

Exhibit 19

Eolas Technologies Incorporated v. Adobe Systems Incorporated et al Doc. 393 Att. 20

Dockets.Justia.com

http://dockets.justia.com/docket/texas/txedce/6:2009cv00446/118976/
http://docs.justia.com/cases/federal/district-courts/texas/txedce/6:2009cv00446/118976/393/20.html
http://dockets.justia.com/

The Chromium Projects Search this'Sitp. :

HIH1'If.'

ChromiuM

CrlrOmillnl OS

Ouick links

RSPOIi bl!Gl~

DisCouss

Other sites

ChtomiuFl Bklq

G(lI)01~, Ghronl'~

[Yip.n:'<inn:.:'

\300£110 Ghrom0 Ff[imC

For Developers=- Design Documents>

How Chromium Displays Web Pages

This document describes how web pages are displayed in Chromium from the bottom
up. Be .::iure you have read the mu!ti:.E~Zi&~~j1l5.;ji(g.du@. design dOGument. You wiii
especially want to understand the block diagram of major components. You may also
be interested in m\llli:J2tiiS;§§".i"§.Q!L\!JL-';il;~'i.ill!.HJ. for how pages are fetched from the
network

Conceptual application layers

Each box represents a conceptual application layer. It should generally be possible to
build :l different brO\"J5er by picking :lny bj'er and repbcing the byers 3.beve it.
Therefore, no layer should have knowledge of or dependencies on any higher-level
layers

WebKit: R"endering engine shared beween Safari, Chromium, and all other
WebKit~based browsers. The Port is a part of WebKil that integrates with
platform dependent system services such as resource loading and graphics.
Glue: Converts WebKit types to Chromium types. This is our "WebKit
embedding layer." It is Ihe basis of two browsers, Chromium, and test_shell
(whiCh allows us to test VVebKit).
Renderer J Render host: This is Chronium's "multi-process embedding layer."
It proxies notifications and commands across the process boundary. You could
imagine other multi-process browsers using this layer, and it should have
dependencies on other browser sMvices
Tab contents: Chrome-specific layer that represents the contents of a tab. It
binds with application services such as the history system and the password
manager. It should not, however, assume it's embedded inside a Chromium
browser window (it's used by some other Chromium components like HTML
dialogs).

• Browser: Repres'ents the browser window, it embeds multiple TabContenlses.

WebKit

We use the }{\LQJ!kJi open-source prOject to layout web pages. This code is pulled
from Apple and stored In the I tlj~Id urtv/("JE'bK:'.. t directory. WebKit consists
primarily of "WebCore" which represents the core layout functionality, and
"JavaScriptCcre" wh1ch runs JavaScript. \'\le only run JavaScriptCcre fer testing
purposes, normally we replace it with our high performance VB JavaScript engine. We
do not actually use the layer that Apple calls "WebKit," which is the embedding API
between WebCore and OS X applications such as Safari. We normally refer to the
code from Apple generically as 'Web Kit" for convenience.

The WebKit port

At the lowest level we have our Web Kit "port." This is our implementation of required
piatform-specific functionaiity that interfaces with the piatform-independent 'iwbeore
code. These files are located in the WebKit tree. typically in ,-,hl r,'TI" 1Jrl directories or
as Chromium-suffixed files. Much of our port is not actually OS-specific: you could
think of it as the "Chromium port" of WebCore. Some parts, like font rendering, must
be handled differently for each platform.

Netvvork traffic is handled by our m!Jj!i:r!l2~£<i:L[!,'~':illlJ.r2.') !I"?.i:L0i!~£1. system rather
than being handed off to the as directly from the render process.
Graphics uses the Skia graphics library developed for Android. This is a cr08S­
piatform graphics iibrary and ha'ndies aii images and graphiCS pnmltlVes except

Eolas v. Adobe, et al.
6:09-cv-446 (LED)

KS _ GOOG LE_ 00008122

6884
Highlight

6884
Highlight

6884
Highlight

for'text. Skia is located in The main entry point for
gf3phic~ opcmtions i~
/'i,,=,L'c __ l /1-.0;-" L ~/ pldl_l '~LlIJ 'oJ~ ~J:-'-li'_'::;/ '::;Ld[~_Li '_'::;C\uL '='.'_ SLid. '':l:-'fJ. It
uses many other files in the same directory as well as from,' l ,~~; / ,; 1

The WebKit glue

The Chromium application uses diFferent types, coding s1yles, and code layout than the
third-part-,.' \,"JebKit code. The VVebKit "g!ue" provides a more convenient embedding
API for WebKit using Google coding conventions and types {for example, we use
std::string instead of ~';,e' r-(': : ~,I_I-- j "'J and ',":.UFT, instead of -<UFT,). The glue code
is, located in 1'-""1',-,' -/q11]"':. The glue objects are typically named similar to the

WebKit objects, but with "Web" atthe beginning. For example, he:'=<->:'Le:: t'E:ne
becomes 1',J,'.' .'F L'c'JL0.

The WebKit "glue" layer insulates the fest of the Chromium code base from Webeore
data types to help minimize the impact of Webeore changes on the Chromium code
b<:t:>e. A:> ~u(.;h, V-kbCurf:! u<:ti<:l. iyfJl;;!:> <J.re rrf:!ver U~f:!d uirf:!diy by Ghrurrriurrr. APb <:Irf:!
added to the VVebKit "glue' for the benefit of Chromium when it needs to poke at some
Webeore object.

The "test shell" application is a bare-bones web browser for testing ourWebKit port
and glue code. It uses the same glue interfa'ce for communicating with WebKit as
Chromium does. It provides a simpler way for developers to test new code without
having many complicated browser features, threads, and processes. This application is
also used to run the automated WebKit tests.

The render process

Chromium's render process embeds our WebKit port using the glue interface. 11 does
not contain very much code: its job is primariiy to be the renderer side of the J.f:\~
ChO'lnhE:!! to thE:! browser

The most important class in the renderer is the _':'2nj_,=,l:\ii'2~';, located in
f,~LUjIl'='/ L'='LU'='L";L/L'=' __ '-'o_";L_"J."",,.,---'~. This object represents a web page. It
ha'ndles all navigation-related commands to and from the browser process. It derives
from]{-?nder','dd.;,et which provides painting and input event handling. The
Fe: I',j(; r \,Tj ':"/ communicates with the browser process via the global (per render
process) ~""-ldpr-='n',r:",,,.r; object.

FAQ: VlJhat's the- difference bet'. een Render';,n/idget and RenderVie ?
Rprd"'I~Fli ~,,-"'T maps to one ,':"1:-<,'o"p: :,-'j' deWT_ object by implementing the abstract
inteliace in the glue layer called V'JE<,~'i.i8.~-et Le=--2~-Zlt e .. This is basically a Window
on the screen that receives input events and that we paint into_ A]z-?nderVie"'i

inherits from R(~',il(' ~':' ,Jq(~1 and is the contents of a tab or popup VVindow. It
handles navigational commands in addition to the painting and input events of the
widget. There is only one case where a L",::d'='':'l,':':'J"j'''1_ exists without a
R -Lde 1:'_" ~ ~"', and that's for select bexes en the web page. These are the bexes with
the down arrows that pop up a list of options. The select boxes must be rendered
using a native window so that they can app-ear above everything else, and pop out of
the frame if necessary. These windows need to paint and receive input, but there isn't
a separate 'web page" {Prn --j01~',,"i "':""/) for them.

Threads in the ren'derer

Each ren'derer has two threads (see the mlllti~process architecture page for a diagram,
or t~J0;il{'ji1f:;jn __ .9hI0fTlil)m for how to program with them). The render thread is where
the main objects s!.!ch as the ;;_e~l,jer'/-'--e'i.' and a!! WebKit code n.!!'!. \.1\.Jl'len it
communicaies to the browser, messages are first sent to the main thread, which in
turn dispatches the message to the browser process. Among other things, this allows
us to send messages synchronously from the renderer to the browser. This happens
for a small set of operations where a result from the browser is required to continue.
An example is getting the cookies for a page when requested by JavaScript. The
renderer thread will block, and the main thread will queue all messages that are
received until the correct response is found, Any messages rec-eived in the meantime
are subsequently posted to the renderer thread for normal processing.

Eolas v. Adobe, et al.
6:09-cv-446 (LED)

KS _ GOOG LE_ 00008123

The browser process

Low-ievei browser process objects

All IPC communication with the render processes is done on the 110 thread of the
browser. This thread also handles all L1!,~O(~ •. £'Q.D1\I!.'lDlsc':cll!2Jl which keeps it from
inteifering with the user interface.

When a F.'-c::JC':'?L")c0""I:u:o;L is inftialized on the main thread (where the user
interface runs), it creates the new renderer process and a (_·h:ml-j~lFr')x::,.- IPC object
with a named pipe to the renderer. This Object runs on the 1/0 thread of the browser,
listening to the named pipe to the renderer, and automatically forwards all messages
back to trle _:.,=,jd,=,_d-.LU-~'=':=;;=; on trle UI thread. A F.";'='-_·UL,",'",l<";'='Ocl(oJt,d:l~L,=.L vvill be
installed in this channel which will fitter out certain messages that can be handled
dire(;tly on the 1/0 thread su(;h as neh'VOrk requests. This filtering happens in
K'?:Jc··.Tce:·,1e.:J.JZlCT'??:'..:" -::'?~: : :)rJ<'? ":'":' Cl,:je?e·:''?i Yed.

The _"'-'?11·::'errTO':'2.3.:J_io":'t on the UI thread is responsible for dispatching all view­
specific messages to the appropriate J(sc:le;cVisc\'_-{03t (it handles a limited number
of non-view-specific messages itself). This dispatching happens in
hs Lderl'r-:-':''='3':L-J.:, s:: :: CnMss3a'Jsl(s':,ei '.'02·: ..

High-level browser process objects

View-specific messages come into rl.sLderVisc'iH·)::,t: : ::;:·l~':e::,::,ageFe.>s.'.. '.'ed. Most
of the messages are handled here, and the rest ~et fOlVllarded to the
F";LrJ",.L'iiT.L':.":i",L:iu,=,_ base class. These two objects map to the }""_l.J",l.V:"""i'and
the -:;(~11C 1",";Ji (j'y:l. in the renderer (see "The Render Process" above for what these
mean). On MicrosoftVVindows, we have a Pc-:nd"d'"i ~:,·c-:t:..:ro.~-.HI"Jln associated with

HWND. 'Other systems will have a similar class for native input and painting.

AbOVe the P,2Lde::-\':"e"i:r',jid,>=< is the l':)ebr=O:l ::ec.J object, and most of the
massag-es actually end up as fUnction calls on that object. A l'l<=,GC'Ull_c;L is

represents the contents of a tab that shows vveb data. It derives from the generic
l'abC\:':·lt en:: ,3 class (there are a number of other specializations of 'l'=.bC.~n-:: SL-:: '3 for
history and downloads, for example). It is the central switching point for most
navigation and toplevel browser UI updating.

FAQ: Why are WebContents and RenderVieWHost separate? TheSe two objects
provide ,different layers of functionality, You could think of :;.e~ld",::V:"E':I::·j.),:-:: as
Chromium's "multi-process embedding layer." F."'Ld",..:.V:"""!.jj,-,,=,1_ objects could be (but
are not currently) used in other parts of the application to render content. For example,
you could imagine a dialog box with a web view in it. This could use
f:c:,ri",\ri "":".'110."iT to manage drawing and communication with the render"process,
but it would not have a "tab" or the norma! navigation commands. The
F,·c.;UJe-L',/.i>'o'lk'iSL forwards many messagas to the ;"j.,--,_"::\xlLe-lll_O via its
R'?Ld",r"';iewHc'.Jt[i2::"e~·2,t'? abstract interface. The W'?:.~·(:O~lt",n-::0 handles th'e
navigational state and anything related to the UI of the web browser. Our hypothetical
dialog box wouldn't need any of this functionality and would only implement the parts of
the .zen:.sl'h>2·,';1-_2;:,t~el02Jc.te interface that it cares about.

Illustrative examples

Additional examples covering navigation and startup are in .Q'!'tii.oXti';[{,'.\JX),flji]!l

Eolas v. Adobe, et al.
6:09-cv-446 (LED)

KS _ GOOG LE_ 00008124

Life of a "set cursor" message

Setting the cursor is an example of a typical message that is sent 'from the renderer to
the browser. In the renderer, here is what happens.

Set cursor me'ssages are generated by WebKit internally, typically in response
to an input event. The'se1 cursor message will start out in
_,;en -::.,=,d"Jid'Js:: : : :;>2t::.:Ul:: 3,X::: in ,-='h::::,:rne / r02njerer'/ .t:'='L'de.:::: ,,;:'.. jq02t. -:..': ..
it vviii (;aii r{.~L'j,=,.L ~':l':.",=, L;; S~l.<j to di:spat(;h the me:S'5age. ihi:s method i:s

also used by ;.e~'v:le.::::'/ie'iIto send messages to the browser. It will call
_-(en:ier'l'~]re,:d:: Sen:i.

This will call the ll·':":: : ::::yn'-=-i":h=~'1:'1021 which will internally proxy the message
to the main 1hread of the renderer' and post it to the named pipe for sending to
the browser.

Then the browser takes con'1ro!:

Tne _FC': : ::':]·_=.:'_:·1>21_.'1:-:':;:Y In me lZe~~der _'.t:c,ce::'::']-_-:'3t receives all message
on the I/O thread of the browser. It first sends them through the
_-;es:::lTceI'-':e,:,:J=-,~'et'il ::2r that dispatches network requests and related
messages directly on the liD thread. Since our message is not filtered out, it
continues on to the UI thread of the browser (the _1:-"_'; : :.']' ,:,:-_nel~r~ :-:y does
this internally).
-::;:""n ~,"rProc:",.".,'-k)",t-_: ~ ,-;-,V"''''''''lq""Rpc:p- """d in
(_'~LL ~_Ll'=''- l~.L'~~, :_''=' L';' _ '=' IL:'='.L :: _,~ ~- '=',Y' lJ.~,~ ,_ .. ~." gets the messages for all
views in the corresponding tender process. It handles several types of
messages directly, and for the rest forwards to the appropriate
~(~I' 'ii (~'<"r_):-: corresponding to the source Pe:ll : <'; that sent the
message.
The message arrives at ::::e:'lJ_,=,.rVlE",,;E-:s-:: :'-)n:',l'='.3SCi92Rec::'ei'i>2d in
,:.;':lL--=:n'--=/LLc,,':O;'--=L/":'CI1":"--=L '/1:.;.,; iosL.':;':;' Many messages are handled
here, but ours is not because iI's a message sent from the 1<'?nder','Ji,-::.~-et and
handled by the _Ze~'lden:J:'..d(Je-:L,st.
All unhandled messages in Rc:nci",Vi C:',' lO,,,;t are automatically forwarded to
the h2~1,je.::,':=--dCj"'tt-_::',Jt, induding our set cursor message.
The message map in ;:-"hi:~·:TL,="/:~·::8"·I:Je.:::-/.:::-ende.:::- '<"idc:ret]'_'~·,:jt .,:,,~ finally
receives the message in F, H: r'-"J' ,j'J':I_l-_HI ; ;Olll,,'b'J ,,1_,: r .~;() and calls
the appropriate U I function to set the mouse cursor,

Life of a "mouse click" message

Sending a mouse dick is a typicai exampie of a message going from the browser to
the renderer.

The VVindows message is received on the Ullhread of the browser by
::',,,n ~~, rt-Ji drr--:;-Hc') "t-_I-,-':l';n: : C .. n'·l_-_ -l..,,,F,vc· t which then calls
t ort,;=.rdl"']011:=,e-t ','02nt '_ J]Zen':>2::::sr in the same class
The forwarder function packages the input event into a cross-platform
he:::.~"l:'LJe':;'ieL:: and ends up send it to the ken,ierV'Ji'Je::,io::Jt it is
associated with.
~J--'n ~-;r'i"Ji rl'j--:-Ho "t-_: : "'"r'<N~-~::--lr,1Jt F'i--:-lt- creates an IPC message

calls h'='!Jr.;,=,.:.,>:j"ol'=' U:'_ is L ; : S'='L<J.
This just forwards to the owning F(' "je' -'1",),:(~;:--lh~;1 ;;:; I'd function, which
in turn gives the message to the 1 h,': : r_:~~a:'lT!~::'_ ro::-::y.

Internally, the = PC: : '-::]-,=_L-_e1 ='L-:':Y will proxy the message to the I/O thread
of the browser and write it 10 the named pipe to the corresponding renderer.

Note th;:l_t many other types of messages B_re created in the 'i'Je_~';-:--:-L::eT!t~, especially
navigational ones. These follow a similar path from the lHcL::--'L_C:1L;; to the
F(:r'-,j(;I'" i ':'-il]() ,'-{I .

Then 1he renderer takes control:

TFC .. , d"ll" on the main thread afthe renderer reads the message sent by
the browser, and 1 Fe: : '_:~'lanL&':'l'r,~:,:·' proxies to the renderer thread.
':en J'='1: 'ile ,;: : 8:'_Ee::,::,a;ef.:>2;-=-s=--'.'e,j gets the message. Many types
messages are handled heie diiectly. Since the click message is not, it falls
through (with all other unhandled messages) to
:;:(~I' r-W i (j'J :: ',"}llH '- '-;d']e:P' '~i '_,(,(: which in turn forwards it
to R:='Ld-o-2:'i:i:ic:ret,: : ,_i:-__ -1a:'l':L:=,_:'_F'l--:: 1: v:=,~-_t,

The input event'is given to I:JE,:-:,'i:i -::_;!,=,un::=.,l : : _-1an:_::'EeL'l::=-U -:t ve:'lt where it
is converted to a WebKit F_dLl!J..:.:[\I''-I0"liS'~E','r~:::L class and given to the
he:::. ,,',:c,re : : 'i:::',j,?-E't class inside WebKil.

Attachments (3)

Eolas v. Adobe, et al.
6:09-cv-446 (LED)

KS _ GOOG LE_ 00008125

Rendering in the bmwser.ai - oli Jul 21,20089:27 PM by Brett Wilson (version 1)
bJ"k D9.:iiDl93Ji

Rendering in the renderer.ai - on Ju121, 20089:27 PM by Brett Wilson (version 1)
~l(lk .QYNr"lla.l:J);!.

layers.ai - on Mar 22, 2009 2:22 PM by Brett Wilson (version 1)
:,:~7k PD.'HIlkv1j

Eolas v. Adobe, et al.
6:09-cv-446 (LED)

KS _ GOOG LE_ 00008126

