Eolas Technologies Incorporated v. Adobe Systems Incorporated et al Doc. 479 Att. 2

Ex. B: Defendants' Proposed Constructions and Supporting Evidence

Purusant to P.R. 4-3(b), provided below is the Defendants' proposed construction of each
disputed claim term, phrase, or clause, together with an identification of all references from the
specification or prosecution history that support that construction, and an identification of any
extrinsic evidence known to the Defendants on which they intend to rely either to support their
proposed construction of the claim or to oppose Eolas's proposed construction of the claim.
Defendants reserve the right to rely upon any intrinsic or extrinsic evidence identified by Eolas, and
any evidence obtained, or that may be obtained, through claim construction discovery.

Also provided below are the Defendants' proposed corresponding structure(s)/act(s) for those
claim elements that the Defendants contend are governed by § 112 { 6.

The Defendants contend that the proposed construction of a particular term or phrase
appearing below should apply to all other instances of that term or phrase within the claims of the
patents-in-suit that are not subject to § 112 § 6. For each term or phrase which Defendants contend
is governed by 8 112 | 6, to the extent it is agreed or decided that § 112 { 6 does not apply to one or
more instances of that term, phrase, or clause, then the Defendants contend that if the term, phrase,
or clause appears below, it should still be construed by the Court, without reference to § 112 { 6.
Finally, the fact that the Defendants have proposed corresponding structure(s), act(s), or material(s)
under 8§ 112 { 6 should not be understood to mean that the Defendants agree that the requirements set
forth in 35 U.S.C. 8§ 112 11 or § 112 1 2 have been met.

To the extent Plaintiff is asserting infringement of any claim of the the '906 patent before
issuance of the C2 reexamination certificate on February 3, 2009, then Defendants contend that the
Court should compare the scope of those claims in the C2 reexamination certificate to the scope of
the claims before reexamination to determine the extent to which Eolas may pursue its infringement
claims in light of 35 U.S.C. 8§ 252, 307 (e.g., "intervening rights"). Defendants contend that the
scope of claims 1-10 was changed by the Patent Office to overcome the prior art considered during
the first reexamination that ended on June 6, 2006, and the scope of at least claims 1, 6, and 9-14
was changed during the second reexamination that ended on February 3, 2009, as a result of
amendments to the claims and the addition of claims 11-14.

In certain instances, Defendants have added emphasis in bold italics, highlighting in yellow,
and/or annotations in red for clarity. None of the bold-face, highlights, or annotations should be
construed to limit the portions of citations that Defendants may rely upon.

In certain instances, Defendants have cited one or more passages from a prosecution history
associated with one of the patents-in-suit, where the same one or more passages appears in identical
or like fashion at other locations within the same prosecution history or within other prosecution
histories associated with the patents-in-suit. Defendants reserve the right to rely on those other
identical or like passages. Defendants' use of a bates range should not be construed as limiting
where the same one or more passages appears in identical or like fashion within other bates ranges.

B-1

Dockets.Justia.com

http://dockets.justia.com/docket/texas/txedce/6:2009cv00446/118976/
http://docs.justia.com/cases/federal/district-courts/texas/txedce/6:2009cv00446/118976/479/2.html
http://dockets.justia.com/

TABLE OF CONTENTS

A

C.

D.

G.

"automatically invoke" (in various contexts)

1. Defendants' intrinsic evidence
2. Defendants' extrinsic evidence
"workstation"

1. Defendants' intrinsic evidence
2. Defendants' extrinsic evidence

"network server"

1.
2.

"executable application™

Defendants' intrinsic evidence

Defendants' extrinsic evidence

"hypermedia document" / "distributed hypermedia document™ / "file

1. Defendants' intrinsic evidence
2. Defendants' extrinsic evidence
object
1. Defendants' intrinsic evidence
2. Defendants' extrinsic evidence
"type information™ccccceieninnnnn
1. Defendants' intrinsic evidence
" o,
1. Defendants' intrinsic Evidence
2. Defendants' extrinsic evidence
containing information™
1. Defendants' intrinsic evidence

2.

"text format" and "embed text format"

1.

Defendants' extrinsic evidence

Defendants' intrinsic evidence

B-2

K.

M.

N.

O.

"first location” (in VArious CONEEXES)evveeriirieniieiieeie et 159
1. Defendants' intrinSiC VIABNCEooviiiiiiiiiiesiee e 159
2. Defendants' eXtrinSiC @VIABNCE.ccvcviiiiiieiesiese e 166
"distributed apPlICALIONccuiiieiee s 172
1. Defendants' intrinSiC VIABNCEooviiiiiiiiiie e 172
2. Defendants' eXtrinSiC @VIABNCE.ccuiviiiriieiesie e 200
"computer program product . . ." / "computer readable media. . ."........ccoiiiiinnn 202
1. Defendants' intrinSiC VIABNCEooviiiiiiiiiie e 202
2. Defendants' eXtrinSiC @VIABNCE.ccvcviiiriieierie e 205
PArS[E/ES/EUNING] .. .ot 208
1. Defendants' intrinSiC VIABNCEocviiiiiiiieiesiee e 208
2. Defendants' exXtrinSiC @VIABNCE.ccvcviiiiiieieriere e 212
"identify an embed text format™ (in various CONEXLS)ccevuereerirrierenneeieneeneen, 213
1. Defendants' intrinSiC VIABNCEoovviiiiiiiiiesiee e 213
2. Defendants' eXtrinSiC @VIABNCE.cueviiieiieeseere e 220
"specifies the location of at least a portion of [an / said] object”cccovereneen. 221
1. Defendants' intrinSiC VIABNCEocviiiiiiiiiieseee e 221
2. Defendants' eXtrinSiC @VIABNCE.ccuiviiiriieierie e 221
Defendants' proposed corresponding structure(s)/act(s) for 8§ 112, 16cccue..... 223

B-3

A. ""automatically invoke' (in various contexts)

Claim Term(s)

Defendants' Proposed Construction

Eolas's Proposed Construction

automatically
[invoking /
invoke] [the /
said] executable
application

executable
application is
automatically
invoked by the
browser

in response to the browser parsing an
embed text format, the executable
application is launched to permit a
user to interact with the object
immediately, without any intervening
activation of the object by the user

automatically calling or activating the
executable application

executable application is automatically
called or activated by the browser

1.

Defendants' intrinsic evidence

a. Claims

In the following chart, the term(s) for construction appear in all the claims marked with an
"x." The letter "m" indicates a method claim, and "{6" indicates a claim that the Defendants contend
includes limitations subject to § 112, | 6.

'906 patent

‘085 patent

m|m|m |76 |76 |96
1 (4 (5 |6 |9 |10

=3

m @ m m m
6 |96 |76 (16 |6 | m |76 | m
16 |20 |24 |28 |32 | 36 |40 | 44

automatically [invoking /

invoke] [the / said]

executable application

X X X X X X X

executable application is
automatically invoked by the

browser

'906-1, -6: wherein said embed text format is parsed by said browser to automatically
invoke said executable application to execute on said client workstation in order to display said
object and enable an end-user to directly interact with said object

'906-4, -5, -9, -10: wherein said embed text format is parsed by said browser to
automatically invoke said executable application to execute on said client workstation in order to
display said object and enable interactive processing of said object

'985-1: executing the browser application on the client workstation, with the browser
application: . . . automatically invoking the executable application, in response to the identifying of
the embed text format, to execute on the client workstation in order to display the object and enable
an end-user to directly interact with the object

'985-16: cause the client workstation to utilize the browser to: . . . automatically invoke the
executable application, in response to the identifying of the embed text format, to execute on the

B-4

client workstation in order to display the object and enable an end-user to directly interact with the
object

'985-20: execute, at said client workstation, a browser application, with the browser
application: . . . automatically invoking the executable application, in response to the identifying of
the embed text format, to execute on the client workstation in order to display the object and enable
an end-user to directly interact with the object

'985-24: enabling an end-user to directly interact with an object by utilizing said executable
application to interactively process said object while the object is being displayed . . . wherein the
executable application is automatically invoked by the browser, in response to the identifying of the
embed text format

'985-28: One or more computer readable media encoded with software comprising an
executable application . . . operable to: cause the client workstation to display an object and enable
an end-user to directly interact with said object while the object is being displayed . . . wherein the
executable application is automatically invoked by the browser, in response to the identifying of the
embed text format

'985-32: communicating via a network server with at least one client workstation over said
computer network environment in order to cause said client workstation to: . . . utilize an executable
application external to said file to enable an end-user to directly interact with an object while the
object is being displayed . . . wherein the executable application is automatically invoked by the
browser, in response to the identifying of the embed text format

'985-36: executing the browser application on the client workstation, with the browser
application: . . . automatically invoking the executable application, in response to the identifying of
the embed text format, in order to enable an end-user to directly interact with the object, while the
object is being displayed

'985-40: execute, at said client workstation, a browser application, with the browser
application: . . . automatically invoking the executable application, in response to the identifying of
the embed text format, in order to enable an end-user to directly interact with the object while the
object is being displayed

'985-44: wherein the executable application is automatically invoked by the browser, in
response to the identifying of the embed text format, to enable an end-user to directly interact with
the object while the object is being displayed

b. Specification (all cites to '906 patent)

Title: Distributed hypermedia method [and system] for automatically invoking external
application providing interaction and display of embedded objects within a hypermedia document

3:13-:16 (Background of the Invention): [In the prior art] Many viewers exist that handle
various file formats such as ".TIF," ".GIF," formats. When a browser program invokes a viewer
program, the viewer is launched as a separate process.

6:35-:39 (Background of the Invention): [In the prior art] Users are limited to traditional
hypertext and hypermedia forms of selecting linked data objects for retrieval and launching viewers
or other forms of external software to have the data objects presented in a comprehensible way.

7:1-:4 (Summary of the Invention): Interprocess communication between the hypermedia

browser and the embedded application program is ongoing after the program object has been
launched.

B-5

9:28-:31 (Detailed Description of a Preferred Embodiment): In FIG. 5, hypermedia
document 212 includes an embedded program link at 214. Embedded program link 214 identifies
application client 212 [sic: 210] as an application to invoke.

9:41-:45 (Detailed Description of a Preferred Embodiment): When browser client 208
encounters embedded program link 214, it invokes application client 210 (optionally, with
parameters or other information) and application client 210 executes instructions to perform
processing in accordance with the present invention.

12:50-:53 (Detailed Description of a Preferred Embodiment): Next, a discussion of the
software processes that perform parsing of a hypermedia document and launching of an application
program is provided in connection with Table Il and FIGS. 7A, 7B, 8A and 8B.

12:66-13:5 (Detailed Description of a Preferred Embodiment): As shown in Table Il, the
EMBED tag includes TYPE, HREF, WIDTH and HEIGHT elements. The TYPE element is a
Multipurpose Internet Mail Extensions (MIME) type. Examples of values for the TYPE element are
"application/x-vis" or "video/mpeg". The type "application /x-vis" indicates that an application
named "X-vis" is to be used to handle the object at the URL specified by the HREF.

13:19-:31 (Detailed Description of a Preferred Embodiment): TYPE values such as
"video/mpeg", "image/gif", "video/x-sgi-movie", etc. describe the type of data that HREF specifies.
This is useful where an external application program, such as a video player, needs to know what
format the data is in, or where the browser client needs to determine which application to launch
based on the data format. Thus, the TYPE value can specify either an application program or a data
type.

B-6

14:64—:67 (Detailed Description of a Preferred Embodiment): FIG. 8A is a flowchart for
routine HTMLwidget. HTMLwidget creates display data structures and launches an external
application program to handle the data object specified by the URL in the EMBED tag.

15:9-:12 & fig. 8A (Detailed Description of a Preferred Embodiment): At step 286 a check
is made as to whether the type attribute of the object, i.e., the value for the TYPE element of the
EMBED tag, is an application. If so, step 290 is executed to launch a predetermined application.

15:49-:52 (Detailed Description of a Preferred Embodiment): FIG. 8B is a flowchart for
routine HTML. Routine HTML takes care of "shutting down" the objects, data areas, etc. that were
set up to launch the external application and display the data object.

C. Prosecution history

i. '906 prosecution history (08/324,443)

Amendment B, at 2, 4 (June 2, 1997) ([PH_001_0000784029] — [PH_001_0000784090]):
To overcome the Mosaic prior art, the applicant amended the independent claims to require
"automatically invoke said executable application.”

Amendment B, at 11 (June 2, 1997) ([PH_001_0000784029] — [PH_001_0000784090]):

B-7

B. Mosaic does not diaclose the recited embed text format that
is parsed by the browser to initiate processing to automatically
invoke an executable application external to the hypermedia
document .

Ae degcribed above, in Mosaic the URL is an address to
an cbhject. A URL anchor in Mosaic is not an embed text format
that is parsed by the browser teo initiate invocation of an
executable application external to the document. Rather, when
the anchor is activated, by the user interactively selecting the
anchor, the browser retrieves the object and, if the cbject is
another hypermedia document, replaces the first document with the
second document. If the cobject has a file name associated with a
helper application the application is launched and the object is
viewed and/or edited in a separate window controlled by the
helper application.

Accordingly, the external application is not
automatically invoked as a result of the browser parsing the
hypermedia document text, as reguired by the claim, but rather it
is invoked by an interactive command given by the user, namesly
interactively selecting the URL anchor.

Amendment B, at 12 (June 2, 1997) ([PH_001_0000784029] — [PH_001_0000784090]):

As set forth in the attached Dovle
declaration, the claimed inwvention "lifted the glass" of the
browser display to allow interactive control of document elements
while being displayed in the browser controlled window. The
Applicants’ claimed invention allowed these selements to become
"active” or "live” without requiring external programs to be
first launched by the user's interactive commands.

Declaration of Michael D. Doyle, {1 4-5 (Oct. 28, 1997) (accompanying Applicants'
Response (Dec. 23, 1997)) ([PH_001_0000784129] — [PH_001_0000784130]):

In addition. when tha browser
parees an <EMBED> tag in the document, the browser autematically
launches the external applicaction specifying the location of the
vigual ﬁbjlsh to render and identify the shared image buffer.
The format and cperatien of an EMBED tag for 3D image data ia
dascribed at paragraph 3.1.

B-8

5, As stated in ATTACHMENT B, starting at the bottom
of page 2, interface and control softwvare had been develeoped that
allows the embedding of a visuslization applicarien within a
Mosaic dosumeant. Ap 18 apparent from the photographs#, the object
is displayed and processed within the browaer-contrelled window.
The visualizacion application is external to the hypermedia
doocument displayed by the browser. Automatic lsunching of the
axternal application when an HTML documant is opensd by the
brewser is depicted in the wvideo.

Applicants' Response, at 2 (Dec. 23, 1997) ([PH_001_0000784131] -
[PH_001_0000784162]) (emphasis in original):

When an embed text format is parsed by the browser, the
executable application is automatically inwveked as a result of
the parsing to execute on the client workstation.

Applicants' Response, at 3 (Dec. 23, 1997) ([PH_001_0000784131] —
[PH_001_0000784162]):

Turning to the first part of the argument, there is no
disclosure or suggestion in Mosaic or Koppolu of automatically
invoking an external application when an embed text format is
parsed. Each of those references require user input,
specifically clicking with a mouse pointer, to activate external
applications to allow display and interaction with an external
obiject.

Applicants' Response, at 7 (Dec. 23, 1997) ([PH_001_0000784131] -
[PH_001_0000784162]):

Mosaic launches helper applications in response to a
ugar’'s interactive command, in a separate window to view certain
types of file types. As described in the specification, the
mechaniam for specifying and locating a linked object is an HTML
anchor "element" that includes an object address in the format of
Uniform Resource Locator (URL). {Application at pg. 3, lins 30].

Many viewers exist that handle various file formats
such as ".TIF," " GIF," etc. When a user commands the browser

program to invoke a viewer program, typically by clicking on an

anchor with a mouse, the viewer is launched as a separate
process.,

Applicants' Response, at 8 (Dec. 23, 1997) ([PH_001_0000784131] -
[PH_001_0000784162]):

Koppolu's OLE system provides a method for interacting
with a contained object within the window environment of a
container application of a container document. When a user
interactively selects a bitmapped image of the contained ocbject,
the method integrates a plurality of the server resources with
the displayed container window environment. When the user then
interactively activates the previously-selected cbject image, OLE
invokes a server application to process the original data
referenced by the contained object image. Since OLE was designed
for integration of very large programs, a facility is prowvided
whereby the server application can conserve space on the computer
display by integrating the server applicaticn’s menu and GUI

system with that of the container applicaticn.

Applicants' Response, at 10-11 (Dec. 23, 1997) ([PH_001_0000784131] -
[PH_001_0000784162]):

gommands after the time of document rendering in order to cause
the econtainer applicatiocn to invoke the server application.

Applicants' Response, at 13 (Dec. 23, 1997) ([PH_001_0000784131] -
[PH_001_0000784162]):

B-10

If the entire server application is implemented as an
in-procesgs DLL, this is called an "in-process server." The above
statement by Brockschmidt shows that the use of the term "object
handler" relates specifically to a limited set of object-related
facilities that can be automatically invoked by the container
application at document rendering time, but which do not include
capabilities for interactively processing object data.
Interactive processing of object data can only be accomplished
through interactive invoking of either an in-process server or a
local server (standalone executable}. In-process servers do
allow editing capabilities for object native data, but these
editing capabilities are invoked only after the containee object
has been interactively activated by the user, as described below.
This is further supported by the teaching of Koppolu that user
interaction with containee objects is provided by OLE only after
interactive activation of the containee object server by the user
(Col. 7, lines 56-66). '

Applicants' Response, at 14 (Dec. 23, 1997) ([PH_001_0000784131] —
[PH_001_0000784162]):

In view of the abowe, it is clear that the Koppolu (OLE)
reference does not disclose or suggest the missing features. In
CLE, when a compound document is opened, static pictures of
includsd objects are rendered in presentation format. Inveking
of an external application requires a user-activated selection of
the object. The cbject handlers prowvide no interactive control

of a displayed object.

Applicants' Response, at 22 (Dec. 23, 1997) ([PH_001_0000784131] —
[PH_001_0000784162]):

Since OLE
was designed to integrate a group of already-popular large
programs, such as Microsoft Excel and Microsoft Word, QLE
provided the advance that allowed these applications to be
interactively invoked to change the GUI environment that
surrounded the compound document so that the user would not hawve
Lo move his or her attention to an external windowing environment
in order to edit the cbject. Since these external applications
were intended to be invoked only for editing purposes, and since
that invocation inevitably resulted in a modification of the
container application’s GUI, it made sense that OLE containee
server applications could mot be automatically inveoked to allow
interactive processing of object data. In fact OLE forced the
uger to make not one but twe interactive commands pricr to server
invocation, thereby reducing the possibility that one of these

large external applications would be inadvertently invoked.

B-11

Applicants' Response, at 24-25 (Dec. 23, 1997) ([PH_001_0000784131] —
[PH_001_0000784162]):

Foppolu alss teaches away from the use of OLE for
networked data distribution. There is no provision, suggestion,
or motivation in Koppolu to provide for auteomatic invocation of a
server application to allow interactive processing of cbject data
when a container document is viewed. Furthermore, there is ne
suggesticon in either Mosaic or Keoppolu of modifying Mosaic so
that an external applicaticn, by analegy to Koppelu the server
application, is automatically invoked at the time of Web document
rendering to display and enable interactive processing of the
object within an embedded window within the Web document.

* * * * *

Additionally, because the claimed embed text formats in
the document cause the browser to autemakbically invoke the
external application, the hypermedia document itself, and by
implication the author of that document, directly control the
extension of the functionality of the browser. As a consegquence
aof the features of the claimed invention, the document, rather
than the browser, becomes the application; that is, the document
together with its embedded program cbjects, exposes all the
functionality that the user needs to interact with and process
the entire content of the compound hypermedia document.

Notice of Allowability, at 2-3 (Mar. 30, 1998) ([PH_001_0000784167] -
[PH_001_0000784172]):

ii. Abandoned application (09/075,359)

Amendment C at 5, 6-7 (Nov. 29, 2001) ([PH_001_0000787823] — [PH_001_0000787832]):

B-12

However, as will be described below, the two actions of real-time updating and
antomatic invoking are completely different.

As et forth above, in Risberg the program itself is configured by a user to establish z
connection to a service. The service, which is external to the program, automatically forwards
updates to the program for display in an active document, Thus, in response to the user selecting the
data, such as [BM stock quotes, the service automaticalty sends updates of the latest quotes.
Accordingly, there is no “invoking” by the Risberg program to cause real-time updates, in fact, the
program passively receives the updates provided by the subscription service and displays the larest
data

In contrast, in the claimed system there is no user configuration of the browser
program to invoke the external program code. The browser program parses a hypermedia docutnent
and automatically invokes the extemal computer code when an embed text format is parsed. The
user of the browser program takes no action in the invoking of the external program code.

* * * * *

In Mosaie, viewer programs may be invoked by the browser in response to user
selection of a link to a file format that cannot be displayed by the browser. There is no teaching in
Mosaic of automatic invoking,

In Risberg, updates to information being displayed are provided automatically from
an external source, e.g., the Dow Jones server. However, the information which is provided in
Tesponse to user selection duning set up of the active object. For example, if a user creates a quote
object he selects a Market Type attribute, such as equity, option, or future, and a Symbol attribute

which selects the specific symbol, i.2,, stock, 1o be used for the quote. The user also creates scripts,

using the scripting language provided by the program, to create macros to perform often used
functions.

ii. First reexam (90/006,831)

Examiner Interview Request, at 3 (Apr. 22, 2004) ([PH_001_0000785311] -
[PH_001_0000785315]):

2. The statement in Raggett [that sophisticated browsers could link to an external editing
application teaches away from the claimed element of automatically invoking an
executable application in order 1o display the object and to enable in-place interaction.

B-13

Interview with Examiner Andrew Caldwell (April 27, 2004) ([PH_001_0000785332]):

"linked to"

. Means hyperlinked
. Therefore the editor is not automatically invoked

Declaration of Edward W. Felten, § 48 (May 7, 2004) (accompanying Applicants' Response
(May 11, 2004)) ([PH_001_0000785437] — [PH_001_0000785464]):

The reference to “linking” to an
“external” program refers to the use of a hyperlink or button that the user
can click to launch a separate program, as is done with helper applications.
(Having the browser automatically invoke an editor wouldn’t make sense
anyway, since only the page’s author would be in a position to edit a copy
of the page that anybody else would see, and it wouldn’t make sense to
invoke an editor automatically when -:-rdmary users had no reason to want
to invoke it.)

Applicant's Response, at 3 (May 11, 2004) ([PH_001_0000785359] —
[PH_001_0000785379]):

A. The Claimed Invention.

The invention, as recited for example in claims 1 and 6, is for use in a system having at
least one client workstation and one network server coupled to a network environment.

The claims recite a browser application, executed on the client workstation, that parses a
hypermedia document to identify text formats in the docuiment and responds to predetermined
text formats to initiate processing specified by the text formats.

The browser displays a portion of a first distributed hypermedia document, received over
the network from the network server, in a browser-controlled window. The hypermedia
document includes an embed text format, located at a first location in the hypermedia document,
that specifies the location of at least a portion of an object external to the hypermedia document.
The object has associated type information utilized by the browser to identify and locate an
executable application external to the hypermedia document.

When an embed text format is parsed by the browser, the executable application is
automatically invoked, as a result of the parsing, to execute on the client workstation.

Applicant's Response, at 12 (Oct. 12, 2004) ([PH_001_0000785803] -
[PH_001_0000785832]):

B-14

Toye states that when an object or file 1s sclected by the user the system will
automatically invoke the application for display in a NoteMail page. Further, Toye tcaches that
the application launching functionality is similar to opening a file using Macintosh Finder. [Toye
at page 40, first full paragraph]. Thus, l'oye teaches that automatic invoking is a result of user
selection, nol parsing as required by claims 1 and 6 of the *906 patent, and that the result of the
uscr's interactive selection is similar to opening a file using Macintosh Finder, where the
application launched processes the file in its own window. [Felten I, at paragraph 36].

Applicant's Response, at 13-14 (Oct. 12, 2004) ([PH_001_0000785803] —
[PH_001_0000785832]):

This combination would not show automatic invocation of the editor program when the
hypermedia document is parsed or enable interactive processing within a portion of the first
hypermedia document being displayed in the browser window, as required by claims 1 and 6 of
the *906 patent. Instead, the external editor application of Toye would be invoked only if the

user took the additional manual action of selecting the static image by clicking on it, causing
interactive processing to be enabled in an external window when the external application was
restarted. [Felten 11, at paragraphs 48-50].

Felten Il Declaration, {1 33-34 (Oct. 6, 2004) (accompanying Applicants' Response (Oct. 12,
2004)) ([PH_001_0000785575] — [PH_001_0000785586]):

33. Tove teaches that NoteMail interacts with an external program by first displaying
a static snapshot of the external content. 1 the user clicks on that static snapshot,
the external editor application is restarted in a separate window.

* * * * *

(Toye at p. 40, col. 2, first full paragraph) It is clear from this discussion that
before the data can be edited, the user must select the displayed data with the
mouse and the application must be restarted. Since the user must take specific
action to select the data before editing is enabled, the editor is not “automatically
invokefd] ... in order to display said object and enable interactive processing” as
required by the *906 claims.

Interview with Examiner St. John Courtenay 111, at 26 (Aug. 18, 2005)
([PH_001_0000785866] — [PH_001_0000785901]):

B-15

Toye: No Automatic Invocation
for Interactive Control

* Although Toye uses the language
“‘automatically invoked,” Toye teaches that this
action occurs only as a consequence of the
user's active selection

* Therefore, Toye does not teach automatic
invocation of an external application to display
an object and enable interactive processing of
that object within a display area created within
a hypermedia document

Notice of Intent to Issue Ex Parte Reexamination Certificate, at 8-9 (Sept. 27, 2005)
([PH_001_0000785905] — [PH_001_0000785981]):

The instant claimed ‘906 “executable application” that provides the claimed
“interactive processing” is invoked not in response to a user event detected
by the browser (as in the case of Raggett I, supra), but rather in response to

the browser application parsing an “embed text format” (i.e., an "EMBED"
tag, see col. 12, line 60, 906 patent) that is detected within the hypermedia
document when the hypermedia document is first loaded by the browser,

Significantly, the instant claimed “interactive processing” of the ‘906 patent
begins at the moment the browser application parses an “embed text
format” detected within the hypermedia document. The web browser
invokes the claimed “executable application” immediately after an "EMBED"”
tag is.parsed and before the hypermedia document is completely displayed
in the browser-controlled window. The invoked “executable application”
enables the daimed “interactive processing.”

Notice of Intent to Issue Ex Parte Reexamination Certificate, at 11-12 (Sept. 27, 2005)
([PH_001_0000785905] — [PH_001_0000785981]):

B-16

The Examiner concurs that automatic invoking, as taught by Toye, is the
result of manual user selection with a mouse of a "static snapshot” image
that automatically launches the “appropriate application” to edit the data
object. This approach appears to be similar to t'he method employed by
conventional file manager programs that implement file type association to

invoke the appropriate application when the user clicks on the filename or
file icon.

Notice of Intent to Issue Ex Parte Reexamination Certificate, at 17 (Sept. 27, 2005)
([PH_001_0000785905] — [PH_001_0000785981]):

MediaMusaic does enable interactive control and manipulation of objects
embedded in what arguably may be construed to be a "browser-controlled
window,” BUT ONLY AFTER USER INTERVENTION, such as by making a
selection with a mouse.

Notice of Intent to Issue Ex Parte Reexamination Certificate, at 19 (Sept. 27, 2005)
([PH_001_0000785905] — [PH_001_0000785981]):

In -mntrast, Toye teaches that external data is displayed as a "static

snapshnt“ (i.e., representing a data object) within a NoteMail page that must
- launch an editor lication in a r

window" [see Felten II, at paragraph 47]. Thus, Toye clearly requires user.

intervention to enable interactive processing.

Notice of Intent to Issue Ex Parte Reexamination Certificate, at 28—-29 (Sept. 27, 2005)
([PH_001_0000785905] — [PH_001_0000785981]):

Furthermore, Toye teaches that “automatic invoking” of the “appropriate
application” is performed by selection, and not by parsing. Toye teaches that
notebook data is displayed as a data object or filename that must be
selected by @ mouse to launch an appropriate application in a separa
window"” [see Toye page 40, 2™ column, paragraph 2; see also page 36, 2
column, last paragraph, i.e., ™ ... ability to construct hyper-documents
containing bitmaps, video, and audio”; see also Felten II, at paragraph 47].

he

B-17

Significantly, Toye appears to merely disclose a conventional system for
invoking appropriate applications by standard prior art file association
technigues, such as invoking the appropriate application based upon the file
extension (e.g., when the user clicks and selects a *.doc filename or
corresponding file icon and this user action automatically invokes the

appropriate word processor). See also Toye: "The functionality is similar to

opening a file using the Macintosh Finder and automatically invoking the
appropriate application for processing that file” [p. 40, 2™ column, 2™
paragraph].

Notice of Intent to Issue Ex Parte Reexamination Certificate, at 35 (Sept. 27, 2005)
([PH_001_0000785905] — [PH_001_0000785981]):

The manual selection step required by Toye defeats the purpose of the use
of an EMBED tag that is parsed to invoke an executable application, thus
teaching away from the hypothetical four-way combination of Mosaic (APA),
Berners-Lee, Raggett I and II.

In contrast, the instant '906 claims require the bm;u-rser (and not the user) to
invoke the “executable application” that in turn executes on the client
workstation to enable the claimed “interactive processing.”

Notice of Intent to Issue Ex Parte Reexamination Certificate, at 37 (Sept. 27, 2005)
([PH_001_0000785905] — [PH_001_0000785981]):

In contrast, the instant ‘906 claims require the browser (not the user) to
invoke the "executable application” that in turn executes on the client
workstation to enable the claimed “interactive processing.”

iv. Second reexam (90/007,858)

Applicant's Response, at 4 (Sept. 27, 2007) ([PH_001_0000787030] —
[PH_001_0000787051]):

B-18

A. The Claimed Invention.

The invention, as recited for example in claims 6, is for use in a system having at least
one client workstation and one network server coupled to a network environment.

The claims recite a browser application, executed on the client workstation, that parses a
hypermedia document to identify text formats in the document and responds to predetermined
text formats to initiate processing specified by the text formats.

The browser displays a portion of a first distributed hypermedia document, received over
the network from the network server, in a browser-controlled window. The hypermedia
document includes an embed text format, located at a first location in the hypermedia document,
that specifies the location of at least a portion of an object external to the hypermedia document.
The object has associated type information utilized by the browser to identify and locate an
executable application external to the hypermedia document.

When an embed text format is parsed by the browser, the executable application is
automatically invoked, as a result of the parsing, to execute on the client workstation.

Declaration of Edward W. Felten, { 25 ([PH_001_0000787052] — [PH_001_0000787069]):

25. In the claimed ‘906 system, the browser instead used a special tag, the “embed
text format”, to specify that an embedded object should be included. Mosaic
lacked the embed text format. The use of an embed text format was a significant
improvement over the prior art Mosaic browser, as it allowed the browser to
recognize immediately that an embedded object was present and special
processing was needed.

Declaration of Edward W. Felten, {1 28-30 ([PH_001_0000787052] —
[PH_001_0000787069]):

28. Claim 6 includes the limitation “wherein said embed text format is parsed by said
browser to automatically invoke said executable application™ (906 Patent at
18:23-25), which requires that the executable application be invoked
automatically, that is, without requiring any action such as a mouse click from the
user.

29. In Mosaic, as stated above, a helper application was launched via an ordinary
hyperlink. All hyperlinks required a mouse click by the user to be activated. To
launch a helper application, the user had to make such a mouse click. Therefore,
the launching of helper applications was not automatic.

30. Automatic invocation was an important improvement in the claimed ‘906
technology over the prior art Mosaic browser. Automatic invocation allowed the
object to appear immediately when the user visited the enclosing web page, thus
helping to make the object appear to be an integral part of the web page.

B-19

V. '085 prosecution history (10/217,955)

Applicants' Supplemental Amendment after Non-Final Rejection, at 16-17 (April 11, 2008)
([PH_001_0000784568] — [PH_001_0000784590]):

Claim 19 of the present application recites “automatically invoke the executable
application, in response to the identifying of the embed text format, to execute on the client
workstation in order to display the object and enable interactive processing of the object while the
object is being displayed within a display area created at the first location within the portion of the

hypermedia document being displayed in the browser-controlled window™.

As determined in Part I of the Confirmation, neither the four-way combination of the
patent owner’s admitted prior art (APA), Berners-Lee, Raggett I and Raggett I nor Toye, singularly
or in combination, fairly teach or suggest automatically invoking an external application to enable
interactive processing of an object being displayed within the display area.

The four-way combination was determined to teach displaying a static object. Toye
was found to display a “static snapshot™ of external content where interactive processing was not
automatically invoked but required manual selection by the user.

Accordingly, since the recited automatically invoking to enable interactive processing
is not taught or suggested by the cited references a prima facie case of obviousness has not been
established.

Independent claims 4, 23, 27, 31, 35, 39, 43 and 47 recite similar limitations as claim
19 and are thus allowable for the same reasons. The remaining claims are dependent claims which

are allowable for the same reasons as the claims on which they depend.

Notice of Allowability, at 2 (Mar. 20, 2009) ([PH_001_0000784728] -
[PH_001_0000784734]):

The following is an examiner’s statement of reasons for allowance: the claims are
allowable as the claims contain the subject matter deemed allowable in both Re exam
90/006,831 and Re exam 90/007,838 for the same reasons as set forth in the NIRC of

the two Re exams.

B-20

d. Cited prior art

Object linking and Embedding OLE 2.01 Design Specification (Sep. 27, 1993). cited by
other ., at 70-71(see, e.g., [PH_001_0000008531] — [PH_001_0000008885]; [PH_001_0000011603]
— [PH_ 001 0000011955] [PH_001_0000406883] — [PH_001_0000407245];
[PH_001_0000492588] — [PH_001_0000492950]; [PH_001_0000560430] —
[PH_001_0000560792]; [PH_001_0000595855] — [PH_001_0000596189]; [PH_001_0000596930]
—[PH_001_0000597282]; [PH_001_0000728780] — [PH_001_0000729142]) :

2.5. States and Visuahizations of Objects

With editing in place, OLE 2 enhances the conceptual structure of a compound document by exposing in a
single window the entire hierarchy of containment In OLE 1 there were two kinds of objects to be consid-
ered: the container and the embedded objects it contained. That those objects themselves might also
contain embedded objects was of no consequence, since this fart was not relevant until they were opened
into their own windows. The container and the open object were always the same, and it was not necessary
o think of embedded objects as contminers themselves. In OLE 2 this sination changes: the open object
becames the root of a hierarchy of embedded objects, eackh of which may be a container in its own nght:

As the user mavigates through this hicrarchy, OLE objects assume
mﬁ‘mmmﬂmmﬂﬁﬂlﬁobmm?hcmmm
o : selected, active,or open.
|¢ l
' 2.5.1. Inactive
Cormumens Ctyact
= e An object is said w be nartive when it is neither active nor part of a
gr-oead selection. It is displayed in its presentation form which is (usually)

conveyed through its cached meta-file description. It may be desirable
to know whether an object is embedded or linked at'a glance without
having to interact with it Conmainer applications should provide a
“show objects™ option that places a single pixel wide black solid border
around the extent of an embedded object and a dotred border (Figure
L = 22) around linked objects. If the container application cannot guarantee
b=y Foma Lhat 2 linked object is up tw dawe with jis source (because an automatic
.:.:.wa update was unsoccessful or the Bink is manual), the dotied border should
oo d O appear in the Windows “disabled text™ color (typically gray), suggesting
Figure 20. OLE 1and OLE 2 e ink is kikely out of date. Only the conminer document's first level
object hierarchies. objects should be bordered. For example, if in Figure 7 “show objects™
were chosen from the outer-level container (Microsoft Word), then only the worksheet object would be
bordered, not the graph object nested inside of it These borders should be clearly distinct from the
visualizations for the other states. and are useful to distinguish embedded from linked objects.

An inactive object may be sclected by single clicking 0.3, Compast Dins v, LP Salo (F)
anywhere within its extent, or it may be double-clicked LU L, -
which will perform its primary verb. The state diagram in L
Figure 27 shows that double-clicking will activate or open Tow VAW 57D Sapeer
the object for editing, the usual primary verbs. Figure 21 Unmodified preseatation

B-21

2.5.2. Selected _

The embedded object is selected when it is either single clicked or included in 2 mulnple selection. It is
‘sclected (and deselected) and rendered acconding 1o the normal highlight rules of its containes (see Figure
'3), and responds v appropriae commands as any selected object of the contziner would. When the object
is the singly selected, object-specific operations may be performed on it the container remicves these verbs
from the system registry. When the object is selected the container may supply handles (for resizing, etc.)
which affect the object as a unit with respect to the container. It is recommended that resizing an OLE
object while it is selected resulls in a scaling operation, since there is no mechanism by which the
container can communicate a cropping area thar would be honored by the object when it is active.

ol o 3|
Mictosoft Word - CLASSCD.DOC =E=f

Classu:al CD Review

llynm:n:ﬂm

ik

A

A
laral

’] 'l'hm-l:hd’lhhﬂmbﬂ:h kad & fn it izpat ca Un moicyg
: ------—----—--—wnlnﬂuhq- ool b mmmm,fwhz
i [LF) abuws, With the 1951 whe todals in, coempact doe w ezl U sredanmd seoowdng mediom
fo Arercan cazy, mﬂh--ﬁmhhlmahqhﬂ.?&n. Dectache
' Geapmreshon, sod Lomdon Lides. My yencmal choics i Shee ood dtlais's spmh mmdeieg of the
Coring Broma on Telae, It i o “wewtdons”
mh—-ﬂ-ﬂamm 0.5. Compad Dist ve. LP Sadow 1)

e T 13

s 636K
) the Joug wwaited Sgital semastesing of Horowitds
sactad daing the 1M0'e il 1950), Thisyeus bokhe | 2 ° TSIX ZSPK 17AEM

N By u..h.mm-; ﬁ; n‘a"'.!

thuren.Tb:Shw(}b)tcuopnon.

When an object is singly sclected, any of its registered verbs may be applied. “Edit™ and “Open” will aci-
vale and open the object respectively, but other verbs (e.g. “Play™) might perform and then lzave the
object selected. Any number of single clicks will simply reselect the object, while clicking outside will
deselect the object. Verbs whose appropriateness depends on the state of the object should ideally enable
mddmbhappmprmly.Furmpln.amcﬂlobmwluchtmPhymdkcwuﬂasvntsﬂmﬂd
disable Rewind when the object is already a1 the beginning. Similady if an open object has two verbs Edit
(for in-place editing) and Open (for opened editing), Edit should .be disabled since the object cannot
directly achieve the in-place active state without first closing,

B-22

2.5.3. Active

OLE 2 objects may enier an acrive state in which the user may interact
with the cbject’s conients in-place, reusing its container document’s
window for its application's menus and interface controls. The wser can
make an object active either by performing its appropriate verb (“Edit™),
double-clicking it -(since for many objects the primary verb will be *
“Edit"), or sckecting the object and pressing Enter. If Enter already has ;mn_
reserved meaning within the container, then Alt + Enter is reccommended. i 23, Selected OLE
When an object becomes active irs application’s menus and interface tgure ‘h
controls are grafted into the document's window and apply over the extent object.
szunmmﬂemsmwm&hthdﬂzwmmmmw
neighboring material in the documnent temporarily. Row/cohumn headers (as pictured below), handles, or
scrollbars are examples of frame adomments an object may wish 1 present Scrolibars would allow the
scrolling of a large spreadsheet within the object’s viewporn for example. The object and its frame
adomuments are swrounded by a black diagonal haich border as an indication of the active state and
suggest the ‘area of focus. The hawch is always black; it does not change color as focus changes between
windows. There is only one object activated a1 a time; there is no attempt 1o activate all objects that use
lhn:mcappﬁmﬁmmam’mlmdlmmhmprkddﬁght-mmdmgdiagmﬂlﬁnﬁgas

? U for matance all Paintbrush Bitmaps were acuvated wogetber. commmands such 23 "Seleat Al of "Clear A are smbigoocs. The user
would poy know which objeca(s) woald be affczd by soch doaumen. seoped commonds.

B-23

illuswrated below. The object takes on the appearante which is best suited for its own editing: frame
adomments may appear, table gridlines, handles, and other editing aids. The hatch border is considered o
be part of the object’s territory so it is the object’s cursor that appears when the mouse hovers above the
border. Clicking in the hatch pattern (and not on resize handles) should be re-interpreted by the object as
cicking just inside the edge of the border. The haich area is effectively a click slop zone that prevents
inadvenent deactivations and makes it easier 10 select the contents of the object which Lies right along its
e:lge,'Ihemmp!esMdememdamMmamemt{mummmuﬁmn
adomments).

Should the container may set at a view-scale (zoom ratio) which the object cannot match in order ©
perform in-place activation, the object should instead open into,a separate window; if the object does not
SUpPpOTT an open mode, mcnnshuuldno:rcsmm to the verb but issue an appropriate error message (ina
dialog) indicating why. } ¢

AT
1

[TH fisd wa, LP Salos (F) ¥ 22589
_ K w ! an | .H;.qr 1
fo] cre 7 E3v 11 i E 4
'?E Fs 17155 1K_r 17
pE LTI M ML
/ ! T

11l

. Ll £l

Figure 24. Hatch border around in-place activated objects.
Noic that at any given instant there is a1 most one object thai is active in-place per container. A single
click in the container area, or a double click on a new OLE object (which may be nested in the currently
active object) deactivales the current object and gives the focus 1o the new object
An active object may be deactivated by clicking ocutside its extent in the container document or by pressing -
the Escape key. If an object uses the Escape key at all times, it is recommended that Shift+Escape is used
to deactivate, after which it becomes the selectéd element of its container.
Edits made to an active object immediately and automatically become apart of the container document,
Just like edits o native dasa. Consequently, there is no “vpdate changes”” prompt when an in-place active
object deactivates. Of course, changes o the entire document, embedded or otherwise, can be abandoned
by declining to save the file to disk. As we shall later see, in-place active objects panticipate in the Undo
stack of the window in which they are acivared.
Those objects which suppont resizing while in-place active should J
include square resize handles within the active haich pattern. The a3} os. Diag wa. LP Salcs 1)
solid black handles should be of the same width as the haich panern & j1m | w7 ;e
and have a single white pixe) separation from the diagonal lines. It e e
is recommended that in-place resizing exposes more of less of the Toral 'EL‘W TS pee |
object’s content (adding or removing rows/columns in the case of 1a . .
this worksheet). In-place resizing should be seen as adjusting the | BT 2 oplace resizing
vicwpon rather than scaling the object’s appearance. Certain objects however may default o in-place
scaling if cropping is not meaningful.

* * * * *

i

B-24

3.2.4. States of Embedded Objects

Figure 67 illustrates the main states of objects as they relate to the execution of servers when the objects
are instantiated by containers, etc. In addition to the object states, there will be relevant states of server
applications (e.g.. dormant: invisible, not object, but server task is nunning so that getting into the Editing
state is quick),)
MEmmmm'mmaMMMHm:mmmydmmm
umize the loading process, Similarly, containers may defer making the object running, in order to con-
SETVE MEMOTy, OF may pre-activate server tasks for fast startup.

Passive: Object 15 on disk

Loaded: Object structure is in client memory. The object may use the cached picnure for rendenng.
The native object data will not normally be in memory.

- Running: The server EXE (or handler) for the object is running, with the object data available to it
The object can do full negotiation and rendering, etc. Clients who have links to this object
may bind 1o it or receive notificarion of availabiliry.

From the server's perspective, it is sometimes (though less ofien) useful to distinguish variations in the
Tunning state:

Ready: The server or handlex has created UT resources, but does not have the focus. The server's
tools and menu may be visible but inactive if the' focus is in a different window, or
invisible if the focus is elsewhere in the contziner’s window hierarchy.

Active: ‘The server or handler has the menus and is getting input. ;

Open: The server or handler has opened the object in a pop-up window, which may look like its
nomal fame window.

Executing: The server is asynchronously executing some command invoked by the chient

Note that there is no direct comespondence between the Ul staies described eartier and the states illus-
trated above. A Ul Inactive object, for example, could be Passive, Loaded, Running, Ready, or Executing.
The states where the rwo classifications coincide are indicated by identical names: objects that are Active
or Open in the Ul sense, are also Active or Open in the sense defined here.

Figure 67. Sketch of object states transitions

B-25

2. Defendants' extrinsic evidence

a. Dictionaries

Que's Computer Programmer’s Dictionary 225 (1993) ("invoke™) [PA-0000333391]:

invoke

To initiate execution.

mwoke is a more general term than call, which often refers specifically to the
call verb in a programming language. The term #nvoke can also refer to
actions initiated by a program or by a user. For examplc:

¢ A graphical user intertace (GUI) user can invoke a process by
double-clicking on its associated icon.

* A spreadsheet processor user can invoke a keystroke macro by
pressing the associated Alt-x kcy.

* A C function can invoke a lower-level function.
+ A LISP function can invoke itself recursively.
¢ A batch lile can invoke an MS-DOS command.

See also call.

21st Centry Dictionary of Computer Terms 21 (1994) ("automatic™) [PA-0000333434]:

autqmaﬂc In the computer context, procedures
~that are executed without human intervention.

21st Centry Dictionary of Computer Terms 191 (1994) ("invoke") [PA-0000333439]:

invoke To issue a.command or otherwise activate
a function in a program.

McGraw-Hill Dictionary of Scientific and Technical Terms 158 (5th ed. 1994) ("automatic™)
[PA-0000333403]:

sutomatic [enG]. Having a self-acting mechanism that
forms a required act at a predetermined time or in response
certain conditions. [ORD] See automatic weapon. | 'oé
2'madiik } '

b. Testimony

Doyle cross, Trial Tr., Eolas Techs Inc. v. Microsoft Corp., No. 99-C-626 (N.D. Ill. 2003), at
459:12-460:1 (July 10, 2003) [EOLASTX-E-0000000644]:

Q. The claims require that the executable application be
automatically invoked, isn't that right?

A. That's correct.

B-26

Q. And what does "invoke" mean in the world of computers?

A. Well, as | mentioned on direct, when the browser sees the
embed tag, it invokes the application without the user having to do
anything.

Q. So what that means is that the executable application starts up
without a mouse click, right?

A. That's correct.
Q. When the Web page is displayed.
A. Correct.

Q. So if a mouse click were required first, it would be outside the
scope of this patent.

A. Correct.

Michael Doyle Dep., Eolas Techs Inc. v. Microsoft Corp., No. 99-C-626 (N.D. Ill. February
28-March 1, 2000), at 109:10-110:10 [EOLAST X-E-0000000180]:

Q. So the word "automatically” in claim 6, you would define as
happening in response to the loading of the Web page?

A. 1 would use it in the sense that it's used in the invention where
it happens as a result of the parser identifying the embed text format
and going through the other operations that show the elements of the
invention.

Q. I'mstill not clear that that was an answer to the question. Let
me make it simple. What does the word "automatically” mean as used
in claim 6 at column 18, line 24?

MS. CONLIN: Objection, asked and answered.

THE WITNESS: Again, it shows that the browser renders or
automatically invokes the executable application in response to the
elements that are described above in claim 6.

BY MR. PETERSEN:

Q. Inresponse to the parsing of the Web document?

A. The parsing of the Web document, the browser using type information to
identify and locate executable application and the browser -- and the text format's
"parsed by said brower to automatically invoke said executable application.”

Michael Doyle Dep., Eolas Techs Inc. v. Microsoft Corp., No. 99-C-626 (N.D. Ill. February
28-March 1, 2000), at 345:12-346:10 [EOLASTX-E-0000000181]:

B-27

Q Take alook, if you would, again at Exhibit 78, the attachment
to your invention disclosure form, please. And I'd like you to read the
first paragraph of the first page of that document, and then I'll ask you
some questions.

A Yes, | see that paragraph.

Q Isthat an accurate description of your invention at the time
that the invention disclosure was signed in April of 1994?

A lwouldn't say it was a completely accurate description, no.

Q What's wrong with it?

MS. CONLIN: Objection, misstates his testimony.

THE WITNESS: There is a sentence that says "when a user
browsing the WWW selects such a link,” and so on. That does not
appear to be accurate.

BY MR. PETERSEN:

Q Why not?

A Because a user didn't have to do any selection of links for a
Web page to cause the execution of the external application.

Michael Doyle Dep., Eolas Techs Inc. v. Microsoft Corp., No. 99-C-626 (N.D. Ill. February
28-March 1, 2000), at 570:21-571:9 [EOLASTX-E-0000000182]:

Q. What does it mean to automatically invoke an executable
application?

A. To invoke without requiring user interaction.

Q. When it says that the embed text format is parsed by the
browser to automatically invoke the external application -- executable
application, does that mean that the browser invokes the application?

A. Well, as shown in the specification, the external application is

invoked as a result of the parsing of the embed text format as
described in its entirety in the claim.

Cheong Ang Dep., Eolas Techs Inc. v. Microsoft Corp., No. C-99-0212 (N.D. Ill. January 21-
22, 2000), at 232:25-233:9 [EOLASTX-E-0000000177]:

Q. Atline 24 of Column 18 --
A. Okay.

B-28

Q. --there's the phrase "to automatically invoke,”" I'm going to
ask you what's your understanding of that is, but if you'd first read
whatever portion of the claim around that that you feel is necessary
and let me know when you have.

A. "Automatically invoke' means "'invoke without human
intervention or user intervention."

David Martin Dep., Eolas Techs Inc. v. Microsoft Corp., No. C-99-0212 (N.D. Ill. January
20-21, 2000), at 193:9-194:1 [EOLASTX-E-0000000174]:

. Mr. Martin, looking again at Claim 6 of the patent which is
Exhibit 15 in front of you, in Column 18, about line 24 it says that the
"embed text format is parsed by said browser to automatically invoke
the application,” do you see that?

A. Yes.

Q. What does it mean to "automatically invoke" in that
sentence?

A. Generically it means to respond to the information contained
in the hypermedia document, to start -- if | can refer back -- to start the
program code for the application external to the first hypermedia
document.

Q. But the word "automatically,” what does that add to it?

A. It means that it's done in the course of parsing the
hypermedia document.

B-29

B. "'workstation"'

Claim Term(s) Defendants' Proposed Construction | Eolas's Proposed Construction

a desktop or deskside computer with

an operating system and hardware a computer system connected to a
workstation designed for technical or scientific network that serves the role of an
applications that provides higher information requester

performance than a personal computer

1. Defendants' intrinsic evidence

a. Claims

In the following chart, the term(s) for construction appear in all the claims marked with an
"x." The letter "m" indicates a method claim, and "{6" indicates a claim that the Defendants contend
includes limitations subject to § 112, 1 6.

'906 patent ‘985 patent
m | m m m
mim|@m 96 96 |6 |{m |96 |96 |96 |96 |16 |m |96 | m
1 (4 |5 |6 |9 |10|1 |16 |20 |24 |28 |32 |36 |40 |44
workstation X [X [X | X [X [X |[X |X [X [X |[X |X [X [X |X

b. Specification (all cites to '906 patent)

1:31-:38 (Background of the Invention): Computer systems connected to a network such as
the Internet may be of varying types, e.g., mainframes, workstations, personal computers, etc. The
computers are manufactured by different companies using proprietary hardware and operating
systems and thus have incompatibilities in their instruction sets, busses, software, file formats and
other aspects of their architecture and operating systems.

3:63-4:6 & fig.2 (Background of the Invention): In FIG. 2, a user 102 operates a small
computer 104, such as a personal computer or a work station. The user's computer is equipped with
various components, such as user input devices (mouse, trackball, keyboard, etc.), a display device
(monitor, liquid crystal display (LCD), etc.), local storage (hard disk drive, etc.), and other
components. Typically, small computer 104 is connected to a larger computer, such as server A at
106. The larger computer may have additional users and computer systems connected to it, such as
computer 108 operated by user 110.

B-30

—~106

INTERNET

134

c
Tls -~ ied

F/G, 2. PRIOR ART

4:24—:31 & fig.2 (Background of the Invention): A user at a workstation or personal
computer need not connect to the Internet via a larger computer, such as server A or server B. This
is shown, for example, by small computer 130 connected directly to Internet 100 as by a telephone
modem or other link. Also, a server need not have users connected to it locally, as is shown by
server C at 132 of FIG. 2. Many configurations of large and small computers are possible.

5:39-:56 (Background of the Invention): The open distributed hypermedia system provided
by the Internet allows users to easily access and retrieve different data objects located in remote
geographic locations on the Internet. However, this open distributed hypermedia system as it
currently exists has shortcomings in that today's large data objects are limited largely by bandwidth
constraints in the various communication links in the Internet and localized networks, and by the
limited processing power, or computing constraints, of small computer systems normally provided to
most users. Large data objects are difficult to update at frame rates fast enough (e.g., 30 frames per
second) to achieve smooth animation. Moreover, the processing power needed to perform the
calculations to animate such images in real time does not exist on most workstations, not to mention
personal computers. Today's browsers and viewers are not capable of performing the computation
necessary to generate and render new views of these large data objects in real time.

6:17—:21 (Background of the Invention): [S]mall client computers in the form of personal
computers or workstations such as client computer 108 of FIG. 2 are generally available to a much
larger number of researchers. Further, it is common for these smaller computers to be connected to
the Internet.

B-31

C. Prosecution history

i. '906 prosecution history (08/324.,443)

Proposed claims to a ""workstation"*

Proposed claims to a '"‘computer"’

Original Application, at 29 (Oct. 17, 1994)
([PH_001_0000783799] —
[PH_001_0000783848]): "1. A method for
running an application program in a computer
network environment, comprising: providing at
least one client workstation"

Original Application, at 31 (Oct. 17, 1994)
([PH_001_0000783799] —
[PH_001_0000783848]): "15. A method for
running an application program in a computer
network environment, comprising: providing at
least one client workstation"

Original Application, at 32 (Oct. 17, 1994)
([PH_001_0000783799] —
[PH_001_0000783848]): "24. A method for
interactively controlling an embedded object in a
document displayed on a client computer"

Original Application, at 34 (Oct. 17, 1994)
([PH_001_0000783799] —
[PH_001_0000783848]): "34. A method for
displaying a three dimensional image object on a
client computer"

Amendment A, at 7 (Aug. 6, 1996)
([PH_001_0000783879] —
[PH_001_0000783928]): "44. (New) A
computer program product for use in a system
having at least one client workstation"

Amendment A, at 9 (Aug. 6, 1996)
([PH_001_0000783879] —
[PH_001_0000783928]): "54. (New) A
computer program product for use in a system
having at least one client workstation"

Amendment A, at 10 (Aug. 6, 1996)
([PH_001_0000783879] —
[PH_001_0000783928]): "55. (New) A
computer program product for use in a system
including a client computer"

Amendment A, at 12 (Aug. 6, 1996)
([PH_001_0000783879] —
[PH_001_0000783928]): "56. (New) A
computer program product for use in a system
including a client computer"

Amendment B, at 1 (June 2, 1997) ([PH_001_0000784029] — [PH_001_0000784090]): "Please

cancel claims 6-15, 17-43, and 49-56."

B-32

Proposed claims to a ""workstation"* Proposed claims to a '‘computer"’

Amendment B, at 1-2 (June 2, 1997)
([PH_001_0000784029] -
[PH_001_0000784090]): "1. (Twice Amended)
A method for running an application program in
a computer network environment, comprising:
providing at least one client workstation . . . said
executable application to execute on said client
workstation in order to display said object and
enable interactive processing of said object"

Amendment B, at 3-4 (June 2, 1997)
([PH_001_0000784029] —
[PH_001_0000784090]): "44. (Amended) A
computer program product for use in a system
having at least one client workstation . . . said
executable application to execute on said client
workstation in order to display said object and
enable interactive processing of said object"

Notice of Allowability, at 1 (Mar. 30, 1998) ([PH_001_0000784167] — [PH_001_0000784172]):
"The allowed claims are 1-5, 44-48."

Amendment A, at 18-19 (Aug. 6, 1996) ([PH_001_0000783879] — [PH_001_0000783928]):

The Ness disclosure does not teach using an application
on a first additional computer to manipulate an object external
to the hypermedia document within document window. In MNess both
the object and application are included within the document
displayed. While this feature enhances interactiwvity with
documents, the application is executed on the computer displaying

the document.

In contrast, in the combination of claim 24 the first
computer could be much more powerful than the client computer to
run an application performing, for example, 3-D wvisualization or
CAD/CAM programs, and the results could be displayed in the
document window of client computer in the form of a PC or network

computer.

B-33

The subject matter of claim 34 differs from the cited
references for reasons similar to those discussed abowve with
reference to claim 24. Again, the claimed system allows for a
much more powerful first additional computer to perfoxrm
caleulations to reorient an object with the results communicated
to the client computer to redisplay the cbject in a new

orientation.

ii. Abandoned application (09/075,359)

Preliminary Amendment, at 2 (May 8, 1998) ([PH_001_0000787770] —
[PH_001_0000787777]): "44. (New) A method for running an application program in a computer
system...."

Preliminary Amendment, at 3 (May 8, 1998) ([PH_001_0000787770] —
[PH_001_0000787777]): "48. (New) The method of claim 4, wherein said client program and said
server program reside on the same computer system."

Preliminary Amendment, at 2 (May 8, 1998) ([PH_001_0000787770] —
[PH_001_0000787777]): "55. (New) A computer program product for use in a system having at
least one client workstation"

Preliminary Amendment, at 7 (May 8, 1998) ([PH_001_0000787770] —
[PH_001_0000787777]): "57. (New) The method of claim 13, wherein said client program and said
server program reside on the same computer system."

Office Action, at 8 (Sept. 6, 2000) ([PH_001_0000787793] — [PH_001_0000787807]):

As per claims 48 and 57, the location of the <¢lient and
server program would have been a matter of design choice. It
would have been obwvious for one of ordinary skill in the art to

hawve the client and server program on Che same computer 1f£ the
computer is powerful encugh to handle the server program because

it would have reduced delays and communications over the network,

iii. Second reexam (90/007,858)

Declaration of Michael D. Doyle, 11 4, 6, 8 (Sept. 22, 2007) (accompanying Applicants'
Response (Sept. 27, 2007)) ([PH_001_0000787070] — [PH_001_0000787191]):

4. The carliest demonstrations of reductions to practice of the invention dﬁcri'?ed in
claims | and 6 of the 5,838,906 patent (referred to hereafter as 906) to individuals outside of
UCSF Center for Knowledge Management staff were given during November of 1993. These

B-34

demonstrations included private presentations to influential experts in the field, as well as public
demonstrations to large technical and scientific audiences. The software used for these
demonstrations incorporated all of the elements of claims 1 and 6 of the 906 patent. A detailed
chronology these software demonstrations follows.

* * * * *

6. Dr. Lindberg was visiting UCSF on November 17, 1993, for a conference regarding the
Red Sage Project, which [was directing at the time. We pulled him aside during the conference
to come down to my Center in order to view and interact with a demonstration of the 3
dimensional visualization of Visible Embryo Project data via our 906-enhanced web browser.
This demonstration involved using our 906-enhanced Web browser, from a workstation in one of
the Library's conference rooms, to access the Center for Knowledge Management's (CKM) Web
server in order to demonstrate the features of the 906 invention, This demonstration involved
showing him the Vis embedded 3-D visualization application, as well as an embedded video
player and an embedded molecular modeling application, all embedded in Web pages served up
by the Center’s Web server over a TCP/IP Internet connection.

8. During that same trip, [also visited with Dr. Adrianne Noe, currently Director of the
National Museumn of Health and Medicine, at the Armed Forces [nstitute of Technology (AFIP),
to show her a similar demonstration of the 906 technology. Using a Silicon Graphics workstation
in her Human Developmental Anatomy Center at AFIP, I installed and demonstrated our 906-
enhanced Web browser, aceessing the UCSF CKM Web server to show her the embedded
visualization examples, as discussed above,

d. Cited prior art

Douglas Young, The X Window System, Programming and Applications with Xt, Prentice
Hall, title page, copyright page, pp. i-x, 1-13, 123-166, 280-332, 520-533 (1990), at 1
([PH_001_0000588537] — [PH_001_0000588609]):

AN INTRODUCTION TO
THE X WINDOW SYSTEM

The X Window System is #n industry.standard software system thai allows programmers to
develop portable graphical user interfaces. One of the most important features of X is its
unique device-independent architecture. X allows programs to disploy windows containing
text and grephics on any hardware that suppons the X protocol without modifying, recom-
piling. or relinking the application. This device independence, along with X's position as an
industy standard, allows X-based applications to function in a heterogeneous environment
consisting of mainframes, workstations, and personal computers,

Doyle et al., "Processing Cross-sectional Image Data for Reconstruction of Human
Developmental Anatomy from Museum Specimens,” Newsletter of the Association for Computing

B-35

Machinery Special Interest Group on Biomedical Computing, vol. 13, No. 1, ACM Press, coverage
page, table of contents, pp. 9-15 (Feb. 1993), at 13 (e.g., [PH_001_0000041528] -
[PH_001_0000041535]):

3-I} Visualization Tools

Software tools were developed to allow the
interactive three-dimensional visualization of the em-
bryo reconstruction in real time. Figure 3 shows the
display of the application as it appeared at the SIG-
GRAPH 92 conference in Chicago (Doyle, et al., 1992).
The left of the screen shows a surface-based model of
the embryo’s exterior. This model was built from data
which was derived, through three-dimensional inter-
polation, from the original embryo dataset . Two-
hundred volume slices of the embryo (stored as texture
maps) can be interactively displayed at this lower
resolution while the model is rotated freely in three
dimensions. A cutting-plane can be seen to intersect
the surface-based model. This cutting plane can be
interactively controlled to intersect with the embryo
model at any arbitrary angle and position. To the right
ofthe screen, one can see a window that displays a high-
resolution image of the oblique section through the
embryo as indicated by the interactive cutting plane.
In order to maintain the quick response needed for
effective real-time interaction, the computational load
of this application was distributed so that the interface
panel, seen at the bottom of the screen, and the 3-D
surface model were running on the CPU of the Silicon
Graphics workstation. Computation of the high-
resolution oblique section image displayed in the right
window took place on the Convex supercomputer. Both
of these operations occurred simultaneously, commu-
nicating through a high-speed fiber optic network.

B-36

Ang et al., "Integrated Control of Distributed VVolume Visualization Through the World-
Wide-Web." Proceedings of Visualization 1994, IEEE Press, Washington, D.C., October 1994, § 4
(e.g., [PH_001_0000759332] — [PH_001_0000759351]):

4. Results

The resulss of the above implementation are very encour-
aging. The Mosaic/VIS sucessfully allows users to visualize
HDF volume datasets from various HT TP server sites. Fig2
shows a snapshoc of the WWW visualizer. Dismriburing the
volume rendering loads resuls in a remarkable speedup in
image computadons, Qur performance ananlysis with a
homogenesus pool of Sun SPARCstaden 2's on a reladvely
calm necwork produced reasonable results (Figures 4a, 4b, 2nd
4c. Three trials per plot). The time-versus-number-of-
waorkstations curve decreases as more servers participate, and
plateaus when che number of SPARCstations is 11 In the case
of 256x256 image (9 for 192x192 image. and 7 for 128x128
image). The speed increases at the plateaus are very significant:
abour 10 ttmes for the 256x256 tmage, 8 tmes for the 192x192
Image, and 5 tmes for the 128x128 image. The ourcomes
suggest that performance Improvement is a function of the
number of volume rendering servers. Furthermore, the opti-
mal number of workstations and the speed increase are larger
when the image size is bigger. This is In complete agreement
with Giertsen's analysis. We have also successfully tested the
software system In an environment consisting of heterogenous
warkstations: a SCI Indigo2 R4400/150MHz, twe SGI Indy
R4000PC/100MHz, a DEC Alpha 3000/500witha 133MHz
Alpha processor, two Sun SparcStatons 10. and two Sun
SparcStacions 2. which were located arbicrarily on an Ethernet
nerwork. To our knowledge this Is the first demonstration of
the embedding of interactive control of a client/server visual-
ization application within a multimedia document in a distrib-
uted hypermedia environment, such as the World Wide Web.

2. Defendants' extrinsic evidence

a. Dictionaries
21st Centry Dictionary of Computer Terms 380-81 (1994) [PA-000033341]:

workstation Broadly, applies to any computer
available for use by only one individual at a time,
and as such can refer to a personal computer;
however, generally assumed to refer to high-
power, full-featured desktop computers used for
scientific and engineering applications. These
are often based on-the UNIX operating system
with high-resolution screens, fast processing
power, and large storage capacities. - '

B-37

Microsoft Press Computer Dictionary 369 (1991) [PA-00333496]:

workstation In general, a combination of input,
aulput, and computing hardware that can be used
for work by an indivicheal. More often, however, the
term refers to a powerful stand-alone computer of
the sort used in computer-aided design and other
applications requiring a high-end, usuaully expen-
sive, machine (310,000 10 S100,000) with consider-
able calculating or graphics capability. Sometimes,
workstation is also used to refer to a microcom-
puter or termimal connected to a network.

b. SGl's 10-K report on Sept. 28, 1994

[PA-0000333294] — [PA-0000333361]
BUSINESS
GENERAL

Silicon Graphics, Inc. (the "Company") designs and supplies a
family of workstation, server and supercomputer systems,
incorporating interactive three-dimensional ("3D") graphics, digital
media and multiprocessing supercomputing technologies. The
workstation products are available in desktop and deskside
configurations, and are used primarily by technical, scientific and
creative professionals to simulate, analyze, develop and display
complex 3D objects and phenomena. The Company has, over the last
ten years, been a pioneer in the 3D graphics field, and continues to be
a leader in workstation graphics technology. The Company's
marketing and development efforts have, in the past, focused largely
on the technical computing community, including engineers,
scientists, designers, simulation specialists, animators and others who
deal with complex visualization problems.

PRINCIPAL PRODUCTS

The Company's graphics computer systems range from the Indigo-
R- family of desktop workstations, including the Indy-TM- and
Indigo(2)-TM-, to the Onyx-TM- and POWER Onyx-TM- systems, a
family of advanced graphics supercomputers. In addition, the
Company's Challenge-TM- and POWER Challenge-TM- family
ranges from entry-level single processor servers to enterprise-wide
symmetric multiprocessing supercomputers. The Company's products
all use the MIPS RISC microprocessors developed by MTI, and
generally are binary-compatible, meaning that software applications

B-38

run without modification across the entire product line. The
Company's workstations include display, graphics and computational
capabilities. Server models are general purpose computers with the
same computational performance of their workstation counterparts, but
without the graphics capabilities. Depending upon their application,
servers may also have higher levels of data storage and/or
communications capabilities than comparable workstations. The high-
end multiprocessor supercomputer systems are meant to replace or
augment aging mainframe computers in compute intensive
engineering, animation and scientific environments.

THE INDY FAMILY The Indy desktop workstation, originally
introduced in July 1993, features advanced 3D graphics and imaging
and the Indy Cam-TM-, its own digital color video camera. The Indy
was developed as a low-price, high-performance workstation with
real-time video capability, interactive and professional quality
graphics, audio and imaging capabilities. The Indy has significant
appeal in markets such as mechanical CAD, chemistry, color
publishing, film and video, software development, education and
media authoring. The Indy systems are available with either the
R4600-TM- or 150mhz R4400-TM- microprocessor and range in
price from approximately $6,000 to $28,500.

THE IRIS INDIGO FAMILY The IRIS Indigo-R- workstation,
originally introduced in July 1991, was the first RISC PC with
integrated digital media, combining the power of workstations with
the ease-of-use, standards and affordability of personal computers.
The IRIS Indigo workstations are expandable and upgradable and
were enhanced in January 1992 by the addition of three models,
including the high-end Indigo Elan-TM-, which provide higher levels
of graphics performance. Among the primary markets addressed by
the IRIS Indigo are the mechanical CAD and computer-aided
engineering, electronic design automation, computer-aided software
engineering (CASE), geo-science, life science, management support
and publishing markets. The IRIS Indigo systems incorporate either
an R4000-R- or R4400 microprocessor at prices ranging from
approximately $14,500 to $40,000.

Silicon Graphics, Inc., Annual Report, Securities and Exchange Commission, Fiscal
Year ended June 30, 1994 ("Form 10-K") (available at
<http://www.sec.gov/Archives/edgar/data/802301/0000912057-94-003243.txt>, last
visited Sept. 16, 2010).

" These and all other prices quoted are September 1994 list prices, which are subject to discount
based on volume and other factors.

B-39

C. ""network server"

Claim Term(s) Defendants' Proposed Construction | Eolas's Proposed Construction

a computer running software that is
capable of executing applications
responsive to requests from a client
network server workstation, and that processes
commands from a client workstation
to locate and retrieve documents or
files from storage

a computer system that serves the role
of an information provider

1. Defendants' intrinsic evidence

a. Claims

In the following chart, the term(s) for construction appear in all the claims marked with an
"x." The letter "m" indicates a method claim, and "{6" indicates a claim that the Defendants contend
includes limitations subject to § 112, 1 6.

'906 patent ‘085 patent
m | m m m
m m [m |76 (76 [76|m |96 |96 |96 |96 (76 |m |96 | m
1 {4 |5 |6 |9 101 |16|20 |24 (28|32 |36 |40 |44
network server X X | X | X |X X X X X X X X X X X

b. Specification (all cites to '906 patent)

Abstract: The invention allows a program to execute on a remote server or other computers
to calculate the viewing transformations and send frame data to the client computer thus providing
the user of the client computer with interactive features and allowing the user to have access to
greater computing power than may be available at the user's client computer.

1:31-:38 (Background of the Invention): Computer systems connected to a network such as
the Internet may be of varying types, e.g., mainframes, workstations, personal computers, etc. The
computers are manufactured by different companies using proprietary hardware and operating
systems and thus have incompatibilities in their instruction sets, busses, software, file formats and
other aspects of their architecture and operating systems.

4:16-:23 & fig. 2 (Background of the Invention): Internet 100 is made up of many
interconnected computer systems and communication links. Communication links may be by
hardwire, fiber optic cable, satellite or other radio wave propagation, etc. Data may move from
server A to server B through any number of intermediate servers and communication links or other
computers and data processing equipment not shown in FIG. 2 but symbolically represented by
Internet 100.

B-40

4:32-:50 & fig. 2 (Background of the Invention): Typically, a computer on the Internet is
characterized as either a "client™ or "server" depending on the role that the computer is playing with
respect to requesting information or providing information. Client computers are computers that
typically request information from a server computer which provides the information. For this
reason, servers are usually larger and faster machines that have access to many data files,
programs, etc., in a large storage associated with the server. However, the role of a server may also
be adopted by a smaller machine depending on the transaction. That is, user 110 may request
information via their computer 108 from server A. At a later time, server A may make a request for
information from computer 108. In the first case, where computer 108 issues a request for
information from server A, computer 108 is a "client” making a request of information from server
A. Server A may have the information in a storage device that is local to Server A or server A may
have to make requests of other computer systems to obtain the information.

4:66-5:21 & figs. 1-2 (Background of the Invention): For example, hypertext document 10
of FIG. 1 may be located at user 110's client computer 108. When user 110 makes a request by, for
example, clicking on hypertext 20 (i.e., the phrase "hypermedia"), user 110's small client computer
108 processes links within hypertext document 10 to retrieve document 14. In this example, we
assume that document 14 is stored at a remote location on server B. Thus, in this example,
computer 108 issues a command that includes the address of document 14. This command is routed
through server A and Internet 100 and eventually is received by server B. Server B processes the
command and locates document 14 on its local storage. Server 14 [sic] then transfers a copy of the
document back to client 108 via Internet 100 and server A. After client computer 108 receives
document 14, it is displayed so that user 110 may view it.

Similarly, image object 16 and sound data file 40 may reside at any of the computers shown
in FIG. 2. Assuming image object 16 resides on server C when user 110 clicks on image icon 22,
client computer 108 generates a command to retrieve image object 16 to server C. Server C
receives the command and transfers a copy of image object 16 to client computer 108.

B-41

9:45-:63 & fig. 5 (Detailed Description of a Preferred Embodiment): An example of the type
of processing that application client 210 may perform is multidimensional image visualization. Note
that application client 210 is in communication with network 206 via the network protocol layer of
client computer 200. This means that application client 210 can make requests over network 206 for
data objects, such as multidimensional image objects. For example, application client 210 may
request an object, such as object 1 at 216, located in server computer 204. Application client 210
may make the request by any suitable means. Assuming network 206 is the Internet, such a request
would typically be made by using HTTP in response to a HTML-style link definition for embedded
program link 214.

Assuming application client 210 has made a request for the data object at 216, server process
218 ultimately receives the request. Server process 218 then retrieves data object 216 and transfers
it over network 206 back to application client 210.

B-42

10:33-:46 & fig. 5 (Detailed Description of a Preferred Embodiment): Another embodiment
of the present invention uses an application server process executing on server computer 204 to
assist in processing that may need to be performed by an external program. For example, in FIG. 5,
application server 220 resides on server computer 204. Application server 220 works in
communication with application client 210 residing on client computer 200. In a preferred
embodiment, application server 220 is called VVRServer, also a part of Doyle Group's approach.
Since server computer 204 is typically a larger computer having more data processing capabilities
and larger storage capacity, application server 220 can operate more efficiently, and much faster,
than application client 210 in executing complicated and numerous instructions.

11:28-:32 & fig. 6 (Detailed Description of a Preferred Embodiment): Thus, several
computers, such as server computer 204 and additional computers 222 and 224 can all work together
to perform the task of computing a new viewpoint and frame buffer for the embryo for the new
orientation of the embryo image in the present example.

B-43

12:9-:13 & table | (Detailed Description of a Preferred Embodiment): The various

processes in the system of the present
Mosaic/External Application Program
includes those shown in Table I.

invention communicate through a custom API called
Interface MEAPI. The MEAPI set of predefined messages

TABLE 1

Message Function Message Name

[

4. Area Shown
. Area Hidden
. Area Destioyed

o Ln

. Server Update Done
. Server Ready
. Server Exiting

Messages from server lo client:

XtNrefreshNotify
X(NpanelStartNotify
XtNpanelExitNotify
Messages [rom client o server:

XtNmapNotify
XINunmapNotily
XtNexitNotify

12:30-:37 & table | (Detailed Description of a Preferred Embodiment): Thus, by using
MEAPI a server process communicates to a client application program to let the client application
know when the server has finished updating information, such as an image frame buffer, or pixmap
(Message 1); when the server is ready to start processing messages (Message 2) and when the server
is exiting or stopping computation related to the server application program.

12:38-:45 & table | (Detailed Description of a Preferred Embodiment): For client to server

communications, MEAPI provides for

the client informing the server when the image display

window area is visible, when the area is hidden and when the area is destroyed. Such information

B-44

allows the server to decide whether to allocate computing resources for, e.g., rendering and viewing
transformation tasks where the server is running an application program to generate new views of a
multi dimensional object.

15:58-:67 (Detailed Description of a Preferred Embodiment): The present invention allows
a user to have interactive control over application objects such as three dimensional image objects
and video objects. In a preferred embodiment, controls are provided on the external applications'
user interface. In the case of a VIS/panel application, a process, "panel” creates a graphical user
interface (GUI) thru which the user interacts with the data. The application program, VIS, can be
executing locally with the user's computer or remotely on a server, or on one or more different
computers, on the network.

C. Prosecution history

i. '906 prosecution history (08/324,443)

Amendment B, at 25-26 (June 2, 1997) ([PH_001_0000784029] — [PH_001_0000784090]):
None of the cited references show this feature. This feature leads to the additional surprising an[d]
unexpected results over the prior art of allowing the user to employ the hypermedia document as an
interface to control and/or edit data objects which reside on the network server, remotely, from the
client workstation. One of many possible uses of this feature is to allow the user to make
modifications to the original data object, which may remain in place on the network server, and
which is referenced in the hypermedia document, so that others viewing the hypermedia document in
the future from other client workstations will see those modifications.

ii. First reexam (90/006,831)

Response, at 3-4 & 13-14 (May 11, 2004) ([PH_001_0000785359]-[PH_001_0000785379]):

The specification of the ‘906 patent (Applicants” Admitted Prior Art) describes a
browser application, e.g., Mosaic, that functions as a viewer to view HTML documents. There
are several ways to retrieve an HTML document from a network server, all of which require user
interaction with the browser. [Felten, paragraph 8] When the browser is launched on a client
workstation, a home page may be retrieved, a URL saved in a favorites list may be selected, ora
link in a displayed page may be selected. The browser then retrieves a selected HTML published
source document from a network server utilizing a uniform resource locator (URL) that locates
the HTML document on the network and stores a temporary local copy of the HTML source
document in a cache on the client workstation.

The browser application then parses the local copy of the HTML document,
renders the temporary local copy of the HTML document into a Web page , and displays the
rendered Web page in a browser-controlled window. [Felten, paragraph 21] During the
rendering step, the browser may retrieve information external to the local copy of the HTML
document, such as source files referenced by IMG tags, render the images from the retrieved files

B-45

as static graphic images, and insert the images into the Web page of the HTML document, for
display to the user.

There is no further interaction with the source HTML document or the local copy
of the source HTML document subsequent to its being rendered and displayed. If a user believes
the source HTML document has changed (s)he can click a refresh button in the browser GUI
which causes the browser application to retrieve the source HTML document from the network
server again, store a local copy again, parse and render again the newly retrieved local copy of
the source HTML document, and replace the display of the previous version of the retrieved
source HTML document with the subsequently retrieved version in the browser-controlled
window or another window. For example, if the source HTML document were a price list of
goods the user might refresh the document to determine if the prices had changed.

* * * *

As described above, in the write-once-publish-many paradigm of Mosaic and Berners-
Lee only a temporary copy of the source HTML document is stored on the client machine. Ifan
end-user utilized an editor executed on the client-workstation only a locally-cached data file
could be edited. [Felten, paragraph 48] In the client-server model of Mosaic and Berners-Lee,
the end user can't upload changes back to the server, only the Web page author can do that. If

the end-user were to refresh the page the changes made to the locally-cached data would be
overwritten and the display in the browser-controlled window would not change. [Felten,

paragraph 23,24]

Declaration of Edward W. Felton, 11 20-23 (May 7, 2004) (accompanying Applicants'
Response (May 11, 2004)) ([PH_001_0000785437] — [PH_001_0000785464]):

20. Mosaic, and other prior art browsers, executed on a client computer, and
operated by downloading copies of web pages (and other files, such as
embedded static images) over a network from web servers. After
downloading a copy of a file, Mosaic would sometimes keep a copy of
that file in a local cache, on the user’s client computer. Caching allowed
the file to be referenced more quickly if it was needed again later.

21. After downloading a file, Mosaic would parse that file (i.e., analyze its
structure) to determine how the file should be displayed on the screen.
Mosaic would then paint the contents of the file into a browser window.

22. When Mosaic, or another prior art browser, was used to view web pages,
several steps stood between the author of the web page and the user who
was viewing it. First, the file would be copied, at least once and perhaps
more times, while in transit between the web server and the user’s
browser. Second, the file would be written in one format (typically,
‘HTML) but displayed in another form, by rendering the HTML into a
visual representation that would actually be presented to the user.

23, Because these steps stood between the author and the user, there was no
realistic way for the user to edit the web page on the client workstation.
The user did not have access to the version of the page that was distributed
— that version lived on the server, and it wouldn’t make sense to let an
arbitrarv user edit the contents of somebody else’s web page.

B-46

iil. Interference 105,563 McK

BPAI decision, at 19 (May 24, 2007) ([PH_001_0000787484] — [PH_001_0000787530]):

document.” While the term “network’ does not appear in the ‘701 patent, there is
no dispute regarding the meanings of the terms "network" and "network server,"
which are defined as follows in Microsoft Press Computer Dictionary (3d ed. 1997)
(hereinafter 1997 Microsoft Dictionary) at 327, 329, 430:"

network ... n. A group of computers and associated devices that are
connected by communications facilities. . . .

network server . . . n. See Server.

server ...n. 1. On alocal area network (LAN), a computer running
administrative software that controls access to the network and its
resources, such as printers and disk drives, and provides resources to
computers functioning as workstations on the network. 2. On the
Internet or other network, a computer or program that responds to
commands from a client. . . .

Doyle Annotated Copy of Claims, at 2 (July 3, 2007) ([PH_001_0000787570] —
[PH_001_0000787576]):

providing at least one client workstation { Fig. 5, item 200 } and one network server {

Fig. 5, item 204 } coupled to said network environment { Fig. 5, item 206 }. wherein

* * * *

hypermedia document { Fig. 5, item 212 } received over said network { Fig. 5, item

206 } from said server { Fig. 5, item 204 }, wherein the portion of said first

Doyle Annotated Copy of Claims, at 3 (July 3, 2007) ([PH_001_0000787570] —
[PH_001_0000787576]):

Doyle Annotated Copy of Claims, at 4 (July 3, 2007) ([PH_001_0000787570] —
[PH_001_0000787576]):

B-47

document { Fig. 5, item 212 } received over said network { Fig. 5, item 206 }

from said server { Fig. 5, item 204 }, wherein the portion of said first

Doyle Annotated Copy of Claims, at 6 (July 3, 2007) ([PH_001_0000787570] —
[PH_001_0000787576]):

iv. Second reexam (90/007,858)

Applicants' Response, at 7 (Sept. 27, 2007) ([PH_001_0000787028] —
[PH_001_0000787051]):

Mosaic functions as a viewer to view HTML documents. There are several ways
to retrieve an HTML document from a network server, all of which require user interaction with
the browser. [Felten at paragraphs 15, 29: NCSA Mosaic page 463, col. 1, 3™ paragraph]. The
browser then retrieves a selected published source HTML document from a network server by
utilizing a uniform resource locator (URL) that locates the HTML document on the network and
stores a temporary local copy of the HTML source document in a cache on the client
workstation.

The browser application then parses the local copy of the HTML document,
renders the temporary local copy of the HTML document into a Web page , and displays the
rendered Web page in a browser-controlled window. [Felten at paragraph 15; NCSA Mosaic
page 463, Fig. 1 and caption]. During the rendering step, the browser may retrieve information
external to the local copy of the HTML document, such as source files referenced by IMG tags,
render the images from the retrieved files as static graphic images, and insert the images into the
Web page of the HTML document, for display to the user.

B-48

V. '085 prosecution history (10/217,955)

Second Supplemental Amendment, at 19 (Feb. 5, 2009) ([PH_001_0000784613] —
[PH_001_0000784697]):

wherein the network environment comprises at least one client workstation
and one network server coupled fo the network enviromment,

EXAMPLE SUPPORT:

8:58 “In FIG. 5, client computer 200 communicates with server computer 204
via network 206. Both client computer 200 and server computer 204 use a
network protocol layer to communicate with network 206. In a preferred
embodiment, network 206 is the Internet and the network protocol layers are

TCP/IP. Other networks and network protocols may be used.”

Second Supplemental Amendment, at 29 (Feb. 5, 2009) ([PH_001_0000784613] —
[PH_001_0000784697]):

wherein the network environment comprises at least one client workstation and one network
server conpled 1o the network envivonment,
EXAMPLE SUPPORT:
8:58 “In FIG. 5, clhiemt computer 200 conmmunicates with server computer 204
via network 206, Both client computer 200 and server computer 204 use a
network protocol layer to communicate with nerwork 206, In a preferred
embodiment, network 206 is the Intermet and the network protocol lavers are

TCPAP. Other networks and network protocols may be used.”

Second Supplemental Amendment, at 36-37 (Feb. 5, 2009) ([PH_001_0000784613] -
[PH_001_0000784697]):

B-49

communicating via the network server with ai least one client workstation
over said network
EXAMPLE SUPPORT:
4:44 “In the first case, where computer 108 issues a request for information
from server A, computer 108 is a "client” making a request of information
from server A, Server A may have the information in a storage device that is
local to Server A or server A may have to make requests of other computer
systems to obtain the information, User 110 may also request information via
their computer 108 from a server, such as server B located at a remote
geographical location on the Internet.”
5:6 “Thus, in this example, computer 108 issues a command that includes the
address of document 14, This command is routed through server A and
Internet 100 and eventually is received by server B, Server B processes the
command and locates document 14 on its local storage. Server 14 then
transfers a copy of the document back to client 108 via Internet 100 and server
A After client computer 108 receives document 14, it is displayed so that user
110 may view ir, ™
8:58 “In FIG. 3, client computer 200 communicates with server computer 204
via network 206. Both client computer 200 and server computer 204 use a

network protocol layer to communicate with network 206,

9:15 “Browser client 208 is a process that a user of client computer 200
invokes in order to access various data objects, such as hypermedia
documents, on network 206. Hypermedia document 212 shown within client
computer 200 is an example of a hypermedia document, or object, that a user

has requested aceess to.”

Second Supplemental Amendment, at 37 (Feb. 5, 2009) ([PH_001_0000784613] —
[PH_001_0000784697]):

in grder to cawse said client workstation to.

receive, over said network environment from said server,

EXAMPLE SUPPORT:

5:10 “Server 14 then transfers a copy of the document back to client 108 via
Internet 100 and server A, After client computer 108 receives document 14, it
15 displayed so that user 110 may view it.”

9:20 “In this example, hypermedia document 212 has been retrieved from a
server connected to network 206 and has been loaded into, e.g., client

computer 200's RAM or other storage device, ™

B-50

Second Supplemental Amendment, at 43 (Feb. 5, 2009) ([PH_001_0000784613] —
[PH_001_0000784697]):

wherein said network enviromment has at least one client workstation and one
network server coupled to a network enviromment, the method comprising:

EXAMPLE SUPPORT:

8:58 “In FIG. 5, client computer 200 communicates with server computer 204

via network 206, Both client computer 200 and server computer 204 use a

network protocol laver to communicate with network 206, In a preferred

embodiment, network 206 is the Internet and the network protocol layers are

TCP/AP. Other networks and network protocels may be used.”

Second Supplemental Amendment, at 49 (Feb. 5, 2009) ([PH_001_0000784613] —
[PH_001_0000784697]):

CLAIM 31. One or more computer readable media encoded with saftware
comprising an executalle application for wse in a svstem having ai least one client
workstation and one network server

EXAMPLE SUPPORT:

8:58 “In FIG. 5, client computer 200 communicates with server computer 204

via metwork 206, Both client computer 200 and server computer 204 use a

network protocol layer to communicate with network 206, In a preferred

embodiment, network 206 is the Internet and the network protocol layers are

TCP/IP. Other networks and network protocols may be used.”

B-51

Second Supplemental Amendment, at 55-57 (Feb. 5, 2009) ([PH_001_0000784613] -
[PH_001_0000784697]):

CLAIM 35 A merhod for serving digival informarion in a compuier netwaork
gnvironment, said method comprising:

communicating vig a network server with at least one client workstation over
said computer network enviromment in order to canse sald client workstation to:

EXAMPLE SUPPORT:

4:44 “In the first case, where computer 108 issues a request for infonmation

from server A, computer 108 is a "client” making a request of information

from server A, Server A may have the information in a storage device that is

local to Server A or server A may have to make requests of other computer

systerns 1o obrain the information, User 110 may also request information via

their computer 108 from a server, such as server B located at a remote
geographical location on the Internet.”

5:6 “Thus, in this example, computer 108 issues a command that includes the
address of document 14, This command is routed through server A and
Internet 100 and eventually is received by server B, Server B processes the
command and locates document 14 on its local storage. Server 14 then
wansfers a copy of the document back to client 108 via Internet 100 and server
A, After client computer 108 receives document 14, it is displayed so that user
110 may view it, ™

8:58 “In FIG. 5, client computer 200 communicates with server computer 204
via network 206, Both client computer 200 and server computer 204 use a
network protocol layer to communicate with network 2067

9:15 “Browser client 208 is a process that a user of client computer 200
invokes in order to access various data objects, such as hypermedia
documents, on network 206, Hypermedia document 212 shown within client
computer 200 is an example of a hypermedia document, or object, that a user

has requested access to.”

B-52

Second Supplemental Amendment, at 59 (Feb. 5, 2009) ([PH_001_0000784613] —
[PH_001_0000784697]):

wherein said compurer netawork enviromment has at least said client
waorkstation and said network server coupled 1o the compuiter nefwork environment,

EXAMPLE SUPPORT:

8:58 “In FIG. 5, client computer 200 communicates with server computer 204

via network 206. Both client computer 200 and server computer 204 use a

network protocol layer to communicate with network 206, In a preferred

embodiment, network 206 is the Internet and the network protocol layers are

TCP/IP. Other networks and network protocols may be used.”

Second Supplemental Amendment, at 63 (Feb. 5, 2009) ([PH_001_0000784613] —
[PH_001_0000784697]):

comprises ar least one client workstation and one remote network server
EXAMPLE SUPPORT:

727 “In one application, high resolution three dimensional images are
processed in a distributed manner by several computers located remotely from
the user's client computer.™

8:58 "In FIG. 5, client computer 200 communicates with server computer 204
via network 200, Both client computer 200 and server computer 204 use a
network protocol layer to communicate with network 206. In a preferred
embodiment, network 206 is the Internet and the network protocol layers are
TCP/P. Other networks and network protocols may be used. For ease of
illustration, additional hardware and software layers are not shown in FIG. 5. "
10:61 “application server 220 performs the mathematical calculations to
compute a new view for the embryvo image. Once the new view has been
computed, the image data for the new view is sent over network 206 to
application client 210 so that application client 210 can update the viewing

window currently displaying the embryo image,”

B-53

Second Supplemental Amendment, at 70 (Feb. 5, 2009) ([PH_001_0000784613] —
[PH_001_0000784697]):

having a network server conpled 1o said computer network envivonment,
EXAMPLE SUPPORT:

8:58 “In FIG. 5, client computer 200 communicates with server computer 204
via network 206, Both client computer 200 and server computer 204 use a
network protocol layer to communicate with network 206. In a preferred
embodiment, network 206 is the Internet and the network protocol lavers are

TCHIP. Other networks and network protocols may be used.”

Second Supplemental Amendment, at 77-78 (Feb. 5, 2009) ([PH_001_0000784613] -
[PH_001_0000784697]):

with the nerwark server coupled fo said compurer network enviromment,
witerein said computer network environment las at least said client workstation and said
network server coupled ro the compuner network envirenment,

EXAMPLE SUPPORT:

8:58 “In FIG. 5, client computer 200 communicates with server computer 204

via network 206. Both client computer 200 and server computer 204 use a

network protocol layer to communicate with network 206, In a preferred

embodiment, network 206 is the Internet and the nerwork protocol layers are

TCPIP. Other networks and network protocols may be used.”

d. Cited prior art

Ang et al., "Integrated Control of Distributed Volume Visualization Through the World-
Wide-Web." Proceedings of Visualization 1994, IEEE Press, Washington, D.C., October 1994, § 3
(e.g., [PH_001_0000759332] — [PH_001_0000759351]): HTTP servers respond to requests from
clients, e.g. Mosaic, and transfer hypertext documents. Those documents may contain text and
images as intrinsic elements and may also contain external links to any arbitrary data object (e.g.
audio, video, etc...). Mosaic may also communicate with other Internet servers, e.g. FTP, either
directly - translating request results into HTML on demand - or via a gateway that provides
translation services. As a W3 client, Mosaic communicates with the server(s) of interest in response
to user actions (e.g. selecting a hyperlink), initiating a connection and requesting the document
specified by the URL. The server delivers the file specified in the URL, which may be a HTML
document or a variety of multimedia data files (for example, images, audio files, and MPEG movies)
and Mosaic uses the predefined SGML DTD for HTML to parse and present the information.

2. Defendants' extrinsic evidence

Microsoft Press Computer Dictionary 75 (2d ed.1994) [PA-0000333411]:

B-54

client/server architecture An arrangement used on local area networks that
makes use of "distributed intelligence" to treat both the server and the individual
workstations as intelligent, programmable devices, thus exploiting the full
computing power of each. This is done by splitting the processing of an
application between two distinct components: a "'front-end" client and a
""backend server. The client component, itself a complete stand-alone personal
computer (vs. the "dumb™ terminal found in older architectures such as the time-
sharing used on mainframe), offers the user its full range of power and features
for running applications. The server component, which can be another personal
computer, a minicomputer or a mainframe enhances the client component by
providing the traditional strengths offered by minicomputers and mainframes in
time-sharing environment: data management information sharing between clients
and sophisticated network administration and security features. The advantage of
the client/server architecture over older architectures is that the client and server
machines work together to accomplish the processing of the application being
used. Not only does this increase the processing power available, but it also uses
that power more efficiently. The client portion of the application is typically
optimized for user interaction, whereas the server portion provides the centralized
multiuser functionality.

Microsoft Press Computer Dictionary 268 (2d ed.1994) [PA-0000333422]:

network A group of computers and associated devices that are connected by
communications facilities. A network can involve permanent connections, such
as cables, or temporary connections made through telephone or other
communications links. A network can be as small as a local area network
consisting of a few computers, printers, and other devices, or it can consist of
many small and large computers distributed over a vast geographic area. Small or
large, a computer network exists to provide computer users with the means of
communicating and transferring information electronically. Some types of
communication are simple user-to-user messages; others, of the type known as
distributed processes, can involve several computers and the sharing of workloads
or cooperative efforts in performing a task.

Microsoft Press Computer Dictionary 269 (2d ed.1994) [PA-0000333423]:
network server See server

Microsoft Press Computer Dictionary 355 (2d ed.1994) [PA-0000333426]:
server On a local area network, a computer running administrative software
that controls access to all or part of the network and its resources (such as disk
drives or printers). A computer acting as a server makes resources available to

computers acting as workstations on the network. Compare client; see also
client/server architecture.

B-55

D. "'executable application""

Claim Term(s)

Defendants' Proposed Construction

Eolas's Proposed Construction

executable
application

a compiled native binary program,
designed to help users perform certain
tasks, that remains discrete and
separate from the browser application,
and is not the operating system, a
utility, or a library

any computer program code, that is
not the operating system or a utility,
that is launched to enable an end-user

to directly interact with data

1.

Defendants' intrinsic evidence

a. Claims

In the following chart, the term(s) for construction appear in all the claims marked with an
"x." The letter "m" indicates a method claim, and "{6" indicates a claim that the Defendants contend
includes limitations subject to § 112, | 6.

'906 patent ‘985 patent
m | m m m
mi m @ m 76|76 |96 m |6 |96 |96 96 |76 m |6 |m
1 |14 |5 |6 |9 (101 |16|20 (24|28 (32|36 40|44
| executable application X | X | X | X [X |X X | X | X | X | X | X | X [X

Title: Distributed hypermedia method [and system] for automatically invoking external

b. Specification (all cites to '906 patent)

application providing interaction and display of embedded objects within a hypermedia document

8:56-:57 & fig. 5 (Detailed Description of a Preferred Embodiment): FIG. 5 is an illustration
of an embodiment of the invention using a client computer, server computer and a network.

8:66—:67 (Detailed Description of a Preferred Embodiment): Client computer 200 includes

processes, such as browser client 208 and application client 210.

B-56

9:27-:40 & fig. 5 (Detailed Description of a Preferred Embodiment): In FIG. 5, hypermedia
document 212 includes an embedded program link at 214. Embedded program link 214 identifies
application client 212 [sic: 210] as an application to invoke. In this present example, the
application, namely, application client 210, resides on the same computer as the browser client 208
that the user is executing to view the hypermedia document. Embedded program link 214 may
include additional information, such as parameters, that tell application client 210 how to proceed.
For example, embedded program link 214 may include a specification as to a data object that
application client 210 is to retrieve and process.

9:41-:45 (Detailed Description of a Preferred Embodiment): When browser client 208
encounters embedded program link 214, it invokes application client 210 (optionally, with
parameters or other information) and application client 210 executes instructions to perform
processing in accordance with the present invention.

9:66-10:16 (Detailed Description of a Preferred Embodiment): After application client 210
receives the multidimensional data object 216, application client 210 executes instructions to
display the multidimensional embryo data on the display screen to a user of the client computer 200.
The user is then able to interactively operate controls to recompute different views for the image
data. In a preferred embodiment, a control window is displayed within, or adjacent to, a window
generated by browser client 208 that contains a display of hypermedia document 212. An example
of such display is discussed below in connection with FIG. 9. Thus, the user is able to interactively
manipulate a multidimensional image object by means of the present invention. In order to make
application client 210 integral with displays created by browser client 208, both the browser client
and the application client must be in communication with each other, as shown by the arrow
connecting the two within client computer 200. The manner of communication is through an
application program interface (API), discussed below.

10:17-:27 (Detailed Description of a Preferred Embodiment): Browser client 208 is a
process, such as NCSA Mosaic, Cello, etc. Application client 210 is embodied in software

B-57

presently under development called ""VIS' and ""Panel"* created by the Center for Knowledge
Management at the University of California, San Francisco, as part of the Doyle Group's distributed
hypermedia object embedding approach described in "Integrated Control of Distributed VVolume
Visualization Through the World-Wide-Web," by C. Ang, D. Martin, M. Doyle; to be published in
the Proceedings of Visualization 1994, IEEE Press, Washington, D.C., October 1994.

11:17-:39 & fig. 6 (Detailed Description of a Preferred Embodiment): FIG. 6 shows yet
another embodiment of the present invention. FIG. 6 is similar to FIG. 5, except that additional
computers 222 and 224 are illustrated. Each additional computer includes a process labeled
"Application (Distributed).” The distributed application performs a portion of the task that an
application, such as application server 220 or application client 210, perform. In the present
example, tasks such as volume rendering may be broken up and easily performed among two or
more computers. These computers can be remote from each other on network 206. Thus, several
computers, such as server computer 204 and additional computers 222 and 224 can all work together
to perform the task of computing a new viewpoint and frame buffer for the embryo for the new
orientation of the embryo image in the present example. The coordination of the distributed
processing can be performed at client computer 200 by application client 210, at server computer
204 by application server 220, or by any of the distributed applications executing on additional
computers, such as 222 and 224. In a preferred embodiment, distributed processing is coordinated
by a program called ""VIS™ represented by application client 210 in FIG. 6.

 GLIENT COMPUTER /200
- ™
annwsen j __ AODITIONAL COMPUTER -
CLIENT APPLICATION d
Wiy (CLIENT) APPLICATION
— _/ (tmsrmaumm)
L NETWORK PROTOCOL LAYER) —
NETWORK 206
ADDITIONAL COMPUTER e SERVER COMPUTER <208
(NETWORK PROTOCOL LAYER
APPLIGATION ol
SERVER APPLICATION
(DISTRIBUTED) PROCESS (“seven)
-) C)
FIG 6. A8 . /J

12:9-:27 (Detailed Description of a Preferred Embodiment): The various processes in the
system of the present invention communicate through a custom API called Mosaic/External
Application Program Interface MEAPI. The MEAPI set of predefined messages includes those
shown in Table I.

B-58

TABLE 1

Message Function Message Name

Messages from server to client:

1. Server Update Done XtNrefreshNotify

2. Server Ready XiNpanelStartNotify

3. Server Exiting XtNpanelExitNotity
Messages from client to server:

4, Area Shown XtNmapNotify

5. Area Hidden KiNunmapNotily

6. Area Destroyed XtNexitNotify

12:50-:53 (Detailed Description of a Preferred Embodiment): Next, a discussion of the
software processes that perform parsing of a hypermedia document and launching of an application
program is provided in connection with Table Il and FIGS. 7A, 7B, 8A and 8B.

12:54—:65 (Detailed Description of a Preferred Embodiment): Table Il, below, shows an
example of an HTML tag format used by the present invention to embed a link to an application
program within a hypermedia document.

TABLE II

<EMBED
TYPE = “type”
HREF = “href™
WIDTH = width
HEIGHT = height

13:2—:18 (Detailed Description of a Preferred Embodiment): Examples of values for the
TYPE element are "application/x-vis" or "video/mpeg". The type "application /x-vis" indicates that
an application named ""x-vis™ is to be used to handle the object at the URL specified by the HREF.
Other types are possible such as "application/x-inventor", "application/postscript™ etc. In the case
where TYPE is "application/x-vis" this means that the object at the URL address is a three
dimensional image object since the program **x-vis™ is a data visualization tool designed to operate
on three dimensional image objects. However, any manner of application program may be
specified by the TYPE element so that other types of applications, such as a spreadsheet program,
database program, word processor, etc. may be used with the present invention. Accordingly, the
object reference by the HREF element would be, respectively, a spreadsheet object, database object,
word processor document object, etc.

14:64—-:67 & fig. 8A (Detailed Description of a Preferred Embodiment): FIG. 8Aisa

flowchart for routine HTMLwidget. HTMLwidget creates display data structures and launches an
external application program to handle the data object specified by the URL in the EMBED tag.

B-59

280

ENTER

) - 282
CREATE DRAWING
AREA WIDGET

; 284

’ GREATE PIXMAP

4

LAUNGH EXTERNAL
APPLICATION

/292
| LAUNCH VIDED

PLAYER

I

FI1G. 8A.

15:9-:21 (Detailed Description of a Preferred Embodiment): At step 286 a check is made as
to whether the type attribute of the object, i.e., the value for the TYPE element of the EMBED tag, is
an application. If so, step 290 is executed to launch a predetermined application. In a preferred
embodiment an application is launched according to a user-defined list of application
type/application pairs. The list is defined as a user-configurable XResource as described in "Xlib
Programming Manual.” An alternative embodiment could use the MIME database as the source of
the list of application type/application pairs. The routine "vis_start_external_application" in file
HTMLformat.c is invoked to match the application type and to identify the application to launch.

15:22-:38 (Detailed Description of a Preferred Embodiment): The external application is
started as a child process of the current running process (Mosaic), and informed about the window
ID of the DrawingArea created in HTMLformat. The external application is also passed
information about the ID of the pixmap, the data URL and dimensions. Codes for communication
such as popping-up/iconifying, start notification, quit notification and refresh notification with
external applications and DrawingArea refreshing are also added. Examples of such codes are (1)
"setup/start™ in vis_register_client and vis_get panel_window in HTMLwidgets.c; (2) "handle
messages from external applications” in vis_handle panel_msg in HTMLwidgets.c; (3) "send
messages to external applications™ in vis_send_msg in HTMLwidgets.c; (4) "terminate external
applications" in vis_exit in HTMLwidgets.c which calls vis_send_msg to send a quit message; and
(5) "respond to refresh msgs" in vis_redraw in HTMLwidgets.c.

15:58-16:8 (Detailed Description of a Preferred Embodiment): The present invention
allows a user to have interactive control over application objects such as three dimensional image
objects and video objects. In a preferred embodiment, controls are provided on the external
applications’ user interface. In the case of a VIS/panel application, a process, *"panel’ creates a

B-60

graphical user interface (GUI) thru which the user interacts with the data. The application program,
VIS, can be executing locally with the user's computer or remotely on a server, or on one or more
different computers, on the network. The application program updates pixmap data and transfers
the pixmap data (frame image data) to a buffer to which the browser has access. The browser only
needs to respond to the refresh request to copy the contents from the updated pixmap to the
DrawingArea. The Panel process sends messages as "Msg" sending performed by routines such as
vis_send_msg and vis_handle panel_msg to send events (mousemove, keypress, etc.) to the external
application.

16:8—:28 & fig. 9 (Detailed Description of a Preferred Embodiment): FIG. 9 is a screen
display of the invention showing an interactive application object (in this case a three dimensional
image object) in a window within a browser window. In FIG. 9, the browser is NCSA Mosaic
version 2.4. The processes VIS, Panel and VRServer work as discussed above. FIG. 9 shows
screen display 356 Mosaic window 350 containing image window 352 and a portion of a panel
window 354. Note that image window 352 is within Mosaic window 350 while panel window 354 is
external to Mosaic window 350. Another possibility is to have panel window 354 within Mosaic
window 350. By using the controls in panel window 354 the user is able to manipulate the image
within image window 352 in real time do perform such operations as scaling, rotation, translation,
color map selection, etc. In FIG. 9, two Mosaic windows are being used to show two different views
of an embryo image. One of the views is rotated by six degrees from the other view so that a
stereoscopic effect can be achieved when viewing the images. Communication between Panel and
VIS is via "Tooltalk™ described in, e.g., ""Tooltalk 1.1.1 Reference Manual," from SunSoft.

350 35
. ht
/] NCSA Mosaic: Document Vit]
File Options Navigate Annotate Fila_Options Novigate Annatale
Documant TH{ Visual Document Titke Visual Embrys Project- Interactive |
Docurnent URL[http: /www. Document URL hitp://www ltbrary.uost.adu/publia/CK|
Low cost Worksta... Low cost Workstatlon ... o
I =
/‘ _-"-l-.‘_\‘
Demanstrat_.... Demonstration: Interactive visualizotion of o 7+ W?Ad D 1
embryo dataset. Intensity
I N
File Mode Qualty Options Sorver
[—
Range X
-
i o— |35
X Range Y
352 4 Clipping Plane | O———
Depth 000 Range Z
‘ ololo| ==
Scale .00
\ Capacity(%/s)
- - el 1001
This projec..... This projeci will serve the dual purpose of ... [~
| /_r____
FIG 9 [Boci]FormudromdReloadOpen [Suve As]Cionded [Boc]ForwadHome]Retood Dipen [Save as]CiondhvewWindolClose winde] Density
. . [|

[

16:28-:46 & fig. 10 (Detailed Description of a Preferred Embodiment): FIG. 10 is an
illustration of the processes VIS, Panel and VRServer discussed above. As shown in FIG. 10, the

B-61

browser process, Mosaic, communicates with the Panel process via inter-client communication
mechanisms such as provided in the X-Window environment. The Panel process communicates
with the VIS process through a communications protocol (ToolTalk, in the preferred embodiment)
to exchange visualization command messages and image data. The image data is computed by one
or more copies of a process called VRServer that may be executing on remote computers on the
network. VRServer processes respond to requests such as rendering requests to generate image
segments. The image segments are sent to VIS and combined into a pixmap, or frame image, by
VIS. The frame image is then transferred to the Mosaic screen via communications between VIS,
Panel and Mosaic. A further description of the data transfer may be found in the paper "Integrated
Control of Distributed Volume Visualization Through the World-Wide-Web," referenced above.

MOSAIC PANEL

INTER-CLIENT
COMMUNICGATION ==

| NN

VISUALIZATION | IMAGE
COMMANDS | DATA

=

HIS
I 1T 1T 1 L1 I T 1T 1
RENDERING IMAGE
REQUESTS| | SEGMENTS
vRSERvER{S}
FIG. /0.
C. Prosecution history

i. '906 prosecution history (08/324.,443)

Amendment A, at 17 (Aug. 8, 1996) ([PH_001_0000783879] — [PH_001_0000783928]):

The cperation of Ness scripts is illustrated in the
"Extended Birthday Card" example at pages 30 and 31. Note that
Ehe cbject named is: extend "visible cake®. BHoth the executable
script and the object to be manipulated are within the document.

B-62

In view of the above, it is believed that the claims
are not obvious over the disclosed prior art in view of Hansen.
There ia no disclosure in the references, singly or in
combination, of displaying a hypermedia decument in a first
window ineluding a text format specifying the location of an
external ebiect and identifying an external executable
application or of invoking the external application to display
and process the external cbject within the first window.

The system of Ness provides for interaction with an
object embedded in a document by executing code embedded in the
document . However, there is no teaching or suggestion of the
claimed system of utilizing a browser to invoke an external
application identified by an original document, being displayed
by a browser within a first windew, to display and process an
external objeck within the first window.

Amendment B, at 15 (June 2, 1997) ([PH_001_0000784029] — [PH_001_0000784090]):

The Examiner relies upon Hansen's teaching that, in a
programmer’s source code editor, a programmer should have the
power to organize various fragments of the program for perusal by
a reader, in order to aid the reader in comprehending the program
[p256 ool.l lat paragraph]. The Examiner then states: "Hence, it
would have been cbvious for one of ordinary skill in the art to
provide external application to display and process the ocbject
within the browser-controlled window because it would have
improved the system by reducing the display and aiding the reader
comprehension of the hypermedia document.”

Howewver, there is no suggestion in Hansen that an
executable application external to the programming editor
envircnment should be displayed and interactively processed
within a document window. There is no discussion of extermal
application programs at all. The fact that Hansen teaches that
it is good to graphically organize the sub-zlements of a document
for better comprehension would not suggest to the person of skill
in the art to combine parts of one reference, Khoyi’s ocbject data
processing system, with ancther reference in order to mset
Applicants’ novel claimed combination.

Amendment B, at 16 (June 2, 1997) ([PH_001_0000784029] — [PH_001_0000784090]):

B-63

Turning first to modifying Moesaic, to combine these
references as proposed would have reguired nowvel and unobvious
inventive steps. One must first consider that Mosaic is an
application program which operates on any one of three operating
syatems: UNIX, Windows, and the Mac 05. Much of the current
commercial success of the World Wide Web is due to this cross-
platform compatibility of Web browsers. The system taught by
Khoyi, on the other hand, is a fully-independent and proprietary
operating system. As i1s stated in section 1.5 of Khoyi, "The
operating system of the present invention differs from the
traditional operating system in that, firastly, the actual
functions and services performed by the operating system are
reduced to the minimom ... functions and services which would
normally be performed by an operating system, together with many
functions and operations which wagld normally be performed by the
applications programs themselvea, are performed by libraries of
routines [pack routines]. Examples of services and functions
performed by pack routines include, but are not limited to,
input/output operations, graphics/text and display operations,
file access and management operaticns, and mathematical

operations. "

Amendment B at 17, 18-19 (June 2, 1997) ([PH_001_0000784029] -
[PH_001_0000784090]):

B-64

above, the external applications still could not be interacted
with from within the Mosalc document, as required by the claimed
invention, since Khoyi must launch any external application into

a separate window before the reader can interactively control it.

Amendment B at 24 (June 2, 1997) ([PH_001_0000784029] — [PH_001_0000784090]):

Heither Mosaic, nor Ehoyi, nor Hansen shows an
executable application which is external te a document being
displayed and interactively processed within that document’s
display window, nor do they show such an application where said
executable applicaticon is interactively controlled on said client
workstation by interprocess communications between the external
application and the browser. This feature produces surprising
and unexpected results over the prior art, since it allows the
reader to perform all necegsary interactive functione with
external applications without directing his or her attention away
from the hypermedia document. Additional surprising and
unexpected results are yielded by the fact that the hypermedia
browser application can have its functiscnaliey extended without
making any changes te the hypermedia browser’s object code.
Further, surprising and unexpected results come from the ability
of the document author to design interactive hypermedia document
content that displays a similar look and feel to the reader,
regardless of what the underlying operating system or computer
platform the browser program is being executed upon.

Amendment B at 25 (June 2, 1997) ([PH_001_0000784029] — [PH_001_0000784090]):

MNone of the cited references show thiszs feature. This
feature produces the additional unexpected and surprising results
over the prior art of allewing the browser application and the
external application to precisely coordinate their activity, such
as caching of the external applicaticon and shutting down its
execution when no longer needed, entirely under the contrel of
the browser application, in a manner that is transparent to the
user. This drastically clarifies and simplifies the user's usse
of the hypermedia document and its related embedded applications.

Applicants' Response, at 12-14 (Dec. 23, 1997) ([PH_001_0000784131] -
[PH_001_0000784162]):

B-65

As Koppolu states, "the inveking of a server application
can be relatively slow when the server application executes as a
separate process from the container application. In certain
situations, this slowness may be particularly undesirable, such
as, for example, if the user wants toc print a compound document
that includes many containee objects.™ Such a problem is solved
in the Koppelu system by providing special code that is loaded
when the word processor application is launched, where that code
provides a subset of the functionality of the full server
application. An example would be code which allows printing of
embedded or linked spreadsheet data, without having to start up
the spreadsheet application itself., This code is called an
"oebject handlar. "

Brockeschmidt comments on cbject handlers (Chapter 11,
gection: "Why Use a Handler?"): "There are two main reasens for
implementing an object handler to work with your local server:
speed and portability. First, an object handler can generally
satisfy most reguests a container might make on an object such as
drawing an object on a specific device or making a copy of the
object in another IStorage. Object handlers may also be capable
of reloading a linked file and providing an updated presentation
te the container. Object handlers do not, however, provide any
sort of editing facilities for the object iteelf.®

B-66

Brockschmidt goes on to describe the problems associated
with use of both cbject handlers and in-process servers. These
include 1) limited interoperability, even acroas different
versions of OLE and different versions of Intel processors, and
2) the lack of message loops in DLLs, drastically limiting use of
interactive capabilities such as keyboard accelerators.

According to Brockschmidrt, "The other technical issue of an
in-process server specifiecally (but not a handler) is that since

there is nothing that can ever run stand-alone (like a local
server EXE can) there is no possibility to provide linked
objects." Brockschmidt explains this by pointing out that
in-precess DLLe cannot access files external to the compound
document file. This limits the use of in-process servers to
working with embedded (encapsulated) data stored within the
container document file, rather than linked external data files.

B-67

To repeat, Brockschmidt clearly states that "an cbject
handler can generally satisfy moat requests a container might
make on an object such as drawing an cobject on a specific device
or making a copy of the object in another IStorage. Object
handlers may also be capable of reloading a linked file and
providing an updated presentation to the container. Object
handlers do not, however, provide any sort of editing facilities
for the object itself." Brockschmidt goes on to emphasize: "When
an end-user cpens the document in which the cbject lives and the
container applicatcion loads the cbject, it transitions to the
loaded state where it may be seen and printed but not edited or
otherwize manipulated in any way. Only when the object is
activated does it transition to the running state where the user
may perform any number of actiocns on that cbject, such as playing
or editing the data."

Applicants' Response, at 20-21 (Dec. 23, 1997) ([PH_001_0000784131] —
[PH_001_0000784162]):

Comparing OLE binary data formats to Mosalc’'s ASCII text
tag mechanism, from the point of view of parsing, would be
gimilar to comparing machine-code programming to the use of a
higher level programming language. Similar to OLE's document
data files, machine cede programs are stored in a binary data
gtructure format that is specifically tailored to the computer
procgesgor architecture. They are espacially efficient, since
they do not reguire a parser for execution.
tag-parsing mechanism, however, is more like using a higher-level
programming language. What is given up by Mosaic in terms of
run-time performance is recouped through ease of document

develcpmant, simplification of browser design, and cross-platform
compatibility for document viewing.

Notice of Allowability, at 2-3 (Mar. 30, 1998) ([PH_001_0000784167] —
[PH_001_0000784172]):

The claims are allowable over the prior art of record
because the prior art does not teach nor reasonably suggest the
claimed combination of a browser, while parsing a hypermedia

B-68

The examiner agrees that the claimed external executable
application i3 not a code library extension nor object handler
(e.g. windows dll and OLE) as pointed ocut in applicant’s argument

(paper #19 pages 12=14).

il. First reexam (90/006,831)

Notice of Intent to Issue Ex Parte Reexamination Certificate, at 8 (Sept. 27, 2005)
([PH_001_0000785905] — [PH_001_0000785981]):

In the case of the Raggett I “ismap” attribute, Raggett explicitly discloses:

"“The /smap attribute causes the browser to send mouse clicks on the fiqure,
back to the server using the selected coordinate scheme” [see Raggett I,
page 13, 1% sentence under “Active areas”].

As is clearly indicated by Raggett I, it is the browser application that
responds to the mouse click that occurs over an active region identified by a

coordinate scheme superimposed over a static graphical image. Thus, in the
case of Raggett I and active map areas in general (e.g., using the “ismap"

attribute and "<figt " tag), it is the browser application that provides the
interactivity.

In contrast, the instant ‘906 claims explicitly require the “interactive
processing” to be enabled by an “executable application” that is a separate

application from the browser application.

Notice of Intent to Issue Ex Parte Reexamination Certificate, at 54-56 (Sept. 27, 2005)
([PH_001_0000785905] — [PH_001_0000785981]):

B-69

ITI. VIOLA SCRIPTS (OR CORRESPONDING
BYTE-CODE FORMS) DO NOT ANTICIPATE
NOR FAIRLY SUGGEST THE EXTERNAL
“EXECUTABLE APPLICATION” AS CLAIMED
IN THE "906 PATENT.

The Examiner finds that the Viola code publication does not fairly teach nor
suggest that the hrowser_ automatically invokes an executabie application,
external to the hypermedia document, to display the object and enable
interactive processing of the object, when the instant *906 patent claims 1
and 6 are properly accorded the broadest reasonable interpretation
consistent with the specification, where such inl:er;pretatlun is also consistent
with the interpretation that those skilled in the art would reach. In re Hyatt,

- 211 F.3d 1367, 1372, 54 USPQ2d 1664, 1667 (Fed. Cir. 2000); In re
Cortright, 165 F.3d 1353, 1359, 49 USPQ2d 1464, 1468 (Fed. Cir. 1999).

While expert witnesses and dictionaries (considered as extrinsic evidence)
may differ regarding the proper construction of the instant claimed
“executable application”, the Central Processing Unit (i.e., CPU or

microprocessor) found in every computer system has only a single, precisely
defined interpretation as to what constitutes an “executable application.”
When the CPU initiates a “fetch and execute” cycle, the program counter is
loaded with the address of the next executable instruction. To be
“executable” the contents of the memory location pointed to by the program
counter must contain an instruction in binary form that is a member of the
native instruction set of the microprocessor (i.e., a binary machine language
instruction). The binary representation of the precise portion of the machine
language instruction that determines what kind of action the computer
should take (e.qg., add, jump, load, store) is referred to as an operation code
(i.e., OP code). From the perspective of the CPU, if a recognizable machine
language instruction (i.e., a native CPU instruction) is not found within the
memory location pqinted to by the program counter, the computer will
crash.

B-70

lThe Viola system uses “C-like” Viola scripts that must be INTERPRETED by
the browser and then TRANSLATED or CONVERTED into binary native
executable machine code that can be understood by the CPU. Alternately,
the Viola script is precompiled to intermediate byte-code form and the byte-
code is interpreted (i.e.,_ translated) into binary native executable machine
code at runtime. This extra step -ﬁf translation results in an unavoidable
performance penalty, as interpreted applications run much slower than
compiled native binary executable applications.

Accordingly, the “C-like” Viola scripts (or corresponding byte-code
representations) are not “executable applications” from the perspective of
the CPU, which is the only perspective that really matters at runtime. A

conventional CPU is only capable of processing binary machine language
instructions from its own native instruction set. '

Without an intermediate translation step performed by an interpreter
component of the Viola browser, a Viola script (or corresponding byte-code

representation) cannot be processed as an executable application by the
CPU.

Significantly, the instant ‘906 specification is silent regarding the use of
applications that rely upon scripts that must be interpreted before they can
be executed. The instant ‘906 specification is silent with respect to
interpreting code prior to execution. The instant *906 specification is silent
with respect to the use of byte-code intermediate forms.

Notice of Intent to Issue Ex Parte Reexamination Certificate, at 60 (Sept. 27, 2005)
([PH_001_0000785905] — [PH_001_0000785981]):

B-71

V. EVEN ASSUMING, ARGUENDO, THAT
“INTERPRETING A SCRIPT” (OR
CORRESPONDING BYTE-CODE
REPRESENTATION) MAY BE BROADLY
CONSIDERED AS EQUIVALENT TO
“EXECUTING AN APPLICATION”", SUCH
INTEPRETATION MERGES THE BROWSER
AND THE “EXECUTABLE APPLICATION”
INTO ONE PROGRAM THAT FAILS TO
TEACH EVERY ELEMENT OF THE ‘906
PATENT CLAIMS.

Assuming arguerido that one adopts the alternate broader modern
construction where “interpreting a script” (or interpreted the corresponding

_ byte-code representation) may be considered as equivalent to “executing an
application,” then the Viola script arguably becomes an integral component
of the Viola browser that parses, interprets (i.e. translates), and executes
each line of the script (or corresponding byte-code). In such case, the
browser and the “executable application” merge into one program, and
therefore cannot meet the requirement for a discrete “browser application”
and a discrete “executable application” as claimed by the instant '906 patent
[see claims 1 and 6].

ii. '985 prosecution history (10/217,955)

Notice of Allowability, at 2 (Mar. 20, 2009) ([PH_001_0000784728] -
[PH_001_0000784734]):

The following is an examiner’s statement of reasons for allowance: the claims are
allowable as the claims contain the subject matter deemed allowable in both Re exam
90/006,831 and Re exam 90/007,838 for the same reasons as set forth in the NIRC of

the two Re exams.

2. Defendants' extrinsic evidence

a. Dictionaries

Barron's Dictionary of Computer Terms 119 (2d ed.1989) (“execute™) [PA-0000333370]:

B-72

EXECUTE To execute an instruction is to do what the instruction
says to do. A computer alternates between a fetch cycle, when it
locates the next instruction, and an execute cycle, when it carries
the instruction out. (See computer design.)

Barron's Dictionary of Computer Terms 202 (2d ed.1989) ("module™) [PA-0000333376]:

MODULE A module is a part of a larger system. For example, a

~ Lunar Module is a part of the Apollo rocket system. A module in

a computer program is a part of the program that is written and

tested separately and then is combined with other modules to
form the complete program. (See top-down programming.)

21st Centry Dictionary of Computer Terms 13 (1994) ("application program™) [PA-
0000333433]:

application program Computer programs de-
signed to enable users to perform specific job
functions. Word processing, accounting, and en-
gineering programs are examples of application
programs. |

21st Centry Dictionary of Computer Terms 130 (1994) (“executable file") [PA-0000333436]:

executable file A file that contains program code
- that cannot be understood by humans but can
be directly executed by the computer..

-

Microsoft Press Computer Dictionary 23-24 (2d ed. 1994) ("application™) [PA-0000333408]
— [PA-0000333409]:

application A computer program designed to help
people perform a certain type of work. An appli-
cation thus differs from an operating system
(which runs a computer), a utility (which per-
forms maintenance or general-purpose chores),
and a language (with which computer programs

B-73

are created). Depending on the work for which it
was designed, an application can manipulate
text, numbers, graphics, or a combination of
these elements. Some application packages offer
considerable computing power by focusing on a
single task, such as word processing; others,
called integrated software, offer somewhat less
power but include several applications, such as a
word processor, a spreadsheet, and a database
program.

Microsoft Press Computer Dictionary 90 (2d ed. 1994) (“computer program") [PA-
0000333412]:

computer progeam A set of instructions in some
compuier language, intended o be executed on

2 computer o perform a useful task. The term
usually implies a self-contained entity, as op-
posed o a routine or a library. Compare library,
routine: see also computer language.

Microsoft Press Computer Dictionary 137-38 (2d ed. 1994) ("dynamic link library") [PA-
0000333414-15]:

dynamic-link library A feature of the Microsoft
Windows family of operating systems and the
0OS/2 operating system that allows executable
routines—generally serving a specific function or
set of functions—to be stored separately as files
with DLL extensions and to be loaded only when
needed by the program that calls them. A dynamic-
link library has several advantages. First, because
a dynamic-link library is loaded only when it is
needed, it does not consume any memory until it
is used. Second, because a dynamic-link library is
a separate file, a programmer can make correc-
tions or improvements to only that module with-
out affecting the operation of the calling program
or any other dynamic-link library. Finally, be-
cause a dynamic-link library often contains re-
lated functions—for example, routines for
creating animation on a video display—a pro-
grammer can use the same dynamic-link library
with other programs.

B-74

Microsoft Press Computer Dictionary 153 (2d ed. 1994) (“executable program™) [PA-
0000333416]:

executable program A computer program that is
ready to run. The term usually refers to a com-
piled program that has been translated into ma-
chine code in a format that can be loaded into
memory and run; however, for interpreted lan-
guages it can simply refer to source code in the
proper format. Applications such as word-
processing programs are executable programs.
The user does not have to alter the program in
any way before being able to run it. See also
code, compiler, computer program, interpreter,
source code.

Microsoft Press Computer Dictionary 236 (2d ed. 1994) ("library") [PA-0000333420]:

lilivrary In programming, 2 collection of routines
stored in 2 file. Each set of instructions in a library
has 2 name, and each performs z different, ofien
very specific, task. For example, the pring)
function is pan of the Standard C library and dis-
plays characters on the screen. Such sets of in-
structions simplify work and prevent duplication
of effort each time a particular task needs to be
carried out. A programmer can identify a library
to a program, refer to library routines in the pro-
gram, and have the program carry out the appro-
priate tasks without having to write (or rewrite)
the instructions themselves each time they are
needed. Libraries can include standard routines
for a particular programming language, or they
can contzin customized routines writien by the
programmer.
Also, as in its traditional sense, any collection
of information; sometimes used 1o refer 10 sofi-
ware or data files.

Microsoft Press Computer Dictionary 319 (2d ed. 1994) (“program™) [PA-0000333425]:

B-75

program Synonymous with software; a sequence
of instructions that can be executed by a comput-
er. The term can refer to the original source code
or to the executable (machine language) version.
The term program implies a degree of complete-
ness; that is, a source code program comprises all
statements and files necessary for complete inter-
pretation or compilation, and an executable pro-
gram can be loaded into a given environment and
executed independenily of other programs. See
also program creation, routine, statement.

b. Testimony

Doyle direct, Trial Tr., Eolas Techs Inc. v. Microsoft Corp., No. 99-C-626 (N.D. Ill. 2003), at
303:15-306:14 (July 9, 2003) [EOLASTX-E-0000000644]:

Q What type of software were you using when you arrived at the
University of California at the time that you were developing this
online medical library?

A Well, the project had been working with AT&T's Bell Labs that
had a software program called Write Pages that was a proprietary kind
of hypermedia browser that could allow someone to browse through
something that looked like a series of journal covers. You could click
on the journal cover, it would pull up that issue of the journal. You
could click on the table of contents of the journal and it could pull up
an article, and you could browse through and view it. But it was able
to work with a self-contained database of information.

Q Was it a web browser in the sense of the Mosaic browser?
A No, not at all.

Q What limitations, if any, did you uncover as a result of trying to
develop an online medical library for use by physicians around the
world?

A Well, the biggest limitation struck me right away was that if we
wanted to do anything new with this we were limited, severely limited,
because if we wanted to add a new data type, for example, a new kind
of image that might be able to be used in one of these articles, we'd
have to go and request to the programmers at Bell Labs that they add a
new kind of image format, and then they would have to rewrite a new
version of the software that put all of the code necessary, all the --
you know, the program instructions necessary to render this new
kind of data to allow the user to work with this new kind of data.

And we realized that if this -- if we were going to work on

something that would be more generally useful that there would be no
end to the number of kinds of data that we'd want the system to be able

B-76

to handle, and it was just an unworkable situation to think that we
could use this thing to do new, innovative kinds of research.

Q So if you wanted to add a new type of medical image or support
so that that Write Pages software could display a medical image,
would you actually have to then go back to Bell Labs and ask them to
rewrite the browser?

A That's correct. They'd have to add this new capability of the
browser. They would then send us back a browser that would be
bigger than the one that they sent us before because they added this
new software to it. And then if we wanted to do anything else new
with it, then we'd have to send it back to them, ask them to rewrite it
and add more stuff to it, and we'd get what we call browser bloat. The
browser would just continue to grow and grow and grow, and
eventually you'd have, you know, just an enormous application.

Q Did you undertake to solve some of the problems or limitations
in the Bell Lab software that you were using as part of your research
for this online medical library?

A Yes, we did. As soon as | started at the university in California
and we started talking about these new kinds of projects, one of the
things, for example, | wanted to be able to do was to create a new kind
of way to display an article where, for instance, if it's for a radiology
journal, you know, radiologists are the kind of doctors who look at X-
rays and MRIs, | wanted to be able to allow the scientist or the doctor
to actually be able to see the actual data and interact with it rather than
seeing, you know, the author's one preferred view of that data in a still
image. And we had seen the Mosaic web browser at Illinois, and we
knew that it was freely available for academic researchers to use, and
so that source code was available, and we looked at it, and we thought,
well, we can use this system and start building on this base to add new
functionality and create an entirely new kind of web browser.

Q Did you continue to develop this idea then?

A Yes, we did. We were thinking about a project that was -- we
were considering working on relating to brain research, and so we
thought we'd use this as a reason to start considering this, and so we
started looking at the idea of coming up with a way to create the
capabilities that eventually came -- became possible in the 906
invention, the ability to allow pages to embed interactive programs in
them where you don't have to add the actual executable code to the
browser or to the document itself.

Doyle cross, Trial Tr., Eolas Techs Inc. v. Microsoft Corp., No. 99-C-626 (N.D. Ill. 2003), at
477:20-478:4 (July 10, 2003) [EOLAST X-E-0000000644]:

Q. ... [H]ow many lines of code did you add to the Mosaic
browser code?

B-77

A. 1 don't recall exactly.

Q. Does 305 sound about right?

A. Could be.

Q. Does 100,000 sound about right for the total Mosaic code?
A. Could be.

Q. So everything you did, you did with 305 lines of code that were
written and added to Mosaic?

A. Sounds like it could be on the browser side.

Doyle redirect, Trial Tr., Eolas Techs Inc. v. Microsoft Corp., No. 99-C-626 (N.D. Ill. 2003),
at 537:1-:10 (July 10, 2003) [EOLAST X-E-0000000644]:

Q. One last question, Dr. Doyle. Do you remember when Mr.
Pritikin was talking to you about the number of lines with code Mosaic
versus the lines of your invention?

A. Yes.
Q. Can your invention be weighed in terms of lines with code?

A. No. In fact, that was part of the point. We were trying to
prevent what's called browser blow [sic: bloat]. In the software
industry the more functionality you can get out of the fewer lines of
code means you have a more elegant solution.

Martin direct, Trial Tr., Eolas Techs Inc. v. Microsoft Corp., No. 99-C-626 (N.D. Ill. 2003),
at 20:18-21:13" (July 10, 2003) [EOLASTX-E-0000000644]:

Q What did you decide to do at that point?

A Succinctly, what we decided to do was to go and look at all the
different applications that had been already written like VIS to handle
other data types and try and figure out a way to take their output and
put it back into the browser so that a user would see one composite, if
you will, view of the page without having to make the browser any
bigger.

Q And what were the -- were there -- were there advantages to
continuing to make the browser bigger?

A None -- no technical ones.

Q Do programmers judge the merits of their programming by the
number of lines of code they add to a program?

! In other versions of this transcript the testimony appears on pages 574:18-575:13.

B-78

A Well, there's always a certain machismo, if you will, speaking as
a -- since most of the programmers that | grew up with were male, but
-- in terms of how much code you could write, but for the sophisticated
programmer it really counts more for elegance, minimization, the
principle of the smallest and simplest answer is the right one. So we
wanted to find ways of doing things without having to either, A, write
all the code in the world or, B, break a lot of stuff by reimplementing
things.

B-79

E. "object"’

Claim Term(s)

Defendants' Proposed Construction

Eolas's Proposed Construction

Object

information capable of being retrieved
and presented to a user of a computer
system, which is not a program and
which does not include source code or
byte code

text, images, sound files, video data,

documents or other types of

information that is presentable to a
user of a computer system

1.

Defendants' intrinsic evidence

a. Claims

In the following chart, the term(s) for construction appear in all the claims marked with an
"x." The letter "m" indicates a method claim, and "{6" indicates a claim that the Defendants contend
includes limitations subject to § 112, 1 6.

'906 patent ‘985 patent
m |m m m
m| m | m |96 |96 (16 |m |96 16 |96 (16 |76 |m |96 | m
1 (4 |5 |6 |9 |10|1 |16 |20 |24 |28 |32 |36 |40 |44
object X [X |[X | X |[X [X X | X |[X |[X |[X |[X |[X |X

b. Specification (all cites to '906 patent)

(Abstract): A system allowing a user of a browser program on a computer connected to an
open distributed hypermedia system to access and execute an embedded program object. The

program object is embedded into a hypermedia document much like data objects. The user may

select the program object from the screen. Once selected the program object executes on the user's
(client) computer or may execute on a remote server or additional remote computers in a distributed
processing arrangement. After launching the program object, the user is able to interact with the
object as the invention provides for ongoing interprocess communication between the application
object (program) and the browser program. One application of the embedded program object allows
a user to view large and complex multi-dimensional objects from within the browser's window. The
user can manipulate a control panel to change the viewpoint used to view the image. The invention

allows a program to execute on a remote server or other computers to calculate the viewing
transformations and send frame data to the client computer thus providing the user of the client

computer with interactive features and allowing the user to have access to greater computing power
than may be available at the user's client computer.

1:20-:23 (Background of the Invention): This invention relates generally to manipulating
data in a computer network, and specifically to retrieving, presenting and manipulating embedded
program objects in distributed hypermedia systems.

1:24—:45 (Background of the Invention): Computer networks are becoming increasingly
popular as a medium for locating and accessing a wide range of data from locations all over the

world. The most popular global network is the Internet with millions of computer systems connected
to it. The Internet has become popular due to widely adopted standard protocols that allow a vast

interconnection of computers and localized computer networks to communicate with each other.

Computer systems connected to a network such as the Internet may be of varying types, e.g.,
mainframes, workstations, personal computers, etc. The computers are manufactured by different

B-80

companies using proprietary hardware and operating systems and thus have incompatibilities in their
instruction sets, busses, software, file formats and other aspects of their architecture and operating
systems. Localized computer networks connected to the Internet may be incompatible with other
computer systems and localized networks in terms of the physical layer of communication including
the specific hardware used to implement the network. Also, different networks use differing,
incompatible protocols for transferring information and are not able to communicate with each other
without a translation mechanism such as a "gateway"'.

1:61-2:6 (Background of the Invention): A hypertext document is a document that allows a
user to view a text document displayed on a display device connected to the user's computer and to
access, retrieve and view other data objects that are linked to hypertext words or phrases in the
hypertext document. In a hypertext document, the user may “click on," or select, certain words or
phrases in the text that specify a link to other documents, or data objects. In this way, the user is able
to navigate easily among data objects. The data objects may be local to the user's computer system
or remotely located over a network. An early hypertext system is Hypercard, by Apple Computer,
Inc. Hypercard is a standalone system where the data objects are local to the user's system.

2:14—:27 (Background of the Invention): Objects may be text, images, sound files, video
data, documents or other types of information that is presentable to a user of a computer system.
When a document is primarily text and includes links to other data objects according to the
hypertext format, the document is said to be a hypertext document. When graphics, sound, video or
other media capable of being manipulated and presented in a computer system is used as the object
linked to, the document is said to be a hypermedia document. A hypermedia document is similar to a
hypertext document, except that the user is able to click on images, sound icons, video icons, etc.,
that link to other objects of various media types, such as additional graphics, sound, video, text, or
hypermedia or hypertext documents.

3:27-:32 (Background of the Invention): Returning to FIG. 1, another type of data object is
a sound object shown as sound icon 24 within the hypermedia document. When the user selects
sound icon 24, the user's computer accesses sound data shown symbolically by data file 40. The
accessed sound data plays through a speaker or other audio device. (See also Fig. 1.)

3:34-:50 (Background of the Invention): As discussed above, hypermedia documents allow a
user to access different data objects. The objects may be text, images, sound files, video, additional
documents, etc. As used in this specification, a data object is information capable of being retrieved
and presented to a user of a computer system. Some data objects include executable code combined
with data. An example of such a combination is a "self-extracting™ data object that includes code to
"unpack" or decompress data that has been compressed to make it smaller before transferring. When
a browser retrieves an object such as a self-extracting data object the browser may allow the user to
"launch™ the self-extracting data object to automatically execute the unpacking instructions to
expand the data object to its original size. Such a combination of executable code and data is
limited in that the user can do no more than invoke the code to perform a singular function such as
performing the self-extraction after which time the object is a standard data object.

3:51-:59 (Background of the Invention): Other existing approaches to embedding interactive
program objects in documents include the Object Linking and Embedding (OLE) facility in
Microsoft Windows, by Microsoft Corp., and OpenDaoc, by Apple Computer, Inc. At least one
shortcoming of these approaches is that neither is capable of allowing a user to access embedded
interactive program objects in distributed hypermedia documents over networks.

5:14-:23 (Background of the Invention): Similarly, image object 16 and sound data file 40
may reside at any of the computers shown in FIG. 2. Assuming image object 16 resides on server C
when user 110 clicks on image icon 22, client computer 108 generates a command to retrieve image
object 16 to server C. Server C receives the command and transfers a copy of image object 16 to

B-81

client computer 108. Alternatively, an object, such as sound data file 40, may reside on server A so
that it is not necessary to traverse long distances via the Internet in order to retrieve the data object.

5:24—:38 (Background of the Invention): The Internet is said to provide an "open distributed
hypermedia system." It is an "open" system since Internet 100 implements a standard protocol that
each of the connecting computer systems, 106, 130, 120, 132 and 134 must implement (TCP/IP). It
is a "hypermedia" system because it is able to handle hypermedia documents as described above via
standards such as the HTTP and HTML hypertext transmission and mark up standards, respectively.
Further, it is a "distributed” system because data objects that are imbedded within a document may
be located on many of the computer systems connected to the Internet. An example of an open
distributed hypermedia system is the so-called "world-wide web" implemented on the Internet and
discussed in papers such as the Berners-Lee reference given above.

5:39-:56 (Background of the Invention): The open distributed hypermedia system provided
by the Internet allows users to easily access and retrieve different data objects located in remote
geographic locations on the Internet. However, this open distributed hypermedia system as it
currently exists has shortcomings in that today's large data objects are limited largely by bandwidth
constraints in the various communication links in the Internet and localized networks, and by the
limited processing power, or computing constraints, of small computer systems normally provided to
most users. Large data objects are difficult to update at frame rates fast enough (e.g., 30 frames per
second) to achieve smooth animation. Moreover, the processing power needed to perform the
calculations to animate such images in real time does not exist on most workstations, not to mention
personal computers. Today's browsers and viewers are not capable of performing the computation
necessary to generate and render new views of these large data objects in real time.

6:26—:39 (Background of the Invention): Due to the relatively low bandwidth of the Internet
(as compared to today's large data objects) and the relatively small amount of processing power
available at client computers, many valuable tasks performed by computers cannot be performed by
users at client computers on the Internet. Also, while the present open distributed hypermedia system
on the Internet allows users to locate and retrieve data objects it allows users very little, if any,
interaction with these data objects. Users are limited to traditional hypertext and hypermedia forms
of selecting linked data objects for retrieval and launching viewers or other forms of external
software to have the data objects presented in a comprehensible way.

6:40—:47 (Background of the Invention): Thus, it is desirable to have a system that allows a
user at a small client computer connected to the Internet to locate, retrieve and manipulate data
objects when the data objects are bandwidth-intensive and compute-intensive. Further, it is desirable
to allow a user to manipulate data objects in an interactive way to provide the user with a better
understanding of information presented and to allow the user to accomplish a wider variety of tasks.

6:50-:62 (Summary of the Invention): The present invention provides a method for running
embedded program objects in a computer network environment. The method includes the steps of
providing at least one client workstation and one network server coupled to the network environment
where the network environment is a distributed hypermedia environment; displaying, on the client
workstation, a portion of a hypermedia document received over the network from the server, where
the hypermedia document includes an embedded controllable application; and interactively
controlling the embedded controllable application from the client workstation via communication
sent over the distributed hypermedia environment.

6:63—7:6 (Summary of the Invention): The present invention allows a user at a client
computer connected to a network to locate, retrieve and manipulate objects in an interactive way.
The invention not only allows the user to use a hypermedia format to locate and retrieve program
objects, but also allows the user to interact with an application program located at a remote
computer. Interprocess communication between the hypermedia browser and the embedded

B-82

application program is ongoing after the program object has been launched. The user is able to use a
vast amount of computing power beyond that which is contained in the user's client computer.

9:24—:39 (Detailed Description of a Preferred Embodiment): Once hypermedia document 212
has been loaded into client computer 200, browser client 208 parses hypermedia document 212. In
parsing hypermedia document 212, browser client 208 detects links to data objects as discussed
above in the Background of the Invention section. In FIG. 5, hypermedia document 212 includes an
embedded program link at 214. Embedded program link 214 identifies application client 212 as an
application to invoke. In this present example, the application, namely, application client 210,
resides on the same computer as the browser client 208 that the user is executing to view the
hypermedia document. Embedded program link 214 may include additional information, such as
parameters, that tell application client 210 how to proceed. For example, embedded program link
214 may include a specification as to a data object that application client 210 is to retrieve and
process.

9:46-:58 (Detailed Description of a Preferred Embodiment): An example of the type of
processing that application client 210 may perform is multidimensional image visualization. Note
that application client 210 is in communication with network 206 via the network protocol layer of
client computer 200. This means that application client 210 can make requests over network 206 for
data objects, such as multidimensional image objects. For example, application client 210 may
request an object, such as object 1 at 216, located in server computer 204. Application client 210
may make the request by any suitable means. Assuming network 206 is the Internet, such a request
would typically be made by using HTTP in response to a HTML-style link definition for embedded
program link 214.

9:59-:65 (Detailed Description of a Preferred Embodiment): Assuming application client 210
has made a request for the data object at 216, server process 218 ultimately receives the request.
Server process 218 then retrieves data object 216 and transfers it over network 206 back to
application client 210. To continue with the example of a multidimensional visualization application,
data object 216 may be a three dimensional view of medical data for, e.g., an embryo.

11:52-12:8 (Detailed Description of a Preferred Embodiment): Another type of possible
application of this invention would involve embedding a program which runs only on the client
machine, but which provides the user with more functionality than exists in the hypermedia browser
alone. An example of this is an embedded client application which is capable of viewing and
interacting with images which have been processed with Dr. Doyle's MetaMAP invention (U.S. Pat.
No. 4,847,604). This MetaMAP process uses object-oriented color map processing to allow
individual color index ranges within paletted images to have object identities, and is useful for the
creation of, for example, interactive picture atlases. It is a more efficient means for defining irregular
"hotspots” on images than the ISMAP function of the World Wide Web, which uses polygonal
outlines to define objects in images. A MetaMAP-capable client-based image browser application
can be embedded, together with an associated image, within a hypermedia document, allowing
objects within the MetaMAP-processed image to have URL addresses associated with them. When a
user clicks with a mouse upon an object within the MetaMAP-processed image, the MetaMAP
client application relays the relevant URL back to the hypermedia browser application, which then
retrieves the HTML file or hypermedia object which corresponds to that URL.

12:66-13:18 (Detailed Description of a Preferred Embodiment): As shown in Table 11, the
EMBED tag includes TYPE, HREF, WIDTH and HEIGHT elements. The TYPE element is a
Multipurpose Internet Mail Extensions (MIME) type. Examples of values for the TYPE element are
"application/x-vis" or "video/mpeg". The type "application /x-vis" indicates that an application
named "x-vis" is to be used to handle the object at the URL specified by the HREF. Other types are
possible such as "application/x-inventor", "application/postscript” etc. In the case where TYPE is
"application/x-vis" this means that the object at the URL address is a three dimensional image object
since the program "x-vis" is a data visualization tool designed to operate on three dimensional image

B-83

objects. However, any manner of application program may be specified by the TYPE element so that
other types of applications, such as a spreadsheet program, database program, word processor, etc.
may be used with the present invention. Accordingly, the object reference by the HREF element
would be, respectively, a spreadsheet object, database object, word processor document object, etc.

13:19-:31 (Detailed Description of a Preferred Embodiment): WIDTH and HEIGHT
elements specify the width and height dimensions, respectively, of a Distributed Hypermedia Object
Embedding (DHOE) window to display an external application object such as the three dimensional
image object or video object discussed above.

13:32-:36 (Detailed Description of a Preferred Embodiment): WIDTH and HEIGHT
elements specify the width and height dimensions, respectively, of a Distributed Hypermedia Object
Embedding (DHOE) window to display an external application object such as the three dimensional
image object or video object discussed above.

14:64—:67 (Detailed Description of a Preferred Embodiment): FIG. 8A is a flowchart for
routine HTMLwidget. HTMLwidget creates display data structures and launches an external
application program to handle the data object specified by the URL in the EMBED tag. (See also
Fig. 8A))

15:39-:48 (Detailed Description of a Preferred Embodiment): If, at step 286, the type is
determined not to be an application object (e.g., a three dimensional image object in the case of
application "x-vis") a check is made at step 288 to determine if the type is a video object. If so, step
292 is executed to launch a video player application. Parameters are passed to the video player
application to allow the player to display the video object within the DrawingArea within the display
of the portion of hypermedia document on the client's computer. Note that many other application
objects types are possible as described above.

15:58-16:8 (Detailed Description of a Preferred Embodiment): The present invention allows
a user to have interactive control over application objects such as three dimensional image objects
and video objects. In a preferred embodiment, controls are provided on the external applications' user
interface. In the case of a VVIS/panel application, a process, "panel” creates a graphical user interface
(GUI) thru which the user interacts with the data. The application program, VIS, can be executing
locally with the user's computer or remotely on a server, or on one or more different computers, on
the network. The application program updates pixmap data and transfers the pixmap data (frame
image data) to a buffer to which the browser has access. The browser only needs to respond to the
refresh request to copy the contents from the updated pixmap to the DrawingArea. The Panel process
sends messages as "Msg" sending performed by routines such as vis .- send .- msg and vis - - handle
panel .- msg to send events (mousemove, keypress, etc.) to the external application.

16:9-:28 (Detailed Description of a Preferred Embodiment): FIG. 9 is a screen display of the
invention showing an interactive application object (in this case a three dimensional image object)
in a window within a browser window. In FIG. 9, the browser is NCSA Mosaic version 2.4. The
processes VIS, Panel and VRServer work as discussed above. FIG. 9 shows screen display 356
Mosaic window 350 containing image window 352 and a portion of a panel window 354. Note that
image window 352 is within Mosaic window 350 while panel window 354 is external to Mosaic
window 350. Another possibility is to have panel window 354 within Mosaic window 350. By using
the controls in panel window 354 the user is able to manipulate the image within image window 352
in real time do perform such operations as scaling, rotation, translation, color map selection, etc. In
FIG. 9, two Mosaic windows are being used to show two different views of an embryo image. One
of the views is rotated by six degrees from the other view so that a stereoscopic effect can be
achieved when viewing the images. Communication between Panel and VIS is via "Tooltalk"
described in, e.g., "Tooltalk 1.1.1 Reference Manual,” from SunSoft. (See also Figs. 9-10.)

B-84

C. Prosecution history

i. '906 prosecution history (08/324.,443)

Original Application, at 29 (Oct. 17, 1994) ([PH_001_0000783799] -
[PH_001_0000783848]):

" 1 A method for running an application program in
a computer network environment, comprising:
providing at least one client workstation and one

network serven coupled to said network environment, wherein
said network ehvironment is a distributed hypermedia
environment;

displaying, on said client workstation, at least a
portion of a hypermedia document received over said network
from said server,\ wherein said hypermedia'document includes an
embedded controllable application; and

interactively controlling said embedded controllable
application from salid client workstation via communications

sent over said distributed hypermedia environment.

Original Application, at 29 (Oct. 17, 1994) ([PH_001_0000783799] —
[PH_001_0000783848]):

3. The methbd of claim 2, wherein instructions for
controlling said embedded controllable application reside on
said network server, whekein said step of interactively
controlling said embedded controllable application includes
the following substeps:

issuing, from the client workstation, one or more
commands to the network server; ° _

executing, on theé network server, one or more
instructions in response to said commands; '

sending informatid¢n from said network server to said
client workstation in response to said executed instructions;
and

processing said infbrmation at the client
workstation to interactively control said embedded
controllable application.

Original Application, at 30 (Oct. 17, 1994) ([PH_001_0000783799] —
[PH_001_0000783848]):

B-85

6. The method of claim 3, wherein said embedded
controllable applicatiion is a multi-dimensional viewer.

7. The method of claim 3, wherein said embedded
' controllable application is a spreadsheet program.

8. The methdd of claim 3, wherein said embedded

controllable application is a database program.

9.” The meth of claim 3, wherein said embedded
controllable application %s a word processor.

10. e method of claim 3, wherein said substeps of
issuing and sending are via an open protocol.

Original Application, at 31 (Oct. 17, 1994) ([PH_001_0000783799] —
[PH_001_0000783848]):

15. A method for running an application program in
a computer network \envircnment, comprising:

providing\at least one client workstation and one
network server coupled to said network environment, said
network including a urality of general purpose workstations,
wherein said network environment is a distributed hypermedia

environment;
displaying, oh said client workstation, at least a
portion of a hypermedia \document received over said network
from said server, wherein said hypermedia document includes at
least a first embedded multi-dimensional data visualization
application; and
interactively cantrolling said embedded multi-
dimensional data visualization application from said client
workstation via communications sent over said distributed
hypermedia environment wheriein data image rendering is
performed by said plurality| of general purpose workstations

using distributed processing.
*

Originial Application, at 31 (Oct. 17, 1994) ([PH_001_0000783799] -
[PH_001_0000783848]):

B-86

l16. T meth claim 15, wherein the step of
displaying is performed hky\using a hypermedia browser
application. .

17. The method of claim 15, wherein the multi-
dimensional data visualization includes volume visualization.

18. The method of claim 15, wherein the multi-
dimensional data visualization includes two dimensional image

processing.

19. The method\of claim 15, wherein the multi-
dimensional data visualizatiion includes image analysis.

Original Application, at 32 (Oct. 17, 1994) ([PH_001_0000783799] -
[PH_001_0000783848]):

The method of claim 15, wherein the multi-
dimensional data visualization includes the display of

- animated sequences.

method of claim 15, wherein the multi-
isualization includes a geometric data
mputer aided design files.

21. T
dimensional data
viewer to display

Original Application, at 32-33 (Oct. 17, 1994) ([PH_001_0000783799] -
[PH_001_0000783848]):

B-87

24. A meth for interactively controlling an
embaedded object in a ument displayed on a client computer,
wherein the client computer includes a processor coupled to a
display device and to a‘\user input device, wherein the
processor is further coupled to a computer network, wherein
the computer network is cbupled to a server computer and one
or more additional computeys, wherein the server computer
ice containing a document, wherein
edded object, wherein an
application program for manipulating the embedded object
resides on a first additional\ computer, the method comprising
the following steps:
transferring, over e network, at least a portion
of the deocument from the server\ computer to the client

includes a local storage d
the document includes an

computer;
accepting first signalg from the user input device
that indicate that the embedded object is to be manipulated;

issuing tommands from the client computer to the
first additional computer in response to the first signals;

executing,, by using the first additional computer,
instructions in the plication program in response to the
issued commands, wher the executed instructions generate
information about manipulating the embedded object;

communicating,\ via the network, the information
about manipulating the dded cbject from the first
additional computer to the\ client computer; and

using the client ‘vomputer to manipulate the embedded
object according to the communicated information.

Original Application, at 34-35 (Oct. 17, 1994) ([PH_001_0000783799] -
[PH_001_0000783848]):

B-88

4. A fmgtlhod for displaying a three dimensional
on a client computer, wherein the client computer
ocessor coupled to a display device, wherein the
processor is urther coupled to a computer network, wherein
the computer Retwork is coupled to a server computer and one
or more additipnal computers, wherein the server computer
includes a lo storage device containing a hypermedia
document, wherein the hypermedia decument includes a three
ocbject embedded within the hypermedia
the three dimensional image object is
lurality of crientations, the method
comprising the following steps:

transferring, over the network, at least a portion
of the hypermedia document from the server computer to the
client computer;

displaying'\on the display device, by using the
processor, at least a\portion of the hypermedia document,
wherein the displayed rtion of the hypermedia document
includes the three di sional image object displayed in a
first orientation; :

using the clignt computer to issue commands over the

image obje
includes a

dimensional imag
document, wherei
displayable in a

network;
executing instmuction on a first additional computer

in response to the issued)\commands, wherein the executed

instructions determine a cond orientation for display of the

three dimensional image oblect;

X

the client computer;
using the ¢
dimensional image objedt in the secend orientation.

\

(See also Original Application, at 29-36 (Oct. 17, 1994) ([PH_001_0000783799] -
[PH_001_0000783848]).)

Amendment A, at 15 (Aug. 6, 1996) ([PH_001_0000783879] — [PH_001_0000783928]):

ent computer to redisplay the three

B-89

There is no disclosure of the claimed step of utilizing
a browser to display a first hypermedia document in a first
window with the hypermedia document including a tag format
gspecifying the location of an external object and an external
executable application. As described above, the Mercury Project
utilizes CGI where a <FORM> tag identifies a program on the
gerver but not an external object. BAdditionally, the claimed
step of invoking the executable object to display and process the
object within the first browser-controlled window while a portion

of the first hypermedia document is displayed is not disclosed.

Amendment A, at 16 (Aug. 6, 1996) ([PH_001_0000783879] — [PH_001_0000783928]):

The claimed combination is fundamentally different from
the Mercury Project. In the claimed combination, the externmal
object and executable object are embedded by reference in the
HTML document and the object is displayed and processed within
the =zame window where a portion of the original document is
displayed. In the Mercury Project information is passed back to
the server and a new document is generated and displayed. There
is no display and processing the external object within the

window in which a portion of the original document is displayed.

Amendment A, at 16 (Aug. 6, 1996) ([PH_001_0000783879] — [PH_001_0000783928]):

A major difference betwsen CGI and the claimed
combination is that in CGI there is no enforced continuity
between the documents. The CGI responds to form information by
generating new documents each being a static document independent
aof the previous document which generated the form string passed
to the Web server. For example, in the Mercury Project separate,
independent HTML documents are generated for each position of the
arm. There iz no disclosure of the claimed step of invoking the

~executable application to display and process said object within
the window while a portion of the first distributed hypermedia
document is displayed in the window.

Thus, unlike CG3I, the claimed executable application
does not generate a static HTML document to be displayed in place
of the first document but dieplays and processes the object in a

portion of the window.

B-90

ii. Abandoned application (09/075,359)

Original Application, at 29 (May 8, 1998) ([PH_001_0000787699] —
[PH_001_0000787736]):

1. A methed for running an appliecation program in
a computer network Envirnnment, comprising:

providing at least one client workstation and cne
network server coupled to said network environment, wherein
said network environment is a distributed hypermedia
environment;

displaying, on said client workstation, at least a
portion of a hypermedia document received over said network
from said server, wherein said hypermedia document includes an
embedded controllable application; and

interactively controlling said embedded centrellable
application from said client workstation wia communications

sent over said distributed hypermedia environment.

Original Application, at 29 (May 8, 1998) ([PH_001_0000787699] —
[PH_001_0000787736]):

3. The method of claim 2, wherein instructions for
controlling said embedded controllable application reside on
said network server, wherein said step of interactively
controlling said embedded centrellable application includes
the following substeps:

issuing, from the client workstaticn, one or more
commands to the network server:

executing, on the network server, cne or more
instructicns in response to said commands;

sending information from said network server to said
client workstation in response to said executed instructions;
and

processing said informaticn at the client
workstation to interactively control said embedded
controllable application.

Original Application, at 30 (May 8, 1998) ([PH_001_0000787699] —
[PH_001_0000787736]):

B-91

6. The methed of claim 3, wherein said embedded
controllabkle application is a multi-dimensiconal v:ewer.

7. The method of claim 3, wherein said embedded
controllable applicaticon is a spreadsheet program.

a. The method of claim 3, wherein said embedded
controllable application is a database program.

9, The method of claim 3, wherein said embedded
controllable application is a word processcor.

10. The method of claim 3, wherein said substeps of
issuing and sending are via an open protocol.

Original Application, at 31 (May 8, 1998) ([PH_001_0000787699] —
[PH_001_0000787736]):

15. & method for running an application program in
a computer network environment, comprising:

providing at least cone client workstaticn and cne
network server coupled to said network environment, said
network including a plurality of general purpose workstaticns,
wherein said network environment is a distributed hypermedia
environment ;

displaying, on said client workstation, at least a
portion of a hypermedia document received over said network
from said server, wherein said hypermedia document includes at
least a first embedded multi-dimensional data wvisualization
appliecation; and

interactively controlling said embedded multi-
dimensicnal data wvisualization application from said client
workstation via communicaticons sent over sgaid distributed
hypermedia envirconment wherein data image rendering is
performed by said plurality of general purpose workstations

using distributed processing.

Original Application, at 31 (May 8, 1998) ([PH_001_0000787699] —
[PH_001_0000787736]):

B-92

16. The method of eclaim 15, wherein the step of
displaying is performed by using a hypermedia browser

application.

17. The method of claim 15, wherein the multi-

dimensicnal data visualizaticen includes volume visualization.

1i8. The method of claim 15, wherein the multi-
dimensicnal data wvisualization includes twoe dimensicnal image

processing.

19. The method of claim 15, wherein the multi-

dimensional data visualization includes image analysis.

Original Application, at 32 (May 8, 1998) ([PH_001_0000787699] —
[PH_001_0000787736]):

20. The method of claim 15, wherein the multi-
dimensional data visualization includes the display of
animated sequences,

21. The methoed of claim 15, wherein the multi-
dimensional data wvisualization includes a geometric data

viewer to display computer aided design files.

22. The method of claim 15, wherein the multi-
dimensional data wisualization inecludes displaying molecular
modeling data.

(See also Original Application, at 29-36 (May 8, 1998) ([PH_001_0000787699] -
[PH_001_0000787736]).)

Preliminary Amendment, at 3 (May 8, 1998) ([PH_001_0000787770] —
[PH_001_0000787777]):

E0. [(New) The method of claim &, wherein said
executable application is a computer preogram which runs other
computer programs.

£1. (Mew) The method of claim 7, wherein said other

computer programs are transferred to said computer system over

computer network environment.

B-93

Preliminary Amendment, at 7 (May 8, 1998) ([PH_001_0000787770] —
[PH_001_0000787777]):

5?'5%. [New) The method of claim 15, wherein said
executable application is a computer program which runs other

computer pPrograms.

(O, “sg. (New) The method of claim 16, wherein said other
computer programs are transferred to séiﬁ computer system over a

computer network environment.

(See also Preliminary Amendment, at 2-7 (May 8, 1998) ([PH_001_0000787770] -
[PH_001_0000787777]).)

Office Action, at 4 (Sept. 6, 2000) ([PH_001_0000787793] — [PH_001_0000787807]):

As per claims 50 and 59, there is no disclesure in the
specification that the “executable application is a computer

program which runs other programs®.

Office Action, at 4 (Sept. 6, 2000) ([PH_001_0000787793] — [PH_001_0000787807]):

As per claims 51 and €0, there is no disclesure in the
specification of transferring cf the cther computer program over
a computer network environment.

The disclosure specifically disclese that the external
application is preinstalled on the client. There is no
disclosure of the external application invoeking ancther program

nor retrieving the other program over the network.

ii. First reexam (90/006,831)

Applicants' Response, at 16 (Oct. 12, 2004) ([PH_001_0000785803] -
[PH_001_0000785832]):

A distributed hypermedia system is a “distributed” system because data objects that are
imbedded within a document may be located on many of the computer systems connected Lo the
Internet.” [*906 at col. 5, lines 25-38].

B-94

Notice of Intent to Issue Ex Parte Reexamination Certificate, at 52-54 (Sept. 27, 2005)
([PH_001_0000785905] — [PH_001_0000785981]):

II. VIOLA SCRIPTS (OR CORRESPONDING
BYTE-CODE FORMS) DO NOT ANTICIPATE
NOR FAIRLY SUGGES_T THE EXTERNAL
"“OBJECT” AS CLAIMED IN THE ‘906
PATENT.

If the Viola <VOBIF> tags are considered as arguably corresponding to the
instant claimed 906 "embed text format” (in the sense that the Viola
<VOBIF> tags specify "the location of at least a portion of an object external
to the first distributed hypermedia document” as daimed in ‘906 claims 1
and 6), then the Vicla script program specified between the <VOBJF> tags is
not equivalent to the instant '906 claimed external "object” when the

claimed ‘906 external “object” is interpreted in a manner consistent with the
specification of the '906 patent.

The Viola, “clock.v" script is a high-level source code PROGRAM. In contrast,
the scope of the claimed "906 external "object” broadly encompasses myriad
types of data objects, including self-extracting data ohjects [see 906 patent,
col. 3, lines 33-51].

The scope of the daimed '906 external "object” is broad when construed in a
manner consistent with the specification (i.e., see "906 patent, col. 3, lines
36-39: "a data object is information capable of being retrieved and _
presented to a user of a computer system.”). Howewver, the scope of the
claimed ‘906 external “object” clearly does not read upon a high-level source
code PROGRAM, such as a Viola script, nor does it read upon an object in
byte-code form.

B-95

When the scope of the daimed 906 external “object” is construed in a
manner consistent with the specification, it is clear that any executable
component of the claimed 906 external data "object” is limited to
performing self-extraction of the compressed data object:

See '906 patent, col. 3, lines 43-51:

When a browser retrieves an object such as a self-extracting data object the
browser may allow the user to "launch” the self-extracting data object to
automatically execute the unpacking instructions to expand the data object to
its original size. Such a combination of executable code and data js _limited in
that the user can do no more than invoke the code to perform a singular

Although a self-extracting data object typif_:ally includes executable code to
expand the compressed data object to its original size, this type of self-
extraction extracts DATA that has no relationship to a high-level source code
PROGRAM in the form of a Viola script, or a byte-code file, or the like.

(See also Notice of Intent to Issue Supplemental Ex Parte Reexamination Certificate, at 52-
54 (Jan. 20, 2006) ([PH_001_0000785994] — [PH_001_0000786068]).)

iv. Second reexam (90/007,858)

Applicants' Response, at 20 (Sept. 27, 2007) ([PH_001_0000787028] —
[PH_001_0000787051]):

B-96

Additionally, the design of Cohen is inconsistent with the use of type information recited in claim
6. The identify and locate step, and the fact that that step is done by the browser, 15 an important
aspect of the claimed ‘906 invention. For example, this step provides an important security
protection. Users often want to display distributed hypermedia documents that come from
untrusted sources, such as Web pages that come from arbitrary sites. [If the author of such a site
can cause an executable application of his choice to be invoked on the user's system, then the site
author can use that application to gain access to the user’s private files or modify the state of the
user's computer, for example to install spyware or a virus. [Felten at paragraph 65]

Having the browser — a program trusted by the user — identify and locate the exccutable
application lets the browser protect the user from this danger. A properly writien browser will
only allow trusted applications (o be run, thereby protecting the user against security problems.
A hostile site author cannot run a malicious application on the user’s computer, because it is the
browser, not the site author, that is identifying and locating the application that will be run.
References in which the browser does not utilize type information to identify and locate the
execulable application lack this protection. [Felten at paragraph 66]

Declaration of Edward W. Felten, at 10 (Sept. 27, 2007) (accompanying Applicants'
Response (Sept. 27, 2007)) ([PH_001_0000787052] — [PH_001_0000787069]):

64./In Cohen, the bock reader (which the Examiner equales to a browser) does not
utilize the “type information™ to identify and locate anything. All the book reader
does with this information is to pass it on, unexamined, to the operating system,
which invokes the application. The book reader does not have any kind of

algorithm or procedure that it follows to identify and locate an application to be
used,

65.| The identify and locate step, and the fact that that step is done by the browser, is
an important aspect of the invention defined in Claim 6 of the *906 Patent. For
example, this step provides an important security protection. Users often want to
display distributed hypermedia documents that come from untrusted sources, such
as Web pages that come from arbitrary sites. If the author of such a site can -
cause an executable application of his choice to be invoked on the user's system,
ithen the site author can use that application to gain access to the user's private

| files or modify the state of the user’s computer, for example to install spyware or
4 Vs,

66. Having the browser — a program trusted by the user — identify and locate the
executable application lets the browser protect the user from this danger. A
properly written browser will only allow trusted applications to be run, thereby
protecting the user against security problems. A hostile site author cannot run a
malicious application on the user’s computer, because it is the browser, not the
site author, that is identifying and locating the application that will be run.
References in which the browser does not utilize type information to identify and
locate the executable application lack this protection.

67. The importance of this claim element was reinforced by the Eolas v. Microsoft

litigation, in which the question of which references had this claim element was
an important one.

B-97

d. Cited references

Eolas, et al. v. Microsoft, Corp., No. 99-C-626 (N.D.lIll. 2003) Jury Instructions (Aug. 7,
2003) (e.g., [PH_001_0000622904] — [PH_001_0000622960]):

Jury Instructions

1 One: Executable application. A key part of the

2 - invention is the ability of the browser to automatically invoke
3 Bome external program vie-a-via the hypermedia document to

4 process the data object. Generic examples of such programs are
5 image viewers, word processors and spread sheets, programs that
6 display and allow the user to intefact with data. Such

7 programs are referred to in the claims as an executable

8 application.

g I have defined executable application as any computer
10 program code that is not the operating system or a utility that
11 is launched to enable an end user to directly interact with

12 data.

Eolas, et al. v. Microsoft, Corp., No. 99-C-626 (N.D.Ill. 2003) Jury Instructions (Aug. 7,
2003) (e.g., [PH_001_0000622904] — [PH_001_0000622960]):
1 The word extermal means extermal to a web page.
2 Executable application may be a stand-alone program, a
3 component such as a dymamic link library, or multiple
4 components working together. A compenent may be used to
5 perform more than one function and may be used by more than

& ONe program.

2. Defendants' extrinsic evidence

"FYI... press release”, at 1 (Aug. 30, 1994) [PA-0000333362]:

B-98

"FYI... press release”, at 1 (Aug. 31, 1994) [PA-0000333364]:

"FYI... press release”, at 1 (Aug. 31, 1994) [PA-0000333365]:

B-99

Testimony of inventor Michael Doyle, Trial Tr., Eolas Techs Inc. v. Microsoft Corp., No. 99-
C-626 (N.D. Ill. 2003), at 282:6-283:17 (July 9, 2003) [EOLAST X-E-0000000644]:

B-100

B-101

F. "'type information"'

Claim Term(s)

Defendants' Proposed Construction

Eolas's Proposed Construction

type information

a value needed by the browser to
determine which executable
application to launch for a given
object. The value can specify either a
particular application or data type, or
both

any information used by the browser
to identify and locate the executable
application, and may include the name
of an application associated with the
object

1.

Defendants' intrinsic evidence

a. Claims

In the following chart, the term(s) for construction appears in all the claims marked with an
"x." The letter "m" indicates a method claim, and "{6" indicates a claim that the Defendants contend
includes limitations subject to § 112, | 6.

'906 patent ‘985 patent
m [m m m
mim{m/ | |[76[76|m |6 (76|76 |96 |6 | m |6 |m
1 (4 |5 |6 |9 [10)1 |16|20 (24|28 |32 |36 |40 |44
| type information X [xX [x |x |[x [x X |X [x |x |x

2:14—:17 (Background of the Invention): Objects may be text, images sound files, video

b. Specification (all cites to '906 patent)

data, documents or other types of information that is presentable to a user of a computer system.

12:54-13:18 (Detailed Description Of A Preferred Embodiment):

Table Il

<EMBED
TYPE = "type"
HREF= "href"

WIDTH = "width"

HEIGHT = "height"

>

As shown in Table Il, the EMBED tag includes TYPE, HREF, WIDTH and HEIGHT
elements. The TYPE element is a Multipurpose Internet Mail Extensions (MIME) type. Examples of
values for the TYPE element are "application/x-vis" or "video/mpeg". The type "application /x-vis"
indicates that an application named "x-vis" is to be used to handle the object at the URL specified by
the HREF. Other types are possible such as "application/x-inventor", "application/postscript" etc. In
the case where TYPE is "application/x-vis" this means that the object at the URL address is a three
dimensional image object since the program "x-vis" is a data visualization tool designed to operate
on three dimensional image objects. However, any manner of application program may be specified
by the TYPE element so that other types of applications, such as a spreadsheet program, database

program, word processor, etc. may be used with the present invention. Accordingly, the object

B-102

reference by the HREF element would be, respectively, ;a spreadsheet object, database object, word
processor document object, etc.

13:19-:31 (Detailed Description Of A Preferred Embodiment): On the other hand, TYPE
values such as "video/mpeg", "image/qif', "video/x-sgi-movie", etc. describe the type of data that
HREF specifies. This is useful where an external application program, such as a video player, needs
to know what format the data is in, or where the browser client needs to determine which application
to launch based on the data format. Thus, the TYPE value can specify either an application program
or a data type. Other TYPE values are possible. HREF specifies a URL address as discussed above
for a data object. Where TYPE is "application/x-vis" the URL address specifies a multi-dimensional
image object. Where TYPE is "video/mpeg" the URL address specifies a video object.

14:33-:39(Detailed Description Of A Preferred Embodiment): If at step 258, it is determined
that the tag is the EMBED tag, execution proceeds to step 260 where an enumerated type is assigned
for the tag. Each occurrence of a valid EMBED tag specifies an embedded object. HTMLParse calls
a routine "get_mark™ in HTMLparse.c to put sections of HTML document text into a "markup™ text
data structure. Routine get_mark, in turn, calls ParseMarkType to assign an enumerated type. The
enumerated type is an identifier with a unique integer associated with it that is used in later
processing described below.

15:9-:21 (Detailed Description Of A Preferred Embodiment): At step 286 a check is made as
to whether the type attribute of the object, i.e., the value for the TYPE element of the EMBED tag,
is an application. If so, step 290 is executed to launch a predetermined application. In a preferred
embodiment an application is launched according to a user-defined list of application
type/application pairs. The list is defined as a user-configurable XResource as described in "Xlib
Programming Manual." An alternative embodiment could use the MIME database as the source of
the list of application type/application pairs. The routine "vis_start_external_application™ in file
HTMLformat.c is invoked to match the application type and to identify the application to launch.

15:38-:43 (Detailed Description Of A Preferred Embodiment): If, at step 286, the type is
determined not to be an application object (e.g., a three dimensional image object in the case of
application "x-vis") a check is made at step 288 to determine if the type is a video object. If so, step
292 is executed to launch a video player application.

B-103

Figures 7A and 8A:

ENTER

254
MORE TEXT T0
PARSE?

YES 266

EMBED TAG
DETECTED?

ASSIGN

Exir ENUMERATED TYPE

[}%

FIG 7A.

C. Prosecution history

i. '906 prosecution history (08/324.,443)

Response to Office Action, at 13-14 (Aug. 6, 1996) ([PH_001_0000783879] —
[PH_001_0000783928]): The distributed hypermedia document includes an embed text format the
[sic] specifies the location of an object external to the distributed hypermedia document and that
specifies type information utilized by the browser to identify and locate an executable application
external to the distributed hypermedia document. The browser invokes the executable application to
display and process the object within the browser window.

Response to Office Action, at 6 (June 2, 1997) ([PH_001_0000784029] -
[PH_001_0000784090]): The embed text format specifies the location of an object, at least a portion
of which is external to the first distributed hypermedia document, that has type information
associated with it which is utilized by the browser to identify and locate an executable application
external to the document.

Response to Office Action, at 2 (June 2, 1997) ([PH_001_0000784029] -
[PH_001_0000784090]):

1. (Twice Amended) ...first distributed hypermedia
document includes an embed text format, located at a first
location in said first distributed hypermedia document, that
specifies the location of at least a portion of an object
external to the first distributed hypermedia document,
wherein said object has type information associated with it
utilized by said browser to identify and locate an
executable application external to the first distributed
hypermedia document. and wherein said embed text format
is parsed by said browser to automatically invoke said

application..

B-104

ii. Abandoned application (09/075,359)

Response to Office Action, at 6 (Nov. 29, 2001) ([PH_001_0000787823] -
[PH_001_0000787832]): [T]here is no teaching or suggestion in either reference, singly or in
combination, of the claimed computer readable code, identified by type information, that is
automatically invoked by the browser application to display an object in the browser controlled
window and allow interactive processing of the object. In Mosaic, viewer programs may be invoked
by the browser in response to user selection of a link to a file format that cannot be displayed by the
browser.

iil. First reexam (90/006,831)

Response to Office Action, at 5-6 (May 11, 2004) ([PH_001_0000785359] —
[PH_001_0000785379]): Raggett's proposed EMBED tag would utilize a type attribute to specify a
MIME content type to be used by a browser to identify a rendering application, such as a shared
library or external filter, used to render embedded data. An example of Raggett's proposed EMBED
tag is given as follows:

<embed type = "application/egn">2 pi int sin(omega t)dt</embed>

In this example the embedded data is 2pi int sin(omega t)dt" and the type
information is ""application/egn.”

Director Order, at 7 (Oct. 30, 2003) ([PH_001_0000784818] — [PH_001_0000784846]);
accord Office Action at 5 (Feb. 26, 2004) ([PH_001_0000785292] — [PH_001_0000785303]):
Raggett | also teaches that the embed tags include a type attribute specifying a registered MIME
content type that is used by the browser to identify the appropriate external filter to use to render the
embedded foreign data.

iv. Second reexam (90/007,858)

Response to Office Action, at 19 (Sept. 27, 2007) (citing Declaration of Edward W. Felten, at
11 62-67) ([PH_001_0000787028] — [PH_001_0000787051]): In Cohen, the book reader (which is
equated to browser) does not utilize the "type information™ to identify and locate anything. All the
book reader does with the information is to pass it on, unexamined, to the operating system, which
invokes the application. The book reader does not have any kind of algorithm or procedure that it
follows to identify and locate an application to be used.

Office Action at 24 (April 18, 2008) ([PH_001_0000787208] — [PH_001_0000787253]):
The term "type information’* can be understood in a broad and reasonable interpretation as being
information regarding the type of object. As seen in Fig. 1a, Cohen is seen as teaching of object data
(being "family_clip.vid", "trumpet.aud", and/or population.gph™). With this, as also seen in Fig. 1a,
Cohen teaches of "'type information™ being information that describes the type of object, such as
"CD Video File Format A" or "GOCA Format C", as well as "STORE=external" or
"OBJTYPE=video". Further as read in col. 9, lines 39-53, "the profile 300 includes the hardware
types for a particular 1/0 function, characteristics for each hardware type..." Thus, this
"Information” is utilized to identify and locate an executable application external to the first
distributed hypermedia document.

V. '085 prosecution history (10/217,955)

Office Action, at 5-6 (July 20, 2004) ([PH_001_0000784201] — [PH_001_0000784212]):
Raggett | also teaches that the embed tags include a type attribute specifying a registered MIME

B-105

content type that is used by the browser to identify the appropriate external filter to use to render the
embedded foreign data. (See Raggett I: p. 6 type = ""application/egn’.) Raggett | thus teaches a
computer program product wherein "the object has type information associated with it utilized by
said browser ...

Response to Office Action, at 8 (March 11, 2005) ([PH_001_0000784213] -
[PH_001_0000784244]): The object has associated type information utilized to identify and locate
[sic] an sequence of computer instructions external to the hypermedia document.

Response to Office Action at 22-23 (March 11, 2005) ([PH_001_0000784213] —
[PH_001_0000784244]): where the object has type information associated with it;

EXAMPLE SUPPORT:

12:67 "The TYPE element is a Multipurpose Internet Mail Extensions (MIME)
type. Examples of values for the TYPE element are "application/x-vis" or
"video/mpeg". The type "application /x-vis" indicates that an application named
"x-vis" is to be used to handle the object at the URL specified by the HREF.
Other types are possible such as "application/x-inventor",
"application/postrscript” etc."

15:19 ""At step 286 a check is made as to whether the type attribute of the object,
i.e., the value for the TYPE element of the EMBED tag, is an application."

d. Cited prior art

U.S. Patent No. 5,206,951 to Khoyi et al., at Abstract ([PH_001_0000782436] —
[PH_001_0000782490]): An object based data processing system including an extensible set of
object types and a corresponding set of "object managers" wherein each object manager is a program
for operating with the data stored in a corresponding type of object. The object managers in general
support at least a standard set of operations. Any program can effect performance of these standard
operations on objects of any type by making an "invocation" request. In response to an invocation
request, object management services (which are available to all object managers) identifies and
invokes an object manager that is suitable for performing the requested operation on the specified
type of data. A mechanism is provided for linking data from one object into another object. An
object catalog includes both information about objects and about links between objects. Data
interchange services are provided for communicating data between objects of different types, using a
set of standard data interchange formats.

U.S. Patent No. 5,206,951 to Khoyi et al., at 2:44-:58 (Summary Of The Invention)
([PH_001_0000782436] — [PH_001_0000782490]): The object manager table provides for a
plurality of object managers to operate with any given object type, including a primary object
manager for each object type. The particular object manager invoked to operate upon a particular
object may depend upon the type of operation to be performed an certain object managers may
operate with more than one type of object. The association between object type, operation to be
performed, and corresponding object manager is performed through the object manager table. That
IS, when a user selects to perform an operation upon a given object, the object management routines
read the corresponding entry for that object type and operation from the object manager table to
determine the corresponding object manager to be invoked.

Eolas Techs., Inc. v. Microsoft Corp., No. 99 C 0626, 2000 WL 1898853 (N.D.lIl. Dec. 29,
2000), at 14 (e.g., [PH_001_0000624065] — [PH_001_0000624082]):

The claim says type information is associated with the object -- both
application names and data types can be associated with objects and both can

B-106

convey useful information to the browser for it to use in identifying and locating
the executable application. Neither possibility is foreclosed by the claim
language.

The Specification squarely supports this view. The inventors gave
examples of type information in the form of the HTML TYPE element of an
EMBED tag: "Examples of values for the TYPE element are "application/x-vis' or
'video/mpeg'. The type "application/x-vis' indicated that an application named 'x-
vis' is to be used to handle the object..."” '906 Patent, col. 13, Il. 2-5. Thus, type
information could be either the application itself (x-vis) or the data type
(video/mpeg).

Eolas Techs., Inc. v. Microsoft Corp., No. 99 C 0626, 2000 WL 1898853 (N.D.lIl. Dec. 29,
2000), at 16 (e.g., [PH_001_0000624065] — [PH_001_0000624082]): Koppolu-OLE, according to
the applicants, used a binary pointer mechanism and an operating system registry to identify objects
with containee server applications. File History, Paper #19, p. 9. This CLASSID system, not the
compound document's text, is used to determine object type. [16] Id. | do not read this to be an
explicit disavowal of the possibility that the '906 browser reads a named application as a type
associated with an object; instead I read this reference to distinguish a method of using numerical
identifiers and platform-dependent registries to perform the association.

Eolas Techs., Inc. v. Microsoft Corp., No. 99 C 0626, 2000 WL 1898853 (N.D.lIl. Dec. 29,
2000), at 16 (e.g., [PH_001_0000624065] — [PH_001_0000624082]): Given that the claim language
supports a construction of type information that includes naming an application, and given that the
specification's preferred embodiment explicitly embraces such a form of type information, I reject a
reading of the claim that hoists unambiguous file history above the claim and specification.

B-107

G. "file"

Claim Term(s) Defendants' Proposed Construction | Eolas's Proposed Construction

a static document stored on a file

file system a named collection of data.
1. Defendants' intrinsic Evidence
a. Claims

In the following chart, the term(s) for construction appear in all the claims marked with an
"x." The letter "m" indicates a method claim, and "{6" indicates a claim that the Defendants contend
includes limitations subject to § 112, | 6.

'906 patent ‘985 patent

m | m m m
m|{m | m |76 (716 |96 | m |96 76 (16 |96 |96 |m |76 | m
1 |4 |5 |6 |9 |10]1 |16 |20 |24 |28 |32 |36 |40 |44

File X X X X X X X X X

b. Specification (all cites to '906 patent)

'906 at 9:24-28 (Detailed Description of a Preferred Embodiment): Once hypermedia
document 212 has been loaded into client computer 200 , browser client 208 parses hypermedia
document 212. In parsing hypermedia document 212 , browser client 208 detects links to data
objects as discussed above in the Background of the Invention section.

'906 at 14:12-16 (Detailed Description of a Preferred Embodiment): Returning to FIG. 7, it
is assumed that a hypermedia document has been obtained at a user's client computer and that a
browser program executing on the client computer displays the document and calls a first routine in
the HTMLparse.c file called "HTMLparse".

C. Prosecution history

i. '906 prosecution history (08/324,443)

Applicants' Response, at 13-16 (Aug. 6, 1996) ([PH_001_0000783879] -
[PH_001_0000783928]):

B-108

Information is entered by the user and passed through
the Web server to the CGI server identified by the ACTION=
attribute. The CGI program generates a new result Web page which
is sent back to the browser and displayed in place of the
original page displayed in the browser-window.

For example, at the bottom of page 2 of the cited
document it is stated that after clicking on the map the arm will
move and a new image will be returned.

The HTML of the page 2 of the cited Mercury Project
document is appended to this amendment. The page has been
decommissioned so the <FORM> tags have been removed. However, it
is apparent that all images are in-line GIF and MPEG images
identified by their extensions. Also, appended is a page linked
to the Mercury page, the Telegarden, page that utilizes the
<FORM> tag to execute control. '

B-109

The <FORM> tag causes the browser to send a string of
characters, entered intec a form in the original HTML document, to
the Web serwver application. The Web server invokes a C3I
application identified by the ACTION= attribute of the tag and
passes the string to the CGI application. In response to the
character string the server application generates and sgends a new
HTML document to be displayed by the browser in place of the
ordinal HTML document.

For example, in the Mercury Project when the arm is
moved by clicking on an in-line image included in a first HTML
document, displayed in a first browser-controlled window, a
string is sent to the Web server with information on how far the
arm is moved. The Web server invokes the CGI server which
generates a new HTML document with an in-line image showing the
arm in the new position and sends the new document to the browser
to be displayed in place of the first HTML document. Some
browsers would cache the first HTML document so that the first
and new HTML documente could be viewed in different windows.

In the Telegarden page, a new HTML document including a
reviged image of the garden is sent by the server and displayed
by the browser in place of the original document. Also, forms
are very popular in search pages where a new HTML document is
sent by the sever and displayed by the browser in place of the
original document to show the results of the search.

The examiner states that the Mercury Project operated
uzing a method substantially as claimed. This rejection is
reapectfully traversed for the following reasons.

There is no disclosure of the claimed step of utilizing
a browser to display a first hypermedia document in a first
window with the hypermedia document including a tag format
specifying the location of an external object and an external
executable application. As described above, the Mercury Project
utilizes CGI where a <FORM> tag identifies a program on the
gerver but not an external cbject. Additionally, the claimed
step of invoking the executable cbject to display and process the
chiject within the first browser-contrclled window while a portion
of the first hypermedia document is displayed is not disclosed.

B-110

In the Mercury Project a new HTML document is generated at the
server and displayed by the browser in a new window.

The claimed combination is fundamentally different from
the Mercury Project. In the claimed combination, the external
object and executable object are embedded by reference in the
HTML document and the ckject is displayed and processed within
the same window where a portion of the original document is
digplayed. 1In the Mercury Project information is passed back to
the server and a new document is generated and displayed. There
is no display and processing the external object within the
window in which a portion of the original document is displayed.

A major difference between CGI and the claimed
combination is that in CGI there is no enforced continuity
between the documents. The CGI responds to form information by
generating new documents each being a static document independent
of the previous document which generated the form string passed
to the Web server. For example, in the Mercury Project separate,
independent HTML documents are generated for each position of the
arm. There is no discleosure of the claimed step of invoking the
executable application to display and process said object within
the window while a portieon of the first distributed hypermedia
document is displayed in the window.

Thus, unlike C3I, the claimed executable application
doeg not generate a static HTML document to be displayed in place
of the first document but displays and processes the object in a

portion of the window.

ii. First reexam (90/006,831)

Applicants' Response, at 4 (Oct. 12, 2004) ([PH_001_0000785803] —
[PH_001_0000785832]): The claimed invention: ... The claims recite a browser application,
executed on the client workstation, that parses a hypermedia document to identify text formats in the
document and responds to predetermined text formats to initiate processing specified by the text
formats. ... The browser displays a portion of a first distributed hypermedia document, received
over the network from the network server, in a browser-controlled window. The hypermedia
document includes an embed text format.

iii. '085 prosecution history (10/217,955)

Applicants' Response, at 9 (March 11, 2005) ([PH_001_0000784213] -
[PH_001_0000784244]): The specification of the '906 patent (Applicants' Admitted Prior Art) describes
a browser application, e.g., Mosaic, that functions as a viewer to view HTML documents. There are
several ways to retrieve an HTML document from a network server, all of which require user interaction
with the browser. [Felten I, paragraph 8]. The browser then retrieves a selected published source
HTML document from a network server by utilizing a uniform resource locator (URL) that locates the
HTML dociiment on the network and stores a temporary local copy of the HTML source document in a
cache on the client workstation.

B-111

The browser application then parses the local copy of the HTML document, renders the
temporary local copy of the HTML document into a Web page, and displays the rendered Web page in
a browser-controlled window.").

Declaration of Edward W. Felten, at 1 19-23 (May 7, 2004) (accompanying Applicants’
Response (March 11, 2005)) ([PH_001_0000784272] — [PH_001 _0000784282)):

19. The Office Action cites the applicants’ admitted prior art. “F'have reviewed .
all prior art references referenced in the ‘906 Patent’s ﬁle hlstory It
appears that the Office Action’s discussion of this priorart focuses on the
Mosalc browser, wl'uch was the most advanced pnor art browser.

20. Mosaic, and other pnor art browscrs, executed ona client computer, and
~ operated by downloadmg copies of web pages (and other files, such as
embedded static images) over a network from web servers. After
downloading a copy of a file, Mosaic would sometimes keep a copy of
that file in a local cache, on the user’s client computer. Caching allowed
the file to be referenced more quickly if it was needed again later.

21. After downloading a file, Mosaic would parse that file (i.e., analyze its
structure) to determine how the file should be displayed on the screen.
Mosaic would then pamt the contents of the file into a browser window.

22 When Mosaic, or ancther prior art browser, was used to view web pages,
several steps stood between the author of the web page and the user who
was viewing it. First, the file would be copied, at least once and perhaps
more times, while in transit between the web server and the user’s
browser. Second, the file would be written in one format (typically,
HTML) but displayed in another form, by rendering the HTML into a
visual representation that would actually be presented to the user.

23. Because these steps stood between the author and the user, there was no
realistic way for the user to edit the web page on the client workstation.
- The user did not have access to the version of the page that was distributed
- that version lived on the server, and it wouldn’t make sense to let an
arbitrary user edit the contents of somebody else’s web page.

2. Defendants' extrinsic evidence

Barrons Dictionary of Computer Terms 106 (2d ed. 1989) (“document™) [PA-0000333369]:
A document is a file containing a text to be printed (e.g., a letter, term paper, or book chapter) or a
drawing.

Barrons Dictionary of Computer Terms 126 (2d ed. 1989) (“file") [PA-0000333371] - [PA-
0000333372]: A file is a collection of information stored as records. The information in a file is

stored in such a way that the computer can read information from the file or write information to the
file.

B-112

Academic Press Dictionary of Science and Technology 826 (1992) ("file™) [PA-
0000333384]: file—Computer Programming. 1. a collection of items with certain common
aspects, organized for a specific purpose and stored or processed as a unit. 2. any collection of data
that is stored and manipulated as a named unit by a file-management system. Used to form many
compound terms, such as file backup, file catolog, file layout, file maintenance, file printout, file
processing, file separator, file transfer, and so on.

21st Centry Dictionary of Computer Terms 138 (1994) ("file™) [PA-0000333437]: file—
Broadly used, a collection of related data identified by a file name. For example, a document created
and stored through a word processing program is referred to as a file, as is a spreadsheet.

Microsoft Press Computer Dictionary 144 (1991) [PA-0000333464]: file—A complete,
named collection of information, such as a program, a set of data used by a program, or a user-
created document. A file is the basic unit of storage that enables a computer to distinguish one set of
information from another.

B-113

H. ""hypermedia document'' / "'distributed hypermedia document' / "*file

containing information™'

Claim Term(s)

Defendants' Proposed Construction

Eolas's Proposed Construction

[first] hypermedia

document

[first] distributed
hypermedia
document

file containing
information to
enable a browser
application to
display [, on]
[said/the] [client
workstation,] at
least [a / said]
portion of [a/
said] distributed
hypermedia
document

a document received by the browser
that includes links (specified by the
hypertext format) to graphics, sound,
video or other media

a document that allows a user to click
on images, sound icons, video icons,
etc., that link to other objects of
various media types, such as
additional graphics, sound video, text,
or hypermedia or hypertext documents

[first] hypermedia document that
allows a user to access a remote data
object over a network

the file contains information to allow
the browser application to display at
least part of a distributed hypermedia
document

1.

Defendants' intrinsic evidence

a. Claims

In the following chart, the term(s) for construction appear in all the claims marked with an
"x." The letter "m" indicates a method claim, and "{6" indicates a claim that the Defendants contend
includes limitations subject to § 112, 6.

‘906 patent ‘985 patent
m | m m m

mim|@m 96 96 |6 |m |96 |96 |96 |96 |96 |m |96 | m

1 |4 |5 |6 |9 [10)1 |16|20 |24 |28 |32 |36 |40 |44
[first] hypermedia document | X | X | X X [X X | X [X [X |X X | X |X
gfcl)::slj%clﬁ:rlbutedhypermedla x Ix Ix Ix Ix Ix Ix Ix Ix Ix Ix Ix |x Ix |x
file containing information to
enable a browser application
to display [, on] [said/the]
[client workstation,] at least X [X | X |[X | X [X |X |X [X
[a / said] portion of [a / said]
distributed hypermedia
document

B-114

'906-1, -4, -5: executing, at said client workstation, a browser application, that parses a first
distributed hypermedia document to identify text formats included in said distributed hypermedia
document . . .; utilizing said browser to display, on said client workstation, at least a portion of a
first hypermedia document received over said network from said server, ... wherein said first
distributed hypermedia document includes an embed text format, located at a first location in said
first distributed hypermedia document, that specifies the location of at least a portion of an object
external to the first distributed hypermedia document, wherein said object has type information
associated with it utilized by said browser to identify and locate an executable application external to
the first distributed hypermedia document, and wherein said embed text format is parsed by said
browser to automatically invoke said executable application to execute on said client workstation in
order to display said object and enable an end-user to directly interact with said object within a
display area created at said first location within the portion of said first distributed hypermedia
document being displayed in said first browser-controlled window.

'906-4, -5: executing, at said client workstation, a browser application, that parses a first
distributed hypermedia document to identify text formats included in said distributed hypermedia
document . . .; utilizing said browser to display, on said client workstation, at least a portion of a
first hypermedia document received over said network from said server, wherein the portion of said
first hypermedia document is displayed within a first browser-controlled window on said client
workstation, wherein said first distributed hypermedia document includes an embed text format,
located at a first location in said first distributed hypermedia document, that specifies the location
of at least a portion of an object external to the first distributed hypermedia document, wherein said
object has type information associated with it utilized by said browser to identify and locate an
executable application external to the first distributed hypermedia document, and wherein said
embed text format is parsed by said browser to automatically invoke said executable application to
execute on said client workstation in order to display said object and enable interactive processing of
said object within a display area created at said first location within the portion of said first
distributed hypermedia document being displayed in said first browser-controlled window

'906-6: causing said client workstation to execute a browser application to parse a first
distributed hypermedia document to identify text formats included in said distributed hypermedia
document . . . causing said client workstation to utilize said browser to display, on said client
workstation, at least a portion of a first hypermedia document received over said network from said
server, wherein the portion of said first hypermedia document is displayed within a first browser-
controlled window on said client workstation, wherein said first distributed hypermedia document
includes an embed text format, located at a first location in said first distributed hypermedia
document, that specifies the location of at least a portion of an object external to the first distributed
hypermedia document, wherein said object has type information associated with it utilized by said
browser to identify and locate an executable application external to the first distributed hypermedia
document, and wherein said embed text format is parsed by said browser to automatically invoke
said executable application to execute on said client workstation in order to display said object and
enable an end-user to directly interact with said object within a display area created at said first
location within the portion of said first distributed hypermedia document being displayed in said
first browser-controlled window.

'906-9, -10: causing said client workstation to execute a browser application to parse a first
distributed hypermedia document to identify text formats included in said distributed hypermedia
document . . . causing said client workstation to utilize said browser to display, on said client
workstation, at least a portion of a first hypermedia document received over said network from said
server, wherein the portion of said first hypermedia document is displayed within a first browser-
controlled window on said client workstation, wherein said first distributed hypermedia document
includes an embed text format, located at a first location in said first distributed hypermedia
document, that specifies the location of at least a portion of an object external to the first distributed
hypermedia document, wherein said object has type information associated with it utilized by said
browser to identify and locate an executable application external to the first distributed hypermedia

B-115

document, and wherein said embed text format is parsed by said browser to automatically invoke
said executable application to execute on said client workstation in order to display said object and
enable interactive processing of said object within a display area created at said first location within
the portion of said first distributed hypermedia document being displayed in said first browser-
controlled window;

'985-1: receiving, at the client workstation from the network server over the network
environment, at least one file containing information to enable a browser application to display at
least a portion of a distributed hypermedia document within a browser-controlled window . . .
displaying at least a portion of the document . . . automatically invoking the executable application,
in response to the identifying of the embed text format, to execute on the client workstation in order
to display the object and enable an end-user to directly interact with the object while the object is
being displayed within a display area created at the first location within the portion of the
hypermedia document being displayed in the browser-controlled window.

'085-16: receive, at the client workstation from the network server over the network
environment, at least one file containing information to enable a browser application to display at
least a portion of a distributed hypermedia document within a browser-controlled window . . .
display at least a portion of the document . . . and enable an end-user to directly interact with the
object while the object is being displayed within a display area created at the first location within the
portion of the hypermedia document being displayed in the browser-controlled window.

'985-20: receive, over said network environment from said server, at least one file containing
information to enable a browser application to display at least a portion of a distributed
hypermedia document . . . displaying, on said client workstation, at least a portion of the document
... enable an end-user to directly interact with the object while the object is being displayed within a
display area created at the first location within the portion of the hypermedia document being
displayed in the browser-controlled window.

'985-24: enabling an end-user to directly interact with an object by utilizing said executable
application to interactively process said object while the object is being displayed within a display
area created at a first location within a portion of a hypermedia document being displayed in a
browser-controlled window, ... wherein said client workstation receives, over said network
environment from said server, at least one file containing information to enable said browser
application to display, on said client workstation, at least said portion of said distributed
hypermedia document within said browser-controlled window . . . wherein at least said portion of
the document is displayed within the browser-controlled window

'985-28: cause the client workstation to display an object and enable an end-user to directly
interact with said object while the object is being displayed within a display area created at a first
location within a portion of a hypermedia document being displayed in a browser-controlled
window, ... wherein said client workstation receives, over said network environment from said
server, at least one file containing information to enable said browser application to display, on
said client workstation, at least said portion of said distributed hypermedia document within said
browser-controlled window . . . wherein at least said portion of the document is displayed within the
browser-controlled window

'985-32: receive at said client workstation, over said computer network environment from
said server, at least one file containing information to enable a browser application to display, on
said client workstation, at least a portion of a distributed hypermedia document within a browser-
controlled window; utilize an executable application external to said file to enable an end-user to
directly interact with an object while the object is being displayed within a display area created at a
first location within the portion of the distributed hypermedia document being displayed in the
browser-controlled window, with said network server coupled to said computer network

B-116

environment . . . wherein at least said portion of the document is displayed within the browser-
controlled window

'985-36: receiving, at the client workstation from the network server over the distributed
hypermedia network environment, at least one file containing information to enable a browser
application to display at least a portion of a distributed hypermedia document within a browser-
controlled window . . . displaying at least a portion of the document within the browser-controlled
window . . . automatically invoking the executable application, in response to the identifying of the
embed text format, in order to enable an end-user to directly interact with the object, while the object
is being displayed within a display area created at the first location within the portion of the
hypermedia document being displayed in the browser-controlled window,

'985-40: receive, over said computer network environment from the network server, at least
one file containing information to enable a browser application to display at least a portion of a
distributed hypermedia document within a browser-controlled window . . . displaying, on said client
workstation, at least a portion of the document within the browser-controlled window . . .
automatically invoking the executable application, in response to the identifying of the embed text
format, in order to enable an end-user to directly interact with the object while the object is being
displayed within a display area created at the first location within the portion of the hypermedia
document being displayed in the browser-controlled window

'985-44: wherein the client workstation receives, over the computer network environment
from the server, at least one file containing information to enable a browser application to display,
on the client workstation, at least a portion of a distributed hypermedia document within a
browser-controlled window . . . wherein at least said portion of the document is displayed within the
browser-controlled window . . . wherein the executable application is automatically invoked by the
browser, in response to the identifying of the embed text format, to enable an end-user to directly
interact with the object while the object is being displayed within a display area created at the first
location within the portion of the hypermedia document being displayed in the browser-controlled
window

b. Specification (all cites to '906 patent)

1:53-:60 & 2:23-:28 (Background of the Invention): Other Internet standards are the
HyperText Transmission Protocol ("HTTP") that allows hypertext documents to be exchanged freely
among any computers connected to the Internet and HyperText Markup Language ("HTML") that
defines the way in which hypertext documents designate links to information. See, e.g., Berners-
Lee, T. J., "The world-wide-web," Computer Networks and ISDN Systems 25 (1992). ... A
hypermedia document is similar to a hypertext document, except that the user is able to click on
images, sound icons, video icons, etc., that link to other objects of various media types, such as
additional graphics, sound, video, text, or hypermedia or hypertext documents.

5:24—:38 (Background of the invention): The Internet is said to provide an "open distributed
hypermedia system."” It is an "open™ system since Internet 100 implements a standard protocol that
each of the connecting computer systems, 106, 130, 120, 132 and 134 must implement (TCP/IP). It
is a "hypermedia” system because it is able to handle hypermedia documents as described above via
standards such as the HTTP and HTML hypertext transmission and mark up standards,
respectively.

1:61-2:6 (Background of the Invention): A hypertext document is a document that allows a
user to view a text document displayed on a display device connected to the user's computer and to
access, retrieve and view other data objects that are linked to hypertext words or phrases in the
hypertext document. In a hypertext document, the user may "click on," or select, certain words or
phrases in the text that specify a link to other documents, or data objects. In this way, the user is

B-117

able to navigate easily among data objects. The data objects may be local to the user's computer
system or remotely located over a network. An early hypertext system is Hypercard, by Apple
Computer, Inc. Hypercard is a standalone system where the data objects are local to the user's
system.

2:7-:13 (Background of the Invention): When a user selects a phrase in a hypertext
document that has an associated link to another document, the linked document is retrieved and
displayed on the user's display screen. This allows the user to obtain more information in an
efficient and easy manner. This provides the user with a simple, intuitive and powerful way to
"branch off" from a main document to learn more about topics of interest.

2:14—:27 (Background of the Invention): Objects may be text, images, sound files, video
data documents or other types of information that is presentable to a user of a computer system.
When a document is primarily text and includes links to other data objects according to the hypertext
format, the document is said to be a hypertext document. When graphics, sound, video or other
media capable of being manipulated and presented in a computer system is used as the object linked
to, the document is said to be a hypermedia document. A hypermedia document is similar to a
hypertext document, except that the user is able to click on images, sound icons, video icons, etc.,
that link to other objects of various media types, such as additional graphics, sound, video, text, or
hypermedia or hypertext documents.

2:38—-:47 & fig.1 (Background of the Invention): When the user clicks on the phrase
"hypermedia,” software running on the user's computer obtains the link associated with the phrase,
symbolically shown by arrow 30, to access hypermedia document 14. Hypermedia document 14 is
retrieved and displayed on the user's display screen. Thus, the user is presented with more
information on the phrase "hypermedia.” The mechanism for specifying and locating a linked object
such as hypermedia document 14 is an HTML "element" that includes an object address in the
format of a Uniform Resource Locator (URL).

pPa /0 1B
/" THIS HYPERMEDIA DOCUMENT INCLUDES AN IMAGE IGON I I

/_ o2 I .

— ___f’___-—- -

| —
[= ri
26
| \! ,’
| 3

mk A SOUND 1CON U@) AND SOME HYPERTEXT.
R
/4[} {lz

ofi [1Tolo[TToT- T r]o]0 HYPERTEXT IS TEXT THAT HAS ANOTHER OBJECT, PRMARILY
4

.
‘ TEXT, ASSOCIATED WITH IT. WHEW AN OBJECT IS OTHER
Y TEXT THE DOCUMENT IS SAID TO BE A HYPERMEDIA
\
LY _— [
A HYPERMEDIA DOCUMENT MAY HAVE IMAGE ICONS LIKE THIS:

DOCUMENT. \og
AND OTHER OBJECTS EMBEDDED IN IT.

F/G. [PRIOR ART

2:56-:65 (Background of the Invention): Documents, and other data objects, can be
referenced by many links from many different source documents. FIG. 1 shows document 14 serving

B-118

as a target link for both documents 10 and 12. A distributed hypertext or hypermedia document
typically has many links within it that specify many different data objects located in computers at
different geographical locations connected by a network. Hypermedia document 10 includes image
icon 22 with a link to image 16. One method of viewing images is to include an icon, or other
indicator, within the text.

4:60-5:13 (Background of the Invention): Referring again to FIG. 1, data objects such as
distributed hypermedia documents 10, 12 and 14, image 16 and sound data file 40, may be located
at any of the computers shown in FIG. 2. Since these data objects may be linked to a document
located on another computer the Internet allows for remote object linking. For example, hypertext
document 10 of FIG. 1 may be located at user 110's client computer 108. When user 110 makes a
request by, for example, clicking on hypertext 20 (i.e., the phrase "hypermedia™), user 110's small
client computer 108 processes links within hypertext document 10 to retrieve document 14. In this
example, we assume that document 14 is stored at a remote location on server B. Thus, in this
example, computer 108 issues a command that includes the address of document 14. This command
is routed through server A and Internet 100 and eventually is received by server B. Server B
processes the command and locates document 14 on its local storage. Server 14 then transfers a
copy of the document back to client 108 via Internet 100 and server A. After client computer 108
receives document 14, it is displayed so that user 110 may view it.

5:14-:23 (Background of the Invention): Similarly, image object 16 and sound data file 40
may reside at any of the computers shown in FIG. 2. Assuming image object 16 resides on server C
when user 110 clicks on image icon 22, client computer 108 generates a command to retrieve image
object 16 to server C. Server C receives the command and transfers a copy of image object 16 to
client computer 108. Alternatively, an object, such as sound data file 40, may reside on server A so
that it is not necessary to traverse long distances via the Internet in order to retrieve the data object.

12:50-:65 (Detailed Description of a Preferred Embodiment):

Next, a discussion of the software processes that perform
parsing of a hypermedia document and launching of an
application program 1s provided in connection with Table II
and FIGS. 7A, 7B, 8A and 8B.

Table II, below, shows an example of an HTML tag
format used by the present invention to embed a link to an
application program within a hypermedia document.

TABLE II

<EMBED
TYPE = “type”
HREF = “href”
WIDTH = width
HEIGHT = height

13:37-:50 & fig.7A (Detailed Description of a Preferred Embodiment): FIG. 7Aisa
flowchart describing some of the functionality within the HTMLparse.c file of routines. The
routines in HTMLparse.c perform the task of parsing a hypermedia document and detecting the
EMBED tag. In a preferred embodiment, the enhancements to include the EMBED tag are made to
an HTML library included in public domain NCSA Mosaic version 2.4. Note that much of the
source code in is pre-existing NCSA Mosaic code. Only those portions of the source code that relate
to the new functionality discussed in this specification should be considered as part of the invention.
The new functionality is identifiable as being set off from the main body of source code by

B-119

conditional compilation macros such as "#ifdef . . . #endif" as will be readily apparent to one of skill
in the art.

252

MORE TEXT T0
PARSE?

YEs /256

PARSE DOGUMENT

/L\{zsa |
I EMBEDTAS S W0 |
~_DETECTED?
2%, | fYes %0 |

ASSIGN '

ExiT ENUMERATED TYPE

FIG. 7A.

14:24—:42 (Detailed Description of a Preferred Embodiment): Assuming there is more text
to parse, execution proceeds to step 256 where routines in HTMLparse.c obtain the next item (e.g.,
word, tag or symbol) from the document. At step 258 a check is made as to whether the current tag
is the EMBED tag. If not, execution returns to step 254 where the next tag in the document is
obtained. If, at step 258, it is determined that the tag is the EMBED tag, execution proceeds to step
260 where an enumerated type is assigned for the tag. Each occurrence of a valid EMBED tag
specifies an embedded object. HTM LParse calls a routine "get_mark" in HTMLparse.c to put
sections of HTML document text into a "markup™ text data structure. Routine get_mark, in turn,
calls ParseMarkType to assign an enumerated type. The enumerated type is an idientifier with a
unique integer associated with it that is used in later processing described below. Once all of the
hypermedia text in the text portion to be displayed has been parsed, execution of HTMLparse.c
routines terminates at step 262.

C. Prosecution history

i. '906 prosecution history (08/324.,443)

Office Action, at 2 (May 6, 1996) ([PH_001_0000783863] — [PH_001_0000783878]):

B-120

Amendment A, at 1-3 (Aug. 6, 1996)
([PH_001_0000783879 —
[PH_001_0000783928]):

1. (Amended) A method for running
an application program in a computer network
environment, comprising:

... a browser application, that parses a
distributed hypermedia document...

... text formats included in the
distributed hypermedia document ...

... at least a portion of a first
hypermedia document...

... Wherein said first hypermedia
document is displayed...

... Wherein said first distributed
hypermedia document includes an embed text
format...

... location of an object external to the
first distributed hypermedia document...

... executable application external to
the first distributed hypermedia document...

... said first distributed hypermedia
document continues to be displayed...

Applicants' Response, at 2 (Dec. 23, 1997)
([PH_001_0000784131] -
[PH_001_0000784162]):

THE INVENTION OF CLAIM 1

A browser application parses a
hypermedia document ...

... The browser displays a portion of a
first distributed hypermedia document ...

... The hypermedia document includes
an embed text format, located at a first location
in the hypermedia document, ...

...the location of at least a portion of an
object external to the hypermedia document.

B-121

Amendment A, at 1-3 (Aug. 6, 1996) ([PH_001_0000783879] — [PH_001_0000783928]):

14. (Amended) ... wherein HyperText Markup Language is used to specify
said [embedded] controllable application within said hypermedia document.

See also, e.g., Amendment A, at 7 (Aug. 6, 1996) ([PH_001_0000783879] —
[PH_001_0000783928]) (setting forth amendments to claim 44.)

Amendment A, at 13 (Aug. 6, 1996) ([PH_001_0000783879] — [PH_001_0000783928]):

Amendment A, at 16 (Aug. 6, 1996) ([PH_001_0000783879] —
[PH_001_0000783928]):

Amendment A, at 17 (Aug. 6, 1996) ([PH_001_0000783879] — [PH_001_0000783928]):

In view of the above, it is believed that the claims
are not cbviocus over the disclosed prior art in view of Hansen.
There ie no disclosure in the references, singly or in
combination, of displaying a hypermedia document in a first
window including a text format specifying the location of an
external object and identifying an external executable
application or of invoking the external application to display
and process the external object within the first window.

Applicants' Response, at 2 (Jan. 8, 1997) ([PH_001_0000783957] — [PH_001_0000783996]):

B-122

Applicants' Response, at Attachment I, p. 2 of 6 (Jan. 8, 1997) ([PH_001_0000783957 —
[PH_001_0000783996]):

Applicants' Response, at Attachment I, p. 3 of 6 (Jan. 8, 1997) ([PH_001_0000783957 —
[PH_001_0000783996]):

B-123

Office Action, at 3 (Jan. 24, 1997) ([PH_001_0000783997] — [PH_001_0000784008]):

Examiner Interview Summary Record, at 1 (Feb. 26, 1997) ([PH_001_0000784011] -
[PH_001_0000784012]):

Amendment B, at 1-2 (June 2, 1997) ([PH_001_0000784029] — [PH_001_0000784090]): ...
created at said first location within the portion of said first distributed hypermedia document being

displayed ...
Amendment B, at 13 (June 2, 1997) ([PH_001_0000784029] — [PH_001_0000784090]):

The Applicants’ invention allows the hypermedia
document to act as a coordinator and deployment mechanism, as
well as a container, for any arbitrary number of external
interactive data/application objects, while hiding the details of
such coordination and deployment from the document’s reader as
the reader uses the various data/application objects. This
allows the hypermedia document to act as a platform for entirely
new kinds of applications that could not have been possible

before the invention.

Amendment B, at 18 (June 2, 1997) ([PH_001_0000784029] — [PH_001_0000784090]):

B-124

Declaration of Michael D. Doyle, at 10 (June 2, 1997) ([PH_001_0000784029] -
[PH_001_0000784090]):

identifier, which is referenced in a document, for example, as a
“link marker.” The actual definition of the link referenced by
any particular link marker is located in an operating system data
structure called a “link table.” The document itself does not
allow the document author to explicitly define or control the
definition of the link’s internal details, such as the precise
location of a data file on a disk drive. The Web, on the other
hand, employs a uniform resourse locator (URL) construct to
manage both link definition and object localization on networked
systems, from within the Web document, under the precise control
of the Web document author. It appears that the URL mechanism
would be incompatible with the linking mechanism requirements
imposed by the Khoyi operating system. Since the HTML-based
mechanism for linking and object management is one of the major
requirements for a successful Web browser, such an
incompatibility would likely render the resulting system useless

for its intended purpose.

Office Action, at 4 (Aug. 25, 1997) ([PH_001_0000784091] — [PH_001_0000784098]):

Declaration of Michael D. Doyle, at 2-3 (Oct. 29, 1997) (accompanying Applicants' Remarks
(Oct. 31, 1997)) ([PH_001_0000784129] — [PH_001_0000784130]):

B-125

2. The subject matter claimed in the above patent
application was reduced to practice in this country prior to
April 15, 1994, the filing date of the parent of the Koppolu
reference cited by the examiner. _

3. The reduction to practice of the claimed invention
is svidenced by ATTACHMENTS A ard B, ATTACHMENT & ie a copy of
a paper entirled “Integrated Control of Distributed Volume
Vigualization Through the World-wide-web", by Ang, Martin, and
| Doyle. This paper was submitted for publication prier tc
April 15, 1994. ATTACHMENT B ig a transcript of the audie
portion and still photographs of a video tape presented to an
audience of scientisce prior te April 14, 1594.

4. As stated in ATTACHMENT A, at page 5, paragraph
3.2, Mogaic (the browser) intezrprets tha HTML <EMBED»> tag
included i1n a document to create a drawing area widget in a

document presentation and creates a shared window system buffer
to receive visualization results. 1In addition. when the browser
parsea an <EMBED> tag in the document, the browsef automatically
launches tha external application epecifying the location of the
visual object to render and identify the shared image buffer.
The format and operatieon of an EMBED tag for 3D image data is
described at paragraph 3.1.

5. As prated in ATTACHMENT B, starting at the botteom
of page 2, interface and control softwvare had been developed that
allows the embedding of a visualization applicatien within a
Mosaic document. Ae ls apparent from the photographs, the object
is displayed and procesged within the browger-contrelled window.
The vieualizacion application is external to the hypermedia
document displayed by the browser. Automatic launching of the
axternal applicacion when an HTML document is opened by the

hrowser {ia depieted in the wvideo.

Declaration of Michael D. Doyle, at Attachment A, pp. 4-5 (Oct. 31, 1997)
(accompanying Applicants’ Remarks (Oct. 31, 1997)) ([PH_001_0000784129] -
[PH_001_0000784130]):

B-126

Applicants' Response, at 4 (Dec. 23, 1997) ([PH_001_0000784131] -
[PH_001_0000784162]):

- The different functions and purposes of Mosaic and
Koppelu (OLE) are reflected in the different document structure.
In Mosaic, since HTML documents are designed to be platform
independent, the document structure is simple ASCII text. A
browser parses a received document to identify HTML tags which
specify various aspects of the document’s appearance and links to
other documents. In Koppolu, a container application creates a
complex file structure which is utilized to render a document.
There is no text parsing in Koppolu to render the compound

document .

Applicants' Response, at 17 (Dec. 23, 1997) ([PH_001_0000784131] -
[PH_001_0000784162]):

In erder to insure cross-platform uniformity of document
appearance, the document was defined through the use of ASCII
text, where specific text formats, otherwise known as "tags,K"
would be used within the document text to apecify various aspects
of the document’'s appearance and linkages to other documents or
related data. Each browser, therefore, incorporated a parser
which would distinguish the formatting tags from the document's
narrative text, classify those tags into pre-defined categories,
break each tag into its basic components, and then invoke
appropriate browser subroutines to regpond appropriately to the
meanings of the tag components. Although the browser subroutines
were built from machine-specific native code, this text tag
mechanism allowed the design of a variety of browsers for various
computing platforms that could respond in similar ways to similar
types of text tags, and therefore result in similar-appearing
documents on dissimilar computers. A binary document data format
was avoided in order to promote cross-platform compatibility, due
to the variation in binary data handling methodologies on wvarious
different operating systems, and to simplify the regquirements for
document creation toocls. All that a Web document author needs in
order to create a Web document file is a simple ASCII text
editor, which is a pre-existing application in all commonly-found

operating system packages.

Response to Final Rejection, at 25 (Dec. 23, 1997) ([PH_001_0000784131] -
[PH_001_0000784162]): Additionally, because the claimed embed text formats in the document
cause the browser to automatically invoke the external application, the hypermedia document itself,
and by implication the author of that document, directly control the extension of the functionality of
the browser. As a consequence of the features of the claimed invention, the document, rather than

B-127

the browser, becomes the application; that is, the document together with its embedded program
objects, exposes all the functionality that the user needs to interact with and process the entire
content of the compound hypermedia document.

ii. Abandoned application (09/075,359)

Applicants' Response, at 1-2 (March 9, 2001) ([PH_001_0000787808] —
[PH_001_0000787813]):

62. (New) A computer program product for use in a system ...
... at least a portion of a first hypermedia document received over said network...
.. the portion of said first hypermedia document is displayed ...
.. wherein said first distributed hypermedia document includes...
.. located at a first location in said first distributed hypermedia document...
.. external to said first distributed hypermedia document...
.. external to the first distributed hypermedia document ...

.. within the portion of the first distributed hypermedia document...

Response to Office Action, at 7 (Nov. 29, 2001) ([PH_001_0000787823] -
[PH_001_0000787832]):

In Risberg a user customizes the application by utilizing scripts and setting
up alarm limits. In the claimed invention, the document itself coordinates the use
of external program code with embed text formats, such as the Netscape <embed>
tag or the ActiveX <object> tag, at locations in the document where the external
computer readable code is to display and enable interactive processing of an
external object.

Thus, Risberg and the claimed computer program product implement
completely different -paradigms. In Risberg, a user, having access to the
application running on the workstation, customizes the application using many
features, such as scripts and tools, built into the application. In the invention of
claim 62, the document itself causes the browser to automatically invoke external
program code to perform customized functions selected by the hypermedia
document author rather than the user of the program.

ii. First reexam (90/006,831)

Doyle Presentation, April 27, 2004 (accompanying Ex Parte Reexamination Interview
Summary (April 27, 2004)) ([PH_001_0000785316] — [PH_001_0000785358]):

B-128

Applicants' Remarks, at 2 (May 11, 2004) ([PH_001_0000785359] —
[PH_001_0000785379]):

d. isplayed by
the browser would not change if the end user utilized an external editor to modify
the locally-downloaded copy of the embedded image.

Applicants' Remarks, at 3-4 (May 11, 2004) ([PH_001_0000785359] -
[PH_001_0000785379]):

as static graphic images, and insert the images into the Web page of the HTML document, for
display to the user.

There is no further interaction with the source HTML document or the local copy
of the source HTML document subsequent to its being rendered and displayed. If a user believes
the source HTML document has changed (s)he can click a refresh button in the browser GUI
which causes the browser application to retrieve the source HTML document from the network
server again, store a local copy again, parse and render again the newly retrieved local copy of
the source HTML document, and replace the display of the previous version of the retrieved
source HTML document with the subsequently refrieved version in the browser-controlled
window or another window. For example, if the source HTML document were a price list of
goods the user might refresh the document to determine if the prices had changed,

Applicants' Remarks, at 13 (May 11, 2004) ([PH_001_0000785359] —
[PH_001_0000785379]):

B-129

24. In addition, because web pages were written in one format (HTML) and
viewed in another (visual representation), it did not make sense to talk
about editing and viewing a document in the same window. Web page
authors would typically work with twoe separate windows open, one (2
browser) 10 see what the visual representation looked like, and another (an
external editor) to actually modify the page’s HTML representation, An
author would fiddle with the HTML, then click the save button in the
editor and the refresh button in the browser to sée what the visual
representation of the page looked like, then fiddle with the HTML some
more, and so on until he was satisfied with the page’s appearance.

Office Action, at 4 (Aug. 16, 2004) ([PH_001_0000785553] — [PH_001_0000785571]):

) it would have been obvious to a skilled artisan to combine (1) the teachings of

- Berners-Lee regarding the processing of HTML documents performed by a browser,

* with (2) the HTML browser of the admitted prior art in light of the statement made by the
:.[admitted prior art that its hypermedia system is designed 1o handle hypermedia
| documents according the HTML markup standard. (See USP "906: Col. 5, lines
+128-31).

Applicants' Response, at 18 (Oct. 12, 2004) ([PH_001_0000785803] —
[PH_001_0000785832]): Another important principle of the Web model taught by the Mosaic,
Berners-Lee, Raggett | and 1l combination is that of referential integrity. In the Web model, the
HTML document author can specify the specific locations, contained in "hypertext links," from
which the browser will retrieve new HTML documents when users click upon those links. These
links are easily specified through embed text formats in the document text.

Applicants' Response, at 20-21 (Oct. 12, 2004) ([PH_001_0000785803] -
[PH_001_0000785832]):

PART Il The obviousness rejection is based on a false premise and
therefore reaches a false conclusion.

a. Toye does not disclose a distributed hypermedia system in
which a hypermedia browser allows a user to interactively
process an object embedded within a distributed hypermedia
document.

The Office Action, at page 6, lines 21-26, states that Toye discloses a
distributed hypermedia system in which a hypermedia browser allows a user to
interactively process an object embedded within a distributed hypermedia
document. However, this statement is incorrect in view of the precise meaning of
the various terms defined in the Mosaic, Berners-Lee, Raggett | and 11
combination.

The admitted prior art describes a hypertext document as "a document that

allows a user to view a text document displayed on a display device connected to
the user's computer and to access, retrieve and view other data objects that are

B-130

linked to hypertext words or phrases in the hypertext document. In a hypertext
document, the user may "click on," or select, certain words or phrases in the text
that specify a link to other documents, or data objects.” ['906 at col. 1, line 61]
"A hypermedia document is similar to a hypertext document, except that the user
is able to click on images, sound icons, video icons, etc., that link to other objects
of various media types, such as additional graphics, sound, video text, or
hypermedia or hypertext documents.” ['906 at col. 2, line 23]. When the
hypermedia document is displayed on a browser program the browser responds to
the selection of a link to retrieve and display the hypermedia document or data
object referenced by the link.

A distributed hypermedia system "is a "distributed"” system because data
objects that are imbedded within a document may be located on many of the
computer systems connected to the Internet.” ['906 at col. 5, lines 25-38].

The use of the HTML allows the Internet to be an open system where a
standard protocol is implemented by each computer connected to the internet. The
structure of the document is defined by the author utilizing particular sets of
characters that have a universal meaning.

In contrast, Toye teaches a system that is not a distributed system but
requires that all referenced objects be stored in a single data base called DIS.
[Toye, page 40, column 2, first and second paragraphs below the heading
"Distributed Information Service (DIS)].

The NoteMail pages described in Toye use DIS as the central repository
for referenced objects in contrast to the ability of a distributed hypermedia
document to reference objects located in computers at different geographic
locations. Thus, the Toye system does not teach or suggest using distributed
hypermedia documents and its principle of operation is incompatible with the use
of distributed hypermedia documents. [Felten Il, at paragraph 24].

Also, for the same reasons Toye does not teach the use of a "distributed
hypermedia environment" as that term is defined in the admitted prior art and
used in claims 1 and 6 of the '906 patent. The use of the centralized storage of
referenced objects is crucial to the intended purpose of the Toye system and
contradicts the basic requirements of a distributed hypermedia environment.
[Felten II, at paragraph 25].

Toye does not teach a hypermedia browser application, as that term is
defined in the admitted prior art, Berners-Lee, and Raggett | and Il, understood by
the PHOSA at the time the application was filed, and as used in claims 1 and 6 of
the '906 patent. Toye teaches no software application that parses distributed
hypermedia documents or that uses text formats, and it does not teach other
browser-related elements of the '906 claims, such as parsing of distributed
hypermedia documents by a browser, identifying text formats in distributed
hypermedia documents and responding to predetermined text formats to initiate
processing specified by those formats, utilizing a browser to display at least a
portion of a distributed hypermedia document in a browser-controlled window,
and parsing an embed text format in such a document. [Felten Il, at paragraphs
26-271].

Further, the Toye reference teaches that information can be organized by

adding links between objects where the links themselves are objects stored in the
DIS database. [Toye, page 41, col. 1, first partial paragraph]. Thus, Toye is not a

B-131

hypermedia system because, in the admitted prior art, Berners-Lee, and Raggett |
and Il combination, links are defined by the author as text formats in the
hypermedia document and resolved by the browser application.

The Mosaic, Berners-Lee, Raggett | and 11 combinations teaches the use of
a hypermedia document that is a text document where some characters within the
text are interpreted as mark-up tags specified by the HTML standard. The mark-
up "tags" give structure to the document. [Berners-Lee, page 5, Felten 11, at
paragraph 14].

In contrast, Toye teaches that the structure, i.e., spatial arrangement of
information in a NoteMail page, is preserved by a non-standard MIME "Format"
data type defined by the Toye authors for the specific NoteMail system being
described. [Toye, page 40, first column, last partial paragraph, Felten I, at
paragraph 31]. Accordingly, Toye does not teach the use of a hypermedia
document, in the sense of the Mosaic, Berners-Lee, Raggett | and 11 combination,
or the embedding of an object in such a hypermedia document. NoteMail pages
are therefore not analogous to Web-style hypermedia documents.

Also, there is no teaching in Toye of interactively processing an object
embedded in a hypermedia document. Toye teaches that data displayed in a
NoteMail page must be selected via a mouse click by the user to restart an
application in order to update and edit data. The type of application described in
Toye is any application that displays through an X-server. [Toye page 40, second
column, first full paragraph]. There is no teaching of modifying such an
application to process an object embedded in a hypermedia document. Further,
Toye teaches that most data remains physically under the control of the
application that created it, suggesting that the data must be processed using the
normal interface for the application. [Felten Il, at paragraphs 36-37].

Declaration of Edward W. Felten, at { 23 (Oct. 6, 2004) (accompanying Applicants'
Response (Oct. 12, 2004)) ([PH_001_0000785575] — [PH_001_0000785586]):

23. Contrary to the Office Action’s assertion, Toye does not teach the use of a
“distributed hypermedia document,” as that term is used in the ‘906 claims. The
term’s meaning, as understood by a PHOSA, was reiterated in the “906 Patent’s
specification. For example:

A distributed hypertext or hypermedia document typically has many links
within it that specify many different data objects located in computers at
different geographic locations connected by a network.

(“906 Patent at 2:59-62)

Doyle Presentation, at slide 23 (Aug. 18, 2005) ([PH_001_0000785866] —
[PH_001_0000785901]).

B-132

Terms Regarding Hypermedia

* Hypermedia Browser
= |s “a browser application, that parses a first distributed
hypermedia document to identify text formats included in said
distributed hypermedia document,” and that parsing is “for
responding to predetermined text formats to initiate

'f The '906 Patent Defines Key
!
I

* Distributed Hypermedia Document
= “A distributed hypertext or hypermedia document typically has
many links within it that specify many different data objects
located in computers at different geographic locations
connected by a network.” ['906 patent, 2:59-62]

« Distributed hypermedia documents contain “text formats” and
are parsed “for responding to predetermined text formats to
initiate processing specified by said text formats [906 patent,
17:3-6]

iv. Interference 105,563 McK

Doyle Annotated Copy of Claims, at 2-3 (July 3, 2007) ([PH_001_0000787570] —
[PH_001_0000787576]):

B-133

B-134

V. Second reexam (90/007,858)

Applicants' Response, at 4 (Sept. 27, 2007) ([PH_001_0000787028] -
[PH_001_0000787051]):

Vi, '985 prosecution history (10/217,955)
Supplemental Amendment, at 2-14 (Feb. 5, 2009) ([PH_001_0000784613] —
[PH_001_0000784697]):

4. (currently amended) A method for running an application program in a distributed
hypermedia network environment... comprising:

... to display at least a portion of a distributed hypermedia document ...

... displaying at least a portion of the document...

... a first location in the document...

... within the portion of the hypermedia document being displayed...

19. (currently amended) One or more computer readable media encoded with
software comprising computer executable instructions ... operable to:

... display at least a portion of a distributed hypermedia document ...

... display at least a portion of the document ...

... afirst location in the document...

... the first location within the portion of the hypermedia document being
displayed...

23. (currently amended) A method of serving digital information in a computer
network environment ... comprising:

... at least a portion of a distributed hypermedia document...

... displaying ... at least a portion of the document...

... afirst location in the document...

B-135

... the first location within the portion of the hypermedia document being
displayed ...

27. (currently amended) A method for running an executable application in a
computer network environment ... the method comprising:

...a first location within a portion of a the hypermedia document being
displayed...

... display ... at least said portion of said distributed hypermedia document

...at least said portion of the document is displayed ...
... said first location in the document is identified...

31. (currently amended) One or more computer readable media encoded with
software ... operable to:
... a the-portion of a the hypermedia document being displayed...
... display ... said portion of said distributed hypermedia document ...
... at least said portion of the document is displayed ...
.. said first location in the document is identified...

39. (currently amended) A method for running an application program in a
distributed hypermedia network environment ... the method comprising:
... display at least a portion of a distributed hypermedia document...
... displaying at least a portion of the document ...
... a first location in the document...
... the first location within the portion of the hypermedia document...

43. (currently amended) A method of serving digital information in a computer
network environment ... the method comprising:

... display at least a portion of a distributed hypermedia document ...

... displaying ... the document...

... afirst location in the document...

.. within the portion of the hypermedia document...

47. (currently amended) A method for serving digital information in a computer
network environment ... said method comprising:
... display ... at least a portion of a distributed hypermedia document...
... said portion of the document is displayed
... a first location in the document...
... the first location within the portion of the hypermedia document...

Supplemental Amendment, at 18-19 (Feb. 5, 2009) ([PH_001_0000784613] —
[PH_001_0000784697]):

the method comprising:

receiving, at the client workstation from the network server over the
network environment, at least one file

B-136

EXAMPLE SUPPORT:

2:14 "Objects may be text, images, sound files, video data, documents or
other types of information that is presentable to a user of a computer system.
When a document is primarily text and includes links to other data objects
according to the hypertext format, the document is said to be a hypertext
document. When graphics, sound, video or other media capable of being
manipulated and presented in a computer system is used as the object linked to,
the document is said to be a hypermedia document. A hypermedia document is
similar to a hypertext document, except that the user is able to click on images,
sound icons, video icons, etc., that link to other objects of various media types,
such as additional graphics, sound, video, text, or hypermedia or hypertext
documents. FIG. 1 shows examples of hypertext and hypermedia documents and
links associating data objects in the documents to other data objects. Hypermedia
document 10 includes hypertext 20, an image icon at 22, a sound icon at 24 and
more hypertext 26. FIG. 1 shows hypermedia document 10 substantially as it
would appear on a user's display screen."

3:34 "As discussed above, hypermedia documents allow a user to access
different data objects. The objects may be text, images, sound files, video,
additional documents, etc. As used in this specification, a data object is
information capable of being retrieved and presented to a user of a computer
system."

9:20 "In this example, hypermedia document 212 has been retrieved from
a server connected to network 206 and has been loaded into, e.g., client computer
200's RAM or other storage device."

Supplemental Amendment, at 19-20 (Feb. 5, 2009) ([PH_001_0000784613] —
[PH_001_0000784697]):

containing information to enable a browser application to display at
least a portion of a distributed hypermedia document

EXAMPLE SUPPORT:

1:61 "A hypertext document is a document that allows a user to view a
text document displayed on a display device connected to the user's computer and
to access, retrieve and view other data objects that are linked to hypertext words
or phrases in the hypertext document."

2:14 "Objects may be text, images, sound files, video data, documents or
other types of information that is presentable to a user of a computer system.
When a document is primarily text and includes links to other data objects
according to the hypertext format, the document is said to be a hypertext
document. When graphics, sound, video or other media capable of being
manipulated and presented in a computer system is used as the object linked to,
the document is said to be a hypermedia document. A hypermedia document is
similar to a hypertext document, except that the user is able to click on images,
sound icons, video icons, etc., that link to other objects of various media types,
such as additional graphics, sound, video, text, or hypermedia or hypertext
documents.”

9:24 "Once hypermedia document 212 has been loaded into client
computer 200, browser client 208 parses hypermedia document 212. In parsing

B-137

hypermedia document 212, browser client 208 detects links to data objects as
discussed above in the Background of the Invention section."

Applicants' Response, at 9 (March 11, 2005) ([PH_001_0000784213] —
[PH_001_0000784244]):

The browser application then parses the local copy of the HTML document,
renders the temporary local copy of the HTML document into a Web page , and displays the
rendered Web page in a browser-confrolled window. [Felten I, at paragraph 21]. During the
rendering step, the browser may retrieve information external to the local copy of the HTML
document, such as source files referenced by IMG tags, render the images from the retrieved files
as static graphic images, and insert the images into the Web page of the HTML document, for
display to the user.

Notice of Allowability, at 2 (Mar. 20, 2009) ([PH_001_0000784728] -
[PH_001_0000784734]):

The following is an examiner’s statement of reasons for allowance: the claims are
allowable as the claims contain the subject matter deemed allowable in both Re exam
90/006,831 and Re exam 90/007,838 for the same reasons as set forth in the NIRC of

the two Re exams.

2. Defendants' extrinsic evidence

Microsoft Press Computer Dictionary 178 (1st Ed. 1991) (418-19) ("hypermedia™) [PA-00333469]:

B-138

hypermedia The integration of graphics, sound,
video, or any combindtion into a primarily associa-
tive systiem of information storage and retrieval.
Hypermedia, especially in an interactive format
where choices are controlled by the user, is strue-
tured arcund the idea of offering a working and
learning environment that parallels human think-
ing—that ig, an environment that allows the userto
make associations between topics rather than move
sequentizlly from one to the next, as in an alpha-
hetic list. Hypermedia topics are thos linked in a
manner that allows the user to jump from subject to
related subject in searching for information. For ex-
ample, a hypermedia presentation on navigation
might include links 1o such topics as astronomy,
bird migration, gecgraphy, satellites, and radar, If
the information is primarily in text form, the prod-
uct is hypertext; if video, imusic, animarion, or other
elements are inchuded, the product is hypermedia.
See also hypertext.

B-139

l. ""text format' and ""embed text format"

Claim Term(s) Defendants' Proposed Construction | Eolas's Proposed Construction

a predefined set of tags or symbols
text format that specify the formatting of a text that initiates processing
document

a tag that specifies the object to be

embedded at the location of the tag text format for embedding an object

embed text format

1. Defendants' intrinsic evidence

a. Claims

In the following chart, the term(s) for construction appear in all the claims marked with an
"x." The letter "m" indicates a method claim, and "{6" indicates a claim that the Defendants contend
includes limitations subject to § 112, 1 6.

'906 patent ‘985 patent
m |m m m
6 |16 | 16 M |16 |16 (16 |16 |m |96 | m

text format X | X | X X [X [X [X | X | X [X |X

m | m
1 14
X | X
X | X

m m
5 |6 |9 |10]1 |16[20 |24 |28 |32 |36 |40 |44
X X

X X

embed text format X X X X X X X X X X X

b. Specification (all cites to '906 patent)

1:53-:60 & 2:23-:28 (Background of the invention): Other Internet standards are the
HyperText Transmission Protocol ("HTTP") that allows hypertext documents to be exchanged freely
among any computers connected to the Internet and HyperText Markup Language (""HTML") that
defines the way in which hypertext documents designate links to information. See, e.g., Berners-
Lee, T. J., "The world-wide web," Computer Networks and ISDN Systems 25 (1992). ... A
hypermedia document is similar to a hypertext document, except that the user is able to click on
images, sound icons, video icons, etc., that link to other objects of various media types, such as
additional graphics, sound, video, text, or hypermedia or hypertext documents.

2:43-:48 (Background of the invention): The mechanism for specifying and locating a
linked object such as hypermedia document 14 is an HTML *"element’* that includes an object
address in the format of a Uniform Resource Locator (URL).

5:24—:38 (Background of the invention): The Internet is said to provide an "open distributed
hypermedia system." It is an "open" system since Internet 100 implements a standard protocol that
each of the connecting computer systems, 106, 130, 120, 132 and 134 must implement (TCP/IP). It
is a ""hypermedia’ system because it is able to handle hypermedia documents as described above
via standards such as the HTTP and HTML hypertext transmission and mark up standards,
respectively.

9:24-:40 (Detailed Description of a Preferred Embodiment): "Once hypermedia document
212 has been loaded into client computer 200, browser client 208 parses hypermedia document 212.

B-140

In parsing hypermedia document 212, browser client 208 detects links to data objects as discussed
above in the Background of the Invention section. In FIG. 5, hypermedia document 212 includes
an embedded program 30 link at 214. Embedded program link 214 identifies application client
212 as an application to invoke. In this present example, the application, namely, application client
210, resides on the same computer as the browser client 208 that the user is executing to view the
hypermedia document. Embedded program link 214 may include additional information, such as
parameters, that tell application client 210 how to proceed. For example, embedded program link
214 may include a specification as to a data object that application client 210 is to retrieve and
process."

9:50-:58 (Detailed description of a preferred embodiment): This means that application
client 210 can make requests over network 206 for data objects, such as multidimensional image
objects. For example, application client 210 may request an object, such as object 1 at 216, located
in server computer 204. Application client 210 may make the request by any suitable means.
Assuming network 206 is the Internet, such a request would typically be made by using HTTP in
response to a HTML-style link definition for embedded program link 214.

12:54-13:36 (Detailed Description of a Preferred Embodiment):

Table 11, below, shows an example of an HTML tag format used by the present invention to
embed a link to an application program within a hypermedia document.

TABLE 11

<EMBEL
TYPE = “type”
HEEF = “href”
WIDTH = width
HEIGHT = height

As shown in Table I1, the EMBED tag includes TYPE, HREF, WIDTH and HEIGHT
elements. The TYPE element is a Multipurpose Internet Mail Extensions (MIME) type.
Examples of values for the TYPE element are "application/ x-vis" or "video/mpeg". The
type "application /x-vis™ indicates that an application named "x-vis" is to be used to handle
the object at the URL specified by the HREF. Other types are possible such as
"application/x-inventor”, "application/postscript” etc. In the case where TYPE is
"application/x-vis" this means that the object at the URL address is a three dimensional
image object since the program "x-vis™ is a data visualization tool designed to operate on
three dimensional image objects. However, any manner of application program may be
specified by the TYPE element so that other types of applications, such as a spreadsheet
program, database program, word processor, etc. may be used with the present invention.
Accordingly, the object reference by the HREF element would be, respectively, a
spreadsheet object, database object, word processor document object, etc.

On the other hand, TYPE values such as "video/mpeg", "image/gif', "video/x-sgi-movie", etc.
describe the type of data that HREF specifies. This is useful where an external application
program, such as a video player, needs to know what format the data is in, or where the
browser client needs to determine which application to launch based on the data format.
Thus, the TYPE value can specify either an application program or a data type. Other TYPE
values are possible. HREF specifies a URL address as discussed above for a data object.

B-141

Where TYPE is "application/x-vis" the URL address specifies a multi-dimensional image
object. Where TYPE is "video/mpeg" the URL address specifies a video object.

WIDTH and HEIGHT elements specify the width and height dimensions, respectively, of a
Distributed Hypermedia Object Embedding (DHOE) window to display an external
application object such as the three dimensional image object or video object discussed
above.

13:37-:50 & fig. 7A (Detailed description of a preferred embodiment): FIG. 7A is a
flowchart describing some of the functionality within the HTMLparse.c file of routines. The
routines in HTMLparse.c perform the task of parsing a hypermedia document and detecting the
EMBED tag. In a preferred embodiment, the enhancements to include the EMBED tag are made to
an HTML library included in public domain NCSA Mosaic version 2.4. Note that much of the
source code in is pre-existing NCSA Mosaic code. Only those portions of the source code that relate
to the new functionality discussed in this specification should be considered as part of the invention.
The new functionality is identifiable as being set off from the main body of source code by
conditional compilation macros such as "#ifdef . . . #endif" as will be readily apparent to one of skill
in the art.

ASSIGN
[Exm ENUMERATED TYPE

FIG. 7A.

14:18-23 (Detailed Description of a Preferred Embodiment): Steps 254, 256 and 258
represent a loop where the document is parsed or scanned for HTML tags or other symbols. While
the file HTMLparse.c includes routines to handle all possible tags and symbols that may be
encountered, FIG. 7A, for simplicity, only illustrates the handling of EMBED tags.

14:24-26 (Detailed Description of a Preferred Embodiment): Assuming there is more text to
parse, execution proceeds to step 256 where routines in HTMLparse.c obtain the next item (e.g.,
word, tag or symbol) from the document.

14:64—:67 (Detailed description of a preferred embodiment): FIG. 8A is a flowchart for
routine HTMLwidget. HTMLwidget creates display data structures and launches an external
application program to handle the data object specified by the URL in the EMBED tag.

B-142

C. Prosecution history

i. '906 prosecution history (08/324.,443)

Applicants' Response, at 1-2 (Aug. 6, 1996) ([PH_001_0000783879] —
[PH_001_0000783928]):

1. (Bgended) A method for running an application
program in a computer network environment, comprising:

providi at least one client workstation and one
network server coupbgd to said network environment, wherein said
network enwvircnment ik a distributed hypermedia environment;

executin at id cli workstation, a browser -

applicatico that parges’a distributed hypermedia documen o
ident] ¥ ormats inclWded in the distributed hypermedis
document and for responding Yo predetermined text formats to

initiate processes specified Wy the te forma

! \

utiﬂizinq said browser to displayling], on said client

workstation, at least a portion of a first hypermedia document

received over shid network from said server, wherein sald first

hypermedia docufent is dlsplazed within a firet brcwsg;

des 4l embed Text

ernal to t

first distributed \hyvpermedia document and that specifiesgs type

i i iliz id browser i loc
executable applicatfion external to the first distributed

ermedia document

executable applicatidn to display and process said object within

the firat browserwcoﬂtrolled window while a portion of said first

application; and

interactively| controlling said embedded controllakble

application from said client workstation wia communications sent

over said distributed hypermedia environment].

Applicants' Response, at 13 (Aug. 6, 1996) ([PH_001_0000783879] —
[PH_001_0000783928]): "[In t]he present invention, as defined for example in amended claim 1, . . .
[t]he distributed hypermedia document includes an embed text format that specifies the location of
an object external to the distributed hypermedia document . . ."

Applicants' Response, at 16 (Aug. 6, 1996) ([PH_001_0000783879] —
[PH_001_0000783928]):

B-143

Applicants' Response, at 16-17 (Aug. 6, 1996) ([PH_001_0000783879] —
[PH_001_0000783928]):

The Hansen reference discloses embedding an executable script in a document. The Ness
script is a sequence of attribute specifications, i.e., declarations of global variables, global
functions, and extend blocks. An extend block associates a set of contained attributes with
some named object and has the following syntax:

extend <name>
<attributes>
end extend

where <name> must be a string constant giving the name of the associated object. (Page 25).
One attribute is an event specification such a mouse click.

The operation of Ness scripts is illustrated in the "Extended Birthday Card" example at pages
30 and 31. Note that the object named is: extend "visible cake". Both the executable script
and the object to be manipulated are within the document. . . .

There is no disclosure in the references, singly or in combination, of displaying a
hypermedia document in a first window including a text format specifying the location of
an external object and identifying an external executable application or of invoking the
external application to display and process the external object within the first window.

The system of Ness provides for interaction with an object embedded in a document by
executing code embedded in the document. However, there is no teaching or suggestion of
the claimed system of utilizing a browser to invoke an external application identified by an
original document, being displayed by a browser within a first window, to display and
process an external object within the first window.

Applicants' Response, at 17 (Aug. 6, 1996) ([PH_001_0000783879] —
[PH_001_0000783928]):

B-144

In view of the above, it is kelieved that the claims
are not obviocus over the disclosed prior art in view of Hansen.
There ie no disclosure in the references, singly or in
combination, of displaying a hypermedia document in a first
window including a text format specifying the location of an
external object and identifying an external executable
application or of invoking the external application to display
and process the external object within the first window.

Applicants' Response, at 4 (Dec. 29, 1997) ([PH_001_0000784131] -
[PH_001_0000784162]): "The different functions and purposes of Mosaic and Koppolu (OLE) are
reflected in the different document structure. In Mosaic, since HTML documents are designed to be
platform independent, the document structure is simple ASCII text. A browser parses a received
document to identify HTML tags which specify various aspects of the document's appearance and
links to other documents. In Koppolu, a container application creates a complex file structure
which is utilized to render a document. There is no text parsing in Koppolu to render the compound
document."”

Applicants' Response, at 2 (Jan. 8, 1997) ([PH_001_0000783957] — [PH_001_0000783996]):

Office Action, at 3 (Jan. 24, 1997) ([PH_001_0000783997] — [PH_001_0000784008]):

Examiner Interview Summary Record, at 1 (Feb. 26, 1997) ([PH_001_0000784011] -
[PH_001_0000784012]):

B-145

Applicants' Response, at 18 (June 2, 1997) ([PH_001_0000784029] -
[PH_001_0000784090]):

Next, some sort of data interchange interface would
have to be constructed between Mosalc and the Khoyi virtual
machine to allow Khoyi’s "packs" to create data structures that
could be transferred to Mosaic, and for messages created by
Mogaic to be transferred to Khoyi.

Mosaic would then have to be modified to allow data
object components of the document to be "linked" to Khoyi’s
applications which can process the data. These links would be
defined by an external link table, and the linking relationship
would not be affected by the text of the document.

These links would be distinguished from the HTML anchor
links defined in the hypermedia document, which would require
incorporating two incompatible linking systems to be maintained
by the system. Mosaic teaches that a major advantage of the HTML
document format is that all links should be defined by the
document text. This teaches away from combining the two systems
in the proposed way, since the result would be awkward, overly
complex and difficult to maintain.

Amendment B, at 19 (June 2, 1997) ([PH_001_0000784029] — [PH_001_0000784090]):

B-146

Declaration of Michael D. Doyle, at 10 (June 2, 1997) ([PH_001_0000784029] —
[PH_001_0000784090]):

Office Action, at 4 (Aug. 25, 1997) ([PH_001_0000784091] — [PH_001_0000784098]):

HTML is a text tag structure document encoding. It is
apparent the prior art as medified would have had a text tag for

indicating links to an in-place interactive object.

Declaration of Michael D. Doyle, at 2-3 (Oct. 29, 1997) (accompanying Applicants' Remarks
(Oct. 31, 1997)) ([PH_001_0000784129] — [PH_001_0000784130]):

B-147

Declaration of Michael D. Doyle, at Attachment A, pp. 4-5 (Oct. 29, 1997)
(accompanying Applicants’ Remarks (Oct. 31, 1997)) ([PH_001_0000784129] -
[PH_001_0000784130]):

We have enhanced the Mosaic W3 browser to support both a three-dimensional data object and
communication with VIS as a enoperating application (figure 2). Mosaic provides the user with the ability
to lacate and browse information available from a wide vanety of sources including FTP, WAIS, and
Gopher. HTTP servers respond to requests from clients, e.g. Mosaic, and transfer hypertext documents.
Those documnents may contain text and images as intrinsic elements and may also contain external links tw
any arbitrary data object (e.g. audio, video, eic...). Mosaic may also communicate with other Internet
servers, e.g FTP, etther directly - translating request results into HTML on demand - or via a gateway that
provides translation services. As a W3 client, Mosaic communicates with the server(s) of interest in
response o user actions (e.g. selecting a hyperlink), initiating a connection and requesting the document
specified by the URL. The server delivers the file specified in the URL, which may be a HTML document
or a variety of multimedia data files (for example, images, sudio files, and MPEG movies) and Mosaic uses
the predefined SGML DTD for HTML to parse and present the infurmation. Data types not directly
supparted b Mosawe are displayed via user-specifisble external applications and we have extended that
paradigm to both include three-dimensional volume data as well as to integrate the external application

mare completely with Mosaic,
3.1 Mosaic 3D Image support

We have extended the HTMI. 'TT) 1o support three dimensinnal data via the infroduction of a new
SGML element: IMG3D. This element provides information to the presentation system (1.e. Mosaic) about
the content that is referenced in the document. The IMG3D element is defined in the HTML DTD as

follows:

<!ELEMENT IMG3D EMPTY>

<!ATTLIST IMG3D VOLUME CDATA #REQUIRED
WIDTH NUMBER #REQUIRED
HEIGHT NUMBER #REQUIRED
IMAGE CDATA #IMPLIED>

which 1s translated as “SGML document instance element tag IMG3D containing no content; thres
_required atuributes: volume data set. window width and height; and an optional image”. Ina HTML
document, a 3D image element would be represented as:

<IMG3D VOLUME="http://www.library.ucsf.edu/. . /data/Embryo. hdf”
WIDTH=400
HEIGHT=40
IMAGE="tttp://www library.ucsf.edw/. . fimages/Embryo.gif >

which may be interpreted as “create a 3D visualization window of width 400 pixels, height 400
pixels, and visualize the data embryo hdf located at the HTTP server site www . library ucsf edu”,

B-148

Applicants' Response, at 17 (Dec. 23, 1997) ([PH_001_0000784131] —
[PH_001_0000784162]):

In order to insure cross-platform uniformity of document
appearance, the document was defined through the use of ASCII
text, where specific text formats, otherwise known as "tags,"
would be used within the document text to specify various aspects
of the document’s appearance and linkages to other documents or
related data. Each browser, therefore, incorporated a parser
which would distinguish the formatting tags from the document’s
narrative text, classify those tags into pre-defined categories,
break each tag into its basic components, and then invcke
appropriate browser subroutines to respond appropriately to the
meanings of the tag components. Although the browser subroutines
were built from machine-specific native code, this text tag
mechanism allowed the design of a variety of browsers for various
computing platforms that could respond in similar ways to similar
types of text tags, and therefore result in similar-appearing
documents on dissimilar computers. A binary document data format
was avoided in order to promote cross-platform compatibility, due
to the variation in binary data handling methodologies on various
different operating systems, and to simplify the requirements for
document creation tools. All that a Web document author needs in
order to create a Web document file is a simple ASCII text
editor, which is a pre-existing application in all commonly-found

operating system packages.

ii. First reexam (90/006,831)

Applicants' Response, at 3 (May 11, 2004) ([PH_001_0000785359] -
[PH_001_0000785379]): "The claims recite a browser application, executed on the client
workstation, that parse's a hypermedia document to identify text formats in the document and
responds to predetermined text formats to initiate processing specified by the text formats.”

Applicants' Response, at 3 (May 11, 2004) ([PH_001_0000785359] —
[PH_001_0000785379]):

"The hypermedia document includes an embed text format, located at a first
location in the hypermedia document, that specifies the location of at least a
portion of an object external to the hypermedia document. The object has
associated type information utilized by the browser to identify and locate an
executable application external to the hypermedia document.

When an embed text format is parsed by the browser, the executable application is

automatically invoked, as a result of the parsing, to execute on the client
workstation.

B-149

When the automatically invoked application executes on the client workstation,
the object is displayed within a display window created within the portion of the
hypermedia document being displayed and interactive processing of said object is
enabled.”

Declaration of Edward W. Felten, at 18 (May 7, 2004) (accompanying Applicants'
Response (May 11, 2004)) ([PH_001_0000785437] — [PH_001_0000785464]):

Applicants' Response, at 4 (Oct. 12, 2004) ([PH_001_0000785803] —
[PH_001_0000785832]): "The browser application then parses the local copy of the HTML
document, renders the temporary local copy of the HTML document into a Web page, and displays
the rendered Web page in a browser-controlled window. [Felten I, at paragraph 21]. During the
rendering step..."

Applicants' Response, at 13 (Oct. 12, 2004) ([PH_001_0000785803] —
[PH_001_0000785832]): ""Format' data is stored separate from the text portions of the document
[Felten 11, at paragraph 31]. There is no teaching in NoteMail of using text formats, within the
document text, intended to initiate processes specified by those text formats."

Applicants' Response, at 18 (Oct. 12, 2004) ([PH_001_0000785803] —
[PH_001_0000785832]): Another important principle of the Web model taught by the Mosaic,
Berners-Lee, Raggett | and 1l combination is that of referential integrity. In the Web model, the
HTML document author can specify the specific locations, contained in "hypertext links," from
which the browser will retrieve new HTML documents when users click upon those links. These
links are easily specified through embed text formats in the document text.

Applicants' Response, at 20 (Oct. 12, 2004) ([PH_001_0000785803] —
[PH_001_0000785832]):

B-150

A distributed hypermedia svstem "is a “distributed” system because data objects that are
imbedded within a document may be located on many of the computer systems connected to the
Internet.” [*906 at col. §, lines 25-38].

The use of the HTML allows the Internet to be an open system where a standard protocol
is implemented by each computer connected to the internct. The structure of the document is
defined by the author utihzing particular sets of characters that have a universal meaning,

Applicants' Response, at 21 (Oct. 12, 2004)) ([PH_001_0000785803] -
[PH_001_0000785832]): ... Thus, Toye is not a hypermedia system because, in the admitted prior
art, Berners-Lee, and Raggett | and Il combination, links are defined by the author as text formats
in the hypermedia document and resolved by the browser application. The Mosaic, Berners-Lee,
Raggett | and Il combination teaches the use of a hypermedia document that is a text document
where some characters within the text are interpreted as mark-up tags specified by the HTML
standard. The mark-up ""tags’ give structure to the document.

Declaration of Edward W. Felten, at 1 18 (May 7, 2004) (accompanying Applicants'
Response (May 11, 2004)) ([PH_001_0000785437] — [PH_001_0000785464]): "The claims of the
'906 Patent describe a technology that allows web page authors to include, within the boundaries of a
web page, interactive objects. This is done (briefly stated) by including in the web page's HTML
text an embed text format, that provides information about where to get the object's data, along
with information to identify and locate an executable application that will be invoked on the client
computer to display the data and to provide interactivity with it, and by providing a web browser
that knows how to parse the HTML to extract the embed text format, how to use type information
to identify and locate the executable application, how to invoke the executable application, to
execute on the client computer, and how to interface to the executable application so as to allow the
user to interact with it within the boundaries of the browser window."

Declaration of Edward W. Felten, at 11 37-46 (May 7, 2004) (accompanying Applicants'
Response (May 11, 2004)) ([PH_001_0000785437] — [PH_001_0000785464]):

"Raggett | proposed a slight extension of [building support for displaying additional formats
into the browser itself], in which, rather than receiving an image, the browser receives
information in some foreign format, and then uses an external program to render that
information into an image, which the browser displays within the web page. . . .

This extension is described in the following paragraph, which is also cited in the Office
Action:

The EMBED tag provides a simple form of object level embedding. This is
very convenient for mathematical equations and simple drawings. It allows
authors to continue to use familiar standards, such as TeX and egn. Images
and complex drawings are better specified using the FIG or IMG elements.
The type attribute specifies a registered MIME content type and is used by the
browser to identify the appropriate shared library or external filter to use to
render the ,embedded data, e.g. by returning a pixmap. It should be possible to
add support for new formats without having to change the browser's code, e.g.
through using a common calling mechanism and name binding scheme.
Sophisticated browsers can link to external editors for creating or revising
embedded data. Arbitrary 8-bitdata is allowed, but &, <. and> must be
replaced by their SGML entity definitions. For example <embed

B-151

type="application/eqn”>2 pi int sin (omega t) dt</embed> gives [image of
equation appears here].

(Raggett | at p. 6)

This paragraph teaches a method for displaying new types of static information within a Web
page. The teaching of the use of static information is evident for several reasons.

First, the use of static information is consistent with the teaching of the remainder of Raggett
I and with the teaching of Berners-Lee that preceded it.

Second, Raggett | motivates its proposed embed tag by referring to two types of data that one
might want to display: "mathematical equations and simple drawings". These are types of
data that one would want to display statically.

Third, Raggett | says that Raggett's proposed embed tag "allows authors to continue to use
familiar standards, such as TeX and eqgn." (italics in ' original). These are well-known formats
for describing the display of static data. TeX is used to specify the typesetting of textual
documents; it is still widely used to format scientific publications. Eqn is used to specify the
typesetting of mathematical equations. The TeX format is conventionally used with a program
called "tex" or "latex" that produces as output a static document. The eqn format is
conventionally used with a program called "eqn" that produces as output a static image or
description of an equation. (For information on TeX, see Donald E. Knuth, The TeXbook,
Addison-Wesley, '1986

For information on eqn, see Brian W. Kernighan and Lorinda L. Cherry, "A System for
Typesetting Mathematics," Communications a/the ACM 18:3, March 1975; attached as Exhibit

8.

Fourth, Raggett I refers to the invocation of a "shared library or external filter to render the
embedded data, e.g. by returning a pixmap". This passage uses several terms of art (in the art of
computer science) in ways that teach non-interactivity. "Filter" is a term of art that refers to a
type of non-interactive program that translates data from one format to another. "Render" as used
by Raggett | is a term of art that refers to the generation of a static image that is to be displayed.
"Pixmap" as used by Raggett I is a term of art for a data structure describing an image. "Return”
is a term of art that refers to the information ‘produced by a program when that program
terminates. A program that has returned something cannot do' anything else; for example it
cannot provide interactive processing. The use of these four terms of art further teaches the use of
static images.

Fifth, the only specific example of the use of Raggett's proposed embed tag that is given in
Raggett | involves the ,use of a non-interactive filter which renders static data and then returns.
The example depicts the use of the "eqn" program to translate the description of an equation into
a static image.

Sixth, the discussion of the FIG and ISMAP features in Raggett I is inconsistent with the
proposition that Raggett's proposed embed tag allowed interaction with an embedded object. In
Raggett I, an instance of Raggett's proposed embed tag can be placed within a FIG element:

Instead of the src attribute, you can include an EMBED element immediately following
the <fig> tag. This is useful for simple graphs, etc. defined in an external format.
(Raggett I at p. 12, emphasis in original)

When the FIG element is used in conjunction with the ISMAP parameter (as described in the
"Active areas" section of Raggett I, p. 13), the FIG element's display area becomes an image

B-152

map: any mouse clicks made by the user within the visual depiction of the embedded data will be
interpreted by the browser as pertaining to the image-map feature, and will therefore be
intercepted by the browser and sent by the browser to the web server. This section of Raggett |
teaches that the browser may intercept mouse clicks within the depiction of the embedded data,
thereby contradicting the proposition that the embedded data itself can react to mouse clicks. . . .

[1]f one of ordinary skill in tlw art (at the time) were asked to implement the Raggett feature, he
would do so by to starting with the existing code for handling IMG tags, and modifying that code.
The existing IMG code was able to paint static images into the body of a page, based on an input file
that described the image. This code would be modified to invoke an external program, which would
return a static image that would then be pasted into the web page in the same manner as in an IMG
tag. Such an implementation would not support interactivity within a web browser window."

Declaration of Edward W. Felten, at 1 50 (May 7, 2004) (accompanyind Applicants'
Response (May 11, 2004)) ([PH_001_0000785437] — [PH_001_0000785464]): "Raggett Il is a brief
email message, written in response to requests for "equation support,” "eqn support,” and support for
"embedded Postscript in browsers. Equations, eqn data, and embedded postscript are all formats for
specifying static data. The requesters ask for support for two rendering programs, eqn and
ghostscript, both of which produce static images as output.”

Notice of Intent to Issue a Reexam Certificate, at 8-9 (Sept. 27, 2005)
([PH_001_0000785905] — [PH_001_0000785981]): "interactive processing' is invoked not in
response to a user event detected by the browser (as in the case of Raggett I, supra), but rather in
response to the browser application parsing an ‘embed text format’ (i.e., an 'EMBED' tag, see col.
12, line 60, "906 patent) that is detected within the hypermedia document when the hypermedia
document is first loaded by the browser...immediately after an 'EMBED’ tag is parsed and before
the hypermedia document is completely displayed in the browser-controlled window."

iil. Interference 105,563 McK

Doyle Annotated Copy of Claims, at 2-3 (July 3, 2007) ([PH_001_0000787570] —
[PH_001_0000787576]):

B-153

iv. Second reexam (90/007,858)

Declaration of Edward W. Felten, at § 12 (Sept. 27, 2007) (accompanying Applicants'
Response (Sept. 27, 2007)) ([PH_001_0000787052] — [PH_001_0000787069]): "The claims of the
'906 Patent describe a technology that allows web page authors to include, within the boundaries of a
web page, interactive objects. This is done (briefly stated) by including in the web page's HTML
text an embed text format, that provides information about where to get the object’s data, along

B-154

with information to identify and locate an executable application that will be invoked on the client
computer to display the data and to provide interactivity with it, and by providing a web browser
that knows how to parse the HTML to extract the embed text format, how to use type information
to identify and locate the executable application, how to invoke the executable application, to
execute on the client computer, and how to interface to the executable application so as to allow the
user to interact with it within the boundaries of the browser window."

Declaration of Edward W. Felten, at § 21-25 (Sept. 27, 2007) (accompanying Applicants'
Response (Sept. 27, 2007)) ([PH_001_0000787052] — [PH_001_0000787069]):

"Mosaic lacked the required embed text format of the *906 claims. Instead, Mosaic used an
ordinary hyperlink to link to any data that was to be displayed with a helper application. . . .

Hyperlinks in Mosaic were specified using an "A" (short for "Anchor") tag. For example, the
HTML element

link
would cause the text "link" to be displayed, typically in underlined blue type. If the user
clicked on the underlined word "link", the browser would follow the hyperlink and navigate
to the URL "http://example.com/page.html".

Similarly, the HTML element

video
would cause the text "video" to be displayed, in underlined blue type. If the user clicked on
the underlined word "photo”, the browser would download the file at the URL
"http://example.com/video.mpg" and launch a helper application to display it.

In the claimed '906 system, the browser instead used a special tag, the ""embed text
format™, to specify that an embedded object should be included. Mosaic lacked the embed
text format. The use of an embed text format was a significant improvement over the prior
art Mosaic browser, as it allowed the browser to recognize immediately that an embedded
object was present and special processing was needed."

Declaration of Edward W. Felten, at 47-55 (Sept. 27, 2007) (accompanying Applicants'
Response (Sept. 27, 2007)) ([PH_001_0000787052] — [PH_001_0000787069]):

Claim 6 of the '906 Patent requires that "said first distributed hypermedia document includes
an embed text format, located at a first location in said first distributed hypermedia
document, that specifies the location of at least a portion of an object external to the first
distributed hypermedia document, ..., and wherein said embed text format is parsed by said
browser to automatically invoke said executable application .. in order to display said object
and enable interactive processing of said object within a display area created at said first
location within the portion of the first distributed hypermedia document ... " ("906 Patent at
18:14-29)

The use of an embed text format is an important element of the invention defined in Claim 6
of the '906 Patent. One drawback of many prior art browsers, such as Mosaic, is that they
lacked an embed text format. . . .

Cohen does not disclose the use of an embed text format.

The Examiner states that the "link description tags LDESC" of Cohen are the embed text

format (Office Action at p. 31). For the reasons described below, I respectfully disagree with
this conclusion.

B-155

The LDESC tags cannot be the embed text format, because they do not satisfy the required
claim element "*'wherein said first distributed hypermedia document includes an embed text
format, located at a first location in said first distributed hypermedia document ... to
display said object and enable interactive processing of said object within a display area
created at said first location ... " ('906 Patent at 18:14-28 . . .) This claim element requires
that the embedded object be displayed at a location in the distributed hypermedia document
(e.g., the Web page) that corresponds to the location of the embed text format within the
document.

The LDESC tag does not appear in the document at the required location. Instead, the
LDESC (link description) tag appears in the document file's prologue. . . .

The fact that the LDESC tag does not appear at a location in the book text is one reason
why the LDESC tag cannot be the embed text format of the '906 claims.

The "link tag :L"" of Cohen does appear in the book text, but it cannot be the embed text
format either, because (e.g.) it lacks the required claim element of an ""embed text format
... that specifies the location of at least a portion of an object external to the first
distributed hypermedia document ... ** (906 Patent at 18:15- 18). The link tag of Cohen
does not specify the location of an object, nor does it specify the location of anything that is
external to the first distributed hypermedia document. This is one reason why the "link tag
:L" of Cohen cannot be the embed text format.

Cohen's design strategy, of having a small, simple link tag that refers to a larger, more
detailed link description in the document prologue, makes sense given the problem that
Cohen was trying to solve. Cohen was designed for use with electronic books. These books,
unlike Web pages, are large, multi-page files that often repeat graphic elements on different
pages. By separating the link tag and link description, Cohen allowed an element to be
repeated without having to repeat the full link description each time. Instead, there could be
a single link description in the document prologue, and one small link tag at each place in the
document where the object was to be used. The claimed '906 design, by contrast, is better
suited for use on the Web where individual pages are provided separately. For at least this
reason, the use of a single tag is not expressly found or inherently described in Cohen."

Applicants' Response, at 15 (Sept. 27, 2007) ([PH_001_0000787028] —
[PH_001_0000787051]):

The language of claim 6 recites several limitations relevant to the embed text format. First, the
embed text format is located at a first location in a hypermedia document. Secondly, the embed
text format specifies the location of at least a portion of an object external to the hypermedia
document. Thirdly, the external object is displayed in a display area created at the first location,
i.e., the location of the embed text format within the hypermedia document.

Applicants' Response, at 15-16 (Sept. 27, 2007) ([PH_001_0000787028] -
[PH_001_0000787051]):

The claimed embed text format is not explicitly found in Cohen. . ..

The language of claim 6 recites several limitations relevant to the embed text format.
First, the embed text format is located at a first location in a hypermedia document.
Secondly, the embed text format specifies the location of at least a portion of an object
external to the hypermedia document. Thirdly, the external object is displayed in a display
area created at the first location, i.e., the location of the embed text format within the

B-156

hypermedia document. Turning first to the LDESC tag of Cohen, the LDESC tag is not
located at a first location in the document where a display window is created. Instead, the
LDESC (link description) tag appears in the document file's prologue. . ..

Turning next to the link tag :L of Cohen, the link tag :L does appear in the book text but it
lacks the claimed feature that the embed text format specifies the location of at least a
portion of an object external to the first distributed hypermedia document. The link tag of
Cohen does not specify the location of an object, nor does it specify the location of
anything that is external to the first distributed hypermedia document. [Felten at paragraph
54] Turning finally to the requirement that the external object is displayed in a display area
created at the first location, as is discussed in more detail in section 3 below, none of the
citations in the office action point to a part of Cohen where the claimed display area is
expressly found. In Cohen the 1/0 handlers are invoked to display objects, however there is
no teaching relating the location of a display area. Accordingly, the claimed embed text
format is not expressly found in Cohen."

Applicants' Response, at 11 (June 23, 2008) ([PH_001_0000787257] —
[PH_001_0000787273]): "The Patent Owner continues to respectfully assert the position argued in
its response to the non-final office action that Cohen does not fairly teach or suggest many of the
features of the claims, including at least interactive processing, an embed text format, a display
area and type information as those features are defined by the unamended language of claims 1 and
6, and that this position is correct in view of the cases cited by the examiner . . ."

V. '085 prosecution history (10/217,955)

Applicants' Response, at 5 (March 11, 2005) ([PH_001_0000784213] —
[PH_001_0000784244]):

"[T]he obviousness issues raised in [Office Actions mailed in connection with the
reexamination of the parent patent application, A/N 08/324,443 (now the 906 patent)] are
identical to the obviousness issues raised in the present Office Action. References to these
declarations relevant to identical issues raised in the present office action will be made in the
following argument.”

Response to Office Action at 17-18 (March 11, 2005): "[T]he static images returned by
external applications invoked in the Raggett system are inserted in line by the browser into
the ordered set of static presentation formats comprising the displayable form of the
hypermedia document. In Raggett I and |1, the Raggett EMBED tag located at a first
location in the hypermedia document is parsed, a rendering application is invoked that
returns a static image and terminates, the static image is inserted at the first location in the
set of static presentation formats, and the presentation form of the document is then
displayed by the browser. Since the rendering application has terminated before the set of
static presentation formats is displayed by the browser, it is fundamentally incapable of
providing interactive processing of an object being displayed in the display area of a
hypermedia document being displayed in the browser controlled window.

Turning next to the Toye reference, NoteMail messages are formatted in MIME
(Multipurpose Internet Mail Extension) and a new "Format" MIME data type is defined, for
NoteMail to capture and preserve the spatial arrangement of information on a NoteMail page.
The MIME "Format" data is stored separate from the text portions of the document [Felten I,
at paragraph 31]. There is no teaching in NoteMail of using text formats, within the
document text, intended to initiate processes specified by those text formats. Further, there
is no teaching in NoteMail of parsing an embed text format at a first location and
displaying and enabling interactive processing within the first location because, in
NoteMail, the location of information is specified elsewhere, by the ""Format™ data type."*

B-157

Applicants' Response, at 22 (Feb. 5, 2009) ([PH_001_0000784613] —
[PH_001_0000784697]):

"identifying an embed text format which corresponds to a first location in the document,
EXAMPLE SUPPORT:

14:27 'a check is made as to whether the current tag is the EMBED tag.™

d. Cited prior art

Microsoft Product Support Services Application Note (Text File) GC0165:Rich-Text Format
(RTF) Specification (Jun. 1992). cited by other . (e.g., [PH_001_0000014636] —
[PH_001_0000014673]).

B-158

J. "'first location' (in various contexts)

Claim Term(s)

Defendants' Proposed Construction

Eolas's Proposed Construction

embed text
format, located at
a first location in

embed text format located at the place
in the received document where the

embed text format located at a first

said first embedded obiect will apear within location in the first distributed
distributed . J PP hypermedia document
. the displayed document
hypermedia
document
embed text format
[which] embed text format located at the place

correspond[s/ing]
to [a/ said] first
location in the
document

in the received file where the
embedded object will appear within
the displayed document

embed text format which relates to a
first location in the document

1.

Defendants' intrinsic evidence

a. Claims

In the following chart, the term(s) for construction appear in all the claims marked with an
"x." The letter "m" indicates a method claim, and "{6" indicates a claim that the Defendants contend
includes limitations subject to 8§ 112, 1 6.

'906 patent ‘085 patent
m | m m m
mim{m/ |6 (76|76 |m |96 (76|76 |96 76 |m |96 |m
1 |14 |5 |6 |9 (101 |16|20 |24 |28 (32|36 |40 |44
embed text format, located at
a first location in said first
distributed hypermedia XX XX X X
document
embed text format [which]
correspond[s/ing] to [a / said] X [X | X |[X | X [X |X |X [|X
first location in the document

b. Specification (all cites to '906 patent)

12:54—:65 (Detailed Description of a Preferred Embodiment): Table 11, below, shows an
example of an HTML tag format used by the present invention to embed a link to an application
program within a hypermedia document.

B-159

TABLE II

<EMBEL
TYPE = “type”
HEEF = “href”
WIDTH = width
HEIGHT = height

6:66—:67 (Detailed Description of a Preferred Embodiment): As shown in Table 11, the
EMBED tag includes TYPE, HREF, WIDTH and HEIGHT elements."

13:38-:40 (Detailed Description of a Preferred Embodiment): "The routines within
HTMLparse.c perform the task of parsing a hypermedia document and detecting the embed tag.
(985, 13:38-40).

14:14—:24 (Detailed Description of a Preferred Embodiment) and Fig. 7A: [I]t is assumed
that a hypermedia document has been obtained at a user's client computer and that a browser
program executing on the client computer displays the document and calls a first routine in the
HTMLparse. c file called "HTMLparse". . . . [T]he document is parsed or scanned for HTML tags
or other symbols. While the file HTMLparse.c includes routines to handle all possible tags and
symbols that may be encountered, FIG. 7A . . . illustrates the handling of EMBED tags.

14:24—:32 (Detailed Description of a Preferred Embodiment): Assuming there is more
text to parse, execution proceeds to step 256 where routines in HTMLparse.c obtain the next item
(e.g. word, tag or symbol) from the document. At step 258 a check is made as to whether the current
tag is the EMBED tag. If not, execution returns to step 254 where the next tag in the document is
obtained. If, at step 258, it is determined that the tag is the EMBED tag, execution proceeds to step
260 where an enumerated type is assigned for the tag.

14:33-:34 (Detailed Description of a Preferred Embodiment): Each occurrence of a valid
EMBED tag specifies an embedded object.

C. Prosecution history

i. '906 prosecution history (08/324.,443)

Applicants' Response, at 1-3 (June 2, 1997) ([PH_001_0000784029] -
[PH_001_0000784090]): (amending claim to add the limitations "an embed text format, located at a
first location in said first distributed hypermedia document™ and enable interactive processing of said
object within [the] a display area created at said first location within the portion of said first
distributed hypermedia document being displayed . . ." to claims for the first time)

Applicants' Response, at 6 (June 2, 1997) ([PH_001_0000784029] -
[PH_001_0000784090]): "The present invention, as defined for example in amended claim 1,
includes the step of executing a browser that parses a first distributed hypermedia document to
identify text formats included in the distributed hypermedia document. . . . The first distributed

B-160

hypermedia document includes an embed text format located at a first location in the document. . .
. The external application displays, and allows the user to interactively process, the object in a
display window created within the portion of the document being displayed in the browser-
controlled window, at the location within the document of the embed text format."

Applicants' Response, at 11 (June 2, 1997) ([PH_001_0000784029] —
[PH_001_0000784090]): "Further, [in Mosaic] a display window is not created in the first
hypermedia document at the location in the document of the embed text format as required by the
claim."” (distinguishing Mosaic)

Applicants' Response, at 20 (June 2, 1997) ([PH_001_0000784029] —
[PH_001_0000784090]): "Combining Hansen with any combination of Mosaic and Khoyi, while
perhaps possible, would produce features that are irrelevant to the present application. Such a
combination would involve modifying the hypermedia document data structure to allow multiple
hierarchical subdocument windows to be contained within a parent document. This would involve
substantial modifications to the Mosaic document rendering engine, as well as the development of a
new version of the HTML document definition protocol to allow definition of hierarchical
relationships within subdocument elements."

Declaration of Michael D. Doyle, at 19 (May 27, 1997) (accompanying Applicants' Response
(June 2, 1997)) ([PH_001_0000784029] — [PH_001_0000784090]): "[T]he features of the claimed
invention [were] . . . incorporated through . . . display[ing] an external object . . . within a display
window created at the embed text format's location within the hypermedia document being
displayed . . .

Applicants' Response, at 5 (Aug. 6, 1996) ([PH_001_0000783879] -
[PH_001_0000783928]): (amending what was then claim 24 to include "parsing said document to
locate a reference to the external object included in the document, with the reference identifying and
locating the external object")

Examiner Interview Summary Record, at 1 (Feb. 26, 1997) ([PH_001_0000784011] -
[PH_001_0000784012]): "How Hypernet work and different from the present invention." as follows
... 2) tag in document to activate external program (delayed binding) . . . Applicant's argument is
persuasive to overcome the Hypernet ref."

Declaration of Michael D. Doyle, at 1-2, (Oct. 29, 1997) (accompanying Applicants'
Remarks (Oct. 31, 1997)) ([PH_001_0000784099] — [PH_001_0000784124]): "Mosaic (the
browser) interprets the HTML <EMBED> tag included in the document to create a drawing area
widget in a document presentation and creates a shared window system buffer to receive
visualization results."

Applicants' Response, at 2 (Dec. 23, 1997) ([PH_001_0000784131] -
[PH_001_0000784162]): "THE INVENTION OF CLAIM 1 ... The hypermedia document
includes an embed text format, located at a first location in the hypermedia document When
the automatically-invoked application executes, it displays the object and enables interactive
processing of said object within a display window created within the portion of the hypermedia
document being displayed."”

Applicants' Response, at 16 (Aug. 6, 1996) ([PH_001_0000783879] —
[PH_001_0000783928]): Distinguishes CGI as follows: "[U]nlike CGl, the claimed executable

B-161

application does not generate a static HTML document to be displayed in place of the first document
but displays and processes the object in a portion of the window."

Examiner Interview Summary, at 1 (Jan. 27, 1998) ([PH_001_0000784173] —
[PH_001_0000784174]): "The applicant agreed to amend 'display window" in line 28 of claim 1 to -
display area- to distinguish that it is an area within the hypermedia document that displays the object
and not a separate window. The same amendment was made to claim 44, line 39."

Applicants' Response, at 2 (Dec. 23, 1997) ([PH_001_0000784131] -
[PH_001_0000784162]):"Mosaic provides display and interaction with an external object by
launching an associated program in a separate window." (distinguishing Mosaic)

Applicants' Response, at 2 (Dec. 23, 1997) ([PH_001_0000784131] -
[PH_001_0000784162]): "THE INVENTION OF CLAIM 1 ... displays the object and enables
interactive processing of said object within a display window created within the portion of the
hypermedia document being displayed."

Applicants' Response, at 7 (Dec. 23, 1997) ([PH_001_0000784131] -
[PH_001_0000784162]): "[In Mosaic t]he retrieved information either replaces the first hypermedia
document, or is displayed in a separate window other than the window displaying the hypermedia
document.” (distinguishing Mosaic)

Applicants' Response, at 8 (Dec. 23, 1997) ([PH_001_0000784131] -
[PH_001_0000784162]): "[In Mosaic, t]he viewer program displays the full image in a separate
‘window" (in a windowing environment) or on a separate screen." (distinguishing Mosaic)

Applicants' Response, at 11 (June 2, 1997) ([PH_001_0000784029] —
[PH_001_0000784090]): "Further, [in Mosaic] a display window is not created in the first
hypermedia document at the location in the document of the embed text format as required by the
claim.” (distinguishing Mosaic)

Applicants' Response, at 20 (June 2, 1997) ([PH_001_0000784029] —
[PH_001_0000784090]): "Furthermore, even if the above combination was operable, the external
applications still could not be interacted with from within the hypermedia document, as required by
the claimed invention, since both Mosaic and Khoyi must launch any external application into a
separate window before the reader can interactively control it." (distinguishing prior art)

Applicants' Response, at 24 (June 2, 1997) ([PH_001_0000784029] —
[PH_001_0000784090]): "Neither Mosaic, nor Khoyi, nor Hansen shows an executable application
which is external to a document being displayed and interactively processed within that document's
display window, nor do they show such an application where said executable application is
interactively controlled on said client workstation by interprocess communications between the
external application and the browser. This feature produces surprising and unexpected results over
the prior art, since it allows the reader to perform all necessary interactive functions with external
applications without directing his or her attention away from the hypermedia document."

ii. Abandoned application (09/075,359)

See Applicants' Response, at 1-4 (March 9, 2001) ([PH_001_0000787808] —
[PH_001_0000787813]): (claims as amended)

Applicants' Response, at 2 (Nov. 29, 2001) ([PH_001_0000787823] —
[PH_001_0000787832]): "The present invention, as defined for example in claim 62, is a computer
program product for use in a system having at least one client workstation and one network server
coupled to a network environment. The network environment is a distributed hypermedia

B-162

environment, and the client workstation utilizes a browser to display. on the client workstation, at
least a portion of a first hypermedia document received over the network from the server. The
portion of the first hypermedia document is displayed within a first browser-controlled window on
the client workstation. The first distributed hypermedia document includes an embed text format,
located at a first location in the first distributed hypermedia document, that specifies, either
directly or indirectly, the location of at least a portion of the object, where the portion is external to
the first distributed hypermedia document, where the object has type information associated with it
utilized to identify and locate computer readable program code external to the first distributed
hypermedia document, and where the embed text format is parsed by the browser to automatically
invoke the computer readable program code. The claimed computer program product includes a
computer usable medium having computer readable program code physically embodied therein, and
further includes computer readable program code, identified by the type information, for being
automatically invoked by the browser application to cause the client workstation to display an object
and enable interactive processing of the object within the dil.play area created at the first location
within the portion of the first distributed hypermedia document being displayed in the first
browser controlled window."

Response to Office Action, at 7 (Nov. 29, 2001) ([PH_001_0000787823] -
[PH_001_0000787832]): In the claimed invention, the document itself coordinates the use of
external program code with embed text formats, such as the Netscape <embed> tag or the ActiveX
<object> tag, at locations in the document where the external computer readable code is to display
and enable interactive processing of an external object.

iil. First reexam (90/006,831)

Applicants' Remarks, at 3 (May 11, 2004) ([PH_001_0000785359] —
[PH_001_0000785379]):

The claims recite a browser application, executed on the client workstation, that
parses a hypermedia document to identify text formats in the document and
responds to predetermined text formats to initiate processing specified by the text
formats.

The browser displays a portion of a first distributed hypermedia document,
received over the network from the network server, in a browser-controlled
window. The hypermedia document includes an embed text format, located at a
first location in the hypermedia document, that specifies the location of at least a
portion of an object external to the hypermedia document. The object has
associated type information utilized by the browser to identify and locate an
executable application external to the hypermedia document.

When an embed text format is parsed by the browser, the executable application is
automatically invoked, as a result of the parsing, to execute on the client
workstation.

When the automatically invoked application executes on the client workstation,
the object is displayed within a display window created within the portion of the
hypermedia document being displayed and interactive processing of said object is
enabled.

Notice of Intent to Issue a Reexam Certificate, at 8-9 (Sept. 27, 2005)
([PH_001_0000785905] — [PH_001_0000785981]): "The instant claimed '906 'executable
application’ that provides the claimed 'interactive processing' is invoked not in response to a user
event detected by the browser (as in the case of Raggett I, supra), but rather in response to the
browser application parsing an 'embed text format' (i.e., an "EMBED" tag, see col. 12, line 60,

B-163

'906 patent) that is detected within the hypermedia document when the hypermedia document is
first loaded by the browser."

Notice of Intent to Issue a Reexam Certificate, at 9 (Sept. 27, 2005) ([PH_001_0000785905]
—[PH_001_0000785981]): "Significantly, the instant claimed "interactive processing™ of the '906
patent begins at the moment the browser application parses an "embed text format" detected within
the hypermedia document. The web browser invokes the claimed ""executable application™
immediately after an "EMBED" tag is parsed and before the hypermedia document is completely
displayed in the browser-controlled window."

Applicants' Remarks, at 4 (May 11, 2004) ([PH_001_0000785359] —
[PH_001_0000785379]): "[In the prior art, t]he retrieved information either replaces the first
hypermedia document or is displayed in a separate window other than the window displaying the
hypermedia document.” (distinguishing prior art)

iv. Second reexam (90/007,858)

Office Action, at 8 (July 30, 2007) ([PH_001_0000786943] — [PH_001_0000787017]):
"[T]he helper program prior art submitted by the Third Party Requester . . . are not seen to teach of
executing a browser application at said client workstation that parses a first distributed hypermedia
document, having an embed text format included in the hypermedia document that specifies the
location of at least a portion of an object external to the first distributed hypermedia document, and
subsequently, to automatically invoke an external helper application to execute a processing to
display the external object and enable interactive processing of the external object.” ((emphasis in
original; some emphasis omitted))

Office Action, at 26, 31 (July 30, 2007) ([PH_001_0000786943] — [PH_001_0000787017]):
"[E]mbed text format[s are] . . . interpreted as the multimedia link description tags LDESC included
within the document. . . in the prologue of the document. . . . The LID attribute refers to one or more
LDESC document link tags."

Declaration of Edward W. Felten, at 11 51-52 (Sept. 27, 2007) (accompanying Applicants'
Response (Oct. 1, 2007)) ([PH_001_0000787052] — [PH_001_0000787069]): "The LDESC tags
cannot be the embed text format, because they do not satisfy the required claim element 'wherein
said first distributed hypermedia document includes an embed text format, located at a first location
in said first distributed hypermedia document . . . to display said object and enable interactive
processing of said object within a display area created at said first location .. .' ("906 Patent at
18:14-28) This claim element requires that the embedded object be displayed at a location in the
distributed hypermedia document (e.g., the Web page) that corresponds to the location of the
embed text format within the document. . . . The LDESC tag does not appear in the document at the
required location. Instead, the LDESC (link description) tag appears in the document file's prologue

Response to Office Action, at 15 (Oct. 1, 2007) ([PH_001_0000787028] -
[PH_001_0000787051]): "[C]laim 6 recites [that] . . . the external object is displayed in a display
area created at the first location, i.e., the location of the embed text format within the hypermedia
document. Turning first to the LDESC tag of Cohen, the LDESC tag is not located at a first
location in the document where a display window is created. Instead, the LDESC (link description)
tag appears in the document file's prologue.” (distinguishing prior art)

Declaration of Edward W. Felten, at {1 53 (Sept. 27, 2007) (accompanying Applicants'
Response (Oct. 1, 2007)) ([PH_001_0000787052 — [PH_001_0000787069]): "The fact that the

B-164

LDESC tag does not appear at a location in the book text is one reason why the LDESC tag cannot
be the embed text format of the '906 claims."

Declaration of Edward W. Felten, at § 34 (Sept. 27, 2007) (accompanying Applicants'
Response (Oct. 1, 2007)) ([PH_001_0000787052 — [PH_001_0000787069]): "The ability of the
claimed '906 technology to display and enable interactive processing within the browser window
was a significant advance over the prior art Mosaic browser. Enabling display and interactivity
within the browser window allowed the object to appear, seamlessly, as an integral part of the web
page's display."

V. '085 prosecution history (10/217,955)

Applicants' Response, at 8 (March 11, 2005) ([PH_001_0000784213] —
[PH_001_0000784244]): "The invention, as recited for example in claim 1 [is one in which] . . .[t]he
hypermedia document includes an embed text format, located at a first location in the hypermedia
document [which ultimately] cause[s] the client workstation to display an object and enable
interactive processing of the object within a display window created at the first location of the
portion of the hypermedia document being displayed in the first browser controlled window."

Applicants' Response, at 17 (March 11, 2005) ([PH_001_0000784213] -
[PH_001_0000784244]): "In Raggett | and Il, the Raggett EMBED tag located at a first location in
the hypermedia document is parsed, a rendering application is invoked that returns a static image
and terminates, the static image is inserted at the first location in the set of static presentation
formats, and the presentation form of the document is then displayed by the browser."

Applicants' Response, at 18 (March 11, 2005) ([PH_001_0000784213] -
[PH_001_0000784244]): "The MIME 'Format' data is stored separate from the text portions of the
document [Felten 11, at paragraph 31]. There is no teaching in NoteMail of using text formats, within
the document text, intended to initiate processes specified by those text formats. Further, there is no
teaching in NoteMail of parsing an embed text format at a first location and displaying and
enabling interactive processing within the first location because, in NoteMail, the location of
information is specified elsewhere, by the 'Format' data type." (distinguishing prior art)

Applicants' Response, at 28 (March 11, 2005) ([PH_001_0000784213] -
[PH_001_0000784244]): "[In a prior art system,] the external application for processing the
‘dynamic object' is not automatically invoked when an embed text format within the document is
parsed . . ." (distinguishing prior art)

Declaration of Edward W. Felten, at 18 (May 7, 2004) (accompanying Applicants'
Response (March 11, 2005)) ([PH_001_0000784245] — [PH_001_0000784271]): "The claims of the
'906 Patent describe a technology that allows web page authors to include, within the boundaries of
a web page, interactive objects. This is done (briefly stated) by including in the web page's HTML
text an embed text format, . . . and by providing a web browser that knows how to parse the HTML
to extract the embed text format . . . [and ultimately] how to interface to the executable application
so as to allow the user to interact with it within the boundaries of the browser window."

Declaration of Edward W. Felten, at 1 26 (May 7, 2004) (accompanying Applicants'
Response (March 11, 2005)) ([PH_001_0000784245] — [PH_001 _0000784271]): "Toye teaches no
software application that parses distributed hypermedia documents, . . . [or] pars[es] an embed text
format in such a document.” (distinguishing prior art)

Applicants' Response, at 9 (March 11, 2005) ([PH_001_0000784213] -

[PH_001_0000784244]): "The retrieved information either replaces the first hypermedia document
or is displayed in a separate window other than the window displaying the hypermedia document.”

B-165

Declaration of Edward W Felten, at § 26 (Oct. 6, 2004) (accompanying Applicants'
Response, at 15 (March 11, 2005)) ([PH_001_0000784272] — [PH_001_0000784282]): "Toye does
not teach the use of a hypermedia browser, as that term is used in the '906 claims. Toye teaches no
software application that parses distributed hypermedia documents, and it does not teach other
browser-related elements of the '906 claims, such as parsing of distributed hypermedia documents by
a browser, identifying text formats in distributed hypermedia documents and responding to
predetermined text formats to initiate processing specified by those formats, utilizing a browser to
display at least a portion of a distributed hypermedia document in a browser-controlled window, and
parsing an embed text format in such a document.”

See Supplemental Response / Amendment, at 2-13 (April 11, 2008) ([PH_001_0000784568]
—[PH_001_0000784590]): Amendments to claims.

Supplemental Amendment, at 18-24 (Feb. 5, 2009) ([PH_001_0000784613] —
[PH_001_0000784697]):

"The examiner requested that citations to support in the specification for the
elements and limitations of the pending claims be provided in the remarks section
of a newly presented supplemental amendment. . . .

"identifying an embed text format which corresponds to a first location in the
document,

EXAMPLE SUPPORT:

14:27 'a check is made as to whether the current tag is the EMBED tag.'. . .
(emphasis in original)

"while the object is being displayed within a display area created at the first
location within the portion of the hypermedia document being displayed in the
browser-controlled window.

EXAMPLE SUPPORT:

16:8 'FIG. 9 is a screen display of the invention showing an interactive application
object (in this case a three dimensional image object) in a window within a
browser window. In FIG. 9, the browser is NCSA Mosaic version 2.4. The
processes VIS, Panel and VRServer work as discussed above. FIG. 9 shows
screen display 356 Mosaic window 350 containing image window 352 and a
portion of a panel window 354. Note that image window 352 is within Mosaic
window 350 while panel window 354 is external to Mosaic window 350. Another
possibility is to have panel window 354 within Mosaic window 350.™" (emphasis
in original)

Notice of Allowance, at 2 (March 20, 2009) ([PH_001_ 0000784728 —
[PH_001_0000784734]): "The following is an examiner's statement of reasons for allowance: the
claims are allowable as the claims contain the subject matter deemed allowable in both Re exam
90/006,831 and Re exam 90/007,838 for the same reasons as set forth in the NIRC of the two Re
exams."

2. Defendants' extrinsic evidence

Testimony by inventor Michael Doyle from the Eolas v. Microsoft case, including without
limitation:

Michael Doyle Dep., Eolas Techs Inc. v. Microsoft Corp., No. 99- C-626 (N.D. Ill. February
28-March 1, 2000), at 116:14-118:11 [EOLASTX-E- 0000000180]:

B-166

14 THE WITNESS: Well, if you look at figure 1,
15 prior art, it shows an image icon that is displayed
16 within a hypermedia document.

17 BY MR. PETERSEN:

18 Q. Which element of figure 1 are you

19 referring to?

20 A. Element 22.

21 Q. So your answer to the question is yes?

22 A. Yeah, that's a display area within the

23 document, as described in the spec.

24 Q. But the prior art included the capability

page 117

1 of displaying an object within a display area?

2 A. As we stated in our specification.

3 Q. Did the prior art have the capability of

4 displaying the object at a location within the

5 document?

6 MS. CONLIN: And are you referring to any

7 prior art now, or are you referencing Mosaic

8 QuickTime? Are we still on the QuickTime, or are
9 we moving into the more general?

10 MR. PETERSEN: Well, it's not really

11 specifically QuickTime. QuickTime, I believe --
12 correct me if I'm wrong, Dr. Doyle -- you testified
13 was a helper application? And I'm not talking

14 about helper applications.

15 MS. CONLIN: He's talking generally now.

16 MR. PETERSEN: I'm talking about Mosaic at the
17 time that you made the invention in the '906 patent
18 Dy itself.

19 THE WITNESS: Displaying static images

20 within --

21 MR. PETERSEN: In response to the --

22 THE REPORTER: One at a time.

23 THE WITNESS: I'm sorry, go ahead. I'll let
24 you expand.

page 118

MR. PETERSEN: I think we're on the same page.

Q. Display static images in response to
parsing the IMG tag, for example, right?

A. Uh-huh.

Q. That's the context I'm talking about. Do
you understand?

A. lunderstand, yeah, sure.

Q. Now, did that operate to display an image
9 at the location in the document where the IMG text
10 format is located?
11 A. Yes.

co~No Ok~ WwWNE

Michael Doyle Dep., Eolas Techs Inc. v. Microsoft Corp., No. 99-C-626 (N.D. Ill. February
28-March 1, 2000), at 558:15-560:7 [EOLASTX-E-0000000182].

B-167

15 Q. And looking at the second page of the

16 exhibit near the top, there's a portion of

17 underlined language that says "located at a first
18 location,” and so on?

19 A. | see that.

20 Q. What does the location refer to there?

21 MS. CONLIN: The first location, Counsel, is
22 that what you're referencing?

23 MR. PETERSEN: That's correct. It says,

24 "located at a first location."

page 559

Q. So the question is what is the first
location?

A. ltisalocation of an embed text format
as defined in claim 6 of the '906 patent. Well,
sorry, as defined in this amended claim 1, but it
appears to refer to the same meaning as defined in
claim 6 of the '906 patent.

Q. Now, does that refer to the location of
the embed text format within the hypermedia
10 document?
11 A. You'd have to define -- well, within the
12 hypermedia document referred to in this claim?
13 Yes, it says, "at a first location in said first
14 distributed hypermedia document."
15 Q. Now, is that referring to the location of
16 the embed text format relative to other text
17 formats that may be in the hypermedia document?
18 A. It's referring to the location with
19 respect to the ordered definition of elements
20 within the hypermedia document.
21 Q. And is the ordered definition of elements
22 in the hypermedia document the order in which they
23 appear in the text file of the document?
24 MS. CONLIN: Objection as to form.
page 560

OCoOoO~NOOITPhWN -

THE WITNESS: To the extent that there can be
multiple mappings of the location in the hypermedia
document with respect to anything on the display,
that's referring to the location within the
hypermedia document date, in this case, the
specific embodiment described in the specification
would be within the HTML file.

~NOoO O~ WNE

Testimony by inventor David Martin from the Eolas v. Microsoft case, including without
limitation:

David Martin Dep., Eolas Techs Inc. v. Microsoft Corp., No. C-99-0212 (N.D. Ca. January
20-21, 2000), at 151:4-153:10; 164:10-166:4 [EOLASTX-E-0000000174].

4 Q. What does it mean to say that the

B-168

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

embed text format is at a location in a
hypermedia document?

A. Referring back to Column 14, at line
13, it says that "Returning to Figure 7, it is
assumed that a hypermedia document is obtained"
-- "has been obtained at a user's client
computer and that a browser program executing on
the client computer displays the document and
calls a first routine in the HTMLparse.c file
called 'HTMLparse." This first routine,
HTMLparse, is entered at step 252 where a pointer
to the start to the document portion is passed.
Steps 254, 256 and 258 represent a loop where the
document is parsed or scanned for HTML tags or
other symbols."

The sequence in which that parsing
occurs indicates a location within the hypermedia
document.

MS. CONLIN: | know we haven't been
quite going an hour, but I'd like to take a break
when you get a chance.

page 152

1 MR. PETERSEN: Sure, that's fine.

2 MS. CONLIN: That would be fine.

3 VIDEO TECHNICIAN: Going off the

4 video record. The time is now approximately 2:20

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

p.m.
(Whereupon, a short break was taken
from 2:20 to 2:32 p.m.)
VIDEO TECHNICIAN: We're back on the
video record. The time is now approximately 2:32
p.m.
BY MR. PETERSEN:

Q. Soif I understand your testimony
then, Mr. Martin, the location of the embed text
format within a hypermedia document has to do
with the order in which it's parsed by the
browser?

A. Asreferred to in the specification,
yes.

Q. So then what does it mean to say
that an object is displayed at that location?

A. Can you refer me to --

Q. Yes, it was from the passage of the
Claim 6 that you read before, line 25 of Column
18, it actually goes on for about three or four
lines.

page 153

1
2
3

A. For example, do you mean beginning
in Column 18, line 15, "includes an embed text
format, located at a first location in said first

B-169

hypermedia document™?

Q. Yes, we just talked about that and
you said that location is where within the
hypermedia document the embed text format is
located in terms of the order in which the
document is parsed; right?

A. Thatis correct.

* * * *

Q. Did you define the term "location”
in your patent specification?

A. | believe that is defined, but I'd
have to refer back to the text.

MS. CONLIN: Can I have the question
back.

(Whereupon, the reporter read back
the last question.)

THE WITNESS: | think the term
"location™ has been defined in different
contexts for different purposes within the scope
of the specification of the patent.

BY MR. PETERSEN:

Q. No, what | mean is the term
"location™ with quotes around it or the word
"location™ found in the patent specification

page 165

with a definition associated with it?

A. Can you point me to a place where
the word "location" is used with the quotation
marks around it?

Q. lcan'tfind -- I don't think there
is any definition of the word "location” in the
patent specification, but you're the inventor so
I thought I would ask you.

A. Well, it depends on the context in
which the term is used.

Q. Inthe context of Claim 6, Column
18.

A. So if by that do you mean the first
location of the first -- the first distributed
hypermedia document or do you mean the specifies
the location of at least a portion of an object
external?

Q. I'mean "located at a first location
in said first hypermedia document,” that was a
fair question.

A. Yes, we've already reviewed that in
terms of the parsing functionality.

Q. No, but it is the term definition
itself, is the term "location™ itself defined in
the patent specification?

page 166

B-170

1 A. Toone who is fluent in the art, the

2 understanding of the reading of the specification
3 inregard to the term "location" in regard to

4 parsing of the hypermedia document is clear.

Testimony by inventor Cheong Ang from the Eolas v. Microsoft case, including without
limitation:

Cheong Ang Dep., Eolas Techs Inc. v. Microsoft Corp., No. C-99-0212 (N.D. Ca. January
21-22, 2000), at 241:22-242:1; 243:1-12 [EOLASTX-E-0000000177]:

22 Q. Inthe system described here, the
23 browser creates a display; is that correct?
24 A. Thereis "adisplay area created at
25 said first location within the portion of said
page 242

1 first hypermedia document."”

* * * *

Q. Well, in Figure 9 you can tell where
the Block 352 is on the screen, can't you?

A. Okay. What the claim said here is
"the display area was created at said first
location within the portion of said first
hypermedia document being displayed," so to the
user it's the hypermedia document they're looking
at.

co~Nouahrwn P

Q. Well, what about the display area?

10 A. And the display area corresponds to

11 how the hypermedia document, how it's laid out in
12 the hypermedia document.

B-171

K. "distributed application"'

Claim Term(s) Defendants' Proposed Construction | Eolas's Proposed Construction

application external to the browser,
where application tasks that could be
performed on a single computer are
distributed instead broken up and performed at
application the same time on both the client
workstation and one or more
computers that are remote to the client
workstation

an application that may be broken up
and performed among two or more
computers

1. Defendants' intrinsic evidence

a. Claims

In the following chart, the term(s) for construction appear in all the claims marked with an
"x." The letter "m" indicates a method claim, and "{6" indicates a claim that the Defendants contend
includes limitations subject to § 112, | 6.

'906 patent ‘985 patent

m | m m m
mi m @ m 76|76 |96 /m |6 |96 |96 96 |76 m |6 |m
1 |14 |5 |6 |9 (101 |16|20 (24|28 32|36 40|44
| distributed application X [X |X

b. Specification (all cites to '906 patent)

7:7-:40 (Summary of the Invention):

In one application, high resolution three dimensional images are processed
in a distributed manner by several computers located remotely from the user's
client computer. This amounts to providing parallel distributed processing for
tasks such as volume rendering or three dimensional image transformation and
display. Also, the user is able to rotate, scale and otherwise reposition the
viewpoint with respect to these images without exiting the hypermedia browser
software. The control and interaction of viewing the image may be provided
within the same window that the browser is using assuming the environment is a
"windowing" environment. The viewing transformation and volume rendering
calculations may be performed by remote distributed computer systems.

Once an image representing a new viewpoint is computed the frame image
is transmitted over the network to the user's client computer where it is displayed
at a designated position within a hypermedia document. By transmitting only
enough information to update the image, the need for a high bandwidth data
connection is reduced. Compression can be used to further reduce the bandwidth
requirements for data transmission.

Other applications of the invention are possible. For example, the user can

operate a spreadsheet program that is being executed by one or more other
computer systems connected via the network to the user's client computer. Once

B-172

the spreadsheet program has calculated results, the results may be sent over the
network to the user' s client computer for display to the user. In this way,
computer systems located remotely on the network can be used to provide the
computing power that may be required for certain tasks and to reduce the data
bandwidth by only transmitting results of the computations.

10:33-11:39 & figs. 5-6 (Detailed Description of a Preferred Embodiment):

Another embodiment of the present invention uses an application server
process executing on server computer 204 to assist in processing that may need to
be performed by an external program. For example, in FIG. 5, application server
220 resides on server computer 204. Application server 220 works in
communication with application client 210 residing on client computer 200. In a
preferred embodiment, application server 220 is called VRServer, also a part of
Doyle Group's approach. Since server computer 204 is typically a larger computer
having more data processing capabilities and larger storage capacity, application
server 220 can operate more efficiently, and much faster, than application client
210 in executing complicated and numerous instructions.

In the present example where a multidimensional image object
representing medical data for an embryo is being viewed, application server 220
could perform much of the viewing transformation and volume rendering
calculations to allow a user to interactively view the embryo data at their client
computer display screen. In a preferred embodiment, application client 210
receives signals from a user input device at the user's client computer 200. An
example of such input would be to rotate the embryo image from a current
position to a new position from the user's point of view. This information is
received by application client 210 and processed to generate a command sent over
network 206 to application server 220. Once application server 220 receives the
information in the form of, e.g., a coordinate transformation for a new viewing
position, application server 220 performs the mathematical calculations to
compute a new view for the embryo image. Once the new view has been
computed, the image data for the new view is sent over network 206 to
application client 210 so that application client 210 can update the viewing
window currently displaying the embryo image. In a preferred embodiment,
application server 220 computes a frame buffer of raster display data, e.g., pixel
values, and transfers this frame buffer to application client 210. Techniques, such
as data compression and delta encoding, can be used to compress the data before
transmitting over network 206 to reduce the bandwidth requirement.

It will be readily seen that application server 220 can advantageously use
server computer 204's computing resources to perform the viewing transformation
much more quickly than could application client 210 executing on client
computer 200. Further, by only transmitting the updated frame buffer containing a
new view for the embryo image, the amount of data sent over network 206 is
reduced. By using appropriate compression techniques, such as, e.g., MPEG
(Motion Picture Experts Group) or JPEG (Joint Photographic Experts Group),
efficient use of network 206 is preserved.

FIG. 6 shows yet another embodiment of the present invention. FIG. 6 is
similar to FIG. 5, except that additional computers 222 and 224 are illustrated.
Each additional computer includes a process labeled "Application (Distributed)."
The distributed application performs a portion of the task that an application, such
as application server 220 or application client 210, perform. In the present
example, tasks such as volume rendering may be broken up and easily performed

B-173

among two or more computers. These computers can be remote from each other
on network 206. Thus, several computers, such as server computer 204 and
additional computers 222 and 224 can all work together to perform the task of
computing a new viewpoint and frame buffer for the embryo for the new
orientation of the embryo image in the present example. The coordination of the
distributed processing can be performed at client computer 200 by application
client 210, at server computer 204 by application server 220, or by any of the
distributed applications executing on additional computers, such as 222 and 224.
In a preferred embodiment, distributed processing is coordinated by a program
called "VIS" represented by application client 210 in FIG. 6.

CLIENT COMPUTER £200
(.)
BROWSER 210
GLIENT 212 APPLICATION
YPER- (CLIENT}
EDIADDY - -~
214
NETWORK PROTOCOL LAYER y

Py

SERVER COMPUTER 204
NETWORK PROTOCOL LAYER h
218 I_ 220
SERVER APPLIGATION
PROCESS (SERVER)
FIG 5 N _J
CLIENT GOMPUTER 200
™y
/" BROWSER - ADDITIONAL GOMPUTER
_ CLIENT ”Eucjﬁw
R {CLIEN
. APPLIGATION
NEDIADOG. - {DISTRIBUTED)
[
L)
NETWORK PROTOCOL LAYER
SERVER COMPUTER 204

ADDITIONAL COMPUTER

NETWORK PROTOGOL LAYER

APPLICATION
(DISTRIBUTED)

224

FIG 6.

B-174

APPLIGATION
(SERVER)

C. Prosecution history

i. '906 prosecution history (08/324.,443)

Declaration of Michael D. Doyle, at Attachment A (Jan. 2, 1997) (accompanying Applicants'
Response (Jan. 8, 1997)) ([PH_001_0000783943] — [PH_001_0000783956]):

B-175

M.D. Doyle, et. al., The Virtual Embryo;: VR Applications in Human
Developmental Anatomy, presented at “Medicine Meets Virtual Reality I,

" Interactive Technology and Healtheare: Visionary Applications for Simulation,
Visualization & Robotics," sponsored by the UCSD School of Medicine and the
Advanced Projects Research Agency, San Diego, CA, January 27, 1994,

Video Presentation Transcript:

This is a status report of some of the work that's been accomplished during the
first years of the Visible Embryo Project.

One of our first tasks was to develop some volume visualization software that we
could use for imaging and analysis of the embryo reconstructions that we
planned to create during the full term of the embryo project. One thing that was
an absolute requirement was that this software be able to distribute its
compulational load across a network of graphics computers that weren't
necessarily all in the same place. Basically we wanted to be able to have
coemputers that could be all over the country connected by high -speed
networking, able to contribute to a computation of three-dimensional datasets.

What you see here is a package called "VIS," which was developed in our
group, for three-dimensional volume visualization. This is a very portable

B-176

package that has been generated using as generic cade as possible, although
this particular image that you see here is running on a Silicon Graphics Reality
Engine I, which is optimized for volume visualization. We need to use that kind
of high-speed optimization to accomplish the real-time interactivity that we need
to accomplish for this project. And as you see, as this rotates, and it starts
rotating faster and faster, only a very powerful graphics - basically a graphics
supercomputer - can accomplish this much computation on a three dimensional
dataset. One of our goals is to allow anybody on the Internet with a very low-
level access workstation to accomplish this kind of interactivity through their
netwark connection, and the way that we de that is through a client-server
architecture where we have a very powerful server computer accessed by a very

low-end client machine.

We decided early on to use NCSA's Mosaic program and the World Wide Web
to integrate access to this system. One problem with Mosaic is, as it exists
today, is that the images within Mosaic are typically static or passive-playback
images.

What you see here is an enhancement that we've created to the Mosaic
interface and contral software that allows the embedding of a dynamic real-time

B-177

visualization application within a Mosaic document. You see a head, a volume
MRI model of a human head, that's being rotated in real-time interactively by the
viewer. You see a little panel to the right which is, it's a control panel that's
popped up - it's really external to Mosaic itself but it can talk to the internal
control programs that drive the Mosaic client - and allow you to interactively
control the display from within Mosaic. This is actually contrelling the volume
visualization software that you just saw a few minutes ago.

By moving around the controls in the control panel we can do things like rotate,
we can control slices through the dataset, and so on. As you can see, there's
rotation in x, y, and z planes. We can also compute arbitrary oblique sections
through the data and look at the internal anatomy. Here we can see the brain of
this individual; we can rotate and view that section of the dataset from a variety
of vantage points. There are zooming capabilities that allow us to zoom up on
the data or zoom back to look at things in more or less detail, and you can see
here that once zoomed, we're moving our cutting plane down through the
dalaset and looking at more and more inferior levels

Normally graphics in Mosaic are static, as | said, but this embedding of graphic
applications within Mosaic is really going to form the basis of how we integrate
information access through the Visible Embryo Project. What you are about to

B-178

see is our prototype system of a Visible Embryc Mosaic document that has
embedded realtime visualizations within it.

We just loaded the Visible Embryo Mosaic page, the system is about lo scroil
down this page - it is an abstract about the Visible Embryo Project - and then
we see a window. It looks like a static image just like is normally found within the
World Wide Web databases that you can access today through Mosaic, but you
can see that suddenly, by moving controls on the control panel, we can zoom in
and see that this is a reconstruction of a seven week old human embryo. This is
a reconstruction from approximately 2900 serial cross sections of an embryo
sectioned about in the 1920s. It's part of the Carnegie Collection of Human

Embryology.

of
‘g 1
I
g 5.
B
=
¥
B
i
EE
g
i}
E i
g
r
3
3

.
.

— arE—

We're locking at this in volume visualization mode, we can rotate the embryo
around, we can see internal structures, neurological structures; just in the lower
abdomen area, we can see the liver, the arms are very evident - so we are
actually looking through the dataset. We can also slice through this dataset
obliquely, and look at the internal anatomy that way as well. We can load a
volume visualization table that allows us o interactively enter tissue
characteristic numbers that contrel the translucency, transparency, or opacity of
various ranges of voxal intensity. And what we've done now is wa've made the

B-179

exterior of the embryo a little more opaque so that as we rotate around with an
oblique cutting plane we can see the difference between the cutting plane and
the exterior of the embryo a little better. So now we're looking, slicing - we've
rotated the embryo to an inferior view and we're looking up at the embryo from
below. And we can see, we've just gone through the heart region, we're going
through the liver, we're moving inferiorly and we start to get to an area where we
can see the herniated gut.

Now the real key to all of this is that these are embedded visualizations. We're
actually creating documents that are - | guess you'd call them currently
compound documents where you have the traditional type of information, but
you've also got, within that document, links to the raw data rather than just
pictures generated from data. This allows you to tie together representations of
data with the actual data themselves as well as with notes and different kinds of
descriplive textual information based on that data.

Our basic objective here is really to create what we're calling a national meta-
center which is going to be a computational resource for the entire nation that
allows people interested in many different areas, including developmental
biclogy, alsc multi-dimensional imaging and high-speed networking, and
parallel computing. All these people can access this database, And the parallel

B-180

nature of the computaticn that's taking place is invisible to the user. They log in
through a Mosaic window, and that window is giving them very high-performance
control of interactive visualizations of datasets. By scrolling the window, we can
see that this is actually embedded within the Mosaic document.

During a recent demonstration of this technology at the corporate briefing center

at Silicon Graphics Corporation in Mountain View, California, | discussed some
of the implications of this technology for researchers of human genetics.

"We're also looking at using these models as a basis for creating three-
dimensional maps of gene expression, which is a way to correlate the findings of
the Human Genome project within a context that everyone uses. It sort of sets
up a standard space within which everybody can report their findings, so that
you can finally have some way of comparing studies that happen in different
laboratories.

If you're studying the three-dimensional distribution of gene expression of a
gene relating to heart development, what you do now is you have a little
fluorescent marker that glows under an ultraviolet light, and you use confocal

B-181

microscopy to develop a three-dimensional model of it, and then you say, well,
it's on here and it's on there and it's on there and you try to describe it in
anatomical terms but it is a qualitative description, right?.

But here there would be a standard anatomy space that people could use to
describe their findings so that they could, rather than say, yeah, we saw five
different studies that said that this was expressed at the bifurcation of the aorta
with the Common Carotid artery - you don't have to do in terms of verbal
descriptions, you can do it in terms of a true measurable Cartesian coordinate

system.

If you take your current version of Mosaic, the kind that is accessible for free
through the Internet today, and log onto our home page of the Visible Embryo
Project, what you'll see is a series of multi-media documents that basically give
you information about the status of the Visible Embryo Project and the status of
our current proposal development efforts. You'll be able to load MPEG movies of
visualizations of human embryos, as you can see here.

B-182

One thing you should keep in mind is that this little MPEG movie is just a canned
movie, it's not interactive. Once you hit Play it just goes and it plays and then it
goes away, but you can't stop it and interact with it, and rotate that embryo, for
instance, to different vantage points.

Also available is an image that shows some of the early work, some screen
shots representing the volume visualization tool current as of about last summer.
We've come much farther and in fact a lot of the video that you saw earlier in
this presentation shows you the current status of this volume visualization
package. Last summer, that imaging package was separate from Mosaic, as you
see it's off to the right, and Mosaic could just call it but couldn't actually embed
visualizations. Now, everything is tied together into a single multi-media
document.

You'll also see articles that relate to the Visible Embryo Project. This project has
been going on for several years now, mostly on the coattails of other research
projects, collaborators funding it wherever they could find the money. But
already a significant body of literature is starting to be buill up around this
project.

B-183

Of course, in the very near future, you'll be able to log on through an enhanced
version of Mosaic. We're working together with the National Center for
Supercomputing Applications on enhancing the standard release of Mosaic
to allow these capabilities. And you'll be able to access interactive dynamic
visualizations that are being served by a network of high-end supercomputers
across the country. Even if you're only accessing the system with a machine like
a Macintosh or PC, you'll still be able to access the power of these
supercomputers frem your own location

\What I've attempted to demonstrate in the last several minutes in this
presentation is that there's been a considerable amount of work already done in
this project that we call the Visible Embryo Project. Many collaborators across
the country have worked together to create a set of enabling technologies to
allow this project to accomplish its goals. The Visible Embryo Project represents
an effort to serve the needs of both the bioclogy community as well as the

- information science community, in that we are attempling through current
applications in information technology to break through barriers that have
prevented biclogical researchers from asking and answering questions about the
mast fundamental mechanisms of human growth and development. We're also
creating a technology development testbed for the information sciences that will
allow researchers to push the envelope, so to speak, of information technologies
to their very limits.

B-184

P B [0]aN]

We would like to audioivideo tape your presentation at Medicine Meets Virual Reality Ii:
Interactive Technology and HealthcareJanuary 27-30, 1994,

Audio and video tapes will be available for immediate distribution to attendees and will be
marketed and sold after the conference. Your colleagues will be able to benefit from your
remarks by listening to cassettes and viewing tapes whether or nct they were in attendance.
The tapes will be copyrighted and marketed under Title 17 of the U.S. Code or other law as may
be enacted, and all rights to royalties, if any, in conjunction with cassette sales shall hereby be
assigned to Medicine Meets Virtual Reality. This agreement does not preclude the publication
by you of your paper, speech or comments at any time and in any format.

Please cooperate with the audioivisual taping staff to obtain the best possible recordings by
using the microphone at all imes and repeating the questions that are asked by persons not

near a microphone.

Sign this form below and return it to us at your earliest convenience.

T:Eank You.
i

i
| Hereby give permission to Medicine Meets Virtual Reality to record and distribute audio
s¥H video tapes containing my presentation as outlined above.

==

W

Signature /é Date

I-"Fgase print name: M{-é_&_ﬁ / _b b.;;;,.-’/f

"y
A
.
THank you very much for your cooperation. Remember to pick up the complimentary audiotape
ofyour presentation before leaving the meeting. -

/- 30-573

Please retum this completed form to!
MEDICINE MEETS VIRTUAL REALITY
P.0. Box 23220, San Diego, CA 52183
For further information call 619/751-8841,
or Fax 619/751-8842,

Applicants' Response, at Attachment | (Jan. 8, 1997) ([PH_001_00007 -
[PH_001_0000783996]): () ([PH_001_0000783957]

B-185

80

=

b L E 0T St

NSE/ARPA/NASA Digital Libraries RFP Response
Tide: A Knowledge Managment Environment through the World Wide Web

Principal Investigator: Michael D. Doyle, Ph.D., UCSF Library and Center for Knowledge Managment
Specific Aims:

1} To develop a prototype knowledge management environment for the biamedical sciences which
integrates sccess to online representations of the scientific literature, bibliographic databases, high-
performance visualization technologies, large-scale scientific databases, and tools for authoring new-
generation scientific publications.

l.a) To explore and evaluate the applicability of these u-:nl: in the areas of radiclegy and developmental
& moleculnr biology.

2) To provide a means for relating digital forms of spatial, functional, and conceptual information as a
basis for linking the biomedical scientific literature, through the Red Sage electronic journals project, 1o
data resouress provided through the Visible Human Project, The Human Brain Project, The Visible
Embryo Project, The Human Genome Project, The Protein Databass, and other large-scale biomolecular
and biostructural dambases,

2.n) To exploit these linking strategies in the creation of a set of integrated semi-automatic front ends to
varied scientfic databases accessible through the Internet.

2.b) Te incorporate these linking methodologies into interactive authoring and editorial (oals, allowing
the creation of online publications that can embed visualizalions and simulations which draw darta from
these Internet-acoessible scicatific databases.

3) Todevelop tools which provide sceess to intersetive visualization and analysis of massive biomedical
datasets through the Internet’s World Wide Web distributed hypermedia network.

3.a) To refine and extend our exisdng algorithms enabling distributed visualizagion and analysis
software "=ngines” which can be efficiently accessed by remote users through the Iniernet

3.b) To refine and extend our existing slgorithms to allow the display and real-time interactive control
of three-and four-dimensional data visuslization and analysis wols within hypermedia documents
viewed using NCSA's Mesaic graphical browser to the Werld Wide Web.

1.c) To develop algorithms which usc novel compression technologies for the optimized ineractive
remote control of computationally-intensive graphical applications through the Internet,

3.d) To integrate a,b & c into a system which allows real-time remote access to distribuced parallcl
computational applieations for visualization and analysis resources within a disuributed hypermedia
environment ‘

4) To explore extensions of the paradigm of scientific publishing which are made possible through use of
current multimedia technologies ip a networked environment, including:

4.1) publishing multidimensional datasets integrated with articles, eg: MRI and molecular data,
perferred views, animations, interactive visualizations, interactive mathematical models, and

4.b) development of scientific authoring tools for publications which exist only in the nerworked
enviroament.

B-186

HhEeLTOT® Ehhhi2ESC

4.b.1) This will include incegration of HTML+ WYSIWYG autherial and editorial tools.,

multidimensional data visualization applications, molecular modalling and database managocment toals

into &n interactive scientific publishing environment.

Systemn Diagram:

S-S

=

__,.
5{O-=

& O
S

Definitions:

HTML+:

IRY Serven:

Mlidas:
SYM:

URN:

URC:

OO

i

Hypertext Mark-up Language - This is the langusge that
World Wide Web databases are encoded In, sod that
Mosaic interprels.

UCSF CEM's Interactive Remote Visualization Server -
This allows interactive real-time visualization tools to be
embedded ints Mosalc documents.

UCSF CEM's distributed remote volumas visualization tesl

UCSF CGL's molecular visualization package

Sequenee Visualization Module — An as-yet unamed tool
for graphical display of genctic sequencs data.

Lnformal Text Fhrase — A user-entered search term, or & word or phrags
of text that the user highlights from withln a document.

Universal Resource Name -- A persistent, location-

. indrpendent identifier for an object

Universal Resource Location -- The address of an object. Ii
centains encugh information e identily a communications

protocol and retrieve the objece

Universal Resource Characteristies -- Any binatien of
one or more URNs or URLs wi lormation (e.g.
author, lormat, compression 4.

\LeN

B-187

e
=)
i i V/’_\
1RSSR

\C

ETITETIAS T L)

TR L. B ILF B

Description:

The sysiem will draw from of a number of fundamental databases including biblisgraphic data (Medline) in
the form of MARC records, journal publication data (Red Sage) in the form of SGML header and
Poswscript files, encyclopedic reference text data (CMDT) stored in an object-oriented SOML database,
volumetric anatomical data (Visible Human Project) stored as NCSA HDF dawmsets, protein structure data
{Protcin Data Bank) stored as PDB files, and genetic sequence data (Genbank) stored as compressed ASCII
strings (7. I'm guessing about Genbank).

These databases will reside behind a 239,50 interface layer which yeilds, to the requesting client, the
respective dataset in its native form. This data then goes through a translation layer whese the data is either
irenslaizd directly inte HTML+ (Medline, Red Sage, CMDT) or loaded into a native-data visualization tool
(Visible Human, PDB. Genbank). The HTML+ code is then passed to a set of HTML+ servers. which can
be browsed by the Mosaic client. The visualization data is handled differently. The graphical VO of the
relevant visualization teol is passed (o an interactive remote visualization (IRV) server, which handles both
mapping of the display output from the visualization tool anto embedded live-visualization windows within
the Moszic-browsable HTML+ documents, as well as capture of user-cntered mouse and keyboard events
within the visualization windews and transmission of those mouse and keyboard evenis back to the relevant
visualization tools. The user, browsing the sysiem with the project’s enhanced version of the Mosaic client,
is presented with data and visualizations derived from these various databases, yet embedded into coherent,
multimedia Mosaic documents,

Fer multimedia documents that have been explicitly pre-camposed, the linking of these various dama
resources can take the form of universal resource names (URNs) that ars encoded as tags into the HTML+
documents. This is passed to the system’s semantic domain name server, for resolution of the information
object's location and retrieval means. The URNs are used as indices in order 1o lock up the relevant
universal resource characteristics {(URCs) in a URC database, which yeilds the universal resource location
(URL), or physical adress, of the information object in question.

Semi-sutomatic means will be provided for a user to search for arbitrary information objects on the system
by elther keying in a search werd or phrase, or by highlighting a not-already-hyperlinked section of text that
{s)he happens to be viewing within the Mosaic client at the ims. This informal text phrase (ITF) is then
passed to the semantic domain name server, which passes it on to a universal resource thesaurus (which will
incorporate elements of the NLM's UMLS system). The thesaurus compares the [TP 1o its database of
terms and phrases and returns a rank-ordered list of URNSs that are Jikely to match the object in qucstion.
These URNs are then passed to the URC database for resolution of URLs that point wo information objects
on the [nternet that are most likely to match the ITP that the user employed to initiate the search. The user
is presented with a rank ordered set of textual descriptions of likely matches which are hyperlinked, via
their URLs, to the data in question. Clicking upon a selection from this list loads the related data into the
relevant visunlization server (IRV) or HTML#+ server, and a second Mosaic window pops up w allow
viewing or interaction with that dataset.

A sct of authoring and editing tools will be designed to allow the interactive WYSIWYG creation of
HTML+ documents, as well as allowing the embedding of visualizations, etc., which can be created using
the interactive remole visualization wols, and which can use dam from the verious scientific databases
mentioned abave. Alternatively, the auther can use hisfer own datasets, which would be uploaded 1o an
Internet-aceesible World Wide Web server. The journal editer can use the same set of tools to edit
submitied articles and te communicate ehanges to the text with the suther. This, of course, would eceur in a
private, sccess-conwolled, area of the system, o that confidentiality of the material 1o be published can be
controlled.

Other private, sccess-conwrolled HTML + servers will be used to administer the peer review process. A
modification of NCSA's Mosaic-based group annotation server will be developed to allow the jounal editor
io exeércise precise control and documentation of sach reviewer's comments and suggestions.

B-188

hELTOTF" EhbhhadEa8D

Contributions:
UCSF CKEM:

= Development of Z39 50-compliant experimental (subset) daubases for storage of Visible
Human data, PDB dats, and Genbank sequence data,

« Cooperation with AT&T in the development of an object-oriented SGML-based databage for
the Handbook of Current Medical Disgnosis and Treatment (CMDT)

= Development of an experimental Z39.50 inwerface 1o Medline data { will be unnecessary if UC's
DLA can provide such an interface to Melvyl Medline early enough into the project timeline)

+ Development of translator servers to translate Medline MARC records, CMDT SGML daa and
Red Sage SGML/Postscript data into HTML+

= Development of a set of HTML+ documents that act as browsers to Medline, CMDT, and Red
Sage

= Refinement and further development of Vis to allow bemer distribution of compuration and
better integration with Moszaic,

= Cooperation with CGL 1o adapt Midas for integratisn within Mozaie, and to identify and adapt
a suitable program for graphical display of genstic sequence data,

= Refinement and further development of the interactive remote visvalization server, and its
incorporation (with NCSA's help) within the Mosaic snvironment

* Development, in eooperation with NCSA, of an enhanced version of the Mosaie clisnt 1o allow
casicr integration of external programs within Mosaic-readable documents.

* Development, in cooperation with Springer-Yerlag and NCSA, of an interactive WYSIWYG
editor for ereation of HTML+ documents, and for embedding visualizations ercated using
CKM's IRY tools, as well as development of a modified version of NCSA's group annotation

server to support the peer review process,

Development, in cooperation with AT&T, of an object-oriented SGML-based URC database

Development, in cooperation with UCSF's CGL, UCSFs Radiology Dept., Washington Univ.,
and AT&T, of a Semantic domain name server and 8 URN Thesarus, based upon AT&Ts
ohject-griented SGML databace technology.

= Development, in cooperation with UCSFs CGL, UCSFs Radiology Dept., Washingion
Univ., and Springer-Verlag of a set of sample content for use in evaluating the effectiveness of
the system, as well as for demonstration of the resulw of the project,
UCSF CGL:

* Cogperation with CKM to adapt Midas for integration within Mosaie, 2nd to identify and adapt
a suitable program for graphical display of genctic scquence daza.

= Contributing to the refinement and further development of the interactive remeie visuzlization
server, and its incorporation (with NCSA's help) within the Mosaic envireament.

B-189

» Development, in cooperation with UCSF's CKM. UCSF's Radiolegy Dept.. Washington Univ,
and AT&T, of a Semantic domain name server and a URN Thesarus, based upon AT&Ts
object-oriented SGML database technology. .

« Development. in cooperation with UCSF's CKM, UCSF's Radiology Dept.. Washingion

Univ., and Springer-Verlag of a set of sample content for use in evaluating the effectiveness of
the system, as well as for demonstratien of the results of the project.

Washington University:

« Development, in cooperation with UCSFs CKM, UCSFs CGL. and ATAT, of a Semantic
domain name server and a URN Thesarus, based upon AT&T's object-oricated SGML database

technology.

= Development, in cooperation with UCSF's CKM, and UCSF's CGL.., and Springer Verlagof a
set of sample content for use in evaluating the effecriveness of the sysiem, as well as for
demonstration of the results of the project.

AT&T Bell Laboratories:
= Development of Z39.50 interface to the RightPages server..

« Cooperation with CKM in the development of an object-oriented SGML-based database for
the Handbook of Curreat Medical Diagnosis and Treatment (CMDT)

« Development, in cooperation with CKM, of an object-onented SGML-based URC darabase

« Development, in cooperation with UCSF's CGL, UCSF's Radiology Dept., Washingten Univ..
and CKM, of & Semantic domain name server and & URN Thesarus, based upon AT&T's
chject-oriented SGML database technology.

Springer-Verlag:

» Development, in cooperation with UCSE's CKM and NCSA, of an interactive WYSIWYC
editor for creation of HTML+ decuments, and for embedding visvalizations ereated using
CKM's IRV tools, as well as development of a modified version of NCSA's group annotation
server 1o support the peer review process.

= Development, in cooperation with UCSFs CKM, and UCSFs CGL., and Washington Univ. of 2

sct of sample conteat for use in evaluating the effectiveness of the system, as well as for
demaonstration of the results of Lhe project.

NCSA:

« Cooperaticn with CKM jn developing an enhanced version of Mosaic to allow casier integration
of a client modeule for CKM's interactive remote visualization server.

= Cooperation with CKM and Springer-Verlag in the medificadon ef NCSA's group annotation
server to facilitate the peer-revicw process,

B-190

Personnel:
Co-Investigators:

UCSF:
Library & CKM: Richard Lucier, David Martin, Zoc Suvri, Ph.D., Cheong Ang. Marc

Salomon

Hasdiclogy: Tom Budinger, Ph.D.
Molecular & developmental Biology: Tom Fermin, Ph.D., Charles Ordahl, PhD.

Washington Unlversity (melecular biclogy): Toni Kazc, PhD
Bell Laboratories: Ed Szurkowski, Guy Story

Springer Verlag: Bob Badger, PhD

MNCSA: Joseph Hardin, PhD, & Mosaic development group
SFSU: Computer Science Dept, MS siudents

Timetable: 4 yedrs

Budget: 1.2 SM/year

Figure 1: A starec-pair lllustrovon of Intaraciive reakdme 3-dimanslonal human ambryenic valume
reconstructions embedded within an NCSA Mosale document This iechnology was doveloped by tha Canter for
Knowlsdge Management 8t the Unlversity of Califarnla, San Franclsco, and was demensirated there In
Hovambar, 1553,

B-191

B0

"‘_‘.i

4y

‘Foih

hEeLPOE" E

JOSEPH HARDIN

National Center for Supercomputing Applications (NCSA)
University of Illinois at Urbana-Champaign
Champaign, IL 61820
217 /2446055
email: hardin@ncsa.uiuc.edu

Major work experience

University of [llinois,
Associate Director, Software Development Group, NCSA, 1992-present

University of Hlinois,

Manager, Software Development Group, NCSA, 1985-1992
Coerdinator, Academic Affiliates Program, NCSA, 1987 -1958
Visiting Rescarch Assoclate, NCSA, 1986-1987

University of Georgia at Athens,
Visiting Instructor, Department of Speech Communication, 1985-1986

University of Ilinois,

Teaching Assistant, Department of Speech Comumnunication, 1979-1985
Teaching Assistant, Department of English-Rhetoric, 1978

Research Assistant, Department of Sociology, 1977-1978

Other work

Consultant -Business computer comumunications, database management, and office
organization, 1982-1985

Consulting Editor/Contributor-The Champaign-Urbana Weekly news magazine, 1981-1982
Editor-The Champaign-Urbana Weekly news magazine, 1979-1980

Recent Grants and Awards

Exploratory Research and Initial Development of Software for the Analysis of Multiple
Hybridization Images, 1990-1992

IEM Second Generation RISL Warkstation Graphics Capabilities: Jointly Defined Effort,
1550-1992

NCSA Hierarchical Data File Software Capitalization: National Distribution and
Support, 1991-1993 .

Research Education for Undergraduate Students Supplement, 1990-1993

Supercomputers for Biclogists: Macromolecular Sequence Analysis through Distributed
Computing, 1991-1993

Visualization in the MS DOS Environment: NCSA/Jackson State Collabarative Project, 1990
1993

x3d Program Development, 1992-1993

Education

Study toward Ph.D., Speech Communication, University of lllinoils
Study Abroad, University of Cologne, Cologne, West Germany, 1978
B.A., History, University of Illinois, 1972

B-192

Selected Recent Conference Papers/Participation

Sigchi, Session Paper, "Scdentific Visualization in a Collaborative Environment,” Amsterdam,
Holland, April, 1993 (in submission)

Sigchl. Session Paper, "Collaborative Hypermedia for Computational Science,” Amsterdam,
Holland, April, 1993 (in submission)

Oreanographic Institute, Old Dominion University, Invited Seminar, "Recent Developments in
Collaboration Technologies,” Norfolk, Va., Feb. 1993

Saimtific Computing & Automation Conference, Invited Speaker. “"Cross platform Digital
Conferencing Software Development,” Washington, DC, 1992

New York University, Academic Computing Facility, “Scientific Visualization in Cellaborative
Technologies,” New York City, NY, 1952

International Institute of Ecological Economics Conference, Invited Workshop Farticipant, Beijer
Inshtute, Stockholm, Sweden, 1992

American Educational Research Assoclation Conference, “Collaborative Tools for Scientific
Comunuanication and Understanding” San Frandsco, CA, 1992

Mac SciTech National Conference'92, “[nterpersonal Computing for Computational Sclentists: The
NCSA Collage Series,” San Francisco, CA, 1992

B2

i
[o

T EA it

b LT

Office Action, at 5 (March 26, 1997) ([PH_001_0000784013] — [PH_001_0000784026]):

Claims. 2-6, 10-14, 45-48, 15, 17-23, 24-33, 34-43, 54, 55, and 56 are
rejected under 35 U.S.C. § 103(a) as being unpatentable over Applicant
disclosed prior art, Khoyi et al, Hansen "Andrew as a Multiparadigm
Environment for Visual Languages’ and further in view of Moran ""Tele-
Nicer-Dicer: A new tool for the visualization of large volumetric data™.

As per claim 2, the disclosed prior art does not disclose interactively
controlling via communication sent over the distributed environment. Moran
discloses a distributed application (TNSD) for interactive control and
visualization of graphical object through communication over network. Moran

B-193

application allow usage of remote system resources for visualization of large data
set at a client station. It would have been obvious for one of ordinary skill in the
art to utilize Moran application as an external application ("Viewer") in the prior
art system as modified because it would have improved the system by enabling
the client station access to resources on higher performance servers and to have
interactive visualization of large data set capability.

Amendment B, at 23-24 (June 2, 1997) ([PH_001_0000784029] —
[PH_001_0000784090]):

The rejection of Claim 2 on Mosaic, Khoyi, Hansen and Moran is
overcome

Applicants' Claim 2 recites the additional step over Claim 1 of
interactively controlling the controllable application on the client workstation via
inter-process communications between the browser and said controllable
application. The disclosure of Mosaic, Khoyi, and Hansen has been described
above. The reference Moran discloses a tool for interactive visualization of large,
rectilinear volumentric data called Tele-Nicer-Slice-Dicer (TNSD). TNSD is
based on clientserver design where the client-side process is an extended version
of a stand-alone visualization tool and the server process runs on a high-
performance system where the data are located.

The client-side process describes data sets by text fields. Each data set
description is used as a command which is sent to the server when a volume from
the corresponding data set is requested. The use of a remote server is transparent.
The Examiner states that it would have been obvious to utilize the Moran
application as an external application ("Viewer") in the prior art system as
modified because it would have improved the system by enabling the client
station access to resources on higher performance serves to have interactive
visualization of large data set capability.

Neither Mosaic, nor Khoyi, nor Hansen shows an executable application
which is external to a document being displayed and interactively processed
within that document's display window, nor do they show such an application
where said executable application is interactively controlled on said client
workstation by interprocess communications between the external application and
the browser. This feature produces surprising and unexpected results over the
prior art, since it allows the reader to perform all necessary interactive functions
with external applications without directing his or her attention away from the
hypermedia document. Additional surprising and unexpected results are yielded
by the fact that the hypermedia browser application can have its functionality
extended without making any changes to the hypermedia browser's object code.
Further, surprising and unexpected results come from the ability of the document
author to design interactive hypermedia document content that displays a similar
look and feel to the reader, regardless of what the underlying operating system or
computer platform the browser program is being executed upon.

The amendments to these claims have made the Moran reference
irrelevant to the case, since Moran teaches a remotely networked application
being controlled via communications over a network, not an embedded (in a
hypermedia document) interactive external application on the client workstation
being controlled via inter-process communications between the document browser
application and the external application.

B-194

Even if Moran was still in some way relevant, and even if the proposed
combination was possible, was suggested by the prior art, and showed the features
of the invention, all of which the above arguments for Claim 1 clearly show is not
the case, the fact that a large number of references (more than 3) must be
combined to meet the invention is further evidence of unobviousness

Office Action, at 4-5 (Aug. 25, 1997) ([PH_001_0000784091] — [PH_001_0000784098]):

Claims 3-4 and 46-47 are rejected under 35 U.S.C. § 103(a) as being
unpatentable over Applicant disclosed prior art and Koppolu et al. US patent
5,581,686, and further in views of Moran ""Tele-Nicer-Dicer: A new tool for
the visualization of large volumetric data™.

As per claim 3, the disclosed prior art does not disclose interactively
controlling via commands sent over the distributed environment. Moran discloses a
distributed application (TNSD) for interactive control and visualization of graphical
object through communication over network. Moran application allow usage of
remote system resources for visualization of large data set at a client station. Moran
discloses sending command to remote server, executing on the server, and sending
result to the client to process and display [p.3 col.2-3 specifically col.1 3rd paragraph]
. It would have been obvious for one of ordinary skill in the art to utilize Moran
application as an external application ("Viewer") in the prior art system as modified
because it would have improved the system by enabling the client station access to
resources on higher performance servers and to have interactive visualization of large
data set capability. As per claim 4, it is apparent that the system as modified would
have instructions residing on the client workstation In order to provide the resulting
graphic representation [NSD visualization tool [p.1 col.2 last paragraph].

Applicants' Response, at 30 (Dec. 23, 1997) ([PH_001_0000784131] —
[PH_001_0000784162]):

The reference Moran discloses a tool for interactive visualization of large,
rectilinear volumetric data called TeleNicer-Slice-Dicer (TNSD). TNSD is based
on client-server design where the client-side process is an extended version of a
standalone visualization tool and the server process runs on a high performance
system where the data are located.

The client-side process describes data sets by text fields. Each data set
description is used as a command which is sent to the server when a volume from
the corresponding data set is requested. The use of a remote server is transparent.

The only relevance of Moran to the subject matter of claim 3 is the use of
a network. There is no disclosure relating to HTML, the WWW, or embedding
controllable objects' in a document displayed in a browser-controlled window.

The teachings of Mosaic-Koppolu (OLE), and Moran would not make the
combination of claim 3-obvious. Such a combination is in violation of the
requirement of 35 U.S.C. 8103 because the combination requires taking isolated
features from the references, utilizing applicant's disclosure as a roadmap, while
ignoring the operation and purposes of the references.

B-195

ii. Second reexam (90/007,858)

Declaration of Michael D. Doyle, at Attachment A, page 12 (Sept. 22, 2007) (accompanying
Applicants' Response (Sept. 27, 2007)) ([PH_001_0000787070] — [PH_001_0000787191]):

2.2 Distributed VIS

The VIS implementation has grezt potentials to rup in parallel. We distributed the {oads of
volume rendering among workstations with a greedy algorithm that chooses to give bigger portions of the
picture to faster machines. The client that VIS is running on will break the lozad into a relatively small
portions, which are still big enough such that the ovethead for_’n:twdrk transmission of the data is .
substantially smaller than the time to trangmit the actual data. Each of the computation sarvers will then

~ fetch a portion for rendering via Remote Procedure Calls (RPC). A fast server will retumn the results
earliet. and fetch another portion. The servers will compete with each other for data, and this ensures that
most servers are busy most of the time. A report of analysis of this algorithm from Gierisen and Petersen
(Giertsen, 93) shows that the performance improvement is a function of the number of load portions, and
the number of computation servers. The tast results suggest that the performance improvement max out
when the number of sections of §12x512 and 1024x1024 pictures are around 10-20 on several volume -

- datasets of various sizes on up to four servers. They also show that a larger number of workstations
servers will subsequently enlarge the optimal number of sections, This approach may not be the hr.s;

- distributing algorithm, but it achieves the close-to-optimal results most of the time. ~

iii. '085 prosecution history (10/217,955)

Second Supplemental Amendment, at 68-69 (Feb. 5, 2009) ([PH_001_0000784613] -
[PH_001_0000784697]):

Wherein the executable application is part of a distributed application,

EXAMPLE SUPPORT:

10:33 "Another embodiment of the present invention uses an application
server process executing on server computer 204 to assist in processing that may
need to be performed by an external program. For example, in FIG. 5, application
server 220 resides on server computer 204. Application server 220 works in
communication with application client 210 residing on client computer 200."

11:18 "FIG. 6 shows yet another embodiment of the present invention.
FIG 6 is similar to FIG. 5, except that additional computers 222 and 224 are
illustrated. Each additional computer includes a process labeled "Application
(Distributed).” The distributed application performs a portion of the task that an
application, such as application server 220 or application client 210, perform. In
the present, example, tasks such as volume rendering may be broken up and
easily performed among two or more computers. These computers can be remote
from each other on network 206. Thus, several computers, such as server
computer 204 and additional computers 222 and 224 can all work together"

d. Cited prior art

Ang et al., "Integrated Control of Distributed VVolume Visualization Through the World-
Wide-Web." Proceedings of Visualization 1994, IEEE Press, Washington, D.C., October 1994, § 2
& 88 5.3-5.4 including figs. 4-5 (e.g., [PH_001_0000759332] — [PH_001_0000759351]):

B-196

2. VIS: A Distributed Volume Visualization Tool

VIS is a highly modular distributed visualization twol,
following the principles of client/server architecture (figure 1),
and consisting of three cooperating processes: VIS, Panel, and
VRServer(s). The VIS module handles the tasks of eransforma-
Lo, wxtwe-usapping, sosu e eatacion, Gouraud shad-
ing, and manage: load diseriburion in volume rendering. VIS
produces images that are drawn cither to it own op-level
window (when running stand-alone) or to a shared window
system buffer (when running as a cooperative process). The
Panel module provides a graphical vser-interface for all VIS
funcrionalicy and communicares state changes to VIS, The
WVRServer processes exccute on a heterogenous pool of general
prisi poses workstations and peifoiin voluine teideing at e
request of the VIS process . The three modules are integrared
asshlrwr.l il.'l HE'L”"L' 3 “'}l.[l'l ::nnpl:ra.ti.ng “'Etl't :IJ.'IuthL‘r Fl'ﬂ'cr_‘iﬁa A
simple output window is displaved when no cooperating

process is specified.

2.1 Distributed Volume Rgndﬂ'ing

Volume rendering aleorichms require a significan tamount
of computational resources. However, these algorithms are
excellent candidates for parallelization, VIS distributes the
volume rendering among workstations with a “greedy™ algo-

l.'lltl.'llﬂ T.I'I.H.l'. H.”UE-&I[L"S: Iargur I.Hjl'f.il.][:lh HF lE'Il.Z %’{1rk (LR FE..'&I.L".I'
."

il L] 1 | : L 14 54Ny A - - . -
ing hased an scan-lines, with sepments sized o balance compu-
tational effore versus network transmission time. Each of the

(-) [w L G el

B-197

user-selecred com putation servers ferches a seement for render-
ing via remote procedure calls (RPC), returns results and fetch
another segment. The servers effectively compere for seg-
ments, with Faster servers processing more segments per unir
time, ensuring relatively equal load balancing across the pool.
Analysis of this disrribution algorithm [Giertsen, 93] shows
l.'l':.:t tl'h: FEL‘E.‘.H‘I‘I‘!-‘I.HEE ;an'n-'s.'mr.'nt ;.u a 'Furn:l:inn nFI‘.l-n:I'i 1:|'|1:
number of segments and the number of computational servers,
with the optimal number of sccdons increasing diresdy with
the number of available servers. Test resules indictate that
performance improvement flactens cut berween 10 w 20
segments distributed across an available pool of four servers.
Although this algorithm may not be perfect, it achieves accept-
able resules.

2.2 Cooperative Visualizaton

The Y15 client, together with its volume rendering serv-
ers, may be lauched by another application eollectively as a
visualization server. The two reqquirements of con peration are
a shared window system buffer for the rendered image and
support for a limited number of inter-process messages. VIS
and the initiating application communicate via the Tool Talk
service, passing messages specitving the data object to visualize
as well as opuons for visualization, and maintaimng state
regarding image display. The VIS Panel application appears as
a new top-level window and allows the user control of the

visualizacion toal.

5.3 Multiple Users

With multiple users, the VIS/Mosaie distributed visual-
ization system will need 0 manage the server resources, since
rultiple users ueilizing the same computational servers will
slow the servers down significantly. The proposed solution is
depicred in Fig 5. The server resource manager will allocare

servers per W15 client request only if those servers are not

B-198

overloaded. Otherwise, negotiatien between the resource
m.ln:lgt.: r -:l.Tld |.'|-H..' 1"1".'5 cl'i cnt 'ﬂ.'-i |.I I.-'l' NECessa r!r', ;ITH.-J a Pﬂ.'l'l-l .'IPH. thi:
ess busy alternatives w the

resource manager will allocace
client,

5.4 Load Distributing Algorithm

Since the load diswributing algorithm in the eurrent VIS
implementation is not the most opdmal load distribution
solution, we expect to see some improvemnent in che Future
implementation, which will be using sender-iniriared algo-
rithms, described in [Shivaratri].

[
—
] rr
I ~— I_\ 2000
| ~ ""“"'---..____ T~ s
—T | ~— H-""“‘-'--..._.
™ M~ = 16,00
~— ""‘--..,___- I~
| ~— [~ 14.00
o H""‘-—. H"‘--..
" ""“"-ﬁ...,___. ~—L 1200
~ [~ [~
:: _—
<] -\""-..\ ."'"‘--,_Ilr,m) Time (sec)
‘M"'\-.. """‘--.._,N
S~ ™~ T~ <00
™~ L-6.00
Number of Servers
9

0O 128x128 <
oon
i % = 2 Volume Size
B 1920192 Wwos 7 2
g @

B 2560256

Figure 4: Volume rendering performance for $28022, and 2562 data sels .,

B-199

VIsusLIzATION
SERVER
ProOCESS
Posn.

Moo
B pary

SERVER
REscmuncE
MawacER

) RECAEST Prezirss
" Fom S mare Aeoearan
%E:- |

[— Vouacesiion

e T Conmaanms

||||| [Fars

Murnar
Fotocnaes

CLiEwRT
VISUALIZATION
ProCESSES

MFTHDAY
Trenaey

Figure 5: Server Hesource Management

Doyle et al., "Processing Cross-sectional Image Data for Reconstruction of Human
Developmental Anatomy from Museum Specimens,” Newsletter of the Association for Computing
Machinery Special Interest Group on Biomedical Computing, vol. 13, No. 1, ACM Press, coverage
page, table of contents, pp. 9-15 (Feb. 1993), at 13 (e.g., [PH_001_0000041528] -
[PH_001_0000041535]): "Remote access visualization and database tools are under development to
allow real-time interaction with these enormous datasets by distributing certain computational tasks

to super computers.”

2. Defendants' extrinsic evidence

21st Centry Dictionary of Computer Terms 112 (1994) (“distributed processing”) [PA-
0000333435]:

B-200

Que's Computer Programmer's Dictionary 137 (1993) (“distributed processing") [PA-
0000333390]:

B-201

L.

""computer program product . .." / ""computer readable media .. ."

Claim Term(s)

Defendants' Proposed
Construction

Eolas's Proposed
Construction

A computer program product . . .
comprising a computer usable
medium having computer
readable program code
physically embodied therein,

said computer program product
further comprising: computer
readable program code for
causing said client workstation to
execute a browser application

a physical item that is
commercially available and
includes the computer code
necessary to run a browser
application on a client
workstation

the computer program product
that includes a computer usable
medium having computer
readable program code for
causing the client workstation
to execute a browser
application.

computer readable media
encoded with software

a physical item that includes
the computer code necessary to
run a browser application on a
client workstation

computer readable media
having software.

1. Defendants' intrinsic evidence

a. Claims

In the following chart, the term(s) for construction appear in all the claims marked with an
"x." The letter "m" indicates a method claim, and "{6" indicates a claim that the Defendants contend
includes limitations subject to 8§ 112, 1 6.

'906 patent

‘085 patent

= 3

m | 16 | 16
5 |6 |9

6
10

6
16

6
20

= 3

m m

6 6
24 32

6
28

6

40 | 44

A computer program product
... comprising a computer
usable medium having
computer readable program
code physically embodied
therein, said computer
program product further
comprising: computer
readable program code for
causing said client
workstation to execute a
browser application

computer readable media
encoded with software

X

b. Specification (all cites to '906 patent)

8:16—:24 & fig.3 (Detailed Description of a Preferred Embodiment): FIG. 3 is an illustration
of a computer system suitable for use with the present invention. FIG. 3 depicts but one example of

B-202

many possible computer types or configurations capable of being used with the present invention.
FIG. 3 shows computer system 150 including display device 153, display screen 155, cabinet 157,
keyboard 159 and mouse 161.

/I5D
193
/ | l; 157
= X —]
B B2 B8 | = o | |B3
=
[161
rd
159
FlG 3.

8:26—:36 (Detailed Description of a Preferred Embodiment): Mouse 161 and keyboard 159
are "user input devices." Other examples of user input devices are a touch screen, light pen, track
ball, data glove, etc. Mouse 161 may have one or more buttons such as buttons 163 shown in FIG. 3.
Cabinet 157 houses familiar computer components such as disk drives, a processor, storage means,
etc. As used in this specification "storage means' includes any storage device used in connection
with a computer system such as disk drives, magnetic tape, solid state memory, bubble memory,
etc. Cabinet 157 may include additional hardware such as input/output (1/O) interface cards for
connecting computer system 150 to external devices such as an optical character reader, external
storage devices, other computers or additional devices.

8:37—-:42 & fig.4 (Detailed Description of a Preferred Embodiment): FIG. 4 is an illustration
of basic subsystems in computer system 150 of FIG. 3. In FIG. 4, subsystems are represented by
blocks such as central processor 180, system memory 181 consisting of random access memory
(RAM) and/or read-only memory (ROM), display adapter 182, monitor 183 (equivalent to display
device 153 of FIG. 3), etc.

B-203

8:66-9:7 (Detailed Description of a Preferred Embodiment): Client computer 200 includes
processes, such as browser client 208 and application client 210. In a preferred embodiment,
application client 210 is resident within client computer 200 prior to browser client 208's parsing of
a hypermedia document as discussed below. In a preferred embodiment application client 210
resides on the hard disk or RAM of client computer 200 and is loaded (if necessary) and executed
when browser client 208 detects a link to application client 210.

9:15-:17 (Detailed Description of a Preferred Embodiment): Browser client 208 is a process
that a user of client computer 200 invokes in order to access various data objects, such as
hypermedia documents, on network 206.

9:41-:44 (Detailed Description of a Preferred Embodiment): When browser client 208
encounters embedded program link 214, it invokes application client 210 (optionally, with
parameters or other information) and application client 210 executes instructions to perform
processing in accordance with the present invention.

14:12-:23 & fig.7A (Detailed Description of a Preferred Embodiment): Returning to FIG. 7,
it is assumed that a hypermedia document has been obtained at a user's client computer and that a
browser program executing on the client computer displays the document and calls a first routine in
the HTMLparse.c file called "HTMLparse". This first routine, HTMLparse, is entered at step 252
where a pointer to the start of the document portion is passed. Steps 254, 256 and 258 represent a
loop where the document is parsed or scanned for HTML tags or other symbols. While the file
HTMLparse.c includes routines to handle all possible tags and symbols that may be encountered,
FIG. 7A, for simplicity, only illustrates the handling of EMBED tags.

B-204

EMBED TAG
DETECTED?

tD ASSIGN
EXIT ENUMERATED TYPE
F/G 7A.

C. Prosecution history

i. '906 prosecution history (08/324.,443)

Amendment A, at 13 (Aug. 6, 1996) ([PH_001_0000783879] — [PH_001_0000783928]):
The present invention, as defined for example in amended claim 1, includes the steps of executing,
at the client workstation, a browser application that parses a distributed hypermedia document and
for responding to text formats to initiate processes specified by that text format.

Amendment A, at 19 (Aug. 6, 1996) ([PH_001_0000783879] — [PH_001_0000783928]):

The claims added herein are of similar scope to the
examined claims but are recited in the form of computer readable
code, embodied on a computer readable medium, for causing a

computer to effect the novel steps recited in the method claims

previously examined.

2. Defendants' extrinsic evidence

Microsoft Press Computer Dictionary 90 (2d ed.1994) [PA-0000333412]:

B-205

computer program A set of instructions in some
computer language, intended to be executed on
a computer to perform a useful task. The term
usually implies a self-contained entity, as op-
posed fo a routine or a library, Compare library,
routine; see also computer language.

Microsoft Press Computer Dictionary 90 (2d ed.1994) [PA-0000333412]:

computer-readable A term describing informa-
tion that can be interpreted and acted upon by a
computer. Two types of information are referred
to as computer-readable. One type, comprising
bar codes, magnetic tape, magnetic-ink char-
acters, and so on, is information that can be
scanned in some way and read as data by a com-
puter. The other type, machine code, is the form
in which instructions and data reach the
computer’s microprocessor. Machine code is the
binary form into which all information is ulti-
mately translated for use by a computer,

Microsoft Press Computer Dictionary 252 (2d ed.1994) [PA-0000333421]:

media A collective word for the physical material,
such as paper, disk, and tape, used for storing
computer-based information. Media is plural;
medittm is singular.

Microsoft Press Computer Dictionary 318 (2d ed.1994) [PA-0000333424]:

B-206

product Also known as a Cartesian product. An
operator in the relational algebra used in data-
base management that, when applied to two ex-
isting relations (tables), results in the creation of
a new table containing all possible ordered con-
catenations (combinations) of tuples (rows) from
the first relation with tuples from the second. The
number of rows in the resulting relation is the
product of the number of rows in the two source
relations. Compare inner join. -

In mathematics, the result of multiplying two
or more numbers,

In general, an entity conceived and developed.
for the purpose of competing in a commercial
market. Although computers are products, the
term is more commonly applied to software, pe-
ripherals, and accessories in the computing arena.

B-207

M. pars[e/es/ed/ing]

Claim Term(s) Defendants' Proposed Construction | Eolas's Proposed Construction

decomposing a string of text using a

pars[e/es/ed/ing] | grammar and categorizing its to break an input into smaller pieces
components
1. Defendants' intrinsic evidence
a. Claims

In the following chart, the term(s) for construction appear in all the independent claims
marked with an "x." The letter "m" indicates a method claim, and "16" indicates a claim that the
Defendants contend includes limitations subject to § 112, § 6. Where a term only appears in
dependent claims corresponding to an independent claims, the claim number for the dependent
claims are listed rather than an "x."

'906 patent ‘985 patent

m |m m m
m|m |m |16 |96 | 16 M |16 |16 (16 |16 |m |96 | m
1

m

4 |5 |6 |9 |[10]1 16|20 |24 |28 |32 36|40 |44
5
6

"pars[e/es/ed/ing]" X [X | X | X [X [X

b. Specification (all cites to '906 patent)

9:24-40 (Detailed Description of a Preferred Embodiment): "Once hypermedia document 212
has been loaded into client computer 200, browser client 208 parses hypermedia document 212. In
parsing hypermedia document 212, browser client 208 detects links to data objects as discussed
above in the Background of the Invention section. In FIG. 5, hypermedia document 212 includes an
embedded program link at 214. Embedded program link 214 identifies application client 212 as an
application to invoke. In this present example, the application, namely, application client 210,
resides on the same computer as the browser client 208 that the user is executing to view the
hypermedia document. Embedded program link 214 may include additional information, such as
parameters, that tell application client 210 how to proceed. For example, embedded program link
214 may include a specification as to a data object that application client 210 is to retrieve and
process."

12:50-53 (Detailed Description of a Preferred Embodiment): "Next, a discussion of the
software processes that perform parsing of a hypermedia document and launching of an application
program is provided in connection with Table Il and FIGS. 7A, 7B, 8A and 8B..."

13:37-50 (Detailed Description of a Preferred Embodiment):

"FIG. 7A is a flowchart describing some of the functionality within the
HTMLparse.c file of routines. The routines in HTMLparse.c perform the task of
parsing a hypermedia document and detecting the EMBED tag. In a preferred
embodiment, the enhancements to include the EMBED tag are made to an HTML
library included in public domain NCSA Mosaic version 2.4. Note that much of
the source code in is pre-existing NCSA Mosaic code. Only those portions of the
source code that relate to the new functionality discussed in this specification

B-208

should be considered as part of the invention. The new functionality is identifiable
as being set off from the main body of source code by conditional compilation
macros such as "#ifdef . . . #endif" as will be readily apparent to one of skill in the
art."

14:12-42 (Detailed Description): "Returning to FIG. 7, it is assumed that a
hypermedia document has been obtained at a user's client computer and that a
browser program executing on the client computer displays the document and
calls a first routine in the HTMLparse.c file called "HTMLparse". This first
routine, HTML parse, is entered at step 252 where a pointer to the start of the
document portion is passed. Steps 254, 256 and 258 represent a loop where the
document is parsed or scanned for HTML tags or other symbols. While the file
HTMLparse.c includes routines to handle all possible tags and symbols that may
be encountered, FIG. 7A, for simplicity, only illustrates the handling of EMBED
tags.

Assuming there is more text to parse, execution proceeds to step 256 where
routines in HTMLparse.c obtain the next item (e.g., word, tag or symbol) from the
document. At step 258 a check is made as to whether the current tag is the
EMBED tag. If not, execution returns to step 254 where the next tag in the
document is obtained. If, at step 258, it is determined that the tag is the EMBED
tag, execution proceeds to step 260 where an enumerated type is assigned for the
tag. Each occurrence of a valid EMBED tag specifies an embedded object.
HTMLParse calls a routine "get.sub.-- mark" in HTMLparse.c to put sections of
HTML document text into a "markup" text data structure. Routine get.sub.--
mark, in turn, calls ParseMarkType to assign an enumerated type. The enumerated
type is an identifier with a unique integer associated with it that is used in later
processing described below.

Once all of the hypermedia text in the text portion to be displayed has been
parsed, execution of HTMLparse.c routines terminates at step 262."

202

A ASSIGN

(B) ENUMERATED TYPE
FlG. 7A.

B-209

C. Prosecution history

i. '906 prosecution history (08/324.,443)

Applicants' Response, at 21 (Dec. 29, 1997) ([PH_001_0000784131] —
[PH_001_0000784162]): "OLE uses two binary data structures to store objects in compound
documents' IStorage and IStream. The IStorage data elements correspond to analogs for directories,
and the IStream data elements are file analogs. These data structures store the document objects, as
IStreams, in the order in which they appear in the document. 'Each document element, such as a
paragraph or an embedded object, has an associated object handler. When the document is rendered
bytthe container application, this rendering is merely a matter of invoking the objects in the order in
which they appear. There is no need to parse the document file, to break it into components and to
classify those components (as in Mosaic), since the objects are, by definition, already associated
with the methods necessary to render them."

il. First reexam (90/006,831)

Applicants' Response, at 3 (May 11, 2004) ([PH_001_0000785359] —
[PH_001_0000785379]): "The invention, as recited for example in claims 1 and 6, is for use in a
system having at least one client workstation and one network server coupled to a network
environment. The claims recite a browser application, executed on the client workstation, that
parses a hypermedia document to identify text formats in the document and responds to
predetermined text formats to initiate processing specified by the text formats. . . . When an embed
text format is parsed by the browser, the executable application is automatically invoked, as a
result of the parsing, to execute on the client workstation."

Applicants' Response, at 2 (Oct. 12, 2004) ([PH_001_0000785803] -
[PH_001_0000785832]): "There is no suggestion or teaching in either Toye, the admitted prior art
(Mosaic), Berners-Lee, Raggett | or Raggett 1l of automatically invoking an external application to
execute on a client computer, when an embed text format is parsed, to display and interactively
control an object in a display window in a hypermedia document, received over a network from a
network server, being displayed in a browser-controlled window on the client computer. . . [or] of
parsing an embed text format at a first location in the hypermedia document and displaying the
object and enabling interactive processing of the object within a display area created at the first
location within the portion of the hypermedia document being displayed.”

Applicants' Response, at 4 (Oct. 12, 2004) ([PH_001_0000785803] -
[PH_001_0000785832]): "The invention, as recited for example in claims 1 and 6, is for use in a
system having at least one client workstation and one network server coupled to a network
environment. The claims recite a browser application, executed on the client workstation, that
parses a hypermedia document to identify text formats in the document and responds to
predetermined text formats to initiate processing specified by the text formats. . . . When an embed
text format is parsed by the browser, the executable application is automatically invoked, as a
result of the parsing, to execute on the client workstation."

Applicants' Response, at 13 (Oct. 12, 2004) ([PH_001_0000785803] —
[PH_001_0000785832]): "*[T]here is no teaching in NoteMail of parsing an embed text format at a
first location and displaying and enabling interactive processing within the first location because,
in NoteMail, the location of information is specified elsewhere, by the ""Format'* data type."”

B-210

Applicants' Response, at 13 (Oct. 12, 2004) ([PH_001_0000785803] —
[PH_001_0000785832]): "[The combination of Mosaic, Berners-Lee, Raggett | and Raggett 11]
would not show automatic invocation of the editor program when the hypermedia document is
parsed or enable interactive processing within a portion of the first hypermedia document being
displayed in the browser window, as required by claims 1 and 6 of the *906 patent.”

Applicants' Response, at 21 (Oct. 12, 2004) ([PH_001_0000785803] —
[PH_001_0000785832]): "Toye does not teach a hypermedia browser application, as that term is
defined in the admitted prior art, Berners-Lee, and Raggett | and 11, understood by the PHOSA at the
time the application was filed, and as used in claims 1 and 6 of the '906 patent. Toye teaches no
software application that parses distributed hypermedia documents or that uses text formats, and
it does not teach other browser-related elements of the' 906 claims, such as parsing of distributed
hypermedia documents by a browser, identifying text formats in distributed hypermedia
documents and responding to predetermined text formats to initiate processing specified by those
formats, utilizing a browser to display at least a portion of a distributed hypermedia document in a
browser-controlled window, and parsing an embed text format in such a document. [Felten II, at
paragraphs 26-27]"

Declaration of Edward W. Felten, at 25 (May 7, 2004) (accompanying Applicants'
Response (May 11, 2004)) ([PH_001_0000785437] — [PH_001_0000785464]): "The Bemers-Lee
reference is a specification for the HTML markup language. HTML is a language used by Web page
authors to describe the structure and desired contents of their pages. A browser parses an HTML
document to determine its structure and then displays the visual representation of the specified
items within a browser window."

iii. '085 prosecution history (10/217,955)

Applicants' Response, at 17 (March 11, 2005) ([PH_001_0000784213] -
[PH_001_0000784244]): "Toye states that subsequently selecting the data with a mouse will restart
the original application so that the data can be edited or updated. [Toye at page 40, first full
paragraph]. . . . Thus, Toye teaches that automatic invoking is a result of user selection, not
parsing as required by claims 1 and 3, and that the result of the user's interactive selection is similar
to opening a file using Macintosh Finder, where the application launched processes the file in its
own window. [Felten 11, at paragraph s36]. Accordingly, Toye teaches away from automatic
invocation ofan external application when a document is parsed to enable interactive processing of
the object but instead teaches that an object must be selected by a mouse to invoke an application to
enable interactive processing."

Applicants' Response, at 17-18 (March 11, 2005) ([PH_001_0000784213] —
[PH_001_0000784244]):

"[T]he static images returned by external applications invoked in the Raggett
system are inserted in line by the browser into the ordered set of static
presentation formats comprising the displayable form of the hypermedia
document. In Raggett | and 11, the Raggett EMBED tag located at a first
location in the hypermedia document is parsed, a rendering application is
invoked that returns a static image and terminates, the static image is inserted at
the first location in the set of static presentation formats, and the presentation
form of the document is then displayed by the browser. Since the rendering
application has terminated before the set of static presentation formats is
displayed by the browser, it is fundamentally incapable of providing interactive
processing of an object being displayed in the display area of a hypermedia
document being displayed in the browser controlled window.

B-211

Turning next to the Toye reference, NoteMail messages are formatted in MIME
(Multipurpose Internet Mail Extension) and a new "Format" MIME data type is
defined, for NoteMail to capture and preserve the spatial arrangement of
information on a NoteMail page. The MIME "Format" data is stored separate
from the text portions of the document [Felten 11, at paragraph 31]. There is no
teaching in NoteMail of using text formats, within the document text, intended to
initiate processes specified by those text formats. Further, there is no teaching in
NoteMail of parsing an embed text format at a first location and displaying and
enabling interactive processing within the first location because, in NoteMail,
the location of information is specified elsewhere, by the ""Format' data type."

Felten Decl., at 26 (Oct. 6, 2004) (accompanying Applicants' Response (March 11, 2005))
([PH_001_0000784272] — [PH_001_0000784282]): "Toye does not teach the use of a hypermedia
browser, as that term is used in the '906 claims. Toye teaches no software application that parses
distributed hypermedia documents, and it does not teach other browser-related elements of the
'906 claims, such as parsing of distributed hypermedia documents by a browser, identifying text
formats in distributed hypermedia documents and responding to predetermined text formats to
initiate processing specified by those formats, utilizing a browser to display at least a portion of a
distributed hypermedia document in a browser-controlled window."

2. Defendants' extrinsic evidence

Que's Computer Programmer's Dictionary 302 (1993) ("parse™) [PA-0000333392]: "To
decompose an expression and categorize its components. The term can apply to natural languages
such as English to programming languages and to any other structured input data For example
compiler usually begins by parsing the source code."

Barron's Dictionary of Computer Terms 230 (2d ed. 1989) (“parsing") [PA-0000333377]:

"Parsing is the analysis, by computer, of the structure of statements in a human or artificial
language.”

B-212

N. "identify an embed text format' (in various contexts)

Claim Term(s) Defendants' Proposed Construction | Eolas's Proposed Construction

identify[ing] an identifying an embed text format

embed text format))
detecting an embed text format during

an embed text parsing of a hypermedia document L
format. .. is an embed text format is identified

identified

1. Defendants' intrinsic evidence

The intrinsic evidence identified above in support of their proposed construction of the
proposed construction of the term "pars[e/es/ed/ing]" likewise supports Defendant's proposed
construction of the present term, and is incorporated herein by reference in its entirety. Defendants
also identify the following additional intrinsic evidence in support of their proposed construction of
the present term:

a. Claims
In the following chart, the term(s) for construction appear in all the claims marked with an

"x." The letter "m" indicates a method claim, and "{6" indicates a claim that the Defendants contend
includes limitations subject to 8§ 112, 1 6.

'906 patent ‘985 patent
m m m m

mim{m/ |6 (76|76 |m |96 (76|76 |96 76 |m |96 |m

1 |14 |5 |6 |9 (101 |16|20 (24|28 (32|36 40|44
identify[ing] an embed text x |x |x % | x
format
an embed text format . . . is
identified X | X |X X

b. Specification

1:53-:60 & 2:23-:28 (Background of the invention): Other Internet standards are the
HyperText Transmission Protocol ("HTTP") that allows hypertext documents to be exchanged freely
among any computers connected to the Internet and HyperText Markup Language (""HTML") that
defines the way in which hypertext documents designate links to information. See, e.g., Berners-
Lee, T. J., "The world-wide web," Computer Networks and ISDN Systems 25 (1992). ... A
hypermedia document is similar to a hypertext document, except that the user is able to click on
images, sound icons, video icons, etc., that link to other objects of various media types, such as
additional graphics, sound, video, text, or hypermedia or hypertext documents.

2:43-:48 (Background of the invention): The mechanism for specifying and locating a
linked object such as hypermedia document 14 is an HTML "element'* that includes an object
address in the format of a Uniform Resource Locator (URL).

B-213

5:24—:38 (Background of the invention): The Internet is said to provide an "open distributed
hypermedia system."” It is an "open™ system since Internet 100 implements a standard protocol that
each of the connecting computer systems, 106, 130, 120, 132 and 134 must implement (TCP/IP). It
is a ""hypermedia’ system because it is able to handle hypermedia documents as described above
via standards such as the HTTP and HTML hypertext transmission and mark up standards,
respectively.

9:50-:58 (Detailed description of a preferred embodiment): This means that application
client 210 can make requests over network 206 for data objects, such as multidimensional image
objects. For example, application client 210 may request an object, such as object 1 at 216, located
in server computer 204. Application client 210 may make the request by any suitable means.
Assuming network 206 is the Internet, such a request would typically be made by using HTTP in
response to a HTML-style link definition for embedded program link 214.

14:64—:67 (Detailed description of a preferred embodiment): FIG. 8A is a flowchart for
routine HTMLwidget. HTMLwidget creates display data structures and launches an external
application program to handle the data object specified by the URL in the EMBED tag.

C. Prosecution history

i. '906 prosecution history (08/324,443)

Amendment A, at 1-2 (Aug. 6, 1996) ([PH_001_0000783879] — [PH_001_0000783928]):

1. (A ended) A method for running an application
program in a computer network environment, comprising:

providi at least one client workstation and one
network server coupblgd to said network environment, wherein said

network envirconment i a distributed hypermedia environment;

o predetermined text formatsg to

document and for responding

initi es ified the form

| A\

B-214

utiﬂizinq gaid browser to display(ing], on said client

workstation, at least a portion of a first hypermedia documesnt
received over said network from said server, wherein said first
hypermedia docufent is displayed within a first browser-

controlled window on said ient workstation and wherein said
[Ifet giorripnred nypernedis gqoounent 1ncludes all embed cex
orma hat specifies the location of an obie sxternal to the

first distributed \hvpermedia document and that specifies type

i i iliz id browser i loc

executable application external to the first distributed

ermedia document

n to display and process said obiject within

the firat browserwcoﬂtrolled window while a portion of said first

application; and

interactively| controlling said embedded controllable

application from said client workstation wia communications sent

over said distributed hypermedia environment] .

Amendment A, at 13 (Aug. 6, 1996) ([PH_001_0000783879] — [PH_001_0000783928]):

B-215

In order to insure cross-platform uniformity of document
appearance, the document was defined through the use of ASCII
text, where specific text formats, otherwise known as "tags,"
would be used within the document text to specify various aspects
of the document’s appearance and linkages to other documents or
related data. Each browser, therefore, incorporated a parser
which would distinguish the formatting tags from the document’s
narrative text, classify those tags into pre-defined categories,
break each tag into its basic components, and then invoke
appropriate browser subroutines to respond appropriately to the
meanings of the tag components. Although the browser subroutines
were built from machine-specific native code, this text tag
mechanism allowed the design of a variety of browsers for various
computing platforms that could respond in similar ways to similar
types of text tags, and therefore result in similar-appearing
documents on dissimilar computers. A binary document data format
was avoided in order to promote cross-platform compatibility, due
to the variation in binary data handling methodologies on various
different operating systems, and to simplify the requirements for
document creation tools. All that a Web document author needs in
order to create a Web document file is a simple ASCII text
editor, which is a pre-existing application in all commonly-found

operating system packages.

il. First reexam (90/006,831)

Declaration of Edward W. Felten, at 18 (May 11, 2004) ([PH_001_0000785437] —
[PH_001_0000785464]):

18. The claims of the ‘906 Patent describe a technology that allows web page
authors to include, within the boundaries of a web page, interactive
objects. This is done (briefly stated) by including in the web page’s
HTML text an embed text format, that provides information about where
to get the object’s data, along with information to identify and locate an
executable application that will be invoked on the chent computer to
display the data and to provide interactivity with it, and by providing a
web browser that knows how to parse the HTML to extract the embed text
format, how to use type information to identify and locate the executable
application, how to invoke the executable application, to execute on the
client computer, and how to interface to the executable application so as to
allow the user to interact with it within the boundaries of the browser
window.

Declaration of Edward W. Felten, at 25 (May 11, 2004) ([PH_001_0000785437] —
[PH_001_0000785464]):

B-216

AFe LUV USLUTII™LIVE ILWWIVI VUVE

25. The Berners-Lee reference is a specification for the HTML markup
language. HTML is a language used by Web page authors to describe the
structure and desired contents of their pages. A browser parses an HTML
document to determine its structure and then displays the visual

representation of the specified items within a browser window.

Office Action, at 4 (Aug. 16, 2004) ([PH_001_0000785553] — [PH_001_0000785571]):

16 it would have been obwous to a skilled ar‘usan to comblne {1) the teachings of
17 & Bemers Lee regardlng th i T

18 ¢ [

19 1

20 = l[documents according the HTML markup standard. (See USP *908: Col. 5, lines
21

Declaration of Edward W. Felten, at 27 (Oct. 6, 2004) (accompanying Applicants'
Response (Oct. 12, 2004)) ([PH_001_0000785575] — [PH_001_0000785586]): For example, the
"hypermedia browser" of the '906 claims must parse hyperlinks from within a text document, but
Toye does not provide that feature.

Notice of Intent to Issue Ex Parte Reexamination Certificate, at 51 (Sept. 27, 2005)
([PH_001_0000785905] — [PH_001_0000785981]):

While Viola DX37 supports hypermedia and a type of interpreted script-
based interactive processing, the Examiner can find no indication from a
comprehensive text search of the' Viola DX37 files that such interactivity
results from the use of a parsed embed text format that specifies the
location of an object external to the hypermedia document, where the
browser application uses type information assaciated with the object
to identify and locate an external executable application, and where
the parsing step results in the browser automatically invoking the
executdble gpgl_icggign to display the obiect and enable interactive
processing of the abject within the same browser-controlled window, when
the instant '906 patent claims 1 and 6 are properly accorded the broadest
reasonable interpretation consistent with the specification.

B-217

iil. Interference 105,563 McK

Doyle Annotated Copy of Claims, at 2-3 (July 3, 2007) ([PH_001_0000787570] —
[PH_001_0000787576]):

B-218

iv. '085 prosecution history (10/217,955)

Applicants' Response, at 9 (March 11, 2005) ([PH_001_0000784213] -
[PH_001_0000784244]):

Applicants' Response, at 17 (April 11, 2008) ([PH_001_0000784568] —
[PH_001_0000784590]): "The other parts of the Confirmation recite other findings supporting the
determination that the reexamination claims are not unpatentable over the cited references and these
findings also support a determination that the pending claims of the present application are not
unpatentable over the cited references. A complete copy of the Confirmation is appended to this
response."

Response to Office Action, at 22 (Feb. 5, 2009) ([PH_001_0000784613] —
[PH_001_0000784697]):

"responding to text formats to initiate processing specified by the text formats;
EXAMPLE SUPPORT:

9:24 'Once hypermedia document 212 has been loaded into client computer 200,
browser client 208 parses hypermedia document 212. In parsing hypermedia

document 212, browser client 208 detects links to data objects as discussed above
in the Background of the Invention section.’

identifying an embed text format which corresponds to a first location in the
document,

EXAMPLE SUPPORT:

14:27 'a check is made as to whether the current tag is the EMBED tag.™

Notice of Allowability, at 2 (March 20, 2009) ([PH_001_0000784728] —
[PH_001_0000784734 1): "[T]he claims are allowable as the claims contain the subject matter

deemed allowable in both Re exam 90/006,831 and Re exam 90/007,838 for the same reasons as set
forth in the NIRC of the two Re exams."

B-219

2. Defendants' extrinsic evidence

The extrinsic evidence identified above in support of their proposed construction of the
proposed construction of the term "pars[e/es/ed/ing]" likewise supports Defendant's proposed
construction of the present term, and is incorporated herein by reference in its entirety.

B-220

0. "'specifies the location of at least a portion of [an / said] object"

Claim Term(s) Defendants’ Proposed Construction Eolas’s Proposed Construction

specifies the location of at least a
portion of [an / said] object

specifies the
location of at least | \where “specifies” has its common
aportion of [an/ | meaning: “to name or state explicitly
said] object or in detail.” (See MERRIAM-
WEBSTER’S COLLEGIATE
DICTIONARY 9th Edition (1991))

specifies the location of at least part of
an object

1. Defendants' intrinsic evidence

a. Claims

In the following chart, the term(s) for construction appear in all the claims marked with an
"x." The letter "m" indicates a method claim, and "{6" indicates a claim that the Defendants contend

includes limitations subject to § 112, 1 6.

’906 patent "985 patent

m|m m m
|96 |16 |96 (76| m | 16 | m
16| 20|24 |28 | 32|36 |40 | 44

= 3

m|m/|q6 76|96
415161910

= 3

specifies the location of
atleastaportionof[an/ | X | X | X | X [X | X | X | X | X | X | X | X | X | X | X

said] object

a. Specification (all cites to '906 patent)

2:44-47 (Background of the Invention): The mechanism for specifying and locating a linked
object such as hypermedia document 14 is an HTML “element” that includes an object address in
the format of a Uniform Resource Locator (URL).

14:32-33 (Detailed Description of a Preferred Embodiment): Each occurrence of a valid
EMBED tag specifies an embedded object.

14:66-67 (Detailed Description of a Preferred Embodiment): [T]he data object specified by
the URL in the EMBED tag.

2. Defendants' extrinsic evidence

21st Centry Dictionary of Computer Terms 211 (1994) ("location™) [PA-0000333440]:

B-221

Academic Press Dictionary of Science and Technology 1262 (1992) (“location”) [PA-
0000333386]:

Merriam-Webster’s Collegiate Dictionary 9th Edition 1132 (1991) (“specify”) [PA-
00333500]:

Temeeay

ssééu‘uf““\b' EIRIv T |\.ry':j iuiiance
XY\ spes-a- i\ vt -fied; -fy-ing [ME specifien. fr. MF specif
(Ij_L S,Eﬂec%rr_carc,‘ fr. speCIficuSi(l%) 1: to name or state ﬂipsﬁéict! le; I
etati 2 ; to include as an’item in a specification — spec-l-fi-abl{: i-fm
2-bal\ adj — spec-i-fi-er \-fi(-3)r\ n Vi
spec:d-men \'enecal A Ymmant W FT £

Webster’s Third New International Dictionary 2187 (1993) (“specify”) [PA-00333503]:

LL'.'.‘pe'Cljrm’l_r_t, fr. specificus specific] vi 1 a f 10 mention or
| _aame int a specific or explicit manner ¢ tell or state precisely ar
- Tin detail gv the uses of 1 plantd {clearly specified the one he

meant) {the bequest specifies that the recipient must care for
the cat) b ;to include as au item in a specification {~ing ouk
flooring throughout); also ¢ to draw specifications of 1 to
make specific + give a specific character or application to
{tensions that ~ personal conflicts) ~ vi 1 to speak precisely
_or an detail ; give full particulars syn see MENTION

. L TTTTT RN M A mLrousnanag @ pATLIL)
‘ spec-1-y \LI\ Vb ¥/ N, S tME specitien, ir. OF specifier,

B-222

P. Defendants' proposed corresponding structure(s)/act(s) for § 112, 1 6

Defendants contend that § 112, 6 applies to certain elements in claims 6-10 and 13-14 of
the '906 patent, and certain elements in claims 16-35 and 40-43 of the '985 patent. Printed below
are the claim elements that the Defendants contend are governed by § 112, { 6, along with the
structure(s) or act(s) that the Defendants contend correspond to those claim elements.

'906 Claim 6

Corresponding structure(s) or act(s)

computer readable program code for causing
said client workstation to execute a
browser application to parse a first
distributed hypermedia document to
identify text formats included in said
distributed hypermedia document and to
respond to predetermined text formats to
initiate processes specified by said text
formats;

The recited function includes the entire phrase
that appears after "computer readable program
code for causing said client workstation to".

The corresponding structure includes at least
the following:

* NCSA Mosaic version 2.4 for X-Windows
with the modifications to the source code shown
in Appendix A. Some of the modifications to the
source code in Appendix A are also described in
Figure 7A (flowchart for "HTMLparse" routine
in the modified version of HTMLparse.c), Figure
7B (flowchart for routines in the modified
version of HTMLformat.c), and Figure 8A
(flowchart for "HTMLwidget" routine in the
modified version of HTMLwidget.c).

computer readable program code for causing
said client workstation to utilize said
browser to display, on said client
workstation, at least a portion of a first
hypermedia document received over said
network from said server,
wherein the portion of said first
hypermedia document is displayed
within a first browser-controlled
window on said client workstation,
wherein said first distributed hypermedia
document includes an embed text
format, located at a first location in said
first distributed hypermedia document,
that specifies the location of at least a
portion of an object external to the first
distributed hypermedia document,
wherein said object has type information
associated with it utilized by said
browser to identify and locate an
executable application external to the
first distributed hypermedia document,
and

The recited function includes the entire phrase
that appears after "computer readable program
code for causing said client workstation to".

The corresponding structure includes at least
the following:

» NCSA Mosaic version 2.4 for X-Windows
with the modifications to the source code shown
in Appendix A and Appendix B. Some of the
modifications to the source code in Appendix A
are also described in Figure 7A (flowchart for
"HTMLparse" routine in the modified version of
HTMLparse.c), Figure 7B (flowchart for routines
in the modified version of HTMLformat.c), and
Figure 8A (flowchart for "THTMLwidget" routine
in the modified version of HTMLwidget.c).

* hypermedia document (212) with the
following HTML tag at a "first location" in the
document: <EMBED TYPE = "application/x-
vis" HREF = [URL address for data object
(216)] WIDTH = [width of window to display
the object] HEIGHT = [height of window to
display the object]>

B-223

wherein said embed text format is parsed
by said browser to automatically invoke
said executable application to execute
on said client workstation in order to
display said object and enable an end-
user to directly interact with said object
within a display area created at said first
location within the portion of said first
distributed hypermedia document being
displayed in said first browser-
controlled window.

* data object (216)

There is no corresponding structure for at least
the following:

* "executable application . . . to display said
object and enable an end-user to directly interact
with said object within a display area created at
said first location within the portion of said first
distributed hypermedia document being
displayed in said first browser-controlled
window"

'906 Claim 7

Corresponding structure(s) or act(s)

wherein said executable application is a
controllable application and further comprising:

computer readable program code for causing
said client workstation to interactively
control said controllable application on said
client workstation via inter-process
communications between said browser and
said controllable application.

The recited function includes the entire phrase
that appears after "computer readable program
code for causing said client workstation to".

The corresponding structure includes at least
the following:

* NCSA Mosaic version 2.4 for X-Windows
with the modifications to the source code shown
in Appendix A and Appendix B

There is no corresponding structure for at least
the following:

* "interactively control said controllable
application™

computer readable program code for causing
said client workstation to interactively
control said controllable application on said
client workstation via inter-process
communications between said browser and
said controllable application.

The recited function includes the entire phrase
that appears after "computer readable program
code for causing said client workstation to".

The corresponding structure includes at least
the following:

* NCSA Mosaic version 2.4 for X-Windows
with the modifications to the source code shown
in Appendix A and Appendix B

There is no corresponding structure for at least
the following:

* "interactively control said controllable
application™

'906 Claim 8

Corresponding structure(s) or act(s)

wherein the communications to interactively
control said controllable application continue to
be exchanged between the controllable
application and the browser even after the
controllable application program has been
launched.

The recited function includes the entire phrase
that appears after "wherein".

The corresponding structure includes at least
the following:
» NCSA Mosaic version 2.4 for X-Windows

B-224

with the modifications to the source code shown
in Appendix A and Appendix B

There is no corresponding structure for at least
the following:

* "interactively control said controllable
application™

The corresponding acts include at least the
following:

» calling each of the following functions that
appear in Appendix B one or more times after
the "controllable application program™ has been
launched: send_client_msg and
handle_client_msg

'906 Claim 13

Corresponding structure(s) or act(s)

wherein additional instructions for controlling
said controllable application reside on said
network server, wherein said computer readable
program code for causing said client workstation
to interactively control said controllable
application on said client workstation includes:
computer readable program code for causing
said client workstation to issue from the
client workstation, one or more commands
to the network server;
computer readable program code for causing
said network server to execute one or more
instructions in response to said commands;
computer readable program code for causing
said network server to send information to
said client workstation in response to said
executed instructions; and
computer readable program code for causing
said client workstation to process said
information at the client workstation to
interactively control said controllable
application.

The recited function includes "controlling said
controllable application™ and each phrase that
appears after the clauses "computer readable
program code for causing said client workstation
to" and "computer readable program code for
causing said network server to".

There is no corresponding structure.

computer readable program code for causing
said client workstation to issue from the
client workstation, one or more commands
to the network server;

The recited function includes the entire phrase
that appears after "computer readable program
code for causing said client workstation to".

There is no corresponding structure.

computer readable program code for causing
said network server to execute one or more
instructions in response to said commands;

The recited function includes the entire phrase
that appears after "computer readable program
code for causing said network server to".

B-225

There is no corresponding structure.

computer readable program code for causing
said network server to send information to
said client workstation in response to said
executed instructions; and

The recited function includes the entire phrase
that appears after "computer readable program
code for causing said network server to".

There is no corresponding structure.

computer readable program code for causing
said client workstation to process said
information at the client workstation to
interactively control said controllable
application.

The recited function includes the entire phrase
that appears after "computer readable program
code for causing said client workstation to".

There is no corresponding structure.

'906 Claim 14

Corresponding structure(s) or act(s)

wherein said additional instructions for
controlling said controllable application reside
on said client workstation.

The recited function includes "controlling said
controllable application™.

There is no corresponding structure.

'906 Claim 9

Corresponding structure(s) or act(s)

computer readable program code for causing
said client workstation to execute a
browser application to parse a first
distributed hypermedia document to
identify text formats included in said
distributed hypermedia document and to
respond to predetermined text formats to
initiate processes specified by said text
formats;

The text to the left also appears in claim 6, and
thus the function and corresponding structure(s)
or act(s) for the text to the left are the same as
described above with respect to claim 6. See
above.

computer readable program code for causing
said client workstation to utilize said
browser to display, on said client
workstation, at least a portion of a first
hypermedia document received over said
network from said server,
wherein the portion of said first
hypermedia document is displayed
within a first browser-controlled
window on said client workstation,
wherein said first distributed hypermedia
document includes an embed text
format, located at a first location in said
first distributed hypermedia document,
that specifies the location of at least a
portion of an object external to the first
distributed hypermedia document,
wherein said object has type information
associated with it utilized by said
browser to identify and locate an
executable application external to the

The text to the left also appears in the
combined text of claims 6, 7, 8, and 13 — with
one exception described below — and thus the
function and corresponding structure(s) or act(s)
for the text to the left are the same as described
above with respect to claims 6, 7, 8, and 13, with
one exception described below.

The one exception is the following: The text
to the left includes the phrase "enable interactive
processing of said object” while the text in claim
6 includes the phrase “enable an end-user to
directly interact with said object".

Thus, whereas in claim 6 there is no
corresponding structure for "executable
application . . . to display said object and enable
an end-user to directly interact with said object
within a display area created at said first location
within the portion of said first distributed
hypermedia document being displayed in said

B-226

first distributed hypermedia document,
and
wherein said embed text format is parsed
by said browser to automatically invoke
said executable application to execute
on said client workstation in order to
display said object and enable
interactive processing of said object
within a display area created at said first
location within the portion of said first
distributed hypermedia document being
displayed in said first browser-
controlled window;
wherein said executable application is a
controllable application and further
comprising:
computer readable program code for causing
said client workstation to interactively
control said controllable application of
said client workstation via inter-process
communications between said browser
and said controllable application;
wherein the communications to interactively
control said controllable application
continue to be exchanged between the
controllable application and the browser
even after the controllable application
program has been launched; and
wherein additional instructions for controlling
said controllable application reside on said
network server, wherein said computer
readable program code for causing said
client workstation to interactively control
said controllable application on said client
workstation includes:
computer readable program code for causing
said client workstation to issue, from the
client workstation, one or more
commands to the network server;
computer readable program code for causing
said network server to execute one or
more instructions in response to said
commands;
computer readable program code for causing
said network server to send information to
said client workstation in response to said
executed instructions; and

first browser-controlled window", in claim 9
there is no corresponding structure for
"executable application . . . to display said object
and enable interactive processing of said object
within a display area created at said first location
within the portion of said first distributed
hypermedia document being displayed in said
first browser-controlled window".

Otherwise, the function and corresponding
structure(s) or act(s) for the text to the left are the
same as described above with respect to claims
6,7, 8, and 13.

B-227

computer readable program code for causing
said client workstation to process said
information at the client workstation to
interactively control said controllable
application.

computer readable program code for causing
said client workstation to interactively
control said controllable application of
said client workstation via inter-process
communications between said browser
and said controllable application;

The text to the left also appears in claim 7, and
thus the function and corresponding structure(s)
or act(s) for the text to the left are the same as
described above with respect to claim 7. See
above.

wherein the communications to interactively
control said controllable application continue to
be exchanged between the controllable
application and the browser even after the
controllable application program has been
launched.

The text to the left also appears in claim 8, and
thus the function and corresponding structure(s)
or act(s) for the text to the left are the same as
described above with respect to claim 8. See
above.

wherein additional instructions for controlling

said controllable application reside on said

network server, wherein said computer

readable program code for causing said

client workstation to interactively control

said controllable application on said client

workstation includes:

computer readable program code for causing
said client workstation to issue, from the
client workstation, one or more
commands to the network server;

computer readable program code for causing
said network server to execute one or
more instructions in response to said
commands;

computer readable program code for causing
said network server to send information to
said client workstation in response to said
executed instructions; and

computer readable program code for causing
said client workstation to process said
information at the client workstation to
interactively control said controllable
application.

The text to the left also appears in claim 13,
and thus the function and corresponding
structure(s) or act(s) for the text to the left are the
same as described above with respect to claim
13. See above.

computer readable program code for causing
said client workstation to issue, from the

The text to the left also appears in claim 13,
and thus the function and corresponding

B-228

client workstation, one or more
commands to the network server;

structure(s) or act(s) for the text to the left are the
same as described above with respect to claim
13. See above.

computer readable program code for causing
said network server to execute one or
more instructions in response to said
commands;

The text to the left also appears in claim 13,
and thus the function and corresponding
structure(s) or act(s) for the text to the left are the
same as described above with respect to claim
13. See above.

computer readable program code for causing
said network server to send information to
said client workstation in response to said
executed instructions; and

The text to the left also appears in claim 13,
and thus the function and corresponding
structure(s) or act(s) for the text to the left are the
same as described above with respect to claim
13. See above.

computer readable program code for causing
said client workstation to process said
information at the client workstation to
interactively control said controllable
application.

The text to the left also appears in claim 13,
and thus the function and corresponding
structure(s) or act(s) for the text to the left are the
same as described above with respect to claim
13. See above.

'906 Claim 10

Corresponding structure(s) or act(s)

computer readable program code for causing
said client workstation to execute a
browser application to parse a first
distributed hypermedia document to
identify text formats included in said
distributed hypermedia document and to
respond to predetermined text formats to
initiate processes specified by said text
formats;

The text to the left also appears in claim 6, and
thus the function and corresponding structure(s)
or act(s) for the text to the left are the same as
described above with respect to claim 6. See
above.

computer readable program code for causing
said client workstation to utilize said
browser to display, on said client
workstation, at least a portion of a first
hypermedia document received over said
network from said server,
wherein the portion of said first
hypermedia document is displayed
within a first browser-controlled
window on said client workstation,
wherein said first distributed hypermedia
document includes an embed text
format, located at a first location in said
first distributed hypermedia document,
that specifies the location of at least a
portion of an object external to the first
distributed hypermedia document,
wherein said object has type information
associated with it utilized by said

The text to the left also appears in the
combined text of claims 6, 7, 8, 13, and 14 —
with one exception described below — and thus
the function and corresponding structure(s) or
act(s) for the text to the left are the same as
described above with respect to claims 6, 7, 8,
13, and 14, with one exception described below.

The one exception is the following: The text
to the left includes the phrase "enable interactive
processing of said object” while the text in claim
6 includes the phrase “enable an end-user to
directly interact with said object".

Thus, whereas in claim 6 there is no
corresponding structure for "executable
application . . . to display said object and enable
an end-user to directly interact with said object
within a display area created at said first location

B-229

browser to identify and locate an
executable application external to the
first distributed hypermedia document,
and
wherein said embed text format is parsed
by said browser to automatically invoke
said executable application to execute
on said client workstation in order to
display said object and enable
interactive processing of said object
within a display area created at said first
location within the portion of said first
distributed hypermedia document being
displayed in said first browser-
controlled window;
wherein said executable application is a
controllable application and further
comprising:
computer readable program code for causing
said client workstation to interactively
control said controllable application on
said client workstation via inter-process
communications between said browser
and said controllable application;
wherein the communications to interactively
control said controllable application
continue to be exchanged between the
controllable application and the browser
even after the controllable application
program has been launched;
wherein additional instructions for controlling
said controllable application reside on said
network server, wherein said computer
readable program code for causing said
client workstation to interactively control
said controllable application on said client
workstation includes:
computer readable program code for causing
said client workstation to issue, from the
client workstation, one or more
commands to the network server;
computer readable program code for causing
said network server to execute one or
more instructions in response to said
commands;
computer readable program code for causing
said network server to send information to

within the portion of said first distributed
hypermedia document being displayed in said
first browser-controlled window", in claim 9
there is no corresponding structure for
"executable application . . . to display said object
and enable interactive processing of said object
within a display area created at said first location
within the portion of said first distributed
hypermedia document being displayed in said
first browser-controlled window".

Otherwise, the function and corresponding
structure(s) or act(s) for the text to the left are the
same as described above with respect to claims
6,7, 8, 13, and 14.

B-230

said client workstation in response to said
executed instructions; and

computer readable program code for causing
said client workstation to process said
information at the client workstation to
interactively control said controllable
application; and

wherein said additional instructions for
controlling said controllable application
reside on said client workstation.

computer readable program code for causing
said client workstation to interactively
control said controllable application of
said client workstation via inter-process
communications between said browser
and said controllable application;

The text to the left also appears in claim 7, and
thus the function and corresponding structure(s)
or act(s) for the text to the left are the same as
described above with respect to claim 7. See
above.

wherein the communications to interactively
control said controllable application continue to
be exchanged between the controllable
application and the browser even after the
controllable application program has been
launched.

The text to the left also appears in claim 8, and
thus the function and corresponding structure(s)
or act(s) for the text to the left are the same as
described above with respect to claim 8. See
above.

wherein additional instructions for controlling

said controllable application reside on said

network server, wherein said computer

readable program code for causing said

client workstation to interactively control

said controllable application on said client

workstation includes:

computer readable program code for causing
said client workstation to issue, from the
client workstation, one or more
commands to the network server;

computer readable program code for causing
said network server to execute one or
more instructions in response to said
commands;

computer readable program code for causing
said network server to send information to
said client workstation in response to said
executed instructions; and

computer readable program code for causing
said client workstation to process said
information at the client workstation to

The text to the left also appears in claims 13
and 14, and thus the function and corresponding
structure(s) or act(s) for the text to the left are the
same as described above with respect to claims
13 and 14. See above.

B-231

interactively control said controllable
application; and
wherein said additional instructions for
controlling said controllable application
reside on said client workstation.

computer readable program code for causing
said client workstation to issue, from the
client workstation, one or more
commands to the network server;

The text to the left also appears in claim 13,
and thus the function and corresponding
structure(s) or act(s) for the text to the left are the
same as described above with respect to claim
13. See above.

computer readable program code for causing
said network server to execute one or
more instructions in response to said
commands;

The text to the left also appears in claim 13,
and thus the function and corresponding
structure(s) or act(s) for the text to the left are the
same as described above with respect to claim
13. See above.

computer readable program code for causing
said network server to send information to
said client workstation in response to said
executed instructions; and

The text to the left also appears in claim 13,
and thus the function and corresponding
structure(s) or act(s) for the text to the left are the
same as described above with respect to claim
13. See above.

computer readable program code for causing
said client workstation to process said
information at the client workstation to
interactively control said controllable
application; and

The text to the left also appears in claim 13,
and thus the function and corresponding
structure(s) or act(s) for the text to the left are the
same as described above with respect to claim
13. See above.

wherein said additional instructions for
controlling said controllable application reside
on said client workstation.

The text to the left also appears in claim 14,
and thus the function and corresponding
structure(s) or act(s) for the text to the left are the
same as described above with respect to claim
14. See above.

'985 Claim 16

Corresponding structure(s) or act(s)

software comprising computer executable
instructions . . . and when the software is
executed operable to:
receive, at the client workstation from the
network server over the network
environment, at least one file containing
information to enable a browser application
to display at least a portion of a distributed
hypermedia document within a browser-
controlled window;
cause the client workstation to utilize the
browser to:
respond to text formats to initiate processing
specified by the text formats;

The recited function includes the entire phrase
that appears after "software comprising computer
executable instructions . . . and when the
software is executed operable to".

The corresponding structure includes at least
the following:

* NCSA Mosaic version 2.4 for X-Windows
with the modifications to the source code shown
in Appendix A and Appendix B. Some of the
modifications to the source code in Appendix A
are also described in Figure 7A (flowchart for
"HTMLparse" routine in the modified version of
HTMLparse.c), Figure 7B (flowchart for routines

B-232

display at least a portion of the document
within the browser-controlled window;

identify an embed text format corresponding
to a first location in the document, the
embed text format specifying the location
of at least a portion of an object external
to the file, with the object having type
information associated with it;

utilize the type information to identify and
locate an executable application external
to the file; and

automatically invoke the executable
application, in response to the identifying
of the embed text format, to execute on
the client workstation in order to display
the object and enable an end-user to
directly interact with the object while the
object is being displayed within a display
area created at the first location within the
portion of the hypermedia document being
displayed in the browser-controlled
window.

in the modified version of HTMLformat.c), and
Figure 8A (flowchart for "THTMLwidget" routine
in the modified version of HTMLwidget.c).

* hypermedia document (212) with the
following HTML tag at a "first location" in the
document: <EMBED TYPE = "application/x-
vis" HREF = [URL address for data object
(216)] WIDTH = [width of window to display
the object] HEIGHT = [height of window to
display the object]>

* data object (216)

There is no corresponding structure for at least
the following:

* "executable application . . . to display the
object and enable an end-user to directly interact
with the object while the object is being
displayed within a display area created at the
first location within the portion of the
hypermedia document being displayed in the
browser-controlled window"

'985 Claim 17

Corresponding structure(s) or act(s)

claim 16 where: the information to enable
comprises text formats.

Same as for claim 16.

'985 Claim 18

Corresponding structure(s) or act(s)

claim 17 where: the text formats are HTML
tags.

Same as for claim 17.

'985 Claim 19

Corresponding structure(s) or act(s)

claim 16 where: the information contained in
the file received comprises at least one embed
text format.

Same as for claim 16.

'985 Claim 20

Corresponding structure(s) or act(s)

communicating via the network server with at

least one client workstation over said

network in order to cause said client

workstation to:

receive, over said network environment
from said server, at least one file
containing information to enable a
browser application to display at least a
portion of a distributed hypermedia
document within a browser-controlled
window;

execute, at said client workstation, a browser
application, with the browser application:
responding to text formats to initiate

The recited function includes the entire phrase
that appears after "in order to cause said client
workstation to".

The corresponding acts includes at least the
following:

» the client workstation launches NCSA
Mosaic version 2.4 for X-Windows with the
modifications to the source code shown in
Appendix A and Appendix B (hereinafter the
"browser application™). Some of the
modifications to the source code in Appendix A
are also described in Figure 7A (flowchart for
"HTMLparse" routine in the modified version of

B-233

processing specified by the text formats;

displaying, on said client workstation, at
least a portion of the document within
the browser-controlled window;

identifying an embed text format which
corresponds to a first location in the
document, where the embed text format
specifies the location of at least a
portion of an object external to the file,
where the object has type information
associated with it;

utilizing the type information to identify
and locate an executable application
external to the file; and

automatically invoking the executable
application, in response to the
identifying of the embed text format, to
execute on the client workstation in
order to display the object and enable an
end-user to directly interact with the
object while the object is being
displayed within a display area created
at the first location within the portion of
the hypermedia document being
displayed in the browser-controlled
window.

HTMLparse.c), Figure 7B (flowchart for routines
in the modified version of HTMLformat.c), and
Figure 8A (flowchart for "THTMLwidget" routine
in the modified version of HTMLwidget.c).

* the browser application retrieves over the
network from the network server the hypermedia
document (212) with the following HTML tag at
a "first location™ in the document: <EMBED
TYPE = "application/x-vis" HREF = [URL
address for data object (216)] WIDTH = [width
of window to display the object] HEIGHT =
[height of window to display the object]>

* the browser application performs the steps in
Figure 7A (e.g., parsing the hypermedia
document to identify the <EMBED> tag

* the browser application performs the steps in
Figure 7B (e.g., initialize the drawing area)

* the browser application performs the steps in
Figure 8A to identify and locate an executable
application using the information TYPE =
"application/x-vis" found in the <EMBED> tag

There is no corresponding act for at least the
following:

* "the browser application . . . automatically
invoking the executable application . . . to
display the object and enable an end-user to
directly interact with the object while the object
is being displayed within a display area created
at the first location within the portion of the
hypermedia document being displayed in the
browser-controlled window"

'985 Claim 21

Corresponding structure(s) or act(s)

The method of claim 20 where: the
information to enable comprises text formats.

Same as for claim 20.

'985 Claim 22

Corresponding structure(s) or act(s)

The method of claim 21 where: the text
formats are HTML tags.

Same as for claim 21.

'985 Claim 23

Corresponding structure(s) or act(s)

The method of claim 20 where: the
information contained in the file received
comprises at least one embed text format.

Same as for claim 20.

'985 Claim 24

Corresponding structure(s) or act(s)

A method for running an executable
application in a computer network environment
... the method comprising:

enabling an end-user to directly interact with

The recited function includes the entire phrase
that appears after "the method comprising:".

The corresponding acts includes at least the

B-234

an object by utilizing said executable

application to interactively process said

object while the object is being displayed

within a display area created at a first

location within a portion of a hypermedia

document being displayed in a browser-

controlled window,

wherein said network environment is a
distributed hypermedia environment,

wherein said client workstation receives,
over said network environment from said
server, at least one file containing
information to enable said browser
application to display, on said client
workstation, at least said portion of said
distributed hypermedia document within
said browser-controlled window,

wherein said executable application is
external to said file,

wherein said client workstation executes the
browser application, with the browser
application responding to text formats to
initiate processing specified by the text
formats,

wherein at least said portion of the
document is displayed within the browser-
controlled window,

wherein an embed text format which
corresponds to said first location in the
document is identified by the browser,

wherein the embed text format specifies the
location of at least a portion of said object
external to the file,

wherein the object has type information
associated with it,

wherein the type information is utilized by
the browser to identify and locate said
executable application, and

wherein the executable application is
automatically invoked by the browser, in
response to the identifying of the embed
text format.

following:

» the client workstation launches NCSA
Mosaic version 2.4 for X-Windows with the
modifications to the source code shown in
Appendix A and Appendix B (hereinafter the
"browser application™). Some of the
modifications to the source code in Appendix A
are also described in Figure 7A (flowchart for
"HTMLparse" routine in the modified version of
HTMLparse.c), Figure 7B (flowchart for routines
in the modified version of HTMLformat.c), and
Figure 8A (flowchart for "THTMLwidget" routine
in the modified version of HTMLwidget.c).

* the browser application retrieves over the
network from the network server the hypermedia
document (212) with the following HTML tag at
a "first location™ in the document: <EMBED
TYPE = "application/x-vis" HREF = [URL
address for data object (216)] WIDTH = [width
of window to display the object] HEIGHT =
[height of window to display the object]>

* the browser application performs the steps in
Figure 7A (e.g., parsing the hypermedia
document to identify the <EMBED> tag

* the browser application performs the steps in
Figure 7B (e.g., initialize the drawing area)

* the browser application performs the steps in
Figure 8A to identify and locate an executable
application using the information TYPE =
"application/x-vis" found in the <EMBED> tag

There is no corresponding act for at least the
following:

* "enabling an end-user to directly interact
with an object by utilizing said executable
application to interactively process said object
while the object is being displayed within a
display area created at a first location within a
portion of a hypermedia document being
displayed in a browser-controlled window"

'985 Claim 25

Corresponding structure(s) or act(s)

25. The method of claim 24 where: the
information to enable comprises text formats.

Same as for claim 24.

'985 Claim 26

Corresponding structure(s) or act(s)

26. The method of claim 25 where: the text

Same as for claim 25.

B-235

formats are HTML tags.

'985 Claim 27

Corresponding structure(s) or act(s)

27. The method of claim 24 where: the
information contained in the file received
comprises at least one embed text format.

Same as for claim 24.

'985 Claim 28

Corresponding structure(s) or act(s)

software comprising an executable application
... operable to:
cause the client workstation to display an

object and enable an end-user to directly

interact with said object while the object is

being displayed within a display area created

at a first location within a portion of a

hypermedia document being displayed in a

browser-controlled window,

wherein said network environment is a
distributed hypermedia environment,

wherein said client workstation receives,
over said network environment from said
server, at least one file containing
information to enable said browser
application to display, on said client
workstation, at least said portion of said
distributed hypermedia document within
said browser-controlled window,

wherein said executable application is
external to said file,

wherein said client workstation executes
said browser application, with the browser
application responding to text formats to
initiate processing specified by the text
formats,

wherein at least said portion of the
document is displayed within the browser-
controlled window,

wherein an embed text format which
corresponds to said first location in the
document is identified by the browser,

wherein the embed text format specifies the
location of at least a portion of said object
external to the file,

wherein the object has type information
associated with it,

wherein the type information is utilized by
the browser to identify and locate said
executable application, and

wherein the executable application is

The recited function includes the entire phrase
that appears after "software comprising an
executable application . . . operable to".

The corresponding structure includes at least
the following:

* NCSA Mosaic version 2.4 for X-Windows
with the modifications to the source code shown
in Appendix A and Appendix B. Some of the
modifications to the source code in Appendix A
are also described in Figure 7A (flowchart for
"HTMLparse" routine in the modified version of
HTMLparse.c), Figure 7B (flowchart for routines
in the modified version of HTMLformat.c), and
Figure 8A (flowchart for "THTMLwidget" routine
in the modified version of HTMLwidget.c).

* hypermedia document (212) with the
following HTML tag at a "first location" in the
document: <EMBED TYPE = "application/x-
vis" HREF = [URL address for data object
(216)] WIDTH = [width of window to display
the object] HEIGHT = [height of window to
display the object]>

* data object (216)

There is no corresponding structure for at least
the following:

» "cause the client workstation to display an
object and enable an end-user to directly interact
with said object while the object is being
displayed within a display area created at a first
location within a portion of a hypermedia
document being displayed in a browser-
controlled window™

B-236

automatically invoked by the browser, in
response to the identifying of the embed
text format.

'985 Claim 29

Corresponding structure(s) or act(s)

29. The method of claim 28 where: the
information to enable comprises text formats.

The recited function includes the entire phrase
that appears after "software comprising an
executable application . . . operable to".

The corresponding structure includes at least
the following:

* NCSA Mosaic version 2.4 for X-Windows
with the modifications to the source code shown
in Appendix A and Appendix B (hereinafter the
"browser application”). Some of the
modifications to the source code in Appendix A
are also described in Figure 7A (flowchart for
"HTMLparse" routine in the modified version of
HTMLparse.c), Figure 7B (flowchart for routines
in the modified version of HTMLformat.c), and
Figure 8A (flowchart for "THTMLwidget" routine
in the modified version of HTMLwidget.c).

* hypermedia document (212) with the
following HTML tag at a "first location" in the
document: <EMBED TYPE = "application/x-
vis" HREF = [URL address for data object
(216)] WIDTH = [width of window to display
the object] HEIGHT = [height of window to
display the object]>

* data object (216)

The corresponding acts includes at least the
following:

» the client workstation launches the browser
application

» the browser application retrieves over the
network from the network server the hypermedia
document (212) with the following HTML tag at
a "first location™ in the document: <EMBED
TYPE = "application/x-vis" HREF = [URL
address for data object (216)] WIDTH = [width
of window to display the object] HEIGHT =
[height of window to display the object]>

* the browser application performs the steps in
Figure 7A (e.g., parsing the hypermedia
document to identify the <EMBED> tag

* the browser application performs the steps in
Figure 7B (e.g., initialize the drawing area)

B-237

* the browser application performs the steps in
Figure 8A to identify and locate an executable
application using the information TYPE =
"application/x-vis" found in the <EMBED> tag

There is no corresponding act for at least the
following:

» "cause the client workstation to display an
object and enable an end-user to directly interact
with said object while the object is being
displayed within a display area created at a first
location within a portion of a hypermedia
document being displayed in a browser-
controlled window"

'985 Claim 30

Corresponding structure(s) or act(s)

30. The method of claim 29 where: the text
formats are HTML tags.

Same as for claim 29.

'985 Claim 31

Corresponding structure(s) or act(s)

31. The method of claim 28 where: the
information contained in the file received
comprises at least one embed text format.

Same as for claim 29.

'985 Claim 32

Corresponding structure(s) or act(s)

communicating via a network server with at

least one client workstation over said

computer network environment in order to

cause said client workstation to:

receive at said client workstation, over said
computer network environment from said
server, at least one file containing
information to enable a browser
application to display, on said client
workstation, at least a portion of a
distributed hypermedia document within a
browser-controlled window;

utilize an executable application external to
said file to enable an end-user to directly
interact with an object while the object is
being displayed within a display area
created at a first location within the
portion of the distributed hypermedia
document being displayed in the browser-
controlled window, with said network
server coupled to said computer network
environment,
wherein said computer network

environment has at least said client
workstation and said network server

The recited function includes the entire phrase
that appears after "in order to cause said client
workstation to:"

The corresponding acts includes at least the
following:

» the client workstation launches NCSA
Mosaic version 2.4 for X-Windows with the
modifications to the source code shown in
Appendix A and Appendix B (hereinafter the
"browser application™). Some of the
modifications to the source code in Appendix A
are also described in Figure 7A (flowchart for
"HTMLparse" routine in the modified version of
HTMLparse.c), Figure 7B (flowchart for routines
in the modified version of HTMLformat.c), and
Figure 8A (flowchart for "THTMLwidget" routine
in the modified version of HTMLwidget.c).

» the browser application retrieves over the
network from the network server the hypermedia
document (212) with the following HTML tag at
a "first location™ in the document: <EMBED
TYPE = "application/x-vis" HREF = [URL
address for data object (216)] WIDTH = [width
of window to display the object] HEIGHT =

B-238

coupled to the computer network
environment,

wherein said computer network
environment is a distributed hypermedia
environment,

wherein said client workstation executes
the browser application, with the
browser application responding to text
formats to initiate processing specified
by the text formats,

wherein at least said portion of the
document is displayed within the
browser-controlled window,

wherein an embed text format which
corresponds to said first location in the
document is identified by the browser,

wherein the embed text format specifies
the location of at least a portion of said
object external to the file,

wherein the object has type information
associated with it,

wherein the type information is utilized by
the browser to identify and locate said
executable application, and

wherein the executable application is
automatically invoked by the browser,
in response to the identifying of the
embed text format.

[height of window to display the object]>

* the browser application performs the steps in
Figure 7A (e.g., parsing the hypermedia
document to identify the <EMBED> tag

* the browser application performs the steps in
Figure 7B (e.g., initialize the drawing area)

* the browser application performs the steps in
Figure 8A to identify and locate an executable
application using the information TYPE =
"application/x-vis" found in the <EMBED> tag

There is no corresponding act for at least the
following:

« "utilize an executable application external to
said file to enable an end-user to directly interact
with an object while the object is being displayed
within a display area created at a first location
within the portion of the distributed hypermedia
document being displayed in the browser-
controlled window"

'985 Claim 33

Corresponding structure(s) or act(s)

33. The method of claim 32 where: the
information to enable comprises text formats.

Same as for claim 32.

'985 Claim 34

Corresponding structure(s) or act(s)

34. The method of claim 33 where: the text
formats are HTML tags.

Same as for claim 33.

'985 Claim 35

Corresponding structure(s) or act(s)

35. The method of claim 32 where: the
information contained in the file received
comprises at least one embed text format.

Same as for claim 32.

'985 Claim 40

Corresponding structure(s) or act(s)

communicating via the network server with at

least one remote client workstation over said

computer network environment in order to

cause said client workstation to:

receive, over said computer network
environment from the network server, at
least one file containing information to
enable a browser application to display at

The recited function includes the entire phrase
that appears after "in order to cause said client
workstation to:"

The corresponding acts includes at least the
following:

» the client workstation launches NCSA
Mosaic version 2.4 for X-Windows with the

B-239

least a portion of a distributed hypermedia
document within a browser-controlled
window;
execute, at said client workstation, a browser
application, with the browser application:
responding to text formats to initiate
processing specified by the text formats;
displaying, on said client workstation, at
least a portion of the document within
the browser-controlled window;
identifying an embed text format which
corresponds to a first location in the
document, where the embed text format
specifies the location of at least a
portion of an object;
identifying and locating an executable
application associated with the object;
and
automatically invoking the executable
application, in response to the
identifying of the embed text format, in
order to enable an end-user to directly
interact with the object while the object
is being displayed within a display area
created at the first location within the
portion of the hypermedia document
being displayed in the browser-
controlled window,
wherein the executable application is
part of a distributed application, and
wherein at least a portion of the
distributed application is for
execution on the network server.

modifications to the source code shown in
Appendix A and Appendix B (hereinafter the
"browser application™). Some of the
modifications to the source code in Appendix A
are also described in Figure 7A (flowchart for
"HTMLparse" routine in the modified version of
HTMLparse.c), Figure 7B (flowchart for routines
in the modified version of HTMLformat.c), and
Figure 8A (flowchart for "THTMLwidget" routine
in the modified version of HTMLwidget.c).

» the browser application retrieves over the
network from the network server the hypermedia
document (212) with the following HTML tag at
a "first location™ in the document: <EMBED
TYPE = "application/x-vis" HREF = [URL
address for data object (216)] WIDTH = [width
of window to display the object] HEIGHT =
[height of window to display the object]>

* the browser application performs the steps in
Figure 7A (e.g., parsing the hypermedia
document to identify the <EMBED> tag

* the browser application performs the steps in
Figure 7B (e.g., initialize the drawing area)

* the browser application performs the steps in
Figure 8A to identify and locate an executable
application using the information TYPE =
"application/x-vis" found in the <EMBED> tag

There is no corresponding act for at least the
following:

« "automatically invoking the executable
application, in response to the identifying of the
embed text format, in order to enable an end-user
to directly interact with the object while the
object is being displayed within a display area
created at the first location within the portion of
the hypermedia document being displayed in the
browser-controlled window, wherein the
executable application is part of a distributed
application, and wherein at least a portion of the
distributed application is for execution on the
network server."

'985 Claim 41

Corresponding structure(s) or act(s)

41. The method of claim 40 where: the
information to enable comprises text formats.

Same as for claim 40.

'985 Claim 42

Corresponding structure(s) or act(s)

42. The method of claim 41 where: the text

Same as for claim 41.

B-240

formats are HTML tags.

'985 Claim 43 Corresponding structure(s) or act(s)

43. The method of claim 40 where: the Same as for claim 40.
information contained in the file received
comprises at least one embed text format.

B-241

	A. "automatically invoke" (in various contexts)
	1. Defendants' intrinsic evidence
	a. Claims
	b. Specification (all cites to '906 patent)
	c. Prosecution history
	i. '906 prosecution history (08/324,443)
	ii. Abandoned application (09/075,359)
	iii. First reexam (90/006,831)
	iv. Second reexam (90/007,858)
	v. '985 prosecution history (10/217,955)

	d. Cited prior art

	2. Defendants' extrinsic evidence
	a. Dictionaries
	b. Testimony

	B. "workstation"
	1. Defendants' intrinsic evidence
	a. Claims
	b. Specification (all cites to '906 patent)
	c. Prosecution history
	i. '906 prosecution history (08/324,443)
	ii. Abandoned application (09/075,359)
	iii. Second reexam (90/007,858)

	d. Cited prior art

	2. Defendants' extrinsic evidence
	a. Dictionaries
	b. SGI's 10-K report on Sept. 28, 1994

	C. "network server"
	1. Defendants' intrinsic evidence
	a. Claims
	b. Specification (all cites to '906 patent)
	c. Prosecution history
	i. '906 prosecution history (08/324,443)
	ii. First reexam (90/006,831)
	iii. Interference 105,563 McK
	iv. Second reexam (90/007,858)
	v. '985 prosecution history (10/217,955)

	d. Cited prior art

	2. Defendants' extrinsic evidence

	D. "executable application"
	1. Defendants' intrinsic evidence
	a. Claims
	b. Specification (all cites to '906 patent)
	c. Prosecution history
	i. '906 prosecution history (08/324,443)
	ii. First reexam (90/006,831)
	iii. '985 prosecution history (10/217,955)

	2. Defendants' extrinsic evidence
	a. Dictionaries
	b. Testimony

	E. "object"
	1. Defendants' intrinsic evidence
	a. Claims
	b. Specification (all cites to '906 patent)
	c. Prosecution history
	i. '906 prosecution history (08/324,443)
	ii. Abandoned application (09/075,359)
	iii. First reexam (90/006,831)
	iv. Second reexam (90/007,858)

	d. Cited references

	2. Defendants' extrinsic evidence

	F. "type information"
	1. Defendants' intrinsic evidence
	a. Claims
	b. Specification (all cites to '906 patent)
	c. Prosecution history
	i. '906 prosecution history (08/324,443)
	ii. Abandoned application (09/075,359)
	iii. First reexam (90/006,831)
	iv. Second reexam (90/007,858)
	v. '985 prosecution history (10/217,955)

	d. Cited prior art

	G. "file"
	1. Defendants' intrinsic Evidence
	a. Claims
	b. Specification (all cites to '906 patent)
	c. Prosecution history
	i. '906 prosecution history (08/324,443)
	ii. First reexam (90/006,831)
	iii. '985 prosecution history (10/217,955)

	2. Defendants' extrinsic evidence

	H. "hypermedia document" / "distributed hypermedia document" / "file containing information"
	1. Defendants' intrinsic evidence
	a. Claims
	b. Specification (all cites to '906 patent)
	c. Prosecution history
	i. '906 prosecution history (08/324,443)
	ii. Abandoned application (09/075,359)
	iii. First reexam (90/006,831)
	iv. Interference 105,563 McK
	v. Second reexam (90/007,858)
	vi. '985 prosecution history (10/217,955)

	2. Defendants' extrinsic evidence

	I. "text format" and "embed text format"
	1. Defendants' intrinsic evidence
	a. Claims
	b. Specification (all cites to '906 patent)
	c. Prosecution history
	i. '906 prosecution history (08/324,443)
	ii. First reexam (90/006,831)
	iii. Interference 105,563 McK
	iv. Second reexam (90/007,858)
	v. '985 prosecution history (10/217,955)

	d. Cited prior art

	J. "first location" (in various contexts)
	1. Defendants' intrinsic evidence
	a. Claims
	b. Specification (all cites to '906 patent)
	c. Prosecution history
	i. '906 prosecution history (08/324,443)
	ii. Abandoned application (09/075,359)
	iii. First reexam (90/006,831)
	iv. Second reexam (90/007,858)
	v. '985 prosecution history (10/217,955)

	2. Defendants' extrinsic evidence

	K. "distributed application"
	1. Defendants' intrinsic evidence
	a. Claims
	b. Specification (all cites to '906 patent)
	c. Prosecution history
	i. '906 prosecution history (08/324,443)
	ii. Second reexam (90/007,858)
	iii. '985 prosecution history (10/217,955)

	d. Cited prior art

	2. Defendants' extrinsic evidence

	L. "computer program product . . ." / "computer readable media . . ."
	1. Defendants' intrinsic evidence
	a. Claims
	b. Specification (all cites to '906 patent)
	c. Prosecution history
	i. '906 prosecution history (08/324,443)

	2. Defendants' extrinsic evidence

	M. pars[e/es/ed/ing]
	1. Defendants' intrinsic evidence
	a. Claims
	b. Specification (all cites to '906 patent)
	c. Prosecution history
	i. '906 prosecution history (08/324,443)
	ii. First reexam (90/006,831)
	iii. '985 prosecution history (10/217,955)

	2. Defendants' extrinsic evidence

	N. "identify an embed text format" (in various contexts)
	1. Defendants' intrinsic evidence
	a. Claims
	b. Specification
	c. Prosecution history
	i. '906 prosecution history (08/324,443)
	ii. First reexam (90/006,831)
	iii. Interference 105,563 McK
	iv. '985 prosecution history (10/217,955)

	2. Defendants' extrinsic evidence

	O. "specifies the location of at least a portion of [an / said] object"
	1. Defendants' intrinsic evidence
	a. Claims
	a. Specification (all cites to '906 patent)

	2. Defendants' extrinsic evidence

	P. Defendants' proposed corresponding structure(s)/act(s) for § 112, ¶ 6

