least a portion

 69

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)
format specifying the location of at least a portion
of an object external to the file, with the object
having type information associated with it;

of an object external to the file containing enabling information; and that the
object has associated type information. See evidence recited for 985-1.f.

985-16.g:
utilize the type information to identify and locate
an executable application external to the file; and

HyperCard and QuickTime (Movie) discloses using type information to identify
and locate an executable application external to the file. See evidence recited for
985-1.g.

985-16.h:
automatically invoke the executable application, in
response to the identifying of the embed text
format, to execute on the client workstation in
order to display the object and enable an end-user
to directly interact with the object while the object
is being displayed within a display area created at
the first location within the portion of the
hypermedia document being displayed in the
browser-controlled window.

HyperCard and QuickTime (Movie) discloses automatically invoking the
executable application; that the executable application displays the object and
enables an end-user to directly interact with it; and that the interaction with the
object is at a first location in a hypermedia document. See evidence recited for
985-1.h.

985-17.a:
The computer readable media of claim 16 where:
the information to enable comprises text formats.

HyperCard and QuickTime (Movie) discloses that the enabling information in
the file is text formats. See evidence recited for 985-2.a.

985-18.a:
The computer readable media of claim 17 where:
the text formats are HTML tags.

The text format tags used by HyperCard, while not HTML, are nonetheless tags
that HyperCard can recognize to direct the way it lays out each card associated
with each segment in the stack. HTML was known to the HyperCard developers
but storing and reading binary data to and from the resource fork achieved an
efficiency and speed not possible by parsing raw text. See evidence recited for
985-3.a.

985-19.a:
The computer readable media of claim 16 where:
the information contained in the file received
comprises at least one embed text format.

HyperCard and QuickTime (Movie) discloses that the enabling information in
the file includes an embed text format. See evidence recited for 985-4.a.

 70

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)

985-20.a:
A method of serving digital information in a
computer network environment having a network
server coupled the network environment, and
where the network environment is a distributed
hypermedia environment, the method comprising:

HyperCard and QuickTime (Movie) discloses digital information. See, e.g., :

The information that is exchanged between a client workstation operating
HyperCard and a network server in a Macintosh-based computer network
environment is digital information.
For example, a stack developed using HyperCard is stored as digital
information. A stack can be stored on a network server and can be
accessed by the client workstation using networking protocols that
transmitted information in digital form. Examples include TOPS networks
(described in Goodman at p. 738) or Ethertalk (shown in the videos I am
submitting along with this report).

HyperCard and QuickTime (Movie) discloses a network server in a distributed
hypermedia environment. See evidence recited for 985-1.a.

985-20.b:
communicating via the network server with at least
one client workstation over said network in order
to cause said client workstation to:

HyperCard and QuickTime (Movie) discloses a client workstation. See evidence
recited for 985-1.a.

HyperCard and QuickTime (Movie) discloses communicating via network server
in order to cause the client workstation to act. See, e.g., :

HyperCard interoperated with distributed applications. By way of
example, HyperCard provided for XCMDs that interoperated with
applications executing on other computers or network-connected devices.
The applications executing on the other computers or network-connected
devices communicated back to HyperCard operating in the client in order
to cause the client to act.
For example, HyperCard can connect to “any other computer (like a
bulletin board service, MCI Mail, or Dow Jones News Retrieval) that
offers asynchronous modem access” through HyperTalk script control.
(See Goodman at pp. 725 – 726. See also [Sadowski11] at 54, 55, 60, 74,
76.)

 71

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)
As another example, “HyperCard is also actively used in business as a tool
to design what are known as 'front ends' to information stored on IBM
(and other) mainframe computers.” (See Goodman at p. 726.) To
accomplish the connections to an IBM mainframe computer, external
commands (XCMDs), also called Application Programming Interfaces
(APIs), that link HyperCard to a 3270-style terminal (a terminal that is
used to connect to IBM mainframe computers) are added to HyperCard.
These are typically supplied by the 3270-style hardware manufacturers.
(See, e.g., Goodman at p. 727.) Concentrix Technology, Inc. designed
front ends to IBM’s PROFS using Avatar, DCA and Tri-data APIs
(XCMDs). IBM’s PROFS is an electronic mail and group scheduling
program that runs on IBM mainframe computers. (See, e.g., Goodman at
p. 727 – 728.) These front ends together with IBM’s PROFS constitute a
distributed application.
Another example is described in [Powers], in which the author developed
software to enable a Macintosh to communicate with an IBM mainframe
computer from within HyperCard.
As another example, “HyperCard is also used extensively in business for
accessing Structured Query Language (SQL) databases, usually running
on mainframes or minicomputers (but also on database servers on local
area networks).” (See Goodman at p. 728.) The databases, e.g., Oracle
and Sybase, provide XCMD toolkits for HyperCard users to allow
HyperCard stacks to access, retrieve and write data to the databases. “The
HyperCard XCMDs extract the data, and regular HyperTalk scripting puts
the data into fields or draws graphs based on that data.” See, e.g.,
Goodman at pp. 727 – 728. The XCMD together with the application
executing on the databases (connected through network) constitute a
distributed application.
As another example in which a HyperCard XCMD served as a front end to
applications running on remote servers, [Morgan] discloses XCMDs that
enable TCP-based client-server interactions. The XCMD together with
the applications running on the remote servers constituted a distributed

 72

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)
application. Morgan discloses two examples: Mini-atlas and Listmanager.
“A connection is established using the TCPActiveOpen function, which
establishes a connection with the remote socket (a connection between
computer processors allowing them to communicate in a fast, reliable
manner) and returns a connection ID.” (See Morgan at 421.)
“Alternatively, TCPPassiveOpen will allow a connection to be accepted
on a particular socket.” (See Morgan at 422.) “Mini-Atlas is a client for
the Geographic Name Server. The Geographic Name Server contains brief
information about most United States cities and geographic landmarks.”
(See Morgan at 422.) “Another, more interesting application is the
ListManager, a front end to LISTSERV programs operating electronic lists
such as PACSL, AUTOCAT, and LIBREF-L. ListManager automates the
procedures necessary to search the archives of these lists by keyword
Boolean queries, tum off mail from the list temporarily, retrieve a list of
the list's participants, or retrieve files from the lists.” (See 423.)

985-20.c:
receive, over said network environment from said
server, at least one file containing information to
enable a browser application to display at least a
portion of a distributed hypermedia document
within a browser-controlled window;

HyperCard and QuickTime (Movie) discloses a browser application; a file
containing enabling information received from a server; that the browser
displays at least a portion of a distributed hypermedia document; and that the
display is in a browser-controlled window. See evidence recited for 985-1.b.

985-20.d:
execute, at said client workstation, a browser
application, with the browser application:

HyperCard and QuickTime (Movie) discloses a browser application executing
on the client workstation. See evidence recited for 985-1.c.

985-20.e:
responding to text formats to initiate processing
specified by the text formats;

HyperCard and QuickTime (Movie) discloses parsing text formats. See evidence
recited for 985-1.d.

985-20.f:
displaying, on said client workstation, at least a
portion of the document within the browser-
controlled window;

HyperCard and QuickTime (Movie) discloses displaying at least a portion of the
document within the browser-controlled window. See evidence recited for 985-
1.e.

985-20.g: HyperCard and QuickTime (Movie) discloses identifying an embed text format;

 73

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)
identifying an embed text format which
corresponds to a first location in the document,
where the embed text format specifies the location
of at least a portion of an object external to the file,
where the object has type information associated
with it;

that the embed text format corresponds to a first location in a hypermedia
document; that the embed text format specifies the location of at least a portion
of an object external to the file containing enabling information; and that the
object has associated type information. See evidence recited for 985-1.f.

985-20.h:
utilizing the type information to identify and locate
an executable application external to the file; and

HyperCard and QuickTime (Movie) discloses using type information to identify
and locate an executable application external to the file. See evidence recited for
985-1.g.

985-20.i:
automatically invoking the executable application,
in response to the identifying of the embed text
format, to execute on the client workstation in
order to display the object and enable an end-user
to directly interact with the object while the object
is being displayed within a display area created at
the first location within the portion of the
hypermedia document being displayed in the
browser-controlled window.

HyperCard and QuickTime (Movie) discloses automatically invoking the
executable application; that the executable application displays the object and
enables an end-user to directly interact with it; and that the interaction with the
object is at a first location in a hypermedia document. See evidence recited for
985-1.h.

985-21.a:
The method of claim 20 where: the information to
enable comprises text formats.

HyperCard and QuickTime (Movie) discloses that the enabling information in
the file is text formats. See evidence recited for 985-2.a.

985-22.a:
The method of claim 21 where: the text formats
are HTML tags.

The text format tags used by HyperCard, while not HTML, are nonetheless tags
that HyperCard can recognize to direct the way it lays out each card associated
with each segment in the stack. HTML was known to the HyperCard developers
but storing and reading binary data to and from the resource fork achieved an
efficiency and speed not possible by parsing raw text. See evidence recited for
985-3.a.

985-23.a: HyperCard and QuickTime (Movie) discloses that the enabling information in

 74

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)
The method of claim 20 where: the information
contained in the file received comprises at least
one embed text format.

the file includes an embed text format. See evidence recited for 985-4.a.

985-24.a:
A method for running an executable application in
a computer network environment, wherein said
network environment has at least one client
workstation and one network server coupled to a
network environment, the method comprising:

HyperCard and QuickTime (Movie) discloses a client workstation and a network
server in a network environment. See evidence recited for 985-1.a.

HyperCard and QuickTime (Movie) discloses an executable application. See
evidence recited for 985-1.g.

985-24.b:
enabling an end-user to directly interact with an
object by utilizing said executable application to
interactively process said object while the object is
being displayed within a display area created at a
first location within a portion of a hypermedia
document being displayed in a browser-controlled
window,

HyperCard and QuickTime (Movie) discloses displaying at least a portion of the
document within the browser-controlled window. See evidence recited for 985-
1.e.

HyperCard and QuickTime (Movie) discloses an object external to a file
containing enabling information. See evidence recited for 985-1.f.

HyperCard and QuickTime (Movie) discloses that there is enabling of an end-
user to directly interact with the object. See, e.g., :

QuickTime enables an end-user to directly interact with the object.

By way of example, the Movie XCMD includes a controllerVisible
property, which indicates whether the standard controller (allowing play,
pause, rewind, fast forward, volume control, and slider bar control) is
visible. Also provided is the badge property: the badge enables pause and
play interaction. (See Drucker at 502); (Borrell at 7.)

Similarly, the QTMovie XCMD included a standard controller, unless the
noController option was selected (See Borrell at 201) or by using the
showController command (see Borrell at 203). As with the Movie
XCMD, QTMovie XCMD also provided a badge option. (See Borrell at

 75

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)
200) (Borrell at 7.)

Such a controller is shown below, annotated to indicate purpose.

As yet another option, suitable for use with both Movie XCMD and
QTMovie XCMD, one could create HyperCard buttons that would send
interactive commands to QuickTime software, thereby allowing users to
use those buttons for interaction.

By way of example for the Movie XCMD, one could program a
HyperCard button to play a movie using the send "play" syntax for that
button's HyperTalk script. (See Drucker at 504.)
Other commands include reverse, stepFwd, stepRev, and others. (See
Borrell at 203), all of which could be provided through HyperCard
interactive buttons.

HyperCard and QuickTime (Movie) discloses that the interaction with the object
is at a first location in a hypermedia document. See evidence recited for 985-1.h.

HyperCard and QuickTime (Movie) discloses that the object is displayed at a
first location within a portion of the hypermedia document being displayed. See,
e.g., :

HyperCard used a platform-specific file format that was associated with
the old Macintosh operating system. Files having that format were said to
have two forks; a data fork and a resource fork. From [Sadowski11],
resources such as code, interface item definitions, icons, script code or text

 76

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)
were objects that were stored in the resource fork of an application file.
Thus, HyperCard stacks were stored in such a file. On the file system the
stack is organized into segments; one segment for each card. Again, from
[Sadowski11], “The placement of the content for each card is dictated by
coordinates for that content found in that segment. When presented to the
HyperCard application, the content of the segment is parsed, the various
content objects are located along with their precise coordinates, and then
they are placed on the display in accordance with the coordinates.”
A HyperTalk script stored in the resource fork of a segment of a
HyperCard document is one type of embed text format and is discovered
at a first location when HyperCard parses the segment associated with a
card. Such a script could be:
on mouseUp
Movie <file name>, <window style>, <location>, <visible>, <layering>
end mouseUp
(See Drucker, at 498.) The object in this script is a file, file name, which
is specified directly and is stored elsewhere as a separate file. The object is
displayed in a location that corresponds to the first location (e.g. the
segment of the stack corresponding to the card).

985-24.c:
wherein said network environment is a distributed
hypermedia environment,

HyperCard and QuickTime (Movie) discloses a client workstation and a network
server in a distributed hypermedia environment. See evidence recited for 985-
1.a.

985-24.d:
wherein said client workstation receives, over said
network environment from said server, at least one
file containing information to enable said browser
application to display, on said client workstation,
at least said portion of said distributed hypermedia
document within said browser-controlled window,

HyperCard and QuickTime (Movie) discloses a browser application; a file
containing enabling information received from a server; that the browser
displays at least a portion of a distributed hypermedia document; and that the
display is in a browser-controlled window. See evidence recited for 985-1.b.

985-24.e:
wherein said executable application is external to
said file,

HyperCard and QuickTime (Movie) discloses an executable application external
to the file. See evidence recited for 985-1.g.

 77

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)
985-24.f:
wherein said client workstation executes the
browser application, with the browser application
responding to text formats to initiate processing
specified by the text formats,

HyperCard and QuickTime (Movie) discloses a browser application executing
on the client workstation. See evidence recited for 985-1.c.

HyperCard and QuickTime (Movie) discloses parsing text formats. See evidence
recited for 985-1.d.

985-24.g:
wherein at least said portion of the document is
displayed within the browser-controlled window,

HyperCard and QuickTime (Movie) discloses displaying at least a portion of the
document within the browser-controlled window. See evidence recited for 985-
1.e.

985-24.h:
wherein an embed text format which corresponds
to said first location in the document is identified
by the browser,

HyperCard and QuickTime (Movie) discloses identifying an embed text format
and that the embed text format corresponds to a first location in a hypermedia
document. See evidence recited for 985-1.f.

985-24.i:
wherein the embed text format specifies the
location of at least a portion of said object external
to the file,

HyperCard and QuickTime (Movie) discloses that the embed text format
specifies the location of at least a portion of an object external to the file
containing enabling information. See evidence recited for 985-1.f.

985-24.j:
wherein the object has type information associated
with it,

HyperCard and QuickTime (Movie) discloses that the object has associated type
information. See evidence recited for 985-1.f.

985-24.k:
wherein the type information is utilized by the
browser to identify and locate said executable
application, and

HyperCard and QuickTime (Movie) discloses using type information to identify
and locate an executable application external to the file. See evidence recited for
985-1.g.

985-24.l:
wherein the executable application is automatically
invoked by the browser, in response to the
identifying of the embed text format.

HyperCard and QuickTime (Movie) discloses automatically invoking the
executable application. See evidence recited for 985-1.h.

985-25.a:
The method of claim 24 where: the information to
enable comprises text formats.

HyperCard and QuickTime (Movie) discloses that the enabling information in
the file is text formats. See evidence recited for 985-2.a.

 78

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)
985-26.a:
The method of claim 25 where: the text formats
are HTML tags.

The text format tags used by HyperCard, while not HTML, are nonetheless tags
that HyperCard can recognize to direct the way it lays out each card associated
with each segment in the stack. HTML was known to the HyperCard developers
but storing and reading binary data to and from the resource fork achieved an
efficiency and speed not possible by parsing raw text. See evidence recited for
985-3.a.

985-27.a:
The method of claim 24 where: the information
contained in the file received comprises at least
one embed text format.

HyperCard and QuickTime (Movie) discloses that the enabling information in
the file includes an embed text format. See evidence recited for 985-4.a.

985-28.a:
One or more computer readable media encoded
with software comprising an executable
application for use in a system having at least one
client workstation and one network server coupled
to a network environment, operable to:

HyperCard and QuickTime (Movie) discloses computer code physically
embodied on a medium. See evidence recited for 985-16.a.

HyperCard and QuickTime (Movie) discloses a client workstation and a network
server in a network environment. See evidence recited for 985-1.a.

HyperCard and QuickTime (Movie) discloses an executable application. See
evidence recited for 985-1.g.

985-28.b:
cause the client workstation to display an object
and enable an end-user to directly interact with
said object while the object is being displayed
within a display area created at a first location
within a portion of a hypermedia document being
displayed in a browser-controlled window,

HyperCard and QuickTime (Movie) discloses displaying at least a portion of the
document within the browser-controlled window. See evidence recited for 985-
1.e.

HyperCard and QuickTime (Movie) discloses an object external to a file
containing enabling information. See evidence recited for 985-1.f.

HyperCard and QuickTime (Movie) discloses that there is enabling of an end-
user to directly interact with the object. See evidence recited for 985-24.b.

HyperCard and QuickTime (Movie) discloses that the interaction with the object
is at a first location in a hypermedia document. See evidence recited for 985-1.h.

 79

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)

HyperCard and QuickTime (Movie) discloses that the object is displayed within
a display area created at the first location.. See, e.g., :

HyperCard used a platform-specific file format that was associated with
the old Macintosh operating system. Files having that format were said to
have two forks; a data fork and a resource fork. From [Sadowski11],
resources such as code, interface item definitions, icons, script code or text
were objects that were stored in the resource fork of an application file.
Thus, HyperCard stacks were stored in such a file. On the file system the
stack is organized into segments; one segment for each card. Again, from
[Sadowski11], “The placement of the content for each card is dictated by
coordinates for that content found in that segment. When presented to the
HyperCard application, the content of the segment is parsed, the various
content objects are located along with their precise coordinates, and then
they are placed on the display in accordance with the coordinates.”
A HyperTalk script stored in the resource fork of a segment of a
HyperCard document is one type of embed text format and is discovered
at a first location when HyperCard parses the segment associated with a
card. Such a script could be:

on mouseUp
Movie <file name>, <window style>, <location>, <visible>, <layering>
end mouseUp

(See Drucker, at 498.) The object in this script is a file, file name, which
is specified directly and is stored elsewhere as a separate file. The object is
displayed in a location that corresponds to the first location (e.g. the
segment of the stack corresponding to the card).

985-28.c:
wherein said network environment is a distributed
hypermedia environment,

HyperCard and QuickTime (Movie) discloses a client workstation and a network
server in a distributed hypermedia environment. See evidence recited for 985-
1.a.

 80

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)
985-28.d:
wherein said client workstation receives, over said
network environment from said server, at least one
file containing information to enable said browser
application to display, on said client workstation,
at least said portion of said distributed hypermedia
document within said browser-controlled window,

HyperCard and QuickTime (Movie) discloses a browser application; a file
containing enabling information received from a server; that the browser
displays at least a portion of a distributed hypermedia document; and that the
display is in a browser-controlled window. See evidence recited for 985-1.b.

985-28.e:
wherein said executable application is external to
said file,

HyperCard and QuickTime (Movie) discloses an executable application external
to the file. See evidence recited for 985-1.g.

985-28.f:
wherein said client workstation executes said
browser application, with the browser application
responding to text formats to initiate processing
specified by the text formats,

HyperCard and QuickTime (Movie) discloses a browser application executing
on the client workstation. See evidence recited for 985-1.c.

HyperCard and QuickTime (Movie) discloses parsing text formats. See evidence
recited for 985-1.d.

985-28.g:
wherein at least said portion of the document is
displayed within the browser-controlled window,

HyperCard and QuickTime (Movie) discloses displaying at least a portion of the
document within the browser-controlled window. See evidence recited for 985-
1.e.

985-28.h:
wherein an embed text format which corresponds
to said first location in the document is identified
by the browser,

HyperCard and QuickTime (Movie) discloses identifying an embed text format
and that the embed text format corresponds to a first location in a hypermedia
document. See evidence recited for 985-1.f.

985-28.i:
wherein the embed text format specifies the
location of at least a portion of said object external
to the file,

HyperCard and QuickTime (Movie) discloses that the embed text format
specifies the location of at least a portion of an object external to the file
containing enabling information. See evidence recited for 985-1.f.

985-28.j:
wherein the object has type information associated
with it,

HyperCard and QuickTime (Movie) discloses that the object has associated type
information. See evidence recited for 985-1.f.

985-28.k:
wherein the type information is utilized by the
browser to identify and locate said executable

HyperCard and QuickTime (Movie) discloses using type information to identify
and locate an executable application external to the file. See evidence recited for
985-1.g.

 81

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)
application, and
985-28.l:
wherein the executable application is automatically
invoked by the browser, in response to the
identifying of the embed text format.

HyperCard and QuickTime (Movie) discloses automatically invoking the
executable application. See evidence recited for 985-1.h.

985-36.a:
A method for running an application program in a
distributed hypermedia network environment,
wherein the distributed hypermedia network
environment comprises at least one client
workstation and one remote network server
coupled to the distributed hypermedia network
environment, the method comprising:

HyperCard and QuickTime (Movie) discloses an application program in a
distributed hypermedia environment comprising at least client workstation and
network server. See evidence recited for 985-1.a.

985-36.b:
receiving, at the client workstation from the
network server over the distributed hypermedia
network environment, at least one file containing
information to enable a browser application to
display at least a portion of a distributed
hypermedia document within a browser-controlled
window;

HyperCard and QuickTime (Movie) discloses a browser application; a file
containing enabling information; that the file is received at the client workstation
from the network server; that the browser displays at least a portion of a
distributed hypermedia document; and that at least a portion of a hypermedia
document is displayed in a browser-controlled window. See evidence recited for
985-1.b.

985-36.c:
executing the browser application on the client
workstation, with the browser application:

HyperCard and QuickTime (Movie) discloses a browser application executing
on the client workstation. See evidence recited for 985-1.c.

985-36.d:
responding to text formats to initiate processing
specified by the text formats;

HyperCard and QuickTime (Movie) discloses parsing text formats. See evidence
recited for 985-1.d.

985-36.e:
displaying at least a portion of the document
within the browser-controlled window;

HyperCard and QuickTime (Movie) discloses displaying at least a portion of the
document within the browser-controlled window. See evidence recited for 985-
1.e.

985-36.f: HyperCard and QuickTime (Movie) discloses an object. See, e.g., :

 82

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)
identifying an embed text format which
corresponds to a first location in the document,
where the embed text format specifies the location
of at least a portion of an object;

HyperCard used a platform-specific file format that was associated with
the old Macintosh operating system. Files having that format were said to
have two forks; a data fork and a resource fork. From [Sadowski11],
resources such as code, interface item definitions, icons, script code or text
were objects that were stored in the resource fork of an application file.
Thus, HyperCard stacks were stored in such a file. On the file system the
stack is organized into segments; one segment for each card. Again, from
[Sadowski11], “The placement of the content for each card is dictated by
coordinates for that content found in that segment. When presented to the
HyperCard application, the content of the segment is parsed, the various
content objects are located along with their precise coordinates, and then
they are placed on the display in accordance with the coordinates.”
A HyperTalk script stored in the resource fork of a segment of a
HyperCard document is one type of embed text format and is discovered
at a first location when HyperCard parses the segment associated with a
card. Such a script could be:

on mouseUp
Movie <file name>, <window style>, <location>, <visible>, <layering>
end mouseUp

(See Drucker, at 498.)
The object in this script is a file, file name, which is specified directly and
is stored elsewhere as a separate file.

HyperCard and QuickTime (Movie) discloses identifying an embed text format;
that the embed text format corresponds to a first location in the hypermedia
document; and that the embed text format specifies the location of an object. See
evidence recited for 985-1.f.

985-36.g:
identifying and locating an executable application

HyperCard and QuickTime (Movie) discloses that the browser identifies and
locates an executable application associated with the object. See, e.g.,

 83

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)
associated with the object; and

HyperCard used a platform-specific file format that was associated with
the old Macintosh operating system. Files having that format were said to
have two forks; a data fork and a resource fork. From [Sadowski11],
resources such as code, interface item definitions, icons, script code or text
were objects that were stored in the resource fork of an application file.
Thus, HyperCard stacks were stored in such a file. On the file system the
stack is organized into segments; one segment for each card. Again, from
[Sadowski11], “The placement of the content for each card is dictated by
coordinates for that content found in that segment. When presented to the
HyperCard application, the content of the segment is parsed, the various
content objects are located along with their precise coordinates, and then
they are placed on the display in accordance with the coordinates.”
A HyperTalk script stored in the resource fork of a segment of a
HyperCard document is one type of embed text format and is discovered
at a first location when HyperCard parses the segment associated with a
card. Such a script could be:

on mouseUp
Movie <file name>, <window style>, <location>, <visible>, <layering>
end mouseUp

(See Drucker, at 498.) The object in this script is a file, file name, which is
specified directly and is stored elsewhere as a separate file. In this case,
the syntax "Movie" is type information specifying that the object file name
is a Movie XCMD for a QuickTime movie object. That type information
is found in the embed text format. The thus-located XCMD is a compiled
executable application. Through the XCMD, HyperCard invokes
functionality from the QuickTime software extension. (See Drucker at 4);
(Borrell at 1-4.) This software extension includes various software
components that enable playback of and interaction with QuickTime
movies. (Borrell at 1-4.)

 84

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)
985-36.h:
automatically invoking the executable application,
in response to the identifying of the embed text
format, in order to enable an end-user to directly
interact with the object, while the object is being
displayed within a display area created at the first
location within the portion of the hypermedia
document being displayed in the browser-
controlled window,

HyperCard and QuickTime (Movie) discloses identifying an embed text format.
See evidence recited in 985-1.f.

HyperCard and QuickTime (Movie) discloses automatic invocation of the
executable application; that the executable application displays the object; that
the executable application enables direct interaction with the object; and that
interaction with the object is at a first location in the hypermedia document. See
evidence recited in 985-1.h.

HyperCard and QuickTime (Movie) discloses that the object is displayed at a
first location within a portion of the hypermedia document being displayed. See
evidence recited at 985-24.b.

HyperCard and QuickTime (Movie) discloses that a hypermedia document is
displayed in a browser window. See, e.g., evidence recited for 985-1.e.

985-36.i:
wherein the executable application is part of a
distributed application, and

HyperCard and QuickTime (Movie) discloses a distributed application. See,
e.g., :

HyperCard interoperated with distributed applications. By way of
example, HyperCard provided for XCMDs that interoperated with
applications executing on other computers or network-connected devices.
For example, HyperCard can connect to “any other computer (like a
bulletin board service, MCI Mail, or Dow Jones News Retrieval) that
offers asynchronous modem access” through HyperTalk script control.
(See Goodman at pp. 725 – 726. See also [Sadowski11] at 54, 55, 60, 74,
76.)
As another example, “HyperCard is also actively used in business as a tool
to design what are known as 'front ends' to information stored on IBM
(and other) mainframe computers.” (See Goodman at p. 726.) To
accomplish the connections to an IBM mainframe computer, external

 85

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)
commands (XCMDs), also called Application Programming Interfaces
(APIs), that link HyperCard to a 3270-style terminal (a terminal that is
used to connect to IBM mainframe computers) are added to HyperCard.
These are typically supplied by the 3270-style hardware manufacturers.
(See, e.g., Goodman at p. 727.) Concentrix Technology, Inc. designed
front ends to IBM’s PROFS using Avatar, DCA and Tri-data APIs
(XCMDs). IBM’s PROFS is an electronic mail and group scheduling
program that runs on IBM mainframe computers. (See, e.g., Goodman at
p. 727 – 728.) These front ends together with IBM’s PROFS constitute a
distributed application.
Another example is described in [Powers], in which the author developed
software to enable a Macintosh to communicate with an IBM mainframe
computer from within HyperCard.
As another example, “HyperCard is also used extensively in business for
accessing Structured Query Language (SQL) databases, usually running
on mainframes or minicomputers (but also on database servers on local
area networks).” (See Goodman at p. 728.) The databases, e.g., Oracle
and Sybase, provide XCMD toolkits for HyperCard users to allow
HyperCard stacks to access, retrieve and write data to the databases. “The
HyperCard XCMDs extract the data, and regular HyperTalk scripting puts
the data into fields or draws graphs based on that data.” See, e.g.,
Goodman at pp. 727 – 728. The XCMD together with the application
executing on the databases (connected through network) constitute a
distributed application.
As another example in which a HyperCard XCMD served as a front end to
applications running on remote servers, [Morgan] discloses XCMDs that
enable TCP-based client-server interactions. The XCMD together with
the applications running on the remote servers constituted a distributed
application. Morgan discloses two examples: Mini-atlas and Listmanager.
“A connection is established using the TCPActiveOpen function, which
establishes a connection with the remote socket (a connection between
computer processors allowing them to communicate in a fast, reliable

 86

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)
manner) and returns a connection ID.” (See Morgan at 421.)
“Alternatively, TCPPassiveOpen will allow a connection to be accepted
on a particular socket.” (See Morgan at 422.) “Mini-Atlas is a client for
the Geographic Name Server. The Geographic Name Server contains brief
information about most United States cities and geographic landmarks.”
(See Morgan at 422.) “Another, more interesting application is the
ListManager, a front end to LISTSERV programs operating electronic lists
such as PACSL, AUTOCAT, and LIBREF-L. ListManager automates the
procedures necessary to search the archives of these lists by keyword
Boolean queries, tum off mail from the list temporarily, retrieve a list of
the list's participants, or retrieve files from the lists.” (See 423.)

HyperCard and QuickTime (Movie) discloses that the executable application is
part of a distributed application. See, e.g., :

HyperCard interoperated with executable applications that were part of
distributed applications. By way of example, HyperCard provided for
XCMDs that interoperated with applications executing on other computers
or network-connected devices.
For example, HyperCard can connect to “any other computer (like a
bulletin board service, MCI Mail, or Dow Jones News Retrieval) that
offers asynchronous modem access” through HyperTalk script control.
(See Goodman at pp. 725 – 726; see also [Sadowski11] at 54, 55, 60, 74,
76.)
As another example, “HyperCard is also actively used in business as a tool
to design what are known as 'front ends' to information stored on IBM
(and other) mainframe computers.” (See Goodman at p. 726.) To
accomplish the connections to an IBM mainframe computer, external
commands (XCMDs), also called Application Programming Interfaces
(APIs), that link HyperCard to a 3270-style terminal (a terminal that is
used to connect to IBM mainframe computers) are added to HyperCard.
These are typically supplied by the 3270-style hardware manufacturers.

 87

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)
(See, e.g., Goodman at p. 727.) Concentrix Technology, Inc. designed
front ends to IBM’s PROFS using Avatar, DCA and Tri-data APIs
(XCMDs). IBM’s PROFS is an electronic mail and group scheduling
program that runs on IBM mainframe computers. (See, e.g., Goodman at
p. 727 – 728.) These front ends together with IBM’s PROFS constitute a
distributed application.
Another example is described in [Powers], in which the author developed
software to enable a Macintosh to communicate with an IBM mainframe
computer from within HyperCard.
As another example, “HyperCard is also used extensively in business for
accessing Structured Query Language (SQL) databases, usually running
on mainframes or minicomputers (but also on database servers on local
area networks).” (See Goodman at p. 728.) The databases, e.g., Oracle
and Sybase, provide XCMD toolkits for HyperCard users to allow
HyperCard stacks to access, retrieve and write data to the databases. “The
HyperCard XCMDs extract the data, and regular HyperTalk scripting puts
the data into fields or draws graphs based on that data.” See, e.g.,
Goodman at pp. 727 – 728. The XCMD together with the application
executing on the databases (connected through network) constitute a
distributed application.
As another example in which a HyperCard XCMD served as a front end to
applications running on remote servers, [Morgan] discloses XCMDs that
enable TCP-based client-server interactions. The XCMD together with
the applications running on the remote servers constituted a distributed
application. Morgan discloses two examples: Mini-atlas and Listmanager.
“A connection is established using the TCPActiveOpen function, which
establishes a connection with the remote socket (a connection between
computer processors allowing them to communicate in a fast, reliable
manner) and returns a connection ID.” (See Morgan at 421.)
“Alternatively, TCPPassiveOpen will allow a connection to be accepted
on a particular socket.” (See Morgan at 422.) “Mini-Atlas is a client for
the Geographic Name Server. The Geographic Name Server contains brief

 88

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)
information about most United States cities and geographic landmarks.”
(See Morgan at 422.) “Another, more interesting application is the
ListManager, a front end to LISTSERV programs operating electronic lists
such as PACSL, AUTOCAT, and LIBREF-L. ListManager automates the
procedures necessary to search the archives of these lists by keyword
Boolean queries, tum off mail from the list temporarily, retrieve a list of
the list's participants, or retrieve files from the lists.” (See 423.)

985-36.j:
wherein at least a portion of the distributed
application is for execution on a remote network
server coupled to the distributed hypermedia
network environment.

HyperCard and QuickTime (Movie) discloses that the distributed application
executes at least partially on a network server. See, e.g., :

HyperCard interoperated with distributed applications executing at least
partially on a server. By way of example, HyperCard provided for
XCMDs that interoperated with applications executing on other computers
or network-connected devices.
For example, HyperCard can connect to “any other computer (like a
bulletin board service, MCI Mail, or Dow Jones News Retrieval) that
offers asynchronous modem access” through HyperTalk script control.
(See Goodman at pp. 725 – 726. See also [Sadowski11] at 54, 55, 60, 74,
76.)
As another example, “HyperCard is also actively used in business as a tool
to design what are known as 'front ends' to information stored on IBM
(and other) mainframe computers.” (See Goodman at p. 726.) To
accomplish the connections to an IBM mainframe computer, external
commands (XCMDs), also called Application Programming Interfaces
(APIs), that link HyperCard to a 3270-style terminal (a terminal that is
used to connect to IBM mainframe computers) are added to HyperCard.
These are typically supplied by the 3270-style hardware manufacturers.
(See, e.g., Goodman at p. 727.) Concentrix Technology, Inc. designed
front ends to IBM’s PROFS using Avatar, DCA and Tri-data APIs
(XCMDs). IBM’s PROFS is an electronic mail and group scheduling
program that runs on IBM mainframe computers. (See, e.g., Goodman at
p. 727 – 728.) These front ends together with IBM’s PROFS constitute a

 89

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)
distributed application.
Another example is described in [Powers], in which the author developed
software to enable a Macintosh to communicate with an IBM mainframe
computer from within HyperCard
As another example, “HyperCard is also used extensively in business for
accessing Structured Query Language (SQL) databases, usually running
on mainframes or minicomputers (but also on database servers on local
area networks).” (See Goodman at p. 728.) The databases, e.g., Oracle
and Sybase, provide XCMD toolkits for HyperCard users to allow
HyperCard stacks to access, retrieve and write data to the databases. “The
HyperCard XCMDs extract the data, and regular HyperTalk scripting puts
the data into fields or draws graphs based on that data.” See, e.g.,
Goodman at pp. 727 – 728. The XCMD together with the application
executing on the databases (connected through network) constitute a
distributed application.
As another example in which a HyperCard XCMD served as a front end to
applications running on remote servers, [Morgan] discloses XCMDs that
enable TCP-based client-server interactions. The XCMD together with
the applications running on the remote servers constituted a distributed
application. Morgan discloses two examples: Mini-atlas and Listmanager.
“A connection is established using the TCPActiveOpen function, which
establishes a connection with the remote socket (a connection between
computer processors allowing them to communicate in a fast, reliable
manner) and returns a connection ID.” (See Morgan at 421.)
“Alternatively, TCPPassiveOpen will allow a connection to be accepted
on a particular socket.” (See Morgan at 422.) “Mini-Atlas is a client for
the Geographic Name Server. The Geographic Name Server contains brief
information about most United States cities and geographic landmarks.”
(See Morgan at 422.) “Another, more interesting application is the
ListManager, a front end to LISTSERV programs operating electronic lists
such as PACSL, AUTOCAT, and LIBREF-L. ListManager automates the
procedures necessary to search the archives of these lists by keyword

 90

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)
Boolean queries, tum off mail from the list temporarily, retrieve a list of
the list's participants, or retrieve files from the lists.” (See 423.)

985-37.a:
The method of claim 36 where: the information to
enable comprises text formats.

HyperCard and QuickTime (Movie) discloses that the enabling information in
the file is text formats. See evidence recited for 985-2.a.

985-38.a:
The method of claim 37 where: the text formats
are HTML tags.

The text format tags used by HyperCard, while not HTML, are nonetheless tags
that HyperCard can recognize to direct the way it lays out each card associated
with each segment in the stack. HTML was known to the HyperCard developers
but storing and reading binary data to and from the resource fork achieved an
efficiency and speed not possible by parsing raw text. See evidence recited for
985-3.a.

985-39.a:
The method of claim 36 where: the information
contained in the file received comprises at least
one embed text format.

HyperCard and QuickTime (Movie) discloses that the enabling information in
the file includes an embed text format. See evidence recited for 985-4.a.

985-40.a:
A method of serving digital information in a
computer network environment having a network
server coupled to said computer network
environment, and where the network environment
is a distributed hypermedia network environment,
the method comprising:

HyperCard and QuickTime (Movie) discloses digital information. See evidence
recited for 985-20.a.

HyperCard and QuickTime (Movie) discloses a network server in a distributed
hypermedia environment. See evidence recited for 985-1.a.

985-40.b:
communicating via the network server with at least
one remote client workstation over said computer
network environment in order to cause said client
workstation to:

HyperCard and QuickTime (Movie) discloses a client workstation. See evidence
recited for 985-1.a.

HyperCard and QuickTime (Movie) discloses communicating via network server
in order to cause the client workstation to act. See evidence recited for 985-20.b.

985-40.c: HyperCard and QuickTime (Movie) discloses a browser application; a file

 91

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)
receive, over said computer network environment
from the network server, at least one file
containing information to enable a browser
application to display at least a portion of a
distributed hypermedia document within a
browser-controlled window;

containing enabling information received from a server; that the browser
displays at least a portion of a distributed hypermedia document; and that the
display is in a browser-controlled window. See evidence recited for 985-1.b.

985-40.d:
execute, at said client workstation, a browser
application, with the browser application:

HyperCard and QuickTime (Movie) discloses a browser application executing
on the client workstation. See evidence recited for 985-1.c.

985-40.e:
responding to text formats to initiate processing
specified by the text formats;

HyperCard and QuickTime (Movie) discloses parsing text formats. See evidence
recited for 985-1.d.

985-40.f:
displaying, on said client workstation, at least a
portion of the document within the browser-
controlled window;

HyperCard and QuickTime (Movie) discloses displaying at least a portion of the
document within the browser-controlled window. See evidence recited for 985-
1.e.

985-40.g:
identifying an embed text format which
corresponds to a first location in the document,
where the embed text format specifies the location
of at least a portion of an object;

HyperCard and QuickTime (Movie) discloses an object. See evidence recited for
985-36.f.

HyperCard and QuickTime (Movie) discloses identifying an embed text format;
that the embed text format corresponds to a first location in the hypermedia
document; and that the embed text format specifies the location of an object. See
evidence recited for 985-1.f.

985-40.h:
identifying and locating an executable application
associated with the object; and

HyperCard and QuickTime (Movie) discloses that the browser identifies and
locates an executable application associated with the object. See evidence
recited for 985-36.g.

985-40.i:
automatically invoking the executable application,
in response to the identifying of the embed text
format, in order to enable an end-user to directly
interact with the object while the object is being
displayed within a display area created at the first

HyperCard and QuickTime (Movie) discloses identifying an embed text format.
See evidence recited in 985-1.f.

HyperCard and QuickTime (Movie) discloses automatic invocation of the
executable application; that the executable application displays the object; that
the executable application enables direct interaction with the object; and that

 92

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)
location within the portion of the hypermedia
document being displayed in the browser-
controlled window,

interaction with the object is at a first location in the hypermedia document. See
evidence recited in 985-1.h.

HyperCard and QuickTime (Movie) discloses that the object is displayed at a
first location within a portion of the hypermedia document being displayed. See
evidence recited for 985-24.b.

HyperCard and QuickTime (Movie) discloses that a hypermedia document is
displayed in a browser window. See, e.g., evidence recited for 985-1.e.

985-40.j:
wherein the executable application is part of a
distributed application, and

HyperCard and QuickTime (Movie) discloses that the executable application is
part of a distributed application. See evidence recited in 985-36.i.

985-40.k:
wherein at least a portion of the distributed
application is for execution on the network server.

HyperCard and QuickTime (Movie) discloses that the distributed application
executes at least partially on a network server. See evidence recited for 985-36.j.

985-41.a:
The method of claim 40 where: the information to
enable comprises text formats.

HyperCard and QuickTime (Movie) discloses that the enabling information in
the file is text formats. See evidence recited for 985-2.a.

985-42.a:
The method of claim 41 where: the text formats
are HTML tags.

The text format tags used by HyperCard, while not HTML, are nonetheless tags
that HyperCard can recognize to direct the way it lays out each card associated
with each segment in the stack. HTML was known to the HyperCard developers
but storing and reading binary data to and from the resource fork achieved an
efficiency and speed not possible by parsing raw text. See evidence recited for
985-3.a.

985-43.a:
The method of claim 40 where: the information

HyperCard and QuickTime (Movie) discloses that the enabling information in
the file includes an embed text format. See evidence recited for 985-4.a.

 93

Claim Text from ’985 Patent HyperCard and QuickTime (Movie)
contained in the file received comprises at least
one embed text format.

