
CLAIM CHART EXHIBIT 6
"WEI94"

E
olas T

echnologies Incorporated v. A
dobe S

ystem
s Incorporated et al

D
oc. 1348 A

tt. 7

D
ockets.Justia.com

http://dockets.justia.com/docket/texas/txedce/6:2009cv00446/118976/
http://docs.justia.com/cases/federal/district-courts/texas/txedce/6:2009cv00446/118976/1348/7.html
http://dockets.justia.com/

 1

INVALIDITY CLAIM CHART FOR U.S. PATENT NO. 5,838,906

 BASED ON PEI WEI'S PUBLICATION "A BRIEF OVERVIEW OF THE VIOLA ENGINE, AND ITS APPLICATIONS" BEARING THE
DATE AUGUST 16, 1994, AVAILABLE AT [PA-00318355]. ALSO AVAILABLE AT [PA-00318385] THROUGH [PA-00318392].
(“WEI94”). THE BODY OF MY REPORT HAS A NARRATIVE DESCRIPTION THAT AUGMENTS AND SHOULD BE CONSIDERED PART
OF THIS CHART, AND VISE-VERSA FOR THIS AND ALL MY CHARTS.

Claim Text from ’906 Patent Wei94

906-1.a:
A method for running an application program in a
computer network environment, comprising:

Wei94 discloses an application program. See, e.g., :

[Wei94] discloses "viola applications" that "range from a simple clock to a
World Wide Web hypermedia browser (ViolaWWW)" all of which were
intended to be run as computer code physically embodied on a medium.
([Wei94] at 1.)

Wei94 discloses a computer network environment. See, e.g., :

[Wei94] discloses "viola applications" that include "a World Wide Web
hypermedia browser (ViolaWWW)." ([Wei94] at 1.) The World Wide
Web was a distributed hypermedia environment.

906-1.b:
providing at least one client workstation and one
network server coupled to said network
environment, wherein said network environment is
a distributed hypermedia environment;

Wei94 discloses a client workstation. See, e.g., :

[Wei94] discloses "viola applications" that include "a World Wide Web
hypermedia browser (ViolaWWW)." ([Wei94] at 1.) As such, [Wei94]
discloses a browser on a client workstation that retrieved documents from
a World Wide Web server.

Wei94 discloses a network server. See, e.g., :

[Wei94] discloses "viola applications" that include "a World Wide Web
hypermedia browser (ViolaWWW)." ([Wei94] at 1.) As such, [Wei94]
discloses a browser on a client workstation that retrieved documents from

 2

Claim Text from ’906 Patent Wei94
a World Wide Web server.

Wei94 discloses a distributed hypermedia environment. See, e.g., :

[Wei94] discloses "viola applications" that include "a World Wide Web
hypermedia browser (ViolaWWW)." ([Wei94] at 1.) The World Wide
Web was a distributed hypermedia environment.

906-1.c:
executing, at said client workstation, a browser
application, that parses a first distributed
hypermedia document to identify text formats
included in said distributed hypermedia document
and for responding to predetermined text formats
to initiate processing specified by said text
formats;

Wei94 discloses a browser application. See, e.g., :

[Wei94] discloses "viola applications" that include "a World Wide Web
hypermedia browser (ViolaWWW)." ([Wei94] at 1.)

Wei94 discloses that the browser application parses a hypermedia document.
See, e.g., :

ViolaWWW displayed hypermedia documents, including HTML
documents ([Wei94] at 2); and HMML documents ([Wei94] at 4.)
These were markup languages which, as was well known in the art, were
parsed by browsers.

Wei94 discloses a hypermedia document with text formats. See, e.g., :

ViolaWWW displayed hypermedia documents, including HTML
documents ([Wei94] at 2); and HMML documents ([Wei94] at 4.)
These documents were structured based on text formats.

906-1.d:
utilizing said browser to display, on said client
workstation, at least a portion of a first hypermedia
document received over said network from said
server,

Wei94 discloses that a hypermedia document is received from the server. See,
e.g., :

[Wei94] discloses "viola applications" that include "a World Wide Web
hypermedia browser (ViolaWWW)." ([Wei94] at 1.) As such, [Wei94]
discloses a browser on a client workstation that retrieved documents from
a World Wide Web server.

 3

Claim Text from ’906 Patent Wei94
These documents were hypermedia documents, including HTML
documents ([Wei94] at 2); and HMML documents ([Wei94] at 4.)

Wei94 discloses that the browser displays a hypermedia document. See, e.g., :

ViolaWWW displayed hypermedia documents, including HTML
documents ([Wei94] at 2); and HMML documents ([Wei94] at 4.)

906-1.e:
wherein the portion of said first hypermedia
document is displayed within a first browser-
controlled window on said client workstation,

Wei94 discloses that a hypermedia document is displayed in a browser window.
See, e.g., :

[Wei94] includes various screenshots showing hypermedia documents
displayed in a browser window. (See, e.g., [Wei94] at 5-10.)

906-1.f:
wherein said first distributed hypermedia
document includes an embed text format, located
at a first location in said first distributed
hypermedia document, that specifies the location
of at least a portion of an object external to the first
distributed hypermedia document,

Wei94 discloses an embed text format at a first location in a hypermedia
document. See, e.g., :

[Wei94] includes a section entitled "Embedding mini applications," which
gives examples of embedded objects including a graph object, a chess
board, a message relay, and graphing output. ([Wei94] at 7-10.)
As to the graphing output, it is clear that the depiction of the jetfighter is
"embedded" for at least three reasons. First, the paper talks about
embedding and discusses this example in connection with "embedding
mini applications." Second, the image of the jetfighter does not include
the control adornments that one typically associates with standalone
windows in the X Windows environment. Third, Pei Wei told Michael
Doyle that this plotting demo was an embedded object, at least in [www-
talk-00293126].
ViolaWWW structured documents according to HTML and HMML
markup languages. ([Wei94] at 2; 4.) Accordingly, the use of an "embed
text format" for embedding these mini applications is inherent.
Also, in [www-talk-00293126], Pei Wei references his demonstration of
[Viola-DX34]; a codebase which I analyzed. This shows that the
embedded mini applications can be achieved using an embed text format

 4

Claim Text from ’906 Patent Wei94
called VOBJF, located at a first location in a hypermedia document. (See,
e.g., viola\docs\testPlot.hmml; docs\violaChier.hmml.)

Wei94 discloses that the embed text format specifies the location of an object.
See, e.g., :

[Wei94] includes a section entitled "Embedding mini applications," which
gives examples of embedded objects including a graph object, a chess
board, a message relay, and graphing output. ([Wei94] at 7-10.)
As to the graphing output, it is clear that the depiction of the jetfighter is
"embedded" for at least three reasons. First, the paper talks about
embedding and discusses this example in connection with "embedding
mini applications." Second, the image of the jetfighter does not include
the control adornments that one typically associates with standalone
windows in the X Windows environment. Third, Pei Wei told Michael
Doyle that this plotting demo was an embedded object, at least in [www-
talk-00293126].
ViolaWWW structured documents according to HTML and HMML
markup languages. ([Wei94] at 2; 4.) Accordingly, the use of an "embed
text format" for embedding these mini applications is inherent.
Also, in [www-talk-00293126], Pei Wei references his demonstration of
[Viola-DX34]; a codebase which I analyzed. This shows that the
embedded mini applications can be achieved using an embed text format
called VOBJF. (See, e.g., viola\docs\testPlot.hmml;
docs\violaChier.hmml.)
The VOBJF embed text format specifies the location of an object. For
example, testPlot.hmml includes a VOBJF tag that shows the tag's syntax,
including that it specifies the location of an object based on a filepath
location in which the object can be found:
<VOBJF>/home/wei/viola/apps/plot.v<\VOBJF>
(See viola\docs\testPlot.hmml.)

 5

Claim Text from ’906 Patent Wei94
Wei94 discloses an object that is external to a hypermedia document. See, e.g., :

[Wei94] includes a section entitled "Embedding mini applications," which
gives examples of embedded objects including a graph object, a chess
board, a message relay, and graphing application output. ([Wei94] at 7-
10.) With reference to [Wei94] at 10, the jetfighter rendering is an object.
Also, in [www-talk-00293126], Pei Wei references his demonstration of
[Viola-DX34]; a codebase which I analyzed.
This shows that the graphing application, generated by the vplot
application, has data for a default grid specified in the file plot.v by the
command:
 output("equation 0");
(See apps\plot.v.)

906-1.g:
wherein said object has type information
associated with it utilized by said browser to
identify and locate an executable application
external to the first distributed hypermedia
document, and

Wei94 discloses that the object has associated type information. See, e.g., :

[Wei94] includes a section entitled "Embedding mini applications," which
gives examples of embedded objects including a graph object, a chess
board, a message relay, and graphing output. ([Wei94] at 7-10.)
ViolaWWW structured documents according to HTML and HMML
markup languages. ([Wei94] at 2; 4.) Accordingly, the use of an "embed
text format" for embedding these mini applications is inherent.
Also, in [www-talk-00293126], Pei Wei references his demonstration of
[Viola-DX34]; a codebase which I analyzed. This shows that an
embedded mini application can be achieved using an embed text format
called VOBJF:
 <VOBJF>/home/wei/viola/apps/plot.v<\VOBJF>
 (See, e.g., viola\docs\testPlot.hmml)
The file plot.v contains type information associated with the object.
/path {/home/wei/vplot/vplot}
(See viola\apps\plot.v.)

Wei94 discloses that the browser uses type information to identify and locate an

 6

Claim Text from ’906 Patent Wei94
executable application. See, e.g., :

[Wei94] includes a section entitled "Embedding mini applications," which
gives examples of embedded objects including a graph object, a chess
board, a message relay, and graphing output. ([Wei94] at 7-10.)
ViolaWWW structured documents according to HTML and HMML
markup languages. ([Wei94] at 2; 4.) Accordingly, the use of an "embed
text format" for embedding these mini applications is inherent.
Also, in [www-talk-00293126], Pei Wei references his demonstration of
[Viola-DX34]; a codebase which I analyzed. This shows that an
embedded mini applications can be achieved using an embed text format
called VOBJF:
 <VOBJF>/home/wei/viola/apps/plot.v<\VOBJF>
 (See, e.g., viola\docs\testPlot.hmml)
The file plot.v contains type information associated with the object.
/path {/home/wei/vplot/vplot}
(See viola\apps\plot.v.)
The type information is used by the ViolaWWW to identify and locate the
vplot executable application. ViolaWWW then invokes the executable
application.
 switch (pid = vfork()) {
…
 case 0: * Child *\
…
 execv(GET_path(self), args);
(See viola\src\cl_TTY.c.)

Wei94 discloses that the executable application is external to the hypermedia
document. See, e.g., :

[Wei94] states that "[t]his next mini application front-ends a graphing
process (on the same machine as the viola process). An important thing to

 7

Claim Text from ’906 Patent Wei94
note is that, like all the other document-embeddable mini applications
shown, no special modification to the viola engine is required for
ViolaWWW to support them. All the bindings are done via the viola
language, provided that the necessary primitives are available in the
interpreter, of course."
In [www-talk-00293128], Pei Wei explained that this described Viola in
operation with the vplot executable application, which was external to the
hypermedia document: "And, as for the plotting demo, it actually is really
just a front-end that fires up a back-end plotting program (and the point is
that that back-end could very well be running on a remote super computer
instead of the localhost). For that demo, there is a simple protocol such
that the front-end app could pass an X window ID to the back-end, and the
back-end draws the graphics directly onto the window violaWWW has
opened for it."
Further in [Wei94], Wei teaches how a chess board application embedded
in the ViolaWWW browser can front-end a chess server. He states,
“Here's another example of a mini interactive application that is embedded
into a HTML document. It's a chess board in which the chess pieces are
actually active and movable. And, illegal moves can be checked and
denied straight off by the intelligence of the scripts in the application.
Given more work, this chess board application can front-end a chess
server, connected to it using the socket facility in viola.” [Wei94 at 7.]

906-1.h:
wherein said embed text format is parsed by said
browser to automatically invoke said executable
application to execute on said client workstation in
order to display said object and enable an end-user
to directly interact with said object within a
display area created at said first location within the
portion of said first distributed hypermedia
document being displayed in said first browser-
controlled window.

Wei94 discloses that the browser parses the embed text format. See, e.g., :

[Wei94] includes a section entitled "Embedding mini applications," which
gives examples of embedded objects including a graph object, a chess
board, a message relay, and graphing output. ([Wei94] at 7-10.)

 8

Claim Text from ’906 Patent Wei94

Browser With Embedded App

 9

Claim Text from ’906 Patent Wei94
As to the graphing output, it is clear that the depiction of the jetfighter is
"embedded" for at least three reasons. First, the paper talks about
embedding and discusses this example in connection with "embedding
mini applications." Second, the image of the jetfighter does not include
the control adornments that one typically associates with standalone
windows in the X Windows environment. Third, Pei Wei told Michael
Doyle that this plotting demo was an embedded object, at least in [www-
talk-00293126].
ViolaWWW structured documents according to HTML and HMML
markup languages. ([Wei94] at 2; 4.) Accordingly, the use of an "embed
text format," parsed by a browser, for embedding these mini applications
is inherent.
Also, in [www-talk-00293126], Pei Wei references his demonstration of
[Viola-DX34]; a codebase which I analyzed. This shows that the
embedded mini applications can be achieved using an embed text format
called VOBJF. (See, e.g., viola\docs\testPlot.hmml;
docs\violaChier.hmml.)

Wei94 discloses automatic invocation of the executable application. See, e.g., :

[Wei94] includes a section entitled "Embedding mini applications," which
gives examples of embedded objects including a graphing output.
([Wei94] at 10.)
In [www-talk-00293128], Pei Wei explained that this described Viola in
operation with the vplot executable application, which displayed graphing
objects: "And, as for the plotting demo, it actually is really just a front-end
that fires up a back-end plotting program (and the point is that that back-
end could very well be running on a remote super computer instead of the
localhost). For that demo, there is a simple protocol such that the front-
end app could pass an X window ID to the back-end, and the back-end
draws the graphics directly onto the window violaWWW has opened for
it."

 10

Claim Text from ’906 Patent Wei94
Also, in [www-talk-00293126], Pei Wei references his demonstration of
[Viola-DX34]; a codebase which I analyzed. This shows that when
ViolaWWW parses the VOBJF tag in testPlot.hmml, the vplot application
is automatically invoked as follows:
 switch (pid = vfork()) {
…
 case 0: * Child *\
…
 execv(GET_path(self), args);
(See src\cl_TTY.c.)

Wei94 discloses that the executable application displays the object. See, e.g., :

[Wei94] states that "[t]his next mini application front-ends a graphing
process (on the same machine as the viola process). An important thing to
note is that, like all the other document-embeddable mini applications
shown, no special modification to the viola engine is required for
ViolaWWW to support them. All the bindings are done via the viola
language, provided that the necessary primitives are available in the
interpreter, of course."
In [www-talk-00293128], Pei Wei explained that this described Viola in
operation with the vplot executable application, which displayed graphing
objects: "And, as for the plotting demo, it actually is really just a front-end
that fires up a back-end plotting program (and the point is that that back-
end could very well be running on a remote super computer instead of the
localhost). For that demo, there is a simple protocol such that the front-
end app could pass an X window ID to the back-end, and the back-end
draws the graphics directly onto the window violaWWW has opened for
it."
Further in [Wei94], Wei teaches how a chess board application embedded
in the ViolaWWW browser can front-end a chess server. He states,
“Here's another example of a mini interactive application that is embedded

 11

Claim Text from ’906 Patent Wei94
into a HTML document. It's a chess board in which the chess pieces are
actually active and movable. And, illegal moves can be checked and
denied straight off by the intelligence of the scripts in the application.
Given more work, this chess board application can front-end a chess
server, connected to it using the socket facility in viola.” [Wei94 at 7.]

Wei94 discloses that the executable application enables direct interaction with
the object. See, e.g., :

[Wei94] includes a section entitled "Embedding mini applications," which
gives examples of embedded objects including a graphing output.
([Wei94] at 10.)
As shown in the figure depicting this example, there are slider bars that
enable a user to interact directly with the jetfighter.

Wei94 discloses that interaction with the object is at a first location in the
hypermedia document. See, e.g., :

[Wei94] includes a section entitled "Embedding mini applications," which
gives examples of embedded objects including a graphing output.
([Wei94] at 10.)
As shown in the figure depicting this example, there are slider bars that
enable a user to interact directly with the jetfighter at the first location in
the hypermedia document.

906-2.a:
The method of claim 1, wherein said executable
application is a controllable application and further
comprising the step of: interactively controlling
said controllable application on said client
workstation via inter-process communications
between said browser and said controllable

Wei94 discloses interactive control via inter-process communications between a
browser and an application. See, e.g., :

In [www-talk-00293128], Pei Wei described Viola in operation with the
vplot executable application: "And, as for the plotting demo, it actually is
really just a front-end that fires up a back-end plotting program (and the
point is that that back-end could very well be running on a remote super

 12

Claim Text from ’906 Patent Wei94
application. computer instead of the localhost). For that demo, there is a simple

protocol such that the front-end app could pass an X window ID to the
back-end, and the back-end draws the graphics directly onto the window
violaWWW has opened for it."
The preceding description by Wei is the essence of how the “plotting
demo” was produced. I have examined the relevant Viola code from
[Viola-DX34] and it is clear that the window in which the jet fighter lines
are drawn is embedded in the body of the ViolaWWW browser.
Furthermore, the program that plots those lines, vplot, is a compiled binary
executable that, in this case, resides on what Wei calls the localhost and
runs in a different UNIX process than the browser. There is no limitation
in Viola, however, that prevents a binary executable from being accessed
over a network, as Wei described ("the back-end could very well be
running on a remote super computer") and as I will demonstrate in what
follows. I have recently produced a video recording, [Viola video 9.avi],
that demonstrates how simple it is to make trivial changes to [Viola-
DX34] code to effect a situation where ViolaWWW runs on a client
workstation and accesses an executable and related dataset on a server
machine. This demonstration used a version of plot.v accessing an HDF
dataset through a VIS executable, both of which were accessed via NFS
on a server residing on a network. The video carefully describes the
changes made to plot.v and testPlot.hmml from the [Viola-DX34] codeset
and shows the resulting display.
One other gem that Wei passed on to Doyle is that, in general,
ViolaWWW can use computational resources of a server anywhere on a
network and thus can perform client-server operations. That is described
in [Wei94] where he teaches how a chess board application embedded in
the ViolaWWW browser can front-end a chess server. He states, “Here's
another example of a mini interactive application that is embedded into a
HTML document. It's a chess board in which the chess pieces are actually
active and movable. And, illegal moves can be checked and denied
straight off by the intelligence of the scripts in the application. Given more

 13

Claim Text from ’906 Patent Wei94
work, this chess board application can front-end a chess server, connected
to it using the socket facility in viola.” [Wei94 at 7.]

906-3.a:
The method of claim 2, wherein the
communications to interactively control said
controllable application continue to be exchanged
between the controllable application and the
browser even after the controllable application
program has been launched.

Wei94 discloses ongoing inter-process communications. See, e.g., :

In [www-talk-00293128], Pei Wei described Viola in operation with the
vplot executable application: "And, as for the plotting demo, it actually is
really just a front-end that fires up a back-end plotting program (and the
point is that that back-end could very well be running on a remote super
computer instead of the localhost). For that demo, there is a simple
protocol such that the front-end app could pass an X window ID to the
back-end, and the back-end draws the graphics directly onto the window
violaWWW has opened for it."
The preceding description by Wei is the essence of how the “plotting
demo” was produced. I have examined the relevant Viola code from
[Viola-DX34] and it is clear that the window in which the jet fighter lines
are drawn is embedded in the body of the ViolaWWW browser.
Furthermore, the program that plots those lines, vplot, is a compiled binary
executable that, in this case, resides on what Wei calls the localhost and
runs in a different UNIX process than the browser. There is no limitation
in Viola, however, that prevents a binary executable from being accessed
over a network, as Wei described ("the back-end could very well be
running on a remote super computer") and as I will demonstrate in what
follows. I have recently produced a video recording, [Viola video 9.avi],
that demonstrates how simple it is to make trivial changes to [Viola-
DX34] code to effect a situation where ViolaWWW runs on a client
workstation and accesses an executable and related dataset on a server
machine. This demonstration used a version of plot.v accessing an HDF
dataset through a VIS executable, both of which were accessed via NFS
on a server residing on a network. The video carefully describes the
changes made to plot.v and testPlot.hmml from the [Viola-DX34] codeset
and shows the resulting display.

 14

Claim Text from ’906 Patent Wei94
One other gem that Wei passed on to Doyle is that, in general,
ViolaWWW can use computational resources of a server anywhere on a
network and thus can perform client-server operations. That is described
in [Wei94] where he teaches how a chess board application embedded in
the ViolaWWW browser can front-end a chess server. He states, “Here's
another example of a mini interactive application that is embedded into a
HTML document. It's a chess board in which the chess pieces are actually
active and movable. And, illegal moves can be checked and denied
straight off by the intelligence of the scripts in the application. Given more
work, this chess board application can front-end a chess server, connected
to it using the socket facility in viola.” [Wei94 at 7.]

906-6.a:
A computer program product for use in a system
having at least one client workstation and one
network server coupled to said network
environment, wherein said network environment is
a distributed hypermedia environment, the
computer program product comprising:

Wei94 discloses an application program in a computer network environment.
See evidence recited for 906-1.a.

Wei94 also discloses a client workstation and a network server in a distributed
hypermedia environment. See evidence recited for 906-1.b.

906-6.b:
a computer usable medium having computer
readable program code physically embodied
therein, said computer program product further
comprising:

Wei94 discloses computer code physically embodied on a medium. See, e.g., :

The computer on which ViolaWWW executes includes computer usable
media having computer readable program code physically embodied
therein.
[Wei94] discloses "viola applications" that "range from a simple clock to a
World Wide Web hypermedia browser (ViolaWWW)," all of which were
intended to be run as computer code physically embodied on a medium.
([Wei94] at 1.)

906-6.c:
computer readable program code for causing said
client workstation to execute a browser application
to parse a first distributed hypermedia document to

Wei94 discloses a browser application that parses a hypermedia document with
text formats. See evidence recited for 906-1.c.

 15

Claim Text from ’906 Patent Wei94
identify text formats included in said distributed
hypermedia document and to respond to
predetermined text formats to initiate processes
specified by said text formats;
906-6.d:
computer readable program code for causing said
client workstation to utilize said browser to
display, on said client workstation, at least a
portion of a first hypermedia document received
over said network from said server,

Wei94 discloses a hypermedia document received from a server and a browser
that displays the hypermedia document. See evidence recited for 906-1.d.

906-6.e:
wherein the portion of said first hypermedia
document is displayed within a first browser-
controlled window on said client workstation,

Wei94 discloses that the hypermedia document is displayed in a browser
window. See evidence recited for 906-1.e.

906-6.f:
wherein said first distributed hypermedia
document includes an embed text format, located
at a first location in said first distributed
hypermedia document, that specifies the location
of at least a portion of an object external to the first
distributed hypermedia document,

Wei94 discloses an embed text format at a first location in a hypermedia
document; that the embed text format specifies the location of an object; and that
the object is external to the hypermedia document. See evidence recited for 906-
1.f.

906-6.g:
wherein said object has type information
associated with it utilized by said browser to
identify and locate an executable application
external to the first distributed hypermedia
document, and

Wei94 discloses that the object has associated type information, that the browser
uses the type information to identify and locate an executable application, and
that the executable application is external to the hypermedia document. See
evidence recited for 906-1.g.

906-6.h:
wherein said embed text format is parsed by said
browser to automatically invoke said executable
application to execute on said client workstation in
order to display said object and enable an end-user

Wei94 discloses that the browser parses the embed text format; that the browser
automatically invokes the executable application; that the executable application
displays the object and enables an end-user to directly interact with it; and that
interaction with the object is at a first location in the hypermedia document. See
evidence recited for 906-1.h.

 16

Claim Text from ’906 Patent Wei94
to directly interact with said object within a
display area created at said first location within the
portion of said first distributed hypermedia
document being displayed in said first browser-
controlled window.

906-7.a:
The computer program product of claim 6, wherein
said executable application is a controllable
application and further comprising:
computer readable program code for causing said
client workstation to interactively control said
controllable application on said client workstation
via inter-process communications between said
browser and said controllable application.

Wei94 discloses interactive control via inter-process communications between a
browser and an application. See evidence recited for 906-2.a.

906-8.a:
The computer program product of claim 7, wherein
the communications to interactively control said
controllable application continue to be exchanged
between the controllable application and the
browser even after the controllable application
program has been launched.

Wei94 discloses ongoing inter-process communications. See evidence recited
for 906-3.a.

906-11.a:
The method of claim 3, wherein additional
instructions for controlling said controllable
application reside on said network server, wherein
said step of interactively controlling said
controllable application includes the following
substeps:

Wei94 discloses additional instructions on the server. See, e.g., :

In [www-talk-00293128], Pei Wei described Viola in operation with the
vplot executable application: "And, as for the plotting demo, it actually is
really just a front-end that fires up a back-end plotting program (and the
point is that that back-end could very well be running on a remote super
computer instead of the localhost). For that demo, there is a simple

 17

Claim Text from ’906 Patent Wei94
protocol such that the front-end app could pass an X window ID to the
back-end, and the back-end draws the graphics directly onto the window
violaWWW has opened for it."
The preceding description by Wei is the essence of how the “plotting
demo” was produced. I have examined the relevant Viola code from DX34
and it is clear that the window in which the jet fighter lines are drawn is
embedded in the body of the ViolaWWW browser. Furthermore, the
program that plots those lines, vplot, is a compiled binary executable that,
in this case, resides on what Wei calls the localhost and runs in a different
UNIX process than the browser. There is no limitation in Viola, however,
that prevents a binary executable from being accessed over a network, as
Wei described ("the back-end could very well be running on a remote
super computer") and as I will demonstrate in what follows. I have
recently produced a video recording, [Viola video 9.avi], that
demonstrates how simple it is to make trivial changes to DX34 code to
effect a situation where ViolaWWW runs on a client workstation and
accesses an executable and related dataset on a server machine. This
demonstration used a version of plot.v accessing an HDF dataset through a
VIS executable, both of which were accessed via NFS on a server residing
on a network. The video carefully describes the changes made to plot.v
and testPlot.hmml from the DX34 codeset and shows the resulting display.
It is important to recognize that Wei told Doyle exactly how to modify
Viola to accomplish what I have demonstrated in the above-cited
demonstration. The back-end is running VIS on a remote server. The
front-end, the client workstation, has passed VIS an X window ID which it
uses to draw the graphics directly onto the window violaWWW has
opened for it.

One other gem that Wei passed on to Doyle is that, in general,
ViolaWWW can use computational resources of a server anywhere on a
network and thus can perform client-server operations. That is described
in [Wei94] where he teaches how a chess board application embedded in

 18

Claim Text from ’906 Patent Wei94
the ViolaWWW browser can front-end a chess server. He states, “Here's
another example of a mini interactive application that is embedded into a
HTML document. It's a chess board in which the chess pieces are actually
active and movable. And, illegal moves can be checked and denied
straight off by the intelligence of the scripts in the application. Given more
work, this chess board application can front-end a chess server, connected
to it using the socket facility in viola.” [Wei94 at 7.]

906-11.b:
issuing, from the client workstation, one or more
commands to the network server;

Wei94 discloses that the client issues commands to the server. See, e.g., :

In [www-talk-00293128], Pei Wei described Viola in operation with the
vplot executable application: "And, as for the plotting demo, it actually is
really just a front-end that fires up a back-end plotting program (and the
point is that that back-end could very well be running on a remote super
computer instead of the localhost). For that demo, there is a simple
protocol such that the front-end app could pass an X window ID to the
back-end, and the back-end draws the graphics directly onto the window
violaWWW has opened for it."
The preceding description by Wei is the essence of how the “plotting
demo” was produced. I have examined the relevant Viola code from DX34
and it is clear that the window in which the jet fighter lines are drawn is
embedded in the body of the ViolaWWW browser. Furthermore, the
program that plots those lines, vplot, is a compiled binary executable that,
in this case, resides on what Wei calls the localhost and runs in a different
UNIX process than the browser. There is no limitation in Viola, however,
that prevents a binary executable from being accessed over a network, as
Wei described ("the back-end could very well be running on a remote
super computer") and as I will demonstrate in what follows. I have
recently produced a video recording, [Viola video 9.avi], that
demonstrates how simple it is to make trivial changes to DX34 code to
effect a situation where ViolaWWW runs on a client workstation and
accesses an executable and related dataset on a server machine. This
demonstration used a version of plot.v accessing an HDF dataset through a

 19

Claim Text from ’906 Patent Wei94
VIS executable, both of which were accessed via NFS on a server residing
on a network. The video carefully describes the changes made to plot.v
and testPlot.hmml from the DX34 codeset and shows the resulting display.
It is important to recognize that Wei told Doyle exactly how to modify
Viola to accomplish what I have demonstrated in the above-cited
demonstration. The back-end is running VIS on a remote server. The
front-end, the client workstation, has passed VIS an X window ID which it
uses to draw the graphics directly onto the window violaWWW has
opened for it.

One other gem that Wei passed on to Doyle is that, in general,
ViolaWWW can use computational resources of a server anywhere on a
network and thus can perform client-server operations. That is described
in [Wei94] where he teaches how a chess board application embedded in
the ViolaWWW browser can front-end a chess server. He states, “Here's
another example of a mini interactive application that is embedded into a
HTML document. It's a chess board in which the chess pieces are actually
active and movable. And, illegal moves can be checked and denied
straight off by the intelligence of the scripts in the application. Given more
work, this chess board application can front-end a chess server, connected
to it using the socket facility in viola.” [Wei94 at 7.]

906-11.c:
executing, on the network server, one or more
instructions in response to said commands;

Wei94 discloses that the server executes instructions in response to client
commands. See, e.g., :

In [www-talk-00293128], Pei Wei described Viola in operation with the
vplot executable application: "And, as for the plotting demo, it actually is
really just a front-end that fires up a back-end plotting program (and the
point is that that back-end could very well be running on a remote super
computer instead of the localhost). For that demo, there is a simple
protocol such that the front-end app could pass an X window ID to the
back-end, and the back-end draws the graphics directly onto the window
violaWWW has opened for it."

 20

Claim Text from ’906 Patent Wei94
The preceding description by Wei is the essence of how the “plotting
demo” was produced. I have examined the relevant Viola code from DX34
and it is clear that the window in which the jet fighter lines are drawn is
embedded in the body of the ViolaWWW browser. Furthermore, the
program that plots those lines, vplot, is a compiled binary executable that,
in this case, resides on what Wei calls the localhost and runs in a different
UNIX process than the browser. There is no limitation in Viola, however,
that prevents a binary executable from being accessed over a network, as
Wei described ("the back-end could very well be running on a remote
super computer") and as I will demonstrate in what follows. I have
recently produced a video recording, [Viola video 9.avi], that
demonstrates how simple it is to make trivial changes to DX34 code to
effect a situation where ViolaWWW runs on a client workstation and
accesses an executable and related dataset on a server machine. This
demonstration used a version of plot.v accessing an HDF dataset through a
VIS executable, both of which were accessed via NFS on a server residing
on a network. The video carefully describes the changes made to plot.v
and testPlot.hmml from the DX34 codeset and shows the resulting display.
It is important to recognize that Wei told Doyle exactly how to modify
Viola to accomplish what I have demonstrated in the above-cited
demonstration. The back-end is running VIS on a remote server. The
front-end, the client workstation, has passed VIS an X window ID which it
uses to draw the graphics directly onto the window violaWWW has
opened for it.

One other gem that Wei passed on to Doyle is that, in general,
ViolaWWW can use computational resources of a server anywhere on a
network and thus can perform client-server operations. That is described
in [Wei94] where he teaches how a chess board application embedded in
the ViolaWWW browser can front-end a chess server. He states, “Here's
another example of a mini interactive application that is embedded into a
HTML document. It's a chess board in which the chess pieces are actually

 21

Claim Text from ’906 Patent Wei94
active and movable. And, illegal moves can be checked and denied
straight off by the intelligence of the scripts in the application. Given more
work, this chess board application can front-end a chess server, connected
to it using the socket facility in viola.” [Wei94 at 7.]

906-11.d:
sending information from said network server to
said client workstation in response to said executed
instructions; and

Wei94 discloses that the server responds with information to the client. See,
e.g., :

In [www-talk-00293128], Pei Wei described Viola in operation with the
vplot executable application: "And, as for the plotting demo, it actually is
really just a front-end that fires up a back-end plotting program (and the
point is that that back-end could very well be running on a remote super
computer instead of the localhost). For that demo, there is a simple
protocol such that the front-end app could pass an X window ID to the
back-end, and the back-end draws the graphics directly onto the window
violaWWW has opened for it."
The preceding description by Wei is the essence of how the “plotting
demo” was produced. I have examined the relevant Viola code from DX34
and it is clear that the window in which the jet fighter lines are drawn is
embedded in the body of the ViolaWWW browser. Furthermore, the
program that plots those lines, vplot, is a compiled binary executable that,
in this case, resides on what Wei calls the localhost and runs in a different
UNIX process than the browser. There is no limitation in Viola, however,
that prevents a binary executable from being accessed over a network, as
Wei described ("the back-end could very well be running on a remote
super computer") and as I will demonstrate in what follows. I have
recently produced a video recording, [Viola video 9.avi], that
demonstrates how simple it is to make trivial changes to DX34 code to
effect a situation where ViolaWWW runs on a client workstation and
accesses an executable and related dataset on a server machine. This
demonstration used a version of plot.v accessing an HDF dataset through a
VIS executable, both of which were accessed via NFS on a server residing
on a network. The video carefully describes the changes made to plot.v

 22

Claim Text from ’906 Patent Wei94
and testPlot.hmml from the DX34 codeset and shows the resulting display.
It is important to recognize that Wei told Doyle exactly how to modify
Viola to accomplish what I have demonstrated in the above-cited
demonstration. The back-end is running VIS on a remote server. The
front-end, the client workstation, has passed VIS an X window ID which it
uses to draw the graphics directly onto the window violaWWW has
opened for it.

One other gem that Wei passed on to Doyle is that, in general,
ViolaWWW can use computational resources of a server anywhere on a
network and thus can perform client-server operations. That is described
in [Wei94] where he teaches how a chess board application embedded in
the ViolaWWW browser can front-end a chess server. He states, “Here's
another example of a mini interactive application that is embedded into a
HTML document. It's a chess board in which the chess pieces are actually
active and movable. And, illegal moves can be checked and denied
straight off by the intelligence of the scripts in the application. Given more
work, this chess board application can front-end a chess server, connected
to it using the socket facility in viola.” [Wei94 at 7.]

906-11.e:
processing said information at the client
workstation to interactively control said
controllable application.

Wei94 discloses that the client uses information from the server to interactively
control the application. See, e.g., :

In [www-talk-00293128], Pei Wei described Viola in operation with the
vplot executable application: "And, as for the plotting demo, it actually is
really just a front-end that fires up a back-end plotting program (and the
point is that that back-end could very well be running on a remote super
computer instead of the localhost). For that demo, there is a simple
protocol such that the front-end app could pass an X window ID to the
back-end, and the back-end draws the graphics directly onto the window
violaWWW has opened for it."
The preceding description by Wei is the essence of how the “plotting
demo” was produced. I have examined the relevant Viola code from DX34

 23

Claim Text from ’906 Patent Wei94
and it is clear that the window in which the jet fighter lines are drawn is
embedded in the body of the ViolaWWW browser. Furthermore, the
program that plots those lines, vplot, is a compiled binary executable that,
in this case, resides on what Wei calls the localhost and runs in a different
UNIX process than the browser. There is no limitation in Viola, however,
that prevents a binary executable from being accessed over a network, as
Wei described ("the back-end could very well be running on a remote
super computer") and as I will demonstrate in what follows. I have
recently produced a video recording, [Viola video 9.avi], that
demonstrates how simple it is to make trivial changes to DX34 code to
effect a situation where ViolaWWW runs on a client workstation and
accesses an executable and related dataset on a server machine. This
demonstration used a version of plot.v accessing an HDF dataset through a
VIS executable, both of which were accessed via NFS on a server residing
on a network. The video carefully describes the changes made to plot.v
and testPlot.hmml from the DX34 codeset and shows the resulting display.
It is important to recognize that Wei told Doyle exactly how to modify
Viola to accomplish what I have demonstrated in the above-cited
demonstration. The back-end is running VIS on a remote server. The
front-end, the client workstation, has passed VIS an X window ID which it
uses to draw the graphics directly onto the window violaWWW has
opened for it.

One other gem that Wei passed on to Doyle is that, in general,
ViolaWWW can use computational resources of a server anywhere on a
network and thus can perform client-server operations. That is described
in [Wei94] where he teaches how a chess board application embedded in
the ViolaWWW browser can front-end a chess server. He states, “Here's
another example of a mini interactive application that is embedded into a
HTML document. It's a chess board in which the chess pieces are actually
active and movable. And, illegal moves can be checked and denied
straight off by the intelligence of the scripts in the application. Given more

 24

Claim Text from ’906 Patent Wei94
work, this chess board application can front-end a chess server, connected
to it using the socket facility in viola.” [Wei94 at 7.]

906-13.a:
The computer program product of claim 8, wherein
additional instructions for controlling said
controllable application reside on said network
server, wherein said computer readable program
code for causing said client workstation to
interactively control said controllable application
on said client workstation includes:

Wei94 discloses additional instructions on the server See evidence recited for
906-11.a.

906-13.b:
computer readable program code for causing said
client workstation to issue from the client
workstation, one or more commands to the
network server;

Wei94 discloses that the client issues commands to the server. See evidence
recited for 906-11.b.

906-13.c:
computer readable program code for causing said
network server to execute one or more instructions
in response to said commands;

Wei94 discloses that the server executes instructions in response to client
commands. See evidence recited for 906-11.c.

906-13.d:
computer readable program code for causing said
network sever to send information to said client
workstation in response to said executed
instructions; and

Wei94 discloses that the server responds with information to the client. See
evidence recited for 906-11.d.

906-13.e:
computer readable program code for causing said
client workstation to process said information at
the client workstation to interactively control said
controllable application.

Wei94 discloses that the client uses information from the server to interactively
control the application. See evidence recited for 906-11.e..

 25

INVALIDITY CLAIM CHART FOR U.S. PATENT NO. 7,599,985

 PEI WEI'S PUBLICATION "A BRIEF OVERVIEW OF THE VIOLA ENGINE, AND ITS APPLICATIONS" BEARING THE DATE
AUGUST 16, 1994, AVAILABLE AT [PA-00318355]. ALSO AVAILABLE AT [PA-00318385] THROUGH [PA-00318392].
(“WEI94”). THE BODY OF MY REPORT HAS A NARRATIVE DESCRIPTION THAT AUGMENTS AND SHOULD BE CONSIDERED PART
OF THIS CHART, AND VISE-VERSA FOR THIS AND ALL MY CHARTS.

Claim Text from ’985 Patent Wei94
985-1.a:
A method for running an application program in a
distributed hypermedia network environment,
wherein the network environment comprises at
least one client workstation and one network
server coupled to the network environment, the
method comprising:

Wei94 discloses an application program. See, e.g., :

[Wei94] discloses "viola applications" that "range from a simple clock to a
World Wide Web hypermedia browser (ViolaWWW)" all of which were
intended to be run as computer code physically embodied on a medium.
([Wei94] at 1.)

Wei94 discloses a computer network environment. See, e.g., :

[Wei94] discloses "viola applications" that include "a World Wide Web
hypermedia browser (ViolaWWW)." ([Wei94] at 1.) The World Wide
Web was a distributed hypermedia environment.

Wei94 discloses a client workstation. See, e.g., :

[Wei94] discloses "viola applications" that include "a World Wide Web
hypermedia browser (ViolaWWW)." ([Wei94] at 1.) As such, [Wei94]
discloses a browser on a client workstation that retrieved documents from
a World Wide Web server.

Wei94 discloses a network server. See, e.g., :

 26

Claim Text from ’985 Patent Wei94
[Wei94] discloses "viola applications" that include "a World Wide Web
hypermedia browser (ViolaWWW)." ([Wei94] at 1.) As such, [Wei94]
discloses a browser on a client workstation that retrieved documents from
a World Wide Web server.

Wei94 discloses a distributed hypermedia environment. See, e.g., :

[Wei94] discloses "viola applications" that include "a World Wide Web
hypermedia browser (ViolaWWW)." ([Wei94] at 1.) The World Wide
Web was a distributed hypermedia environment.

985-1.b:
receiving, at the client workstation from the
network server over the network environment, at
least one file containing information to enable a
browser application to display at least a portion of
a distributed hypermedia document within a
browser-controlled window;

Wei94 discloses a browser application. See, e.g., :

[Wei94] discloses "viola applications" that include "a World Wide Web
hypermedia browser (ViolaWWW)." ([Wei94] at 1.)

Wei94 discloses a file containing enabling information. See, e.g., :

ViolaWWW displayed hypermedia documents, including HTML
documents ([Wei94] at 2); and HMML documents ([Wei94] at 4.) These
were examples of files containing enabling information.

Wei94 discloses that the file is received at the client workstation from the
network server. See, e.g., :

[Wei94] discloses "viola applications" that include "a World Wide Web
hypermedia browser (ViolaWWW)." ([Wei94] at 1.) As such, [Wei94]
discloses a browser on a client workstation that retrieved files from a
World Wide Web server.
These documents were hypermedia files, including HTML files ([Wei94]
at 2); and HMML files ([Wei94] at 4.)

Wei94 discloses that the browser displays at least a portion of a distributed

 27

Claim Text from ’985 Patent Wei94
hypermedia document. See, e.g., :

ViolaWWW displayed hypermedia documents, including HTML
documents ([Wei94] at 2); and HMML documents ([Wei94] at 4.)

Wei94 discloses that at least a portion of a hypermedia document is displayed in
a browser-controlled window. See, e.g., :

[Wei94] includes various screenshots showing hypermedia documents
displayed in a browser window. (See, e.g., [Wei94] at 5-10.)

985-1.c:
executing the browser application on the client
workstation, with the browser application:

Wei94 discloses a browser application executing on the client workstation. See,
e.g., :

[Wei94] discloses "viola applications" that include "a World Wide Web
hypermedia browser (ViolaWWW)." ([Wei94] at 1.)

985-1.d:
responding to text formats to initiate processing
specified by the text formats;

Wei94 discloses responding to text formats to initiate processing specified by the
text formats, i.e., parsing text formats. See, e.g., :

ViolaWWW displayed hypermedia documents, including HTML
documents ([Wei94] at 2); and HMML documents ([Wei94] at 4.)
As was well known in the art, these are examples of markup languages,
which included text formats that were parsed by browsers.

985-1.e:
displaying at least a portion of the document
within the browser-controlled window;

Wei94 discloses that the browser displays a hypermedia document. See, e.g., :

ViolaWWW displayed hypermedia documents, including HTML
documents ([Wei94] at 2); and HMML documents ([Wei94] at 4.)

Wei94 discloses that a hypermedia document is displayed in a browser window.
See, e.g., :

[Wei94] includes various screenshots showing hypermedia documents

 28

Claim Text from ’985 Patent Wei94
displayed in a browser window. (See, e.g., [Wei94] at 5-10.)

985-1.f:
identifying an embed text format which
corresponds to a first location in the document,
where the embed text format specifies the location
of at least a portion of an object external to the file,
where the object has type information associated
with it;

Wei94 discloses identifying an embed text format. See, e.g., :

[Wei94] includes a section entitled "Embedding mini applications," which
gives examples of embedded objects including a graph object, a chess
board, a message relay, and graphing output. ([Wei94] at 7-10.)

 29

Claim Text from ’985 Patent Wei94

As to the graphing output, it is clear that the depiction of the jetfighter is
"embedded" for at least three reasons. First, the paper talks about

Browser With Embedded App

 30

Claim Text from ’985 Patent Wei94
embedding and discusses this example in connection with "embedding
mini applications." Second, the image of the jetfighter does not include
the control adornments that one typically associates with standalone
windows in the X Windows environment. Third, Pei Wei told Michael
Doyle that this plotting demo was an embedded object, at least in [www-
talk-00293126].
ViolaWWW structured documents according to HTML and HMML
markup languages. ([Wei94] at 2; 4.) Accordingly, the use of an "embed
text format" for embedding these mini applications is inherent.
Also, in [www-talk-00293126], Pei Wei references his demonstration of
[Viola-DX34]; a codebase which I analyzed. This shows that the
embedded mini applications can be achieved using an embed text format
called VOBJF. (See, e.g., viola\docs\testPlot.hmml;
docs\violaChier.hmml.)
HMML was a markup language, and markup language tags were
identified by a browser, as was well known in the art.

Wei94 discloses that the embed text format corresponds to a first location in the
hypermedia document. See, e.g., :

[Wei94] includes a section entitled "Embedding mini applications," which
gives examples of embedded objects including a graph object, a chess
board, a message relay, and graphing output. ([Wei94] at 7-10.)
As to the graphing output, it is clear that the depiction of the jetfighter is
"embedded" for at least three reasons. First, the paper talks about
embedding and discusses this example in connection with "embedding
mini applications." Second, the image of the jetfighter does not include
the control adornments that one typically associates with standalone
windows in the X Windows environment. Third, Pei Wei told Michael
Doyle that this plotting demo was an embedded object, at least in [www-
talk-00293126].
ViolaWWW structured documents according to HTML and HMML

 31

Claim Text from ’985 Patent Wei94
markup languages. ([Wei94] at 2; 4.) Accordingly, the use of an "embed
text format" for embedding these mini applications is inherent.
Also, in [www-talk-00293126], Pei Wei references his demonstration of
[Viola-DX34]; a codebase which I analyzed. This shows that the
embedded mini applications can be achieved using an embed text format
called VOBJF. (See, e.g., viola\docs\testPlot.hmml;
docs\violaChier.hmml.)
The VOBJF text format corresponds to a first location in the hypermedia
document.

Wei94 discloses that the embed text format specifies the location of an object.
See, e.g., :

[Wei94] includes a section entitled "Embedding mini applications," which
gives examples of embedded objects including a graph object, a chess
board, a message relay, and graphing output. ([Wei94] at 7-10.)
As to the graphing output, it is clear that the depiction of the jetfighter is
"embedded" for at least three reasons. First, the paper talks about
embedding and discusses this example in connection with "embedding
mini applications." Second, the image of the jetfighter does not include
the control adornments that one typically associates with standalone
windows in the X Windows environment. Third, Pei Wei told Michael
Doyle that this plotting demo was an embedded object, at least in [www-
talk-00293126].
ViolaWWW structured documents according to HTML and HMML
markup languages. ([Wei94] at 2; 4.) Accordingly, the use of an "embed
text format" for embedding these mini applications is inherent.
Also, in [www-talk-00293126], Pei Wei references his demonstration of
[Viola-DX34]; a codebase which I analyzed. This shows that the
embedded mini applications can be achieved using an embed text format
called VOBJF. (See, e.g., viola\docs\testPlot.hmml;
docs\violaChier.hmml.)

 32

Claim Text from ’985 Patent Wei94
The VOBJF embed text format specifies the location of an object. For
example, testPlot.hmml includes a VOBJF tag that shows the tag's syntax,
including that it specifies the location of an object based on a filepath
location in which the object can be found:
<VOBJF>/home/wei/viola/apps/plot.v<\VOBJF>
(See viola\docs\testPlot.hmml.)

Wei94 discloses that the object is external to the file containing enabling
information. See, e.g., :

[Wei94] includes a section entitled "Embedding mini applications," which
gives examples of embedded objects including a graph object, a chess
board, a message relay, and graphing application output. ([Wei94] at 7-
10.) With reference to [Wei94] at 10, the jetfighter rendering is an object.
Also, in [www-talk-00293126], Pei Wei references his demonstration of
[Viola-DX34]; a codebase which I analyzed.
This shows that the graphing application, generated by the vplot
application, has data for a default grid specified in the file plot.v by the
command:
 output("equation 0");
(See apps\plot.v.)

Wei94 discloses that the object has associated type information. See, e.g., :

[Wei94] includes a section entitled "Embedding mini applications," which
gives examples of embedded objects including a graph object, a chess
board, a message relay, and graphing output. ([Wei94] at 7-10.)
ViolaWWW structured documents according to HTML and HMML
markup languages. ([Wei94] at 2; 4.) Accordingly, the use of an "embed
text format" for embedding these mini applications is inherent.
Also, in [www-talk-00293126], Pei Wei references his demonstration of
[Viola-DX34]; a codebase which I analyzed. This shows that an

 33

Claim Text from ’985 Patent Wei94
embedded mini applications can be achieved using an embed text format
called VOBJF:
 <VOBJF>/home/wei/viola/apps/plot.v<\VOBJF>
 (See, e.g., viola\docs\testPlot.hmml)
The file plot.v contains type information associated with the object.
/path {/home/wei/vplot/vplot}
(See viola\apps\plot.v.)

985-1.g:
utilizing the type information to identify and locate
an executable application external to the file; and

Wei94 discloses that the browser uses type information to identify and locate an
executable application. See, e.g., :

[Wei94] includes a section entitled "Embedding mini applications," which
gives examples of embedded objects including a graph object, a chess
board, a message relay, and graphing output. ([Wei94] at 7-10.)
ViolaWWW structured documents according to HTML and HMML
markup languages. ([Wei94] at 2; 4.) Accordingly, the use of an "embed
text format" for embedding these mini applications is inherent.
Also, in [www-talk-00293126], Pei Wei references his demonstration of
[Viola-DX34]; a codebase which I analyzed. This shows that an
embedded mini applications can be achieved using an embed text format
called VOBJF:
 <VOBJF>/home/wei/viola/apps/plot.v<\VOBJF>
 (See, e.g., viola\docs\testPlot.hmml)
The file plot.v contains type information associated with the object.
/path {/home/wei/vplot/vplot}
(See viola\apps\plot.v.)
The type information is used by the ViolaWWW to identify and locate the
vplot executable application. ViolaWWW then invokes the executable
application.
 switch (pid = vfork()) {
…
 case 0: * Child *\
…

 34

Claim Text from ’985 Patent Wei94
 execv(GET_path(self), args);
(See viola\src\cl_TTY.c.)

Wei94 discloses that the executable application is external to the file containing
enabling information. See, e.g., :

[Wei94] states that "[t]his next mini application front-ends a graphing
process (on the same machine as the viola process). An important thing to
note is that, like all the other document-embeddable mini applications
shown, no special modification to the viola engine is required for
ViolaWWW to support them. All the bindings are done via the viola
language, provided that the necessary primitives are available in the
interpreter, of course."
In [www-talk-00293128], Pei Wei explained that this described Viola in
operation with the vplot executable application, which was external to the
hypermedia document: "And, as for the plotting demo, it actually is really
just a front-end that fires up a back-end plotting program (and the point is
that that back-end could very well be running on a remote super computer
instead of the localhost). For that demo, there is a simple protocol such
that the front-end app could pass an X window ID to the back-end, and the
back-end draws the graphics directly onto the window violaWWW has
opened for it."
Further in [Wei94], Wei teaches how a chess board application embedded
in the ViolaWWW browser can front-end a chess server. He states,
“Here's another example of a mini interactive application that is embedded
into a HTML document. It's a chess board in which the chess pieces are
actually active and movable. And, illegal moves can be checked and
denied straight off by the intelligence of the scripts in the application.
Given more work, this chess board application can front-end a chess
server, connected to it using the socket facility in viola.” [Wei94 at 7.]

985-1.h:
automatically invoking the executable application,

Wei94 discloses that the browser parses the embed text format. See, e.g., :

 35

Claim Text from ’985 Patent Wei94
in response to the identifying of the embed text
format, to execute on the client workstation in
order to display the object and enable an end-user
to directly interact with the object while the object
is being displayed within a display area created at
the first location within the portion of the
hypermedia document being displayed in the
browser-controlled window.

[Wei94] includes a section entitled "Embedding mini applications," which
gives examples of embedded objects including a graph object, a chess
board, a message relay, and graphing output. ([Wei94] at 7-10.)
As to the graphing output, it is clear that the depiction of the jetfighter is
"embedded" for at least three reasons. First, the paper talks about
embedding and discusses this example in connection with "embedding
mini applications." Second, the image of the jetfighter does not include
the control adornments that one typically associates with standalone
windows in the X Windows environment. Third, Pei Wei told Michael
Doyle that this plotting demo was an embedded object, at least in [www-
talk-00293126].
ViolaWWW structured documents according to HTML and HMML
markup languages. ([Wei94] at 2; 4.) Accordingly, the use of an "embed
text format," parsed by a browser, for embedding these mini applications
is inherent.
Also, in [www-talk-00293126], Pei Wei references his demonstration of
[Viola-DX34]; a codebase which I analyzed. This shows that the
embedded mini applications can be achieved using an embed text format
called VOBJF. (See, e.g., viola\docs\testPlot.hmml;
docs\violaChier.hmml.)

Wei94 discloses automatic invocation of the executable application. See, e.g., :

[Wei94] includes a section entitled "Embedding mini applications," which
gives examples of embedded objects including a graphing output.
([Wei94] at 10.)
In [www-talk-00293128], Pei Wei explained that this described Viola in
operation with the vplot executable application, which displayed graphing
objects: "And, as for the plotting demo, it actually is really just a front-end
that fires up a back-end plotting program (and the point is that that back-
end could very well be running on a remote super computer instead of the
localhost). For that demo, there is a simple protocol such that the front-

 36

Claim Text from ’985 Patent Wei94
end app could pass an X window ID to the back-end, and the back-end
draws the graphics directly onto the window violaWWW has opened for
it."
Also, in [www-talk-00293126], Pei Wei references his demonstration of
[Viola-DX34]; a codebase which I analyzed. This shows that when
ViolaWWW parses the VOBJF tag in testPlot.hmml, the vplot application
is automatically invoked as follows:
 switch (pid = vfork()) {
…
 case 0: * Child *\
…
 execv(GET_path(self), args);
(See src\cl_TTY.c.)

Wei94 discloses that the executable application displays the object. See, e.g., :

[Wei94] states that "[t]his next mini application front-ends a graphing
process (on the same machine as the viola process). An important thing to
note is that, like all the other document-embeddable mini applications
shown, no special modification to the viola engine is required for
ViolaWWW to support them. All the bindings are done via the viola
language, provided that the necessary primitives are available in the
interpreter, of course."
In [www-talk-00293128], Pei Wei explained that this described Viola in
operation with the vplot executable application, which displayed graphing
objects: "And, as for the plotting demo, it actually is really just a front-end
that fires up a back-end plotting program (and the point is that that back-
end could very well be running on a remote super computer instead of the
localhost). For that demo, there is a simple protocol such that the front-
end app could pass an X window ID to the back-end, and the back-end
draws the graphics directly onto the window violaWWW has opened for
it."

 37

Claim Text from ’985 Patent Wei94
Further in [Wei94], Wei teaches how a chess board application embedded
in the ViolaWWW browser can front-end a chess server. He states,
“Here's another example of a mini interactive application that is embedded
into a HTML document. It's a chess board in which the chess pieces are
actually active and movable. And, illegal moves can be checked and
denied straight off by the intelligence of the scripts in the application.
Given more work, this chess board application can front-end a chess
server, connected to it using the socket facility in viola.” [Wei94 at 7.]

Wei94 discloses that the executable application enables direct interaction with
the object. See, e.g., :

[Wei94] includes a section entitled "Embedding mini applications," which
gives examples of embedded objects including a graphing output.
([Wei94] at 10.)
As shown in the figure depicting this example, there are slider bars that
enable a user to interact directly with the jetfighter.

Wei94 discloses that interaction with the object is at a first location in the
hypermedia document. See, e.g., :

[Wei94] includes a section entitled "Embedding mini applications," which
gives examples of embedded objects including a graphing output.
([Wei94] at 10.)
As shown in the figure depicting this example, there are slider bars that
enable a user to interact directly with the jetfighter at the first location in
the hypermedia document.

985-2.a:
The method of claim 1 where: the information to
enable comprises text formats.

Wei94 discloses that the enabling information in the file is text formats. See,
e.g., :

ViolaWWW displayed hypermedia documents, including HTML

 38

Claim Text from ’985 Patent Wei94
documents ([Wei94] at 2); and HMML documents ([Wei94] at 4.)
These were examples of files containing enabling information. The
enabling information took the form of markup language text formats.

985-3.a:
The method of claim 2 where the text formats are
HTML tags.

Wei94 discloses that the text formats are HTML tags. See, e.g., :

ViolaWWW displayed hypermedia documents, including HTML
documents. ([Wei94] at 2.)

985-4.a:
The method of claim 1 where the information
contained in the file received comprises at least
one embed text format.

Wei94 discloses that the enabling information in the file includes an embed text
format. See, e.g., :

[Wei94] includes a section entitled "Embedding mini applications," which
gives examples of embedded objects including a graph object, a chess
board, a message relay, and graphing output. ([Wei94] at 7-10.)
As to the graphing output, it is clear that the depiction of the jetfighter is
"embedded" for at least three reasons. First, the paper talks about
embedding and discusses this example in connection with "embedding
mini applications." Second, the image of the jetfighter does not include
the control adornments that one typically associates with standalone
windows in the X Windows environment. Third, Pei Wei told Michael
Doyle that this plotting demo was an embedded object, at least in [www-
talk-00293126].
ViolaWWW structured documents according to HTML and HMML
markup languages. ([Wei94] at 2; 4.) Accordingly, the use of an "embed
text format" for embedding these mini applications is inherent.
Also, in [www-talk-00293126], Pei Wei references his demonstration of
[Viola-DX34]; a codebase which I analyzed. This shows that the
embedded mini applications can be achieved using an embed text format
called VOBJF. (See, e.g., viola\docs\testPlot.hmml;
docs\violaChier.hmml.)

 39

Claim Text from ’985 Patent Wei94
985-5.a:
The method of claim 1 where the step of
identifying an embed text format comprises:
parsing the received file to identify text formats
included in the received file.

Wei94 discloses that the embed text format is identified by parsing the file
containing enabling information. See, e.g., :

[Wei94] includes a section entitled "Embedding mini applications," which
gives examples of embedded objects including a graph object, a chess
board, a message relay, and graphing output. ([Wei94] at 7-10.)
As to the graphing output, it is clear that the depiction of the jetfighter is
"embedded" for at least three reasons. First, the paper talks about
embedding and discusses this example in connection with "embedding
mini applications." Second, the image of the jetfighter does not include
the control adornments that one typically associates with standalone
windows in the X Windows environment. Third, Pei Wei told Michael
Doyle that this plotting demo was an embedded object, at least in [www-
talk-00293126].
ViolaWWW structured documents according to HTML and HMML
markup languages. ([Wei94] at 2; 4.) Accordingly, the use of an "embed
text format" for embedding these mini applications is inherent.
Also, in [www-talk-00293126], Pei Wei references his demonstration of
[Viola-DX34]; a codebase which I analyzed. This shows that the
embedded mini applications can be achieved using an embed text format
called VOBJF. (See, e.g., viola\docs\testPlot.hmml;
docs\violaChier.hmml.)
HMML was a markup language, and markup language tags were parsed
by a browser, as was well known in the art.

985-6.a:
The method of claim 5 where the parsing is by a
parser in the browser.

Wei94 discloses that the parser is in the browser See, e.g., :

ViolaWWW displayed hypermedia documents, including HTML
documents ([Wei94] at 2); and HMML documents ([Wei94] at 4.)
As was well known in the art, these were examples of files with markup
languages that were processed by browsers with parsers.

 40

Claim Text from ’985 Patent Wei94
985-7.a:
The method of claim 1 where the processing
specified by the text formats is specified directly.

Wei94 discloses that the text formats directly specify the processing. See, e.g., :

ViolaWWW displayed hypermedia documents, including HTML
documents ([Wei94] at 2); and HMML documents ([Wei94] at 4.)
It was well known in the art that these types of documents included text
formats that directly specified processing.
By way of example, in [www-talk-00293126], Pei Wei references his
demonstration of [Viola-DX34]; a codebase which I analyzed. It includes
an exemplary HMML file (testPlot.hmml) which contains the HMML tags
such as TITLE, H1 and ITALIC. It also includes an exemplar HTML file
(testAll.html) which contains HTML tags, such as TITLE and H1.
The hypermedia document downloaded from the remote network server
would be parsed by ViolaWWW to identify these tags. ViolaWWW then
initiates processing directly specified by the tags. For example,
ViolaWWW displays the text marked by the H1 tag in large, bold, header
text and the text marked by the ITALIC tag in italics.

985-8.a:
The method of claim 1 where the correspondence
is implied by the order of the text format in a set of
all of the text formats.

Wei94 discloses that the correspondence is implied by the order of text formats.
See, e.g., :

ViolaWWW displayed hypermedia documents, including HTML
documents ([Wei94] at 2); and HMML documents ([Wei94] at 4.)
With HTML and HMML, the correspondence between the location in the
document and the text formats is implied by the order of the text formats.
For example, with reference to [Viola-DX34] as an example, in
testPlot.hmml, TITLE tag appears before H1 tag. H1 tag is followed by P
tag. VOBJF tag appears later. When ViolaWWW displays the document,
the title (associated with TITLE tag) is displayed first. The title is
followed by heading (associated with H1 tag). A paragraph (associated
with P tag) is displayed after the heading. An object is embedded later in
the document where VOBJF tag is specified.
Similarly, again using [Viola-DX34] as an example, for testAll.html, a

 41

Claim Text from ’985 Patent Wei94
title (associated with a TITLE tag) is displayed ahead of Header 1
(associated with a subsequent header tag), which is displayed ahead of
Header 2 (associated with a still subsequent header tag). (See
docs\testAll.html.)

985-9.a:
The method of claim 1 where the embed text
format specifies the location of at least a portion of
an object directly.

Wei94 discloses that the embed text format specifies the location of the object
directly. See, e.g., :

[Wei94] includes a section entitled "Embedding mini applications," which
gives examples of embedded objects including a graph object, a chess
board, a message relay, and graphing output. ([Wei94] at 7-10.)
As to the graphing output, it is clear that the depiction of the jetfighter is
"embedded" for at least three reasons. First, the paper talks about
embedding and discusses this example in connection with "embedding
mini applications." Second, the image of the jetfighter does not include
the control adornments that one typically associates with standalone
windows in the X Windows environment. Third, Pei Wei told Michael
Doyle that this plotting demo was an embedded object, at least in [www-
talk-00293126].
ViolaWWW structured documents according to HTML and HMML
markup languages. ([Wei94] at 2; 4.) Accordingly, the use of an "embed
text format" for embedding these mini applications is inherent.
Also, in [www-talk-00293126], Pei Wei references his demonstration of
[Viola-DX34]; a codebase which I analyzed. This shows that the
embedded mini applications can be achieved using an embed text format
called VOBJF. (See, e.g., viola\docs\testPlot.hmml;
docs\violaChier.hmml.)
The VOBJF embed text format specifies the location of an object directly.
For example, testPlot.hmml includes a VOBJF tag specifying the location
of an object based on a filepath location in which the object can be found:
<VOBJF>/home/wei/viola/apps/plot.v<\VOBJF>
(See viola\docs\testPlot.hmml.)

 42

Claim Text from ’985 Patent Wei94

985-10.a:
The method of claim 1 where having type
information associated is by including type
information in the embed text format.

Wei94 discloses that the type information is in the embed text format. See, e.g., :

[Wei94] includes a section entitled "Embedding mini applications," which
gives examples of embedded objects including a graph object, a chess
board, a message relay, and graphing output. ([Wei94] at 7-10.)
ViolaWWW structured documents according to HTML and HMML
markup languages. ([Wei94] at 2; 4.) Accordingly, the use of an "embed
text format" for embedding these mini applications is inherent.
Also, in [www-talk-00293126], Pei Wei references his demonstration of
[Viola-DX34]; a codebase which I analyzed. This shows that an
embedded mini applications can be achieved using an embed text format
called VOBJF:
 <VOBJF>/home/wei/viola/apps/plot.v<\VOBJF>
 (See, e.g., viola\docs\testPlot.hmml)
The file plot.v contains type information associated with the object. The
file plot.v (which contains type information as described above) is in the
VOBJF embed text format.

985-11.a:
The method of claim 1 where automatically
invoking does not require interactive action by the
user.

Wei94 discloses that automatic invocation does not require interactive action by
the user. See, e.g., :

[Wei94] includes a section entitled "Embedding mini applications," which
gives examples of embedded objects including a graphing output.
([Wei94] at 10.)
In [www-talk-00293128], Pei Wei explained that this described Viola in
operation with the vplot executable application, which displayed graphing
objects: "And, as for the plotting demo, it actually is really just a front-end
that fires up a back-end plotting program (and the point is that that back-
end could very well be running on a remote super computer instead of the
localhost). For that demo, there is a simple protocol such that the front-
end app could pass an X window ID to the back-end, and the back-end

 43

Claim Text from ’985 Patent Wei94
draws the graphics directly onto the window violaWWW has opened for
it."
Also, in [www-talk-00293126], Pei Wei references his demonstration of
[Viola-DX34]; a codebase which I analyzed. This shows that when
ViolaWWW parses the VOBJF tag in testPlot.hmml, the vplot application
is automatically invoked, without requiring interactive action, as follows:
 switch (pid = vfork()) {
…
 case 0: * Child *\
…
 execv(GET_path(self), args);
(See src\cl_TTY.c.)

985-16.a:
One or more computer readable media encoded
with software comprising computer executable
instructions, for use in a distributed hypermedia
network environment, wherein the network
environment comprises at least one client
workstation and one network server coupled to the
network environment, and when the software is
executed operable to:

Wei94 discloses computer code physically embodied on a medium. See, e.g., :

The computer on which ViolaWWW executes includes computer usable
media having computer readable program code physically embodied
therein.
[Wei94] discloses "viola applications" that "range from a simple clock to a
World Wide Web hypermedia browser (ViolaWWW)," all of which were
intended to be run as computer code physically embodied on a medium.
([Wei94] at 1.)

Wei94 discloses a client workstation and a network server in a distributed
hypermedia environment. See evidence recited for 985-1.a.

985-16.b:
receive, at the client workstation from the network
server over the network environment, at least one
file containing information to enable a browser
application to display at least a portion of a
distributed hypermedia document within a
browser-controlled window;

Wei94 discloses a browser application; a file containing enabling information
received from a server; that the browser displays at least a portion of a
distributed hypermedia document; and that the display is in a browser-controlled
window. See evidence recited for 985-1.b.

 44

Claim Text from ’985 Patent Wei94
985-16.c:
cause the client workstation to utilize the browser
to:

Wei94 discloses a browser application executing on the client workstation. See
evidence recited for 985-1.c.

985-16.d:
respond to text formats to initiate processing
specified by the text formats;

Wei94 discloses parsing text formats. See evidence recited for 985-1.d.

985-16.e:
display at least a portion of the document within
the browser-controlled window;

Wei94 discloses displaying at least a portion of the document within the
browser-controlled window. See evidence recited for 985-1.e.

985-16.f:
identify an embed text format corresponding to a
first location in the document, the embed text
format specifying the location of at least a portion
of an object external to the file, with the object
having type information associated with it;

Wei94 discloses identifying an embed text format; that the embed text format
corresponds to a first location in a hypermedia document; that the embed text
format specifies the location of at least a portion of an object external to the file
containing enabling information; and that the object has associated type
information. See evidence recited for 985-1.f.

985-16.g:
utilize the type information to identify and locate
an executable application external to the file; and

Wei94 discloses using type information to identify and locate an executable
application external to the file. See evidence recited for 985-1.g.

985-16.h:
automatically invoke the executable application, in
response to the identifying of the embed text
format, to execute on the client workstation in
order to display the object and enable an end-user
to directly interact with the object while the object
is being displayed within a display area created at
the first location within the portion of the
hypermedia document being displayed in the
browser-controlled window.

Wei94 discloses automatically invoking the executable application; that the
executable application displays the object and enables an end-user to directly
interact with it; and that the interaction with the object is at a first location in a
hypermedia document. See evidence recited for 985-1.h.

985-17.a:
The computer readable media of claim 16 where:
the information to enable comprises text formats.

Wei94 discloses that the enabling information in the file is text formats. See
evidence recited for 985-2.a.

 45

Claim Text from ’985 Patent Wei94

985-18.a:
The computer readable media of claim 17 where:
the text formats are HTML tags.

Wei94 discloses that the text formats are HTML tags. See evidence recited for
985-3.a.

985-19.a:
The computer readable media of claim 16 where:
the information contained in the file received
comprises at least one embed text format.

Wei94 discloses that the enabling information in the file includes an embed text
format. See evidence recited for 985-4.a.

985-20.a:
A method of serving digital information in a
computer network environment having a network
server coupled the network environment, and
where the network environment is a distributed
hypermedia environment, the method comprising:

Wei94 discloses digital information. See, e.g., :

The information that is exchanged between a client workstation running
ViolaWWW and a server is digital information.
For example, ViolaWWW running on the client workstation can receive
hypermedia HTML and HMML documents from a network server over
the World Wide Web. ([Wei94] at 1; 2; 4.) These documents would be
transmitted according to network protocols that transmit information in
digital form.

Wei94 discloses a network server in a distributed hypermedia environment. See
evidence recited for 985-1.a.

985-20.b:
communicating via the network server with at least
one client workstation over said network in order
to cause said client workstation to:

Wei94 discloses a client workstation. See evidence recited for 985-1.a.

Wei94 discloses communicating via network server in order to cause the client
workstation to act. See, e.g., :

In [www-talk-00293128], Pei Wei described Viola in operation with the
vplot executable application: "And, as for the plotting demo, it actually is
really just a front-end that fires up a back-end plotting program (and the
point is that that back-end could very well be running on a remote super
computer instead of the localhost). For that demo, there is a simple

 46

Claim Text from ’985 Patent Wei94
protocol such that the front-end app could pass an X window ID to the
back-end, and the back-end draws the graphics directly onto the window
violaWWW has opened for it."
The preceding description by Wei is the essence of how the “plotting
demo” was produced. I have examined the relevant Viola code from DX34
and it is clear that the window in which the jet fighter lines are drawn is
embedded in the body of the ViolaWWW browser. Furthermore, the
program that plots those lines, vplot, is a compiled binary executable that,
in this case, resides on what Wei calls the localhost and runs in a different
UNIX process than the browser. There is no limitation in Viola, however,
that prevents a binary executable from being accessed over a network, as
Wei described ("the back-end could very well be running on a remote
super computer") and as I will demonstrate in what follows. I have
recently produced a video recording, [Viola video 9.avi], that
demonstrates how simple it is to make trivial changes to DX34 code to
effect a situation where ViolaWWW runs on a client workstation and
accesses an executable and related dataset on a server machine. This
demonstration used a version of plot.v accessing an HDF dataset through a
VIS executable, both of which were accessed via NFS on a server residing
on a network. The video carefully describes the changes made to plot.v
and testPlot.hmml from the DX34 codeset and shows the resulting display.
It is important to recognize that Wei told Doyle exactly how to modify
Viola to accomplish what I have demonstrated in the above-cited
demonstration. The back-end is running VIS on a remote server. The
front-end, the client workstation, has passed VIS an X window ID which it
uses to draw the graphics directly onto the window violaWWW has
opened for it.
One other gem that Wei passed on to Doyle is that, in general,
ViolaWWW can use computational resources of a server anywhere on a
network and thus can perform client-server operations. That is described
in [Wei94] where he teaches how a chess board application embedded in
the ViolaWWW browser can front-end a chess server. He states, “Here's

 47

Claim Text from ’985 Patent Wei94
another example of a mini interactive application that is embedded into a
HTML document. It's a chess board in which the chess pieces are actually
active and movable. And, illegal moves can be checked and denied
straight off by the intelligence of the scripts in the application. Given more
work, this chess board application can front-end a chess server, connected
to it using the socket facility in viola.” [Wei94 at 7.]

985-20.c:
receive, over said network environment from said
server, at least one file containing information to
enable a browser application to display at least a
portion of a distributed hypermedia document
within a browser-controlled window;

Wei94 discloses a browser application; a file containing enabling information
received from a server; that the browser displays at least a portion of a
distributed hypermedia document; and that the display is in a browser-controlled
window. See evidence recited for 985-1.b.

985-20.d:
execute, at said client workstation, a browser
application, with the browser application:

Wei94 discloses a browser application executing on the client workstation. See
evidence recited for 985-1.c.

985-20.e:
responding to text formats to initiate processing
specified by the text formats;

Wei94 discloses parsing text formats. See evidence recited for 985-1.d.

985-20.f:
displaying, on said client workstation, at least a
portion of the document within the browser-
controlled window;

Wei94 discloses displaying at least a portion of the document within the
browser-controlled window. See evidence recited for 985-1.e.

985-20.g:
identifying an embed text format which
corresponds to a first location in the document,
where the embed text format specifies the location
of at least a portion of an object external to the file,
where the object has type information associated
with it;

Wei94 discloses identifying an embed text format; that the embed text format
corresponds to a first location in a hypermedia document; that the embed text
format specifies the location of at least a portion of an object external to the file
containing enabling information; and that the object has associated type
information. See evidence recited for 985-1.f.

985-20.h:
utilizing the type information to identify and locate
an executable application external to the file; and

Wei94 discloses using type information to identify and locate an executable
application external to the file. See evidence recited for 985-1.g.

 48

Claim Text from ’985 Patent Wei94
985-20.i:
automatically invoking the executable application,
in response to the identifying of the embed text
format, to execute on the client workstation in
order to display the object and enable an end-user
to directly interact with the object while the object
is being displayed within a display area created at
the first location within the portion of the
hypermedia document being displayed in the
browser-controlled window.

Wei94 discloses automatically invoking the executable application; that the
executable application displays the object and enables an end-user to directly
interact with it; and that the interaction with the object is at a first location in a
hypermedia document. See evidence recited for 985-1.h.

985-21.a:
The method of claim 20 where: the information to
enable comprises text formats.

Wei94 discloses that the enabling information in the file is text formats. See
evidence recited for 985-2.a.

985-22.a:
The method of claim 21 where: the text formats
are HTML tags.

Wei94 discloses that the text formats are HTML tags. See evidence recited for
985-3.a.

985-23.a:
The method of claim 20 where: the information
contained in the file received comprises at least
one embed text format.

Wei94 discloses that the enabling information in the file includes an embed text
format. See evidence recited for 985-4.a.

985-24.a:
A method for running an executable application in
a computer network environment, wherein said
network environment has at least one client
workstation and one network server coupled to a
network environment, the method comprising:

Wei94 discloses a client workstation and a network server in a network
environment. See evidence recited for 985-1.a.

Wei94 discloses an executable application. See evidence recited for 985-1.g.

985-24.b:
enabling an end-user to directly interact with an

Wei94 discloses displaying at least a portion of the document within the
browser-controlled window. See evidence recited for 985-1.e.

 49

Claim Text from ’985 Patent Wei94
object by utilizing said executable application to
interactively process said object while the object is
being displayed within a display area created at a
first location within a portion of a hypermedia
document being displayed in a browser-controlled
window,

Wei94 discloses an object external to a file containing enabling information. See
evidence recited for 985-1.f.

Wei94 discloses that there is enabling of an end-user to directly interact with the
object. See, e.g., :

[Wei94] includes a section entitled "Embedding mini applications," which
gives examples of embedded objects including a graphing output.
([Wei94] at 10.)
As shown in the figure depicting this example, there are slider bars that
enable a user to interact directly with the jetfighter.

Wei94 discloses that the interaction with the object is at a first location in a
hypermedia document. See evidence recited for 985-1.h.

Wei94 discloses that the object is displayed at a first location within a portion of
the hypermedia document being displayed. See, e.g., :

[Wei94] includes a section entitled "Embedding mini applications," which
gives examples of embedded objects including a graph object, a chess
board, a message relay, and graphing application output. ([Wei94] at 7-
10.)
Also, in [www-talk-00293126], Pei Wei references his demonstration of
[Viola-DX34]; a codebase which I analyzed. With reference to the
graphing application, the vplot application displays the object as a grid
(the default grid) inside the ViolaWWW window. The object is displayed
at the first location in the portion of the testPlot.hmml hypermedia
document being displayed in the ViolaWWW window. (See, e.g.,
viola\docs\testPlot.hmml.)

985-24.c:
wherein said network environment is a distributed

Wei94 discloses a client workstation and a network server in a distributed
hypermedia environment. See evidence recited for 985-1.a.

 50

Claim Text from ’985 Patent Wei94
hypermedia environment,
985-24.d:
wherein said client workstation receives, over said
network environment from said server, at least one
file containing information to enable said browser
application to display, on said client workstation,
at least said portion of said distributed hypermedia
document within said browser-controlled window,

Wei94 discloses a browser application; a file containing enabling information
received from a server; that the browser displays at least a portion of a
distributed hypermedia document; and that the display is in a browser-controlled
window. See evidence recited for 985-1.b.

985-24.e:
wherein said executable application is external to
said file,

Wei94 discloses an executable application external to the file. See evidence
recited for 985-1.g.

985-24.f:
wherein said client workstation executes the
browser application, with the browser application
responding to text formats to initiate processing
specified by the text formats,

Wei94 discloses a browser application executing on the client workstation. See
evidence recited for 985-1.c.

Wei94 discloses parsing text formats. See evidence recited for 985-1.d.

985-24.g:
wherein at least said portion of the document is
displayed within the browser-controlled window,

Wei94 discloses displaying at least a portion of the document within the
browser-controlled window. See evidence recited for 985-1.e.

985-24.h:
wherein an embed text format which corresponds
to said first location in the document is identified
by the browser,

Wei94 discloses identifying an embed text format and that the embed text format
corresponds to a first location in a hypermedia document. See evidence recited
for 985-1.f.

985-24.i:
wherein the embed text format specifies the
location of at least a portion of said object external
to the file,

Wei94 discloses that the embed text format specifies the location of at least a
portion of an object external to the file containing enabling information. See
evidence recited for 985-1.f.

985-24.j:
wherein the object has type information associated
with it,

Wei94 discloses that the object has associated type information. See evidence
recited for 985-1.f.

985-24.k:
wherein the type information is utilized by the

Wei94 discloses using type information to identify and locate an executable
application external to the file. See evidence recited for 985-1.g.

 51

Claim Text from ’985 Patent Wei94
browser to identify and locate said executable
application, and
985-24.l:
wherein the executable application is automatically
invoked by the browser, in response to the
identifying of the embed text format.

Wei94 discloses automatically invoking the executable application. See
evidence recited for 985-1.h.

985-25.a:
The method of claim 24 where: the information to
enable comprises text formats.

Wei94 discloses that the enabling information in the file is text formats. See
evidence recited for 985-2.a.

985-26.a:
The method of claim 25 where: the text formats
are HTML tags.

Wei94 discloses that the text formats are HTML tags. See evidence recited for
985-3.a.

985-27.a:
The method of claim 24 where: the information
contained in the file received comprises at least
one embed text format.

Wei94 discloses that the enabling information in the file includes an embed text
format. See evidence recited for 985-4.a.

985-28.a:
One or more computer readable media encoded
with software comprising an executable
application for use in a system having at least one
client workstation and one network server coupled
to a network environment, operable to:

Wei94 discloses computer code physically embodied on a medium. See
evidence recited for 985-16.a.

Wei94 discloses a client workstation and a network server in a network
environment. See evidence recited for 985-1.a.

Wei94 discloses an executable application. See evidence recited for 985-1.g.

985-28.b:
cause the client workstation to display an object
and enable an end-user to directly interact with
said object while the object is being displayed
within a display area created at a first location

Wei94 discloses displaying at least a portion of the document within the
browser-controlled window. See evidence recited for 985-1.e.

Wei94 discloses an object external to a file containing enabling information. See
evidence recited for 985-1.f.

 52

Claim Text from ’985 Patent Wei94
within a portion of a hypermedia document being
displayed in a browser-controlled window,

Wei94 discloses that there is enabling of an end-user to directly interact with the
object. See evidence recited for 985-24.b.

Wei94 discloses that the interaction with the object is at a first location in a
hypermedia document. See evidence recited for 985-1.h.

Wei94 discloses that the object is displayed within a display area created at the
first location.. See, e.g., :

[Wei94] includes a section entitled "Embedding mini applications," which
gives examples of embedded objects including a graph object, a chess
board, a message relay, and graphing application output. ([Wei94] at 7-
10.)
Also, in [www-talk-00293126], Pei Wei references his demonstration of
[Viola-DX34]; a codebase which I analyzed. With reference to the
graphing application, the vplot application displays the object as a grid
(the default grid) inside the ViolaWWW window. The object is displayed
at the first location in the portion of the testPlot.hmml hypermedia
document being displayed in the ViolaWWW window. (See, e.g.,
viola\docs\testPlot.hmml.)

985-28.c:
wherein said network environment is a distributed
hypermedia environment,

Wei94 discloses a client workstation and a network server in a distributed
hypermedia environment. See evidence recited for 985-1.a.

985-28.d:
wherein said client workstation receives, over said
network environment from said server, at least one
file containing information to enable said browser
application to display, on said client workstation,
at least said portion of said distributed hypermedia
document within said browser-controlled window,

Wei94 discloses a browser application; a file containing enabling information
received from a server; that the browser displays at least a portion of a
distributed hypermedia document; and that the display is in a browser-controlled
window. See evidence recited for 985-1.b.

985-28.e: Wei94 discloses an executable application external to the file. See evidence

 53

Claim Text from ’985 Patent Wei94
wherein said executable application is external to
said file,

recited for 985-1.g.

985-28.f:
wherein said client workstation executes said
browser application, with the browser application
responding to text formats to initiate processing
specified by the text formats,

Wei94 discloses a browser application executing on the client workstation. See
evidence recited for 985-1.c.

Wei94 discloses parsing text formats. See evidence recited for 985-1.d.

985-28.g:
wherein at least said portion of the document is
displayed within the browser-controlled window,

Wei94 discloses displaying at least a portion of the document within the
browser-controlled window. See evidence recited for 985-1.e.

985-28.h:
wherein an embed text format which corresponds
to said first location in the document is identified
by the browser,

Wei94 discloses identifying an embed text format and that the embed text format
corresponds to a first location in a hypermedia document. See evidence recited
for 985-1.f.

985-28.i:
wherein the embed text format specifies the
location of at least a portion of said object external
to the file,

Wei94 discloses that the embed text format specifies the location of at least a
portion of an object external to the file containing enabling information. See
evidence recited for 985-1.f.

985-28.j:
wherein the object has type information associated
with it,

Wei94 discloses that the object has associated type information. See evidence
recited for 985-1.f.

985-28.k:
wherein the type information is utilized by the
browser to identify and locate said executable
application, and

Wei94 discloses using type information to identify and locate an executable
application external to the file. See evidence recited for 985-1.g.

985-28.l:
wherein the executable application is automatically
invoked by the browser, in response to the
identifying of the embed text format.

Wei94 discloses automatically invoking the executable application. See
evidence recited for 985-1.h.

985-36.a:
A method for running an application program in a

Wei94 discloses an application program in a distributed hypermedia
environment comprising at least client workstation and network server. See

 54

Claim Text from ’985 Patent Wei94
distributed hypermedia network environment,
wherein the distributed hypermedia network
environment comprises at least one client
workstation and one remote network server
coupled to the distributed hypermedia network
environment, the method comprising:

evidence recited for 985-1.a.

985-36.b:
receiving, at the client workstation from the
network server over the distributed hypermedia
network environment, at least one file containing
information to enable a browser application to
display at least a portion of a distributed
hypermedia document within a browser-controlled
window;

Wei94 discloses a browser application; a file containing enabling information;
that the file is received at the client workstation from the network server; that the
browser displays at least a portion of a distributed hypermedia document; and
that at least a portion of a hypermedia document is displayed in a browser-
controlled window. See evidence recited for 985-1.b.

985-36.c:
executing the browser application on the client
workstation, with the browser application:

Wei94 discloses a browser application executing on the client workstation. See
evidence recited for 985-1.c.

985-36.d:
responding to text formats to initiate processing
specified by the text formats;

Wei94 discloses parsing text formats. See evidence recited for 985-1.d.

985-36.e:
displaying at least a portion of the document
within the browser-controlled window;

Wei94 discloses displaying at least a portion of the document within the
browser-controlled window. See evidence recited for 985-1.e.

985-36.f:
identifying an embed text format which
corresponds to a first location in the document,
where the embed text format specifies the location
of at least a portion of an object;

Wei94 discloses an object. See, e.g., :

[Wei94] includes a section entitled "Embedding mini applications," which
gives examples of embedded objects including a graph object, a chess
board, a message relay, and graphing application output. ([Wei94] at 7-
10.) With reference to [Wei94] at 10, the jetfighter rendering is an object.

Wei94 discloses identifying an embed text format; that the embed text format
corresponds to a first location in the hypermedia document; and that the embed

 55

Claim Text from ’985 Patent Wei94
text format specifies the location of an object. See evidence recited for 985-1.f.

985-36.g:
identifying and locating an executable application
associated with the object; and

Wei94 discloses that the browser identifies and locates an executable application
associated with the object. See, e.g.,

[Wei94] states that "[t]his next mini application front-ends a graphing
process (on the same machine as the viola process). An important thing to
note is that, like all the other document-embeddable mini applications
shown, no special modification to the viola engine is required for
ViolaWWW to support them. All the bindings are done via the viola
language, provided that the necessary primitives are available in the
interpreter, of course."
In [www-talk-00293128], Pei Wei explained that this described Viola in
operation with the vplot executable application: "And, as for the plotting
demo, it actually is really just a front-end that fires up a back-end plotting
program (and the point is that that back-end could very well be running on
a remote super computer instead of the localhost). For that demo, there is
a simple protocol such that the front-end app could pass an X window ID
to the back-end, and the back-end draws the graphics directly onto the
window violaWWW has opened for it."
Further in [Wei94], Wei teaches how a chess board application embedded
in the ViolaWWW browser can front-end a chess server. He states,
“Here's another example of a mini interactive application that is embedded
into a HTML document. It's a chess board in which the chess pieces are
actually active and movable. And, illegal moves can be checked and
denied straight off by the intelligence of the scripts in the application.
Given more work, this chess board application can front-end a chess
server, connected to it using the socket facility in viola.” [Wei94 at 7.]

985-36.h:
automatically invoking the executable application,
in response to the identifying of the embed text
format, in order to enable an end-user to directly
interact with the object, while the object is being

Wei94 discloses identifying an embed text format. See evidence recited in 985-
1.f.

Wei94 discloses automatic invocation of the executable application; that the
executable application displays the object; that the executable application

 56

Claim Text from ’985 Patent Wei94
displayed within a display area created at the first
location within the portion of the hypermedia
document being displayed in the browser-
controlled window,

enables direct interaction with the object; and that interaction with the object is
at a first location in the hypermedia document. See evidence recited in 985-1.h.

Wei94 discloses that the object is displayed at a first location within a portion of
the hypermedia document being displayed. See evidence recited at 985-24.b.

Wei94 discloses that a hypermedia document is displayed in a browser window.
See, e.g., evidence recited for 985-1.e.

985-36.i:
wherein the executable application is part of a
distributed application, and

Wei94 discloses a distributed application. See, e.g., :

In [www-talk-00293128], Pei Wei described Viola in operation with the
vplot executable application: "And, as for the plotting demo, it actually is
really just a front-end that fires up a back-end plotting program (and the
point is that that back-end could very well be running on a remote super
computer instead of the localhost). For that demo, there is a simple
protocol such that the front-end app could pass an X window ID to the
back-end, and the back-end draws the graphics directly onto the window
violaWWW has opened for it."
The preceding description by Wei is the essence of how the “plotting
demo” was produced. I have examined the relevant Viola code from
[Viola-DX34] and it is clear that the window in which the jet fighter lines
are drawn is embedded in the body of the ViolaWWW browser.
Furthermore, the program that plots those lines, vplot, is a compiled binary
executable that, in this case, resides on what Wei calls the localhost and
runs in a different UNIX process than the browser. There is no limitation
in Viola, however, that prevents a binary executable from being accessed
over a network, as Wei suggested ("the back-end could very well be
running on a remote super computer") and as I will demonstrate in what
follows. I have recently produced a video recording, [Viola video 9.avi],

 57

Claim Text from ’985 Patent Wei94
that demonstrates how simple it is to make trivial changes to [Viola-
DX34] code to effect a situation where ViolaWWW runs on a client
workstation and accesses an executable and related dataset on a server
machine. This demonstration used a version of plot.v accessing an HDF
dataset through a VIS executable, both of which were accessed via NFS
on a server residing on a network. The video carefully describes the
changes made to plot.v and testPlot.hmml from the [Viola-DX34] codeset
and shows the resulting display.
It is important to recognize that Wei told Doyle exactly how to modify
Viola to accomplish what I have demonstrated in the above-cited
demonstration. The back-end is running VIS on a remote server. The
front-end, the client workstation, has passed VIS an X window ID which it
uses to draw the graphics directly onto the window violaWWW has
opened for it.
One other gem that Wei passed on to Doyle is that, in general,
ViolaWWW can use computational resources of a server anywhere on a
network and thus can perform client-server operations. That is described
in [Wei94] where he teaches how a chess board application embedded in
the ViolaWWW browser can front-end a chess server. He states, “Here's
another example of a mini interactive application that is embedded into a
HTML document. It's a chess board in which the chess pieces are actually
active and movable. And, illegal moves can be checked and denied
straight off by the intelligence of the scripts in the application. Given more
work, this chess board application can front-end a chess server, connected
to it using the socket facility in viola.” [Wei94 at 7.]

Wei94 discloses that the executable application is part of a distributed
application. See, e.g., :

In [www-talk-00293128], Pei Wei described Viola in operation with the
vplot executable application: "And, as for the plotting demo, it actually is
really just a front-end that fires up a back-end plotting program (and the

 58

Claim Text from ’985 Patent Wei94
point is that that back-end could very well be running on a remote super
computer instead of the localhost). For that demo, there is a simple
protocol such that the front-end app could pass an X window ID to the
back-end, and the back-end draws the graphics directly onto the window
violaWWW has opened for it."
The preceding description by Wei is the essence of how the “plotting
demo” was produced. I have examined the relevant Viola code from DX34
and it is clear that the window in which the jet fighter lines are drawn is
embedded in the body of the ViolaWWW browser. Furthermore, the
program that plots those lines, vplot, is a compiled binary executable that,
in this case, resides on what Wei calls the localhost and runs in a different
UNIX process than the browser. There is no limitation in Viola, however,
that prevents a binary executable from being accessed over a network, as
Wei described ("the back-end could very well be running on a remote
super computer") and as I will demonstrate in what follows. I have
recently produced a video recording, [Viola video 9.avi], that
demonstrates how simple it is to make trivial changes to DX34 code to
effect a situation where ViolaWWW runs on a client workstation and
accesses an executable and related dataset on a server machine. This
demonstration used a version of plot.v accessing an HDF dataset through a
VIS executable, both of which were accessed via NFS on a server residing
on a network. The video carefully describes the changes made to plot.v
and testPlot.hmml from the DX34 codeset and shows the resulting display.
It is important to recognize that Wei told Doyle exactly how to modify
Viola to accomplish what I have demonstrated in the above-cited
demonstration. The back-end is running VIS on a remote server. The
front-end, the client workstation, has passed VIS an X window ID which it
uses to draw the graphics directly onto the window violaWWW has
opened for it.
One other gem that Wei passed on to Doyle is that, in general,
ViolaWWW can use computational resources of a server anywhere on a
network and thus can perform client-server operations. That is described

 59

Claim Text from ’985 Patent Wei94
in [Wei94] where he teaches how a chess board application embedded in
the ViolaWWW browser can front-end a chess server. He states, “Here's
another example of a mini interactive application that is embedded into a
HTML document. It's a chess board in which the chess pieces are actually
active and movable. And, illegal moves can be checked and denied
straight off by the intelligence of the scripts in the application. Given more
work, this chess board application can front-end a chess server, connected
to it using the socket facility in viola.” [Wei94 at 7.]

985-36.j:
wherein at least a portion of the distributed
application is for execution on a remote network
server coupled to the distributed hypermedia
network environment.

Wei94 discloses that the distributed application executes at least partially on a
network server. See, e.g., :

In [www-talk-00293128], Pei Wei described Viola in operation with the
vplot executable application: "And, as for the plotting demo, it actually is
really just a front-end that fires up a back-end plotting program (and the
point is that that back-end could very well be running on a remote super
computer instead of the localhost). For that demo, there is a simple
protocol such that the front-end app could pass an X window ID to the
back-end, and the back-end draws the graphics directly onto the window
violaWWW has opened for it."
The preceding description by Wei is the essence of how the “plotting
demo” was produced. I have examined the relevant Viola code from DX34
and it is clear that the window in which the jet fighter lines are drawn is
embedded in the body of the ViolaWWW browser. Furthermore, the
program that plots those lines, vplot, is a compiled binary executable that,
in this case, resides on what Wei calls the localhost and runs in a different
UNIX process than the browser. There is no limitation in Viola, however,
that prevents a binary executable from being accessed over a network, as
Wei described ("the back-end could very well be running on a remote
super computer") and as I will demonstrate in what follows. I have
recently produced a video recording, [Viola video 9.avi], that
demonstrates how simple it is to make trivial changes to DX34 code to
effect a situation where ViolaWWW runs on a client workstation and

 60

Claim Text from ’985 Patent Wei94
accesses an executable and related dataset on a server machine. This
demonstration used a version of plot.v accessing an HDF dataset through a
VIS executable, both of which were accessed via NFS on a server residing
on a network. The video carefully describes the changes made to plot.v
and testPlot.hmml from the DX34 codeset and shows the resulting display.
It is important to recognize that Wei told Doyle exactly how to modify
Viola to accomplish what I have demonstrated in the above-cited
demonstration. The back-end is running VIS on a remote server. The
front-end, the client workstation, has passed VIS an X window ID which it
uses to draw the graphics directly onto the window violaWWW has
opened for it.
One other gem that Wei passed on to Doyle is that, in general,
ViolaWWW can use computational resources of a server anywhere on a
network and thus can perform client-server operations. That is described
in [Wei94] where he teaches how a chess board application embedded in
the ViolaWWW browser can front-end a chess server. He states, “Here's
another example of a mini interactive application that is embedded into a
HTML document. It's a chess board in which the chess pieces are actually
active and movable. And, illegal moves can be checked and denied
straight off by the intelligence of the scripts in the application. Given more
work, this chess board application can front-end a chess server, connected
to it using the socket facility in viola.” [Wei94 at 7.]

985-37.a:
The method of claim 36 where: the information to
enable comprises text formats.

Wei94 discloses that the enabling information in the file is text formats. See
evidence recited for 985-2.a.

985-38.a:
The method of claim 37 where: the text formats
are HTML tags.

Wei94 discloses that the text formats are HTML tags. See evidence recited for
985-3.a.

985-39.a: Wei94 discloses that the enabling information in the file includes an embed text

 61

Claim Text from ’985 Patent Wei94
The method of claim 36 where: the information
contained in the file received comprises at least
one embed text format.

format. See evidence recited for 985-4.a.

985-40.a:
A method of serving digital information in a
computer network environment having a network
server coupled to said computer network
environment, and where the network environment
is a distributed hypermedia network environment,
the method comprising:

Wei94 discloses digital information. See evidence recited for 985-20.a.

Wei94 discloses a network server in a distributed hypermedia environment. See
evidence recited for 985-1.a.

985-40.b:
communicating via the network server with at least
one remote client workstation over said computer
network environment in order to cause said client
workstation to:

Wei94 discloses a client workstation. See evidence recited for 985-1.a.

Wei94 discloses communicating via network server in order to cause the client
workstation to act. See evidence recited for 985-20.b.

985-40.c:
receive, over said computer network environment
from the network server, at least one file
containing information to enable a browser
application to display at least a portion of a
distributed hypermedia document within a
browser-controlled window;

Wei94 discloses a browser application; a file containing enabling information
received from a server; that the browser displays at least a portion of a
distributed hypermedia document; and that the display is in a browser-controlled
window. See evidence recited for 985-1.b.

985-40.d:
execute, at said client workstation, a browser
application, with the browser application:

Wei94 discloses a browser application executing on the client workstation. See
evidence recited for 985-1.c.

985-40.e:
responding to text formats to initiate processing
specified by the text formats;

Wei94 discloses parsing text formats. See evidence recited for 985-1.d.

985-40.f:
displaying, on said client workstation, at least a
portion of the document within the browser-

Wei94 discloses displaying at least a portion of the document within the
browser-controlled window. See evidence recited for 985-1.e.

 62

Claim Text from ’985 Patent Wei94
controlled window;
985-40.g:
identifying an embed text format which
corresponds to a first location in the document,
where the embed text format specifies the location
of at least a portion of an object;

Wei94 discloses an object. See evidence recited for 985-36.f.

Wei94 discloses identifying an embed text format; that the embed text format
corresponds to a first location in the hypermedia document; and that the embed
text format specifies the location of an object. See evidence recited for 985-1.f.

985-40.h:
identifying and locating an executable application
associated with the object; and

Wei94 discloses that the browser identifies and locates an executable application
associated with the object. See evidence recited for 985-36.g.

985-40.i:
automatically invoking the executable application,
in response to the identifying of the embed text
format, in order to enable an end-user to directly
interact with the object while the object is being
displayed within a display area created at the first
location within the portion of the hypermedia
document being displayed in the browser-
controlled window,

Wei94 discloses identifying an embed text format. See evidence recited in 985-
1.f.

Wei94 discloses automatic invocation of the executable application; that the
executable application displays the object; that the executable application
enables direct interaction with the object; and that interaction with the object is
at a first location in the hypermedia document. See evidence recited in 985-1.h.

Wei94 discloses that the object is displayed at a first location within a portion of
the hypermedia document being displayed. See evidence recited for 985-24.b.

Wei94 discloses that a hypermedia document is displayed in a browser window.
See, e.g., evidence recited for 985-1.e.

985-40.j:
wherein the executable application is part of a
distributed application, and

Wei94 discloses that the executable application is part of a distributed
application. See evidence recited in 985-36.i.

985-40.k:
wherein at least a portion of the distributed
application is for execution on the network server.

Wei94 discloses that the distributed application executes at least partially on a
network server. See evidence recited for 985-36.j.

 63

Claim Text from ’985 Patent Wei94
985-41.a:
The method of claim 40 where: the information to
enable comprises text formats.

Wei94 discloses that the enabling information in the file is text formats. See
evidence recited for 985-2.a.

985-42.a:
The method of claim 41 where: the text formats
are HTML tags.

Wei94 discloses that the text formats are HTML tags. See evidence recited for
985-3.a.

985-43.a:
The method of claim 40 where: the information
contained in the file received comprises at least
one embed text format.

Wei94 discloses that the enabling information in the file includes an embed text
format. See evidence recited for 985-4.a.

