

 1

CLAIM CHART EXHIBIT 7
"MEDIAVIEW"

E
olas T

echnologies Incorporated v. A
dobe S

ystem
s Incorporated et al

D
oc. 1348 A

tt. 8

D
ockets.Justia.com

http://dockets.justia.com/docket/texas/txedce/6:2009cv00446/118976/
http://docs.justia.com/cases/federal/district-courts/texas/txedce/6:2009cv00446/118976/1348/8.html
http://dockets.justia.com/

 2

INVALIDITY CLAIM CHART FOR U.S. PATENT NO. 5,838,906

 “MEDIAVIEW” 1—AS INTENDED TO BE USED IN A COMPUTER SYSTEM AND DEMONSTRATION OF SAME, INCLUDING
INDIVIDUALLY AND COLLECTIVELY:

o An Interpersonal Multimedia Visualization System, IEEE Computer Graphics & Applications, May, 1991 [PA-
00273175] [Phillips91a];

o MediaView: An Editable Multimedia Publishing System Developed With An Object-Oriented Toolkit, Proc.
USENIX Summer Conf., Nashville, TN, June, 1991 [PA-00327398] [Phillips91b];

o MediaView: A General Multimedia Digital Publication System, Comm. ACM, Vol. 34, No. 7, July, 1991 [PA-
00273194] [Phillips91c];

o “Media View, Short and Long Versions” March 1993 [RLP 7];
o Public demonstrations and uses of MediaView including at EDUCOM ’89 [RLP 11], SIGGRAPH ’90 [RLP 1],

SIGGRAPH ’92 [DS 1], the Smithsonian Institution in 1991 [RLP 1], NeXTWORLD [RLP 1], and HP’s Palo
Alto, California (June 1993) and Fort Collins, Colorado (1991) facilities [RLP 10 and RLP 12], and R&D
Magazine [Studt94]; and

o Personal experience and knowledge with MediaView and NeXT systems, including my NeXT cube. The body of
my report has a narrative description that augments and should be considered part of this chart, and vise-versa
for this and all my charts.

(“MEDIAVIEW”)

Claim Text from ’906 Patent MediaView

1 The features and functions of MediaView are identified singularly for all versions of MediaView except where otherwise noted. MediaView 2.X was
completed prior to October 1992 and was distributed through a Purdue server, which is no longer available. See Martin Exhibits 14, 15, and 16. A copy of
MediaView 2 that was distributed through SIGGRAPH ’92 was produced by Sadowski [DS 1], who attended the conference and a demonstration of MediaView.
MediaView was widely shown throughout the years of its development including through 1994, see, e.g., [Studt94] (which shows a RenderMan object). The
primary difference for purposes of my analysis between MediaView 2.X and 3.X was the inclusion of the RenderMan custom component, which, like the usage
of Mathematica in prior versions of MediaView, employed a client-server configuration for the distribution, manipulation, and interaction with objects embedded
in a MediaView document. The versions of MediaView 2.X that I have located to date are from June 11, 1992 (on my NeXT cube) and another from
SIGGRAPH ’92, though on media dated November 29, 1992. The MediaView 3 (the primary application) was completed around October 1992 (which is shortly
after the release of NeXTSTEP 3.0), though the last date for RenderMan related code is November 9, 1992, so I will assume that is the date of MediaView 3. I
note that I did make a new compilation of this version of MediaView for testing purposes so the tests I performed could be replicated due to a bug in saving
certain files. I am not relying on the bug fix itself for my invalidity analysis—my analysis is of the November 9, 1992 version.

 3

Claim Text from ’906 Patent MediaView
906-1.a:
A method for running an application program in a
computer network environment, comprising:

All instances of MediaView disclose an application program.

The MediaView program described in this report is a computer program
that was compiled from the MV.TAR produced file and whose
appearance can be seen in the figures cited in this report above.

MediaView discloses a computer network environment.

 4

Claim Text from ’906 Patent MediaView
A workstation running MediaView, being part of a client/server
network, operated in a distributed hypermedia environment.
MediaView was “designed for maximum communicability” and “allows
multimedia documents to be electronically mailed to remote sites. In
short, MediaView is a communication tool that offers new and
dramatically different ways of interacting with others.” [Phillips91c at
75]

906-1.b:
providing at least one client workstation and one
network server coupled to said network environment,
wherein said network environment is a distributed
hypermedia environment;

MediaView discloses a client workstation.

MediaView, having been developed under NeXTSTEP, on a NeXT
workstation, runs on a NeXT Computer client workstation. The NeXT
workstation was designed for a networked environment, using Ethernet
connectivity. Each NeXT computer came with a Network File System
(NFS) manager, which enabled client/server connectivity. “MediaView
fully exploits the platform integration and media richness of NeXT,
NeXTstep, and NeXTdimension. Indeed, MediaView was first
developed for this environment because it is a precursor for future
systems.” [Phillips91c at 75]

See also, e.g., [LANL93] (showing the file browser for finding a file, here a
dataset that will be processed over the coordinate system):

 5

Claim Text from ’906 Patent MediaView

MediaView discloses a network server.

As stated immediately above, MediaView ran in a client/server network
environment. Thus, certain computers in the network could, via NFS, be
designated as server machines. In this report, referring to Figure 6, et
seq., there is a description of MediaView performing mathematical
operations by passing coded requests to a Mathematica server.
[MediaView 2.X and 3.X] The server could be anywhere on the
network and be accessed by a Remote Procedural Call (RPC). Further
along, referring to Figure 7, MediaView rendered 3D geometric datasets
using a Pixar RenderMan server. [MediaView 3] That server could be
anywhere on the network and, indeed, as Figure 8 depicts, there could
be multiple servers all working on the same rendering task.

MediaView discloses a distributed hypermedia environment.

A workstation running MediaView, being part of a client/server
network, operated in a distributed hypermedia environment.

 6

Claim Text from ’906 Patent MediaView
906-1.c:
executing, at said client workstation, a browser
application, that parses a first distributed hypermedia
document to identify text formats included in said
distributed hypermedia document and for responding
to predetermined text formats to initiate processing
specified by said text formats;

MediaView discloses a browser application.

The MediaView program described in this is a computer program that
was compiled from the MV.TAR produced-file and whose appearance
can be seen in the figures cited above. Furthermore, Figure 5 of this
report shows a document titled Usenix has been selected for browsing
and a portion of it is seen in the browser window.

MediaView discloses that the browser application parses a hypermedia
document.

In this report, under the heading “Parsing” the digital structure of a
MediaView document is described. There it states,
“MediaView…parses a stream of data in Rich Text Format (RTF) in
order to discover the location of multimedia components embedded
therein. It does this by looping through a series of “runs” of RTF data
and searching for a “character” with an embedded flag that identifies it
as a pointer to a multimedia component.”

MediaView discloses a hypermedia document with text formats.

In this report, under the heading “Parsing” the digital structure of a
MediaView document is described. There it states,
“MediaView…parses a stream of data in Rich Text Format (RTF) in
order to discover the location of multimedia components embedded
therein. It does this by looping through a series of “runs” of RTF data
and searching for a “character” with an embedded flag that identifies it
as a pointer to a multimedia component.”

906-1.d:
utilizing said browser to display, on said client
workstation, at least a portion of a first hypermedia
document received over said network from said

MediaView discloses that a hypermedia document is received from the server.

As stated above, using native NFS capabilities of the NeXT,
MediaView could receive MediaView documents from a server.

 7

Claim Text from ’906 Patent MediaView
server,

MediaView discloses that the browser displays a hypermedia document.

The MediaView program displays hypermedia documents, documents
that contain not only text but a wide variety of hypermedia components.
From [Phillips91a], pp. 20-21, “Armed with modern workstation
technology, we can provide an electronic reading environment.
‘Documents’ read in this environment can include not only text, line art,
and still images, but also sound, video sequences, and computer-
produced animations. And, when cast in digital form, the mathematical
content of a document can be symbolically and numerically
manipulated. Thus, we can experiment with the mathematics, derive
new results, and simulate different situations with different parameters.
We can explore computer generated images by moving the eye point,
changing the lighting conditions, or using the underlying model with
our own algorithms. Best of all, we can make it possible for people to
extract useful material and incorporate it with their work.”
Also, from [Phillips91b], pg. 75, “In addition to the expected multi-
media components such as graphics, audio and video, MediaView
supports several nontraditional components. These include full-color
images; object based animations; image-based animations;
mathematics; and custom, dynamically loadable components.”

906-1.e:
wherein the portion of said first hypermedia
document is displayed within a first browser-
controlled window on said client workstation,

MediaView discloses that a hypermedia document is displayed in a browser
window.

 8

Claim Text from ’906 Patent MediaView

The MediaView program described in this is a computer program that
was compiled from the MV.TAR produced-file and whose appearance
can be seen in the figures cited above. Furthermore, Figure 5 of this
report shows a document titled Usenix has been selected for browsing
and a portion of it is seen in the browser window. What is being
displayed there is described in [Phillips91c], pp 7-8, “The user is made
aware of the presence of a MediaViewButton by a small magnifying
glass icon composited into its active area. This means it is no ordinary

 9

Claim Text from ’906 Patent MediaView
image, but is inspectable by clicking the mouse within it. Figure 5 is an
example of a MediaViewButton used to animate a circle scan
conversion described in [7]. The text of the scan conversion algorithm is
all the user normally sees, but when the mouse is clicked within its area,
the Algorithm Laboratory window opens. The user can use the mouse to
rubber-band an ideal circle and then watch it being approximated by the
scan conversion algorithm. The speed of evolution can be adjusted by
the slider.”

906-1.f:
wherein said first distributed hypermedia document
includes an embed text format, located at a first
location in said first distributed hypermedia
document, that specifies the location of at least a
portion of an object external to the first distributed
hypermedia document,

MediaView discloses an embed text format at a first location in a hypermedia
document. A portion of an embed text format corresponding to the figure
shown in the 906-1.e entry above follows:

\rtf0\ansi{\fonttbl\f0\fnil Times-Roman;\f1\fswiss Helvetica;}
\margl40\margr40\pard\tx520\tx1060\tx1600\tx2120\tx2660\tx320
0\tx3720\tx4260\tx4800\tx5320\f0\b0\i0\ulnone\fs36\fc0\cf0
Coincident with the September 8, 1992 3.0 release of
NeXTSTEP, Pixar's 3DKit was included. That kit incorporated a
version of Pixar's RenderMan system, called QuickRenderMan
(QRM). MediaView adopted the QRM technology to allow
manipulation and viewing of 3D objects to be incorporated into a
document.\n
\t\t\t\t\t\t\t ¬ \n
Here is an example of an interactive 3D viewer that has been
inserted into this document by dragging an instance of the
colored teapot icon from the icon well in the above right of the
MediaView manager and dropping it into this document at the
current cursor location.

The above text was captured by running MediaView 3.X with a
debugger which made it possible to access the internal representation of
the contents of the associated MediaView file. The same document
representation techniques were employed in MediaView 2.X and with

 10

Claim Text from ’906 Patent MediaView
all the embedded objects found in MediaView files. There is a newline
character (\n) at the end of the first paragraph, followed by a line with
with 7 tab characters (\t), a space, the not sign (¬), another space, and a
newline (\n) character. The ¬ sign, ASCII 172, is a representation of the
ViewCell object, which in this case, is an instance of the _3DButton
class.

From [Phillips91c], pg 5, “The hash table entries consist of the id of the
MediaViewCell and its current integer ordinal position in the text
stream.” The code for the parser, represented by the subroutine
takeInventory follows on that page and appears in this report. Also,
from that same page, “The data structure of theRuns can be found in the
description of the Text class [6]. Through this infrastructure MediaView
objects can determine their current position in the document —
 - (int)cellPosition:(MediaViewCell *)cell
 {
 return (int)[inventory valueForKey:cell];
 }
This cellPosition is the MediaView equivalent to a “first location”.

MediaView discloses that the embed text format specifies the location of an
object.

As stated above in this report, from [NeXT89], “A Text object or any
subclass allows a “graphic character” to be embedded in the text stream.
In MediaView “graphic characters” are subclasses of a ViewCell,
whose address is the data contained in the info field described in my
report under the subsection entitled Parsing. The ViewCell character
specifies the processing to be done for the hypermedia component.
Thus, if the ViewCell character represents an embedded RenderMan
viewer, its type is an instance of the _3DButton class and its function is
performed by the _3DAction method. Moreover, the _3DButton

 11

Claim Text from ’906 Patent MediaView
instance will be rendered by a RenderMan server.

Other MediaView embedded interactive hypermedia components
exhibit a comparable embed text format behavior. For the following
embedded 3D Dataset Viewer example,

the relevant embed text format is:

 12

Claim Text from ’906 Patent MediaView
\rtf0\\ansi{\\fonttbl\\f1\\fnil Palatino-Roman;\\f0\\fswiss
Helvetica;}\n\\margl40\n\\margr40\n\\pard\\tx520\\tx1060\\tx1600\\
tx2120\\tx2660\\tx3200\\tx3720\\tx4260\\tx4800\\tx5320\\f1\\b0\\i0
\\ulnone\\fs36\\fc0\\cf0 This is a document that contains an
embedded 3D dataset viewer.\n\n\t\t\t ¬ \n\t\t\t\t\t\t\t\nThe dataset
to be manipulated can be accessed from any site on the
network.\n\n\.

As for the RenderMan example above, the ¬ sign represents the ViewCell
object for the 3D Dataset Viewer.

Also, for the following embedded Live Equation example, which accesses the
Mathematica server,

 13

Claim Text from ’906 Patent MediaView

the relevant embed text format is:

\rtf0\\ansi{\\fonttbl\\f0\\fnil Times-Roman;\\f1\\fswiss
Helvetica;}\n\\margl120\n\\margr120\n{\\colortbl;\\red0\\green0\\bl
ue0;}\n\\pard\\tx1260\\tx3900\\tx5040\\tx6180\\tx7320\\tx8460\\tx9
600\\f0\\b0\\i0\\ulnone\\qc\\fs72\\fc1\\cf1 Live Equation Example\n
\nThe Mathematica server is accessed over the network via a

 14

Claim Text from ’906 Patent MediaView
UNIX pipe by the code fragment:\n\n\n ¬ \n ¬
\n\nstrcpy(fixFileCmd,\"/Net/sunset/NextApps/Mathematica.app/K
ernel/Utilities/".

Here, the first ¬ sign represents the ViewCell object for the Live
Equation and the second ¬ sign represents the non-interactive graph
figure.

In addition, a MediaView custom component, the EmbeddedVideo
viewer displays a live video stream in a sub-window embedded in a
MediaView document. An example of this is shown below.

 15

Claim Text from ’906 Patent MediaView

The relevant embed text format for this component is:

\rtf0\\ansi{\\fonttbl\\f0\\fnil Times-Roman;\\f1\\fswiss
Helvetica;}\n\\margl40\n\\margr40\n\\pard\\tx520\\tx1060\\tx1600\\
tx2120\\tx2660\\tx3200\\tx3720\\tx4260\\tx4800\\tx5320\\f0\\b0\\i0

 16

Claim Text from ’906 Patent MediaView
\\ulnone\\fs36\\fc0\\cf0 This is an example of an embedded video
view in the midst of a MediaView document. The overall
document can be scrolled to move the view up or down.\n\n\n\t\t
¬ \n\n\nThe position of the video frame within the view can also
be scrolled, both up or down and left or right. The size of the view
can also be adjusted to show the entire video frame.

As with other embedded component examples, the ¬ sign represents the
position of the ViewCell object for the EmbeddedVideo viewer.

MediaView discloses an object that is external to a hypermedia document.

If, for example, the parsed ViewCell character represents an embedded
RenderMan viewer, its type is an instance of the _3DButton class and
its function is performed by the _3DAction method. When a document
containing a _3DButton class object is read by MediaView from a
network location, the information contained in the associated ViewCell
object points to a ribShape object, which is yet to be read in and
activated during the image rendering process. That ribShape object
contains all the 3D coordinate data that was initially read from a RIB
file at the time the _3DButton class object was created.

906-1.g:
wherein said object has type information associated
with it utilized by said browser to identify and locate
an executable application external to the first
distributed hypermedia document, and

MediaView discloses that the object has associated type information.

MediaView has several types of hypermedia objects that can be
embedded in a document. They are represented by the following figure
that shows the contents of a fully-populated icon well. The first five
represent “standard” hypermedia objects while the remaining four
represent custom components. Each object has associated type
information, which is contained in the ViewCell object that represents
the hypermedia object in the document body.

 17

Claim Text from ’906 Patent MediaView

In MediaView, the ViewCell character which is parsed out of the text
stream contains information about its hypermedia object type and the
computer code necessary to perform its function. Thus, if the ViewCell
represents a Read-it note, its type is an instance of the Post_itButton
class and its function is performed by the post-itAction method
(subroutine). Likewise, if the ViewCell character represents an
embedded RenderMan viewer, its type is an instance of the _3DButton
class and its function is performed by the _3DAction method.

If the ViewCell object represents a Live Equation component its type is
an instance of the tiffButton class and its function is peformed by the
mathAction method.

Also, if the ViewCell object represents a 3D Dataset Viewer component
its type is an instance of a a3DViewerView class and its function is
performed by any of the setPhi, setTheta or setInvDist methods.

Furthermore, if the ViewCell object represents a EmbeddedVideo
Viewer component, its type is is an instance of the
EmbeddedVideoView class and its function performed is performed by
the toggleRun method.

MediaView discloses that the browser uses type information to identify and
locate an executable application.

If the parsed ViewCell character represents an embedded RenderMan
viewer, its type is an instance of the _3DButton class and its function is

 18

Claim Text from ’906 Patent MediaView
performed by the _3DAction method. Moreover, the _3DButton
instance will be rendered by a RenderMan server, an executable
application.

If the ViewCell object represents a Live Equation component its type is
an instance of the tiffButton class and its function is peformed by the
mathAction method. Moreover, the Live Equation instance will be
rendered by a Mathematica server, an executable application.

MediaView discloses that the executable application is external to the
hypermedia document.

If the parsed ViewCell character represents an embedded RenderMan
viewer, its type is an instance of the _3DButton class and its function is
performed by the _3DAction method. Moreover, the _3DButton
instance will be rendered by a RenderMan server, an executable
application that is always external to a MediaView (hypermedia)
document.

If the ViewCell object represents a Live Equation component its type is
an instance of the tiffButton class and its function is peformed by the
mathAction method. Moreover, the Live Equation instance will be
rendered by a Mathematica server, an executable application that is
always external to a MediaView (hypermedia) document.

906-1.h:
wherein said embed text format is parsed by said
browser to automatically invoke said executable
application to execute on said client workstation in
order to display said object and enable an end-user to
directly interact with said object within a display area

MediaView discloses that the browser parses the embed text format.

MediaView parses a stream of data in Rich Text Format (RTF) in order
to discover the location of multimedia components embedded therein. It
does this by looping through a series of “runs” of RTF data and
searching for a “character” with an embedded flag that identifies it as a

 19

Claim Text from ’906 Patent MediaView
created at said first location within the portion of said
first distributed hypermedia document being
displayed in said first browser-controlled window.

pointer to a multimedia component.

MediaView discloses automatic invocation of the executable application.

In MediaView, the ViewCell character parsed out of the text stream
contains information about its hypermedia object type and the computer
code necessary to perform its function. If the parsed ViewCell character
represents an embedded RenderMan viewer, its type is an instance of
the _3DButton class and its function is performed by the _3DAction
method. Moreover, the _3DButton instance will be rendered by a
RenderMan server, an executable application, which is automatically
invoked, ready for interaction with the client.

In MediaView, the ViewCell character parsed out of the text stream
contains information about its hypermedia object type and the computer
code necessary to perform its function. If the parsed ViewCell character
represents an embedded Live Equation component, its type is an
instance of the tiffButton class and its function is performed by the
mathAction method. Moreover, the tiffButton instance will be rendered
by a Mathematica server, an executable application, which is
automatically invoked, ready for interaction with the client.

MediaView discloses that the executable application displays the object.

In MediaView, if the ViewCell character is parsed out of the text stream
it contains information about its type of hypermedia object and the
computer code necessary to perform its function. If the parsed ViewCell
character represents an embedded RenderMan viewer, its type is an
instance of the _3DButton class and its function is performed by the
_3DAction method. Moreover, the _3DButton instance will be rendered
by a RenderMan server, an executable application, which transmits

 20

Claim Text from ’906 Patent MediaView
graphical data to the object for display.

In MediaView, the ViewCell character parsed out of the text stream
contains information about its hypermedia object type and the computer
code necessary to perform its function. If the parsed ViewCell character
represents an embedded Live Equation component, its type is an
instance of the tiffButton class and its function is performed by the
mathAction method. Moreover, the tiffButton instance will be rendered
by a Mathematica server, an executable application, which transmits
graphical data to the object for display.

MediaView discloses that the executable application enables direct interaction
with the object.

Among the hypermedia objects that interact directly with an executable
application is the Live Equation object, depicted below. The equation
inspection panel permits direct interaction with a Mathematica server,
an application external to the MediaView document.

 21

Claim Text from ’906 Patent MediaView

In addition, the 3D Line Dataset Viewer object directly interacts with a
geometric transformation application running in conjunction with
MediaView and provides access to external 3D datasets located
anywhere on a network, as seen below.

 22

Claim Text from ’906 Patent MediaView

 23

Claim Text from ’906 Patent MediaView
As another example, a custom component, the EmbeddedVideo viewer
displays a live video data stream in a sub-window embedded in a
MediaView document. An example of this component is shown here.

 24

Claim Text from ’906 Patent MediaView

In MediaView, the ViewCell character is parsed out of the text stream
contains information about its hypermedia object type and the computer
code necessary to perform its function. If the parsed ViewCell character
represents an embedded RenderMan viewer, its type is an instance of
the _3DButton class and its function is performed by the _3DAction
method. Moreover, the _3DButton instance will be rendered by a
RenderMan server, an executable application. The server application is
automatically invoked, enabling direct interaction with the 3D button
object.

In MediaView, the ViewCell character is parsed out of the text stream
contains information about its hypermedia object type and the computer
code necessary to perform its function. If the parsed ViewCell character
represents an embedded Live Equation viewer, its type is an instance of
the tiffButton class and its function is performed by the mathAction
method. Moreover, the tiffButton instance will be rendered by a
Mathematica server, an executable application. The server application is
automatically invoked, enabling direct interaction with the Live
Equation object.

MediaView discloses that interaction with the object is at a first location in the
hypermedia document.

In MediaView, if the ViewCell character is parsed out of the text stream
it contains information about its type of hypermedia object and the
computer code necessary to perform its function. If the parsed ViewCell
character represents an embedded RenderMan viewer, its type is an
instance of the _3DButton class and its function is performed by the
_3DAction method. Moreover, the _3DButton instance will be rendered

 25

Claim Text from ’906 Patent MediaView
by a RenderMan server, an executable application. The server
application is automatically invoked, enabling interaction with the 3D
button object at its first location in the hypermedia document, i.e. the
location in the text stream where it was determined by parsing.

In MediaView, the ViewCell character is parsed out of the text stream
contains information about its hypermedia object type and the computer
code necessary to perform its function. If the parsed ViewCell character
represents an embedded Live Equation viewer, its type is an instance of
the tiffButton class and its function is performed by the mathAction
method. Moreover, the tiffButton instance will be rendered by a
Mathematica server, an executable application. The server application is
automatically invoked, enabling interaction with the Live Equation
object at its first location in the hypermedia document, i.e. the location
in the text stream where it was determined by parsing.

See also, [LANL93], e.g.:

 26

Claim Text from ’906 Patent MediaView

 27

Claim Text from ’906 Patent MediaView
Also note [LANL93] (while not literally satisfying the limitation, since the
window is place separate from the MediaView document in a location that
corresponds to the location of the component – here the upper right edge):

[LANL93] also shows video functionality and while it would not satisfy the
limitation “within a display area created at said first location within the
portion of said first distributed hypermedia document,” as is shown in other
embodiments the components could be moved within the document.

 28

Claim Text from ’906 Patent MediaView

906-2.a:
The method of claim 1, wherein said executable
application is a controllable application and further
comprising the step of: interactively controlling said
controllable application on said client workstation via
inter-process communications between said browser
and said controllable application.

MediaView discloses interactive control via inter-process communications
between a browser and an application.

In the case of the objects shown in my report at Figures 6 and 7, the
MediaView browser uses inter-process communications between the
Live Equation object and the Mathematica server using UNIX pipes.
Communication between the 3D button object and RenderMan servers
is done using RPC.

906-3.a:
The method of claim 2, wherein the communications
to interactively control said controllable application
continue to be exchanged between the controllable
application and the browser even after the
controllable application program has been launched.

MediaView discloses ongoing inter-process communications.

Once either of the objects shown in Figures 6 and 7 is launched, the
MediaView browser permits ongoing inter-process communications
between the Live Equation object and the Mathematica server or
between the 3D button object and RenderMan servers.

906-6.a:
A computer program product for use in a system

MediaView discloses an application program in a computer network
environment. See evidence recited for 906-1.a.

 29

Claim Text from ’906 Patent MediaView
having at least one client workstation and one
network server coupled to said network environment,
wherein said network environment is a distributed
hypermedia environment, the computer program
product comprising:

MediaView also discloses a client workstation and a network server in a
distributed hypermedia environment. See evidence recited for 906-1.b.

906-6.b:
a computer usable medium having computer readable
program code physically embodied therein, said
computer program product further comprising:

MediaView discloses computer code physically embodied on a medium.

Complete computer source code for MediaView in MV.TAR on PA-
NAT-71, which when compiled on a NeXT computer, under
NeXTSTEP Release 3.2, produces the executable MediaView browser.
Another version is found on [DS 1]. Both versions are substantially as
seen in Fig.2 of [Phillips91b], Fig.1 of [Phillips91a and Fig. 5 of this
report].
From pg. 75 of [Phillips91b], “MediaView is a multimedia digital
publication system that was designed to be flexible and free from
restrictions. It was also designed to take maximum advantage of the
media-rich hardware and software capabilities of the NeXT [5]
computer, especially the features of the NeXTdimension[17]
subsystem.”
From pg. 78 of [Phillips91b], “The Application Kit is a collection of
about 50 classes of commonly used graphics user-interface objects. The
application programmer's interface to the Application Kit is based on
Objective-C. The style of programming in NeXTstep is to subclass
objects in the Application Kit and then to override default behavior or
add new behavior. While one's application-specific code can be written
in ordinary C, MediaView has benefitted greatly from being
programmed primarily in Objective-C.”

906-6.c:
computer readable program code for causing said
client workstation to execute a browser application to
parse a first distributed hypermedia document to

MediaView discloses a browser application that parses a hypermedia
document with text formats. See evidence recited for 906-1.c.

 30

Claim Text from ’906 Patent MediaView
identify text formats included in said distributed
hypermedia document and to respond to
predetermined text formats to initiate processes
specified by said text formats;
906-6.d:
computer readable program code for causing said
client workstation to utilize said browser to display,
on said client workstation, at least a portion of a first
hypermedia document received over said network
from said server,

MediaView discloses a hypermedia document received from a server and a
browser that displays the hypermedia document. See evidence recited for 906-
1.d.

906-6.e:
wherein the portion of said first hypermedia
document is displayed within a first browser-
controlled window on said client workstation,

MediaView discloses that the hypermedia document is displayed in a browser
window. See evidence recited for 906-1.e.

906-6.f:
wherein said first distributed hypermedia document
includes an embed text format, located at a first
location in said first distributed hypermedia
document, that specifies the location of at least a
portion of an object external to the first distributed
hypermedia document,

MediaView discloses an embed text format at a first location in a hypermedia
document; that the embed text format specifies the location of an object; and
that the object is external to the hypermedia document. See evidence recited
for 906-1.f.

906-6.g:
wherein said object has type information associated
with it utilized by said browser to identify and locate
an executable application external to the first
distributed hypermedia document, and

MediaView discloses that the object has associated type information, that the
browser uses the type information to identify and locate an executable
application, and that the executable application is external to the hypermedia
document. See evidence recited for 906-1.g.

906-6.h:
wherein said embed text format is parsed by said
browser to automatically invoke said executable
application to execute on said client workstation in
order to display said object and enable an end-user to
directly interact with said object within a display area

MediaView discloses that the browser parses the embed text format; that the
browser automatically invokes the executable application; that the executable
application displays the object and enables an end-user to directly interact
with it; and that interaction with the object is at a first location in the
hypermedia document. See evidence recited for 906-1.h.

 31

Claim Text from ’906 Patent MediaView
created at said first location within the portion of said
first distributed hypermedia document being
displayed in said first browser-controlled window.

906-7.a:
The computer program product of claim 6, wherein
said executable application is a controllable
application and further comprising:
computer readable program code for causing said
client workstation to interactively control said
controllable application on said client workstation via
inter-process communications between said browser
and said controllable application.

MediaView discloses interactive control via inter-process communications
between a browser and an application. See evidence recited for 906-2.a.

906-8.a:
The computer program product of claim 7, wherein
the communications to interactively control said
controllable application continue to be exchanged
between the controllable application and the browser
even after the controllable application program has
been launched.

MediaView discloses ongoing inter-process communications. See evidence
recited for 906-3.a.

906-11.a:
The method of claim 3, wherein additional
instructions for controlling said controllable
application reside on said network server, wherein
said step of interactively controlling said controllable
application includes the following sub steps:

MediaView discloses additional instructions on the server

The applications depicted by Figures 6 and 7 in my report are distributed
applications where the work done prior to dispatching a task to a server, is
done on a client workstation. The task thus dispatched is performed on the
appropriate server. Additional instructions on the server control the
Mathematica engine (MediaView 2.X and 3.X) or the RenderMan engine
(MediaView 3.X).

906-11.b:
issuing, from the client workstation, one or more

MediaView discloses that the client issues commands to the server.

 32

Claim Text from ’906 Patent MediaView
commands to the network server; The applications depicted by Figures 6 and 7 in my report are distributed

applications where the work done prior to dispatching a task to a server, is
done on a client workstation. The task thus dispatched is performed on the
appropriate server. The control panels seen in Figures 6 and 7 send
commands from the client to the server.

906-11.c:
executing, on the network server, one or more
instructions in response to said commands;

MediaView discloses that the server executes instructions in response to client
commands.

The applications depicted by Figures 6 and 7 in my report are distributed
applications where the work done prior to dispatching a task to a server, is
done on a client workstation. The task thus dispatched is performed on the
appropriate server. The control panels seen in Figures 6 and 7 send
commands from the client to the server. The server executes in response to
these commands.

906-11.d:
sending information from said network server to said
client workstation in response to said executed
instructions; and

MediaView discloses that the server responds with information to the client.

The applications depicted by Figures 6 and 7 in my report are distributed
applications where the work done prior to dispatching a task to a server, is
done on a client workstation. The task thus dispatched is performed on the
appropriate server. The control panels seen in Figures 6 and 7 send
commands from the client to the server. The server executes in response to
these commands. Once finished, the server sends resulting information, to
the client.

906-11.e:
processing said information at the client workstation
to interactively control said controllable application.

MediaView discloses that the client uses information from the server to
interactively control the application.

The applications depicted by Figures 6 and 7 in my report are distributed
applications where the work done prior to dispatching a task to a server, is
done on a client workstation. The task thus dispatched is performed on the
appropriate server. The control panels seen in Figures 6 and 7 send
commands from the client to the server. The server executes in response to
these commands. Once finished, the server sends resulting information, to

 33

Claim Text from ’906 Patent MediaView
the client. Client uses that information to display text and/or graphics.

906-13.a:
The computer program product of claim 8, wherein
additional instructions for controlling said
controllable application reside on said network
server, wherein said computer readable program code
for causing said client workstation to interactively
control said controllable application on said client
workstation includes:

MediaView discloses additional instructions on the server See evidence
recited for 906-11.a.

906-13.b:
computer readable program code for causing said
client workstation to issue from the client
workstation, one or more commands to the network
server;

MediaView discloses that the client issues commands to the server. See
evidence recited for 906-11.b.

906-13.c:
computer readable program code for causing said
network server to execute one or more instructions in
response to said commands;

MediaView discloses that the server executes instructions in response to client
commands. See evidence recited for 906-11.c.

906-13.d:
computer readable program code for causing said
network sever to send information to said client
workstation in response to said executed instructions;
and

MediaView discloses that the server responds with information to the client.
See evidence recited for 906-11.d.

906-13.e:
computer readable program code for causing said
client workstation to process said information at the
client workstation to interactively control said
controllable application.

MediaView discloses that the client uses information from the server to
interactively control the application. See evidence recited for 906-11.e.

 34

INVALIDITY CLAIM CHART FOR U.S. PATENT NO. 7,599,985

 “MEDIAVIEW” 2—AS INTENDED TO BE USED IN A COMPUTER SYSTEM AND DEMONSTRATION OF SAME, INCLUDING
INDIVIDUALLY AND COLLECTIVELY:

o An Interpersonal Multimedia Visualization System, IEEE Computer Graphics & Applications, May, 1991 [PA-
00273175] [Phillips91a];

o MediaView: An Editable Multimedia Publishing System Developed With An Object-Oriented Toolkit, Proc.
USENIX Summer Conf., Nashville, TN, June, 1991 [PA-00327398] [Phillips91b];

o MediaView: A General Multimedia Digital Publication System, Comm. ACM, Vol. 34, No. 7, July, 1991 [PA-
00273194] [Phillips91c];

o “Media View, Short and Long Versions” March 1993 [RLP 7];
o Public demonstrations and uses of MediaView including at EDUCOM ’89 [RLP 11], SIGGRAPH ’90 [RLP 1],

SIGGRAPH ’92 [DS 1], the Smithsonian Institution in 1991 [RLP 1], NeXTWORLD [RLP 1], and HP’s Palo
Alto, California (June 1993) and Fort Collins, Colorado (1991) facilities [RLP 10 and RLP 12], and R&D
Magazine [Studt94]; and

o Personal experience and knowledge with MediaView and NeXT systems, including my NeXT cube. The body of
my report has a narrative description that augments and should be considered part of this chart, and vise-versa,
for this an all my charts.

(“MEDIAVIEW”)

Claim Text from ’985 Patent MediaView
985-1.a: All instances of MediaView disclose an application program. See also 906-1 for

2 The features and functions of MediaView are identified singularly for all versions of MediaView except where otherwise noted. MediaView 2.X was
completed prior to October 1992 and was distributed through a Purdue server, which is no longer available. See Martin Exhibits 14, 15, and 16. A copy of
MediaView 2 that was distributed through SIGGRAPH ’92 was produced by Sadowski [DS 1], who attended the conference and a demonstration of MediaView.
MediaView was widely shown throughout the years of its development including through 1994, see, e.g., [Studt94] (which shows a RenderMan object). The
primary difference for purposes of my analysis between MediaView 2.X and 3.X was the inclusion of the RenderMan custom component, which, like the usage
of Mathematica in prior versions of MediaView, employed a client-server configuration for the distribution, manipulation, and interaction with objects embedded
in a MediaView document. The versions of MediaView 2.X that I have located to date are from June 11, 1992 (on my NeXT cube) and another from
SIGGRAPH ’92, though on media dated November 29, 1992. The MediaView 3 (the primary application) was completed around October 1992 (which is shortly
after the release of NeXTSTEP 3.0), though the last date for RenderMan related code is November 9, 1992, so I will assume that is the date of MediaView 3.

 35

Claim Text from ’985 Patent MediaView
A method for running an application program in a
distributed hypermedia network environment,
wherein the network environment comprises at
least one client workstation and one network
server coupled to the network environment, the
method comprising:

discussion of similar limitations.

The MediaView browser application program described in concept a.
above is a computer program that was compiled from the MV.TAR
produced file and whose appearance can be seen in the figures cited
above.

MediaView discloses a computer network environment.

A workstation running MediaView, being part of a client/server network,

 36

Claim Text from ’985 Patent MediaView
operated in a distributed hypermedia environment.

MediaView discloses a client workstation.

MediaView, having been developed under NeXTSTEP, on a NeXT
workstation, runs on a NeXT Computer client workstation. The NeXT
workstation was designed for a networked environment, using Ethernet
connectivity. Each NeXT computer came with a Network File System
(NFS) manager, which enabled client/server connectivity.

See also, e.g., [LANL93] (showing the file browser for finding a file, here a
dataset that will be processed over the coordinate system):

MediaView discloses a network server.

As stated immediately above, MediaView ran in a client/server network
environment. Thus, certain computers in the network could, via NFS, be
designated as server machines. In this report, referring to Figure 6, et seq.,

 37

Claim Text from ’985 Patent MediaView
there is a description of MediaView performing mathematical operations
by passing coded requests to a Mathematica server. [MediaView 2.X and
3.X] The server could be anywhere on the network and be accessed by a
Remote Procedural Call (RPC). Further along, referring to Figure 7,
MediaView rendered 3D geometric datasets using a Pixar RenderMan
server. [MediaView 3.X] That server could be anywhere on the network
and, indeed, as Figure 8 depicts, there could be multiple servers all
working on the same rendering task.

MediaView discloses a distributed hypermedia environment.

A workstation running MediaView, being part of a client/server network,
operated in a distributed hypermedia environment.

985-1.b:
receiving, at the client workstation from the
network server over the network environment, at
least one file containing information to enable a
browser application to display at least a portion of
a distributed hypermedia document within a
browser-controlled window;

MediaView discloses a browser application.

The MediaView browser application program described in concept a.
above is a computer program that was compiled from the MV.TAR
produced-file and whose appearance can be seen in the figures cited
above. Furthermore, Figure 5 of this report shows a document titled
Usenix has been selected for browsing and a portion of it is seen in the
browser window.

MediaView discloses a file containing enabling information.

The MediaView browser application program described in concept a.
above is a computer program that was compiled from the MV.TAR
produced-file and whose appearance can be seen in the figures cited
above. Furthermore, Figure 5 of this report shows a document titled
Usenix has been selected for browsing and a portion of it is seen in the
browser window. What is being displayed there is described in
[Phillips91c], pp 7-8, “The user is made aware of the presence of a
MediaViewButton by a small magnifying glass icon composited into its

 38

Claim Text from ’985 Patent MediaView
active area. This means it is no ordinary image, but is inspectable by
clicking the mouse within it. Figure 5 is an example of a
MediaViewButton used to animate a circle scan conversion described in
[7]. The text of the scan conversion algorithm is all the user normally sees,
but when the mouse is clicked within its area, the Algorithm Laboratory
window opens. The user can use the mouse to rubber-band an ideal circle
and then watch it being approximated by the scan conversion algorithm.
The speed of evolution can be adjusted by the slider.”

MediaView discloses that the file is received at the client workstation from the
network server.

As stated above, using NFS, MediaView could receive saved and stored
MediaView-specific documents from any server permitting that operation.
MediaView documents are files with a suffix *mdvw.

MediaView discloses that the browser displays at least a portion of a distributed
hypermedia document.

The MediaView browser application program displays hypermedia
documents, documents that contain not only text but a wide variety of
hypermedia components.
From [Phillips91a], pp. 20-21, “Armed with modern workstation
technology, we can provide an electronic reading environment.
‘Documents’ read in this environment can include not only text, line art,
and still images, but also sound, video sequences, and computer-produced
animations. And, when cast in digital form, the mathematical content of a
document can be symbolically and numerically manipulated. Thus, we can
experiment with the mathematics, derive new results, and simulate
different situations with different parameters. We can explore computer
generated images by moving the eye point, changing the lighting
conditions, or using the underlying model with our own algorithms. Best

 39

Claim Text from ’985 Patent MediaView
of all, we can make it possible for people to extract useful material and
incorporate it with their work.”
Also, from [Phillips91b], pg. 75, “In addition to the expected multi-media
components such as graphics, audio and video, MediaView supports
several nontraditional components. These include full-color images; object
based animations; image-based animations; mathematics; and custom,
dynamically loadable components.”

MediaView discloses that at least a portion of a hypermedia document is
displayed in a browser-controlled window.

The MediaView browser application program described in concept a.
above is a computer program that was compiled from the MV.TAR
produced-file and whose appearance can be seen in the figures cited
above. Furthermore, Figure 5 of this report shows a document titled
Usenix has been selected for browsing and a portion of it is seen in the
browser window. What is being displayed there is described in
[Phillips91c], pp 7-8, “The user is made aware of the presence of a
MediaViewButton by a small magnifying glass icon composited into its
active area. This means it is no ordinary image, but is inspectable by
clicking the mouse within it. Figure 5 is an example of a
MediaViewButton used to animate a circle scan conversion described in
[7]. The text of the scan conversion algorithm is all the user normally sees,
but when the mouse is clicked within its area, the Algorithm Laboratory
window opens. The user can use the mouse to rubber-band an ideal circle
and then watch it being approximated by the scan conversion algorithm.
The speed of evolution can be adjusted by the slider.”

985-1.c:
executing the browser application on the client
workstation, with the browser application:

MediaView discloses a browser application executing on the client workstation.

 40

Claim Text from ’985 Patent MediaView

 41

Claim Text from ’985 Patent MediaView

The MediaView browser application program described in concept a.
above is a computer program that was compiled from the MV.TAR
produced-file and whose appearance can be seen in the figures cited
above. Furthermore, Figure 5 of this report shows a document titled
Usenix has been selected for browsing and a portion of it is seen in the
browser window.

985-1.d:
responding to text formats to initiate processing

MediaView discloses responding to text formats to initiate processing specified
by the text formats, i.e., parsing text formats.

 42

Claim Text from ’985 Patent MediaView
specified by the text formats;

In this report, under the heading “Parsing” the digital structure of a
MediaView document is described. There it states, “MediaView…parses a
stream of data in Rich Text Format (RTF) in order to discover the location
of multimedia components embedded therein. It does this by looping
through a series of “runs” of RTF data and searching for a “character”
with an embedded flag that identifies it as a pointer to a multimedia
component.”

985-1.e:
displaying at least a portion of the document
within the browser-controlled window;

MediaView discloses that the browser displays a hypermedia document.

The MediaView browser application program displays hypermedia
documents, documents that contain not only text but a wide variety of
hypermedia components.
From [Phillips91a], pp. 20-21, “Armed with modern workstation
technology, we can provide an electronic reading environment.
‘Documents’ read in this environment can include not only text, line art,
and still images, but also sound, video sequences, and computer-produced
animations. And, when cast in digital form, the mathematical content of a
document can be symbolically and numerically manipulated. Thus, we can
experiment with the mathematics, derive new results, and simulate
different situations with different parameters. We can explore computer
generated images by moving the eye point, changing the lighting
conditions, or using the underlying model with our own algorithms. Best
of all, we can make it possible for people to extract useful material and
incorporate it with their work.”
Also, from [Phillips91b], pg. 75, “In addition to the expected multi-media
components such as graphics, audio and video, MediaView supports
several nontraditional components. These include full-color images; object
based animations; image-based animations; mathematics; and custom,
dynamically loadable components.”

 43

Claim Text from ’985 Patent MediaView
MediaView discloses that a hypermedia document is displayed in a browser
window.

The MediaView browser application program described in concept a.
above is a computer program that was compiled from the MV.TAR
produced-file and whose appearance can be seen in the figures cited
above. Furthermore, Figure 5 of this report shows a document titled
Usenix has been selected for browsing and a portion of it is seen in the
browser window. What is being displayed there is described in
[Phillips91c], pp 7-8, “The user is made aware of the presence of a
MediaViewButton by a small magnifying glass icon composited into its
active area. This means it is no ordinary image, but is inspectable by
clicking the mouse within it. Figure 5 is an example of a
MediaViewButton used to animate a circle scan conversion described in
[7]. The text of the scan conversion algorithm is all the user normally sees,
but when the mouse is clicked within its area, the Algorithm Laboratory
window opens. The user can use the mouse to rubber-band an ideal circle
and then watch it being approximated by the scan conversion algorithm.
The speed of evolution can be adjusted by the slider.”

985-1.f:
identifying an embed text format which
corresponds to a first location in the document,
where the embed text format specifies the location
of at least a portion of an object external to the file,
where the object has type information associated
with it;

MediaView discloses identifying an embed text format.

MediaView parses a stream of data in Rich Text Format (RTF) in order to
discover the location of multimedia components embedded therein. It does
this by looping through a series of “runs” of RTF data and searching for a
“character” with an embedded flag that identifies it as a pointer to a
multimedia component.

MediaView discloses that the embed text format corresponds to a first
location in the hypermedia document. A portion of an embed text format
corresponding to the figure shown in the 985-1.c entry above follows:

\rtf0\ansi{\fonttbl\f0\fnil Times-Roman;\f1\fswiss Helvetica;}

 44

Claim Text from ’985 Patent MediaView
\margl40\margr40\pard\tx520\tx1060\tx1600\tx2120\tx2660\tx3200\t
x3720\tx4260\tx4800\tx5320\f0\b0\i0\ulnone\fs36\fc0\cf0 Coincident
with the September 8, 1992 3.0 release of NeXTSTEP, Pixar's
3DKit was included. That kit incorporated a version of Pixar's
RenderMan system, called QuickRenderMan (QRM). MediaView
adopted the QRM technology to allow manipulation and viewing of
3D objects to be incorporated into a document.\n
\t\t\t\t\t\t\t ¬ \n
Here is an example of an interactive 3D viewer that has been
inserted into this document by dragging an instance of the colored
teapot icon from the icon well in the above right of the MediaView
manager and dropping it into this document at the current cursor
location.

The above text was captured by running MediaView 3.X with a debugger which
made it possible to access the internal representation of the contents of the
associated MediaView file. The same document representation techniques were
employed in MediaView 2.X and with all of the embedded objects found in
MediaView files. There is a newline character (\n) at the end of the first
paragraph, followed by a line with with 7 tab characters (\t), a space, the not sign
(¬), another space, and a newline (\n) character. The ¬ sign, ASCII 172, is a
representation of the ViewCell object, which in this case, is an instance of the
_3DButton class.

From [Phillips91c], pg 5, “The hash table entries consist of the id of the
MediaViewCell and its current integer ordinal position in the text stream.”
Through this infrastructure MediaView objects can determine their current
position in the document —

 - (int)cellPosition:(MediaViewCell *)cell
 {
 return (int)[inventory valueForKey:cell];
 }

 45

Claim Text from ’985 Patent MediaView
This cellPosition is the MediaView equivalent to a “first location”.

MediaView discloses that the embed text format specifies the location of an
object.

As stated above in this report, from [NeXT89], “A Text object or any
subclass allows a “graphic character” to be embedded in the text stream.
In MediaView “graphic characters” are subclasses of a ViewCell, whose
address is the data contained in the info field described in my report under
the subsection entitled Parsing. The ViewCell character directly specifies
the processing to be done for the hypermedia component. Thus, if the
ViewCell character represents an embedded RenderMan viewer, its type is
an instance of the _3DButton class and its function is performed by the
_3DAction method. Moreover, the _3DButton instance will be rendered
by a RenderMan server.

Other MediaView embedded interactive hypermedia components exhibit a
comparable embed text format behavior. For the following embedded 3D
Dataset Viewer example,

 46

Claim Text from ’985 Patent MediaView

the relevant embed text format is:

\rtf0\\ansi{\\fonttbl\\f1\\fnil Palatino-Roman;\\f0\\fswiss
Helvetica;}\n\\margl40\n\\margr40\n\\pard\\tx520\\tx1060\\tx1600\\tx
2120\\tx2660\\tx3200\\tx3720\\tx4260\\tx4800\\tx5320\\f1\\b0\\i0\\uln
one\\fs36\\fc0\\cf0 This is a document that contains an embedded
3D dataset viewer.\n\n\t\t\t ¬ \n\t\t\t\t\t\t\t\nThe dataset to be

 47

Claim Text from ’985 Patent MediaView
manipulated can be accessed from any site on the network.\n\n\.

As for the RenderMan example above, the ¬ sign represents the ViewCell object
for the 3D Dataset Viewer.

Also, for the following embedded Live Equation example, which accesses the
Mathematica server,

 48

Claim Text from ’985 Patent MediaView

the relevant embed text format is:

\rtf0\\ansi{\\fonttbl\\f0\\fnil Times-Roman;\\f1\\fswiss
Helvetica;}\n\\margl120\n\\margr120\n{\\colortbl;\\red0\\green0\\blue
0;}\n\\pard\\tx1260\\tx3900\\tx5040\\tx6180\\tx7320\\tx8460\\tx9600\
\f0\\b0\\i0\\ulnone\\qc\\fs72\\fc1\\cf1 Live Equation Example\n \nThe
Mathematica server is accessed over the network via a UNIX pipe
by the code fragment:\n\n\n ¬ \n ¬
\n\nstrcpy(fixFileCmd,\"/Net/sunset/NextApps/Mathematica.app/Ker
nel/Utilities/".

Here, the first ¬ sign represents the ViewCell object for the Live Equation
and the second ¬ sign represents the non-interactive graph figure.

In addition, a MediaView custom component, the EmbeddedVideo viewer
displays a live video stream in a sub-window embedded in a MediaView
document. An example of this is shown below.

 49

Claim Text from ’985 Patent MediaView

The relevant embed text format for this component is:

\rtf0\\ansi{\\fonttbl\\f0\\fnil Times-Roman;\\f1\\fswiss
Helvetica;}\n\\margl40\n\\margr40\n\\pard\\tx520\\tx1060\\tx1600\\tx
2120\\tx2660\\tx3200\\tx3720\\tx4260\\tx4800\\tx5320\\f0\\b0\\i0\\uln

 50

Claim Text from ’985 Patent MediaView
one\\fs36\\fc0\\cf0 This is an example of an embedded video view
in the midst of a MediaView document. The overall document can
be scrolled to move the view up or down.\n\n\n\t\t ¬ \n\n\nThe
position of the video frame within the view can also be scrolled,
both up or down and left or right. The size of the view can also be
adjusted to show the entire video frame.

As with other embedded component examples, the ¬ sign represents the
position of the ViewCell object for the EmbeddedVideo viewer.

MediaView discloses that the object is external to the file containing enabling
information.

If the parsed ViewCell character represents an embedded RenderMan
viewer, its type is an instance of the _3DButton class and its function is
performed by the _3DAction method. When a document containing a
_3DButton class object is read by MediaView from a network location,
the information contained in the associated ViewCell object points to a
ribShape object, which is yet to be read in and activated during the image
rendering process. That ribShape object contains all the 3D coordinate
data that was initially read from a RIB file at the time the _3DButton class
object was created.

MediaView discloses that the object has associated type information.

MediaView has several types of hypermedia objects that can be embedded
in a document. They are represented by the following figure that shows
the contents of a fully-populated icon well. The first five represent
“standard” hypermedia objects while the remaining four represent custom
components. Each object has associated type information, which is
contained in the ViewCell object that represents the hypermedia object in
the document body.

 51

Claim Text from ’985 Patent MediaView

In MediaView, the ViewCell character parsed out of the text stream
contains information about its type of hypermedia object and the computer
code necessary to perform its function. Thus, if the ViewCell represents a
Read-it note, its type is an instance of the Post_itButton class and its
function is performed by the post-itAction method (subroutine). Likewise,
if the ViewCell character represents an embedded RenderMan viewer, its
type is an instance of the _3DButton class and its function is performed by
the _3DAction method.

If the ViewCell object represents a Live Equation component its type is an
instance of the tiffButton class and its function is peformed by the
mathAction method.

Also, if the ViewCell object represents a 3D Dataset Viewer component
its type is an instance of a a3DViewerView class and its function is
performed by any of the setPhi, setTheta or setInvDist methods.

Furthermore, if the ViewCell object represents a EmbeddedVideo Viewer
component, its type is is an instance of the EmbeddedVideoView class and
its function performed is performed by the toggleRun method.

985-1.g:
utilizing the type information to identify and locate
an executable application external to the file; and

MediaView discloses that the browser uses type information to identify and
locate an executable application.

If the parsed ViewCell character represents an embedded RenderMan
viewer, its type is an instance of the _3DButton class and its function is
performed by the _3DAction method. Moreover, the _3DButton instance
will be rendered by a RenderMan server, an executable application.

 52

Claim Text from ’985 Patent MediaView

If the ViewCell object represents a Live Equation component its type is an
instance of the tiffButton class and its function is peformed by the
mathAction method. Moreover, the Live Equation instance will be
rendered by a Mathematica server, an executable application.

MediaView discloses that the executable application is external to the file
containing enabling information.

If the parsed ViewCell character represents an embedded RenderMan
viewer, its type is an instance of the _3DButton class and its function is
performed by the _3DAction method. Moreover, the _3DButton instance
will be rendered by a RenderMan server, an executable application that is
always external to a MediaView file containing enabling information.

If the ViewCell object represents a Live Equation component its type is an
instance of the tiffButton class and its function is peformed by the
mathAction method. Moreover, the Live Equation instance will be
rendered by a Mathematica server, an executable application that is always
external to a MediaView (hypermedia) document.

985-1.h:
automatically invoking the executable application,
in response to the identifying of the embed text
format, to execute on the client workstation in
order to display the object and enable an end-user
to directly interact with the object while the object
is being displayed within a display area created at
the first location within the portion of the
hypermedia document being displayed in the
browser-controlled window.

MediaView discloses that the browser parses the embed text format.

MediaView parses a stream of data in Rich Text Format (RTF) in order to
discover the location of multimedia components embedded therein. It does
this by looping through a series of “runs” of RTF data and searching for a
“character” with an embedded flag that identifies it as a pointer to a
multimedia component.

MediaView discloses automatic invocation of the executable application.

In MediaView, if the ViewCell character is parsed out of the text stream it
contains information about its type of hypermedia object and the computer

 53

Claim Text from ’985 Patent MediaView
code necessary to perform its function. If the parsed ViewCell character
represents an embedded RenderMan viewer, its type is an instance of the
_3DButton class and its function is performed by the _3DAction method.
Moreover, the _3DButton instance will be rendered by a RenderMan
server, an executable application, which is automatically invoked, ready
for interaction with the client.

In MediaView, the ViewCell character parsed out of the text stream
contains information about its hypermedia object type and the computer
code necessary to perform its function. If the parsed ViewCell character
represents an embedded Live Equation component, its type is an instance
of the tiffButton class and its function is performed by the mathAction
method. Moreover, the tiffButton instance will be rendered by a
Mathematica server, an executable application, which is automatically
invoked, ready for interaction with the client.

MediaView discloses that the executable application displays the object.

In MediaView, if the ViewCell character is parsed out of the text stream it
contains information about its type of hypermedia object and the computer
code necessary to perform its function. If the parsed ViewCell character
represents an embedded RenderMan viewer, its type is an instance of the
_3DButton class and its function is performed by the _3DAction method.
Moreover, the _3DButton instance will be rendered by a RenderMan
server, an executable application, which transmits graphical data to the
object for display.

In MediaView, the ViewCell character parsed out of the text stream
contains information about its hypermedia object type and the computer
code necessary to perform its function. If the parsed ViewCell character
represents an embedded Live Equation component, its type is an instance
of the tiffButton class and its function is performed by the mathAction

 54

Claim Text from ’985 Patent MediaView
method. Moreover, the tiffButton instance will be rendered by a
Mathematica server, an executable application, which transmits graphical
data to the object for display.

MediaView discloses that the executable application enables direct interaction
with the object.

Among the hypermedia objects that interact directly with an executable
application is the Live Equation object, depicted below. The equation
inspection panel permits direct interaction with a Mathematica server, an
application external to the MediaView document.

In addition, the 3D Line Dataset Viewer object directly interacts with a
geometric transformation application running in conjunction with

 55

Claim Text from ’985 Patent MediaView
MediaView and provides access to external 3D datasets located anywhere
on a network, as seen below.

 56

Claim Text from ’985 Patent MediaView

As another example, a custom component, the EmbeddedVideo viewer
displays a live video data stream in a sub-window embedded in a
MediaView document. An example of this component is shown here.

 57

Claim Text from ’985 Patent MediaView

In MediaView, if the ViewCell character is parsed out of the text stream it
contains information about its type of hypermedia object and the computer
code necessary to perform its function. If the parsed ViewCell character
represents an embedded RenderMan viewer, its type is an instance of the
_3DButton class and its function is performed by the _3DAction method.
Moreover, the _3DButton instance will be rendered by a RenderMan
server, an executable application. The server application is automatically
invoked, enabling direct interaction with the 3D button object.

In MediaView, the ViewCell character is parsed out of the text stream
contains information about its hypermedia object type and the computer
code necessary to perform its function. If the parsed ViewCell character
represents an embedded Live Equation viewer, its type is an instance of
the tiffButton class and its function is performed by the mathAction
method. Moreover, the tiffButton instance will be rendered by a
Mathematica server, an executable application. The server application is
automatically invoked, enabling direct interaction with the Live Equation
object.

MediaView discloses that interaction with the object is at a first location in the
hypermedia document.

In MediaView, if the ViewCell character is parsed out of the text stream it
contains information about its type of hypermedia object and the computer
code necessary to perform its function. If the parsed ViewCell character
represents an embedded RenderMan viewer, its type is an instance of the
_3DButton class and its function is performed by the _3DAction method.
Moreover, the _3DButton instance will be rendered by a RenderMan
server, an executable application. The server application is automatically
invoked, enabling interaction with the 3D button object at its first location

 58

Claim Text from ’985 Patent MediaView
in the hypermedia document, i.e. the location in the text stream where it
was determined by parsing.

In MediaView, the ViewCell character is parsed out of the text stream
contains information about its hypermedia object type and the computer
code necessary to perform its function. If the parsed ViewCell character
represents an embedded Live Equation viewer, its type is an instance of
the tiffButton class and its function is performed by the mathAction
method. Moreover, the tiffButton instance will be rendered by a
Mathematica server, an executable application. The server application is
automatically invoked, enabling interaction with the Live Equation object
at its first location in the hypermedia document, i.e. the location in the text
stream where it was determined by parsing.

See also, [LANL93], e.g.:

 59

Claim Text from ’985 Patent MediaView

 60

Claim Text from ’985 Patent MediaView
Also note [LANL93] (while not literally satisfying the limitation, the window is
place separate from the MediaView document in a location that corresponds to
the location of the component – here the upper right edge):

[LANL93] also shows video functionality and while it would not satisfy the
limitation “displayed within a display area created at the first location within the
portion of the hypermedia document being displayed,” as is shown in other
embodiments the components could be moved within the document.

 61

Claim Text from ’985 Patent MediaView

985-2.a:
The method of claim 1 where: the information to
enable comprises text formats.

MediaView discloses that the enabling information in the file is text formats.

In this report, under the heading “Parsing” the digital structure of a
MediaView document is described. There it states, “MediaView…parses a
stream of data in Rich Text Format (RTF) in order to discover the location
of multimedia components embedded therein. It does this by looping
through a series of “runs” of RTF data and searching for a “character”
with an embedded flag that identifies it as a pointer to a multimedia
component.” That pointer causes hypermedia components like those
shown in Figures 6 and 7 of my report to become active and be displayed.
The markup that handles the formatting in a MediaView document are text
formats under the Court’s construction. Examples are show in the dumps
found in 985-1.f.

985-3.a:
The method of claim 2 where the text formats are
HTML tags.

This limitation is not expressly taught in MediaView, though it is obvious in its
own right to a person of ordinary skill in the art at the time of the alleged
invention for the reasons described in my report, which include the teachings on
the CERN website maintained by Tim Berners-Lee and his citation to and

 62

Claim Text from ’985 Patent MediaView
interest in my work, the inventors knowledge of it, and thus the combination of
the features and functionality of MediaView with any web browser, including
but not limited to NCSA’s Mosaic browser, CERN’s browser, or Wei’s Viola
browser.

HTML, as described in my report, is a type of markup language. My report
further explains that RTF was described as also being a markup language. Just
as HTML provides tags for specifying a format for rendering text on the screen,
RTF does too. Other tags in HTML can specify actions to be taken, like
including hypermedia data or executing an application. RTF, as used in the
MediaViewText object, provides exactly the same capabilities. For example, the
ViewCell character parsed out of the text stream contains information about its
type of hypermedia object and the computer code necessary to perform its
function. Thus, if the ViewCell represents a Read-it note, its type is an instance
of the Post_itButton class and its function is performed by the post-itAction
method (subroutine). Likewise, if the ViewCell character represents an
embedded RenderMan viewer, its type is an instance of the _3DButton class and
its function is performed by the _3DAction method. As further evidence, I’d
point out that in [Phillips91b] it is noted at pg. 82 that "The most obvious and
important enhancement is a hyperlinking capability. This has been designed and
will be implemented in the next few months. Its design draws upon the rich
NeXT development environment, in particular the suite of BTree classes that are
available." Furthermore, in this report at ¶94 I have pointed out that while at
CERN, Tim Berners-Lee implemented his web browser/editor using NeXTSTEP
by sub-classing the Text class to form the HyperText class. That browser parsed
HTML.

985-4.a:
The method of claim 1 where the information
contained in the file received comprises at least
one embed text format.

MediaView discloses that the enabling information in the file includes an embed
text format.

As stated above in this report, “A Text object or any subclass allows a
“graphic character” to be embedded in the text stream. In MediaView

 63

Claim Text from ’985 Patent MediaView
“graphic characters” are subclasses of a ViewCell, whose address is the
data contained in the info field described in my report under the subsection
entitled Parsing. The ViewCell character directly specifies the processing
to be done for the hypermedia component.

985-5.a:
The method of claim 1 where the step of
identifying an embed text format comprises:
parsing the received file to identify text formats
included in the received file.

MediaView discloses that the embed text format is identified by parsing the file
containing enabling information.

MediaView parses a stream of data in Rich Text Format (RTF) in order to
discover the location of multimedia components embedded therein. It does
this by looping through a series of “runs” of RTF data and searching for a
“character” with an embedded flag that identifies it as a pointer to a
multimedia component.

985-6.a:
The method of claim 5 where the parsing is by a
parser in the browser.

MediaView discloses that the parser is in the browser

In this report, under the heading “Parsing” the digital structure of a
MediaView document is described. There it states, “MediaView…parses a
stream of data in Rich Text Format (RTF) in order to discover the location
of multimedia components embedded therein. It does this by looping
through a series of “runs” of RTF data and searching for a “character”
with an embedded flag that identifies it as a pointer to a multimedia
component.” The parser is an integral part of the MediaView browser as
discussed in [Phillips91c]. There, on pg. 5, it states, “The design of the
inventorying scheme, updating its dynamic data structure, and associated
routines that access it was one of the challenges met in developing
MediaView. Briefly, the important components are a HashTable (a
common class that is part of the Objective-C environment [6]) for
maintaining the runtime data structure and a method for populating it. The
hash table entries consist of the id of the MediaViewCell and its current
integer ordinal position in the text stream.” The code for the parser,
represented by the subroutine takeInventory follows on that page and

 64

Claim Text from ’985 Patent MediaView
appears in this report.

985-7.a:
The method of claim 1 where the processing
specified by the text formats is specified directly.

MediaView discloses that the text formats directly specify the processing.

As stated above in this report, “A Text object or any subclass allows a
“graphic character” to be embedded in the text stream. As stated in
[NeXT89], NeXT’s Text Class description:
“Each graphic is treated as a single character: The text’s line height and
character placement are adjusted to accommodate the graphic “character.”
Graphics are embedded in the text in either of two ways:
programmatically or directly through user actions. In the programmatic
approach, you add an object—generally a subclass of Cell—to the text.
This object will manage the graphic image by drawing it when
appropriate.”
In MediaView “graphic characters” are subclasses of a ViewCell, whose
address is the data contained in the info field described in my report under
the subsection Parsing. The ViewCell character directly specifies the
processing to be done for the hypermedia component.

985-8.a:
The method of claim 1 where the correspondence
is implied by the order of the text format in a set of
all of the text formats.

MediaView discloses that the correspondence is implied by the order of text
formats.

The “graphic characters” embedded in a text stream appear on the screen
in the rendered Text object exactly in the same position as they appear in
the stream.

985-9.a:
The method of claim 1 where the embed text
format specifies the location of at least a portion of
an object directly.

MediaView discloses that the embed text format specifies the location of the
object directly.

If the parsed ViewCell character represents an embedded RenderMan
viewer, its type is an instance of the _3DButton class and its function is

 65

Claim Text from ’985 Patent MediaView
performed by the _3DAction method. Moreover, the _3DButton instance
will be rendered by a RenderMan server, an executable application.

If the parsed ViewCell character represents an embedded Live Equation
viewer, its type is an instance of the tiffButton class and its function is
performed by the mathAction method. Moreover, the tiffButton instance
will be rendered by a Mathematica server, an executable application.

985-10.a:
The method of claim 1 where having type
information associated is by including type
information in the embed text format.

MediaView discloses that the type information is in the embed text format.

In MediaView, if the ViewCell character is parsed out of the text stream it
contains information about its type of hypermedia object and the computer
code necessary to perform its function. Thus, if the ViewCell represents a
Read-it note, its type is an instance of the Post_itButton class and its
function is performed by the post-itAction method (subroutine). Likewise,
if the ViewCell character represents an embedded RenderMan viewer, its
type is an instance of the _3DButton class and its function is performed by
the _3DAction method.

Likewise, if the ViewCell character represents an embedded Live
Equation viewer, its type is an instance of the tiffButton class and its
function is performed by the mathAction method.

985-11.a:
The method of claim 1 where automatically
invoking does not require interactive action by the
user.

MediaView discloses that automatic invocation does not require interactive
action by the user.

In MediaView, if the ViewCell character is parsed out of the text stream it
contains information about its type of hypermedia object and the computer
code necessary to perform its function. If the parsed ViewCell character
represents an embedded RenderMan viewer, its type is an instance of the
_3DButton class and its function is performed by the _3DAction method.
Moreover, the _3DButton instance will be rendered by a RenderMan

 66

Claim Text from ’985 Patent MediaView
server, an executable application, which is automatically invoked, ready
for interaction with the client, the user.

If the parsed ViewCell character represents an embedded Live Equation
viewer, its type is an instance of the tiffButton class and its function is
performed by the mathAction method. Moreover, the tiffButton instance
will be rendered by a Mathematica server, an executable application,
which is automatically invoked, ready for interaction with the client, the
user.

In addition, should the parsing operation discover an object represented by
the 3D Line Dataset Viewer, as seen in Figure 9 of this report, the viewer
is immediately and automatically active, awaiting user input. The situation
would be the same for an instance of a EmbeddedVideo viewer.

985-16.a:
One or more computer readable media encoded
with software comprising computer executable
instructions, for use in a distributed hypermedia
network environment, wherein the network
environment comprises at least one client
workstation and one network server coupled to the
network environment, and when the software is
executed operable to:

MediaView discloses computer code physically embodied on a medium.

Complete computer source code for MediaView in MV.TAR on PA-NAT-
71 (and has been produced elsewhere too, e.g. [LANL92]), which when
compiled on a NeXT computer, under NeXTSTEP Release 3.2, produces
the executable MediaView browser seen in Fig.2 of [Phillips91b] , Fig.1
of [Phillips91a and Fig. 5 of this report].
From pg. 75 of [Phillips91b], “MediaView is a multimedia digital
publication system that was designed to be flexible and free from
restrictions. It was also designed to take maximum advantage of the
media-rich hardware and software capabilities of the NeXT [5] computer,
especially the features of the NeXTdimension[17] subsystem.”
From pg 78 of [Phillips91b], “The Application Kit is a collection of about
50 classes of commonly used graphics user-interface objects. The
application programmer's interface to the Application Kit is based on
Objective-C. The style of programming in NeXTstep is to subclass objects
in the Application Kit and then to override default behavior or add new

 67

Claim Text from ’985 Patent MediaView
behavior. While one's application-specific code can be written in ordinary
C, MediaView has benefitted greatly from being programmed primarily in
Objective-C.”

MediaView discloses a client workstation and a network server in a distributed
hypermedia environment. See evidence recited for 985-1.a.

985-16.b:
receive, at the client workstation from the network
server over the network environment, at least one
file containing information to enable a browser
application to display at least a portion of a
distributed hypermedia document within a
browser-controlled window;

MediaView discloses a browser application; a file containing enabling
information received from a server; that the browser displays at least a portion of
a distributed hypermedia document; and that the display is in a browser-
controlled window. See evidence recited for 985-1.b.

985-16.c:
cause the client workstation to utilize the browser
to:

MediaView discloses a browser application executing on the client workstation.
See evidence recited for 985-1.c.

985-16.d:
respond to text formats to initiate processing
specified by the text formats;

MediaView discloses parsing text formats. See evidence recited for 985-1.d.

985-16.e:
display at least a portion of the document within
the browser-controlled window;

MediaView discloses displaying at least a portion of the document within the
browser-controlled window. See evidence recited for 985-1.e.

985-16.f:
identify an embed text format corresponding to a
first location in the document, the embed text
format specifying the location of at least a portion
of an object external to the file, with the object
having type information associated with it;

MediaView discloses identifying an embed text format; that the embed text
format corresponds to a first location in a hypermedia document; that the embed
text format specifies the location of at least a portion of an object external to the
file containing enabling information; and that the object has associated type
information. See evidence recited for 985-1.f.

985-16.g:
utilize the type information to identify and locate
an executable application external to the file; and

MediaView discloses using type information to identify and locate an executable
application external to the file. See evidence recited for 985-1.g.

985-16.h: MediaView discloses automatically invoking the executable application; that the

 68

Claim Text from ’985 Patent MediaView
automatically invoke the executable application, in
response to the identifying of the embed text
format, to execute on the client workstation in
order to display the object and enable an end-user
to directly interact with the object while the object
is being displayed within a display area created at
the first location within the portion of the
hypermedia document being displayed in the
browser-controlled window.

executable application displays the object and enables an end-user to directly
interact with it; and that the interaction with the object is at a first location in a
hypermedia document. See evidence recited for 985-1.h.

985-17.a:
The computer readable media of claim 16 where:
the information to enable comprises text formats.

MediaView discloses that the enabling information in the file is text formats.
See evidence recited for 985-2.a.

985-18.a:
The computer readable media of claim 17 where:
the text formats are HTML tags.

This limitation is obvious for the same reasons as discussed in the evidence for
985-3.a.

985-19.a:
The computer readable media of claim 16 where:
the information contained in the file received
comprises at least one embed text format.

MediaView discloses that the enabling information in the file includes an embed
text format. See evidence recited for 985-4.a.

985-20.a:
A method of serving digital information in a
computer network environment having a network
server coupled the network environment, and
where the network environment is a distributed
hypermedia environment, the method comprising:

MediaView discloses digital information.

All information contained in a MediaView document and displayed in a
MediaView window is represented digitally. In this report, under the
heading “Parsing” the digital structure of a MediaView document is
described. There it states, “MediaView…parses a stream of data in Rich
Text Format (RTF) in order to discover the location of multimedia
components embedded therein. It does this by looping through a series of
“runs” of RTF data and searching for a “character” with an embedded flag

 69

Claim Text from ’985 Patent MediaView
that identifies it as a pointer to a multimedia component.”

MediaView discloses a network server in a distributed hypermedia environment.
See evidence recited for 985-1.a.

985-20.b:
communicating via the network server with at least
one client workstation over said network in order
to cause said client workstation to:

MediaView discloses a client workstation. See evidence recited for 985-1.a.

MediaView discloses communicating via network server in order to cause the
client workstation to act.

The applications depicted by Figures 6 and 7 are distributed applications
where the work done prior to dispatching a task to a server, is done on a
client workstation. The task thus dispatched is performed on the
appropriate server. Once a task is partially or completely finished, the
server sends resulting information, e.g. text or graphics, which causes the
client workstation to act.

985-20.c:
receive, over said network environment from said
server, at least one file containing information to
enable a browser application to display at least a
portion of a distributed hypermedia document
within a browser-controlled window;

MediaView discloses a browser application; a file containing enabling
information received from a server; that the browser displays at least a portion of
a distributed hypermedia document; and that the display is in a browser-
controlled window. See evidence recited for 985-1.b.

985-20.d:
execute, at said client workstation, a browser
application, with the browser application:

MediaView discloses a browser application executing on the client workstation.
See evidence recited for 985-1.c.

985-20.e:
responding to text formats to initiate processing
specified by the text formats;

MediaView discloses parsing text formats. See evidence recited for 985-1.d.

985-20.f:
displaying, on said client workstation, at least a
portion of the document within the browser-
controlled window;

MediaView discloses displaying at least a portion of the document within the
browser-controlled window. See evidence recited for 985-1.e.

985-20.g: MediaView discloses identifying an embed text format; that the embed text

 70

Claim Text from ’985 Patent MediaView
identifying an embed text format which
corresponds to a first location in the document,
where the embed text format specifies the location
of at least a portion of an object external to the file,
where the object has type information associated
with it;

format corresponds to a first location in a hypermedia document; that the embed
text format specifies the location of at least a portion of an object external to the
file containing enabling information; and that the object has associated type
information. See evidence recited for 985-1.f.

985-20.h:
utilizing the type information to identify and locate
an executable application external to the file; and

MediaView discloses using type information to identify and locate an executable
application external to the file. See evidence recited for 985-1.g.

985-20.i:
automatically invoking the executable application,
in response to the identifying of the embed text
format, to execute on the client workstation in
order to display the object and enable an end-user
to directly interact with the object while the object
is being displayed within a display area created at
the first location within the portion of the
hypermedia document being displayed in the
browser-controlled window.

MediaView discloses automatically invoking the executable application; that the
executable application displays the object and enables an end-user to directly
interact with it; and that the interaction with the object is at a first location in a
hypermedia document. See evidence recited for 985-1.h.

985-21.a:
The method of claim 20 where: the information to
enable comprises text formats.

MediaView discloses that the enabling information in the file is text formats.
See evidence recited for 985-2.a.

985-22.a:
The method of claim 21 where: the text formats
are HTML tags.

This limitation is obvious for the same reasons as discussed in the evidence for
985-3.a.

985-23.a:
The method of claim 20 where: the information
contained in the file received comprises at least
one embed text format.

MediaView discloses that the enabling information in the file includes an embed
text format. See evidence recited for 985-4.a.

 71

Claim Text from ’985 Patent MediaView

985-24.a:
A method for running an executable application in
a computer network environment, wherein said
network environment has at least one client
workstation and one network server coupled to a
network environment, the method comprising:

MediaView discloses a client workstation and a network server in a network
environment. See evidence recited for 985-1.a.

MediaView discloses an executable application. See evidence recited for 985-
1.g.

985-24.b:
enabling an end-user to directly interact with an
object by utilizing said executable application to
interactively process said object while the object is
being displayed within a display area created at a
first location within a portion of a hypermedia
document being displayed in a browser-controlled
window,

MediaView discloses displaying at least a portion of the document within the
browser-controlled window. See evidence recited for 985-1.e.

MediaView discloses an object external to a file containing enabling
information. See evidence recited for 985-1.f.

MediaView discloses that there is enabling of an end-user to directly interact
with the object.

The MediaView objects depicted in Figures 6, 7, and 9 all enable an end-
user interaction.

MediaView discloses that the interaction with the object is at a first location in a
hypermedia document. See evidence recited for 985-1.h.

MediaView discloses that the object is displayed at a first location within a
portion of the hypermedia document being displayed.

The “graphic characters” embedded in a text stream appear on the screen
in the rendered Text object exactly in the same location (first location) as
they appear in the stream.

985-24.c:
wherein said network environment is a distributed
hypermedia environment,

MediaView discloses a client workstation and a network server in a distributed
hypermedia environment. See evidence recited for 985-1.a.

985-24.d: MediaView discloses a browser application; a file containing enabling

 72

Claim Text from ’985 Patent MediaView
wherein said client workstation receives, over said
network environment from said server, at least one
file containing information to enable said browser
application to display, on said client workstation,
at least said portion of said distributed hypermedia
document within said browser-controlled window,

information received from a server; that the browser displays at least a portion of
a distributed hypermedia document; and that the display is in a browser-
controlled window. See evidence recited for 985-1.b.

985-24.e:
wherein said executable application is external to
said file,

MediaView discloses an executable application external to the file. See evidence
recited for 985-1.g.

985-24.f:
wherein said client workstation executes the
browser application, with the browser application
responding to text formats to initiate processing
specified by the text formats,

MediaView discloses a browser application executing on the client workstation.
See evidence recited for 985-1.c.

MediaView discloses parsing text formats. See evidence recited for 985-1.d.

985-24.g:
wherein at least said portion of the document is
displayed within the browser-controlled window,

MediaView discloses displaying at least a portion of the document within the
browser-controlled window. See evidence recited for 985-1.e.

985-24.h:
wherein an embed text format which corresponds
to said first location in the document is identified
by the browser,

MediaView discloses identifying an embed text format and that the embed text
format corresponds to a first location in a hypermedia document. See evidence
recited for 985-1.f.

985-24.i:
wherein the embed text format specifies the
location of at least a portion of said object external
to the file,

MediaView discloses that the embed text format specifies the location of at least
a portion of an object external to the file containing enabling information. See
evidence recited for 985-1.f.

985-24.j:
wherein the object has type information associated
with it,

MediaView discloses that the object has associated type information. See
evidence recited for 985-1.f.

985-24.k:
wherein the type information is utilized by the
browser to identify and locate said executable
application, and

MediaView discloses using type information to identify and locate an executable
application external to the file. See evidence recited for 985-1.g.

 73

Claim Text from ’985 Patent MediaView
985-24.l:
wherein the executable application is automatically
invoked by the browser, in response to the
identifying of the embed text format.

MediaView discloses automatically invoking the executable application. See
evidence recited for 985-1.h.

985-25.a:
The method of claim 24 where: the information to
enable comprises text formats.

MediaView discloses that the enabling information in the file is text formats.
See evidence recited for 985-2.a.

985-26.a:
The method of claim 25 where: the text formats
are HTML tags.

This limitation is obvious for the same reasons as discussed in the evidence for
985-3.a.

985-27.a:
The method of claim 24 where: the information
contained in the file received comprises at least
one embed text format.

MediaView discloses that the enabling information in the file includes an embed
text format. See evidence recited for 985-4.a.

985-28.a:
One or more computer readable media encoded
with software comprising an executable
application for use in a system having at least one
client workstation and one network server coupled
to a network environment, operable to:

MediaView discloses computer code physically embodied on a medium. See
evidence recited for 985-16.a.

MediaView discloses a client workstation and a network server in a network
environment. See evidence recited for 985-1.a.

MediaView discloses an executable application. See evidence recited for 985-
1.g.

985-28.b:
cause the client workstation to display an object
and enable an end-user to directly interact with
said object while the object is being displayed
within a display area created at a first location
within a portion of a hypermedia document being

MediaView discloses displaying at least a portion of the document within the
browser-controlled window. See evidence recited for 985-1.e.

MediaView discloses an object external to a file containing enabling
information. See evidence recited for 985-1.f.

 74

Claim Text from ’985 Patent MediaView
displayed in a browser-controlled window, MediaView discloses that there is enabling of an end-user to directly interact

with the object. See evidence recited for 985-24.b.

MediaView discloses that the interaction with the object is at a first location in a
hypermedia document. See evidence recited for 985-1.h.

MediaView discloses that the object is displayed within a display area created at
the first location..

The “graphic characters” embedded in a text stream appear on the screen
in the rendered Text object exactly in the same location (first location) as
they appear in the stream.

985-28.c:
wherein said network environment is a distributed
hypermedia environment,

MediaView discloses a client workstation and a network server in a distributed
hypermedia environment. See evidence recited for 985-1.a.

985-28.d:
wherein said client workstation receives, over said
network environment from said server, at least one
file containing information to enable said browser
application to display, on said client workstation,
at least said portion of said distributed hypermedia
document within said browser-controlled window,

MediaView discloses a browser application; a file containing enabling
information received from a server; that the browser displays at least a portion of
a distributed hypermedia document; and that the display is in a browser-
controlled window. See evidence recited for 985-1.b.

985-28.e:
wherein said executable application is external to
said file,

MediaView discloses an executable application external to the file. See evidence
recited for 985-1.g.

985-28.f:
wherein said client workstation executes said
browser application, with the browser application
responding to text formats to initiate processing
specified by the text formats,

MediaView discloses a browser application executing on the client workstation.
See evidence recited for 985-1.c.

MediaView discloses parsing text formats. See evidence recited for 985-1.d.

985-28.g:
wherein at least said portion of the document is

MediaView discloses displaying at least a portion of the document within the
browser-controlled window. See evidence recited for 985-1.e.

 75

Claim Text from ’985 Patent MediaView
displayed within the browser-controlled window,
985-28.h:
wherein an embed text format which corresponds
to said first location in the document is identified
by the browser,

MediaView discloses identifying an embed text format and that the embed text
format corresponds to a first location in a hypermedia document. See evidence
recited for 985-1.f.

985-28.i:
wherein the embed text format specifies the
location of at least a portion of said object external
to the file,

MediaView discloses that the embed text format specifies the location of at least
a portion of an object external to the file containing enabling information. See
evidence recited for 985-1.f.

985-28.j:
wherein the object has type information associated
with it,

MediaView discloses that the object has associated type information. See
evidence recited for 985-1.f.

985-28.k:
wherein the type information is utilized by the
browser to identify and locate said executable
application, and

MediaView discloses using type information to identify and locate an executable
application external to the file. See evidence recited for 985-1.g.

985-28.l:
wherein the executable application is automatically
invoked by the browser, in response to the
identifying of the embed text format.

MediaView discloses automatically invoking the executable application. See
evidence recited for 985-1.h.

985-36.a:
A method for running an application program in a
distributed hypermedia network environment,
wherein the distributed hypermedia network
environment comprises at least one client
workstation and one remote network server
coupled to the distributed hypermedia network
environment, the method comprising:

MediaView discloses an application program in a distributed hypermedia
environment comprising at least client workstation and network server. See
evidence recited for 985-1.a.

985-36.b:
receiving, at the client workstation from the
network server over the distributed hypermedia

MediaView discloses a browser application; a file containing enabling
information; that the file is received at the client workstation from the network
server; that the browser displays at least a portion of a distributed hypermedia

 76

Claim Text from ’985 Patent MediaView
network environment, at least one file containing
information to enable a browser application to
display at least a portion of a distributed
hypermedia document within a browser-controlled
window;

document; and that at least a portion of a hypermedia document is displayed in a
browser-controlled window. See evidence recited for 985-1.b.

985-36.c:
executing the browser application on the client
workstation, with the browser application:

MediaView discloses a browser application executing on the client workstation.
See evidence recited for 985-1.c.

985-36.d:
responding to text formats to initiate processing
specified by the text formats;

MediaView discloses parsing text formats. See evidence recited for 985-1.d.

985-36.e:
displaying at least a portion of the document
within the browser-controlled window;

MediaView discloses displaying at least a portion of the document within the
browser-controlled window. See evidence recited for 985-1.e.

985-36.f:
identifying an embed text format which
corresponds to a first location in the document,
where the embed text format specifies the location
of at least a portion of an object;

MediaView discloses an object.

If the parsed ViewCell character represents an embedded RenderMan
viewer (an object), its type is an instance of the _3DButton class and its
function is performed by the _3DAction method. Moreover, the
_3DButton instance will be rendered by a RenderMan server, an external
application.

MediaView discloses identifying an embed text format; that the embed text
format corresponds to a first location in the hypermedia document; and that the
embed text format specifies the location of an object. See evidence recited for
985-1.f.

985-36.g:
identifying and locating an executable application
associated with the object; and

MediaView discloses that the browser identifies and locates an executable
application associated with the object.

If the parsed ViewCell character represents an embedded RenderMan
viewer, its type is an instance of the _3DButton class and its function is
performed by the _3DAction method. Moreover, the _3DButton instance

 77

Claim Text from ’985 Patent MediaView
will be rendered by a RenderMan server, an executable application.

985-36.h:
automatically invoking the executable application,
in response to the identifying of the embed text
format, in order to enable an end-user to directly
interact with the object, while the object is being
displayed within a display area created at the first
location within the portion of the hypermedia
document being displayed in the browser-
controlled window,

MediaView discloses identifying an embed text format. See evidence recited in
985-1.f.

MediaView discloses automatic invocation of the executable application; that the
executable application displays the object; that the executable application
enables direct interaction with the object; and that interaction with the object is
at a first location in the hypermedia document. See evidence recited in 985-1.h.

MediaView discloses that the object is displayed at a first location within a
portion of the hypermedia document being displayed. See evidence recited at
985-24.b.

MediaView discloses that a hypermedia document is displayed in a browser
window. See, e.g., evidence recited for 985-1.e.

985-36.i:
wherein the executable application is part of a
distributed application, and

MediaView discloses a distributed application.

The applications depicted by Figures 6 and 7 of my report are distributed
applications where the work done prior to dispatching a task to a server, is
done on a client workstation.

MediaView discloses that the executable application is part of a distributed
application.

985-36.j:
wherein at least a portion of the distributed
application is for execution on a remote network
server coupled to the distributed hypermedia
network environment.

MediaView discloses that the distributed application executes at least partially
on a network server.

The applications depicted by Figures 6 and 7 of my report are distributed
applications where the work done prior to dispatching a task to a server, is
done on a client workstation. The task thus dispatched is performed on the

 78

Claim Text from ’985 Patent MediaView
appropriate server.

985-37.a:
The method of claim 36 where: the information to
enable comprises text formats.

MediaView discloses that the enabling information in the file is text formats.
See evidence recited for 985-2.a.

985-38.a:
The method of claim 37 where: the text formats
are HTML tags.

This limitation is obvious for the same reasons as discussed in the evidence for
985-3.a.

985-39.a:
The method of claim 36 where: the information
contained in the file received comprises at least
one embed text format.

MediaView discloses that the enabling information in the file includes an embed
text format. See evidence recited for 985-4.a.

985-40.a:
A method of serving digital information in a
computer network environment having a network
server coupled to said computer network
environment, and where the network environment
is a distributed hypermedia network environment,
the method comprising:

MediaView discloses digital information. See evidence recited for 985-20.a.

MediaView discloses a network server in a distributed hypermedia environment.
See evidence recited for 985-1.a.

985-40.b:
communicating via the network server with at least
one remote client workstation over said computer
network environment in order to cause said client
workstation to:

MediaView discloses a client workstation. See evidence recited for 985-1.a.

MediaView discloses communicating via network server in order to cause the
client workstation to act. See evidence recited for 985-20.b.

985-40.c:
receive, over said computer network environment
from the network server, at least one file
containing information to enable a browser
application to display at least a portion of a

MediaView discloses a browser application; a file containing enabling
information received from a server; that the browser displays at least a portion of
a distributed hypermedia document; and that the display is in a browser-
controlled window. See evidence recited for 985-1.b.

 79

Claim Text from ’985 Patent MediaView
distributed hypermedia document within a
browser-controlled window;
985-40.d:
execute, at said client workstation, a browser
application, with the browser application:

MediaView discloses a browser application executing on the client workstation.
See evidence recited for 985-1.c.

985-40.e:
responding to text formats to initiate processing
specified by the text formats;

MediaView discloses parsing text formats. See evidence recited for 985-1.d.

985-40.f:
displaying, on said client workstation, at least a
portion of the document within the browser-
controlled window;

MediaView discloses displaying at least a portion of the document within the
browser-controlled window. See evidence recited for 985-1.e.

985-40.g:
identifying an embed text format which
corresponds to a first location in the document,
where the embed text format specifies the location
of at least a portion of an object;

MediaView discloses an object. See evidence recited for 985-36.f.

MediaView discloses identifying an embed text format; that the embed text
format corresponds to a first location in the hypermedia document; and that the
embed text format specifies the location of an object. See evidence recited for
985-1.f.

985-40.h:
identifying and locating an executable application
associated with the object; and

MediaView discloses that the browser identifies and locates an executable
application associated with the object. See evidence recited for 985-36.g.

985-40.i:
automatically invoking the executable application,
in response to the identifying of the embed text
format, in order to enable an end-user to directly
interact with the object while the object is being
displayed within a display area created at the first
location within the portion of the hypermedia
document being displayed in the browser-
controlled window,

MediaView discloses identifying an embed text format. See evidence recited in
985-1.f.

MediaView discloses automatic invocation of the executable application; that the
executable application displays the object; that the executable application
enables direct interaction with the object; and that interaction with the object is
at a first location in the hypermedia document. See evidence recited in 985-1.h.

MediaView discloses that the object is displayed at a first location within a
portion of the hypermedia document being displayed. See evidence recited for
985-24.b.

 80

Claim Text from ’985 Patent MediaView

MediaView discloses that a hypermedia document is displayed in a browser
window. See, e.g., evidence recited for 985-1.e.

985-40.j:
wherein the executable application is part of a
distributed application, and

MediaView discloses that the executable application is part of a distributed
application. See evidence recited in 985-36.i.

985-40.k:
wherein at least a portion of the distributed
application is for execution on the network server.

MediaView discloses that the distributed application executes at least partially
on a network server. See evidence recited for 985-36.j.

985-41.a:
The method of claim 40 where: the information to
enable comprises text formats.

MediaView discloses that the enabling information in the file is text formats.
See evidence recited for 985-2.a.

985-42.a:
The method of claim 41 where: the text formats
are HTML tags.

This limitation is obvious for the same reasons as discussed in the evidence for
985-3.a.

985-43.a:
The method of claim 40 where: the information
contained in the file received comprises at least
one embed text format.

MediaView discloses that the enabling information in the file includes an embed
text format. See evidence recited for 985-4.a.

