Eolas Technologies Incorporated v. Adobe Systems Incorporated et al Doc. 393 Att. 20

Exhibit 19

Dockets.Justia.com

http://dockets.justia.com/docket/texas/txedce/6:2009cv00446/118976/
http://docs.justia.com/cases/federal/district-courts/texas/txedce/6:2009cv00446/118976/393/20.html
http://dockets.justia.com/

. For Deve!oger > Dessgn Dccuments >

' How Chromium Displays Web Pages

;%Hm“u""r
Ehromiem 0%

ek links

Reior! bugs " This docurent describes how wab pages are displayed in Chromiur from the bottom

¢ up. Be sure you have read the pulili-pisgess siiieciue design dovument. You will

ETSW% . : especially want to understand the block diagram of major components.. You may also
Sitormap © ¢ be interested in el proness fesnvres Jbading for how pages arg fetchigd from the

%fs"@f'siité;;' :_network‘ B I

© Conceptual application layers -

s
ST L e E

R B o T T T

wivionERis s b gt ot

SRRV SR

e b T b T

s

Ut patddmg

Each box 're'pr'ese'nts‘ a cohc’e’ptu’al applicatish layer.. It should general'ly he p‘o‘ssible t6

keild n Aliffrormint biemuens oo e A ranlasiva Hhin lavave abAavs it
build o difforont browser by ng any layer ahd replaging the layers absve it
. Therefore, no layer should have knowledge of or dependencies on-any higher-level

. layers.

» WebKit: Rendeting éngine shared betweer ‘Safari, Chrorium, and zll other
WabKit-baged browsars. The Port is a part of VWWebKit that intagrates with
" platform dependent system services such as resource loading and graphics.
& Glue: Converts WebKit types ta Chromium types. This is our "WebKit
embedding layer." It is the basis of two browsers, Chromium, and test shell

whish allawre e dm baot WAk Y
LAITICHT QnoWSs US 0 (O3 VVCRIL;.

» Renderer / Render host: This is Chromium's "multi-process embedding layer."
It proxies rotifications: and commands across the process boundary. You couild
imagine other multi-process browsers using this layer, and it should have

©dependencies on dther browser services.

.» Tab contents: Chrome-specific layer that represents the corntents .of a tab. It
kinds with application sarvices such as the history system and the password
‘managet. It should not, however, assume it's embedded inside a Chromium
browser window (it's used by some other Chromium compenents like HTML

X ui&lGQS; .
» Browser: Represénts the brawser window, it embeds multiple TabCoentenises.

WebKit

| We use the YKt open-source’ project to lay Sut wek pages. This code is pulied

. from Apple and stored in the /thzrd sarty/Gzhiit directory. WebKit consists
primarily of "WebCore" which represents the core layout functionality, and

b "JavaScriptCore” which runs JavaScript. We only run JavaScriptCore for festing

. purposas, notrmally we replace it with our high performance V8 JavaScript engine. We

| do not actually use the layer that Apple calls "WebKit,” which is the embedding API

. between WebCore and OS X applications such as Safari. We normially refer to the

'+ eode from Apple genarically as "WebKit" for convenience.

. The WebKit port

. At the lowest level we have our WebKit "port.” This is our implementaticn of required
. piaiform-specifie functienaiity that intefaces with the piaiform-independent VvebCore
. code. These files are locatad in the WebKit tree, typically in = hrow ur directories or
i -as Chromium-suffixed files. Much of our port is not actually OS8-specific: you ceuld

¢ think of it as the "Chromium port" of WebCore. Some parts, like font rendering, must
. be handled differently for each platform.

» Network traffic is handled by our HOIEESEs TeRoures loading system rathr
than being handed off to the OS directly from the render process.
» Graphics uses the Skia graphics library developed for Android. This is.a cross-

platform graphics library and handies all images and graphics primitives excépt’

Eolas v. Adobe, et al. KS_GOOGLE_00008122
6:08-cv-446 (LED)

6884
Highlight

6884
Highlight

6884
Highlight

xt. -Skia is located in v 1 r+d

fot te
rranhicrs Anaratinn
graphics

ey = The maif entrypoint for
oparations is

U iwebia U e G plallorn g gl osf s rap i s Conlas LS kia L cups b
uses mahny ather files in the sarme directory as well as from /tass /gl -

- The WebKit glue
¢ The Ghromium application uses differént types, coding styles, and code layout thah the ~
| third-parky WebKit code. The Webkit "glue” provides a mere convenient embedding

- API for WebKit using Google coding conventions and types {far example, we use
. std::string instead of Woo o

:3hori g and GURT instead of <URT). The glue code
is-located in fwnh 't = /ey114. The glue objects are typically named similar to the

¢ WebKit objects, but with "Web" at the beginning. For example, fiezlcie 1 Frzme

bBecomes ool mane.

* The WebKit "glue” layer insulates the 1&st of the Chromium é6de base fram WebCars

- data types to halp minimize the impact of VWebCore changes an the Chromium code

Lofrom e ndear
PORGrderi

. ‘widgel. Therg is only one case where a L=z

| Brrdatiicw, and that's for select boxes on the web page. These are the baxes with

ooor threading in

Py

. .Ddbe Hb hub[l VVEDL:UIE Udld LypEb dig rnever u::eu uneu.ly Dy L.;HIUIIIIUHI ArIs are
added to the WebKlt "glue® for the benefit of Chromium when it needs to poke at some
+ WebCore object.

The "test shell" application is .a bare-bones web browser for testing our WebKit port
© and glue code. It uses the same glua interface for communicating with WebKit as
Chromium does. It provides :a simpler way for developers to test new code without

having many coriplicated browser features, threads, and processes. This application is

. also used to run the automatsd WebkKit tests.

Iy
; Fendes fuegt

Bt st

Frander Sl e

; Chrorfiilm's Fender process embeds our WebkKit port usmg the glue mterface It does

not contain very much code! its job is prlmanly to be the renderer side of the

channel to the browser .

" The most important class in the renderer i the Lisnzeriisw: located in

Folironed reider =/ Leioen, wiew . i, This object represents a web page. It
haridles all navigation-related commanids to-and from the browser process. It derivés
Wi + which provides painting and input event handling. The

<w communicates with the browser process via the global {per render
process) Sandar>raneass object.

BandsrView?
RenGerview

v itplementing the abstract
This is basically a Window

|nter‘face in the glue layer called waizsidiget 'f;_L ata.
! on the scresn that receives input svents and that we paintiinte. A leznide rview
inherits from Rovdew doest and is the contents of a tab or popup Window. It
handles navigational commands in addition to the painting and input events of the

Wodg=L exists without a

the down arrows that pop up a list of options.. The select boxes must be rendered

using a native window so that they can appear above everything glse¢, and pop out of

i the frame if necessary. These windows need to paint and receive input, but there isn't
! @ geparate "web page" {Rondarvinwy for them.

Threads in the renderer

Each tendersr has fwo threads (See the mlllti-pradess aichitedtire page far-a diagram,
Chugmiym for haw to program with thern). The render thread is where
tha main ohiscte such ag the Ze-dery ow and all WabKit cods. run. When it

orjecic ULy wenik il oode

comrmunicales to the browser, messages are first sent to the main thread, which ifi

¢ turn dispatches the message to the browser process. Among other things, this allows

us to send messages syrichronously from the rendersr to the browser. This happens
for a small set of operations where a result from the browser is required 1o continue.

¢ An example is getting the cookies for-a page when réquested by JavaScript. The

renderer thread will block, and the main thread will queue all messages that are)
received until the correct response is found. Any messages received in the meantirie

. -are subsequently posted to the renderer thread for normal processing.

Eolas v. Adobe, et al.
6:08-cv-446 (LED)

KS_GOOGLE_00008123

. specific messages to the apprepriate liendervi
¢ of non-view-snacific messages itsalfy. This disnafr:_hing happgns in

Yiew-specific messages come into f=rd swHost t s Suflassagelsos
. of the messages are handled here, ard the rest get farvardad o the

¢ the Tonc::

poSaln sl

i Above the Rerde
. messages actually end up as function calls on that object. A Hebdori e s
| represents the contents of a tab that shows web data. It derives from the generic

. Chromium's "multi- process embedding layer." Rerde.
i are not curreritly) used in other parts of the application to render ¢ontent. For example,
+ you evuld imagine a dialog box with a web view in it. This could use

Rerderyi swHasot el =gz te abstract interface. The v

¢ Additional exariples covering niavigation and startup are in

The browser process

B R Wes@zﬁ

il Dnrwesher {1} ?ssmz"

Low-ievei browser process objects

All PG coimmiuniéatioh with the render processes is d'ohe 80 the 11O thiead of the

browser. This thread also handles all pebanrd conmmunissiing which keeps it from
intérfering with the user interface.

i When a RusddesTrncsesl ol is inifidlized or the main thread {where the user

interface runsy, it creates the new renderer process and a Clizmnelbroxzy JFG Ubjer:t

: with a named pipe to the renderer. This object runs on the 17O thread of the browser;

listening to the named pipe to the renderer, and automatically forwards all messages
ek 1o the Lenderlrocsss on hé Ul thigad. A lescurostes sageb 12 Lo Wil 8
installed in this channel which will filter out certain messages that can be handléd
directly on the /O thread such as network requests. This filtering happens in

Reaoroe inngeTllTer: thri¥eceageXaceivead.

adoct on the Ul thread is responsible for dispatching all view-
Heoat (it handles a limited number

Thie zendzrerod

High-level browser process objects

ved. Most

LHo= - base class. These two objects map to the Je.d=srViewand
Wi dege:lin the renderer (see "The Render Process" above for what thesé
mean). On Microsoft Windews, we have a Rendnrii <ot Jos= i) associated with

Ferde Wi

cb oot that ameamifiaad by mas o sae ms Armad Araiaimer imbea o modioe

T il -
{2 dgetiisst that specifically mahages svents and drawing inte a native

HWND. :Other systeams will have a similar class for native input .and painting.

sildzzT 18 the vishCoaTernt 4 objact, and most of the

ST R

lakContanTs class (there aré a humber of 6ther specializations of .21
history and downloads, for example). It is the central switching point for most
havigation and toplevel browser Ul updating.

FAQ; Why are WebContents and RenderViewHos{ separate? These two ohjects
provide .differefit layers of functionality. You could think of Zende-V! evioec- as
L ewllosl abjetts could ke {but

Fordoryi cwllo st to manage drawing and communication with the render process,
it win ||rl ot have a "ah" ar the narmal naviaation commands, The

oL gang

e sl forwdrds many messages to the &

Coalonls via its
Confent o handles the
navigational sfate and anything related to the Ul of the web browser. Our hypothetical

vordort s

: dialog box wouldn't need any of this functionality and would only imiplement the parts of

the is=nderviswkost_osl=gate interface-that it cares about,

lllustrative examples

Eolas \'/'.' Adobe, et al.
6:08-cv-446 (LED)

P -

KS_GOOGLE_00008124

Life of a "set cursor" message

Settlng the curséris an examiple of a typlcal message that is sent from the renderer to
the browser. In the renderer, here is what happens.

s Sot cuirsor mésgages aré geherated by WebKit interally, typically in Fespotise
to an |nput event. The-set cursor message will start out in

frenderes

- to dispatch the message. This method is

&y to send messages to the browser.. It will call

also used by Zeade:
_',% i dar e S .)))

* This will callthe 11721 1 3vncidheanmsel which will internally proxy thé méssage
to the main thread of the renderer and post it to the namad pipe for sending te
the browser.

Thian the browser tales sontral:

v The _LCriukzmnel rony i i kender rocesshost receives all message
‘on thie /O thread of the browser. It first sends them through the
L Reanuroslk gabil-ar that dispatches network requests and related
" messages directly on the /O thread. Since our message is not filtered out, it
~~ continues on to the Ul thread of the browser (the _bi: : Chonnel 2roxy does
- this internally).
s Qr:,h"“rpro‘

fannnraRaca” vad if

; s gets the messages 1ot all
- views in the corresponding render process: It handles several tvpes of
messages diréctly, and for the rest forwards to the appropriate
CRema Vi el on | corresponding to the source Ronsir Vi that sent the
" message.
». The message afrives at OnMs BgayzRecsivad in
| iroas/brtwssr oo -, Many messages are handled
o here but ours is not because it's a message sent from the keriderswizest and ©
. handled by the Zendsriidas koot
All unhandled messages in Rondoryicw Tost aré adtdmatically forwardéd to
. ihe kenderwidgerkost, inciuding our sei-cursor message.
‘s The message map in & = i Hoet
receives the message in k ! : DnbsEg el
. thé appropriate Ul function to set the ‘mouse -cursor.

_aosl.

. -finally
- and calls

Life of a "mouse click"” message

Sending & mouse click is a typical exampie of a message goifg from thie bréwser ©
the renderer.

s The Windows message is réceived on the Ul thraad of the browser by -
2o el dga T Hanh FeEmT 1nehye- T which then calls

o borvardousskvent ' zlernd - in the same class.

» The forwarder function packages the input event into a crogs-platform
wezMousesvers and ends up send it to the Rendarwigesdont itis -~

reates ah IPE message

(Rt e e Lt 191 ﬂ- e
Zinput o veEnt 6L ana

© calls F\em i : :
» This just forwards to the ownirg Rr
. in turn gives the message tothe 11 s
Internally, the —po: will proxy the message to the /O thread
of the browser and wrlte it to the named pipe to the corresponding renderer.

o] function, which

miahy ather tybies of me 31
navigatiorial ones. These follow a swmlar path from the Wr\t_ oI
FORErtori el o s

Thern the renderer takes control:

» TFO::O-a-he on the main thread of the renderer reads this mgssage sent by
the brows d Lo . - proxies to the renderer thread.
w enmery TR g gets the message. Many types

s Biwas Lo alisly smmmo e i ek 3 Eadl
SICS S CHCR MS33&age i3 NoT, it 1an

essages; to

through 1W|th all other unhan
T vivec which in turn forwards it

S

to Lerd] -
* The input event is glven to
is converted toa \NebKlt P aL Lz

Handlelnoutkvent wheré it
class and given to the

Attachments {3)

Eolas v. Adobe, et al. ' KS_GOOGLE_00008125
6:08-cv-446 (LED)

Refidering in the roiwset ai --of Jul 21, 2008 9:27 PM by Brett Wilson {version 1)
------ - Ak Doinias :

------ . ‘Renderirig in'tha renderer.ai <.on-Jul 21, 2008 9:27 PM by Breit Wilsan {version 1) = - ’ T e
P a0k [owndomt :

layers.ai - on Mar 22, 2008 2:22 PM by Breti Wilson (version 1)
27 3t

(pepn | Powesd By Gomile Sites

Eolas v. Adobe, etal. KS_GOOGLE_00008126
6:08-cv-446 (LED)

