Eolas Technologies Incorporated v. Adobe Systems Incorporated et al Doc. 537 Att. 13

Exhibit M

Dockets.Justia.com

http://dockets.justia.com/docket/texas/txedce/6:2009cv00446/118976/
http://docs.justia.com/cases/federal/district-courts/texas/txedce/6:2009cv00446/118976/537/13.html
http://dockets.justia.com/

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Patent No.: 5,838,906

Issued: November 17, 1998

Filed: October 17, 1994

Assignee: Regents of the University of California

For: DISTRIBUTED HYPERMEDIA METHOD FOR AUTOMATICALLY

INVOKING EXTERNAL APPLICATION PROVIDING INTER-
-~ ACTION AND DISPLAY OF EMBEDDED OBJECTS WITHINA
HYPERMEDIA DOCUMENT

REQUEST FOR EX PARTE REEXAMINATION

UNDER 35 U.S.C. § 302 AND 37 C.F.R. §1.510

Mail Stop Ex Parte Reexam December 22, 2005
Commissioner for Patents

P.O. Box 1450

Alexandria, VA 22313-1450

Dear Sir:

Reexamination of U.S. Patent No. 5,838,906 (“‘the ‘906 patent”; copy attached in
double column format as Exhibit A) is requested pursuant to 35 U.S.C. § 302 and 37 C.F.R.
§ 1.510 based on the prior art printed publications cited herein. Copies of the cited references
are attached as Exhibits to this Request. Because the filing date of the '906 patent is prior to
November 29, 1999, the statutory inter partes reexamination option is not available, and
therefore ex parte reexamination is requested. (See MPEP § 2601.) The ‘906 patent is still in
force. In accordance with 37 C.F.R. §§ 1.33(c) and 1.510(b)(5), this request is being served in its

entirety on the attorney of record in the ‘906 patent.

EOLASTX-0000003737

I. INTRODUCTION

The patent owner has compromised the pending Director-instituted reexamination

of the ‘906 patent (control no. 90/006,831, “the ‘831 reexamination”) by failing to tell the

Examiner about prior art in its possession that would have materially changed the prior art

landscape in front of the Examiner. The patent owner has prior art that (1) fills in the gaps

perceived by the Examiner in the art before him, (2) invalidates each of the claims of the patent,

and (3) refutes contentions made by the patent owner and its expert to the Examiner. The present
reexamination request places this previously unconsidered art before the Examiner for

__ consideration, thereby presenting substantial new questions of patentability.
The Withheld Art Fills in Gaps Noted by the Examiner

The patent owner possessed but failed to tell the Examiner about a prior art

reference (Exhibit B, hereinafter “Janssen,” which was a public posting to the www-falk email

list) that fills in the gaps the Examiner noted in Raggett II (Exhibit C, hereinafter “Raggett 1I”°).
The withheld Janssen prior art reference could hardly be more closely tied to Raggett II. The
Janssen reference responded to and incorporated the Raggett II reference, quoting parts of it, and
expanded upon it in ways that provide precisely what the Examiner deemed to be missing from
Raggett II.

There is no doubt that the patent owner was aware of this Janssen reference that
expands upon Raggett II. Exhibit B is a bates numbered version of the Janssen posting, which
was provided to the patent owner long ago during its patent infringement action against
Microsoft Corporation (No. 99-626, N.D. Ill.). Yet, there is no indication in the public record that
the patent owner brought this key reference to the Examiner’s attention.

This previously unconsidered Janssen posting is highly material because it fills
each perceived gap identified by the Examiner in the Raggett II posting, and refutes positions the
patent owner took with respect to the Raggett II posting. For example, the Examiner agreed with
the patent owner that the art taught away from combining the Toye prior art patent with Raggett

2

Request for Reexamination of
Patent No. 5,838,906

EOLASTX-0000003738

II and the other cited art. The Janssen reference, however, completely fills this gap because it

explicitly incorporates, responds to, and expands upon the Raggett II posting. In other words,

the Janssen posting does not merely teach the combination with Raggett II that the Examiner

found lacking; it effects and constitutes that combination.

The Withheld Prior Art Invalidates the ‘906 Patent Claims

In addition to filling in the gaps noted by the Examiner, the Janssen reference

discloses each other limitation in the broader claims. When understood in the context of the

software systems it expressly concerns (e.g., the Mosaic browser and X Window System), the

e ‘006 pate

related art and Raggett II, it establishes a prima facie case of obviousness of claims 1 and 6; and,

combined with other related prior art, it renders obvious the remaining claims. As such, the

Janssen posting raises substantial new questions of patentability.

The patent owner also withheld an important prior art publication co-authored by
two of the patent applicants. Specifically, patent applicants Doyle and Ang (with others) co-
authored a publication, dated before the critical date, describing a version of the “Visible Embryo
Project” software shown in Figure 9 and discussed at length in the ‘906 patent. This withheld
prior art publication describes the project’s application software as being distributed between a
client workstation and another computer connected over a network, with ongoing communication
between the client workstation and the network computer as recited in at least claims 4, 5, 9, and
10 of the ‘906 patent. Despite being co-authored by two of the three patent applicants, being
described in part in the ‘906 patent, and being published more than one year before the
application filing date, the patent owner did not submit this prior art publication to the Patent
Office.

| To illustrate the importance of these withheld Janssen and Doyle-Ang references,

the following features chart summarizes two approaches to mapping prior art to claims 1-10 of

Request for Reexamination of
Patent No. 5,838,906

EOLASTX-0000003739

the ‘906 patent. Detailed claim charts are included at the end of this request for ex parte

reexamination.
Feature Prior Art
browser (all claims) Janssen OR Mosaic Admitted Prior Art (“APA”)
(as part of combination)
launching separate executable application Janssen OR Mosaic APA (as part of
(all claims) combination)
EMBED tag (all claims) Janssen OR Raggett H{as part of combination)

automatic invocation of separate application | Janssen OR Raggett II (as part of combination)
(all claims)

in-line display in browser of foreign-format | Janssen OR Raggett II (as part of combination)
data (all claims)

interactive processing of foreign-format data | Janssen OR Janssen (as part of combination)
(all claims)

interactive control of separate-application X-Window System-art (as part of combination)—
via ongoing inter-process communication
(claims 2-5 and 7-10)

distributing separate application between Doyle-Ang reference about Visible Embryo
client and server (claims 4, 5, 9, and 10) Project software (as part of combination)

Table 1: Summary of Prior Art Mappings
The Withheld Prior Art Refutes Positions Taken by the Patent Owner

These previously unconsidered prior art references (Janssen and Doyle-Ang)
relate to software for the X Window System, just like the Raggett II prior art reference and the
embodiments described in the ‘906 patent. A person of ordinary skill in the art necessarily
would have read and understood these prior art references in the context of software for the X
Window System, including the Mosaic browser and other available applications for the X
Window System. Therefore, to set the necessary technical background for a proper |
understanding of these X Window System/Mosaic prior art references, Requester submits
herewith further prior art references that document the capabilities of the X Window System and
of certain interactive Mosaic helper applications (also called external viewers or simply viewers)

available for the X Window System in September 1993. Section IV provides citations to some

Request for Reexamination of
Patent No. 5,838,906

EOLASTX-0000003740

specific portions of this extensive documentation that are relevant to the claims of the ‘906

patent.

The patent owner gave the Examiner none of this necessary background

information. Instead, it made assertions to the Examiner that could not have been made had it

provided the documentation now submitted by the Requester.

For example, in the ‘831 reexamination, the patent owner and its expert purported

to summarize the state of the art for Mosaic browser technology and Mosaic helper applications.

(See, e.g., Response received October 12, 2004, pages 1, 5-7, 11-13, and 15; Response received

99 18-20; and Declaration of Edward Felten signed May 7, 2004, 4 8-11, 16, 26, 31, 33, 36-55,

60, and 61.) They urged that the Raggett materials describe a browser operating with non-

interactive rendering applications, which would simply return a static image when invoked, and

then terminate. They did not tell the Examiner, however, that several interactive helper
applications (such as Xv, Xdvi, and Ghostview) were default helper applications for Mosaic in
September 1993. These helper applications by default provide interactive, continuing processing
of image data, as opposed to processing in which a viewer starts, accepts a file by standard input,
and feturns a static image, with no interactivity. The submitted interactive helper application
documentation and other background X Window System documentation, which the patent owner
and its agents failed to submit to the Patent Office, call into question the completeness and
accuracy of representations of the patent owner and its agents.

In sum, by providing a more complete prior art landscape that the patent owner
chose not to present, the present reexamination request fills in the perceived prior art gaps noted
by tI;e Examiner in the pending reexamination, and presents several substantial and compelling

new questions of patentability.

Request for Reexamination of
Patent No. 5,838,906

EOLASTX-0000003741

the only independent claims. Claims 1-5 are method claims, and each of claims 2-5 depends

consecutively from the preceding claim. Claims 6-10 are apparatus counterparts to claims 1-5,

respectively. None of apparatus claims 6-10 is patentably distinct from its counterpart method

claim, as admitted by the applicants during prosecution. (See Amendment mailed June 2, 1997,

in the ‘906 patent file history, page 26 (the apparatus claims are “of the same scope as claims 1-

57); see also Office action mailed February 26, 2004, in the “831 reexamination, pages 7 and 9.)

III. PROCEDURAL BACKGROUND

The original application for the “906 patent was filed on October 17, 1994, as U.S.
Patent Application Serial No. 08/324,443. The '906 patent is assigned to The Regents of the
University of California ("The Regents") and is exclusively licensed to Eolas Technologies
Incorporated ("Eolas"). Eolas and The Regents are pursuing a patent infringement action against
Microsoft Corporation. (No. 99-626, N.D. I11.) Certain aspects of this case have been
considered by the Court of Appeals for the Federal Circuit. See Eolas Techs. Inc. v. Microsoft
Corp., 399 F.3d 1325 (Fed. Cir. 2005).

The Patent Office instituted the ‘831 reexamination on October 30, 2603.
Initially, it rejected claims 1-3 and 6-8 of the ‘906 patent as being unpatentable over a
combination of prior art including the Raggett II posting and Mosaic browser technology
admitted to be prior art (“APA Mosaic”). The Patent Office added two other references to reject
claims 4, 5, 9, and 10. The patent owner’s admissions concerning prior art appear in'the ‘906
patent itself as well as in various patent owner submissions to the Patent Office during the ‘831

reexamination.

Request for Reexamination of
Patent No. 5,838,906

EOLASTX-0000003742

The Patent Office considered at length the Raggett II reference in the 831

reexamination. Raggett IT is a message entitled “HTML+ support for eqn & Postscript,”

authored by Dave Raggett and distributed to subscribers of the www-talk email list on June 14,

1993. The www-talk email list was a public, archived, and indexed discussion forum, whose

contents were widely disseminated and publicly available on the Internet prior to the October 17,

1993, critical date of the ‘906 patent. The Raggett Il posting thus qualifies as prior art against

the ‘906 patent as a printed publication under 35 U.S.C. § 102(b). (M.P.E.P. § 2128.)

The Mosaic web browser application was itself (or “natively”) able to display and

supplementing a Mosaic browser in order-to support data in a format that is “foreign” to the

browser. It describes using an “EMBED” tag “to embed foreign-formats inline in the HTML+

source” (Ex. C, page 1), and gives the following example:

<H2>A example of an equation</H2>
<EMBED TYPE=“text/eqn’>zeta (s) ~=~ sum from k=1 to inf
k sup —s~~ (Re s > 1) < EMBED>

d.)

Raggett II describes the foreign-format data as being either internal or external to
the HTML document. The above example shows the former, in which equation data'is internally
embedded within the EMBED tag. Or, “you can also put the foreign data in a separate file
referenced by a URL.” (Ex. C, pages 1 and 2.) Thus, Raggett II describes the EMBED tag in an
HTML+ document including a URL that specifies the location of foreign data external to the
HTML+ document.

Whether internal or external, the foreign-format data in Raggett II has type
information associated with it. The Mosaic browser uses this type information to identify the

format of the data. In the above quoted example set forth in Raggett II, the browser identifies the

Request for Reexamination of
Patent No. 5,838,906

EOLASTX-0000003743

format of the data from the “TYPE” attribute — “TYPE=text/eqn”. (Ex. C, page 1.) In this

example, the type attribute is “specified as a MIME content type.” (/d.)

Once the foreign format is identified using the associated type information, a

program needs to be identified that is capable of processing data in that format. Raggett II

describes several techniques for doing this. The one of most interest here is to automatically

invoke a separate program (i.e., a program other than the browser) for processing the data, which |

separate program is associated with the foreign-format data’s type information. As a specific

example of this technique, Raggett II describes a separate application “that take[s] a sequence of

separate program that can process the foreign-format data (“API for rendering foreign formats™)

and elaborates:

code at all. All you would need is a way of b1nd1ng the MIME content type to the
function name for that format, e.g., via X resources or a config file. The functions
could be implemented as separate programs driven via pipes and stdin/stdout or as
dynamically linked library modules (Windows DLLs).

(Id)

In the ‘831 reexamination, the Examiner agreed with the patent owner that
Raggett II was lacking in an important respect. Specifically, the Examiner found that Raggett II
was limited to invoking separate programs that translated the foreign-format data once, returned
to the browser a static image, and then terminated. In other words, the Examiner determined that
Raggett II did not disclose or suggest the separate program continuing to run to allow interactive
processing of the foreign-format data.

What Eolas did not tell the Examiner, however, is that interactive Moeaic “helper”
applications were common in the prior art. As described below, these undisclosed interactive
programs, separate from the Mosaic browser, were designed to continue running and enable
interactive processing and display of data. Indeed, the Janssen expansion of Raggett II describes

8

Request for Reexamination of
Patent No. 5,838,906

EOLASTX-0000003744

a technique for invoking such interactive programs. Thus, the patent owner’s characterization of

the separate programs available to the Mosaic browser, as contemplated in Raggett II, was at best

incomplete and at worst misleading.

Without the benefit of a proper prior art landscape, on September 28, 2005, the

PTO mailed a Notice of Intent to Issue Ex Parte Reexamination Certificate confirming the

patentability of the ‘906 patent claims.

IV.SUMMARY OF THE PRIOR ART

The prior art describes what the ‘906 patent claims. For example, it describes

what the ‘831 reexamination Examiner, provided with an incomplete and misleéding description

demonstrates, knew of the availability of interactive Mosaic helper applications and therefore

understood Raggett II quite differently than how the patent owner presented the prior art to the
Patent Office Examiner. Below is a sumrhary of previously unconsidered prior art demonstrating

that the ‘906 patent claims what was already known in the art.

A. The Janssen Posting

On June 14, 1993, Bill Janssen and Dave Raggett held a public conversation over
the Internet about techniques for doing what the ‘906 patent later claimed.

Within hours of its posting, Mr. Janssen publicly responded to Raggett II with a
message he distributed to subscribers of the www-talk email distribution. For the same reasons
that the Raggett II posting qualifies as prior art, the Janssen posting qualifies as prior art under 35

U.S.C. § 102(b).!

! Both postings were made to the WWW-Talk email list, which is a public, archived and indexed

discussion forum whose participants included those who were developing and standardizing

Internet technologies at the time (e.g., Marc Andreessen, who led development of the Mosaic

browser). The postings were widely disseminated and publicly available through the Internet

and through other means at least from June 14, 1993, and they continue to be available on-line at
9

Request for Reexamination of
Patent No. 5,838,906

EOLASTX-0000003745

The Janssen posting (“Janssen”) is “In reply to” the message “Dave Raggett:

‘HTML+ support for eqn & Postscript.’,” which is the Raggett II posting. (Ex. B.) Janssen

quotes Raggett II:

> Browsers can then be upgraded to display new formats without changing their

> code at all. All you would need is a way of binding the MIME content type

> to the function name for that format, e.g. via X resources or a config file.

> The functions could be implemented as separate programs driven via pipes and
; ro Aduvnamien ko thraryv - moad oo (T ina

(Id.)

Janssen first affirms the quoted content of Raggett Il — “Yes, that sounds good.”

Then Janssen expands upon Raggett I1:

My favorite way to handle this is to have the browser create and manage an X
sub-window over the area where the inset is to be displayed, and pass the window
ID of the sub-window to the subprogram which understands the inset format, with
the understanding that that program is to handle all events and refresh on the sub-
window, but the browser gets to handle configuration and window movement.

(Id)
“My favorite way to handle this”: With this language, Janssen acknowledges

the functionality described in the Raggett Il posting and introduces an alternative mechanism for

implementing such functionality.

http://ksi.cpsc.ucalgary.ca/archives/'WWW-TALK/www-talk-1993q2.index.html and elsewhere.
As such, they constitute “printed publications” within the meaning of 35 U.S.C. § 102(b) because
each was a “contribution” to “electronic bulletin boards, message systems, and discussion lists”
that were “accessible to persons concerned with the art to which the document relates” when
they were posted to the WWW-Talk list. (See M.P.E.P § 2128, which provides, in the section
entitled “ELECTRONIC PUBLICATIONS AS PRIOR ART: Status as a ‘Printed Publication,””
that “An electronic publication, including an on-line database or Internet publication, is
considered to be a ‘printed publication’ within the meaning of 35 U.S.C. § 102(a) and (b)
provided the publication was accessible to persons concerned with the art to which the document
relates.”) The Raggett [I and Janssen postings enjoy prior art effect from the date of their posting
(i.c., June 14, 1993). (See M.P.E.P. § 2128, which provides, in the section entitled
“ELECTRONIC PUBLICATIONS AS PRIOR ART: Date of Availability,” that “Prior art
disclosures on the Internet or on an on-line database are considered to be publicly available as of
the date the item was publicly posted.”)

10

Request for Reexamination of
Patent No. 5,838,906

EOLASTX-0000003746

“is to have the browser create and manage an X sub-window over the area

where the inset is to be displayed”: With this language, Janssen describes the browser creating

a new window (“X sub-window”) for display of the foreign-format (“inset format™) data. With

this language, Janssen also describes the browser placing the sub-window inline with the rest of

the data being displayed by the browser (“over the area where the inset is to be displayed™); i.e.,

the sub-window is placed at a location “inset” in the browser-controlled window.

“and pass the window ID of the sub-window to the subprogram which

understands the inset format”: With this language, Janssen describes how the browser hands

data in the foreign format. Specifically, the browser provides this separate program with a

resource identifier (“window ID”’) that the sub-program uses to identify the sub-window for two

purposes, which are described next.

“with the understanding that that program is to handle all events and refresh
on the sub-window”: With this language, Janssen reinforces that the separate program handles
everything within the sub-window relating to interactive processing and display of the foreign-
format data. Specifically, the separate program handles all keystrokes, all mouse button presses,
all messages that the sub-window has becbme exposed, and all other events on the sub-window
(“handles all events™). In other words, the separate program is not one that simply performs a
translation and then terminates and disappears. On the contrary, Janssen describes this sub-
program as one that takes over from the browser all event-handling throughout the life of the
sub-window. Aside from event handling, the sub-program uses the window ID to identify the
sub-window when drawing or redrawing (“handle all ... refresh”) to the display.

“but the browser gets to handle configuration and window movement”: With
this language, Janssen further reinforces that the browser and separate program are operating side
by side, with the browser handling two functions in relation to the sub-window. The browser
handles the movement and the configuration of the sub-window within the browser-controlled

11

Request for Reexamination of
Patent No. 5,838,906

EOLASTX-0000003747

window, leaving foreign-format data processing and refresh operations on the sub-window to the

separate program. Thus, when the browser changes the position, size, or border of the sub-

window (“configuration and window movement”), the sub-window retains its place in the Web

page display.

The above reading of the plain language of Janssen is confirmed by the state of

the art in mid 1993. In particular, it is confirmed by the availability of interactive helper

applications for Mosaic in the X Window System environment (e.g., Xv and Ghostview) as

described below. In other words, the X Window System documentation and interactive helper

Examiner, demonstrate conventional ways of doing what Janssen describes. As this patent

owner has said, the hypothetical person of ordinary skill in the art “does things in a conventional

way.” (Response received October 12, 2004, page 25.)

B. Interactive Mosaic Helper Applications / External Viewers

In September 1993, the Mosaic browser running in the X Window System
environment was designed to deal with certain foreign-format data by launching a pré-designated
helper application associated with the particular foreign format encountered by the browser. For
example, for data in the ‘ps’ format, the browser’s default was to launch the Ghostscript
application. This functionality is described in detail below.

Many of these helper applications were interactive. Once launched, they stayed
running and handled the user’s interactions with the particular data type in which they
specialized. This functionality is detailed-below for three different prior art interactive helper

applications.

Mosaic’s Launching of Helper Application Based On Particular Data Type Encountered
As noted, prior art versions of the Mosaic browser for the X Window System
automatically associated particular helper applications with foreign-format data types by default.
12

Request for Reexamination of
Patent No. 5,838,906

EOLASTX-0000003748

Prior art Exhibits D — H documented this functionality for two prior art versions of Mosaic —

version 1.2 and version 2.0 prerelease 4, as described below.

Mosaic 1.2: Source code and documentation for Mosaic 1.2 for the X Window

System are prior art because they were available for download by anonymous file transfer

protocol (“FTP”) download at least as early as June 1993. (Ex. D.) Exhibit E shows the contents

of a compressed archive file entitled, “xmosaic-1.2.tar.z.” The compressed archive file includes

a file entitled, “xresources.h,” which was used to provide certain settings for XMosaic 1.2. (Ex.

E.) Among other things, the xresources.h file associated external viewers with the following

%eioﬁheﬂl&xmsome&h)%

Data Type External Viewer
gif XV
jpeg Xv
tiff Xv
dvi Xdvi
mpeg mpeg_play

Table 2: Viewers Launched for Data Types in Mosaic 1.2

Mosaic 2.0, prerelease 4: Source code and documentation for Mosaic 2.0
prerelease 4 were available for download by anonymous FTP download in September 1993. (Ex.
F, page 1.) In Mosaic 2.0 prerelease 4, the mechanism for associating data types with external
viewers was changed to one in which MIME types map to viewers. (Ex.F, pages 1-2.) The
mappings for file extensions, MIME typeé, and viewers were customizable. (/d.) Viewers were
not just for images. Users could associate MIME types for other kinds of content (e.g., video
animations, scientific data) with applications appropriate for the content. By default, however,

certain file extensions were mapped to MIME types, as shown in the following table. (Ex. G.)

File Extension MIME Type
.ps application/postscript
.gif image/gif
tif or tiff image/x-tiff
13

Request for Reexamination of
Patent No. 5,838,906

EOLASTX-0000003749

Jpg or .jpeg image/jpeg

T gb imagc/ x-rs‘o
.mpg or .mpeg video/mpeg

dvi application/x-dvi

Table 3: Default File Extension to MIME Type Mappings in Mosaic 2.0 Prerelease 4

xhibit H shows defau ypes in

i

mappings to viewers, including the following mappings. (Ex. H.)

MIME Type External Viewer
image/* Xv
video/mpeg Mpeg play
application/postscript | Ghostview
application/x-dvi Xdvi

Table 4: Default MIME Type to Viewer Mappings in Mosaic 2.0 Prerelease 4

In sum, Exhibits D — H establish that prior art Mosaic for X Window System browsers

encountered while parsing an HTML document. As shown above, these helper applications
included Xv and Ghostview, each of which was interactive as described below. (Xdvi was also
interactive but is not addressed at this time.)

1. Xv: “Interactive Image Display for the X Window System.”

Xv is a prior art application that was invoked by Mosaic for interactive
manipulation of GIF, JPEG, TIFF, and X11 format images. Requester submits prior art
documentation for two versions of this program. (Exs. I, J, and K.)

The software Xv version 2.2 is described in the Xv 2.2 manual entitled,
“Xvdocs.ps.x.” (Ex. 1) The Xv 2.2 manual is dated April 24, 1992, and included in the archive
“Xv-2.21.tar.” In addition to the Xv 2.2 manual, Exhibit I includes printouts showing the
contents of “Xv-2.21.tar.”

Xv version 3.0 is described in the Xv 3.0 manual entitled, “deocs.pé.x.” (Ex.J.)

The Xv 3.0 manual is dated April 26, 1993, and included in the archive “Xv-3.00.tar.” In

14

Request for Reexamination of
Patent No. 5,838,906

EOLASTX-0000003750

iti Xv3.0m ibit J includes prin howing the contents of “Xv-
3.00.tar.” Exhibit K is a www-talk posting describing the availability of Xv 3.0 in April 1993.

Xv versions 2.2x and 3.0 were publicly distributed before October 17, 1993, and

their distributions included the Xv 2.2 and 3.0 manuals. The Xv 2.2 manual and Xv 3.0 manual

qualify as prior art against the ‘906 patent as printed publications under 35 U.S.C. § 102(b).

They also provide evidence of how the J anssen and Raggett II postings would have been

understood prior to October 17, 1993.

According to the title pages for the manuals, Xv 2.2 and 3.0 provided “Interactive

page of the Xv 3.0 manual.) “Xv is an interactive image manipulation program for the X

Window System.” (Ex. I, page 2 of the Xv 2.2 manual; Ex. J, page 3 of the Xv 3.0 manual.) The

manuals describe Xv operating on images in numerous formats, including GIF, JPEG, TIFF, and

X11 bitmap formats. (Id.) For an image displayed in a window on the screen, Xv versions 2.2
and 3.0 allowed a user to stretch, rotate, flip, or crop the image, magnify a portion of the image,
or adjust colors of the image. (I/d.) In other words, Xv versions 2.2 and 3.0 allowed ongoing
real-time manipulation and control of the image, resulting in changes to the displayed image.
The Xv 2.2 and 3.0 manuals describe a user interacting with the Xv software to
change what was displayed using the Xv controls window. The Xv controls window “contains
controls to resize the current image, flip and rotate it, load and save different files, and bring up
the other Xv windows.” (Ex. J, page 8 of the Xv 3.0 manual; see also Ex. I, page 6 of the Xv 2.2

manual.) The following figure shows an Xv controls window for Xv 3.0.

15

Request for Reexamination of
Patent No. 5,838,906

EOLASTX-0000003751

ypltargif
Jupiterdg

(Id.) Commands for resizing, rotating/flipping, smoothing, or cropping are “executed by either
clicking the appropriate command button, or typing the keyboard equivalent (where given) into
any open Xv window.” (/d.) Thus, Xv 2.2 and 3.0 accepted keyboard input into the Xv controls
window and the Xv window in which the image was displayed.

Xv 2.2 and 3.0 accepted various command line options. (Ex. I, pages 38-46 of the
Xv 2.2 manual; Ex. J, pages 57-71 of the Xv 3.0 manual.) For Xv 3.0, the “-viewonly”
command line option is described as “For use when calling Xv from some other program.
Forces all user input to be ignored.” (Ex. J, page 69.) The “-viewonly” option was not offered in
Xv 2.2. In Xv 3.0, it was not the default setting. In any case, if Xv 3.0 were to handle all events

in an Xv window, the calling program would not use the “-viewonly” option.

16

Request for Reexamination of
Patent No. 5,838,906

EOLASTX-0000003752

The “-” command line optfon is described as follows: “[s]pecifying ‘-’ all by itself

tells Xv to take its input from stdin, rather than from a file. This lets you put Xv on the end of a

Unix pipe.” (Ex. I, page 46; Ex. J, page 71.) Whether accepting input from a file or from stdin,

however, Xv 2.2 and 3.0 by default allowed interactive manipulation of the image.

Thus, the Xv 2.2 and 3.0 manuals describe Xv accepting an image file as input

and drawing/redrawing an image. Xv was interactive. The Xv 2.2 and 3.0 manuals describe

ongoing interactive processing of the image data as keystrokes and button inputs were handled

by the Xv software.

2. Ghostview: Previewer for Postscript Files

Ghostview is a prior art application that was invoked by Mosaic for interactive

display and manipulation of postscript files. Requester submits prior art documentation for this

prior art helper application. (Ex. L.)

The manual in the file entitled “Ghostview.ps” (Ex. L) describes Ghostview
version 1.5. The Ghostview manual is included in the archive “Ghostview-1.5.tar.gz,” which
indicates Ghostview.ps was last modified on July 25, 1993. Ghostview 1.5 was publicly
distributed before October 17, 1993, and its distributions included the Ghostview manual. (See
Ex. L, page 1.) The Ghostview manual qualifies as prior art against the ‘906 patent as a printed
publication under 35 U.S.C. § 102(b); it also provides evidence of how the Janssen and Raggett
IT postings would have been understood prior to October 17, 1993. Exhibit L includes the
Ghostview manual as well as printouts showing a directory listing of an FTP site and the
contents of “Ghostview-1.5.tar.gz.” Exhibit L also includes a printout of the “README” file
from “Ghostview-1.5.tar.gz.” The README file is dated July 25, 1993, and indicates:

Ghostview-1.5 is available via anonymous ftp from:
prep.ai.mit.edu:/pub/gnu/ghostview-1.5.tar.gz
ftp.cs.wisc.edu:/pub/X/ghostview-1.5.tar.gz

(Ex. L, page 19, which is page 1 of the Ghostview 1.5 README file.)
- 17

Request for Reexamination of
Patent No. 5,838,906

EOLASTX-0000003753

Ghostview 1.5 provided an X Window System interface for Ghostscript, an

interpreter program for postscript files. (Ex. L, page 1 of the Ghostview 1.5 manual.) The

Ghostview manual describes Ghostview 1.5 and Ghostscript functioning as two cooperating

programs, with Ghostview creating a viewing window and Ghostscript drawing in it. (/d.)

The Ghostview manual describes Ghostview 1.5 as having a main viewport (for

displaying an image) and a menu box with buttons for bringing up menus. (Ex. L, péges 1-2 of

the Ghostview manual.) The menus included a “page” menu for changing pages, a “magstep”

menu for changing view magnification, and an “orientation menu” for changing orientation.

keyboard input caused scrolling of the main viewport window up, down, left, or right. (Ex. L,

pages 4-5 of the Ghostview manual.) Clicking a mouse button anywhere within the viewport

window caused a zoom window to pop up. (Ex. L, page 1 of the Ghostview manual.)

The Ghostview manual describes Ghostview 1.5 accepting a postscript file as
input and causing drawing/redrawing of an image (in cooperation with Ghostscript). It also
describes, however, Ghostview 1.5 handling keystrokes and button inputs for ongoing interactive
processing of the image. |

Ghostview 1.5 was invoked with the name of the file to be previewed as a
parameter. (/d.) Alternatively, Ghostview read from stdin if the filename was “-.” (/d.) Either
way, Ghostview 1.5 provided tools for interactive manipulation of the image.

Ghostview 1.5 passed the window ID of a window to Ghostscript, for Ghostscript
to draw an image to the window. The window ID passing mechanism is detailed below in the

section about communication between X Clients in the X Window System.

C. X Window System
The Janssen posting must be understood in context. It relates to software for the

X Window System. For this reason, Requester also submits sections of two prior art books about
18

Request for Reexamination of
Patent No. 5,838,906

EOLASTX-0000003754

the X Window System. (Exs. M and N.) Exhibit M includes chapters from Douglas Young, The

X Window System, Programming and Applications with Xt (1990). Exhibit N includes chapters

from Adrian Nye, Xlib Programming Manual for Version 11 (1990). Each of these books

qualifies as prior art against the ‘906 patent as a printed publication under 35 U.S.C. § 102(b).

1. Overall Architecture

The Janssen posting uses the terms “X sub-window” and “window ID of the sub-

window.” These terms of art must be understood in the context of the X Window System.
X Server software runs on a machine with a display, a keyboard, and a mouse.

Mosaic and Mosaic helper applications for the X Window System are X Clients.

The X Server stores data on behalf of X Clients and often shares the data between

the X Clients. (Jd.) The X Server provides identifying information for resources (e.g., window

IDs for windows), and multiple X Clients can access the stored data with the identifying
information. (/d.)

“Windows” in the X Window System are hierarchically organized according to
parent-child relationships. (Ex. M, 1.5; Ex. N, 2.1.3, 2.2, and 2.4.) The root window of the
hierarchy covers a whole display and has one or more child windows. (/d.) A child window is
also called a sub-window. (/d.) Each window is identified by a window ID. (/d.)

As for communication, an X Client sends “requests” to the X Server (e.g., to
request information from the X Server or request that the X Server draw something). (Ex. M,
1.4; Ex. N, 1.3.) The X Server may send “replies” in response. The X Server also sénds
“events” to X Clients. (Ex. M, 1.6; Ex. N., 1.3)

2. Events

The Janssen posting uses the language “handles all events and refresh on the sub-
window.” This language must be understood in the context of “events” in the X Window
System.

19

Request for Reexamination of
Patent No. 5,838,906

EOLASTX-0000003755

The X Server sends “events” to an X Client when the X Server receives keystroke

or mouse input directed to a window of the X Client. (Ex. M, 5.1 and 5.3; Ex. N, 2.5.1.) Other

events relate to changes to the display or messages used for inter-client communication. (/d.) A

third category of events are change notifications received by an X Client, for example, when the

position, size, or border of a window of the X Client has changed. (Ex. M, 5.3.7.)

Typically, the X Server directs user input events to the window having user input

focus. (Ex. M, 5.1; Ex. N, 2.5.2.) An X Client can change which windows receive which events

through various mechanisms, and an X Client can change the windows for which it receives

which types of events are to be delivered to the X Client and which are to be ignored. (/d.)

For most event types, a particular event is sent to more than one X Client if each

of the X Clients has selected the appropriate event type on the window in question. (/d.) Each

of the X Clients has its own “event mask” for such a window. (/d.) If it has the window ID of
the window, an X Client selects the event types for events it should receive and calls the function
XSelectInput(), passing the window ID and the event mask. (/d.) The X Server routes events to
interested X Client(s) according to the event mask(s). (/d.)
3. Communication Between X Clients

The Janssen posting describes interactions between the browser and subprogram
(“pass the window ID” and “the understanding that the program is to handle ... but the browser
gets to handle ...”). This language must be understood in the context of communication in the X
Window System.

In the X Window System, mechanisms for inter-client communication include
environment variables and properties, coby and paste using selections, buffering of data with X
Server, command line options, and events. (Ex. M, 11.)

An X Client can use an environment variable to pass data to another X Client.
For example, Exhibit O shows a file entitled “gs.interface” from the archive file “Ghostview-

. 20

Request for Reexamination of
Patent No. 5,838,906

EOLASTX-0000003756

1.5.tar.gz” for Ghostview 1.5 (see Ex. L). The “gs.interface file” describes Ghostview using an

environment variable to pass the window ID of a window to Ghostscript. (Ex. O.)

When the GHOSTVIEW environment variable is set, ghostscript draws on an

existing drawable rather than creating its own window. Ghostscript can be

directed to draw on either a window or a pixmap.

Drawing on a Window

The GHOSTVIEW environment variable contains the window id of the target
window. The window id is an integer. Ghostscript will use the attributes of the
window to obtain the width, height, colormap, screen, and visual of the window.
The remainder of the information is gotten from the GHOSTVIEW property on

that window

Drawing on a Pixmap

The GHOSTVIEW environment variable contains a window id and a pixmap id.
They are integers separated by white space. Ghostscript will use the attributes of

the window to obtain the colormap, screen, and visual to use. The width and
height will be obtained from the pixmap. The remainder of the information, is
gotten from the GHOSTVIEW property on the window. In this case, the property
is deleted when read.

The GHOSTVIEW environment variable
parameters: window-id [pixmap-id]
scanf format: "%d %d"
explanation of parameters:
window-id: tells ghostscript where to
- read the GHOSTVIEW property
- send events
If pixmap-id is not present,
ghostscript will draw on this window.
pixmap-id: If present, tells ghostscript that a pixmap will be used

as the final destination for drawing. The window will
not be touched for drawing purposes.

21

Request for Reexamination of
Patent No. 5,838,906

EOLASTX-0000003757

(Ex. O, page 1, emphasis added.) In this way, by passing a window ID, Ghostview 1.5 told

Ghostscript in which window to draw the image from a postscript file.

The file “gs.interface” describes additional communications between Ghostscript

and Ghostview — events sent between Ghostscript and Ghostview.

Ghostscript sends events to the window where it read the GHOSTVIEW property.
These events are of type ClientMessage. The message type is set to either PAGE
to ghostscript. The second long data value gives the primary drawable. If
rendering to a pixmap, it is the primary drawable. If rendering to a window, the
backing pixmap is the primary drawable. If no backing pixmap is employed, then
the window is the primary drawable. This field is necessary to distinguish
multiple ghostscripts rendering to separate pixmaps where the GHOS1TVIEW
property was placed on the same window.

The PAGE message indicates that a "page" has completed. Ghostscript will wait
until it receives a ClientMessage whose message_type is NEXT before
continuing

The DONE message indicates that ghostscript has finished processing.

(Ex. O, page 2.) This is one example of communication between X Clients using ClientMessage
events. More generally, an X Client can send ClientMessage events to another X Client using
calls to XSendEvent() and can handle ClientMessage events received from the other X Client.
(Ex. M, 11.3) |

For another inter-client communication mechanism, the X Server stores selections

of data for copy and paste operations between X Clients. (Ex. M, 11.4.)

D. The Patent Applicants’ Visible Embryo Project Software

Some of the dependent claims concern a distributed application architecture that
two of the patent applicants (Doyle and Ang) described in a prior art article. The article, entitled
“Processing Cross-sectional Image Data for Reconstruction of Human Developmental Anatomy

from Museum Specimens,” was published in a “SIGBIO” newsletter in early 1993. (Ex. P.) The
22

Request for Reexamination of
Patent No. 5,838,906

EOLASTX-0000003758

Doyle-Ang SIGBIO article qualifies as prior art against the ‘906 patent as a printed publication

under 35 U.S.C. § 102(b).

The Doyle-Ang SIGBIO article describes embryo visualization software

developed as part of the “Visible Embryo Project” referenced in the ‘906 patent. (See Ex. P,

pages 5-6.) The software operated on the X Window System and was distributed between two

computers. This distributed architecture is of particular relevance to claims 4, 5, 9, and 10 of the

‘906 patent, according to which “additional instructions for controlling said controllable

application reside on said network server.”

the ‘906 patent are software for the Visible Embryo Project. (‘906 patent, column 10, lines 16-

46.) “Versions and descriptions of software embodying the present invention are generally

available as hyperlinked data objects from the Visible Embryo Project’s World Wide Web

document at the URL address ‘HTTP://visembryo.ucsf.edu/’.”

The Doyle-Ang SIGBIO article indicates that the Visible Embryo Proj ect
software had “already been successfully tested on workstations from Silicon Graphics, Sun, and
IBM.” (Ex. P, page 6.) It also reports that the embryo visualization software had been publicly
demonstrated at SIGGRAPH ’92, a conference in vChicago in 1992. (Ex. P, pages 5-6.)
Nevertheless, in the ‘906 patent the patent applicants characterized the embryo visualization
software as being “presently under development” (‘906 patent, column 10, lines 18-19), and they
failed to cite the Doyle-Ang SIGBIO article during initial prosecution or during the ‘831
reexamination. Even if certain aspects of the embryo visualization software were still “under
development” in October 1994 as claimed, that does not change the prior art status or materiality
of the Doyle-Ang SIGBIO article or the software that was “successfully tested” and

demonstrated in 1992.

V. EXPLANATION OF THE PERTINENCY AND
MANNER OF APPLYING CITED PRIOR ART
23

Request for Reexamination of
Patent No. 5,838,906

EOLASTX-0000003759

Reexamination of claims 1-10 of the ‘906 patent is requested for the following

reasons:

¢ Claims 1 and 6 of the ‘906 patent are anticipated by Janssen (as Janssen

would have been understood in the context of the general knowledge in

the art evidenced by Raggett II, Mosaic, and X Window System art).

e Claims 1 and 6 of the ‘906 patent are obvious over APA Mosaic in view

of Raggett I and Janssen.
e Claims 2, 3, 7, and 8 of the ‘906 patent are obvious over Janssen (or

alternatively APA Mosaic in view of Raggett IT and Janssen) in view of

Young (Ex. M) or Ghostview 1.5 (Ex. L and O).

e C(Claims 4, 5,9, and 10 of the ‘906 patent are obvious over Janssen (or

alternatively APA Mosaic in view of Raggett II and Janssen) in view of

Young (or Ghostview 1.5) and the Doyle-Ang SIGBIO article (Ex. P).

The patent owner did not present to the Examiner or ask the Examiner to consider
any of the Janssen, Young, Ghostview 1.5 and Doyle-Ang SIGBIO prior art, either during initial
prosecution of the ‘906 patent or during tﬁe ‘831 re-examination. These references are without
doubt highly relevant as they disclose the very claim requirements the Examiner found lacking in

the limited prior art previously considered by the Office in the ‘831 re-examination.

A. The Janssen Posting Anticipates Claims 1 and 6
Claims 1 and 6 of the ‘906 patent recite a prior art method and product whereby a
browser handles a foreign-format data object identified in a special text code and having
associated type information by automatically invoking an external application to proyide
immediate interaction and display of that object. (‘906 patent, Title.) Specifically, claims 1 and

6 each recite the limitation, “wherein said embed text format is parsed by said browser to

24

Request for Reexamination of
Patent No. 5,838,906

EOLASTX-0000003760

automatically invoke said executable application to execute on said client workstation in order to

display said object and enable interactive processing of said object within a display area created

at said first location within the portion of said first distributed hypermedia document being

displayed in said first browser-controlled window.” In the Examiner’s Statement of Reasons for

Patentability and/or Confirmation, dated September 27, 2005, the Office interpreted this claim

lancuage as follows:
£=J &

Significantly, the instant claimed ‘interactive processing’ of the ‘906
patent begins at the moment the browser application parses an ‘embed text format’
detected within the hypermedia document. The web browser invokes the claimed

‘executable application’ immediately after an ‘embed’ tag is parsed and before the
hypermedia document is completely displayed in the browser-controlled window. The
invoked ‘executable application’ enables the claimed ‘interactive processing.’

Instant ‘906 independent claims 1 and 6 therefore require an operative
coupling between the claimed ‘executable application’ and the claimed ‘interactive
processing” such that the claimed ‘interactive processing” must be enabled by an

‘executable application’ that meets five explicitly claimed requirements:

1. The executable application must be external to the first distributed
multimedia document.

2. The executable application must be automatically invoked by the
browser application when the ‘embed text format’ is parsed by the
browser application.

3. The executable application must execute on the client workstation.

4. The executable application must display the object within the display
area created at the first location within the portion of the first
distributed hypermedia document being displayed in the first browser-
controlled window.

5. The executable application must enable interactive processing of the
object within the display area created at the first location within the
portion of the first distributed hypermedia document being displayed
in the first browser-controlled window.

As discussed supra, a proper construction of the claimed ‘interactive
processing’ necessarily requires some capability of ongoing real-time manipulation and
control by the user that is applied to the object displayed within the first browser-
controlled window. It is axiomatic that an executable application that terminates is
incapable of providing the type of ‘interactive processing’ required by instant ‘906
independent claims 1 and 6.

(Pages 9-10, emphases in original.)
- 25

Request for Reexamination of
Patent No. 5,838,906

EOLASTX-0000003761

Patentability and/or Confirmation. More specifically, a person of skill in the art reading Janssen

in its proper X Window System context (i.e., Raggett II, Mosaic, available interactive helper

applications, and the X Window System), would have discerned each and every claim limitation

of claims 1 and 6, as demonstrated in the claim chart below.

Janssen in particular discloses each of the five claim requirements identified by

the Examiner in the above-quoted action:

1. The executable application must be external to the first distribilted

multimedia document: Janssen’s executable “sub-program” is external to the HTML

document. (Ex. B.) Raggett II (on which Janssen expands) describes the separate program as
being external to the HTML document. (Ex. C.) In Raggett II, the browser identifies the format
of the foreign-format data from a MIME type attribute in an EMBED tag parsed frorﬁ the HTML
document. (/d.) The MIME content type has been bound to a separate program, “e.g., via X
resources or a config file.” This description refers to a well-known MIME type mechanism by
which a program relates a MIME type for a data format to an available application on the
computer capable of processing that format of data. (See Ex. F-H.) Indeed, this is the exact
same MIME type binding mechanism used with the EMBED tag described in the ‘906 patent at
column 15, lines 9-16.

2. The executable application must be automatically invoked by the browser
application when the ‘embed text formét’ is parsed by the browser application: Janssen

also incorporated this automatic invocation feature from Raggett II. Specifically, the separate

26

Request for Reexamination of
Patent No. 5,838,906

EOLASTX-0000003762

program is automatically invoked by the browser when it parses the EMBED tag. (Ex.C.) In

Raggett II, the EMBED tag includes, for example, a URL that references foreign-format data in a

separate file. (/d.) Upon parsing the EMBED tag, the Janssen browser interprets the MIME type

specified in the EMBED tag, creates a sub-window where the foreign-format data will be

displayed, and invokes the sub-program appropriate to the format, resulting in inline display of

3. The executable application must execute on the client workstation: The

Janssen sub-program executed, at least in part, on the client workstation. This was standard

operating procedure at the time; the interactive Mosaic helper applications ran, predominately,

on the client workstation on which the browser ran. (See Exhibits I, J, and L.)

' Il l l lo I- I ‘-]] l . oll . ll l .]

created at the first location within the portion of the first distributed hypermedia document
being displayed in the first browser-controlled window: Janssen describes this as well -- the
foreign-format data is displayed within the “inset” area within the HTML document displayed in
the Janssen browser’s window. (Ex. B.) The Janssen browser creates the X sub-window over
the “area where the inset is to be displayed.” This sub-window is “refreshed” by the separate
program to render the foreign-format data. (/d.)

5. The executable application must enable interactive processing of the
object within the display area created a{t the first location within the portion of the first
distributed hypermedia document being displayed in the first browser-controlled window:
As explained above, adding this interactivity was one way in which Janssen expanded upon

Raggett II. Janssen expressly disclosed that the sub-program continued to run and handled “all

27

Request for Reexamination of
Patent No. 5,838,906

EOLASTX-0000003763

events” in the sub-window. The plain meaning of “all events” is every event, including user

input events, not just “some” events.

More specifically, the Janssen browser enables interactive processing of the

embedded data object within the sub-window within the browser’s HTML document display

window. Janssen states, “the browser [passes] the window ID of the sub-window to the

handle all events and refresh on the sub-window.” As previously discussed, this statement would

be understood in the context of the X Window System to refer to well known mechanisms of a

first program passing a window ID to a second program, allowing the second program to select

events (including mouse clicks, keystrokes, etc.) to receive for the window and handle such
~ events (e.g., by setting an event mask and registering an event handler) and refresh or updatethe
display of that window accordingly. (See-Exs. M, N, and O.) The Mosaic helper applications
Xv and Ghostview responded to user input in their window(s) (including the main display
window) by changing how content was viewed or changing the characteristics of the content.
(See Exs. 1, J, and L.) The Janssen browser thus enables, through the separate program, ongoing

real-time manipulation and control by the user of the embedded content in the sub-window.

Because the separate program remains active in order to handle “all events and refresh” on the
sub-window as described by Janssen, it does not terminate.

As summarized and shown in the following claim chart, the Janssen posting
includes all recited claim elements of claifns 1 and 6. Moreover, as just discussed, the Janssen
posting meets all requirements of the Examiner’s interpretation of the above-discussed
“Interactive processing” clause of claims 1 and 6. Accérdingly, reexamination of claims 1 and 6

based on Janssen is appropriate.
28

Request for Reexamination of
Patent No. 5,838,906

EOLASTX-0000003764

Claim 1 of the ‘906 Patent

Prior Art

A methad formnnine

ravld
G

4

av mmderctoodan t]f\

AU 1o rurginl s an

application program in a computer

aAaNQCAN-Y ah
arioovil ave uULLIT Urnuvioivvua lll

general kno wledg e art evidenced by th
PO | 1
11T

‘II.

1 : ot i
network environment, comprising:

APA NMa~agaie h V4 A art
A A Ivivosdle, ana-Xx=w aow OyDlClll alt,

Janssen describes a “subprogram which understands the
inset format.” (Ex. B.) The “subprogram” runs in a

computer network environment. A Mosaic helper
application is one such “subprogram’ and is used as a
viewer for the “inset format.” (APA Mosaic. See, e.g.,

‘906 patent, column 3, lines 13-16.)

providing at least one client
workstation and one network server
coupled to said network

Janssen describes a browser. (Ex. B.) The browser
executes on a client workstation and interacts with a
network server coupled to the network environment,

environment, wherein said network
environment is a distributed
hypermedia environment;

which is a distributed hypermedia environment. (APA
Mosaic. See, e.g., ‘906 patent, column 5, lines 34-36,
and Response received May 12, 2004, page 3 (“When the

browser is launched on a client workstation...”).)

mmrming’ at said client

workstation, a browser application,
that parses a first distributed
hypermedia document to identify
text formats included in said
distributed hypermedia document
and for responding to
predetermined text formats to
initiate processing specified by said
text formats;

utilizing said browser to display, on
said client workstation, at least a
portion of a first hypermedia
document received over said
network from said server, wherein
the portion of said first hypermedia
document is displayed within a first
browser-controlled window on said
client workstation

Janssen describes a browser (Fx B) The browser:

e executes on a client workstation;

e parses a hypermedia document to identify text
formats included in said distributed hypermedla
document;

e responds to predetermined text formats to initiate

‘processing specified by said text formats; and

e causes display, on the client workstation, of at least a
portion of the hypermedia document received over
the network from the network server, where the
portion of the hypermedia document is displayed
within a browser-controlled window on the client
workstation.

(APA Mosaic. See, e.g., ‘906 patent, column 5, lines 28-

38, and Response received May 12, 2004, page 3 (“The

browser then retrieves a selected HTML published

source document from a network server utilizing a

uniform resource locator (URL) that locates the HTML

document on the network...” and “The browser
application then parses the local copy of the HTML
document, renders the temporary local copy of the

HTML document in to a Web page, and displays the

rendered Web page in a browser-controlled window.”).)

Request for Reexamination of
Patent No. 5,838,906

29

EOLASTX-0000003765

wherein said first distributed

vnermedisdeenment inelndec an

Janssen is a reply to Raggett IT and describes processing
an EMRED taoc inelinded in-a by a daenment

h d
u_yywuuwxa goouniviit lllUlUUUD all

embed text format, located at a first

1anprats

ady
aryr 1 /AviioL.ar las ululuuuu 111 a .ll_leUllllUula UU\Julll\Jlll

(Ex B.) The EMBED tag can have a URL that

Aana “farnian dotn 1 o to fila »® (Pasggatt TT
I

rocation lll Dclld ﬁlbl. dmtubuu:d
hypermedia document that specifies

[1¥y
IClUlClleD J.Ulclsll ucu.a. lll a svpalaiv e \agghtt

Ex. C. “Well both of these will be possible with the

t]

the location of at least a portion of
an object external to the first

HTML+ DTD, by using the capability to embed foreign
formats inline in the HTML+ source, e.g.

distributed hypermedia document

<H2>A example of an equation</H2> .
<EMBED TYPE=“text/eqn”>zeta (s) ~=~ sum from k=1
to inf k sup —s~~~ (Re s > 1) <EMBED>"

“p.s. you can also put the foreign data in a separate file

referenced by a URL.”)

wherein said object has type
information associated with it

Janssen describes a “MIME content type.” (Ex. B.) The
“MIME content type” is indicated in the EMBED tag,

utilized by said browser to identify
and locate an executable application
external to the first distributed

and the browser utilizes the MIME content type to
identify and locate an executable application external to
the first distributed hypermedia document. (Raggett II,

hypermedia document

Ex. C. “The browser identifies the format of the
embedded data from the ‘type’ attribute, specified as a
MIME content type.”)

and wherein said embed text format
is parsed by said browser to
automatically invoke said
executable application to execute on
said client workstation in order to
display said object and enable
interactive processing of said object
within a display area created at said
first location within the portion of
said first distributed hypermedia
document being displayed in said
first browser-controlled window.

Janssen describes a browser that automatically invokes a
“subprogram which understands the inset format” to
execute on the client workstation, and the “subprogram”
causes display of the foreign data in the “inset format.”
(Ex. B. “My favorite way to handle this is to have the
browser create and manage an X sub-window over the
area where the inset is to be displayed, and pass the
window ID of the sub-window to the subprogram which
understands the inset format, with the understanding that
that program is to handle all events and refresh on the
sub-window, but the browser gets to handle
configuration and window movement.” See also Raggett
I1, Ex. C. “Browsers can then be upgraded to display
new formats without changing their code at all. All you
would need is a way of binding the MIME content type
to the function name for that format, e.g., via X resources
or a config file.”) '

In this way, Janssen describes the browser enabling
interactive processing of the foreign data within a display
area created at the location within the portion of the
hypermedia document being displayed in the browser-
controlled window. (/d.)

Request for Reexamination of
Patent No. 5,838,906

. 30

EOLASTX-0000003766

B. APA Mosaic, Raggett I1, and Janssen Render Obvious Claims 1 and 6

Janssen in combination with Raggett Il and APA Mosaic renders the subject

matter of claims 1 and 6 of the ‘906 patent obvious. Raggett II provides the suggestion to

modify existing Mosaic browser technology inasmuch as such modifications are described in

More particularly, APA Mosaic teaches a hypermedia browser that meets all

limitations of claims 1 and 6, except the limitations, “wherein said first distributed hypermedia

document includes an embed text format, located at a first location in said first distributed

hypermedia document that specifies the location of at least a portion of an object external to the

first distributed hypermedia document” and “wherein said embed text format is parsed by said

browser to automatically invoke said executable application to execute on said client workstation
in order to display said object and enable interactive processing of said object within a display
area created at said first location within the portion of said first distributed hypermedia document
being displayed in said first browser-controlled window.”

Raggett II describes modifying the Mosaic browser to provide the capability to
“embed foreign formats inline” in the hypermedia document, using an EMBED tag that has a
“type attribute” specifying a “MIME content type” of the foreign format. (Ex. C.) Raggett 11
further describes binding the content type specified in this embed tag to functions implemented
as separate programs for displaying the foreign format. Raggett II states, “Browsers can then be
upgraded to display new formats without changing their code at all.” (/d.) With this statement,
Raggett II illustrates one motivation to modify the Mosaic browser to support the EMBED tag

and bind content types to appropriate separate programs. (/d.) Raggett II also describes the
31

Request for Reexamination of
Patent No. 5,838,906

EOLASTX-0000003767

EMBED tag specifying the location of foreign-format data external to the HTML document.

(Ex. C. “[Y]ou can also put the foreign data in a separate file referenced by a URL.”)

The Janssen posting describes further modifying the Raggett II/Mosaic

combination to have the browser create an “X sub-window” where “the inset is to be displayed.”

(Ex. B.) The browser then passes the window ID of this sub-window to the “subprogram” that

refresh on the sub-window.” (Id.) Well-known mechanisms existed in the X Window System to

pass a sub-window ID to a separate program and enable interactive processing of the content in

the sub-window by the separate program, which handled all events, such as a user’s keyboard

and mouse inputs, directed to the sub-window. (See, e.g., Ex. M, 5.2; Ex. N, 2.5.2.) In fact, the
~ Ghostview 1.5 software discussed above utilized such mechanisms. (Ex.O.)

Janssen does not directly sfate why this mechanism is his “favorite way to handle
this.” (Ex. B.) However, Janssen does state that passing the window ID allows the separate
program “to handle all events and refresh on the sub-window.” This would be readily
understood by those familiar with X Window System programming (as evidenced by, e.g.,
Exhibits M, N, and O) as a mechanism that enables interactive processing of the foreign format
content in the sub-window by the separate program responding to keyboard/mouse input events.
Accordingly, apart from the fact that Janssen directly and explicitly modifies the Raggett
II/Mosaic browser combination, Janssen provides a motivation for this further modification of
the Raggett II/Mosaic browser — using proven techniques to enable interactive processing by the
separate program.

As already fully discussed in the previous section, the combination of Janssen,

Raggett II and APA Mosaic meets all requirements of the claim language as interpreted by the
32

Request for Reexamination of
Patent No. 5,838,906

EOLASTX-0000003768

Office. Accordingly, reexamination of claims 1 and 6 based on the combination of J anssen,

Raggett Il and APA Mosaic is appropriate.

C. Janssen and Young/Ghostview Render Obvious Claims 2, 3, 7 and 8

Claims 2, 3, 7 and 8 of the ‘906 patent are dependent claims, which add further

limitations relating to the browser controlling the separate program via inter-process

communication. Claim 2 recites the limitation of “interactively controlling said controllable

application on said client workstation via inter-process communications between said browser

and said controllable application.” Claim 3 recites the further limitation, “wherein the

communications to interactively control said controllable application continue to be exchanged

between said controllable application and the browser even after the controllable application

program has been launched.” Claims 7 and 8 recite nearly identical limitations.

In the X Window System, there are various mechanisms available for inter-
process communications between client programs, including environment variables (“atoms and
properties’), client message events, and the X selection mechanism. (Ex. M, 11.1 to 11.4, page
280; Ex. O.) With client message events, a client program can send an event message to another
client program by calling the XSendEvent() function of the X Server. (Ex. M, 11.3, page 294,
“This feature can be used to forward events from one application to another, or to create and
send new events”; Ex. O.)

Young describes a program called “xtalk” that allows users on two different
machines to communicate with each other by text. (Ex. M, 11.3, page 296.) The xtalk program
on one user’s machine sends/receives client message events to/from the xtalk program on the
other user’s machine, for example, to make connection requests, including “disconnect” and

a3 A

Request for Reexamination of
Patent No. 5,838,906

EOLASTX-0000003769

“accept” notifications, and to send/receive keyboard events that affect display on the other user’s

machine. (Ex. M, 11.3, page 297.)

Ghostview 1.5 provides an example of inter-process communication in the

context of a viewer application (namely, Ghostview) and separate rendering program (namely,

Ghostscript). (Ex. L, page 5.) The Ghostview and Ghostscript programs communicate using an

Ghostscript also communicate with each other on a continuing basis by sending client message

events, such as “PAGE” (Ghostscript indicating to Ghostview that it completed drawing a page),

“NEXT” (Ghostview indicating to Ghostscript to draw a next page) and “DONE” (Ghostscript

indicating to Ghostscript that it has drawn up to end of the file). (Ex. O, page 1.)

Xtalk and Gl iew/Gl - Lo _
communication to control display in a window or sub-window by another program. Xtalk
illustrates using client message events for one program to forward keyboard events that affect
display in a separate program’s window. Ghostview sends client message events to c;ontrol
paged display by Ghostscript in a window whose ID was passed by Ghostview.

Janssen teaches a browser system that enables interactive processing of inset
foreign-format data using a separate program. Upon parsing an EMBED tag, the Janssen
browser creates an X sub-window over an area of the HTML document where the foreign-format
data is to be displayed. The Janssen browser passes a window ID for this sub-window to the
separate program, which then handles “all events and refresh on the sub-window” while the
browser handles “configuration and window movement.” (Ex. B.) If the browser causes a
change to the position, size, or border of the sub-window, this results in a change notification

being sent to the separate program, which the separate program handles. (Ex. M, 5.3.7.) Aside
34

Request for Reexamination of
Patent No. 5,838,906

EOLASTX-0000003770

from this type of event, Young’s teaching (or alternatively that of Ghostview 1.5) to use client

message events for inter-process communication to control display in a sub-window by another

program would motivate like use of inter-process communication by the Janssen browser to

control display or exchange status information. For example, the Janssen browser would directly

communicate to the subprogram window configuration and movement changes (such as window

inset data display.

Note the similarities to inter-process messages sent between the browser and

external program described in the ‘906 patent. In the table shown at column 12, lines 15-17 of

the ‘906 patent, the set of predefined messages includes the messages: “server update done,”

MEAPI inter-process communications and Ghostview’s message events control paged display to

effect the “understanding” expressed in the Janssen posting, i.e., that “the browser gets to handle
configuration and window movement” while the subprogram “is to handle all events and refresh
on the sub-window.” (Ex. B.)

The Janssen browser as modified by the teaching of Young or Ghostview 1.5
meets the added claim limitations of claims 2, 3, 7 and 8. These claims therefore would have

been obvious over Janssen in view of either reference.

Claim 2 of the ‘906 Patent A Prior Art
The method of claim 1, wherein Young describes various inter-process communication
said executable application is a mechanisms in the X Window System, including

controllable application and further | environment variables, client message events and X
comprising the step of: interactively | selection. (Ex. M, 11, pages 280-332.) More

controlling said controllable particularly, Young describes a program sending client

application via inter-process message events to control another application, such as

communications between said one user’s xtalk program sending “connection

browser and said controllable requests,” “disconnect” and “accept” notifications, as
35

Request for Reexamination of
Patent No. 5,838,906

EOLASTX-0000003771

application. well as forwarding keyboard input events, to

a
cubwindow_ofanotheruser’s vtallk nrooram- (Ex N
A 8 \J_l/\a pa g

SUUWINIUU VW UL aliutnour uy OTATAI Prustaltic

11.3, page 297.)

)

The Ghostview 1.5 documentation describes

Ghostview interactively controlling Ghostscript,
including by passing a window ID via an environment

variable and sending client message events to control
paged display. (Ex. S.)

Claim 3 of the ‘906 Patent Prior Art
The method of claim 2, wherein the | Young describes one program controlling another
communications to interactively program (e.g., two xtalk programs) via inter-process

control said controllable application | communication mechanisms, including environment

continue to be exchanged between variables, client message events and X selection, which
said controllable application and the | occurs after launch of the other program. (Ex. M, 11.1-
browser even after the controllable | 11.4.)

application has been launched.
The Ghostview 1.5 documentation describes
Ghostview interactively controlling Ghostscript,

including by passing a window ID via an environment
variable and sending client message events to control
page display, which occur after Ghostview launches

Ghostscript. (Ex. O.)

D. Janssen, Young/Ghostview, and Doyle-Ang
Render Obvious Claims 4,5, 9 and 10

Claims 4, 5, 9 and 10 of the ‘906 patent are dependent claims, which add further
limitations relating to the separate program executing on both the client workstation and network

server as a distributed application. Claim 4 recites limitations of “issuing... commands to the

29 && k22N 19

network server,” “executing, on the network server,” “sending information from said network
server... and processing said information at the client workstation to interactively control said
controllable application.” Claim 5 recites the further limitation, “wherein the communications to

interactively control said controllable application continue to be exchanged between said

36

Request for Reexamination of
Patent No. 5,838,906

EOLASTX-0000003772

controllable application and the browser even after the controllable application program has been

launched.” Claims 9 and 10 recite nearly identical limitations.

“Visible Embryo Project.” (Ex. P.) The article reads, in part:

Software tools were developed to allow the interactive three-dimensional
visualization of the embryo reconstruction in real time. Figure 3 shows the
isplay icati i i
Chicago (Doyle, et al., 1992). The. left of the screen shows a surface-based model
of the embryo's exterior. This model was built from data which was derived, ‘
through three-dimensional interpolation, from the original embryo dataset. Two-
_ hundred volume slices of the embryo (stored as texture maps) can be interactively
displayed at this lower resolution while the model is rotated freely in three
dimensions. A cutting-plane can be seen to intersect the surface-based model.

model at any arbitrary angle and position. To the right of the screen, one can see a
window that displays a high-resolution image of the oblique section through the
quick response needed for effective real-time interaction, the computational load

of this application was distributed so that the interface panel, seen at the bottom

of the screen, and the 3-D surface model were running on the CPU of the Silicon

Graphics workstation. Computation of the high-resolution oblique section image

displayed in the right window took place on the Convex supercomputer. Both of

these operations occurred simultaneously, communicating through a high-speed

fiber optic network. '

Current efforts are being directed towards the development of a very portable tool
for viewing arbitrary oblique slices through such data. This program allows
interactive display of orthogonal and oblique slices through volumetric data
without using any machine-specific functions. The application is written in pure
ANSI-standard C and uses the X Window (Motif) toolkit for its interface. It has
already been successfully tested on workstations from Silicon Graphics, Sun, and
IBM.
(Ex. P, pages 5-6.)
According to the article, the embryo visualization software is distributed between

two computers separated by a network — the “interface panel” and “3-D surface model” run on a

workstation while an “oblique section image” is computed on a supercomputer (network server).

37

Request for Reexamination of
Patent No. 5,838,906

EOLASTX-0000003773

The operation of such a distributed software application necessarily involves issuing of

commands to the network server and sending of response information to the workstation.

Although the Doyle-Ang SIGBIO article presents little technical detail about communication

across the network, certain features are inherent to communication between a workstation and

network server in distributed software applications. These inherent features include:.issuing of

server, sending of information from the network server back to the workstation, and processing

of the information at the workstation.

In the article, the authors indicate that this split of the computational load between

supercomputer and workstation was made to “maintain the quick response needed for effective
-time i ion.” Thi 1 lit the com ional 1 n a workstation and
other computer so as to maintain real-time interactivity would have motivated distributing the
load of computationally intensive subpro érams for the Janssen (in combination with Young or
Ghostview) browser when required for real-time interactivity.
The combination Janssen and Young (or Ghostview) as modified by the teaching
of the Doyle-Ang SIGBIO article meets the added claim limitations of claims 4, 5, 9 and 10.

These claims therefore would have been obvious.

Claim 4 of the ‘906 Patent Prior Art
The method of claim 3, wherein The Doyle-Ang SIGBIO article describes instructions
additional instructions for controlling the three-dimensional embryo visualization
controlling said controllable application residing on the supercomputer (network
application reside on said network | server). (Ex. P, page 6: “Computation of the high-
server, wherein said step of resolution oblique section image displayed in the rnight
interactively controlling said window took place on the Convex supercomputer.”)
controllable application includes the
following sub-steps:
issuing, from the client workstation, | The Doyle-Ang SIGBIO article describes the interface

. 38

Request for Reexamination of
Patent No. 5,838,906

EOLASTX-0000003774

one or more commands to the

natwvark cerver:

panel running on the workstation and communicating
“Dnﬂf\ of the e

with the network cerver (Ex P nace K

HVIWULR OVIVVL,

Wt io TICtw oI o1 vel (s T pagv

operations [interface panel and sect10nal computation]

IO T

occurred simultaneously, communicating through-a high-—|
speed fiber optic network.”) '

executing, on the network server,

The Doyle-Ang SIGBIO article describes the oblique

one or more instructions in response
to said commands;

sectional image computation being performed on the
network server under interactive control of the interface
panel on the workstation. (Ex. P, page 6: “This cutting
plane can be interactively controlled to intersect with the

embryo model at any arbitrary angle and position. To the
right of the screen, one can see a window that displays a
high-resolution image of the oblique section through the
embryo as indicated by the interactive cutting plane. ...

Computation of the high-resolution oblique section
image displayed in the right window took place on the
Convex supercomputer.”)

sending information from said
network server to said client

The Doyle-Ang SIGBIO article describes the oblique

sectional image computed at the network server being

workstation in response to said
executed instructions;
and

communicated to the workstation for display. (Ex. P,
page 7: “This program allows interactive display of
orthogonal and oblique slices through volumetric data
without using any machine-specific functions”; Figure 3)

processing said information at the
client workstation to interactively
control said controllable
application.

The Doyle-Ang SIGBIO article describes the interface
panel running on the workstation interactively
controlling the display of the oblique sectional image
data. (Ex. P, page 6: “This cutting plane can be
interactively controlled to intersect with the embryo
model at any arbitrary angle and position. To the right of
the screen, one can see a window that displays a high-
resolution image of the oblique section through the
embryo as indicated by the interactive cutting plane.”)

Claim 5 of the ‘906 Patent

Prior Art

The method of claim 4, wherein
said additional instructions for
controlling said controllable
application reside on said client
workstation.

The Doyle-Ang SIGBIO article describes the interface
panel and 3-D surface model program as residing on the
workstation. (Ex. P, page 6: “the computational load of
this application was distributed so that the interface
panel, seen at the bottom of the screen, and the 3-D
surface model were running on the CPU of the Silicon
Graphics workstation.”)

Request for Reexamination of
Patent No. 5,838,906

39

EOLASTX-0000003775

VL. CONCLUSION

For the above reasons, reexamination of claims 1-10 of the ‘906 patent is hereby

respectfully requested.

Respectfully submitted,

KLARQUIST SPARKMAN, LLP

7
Kyle BARinchart
Registration No. 47,027

o Lt Al

‘Stephed A. Wight 7
Registration No. 37,759

One World Trade Center, Suite 1600
121 S.W. Salmon Street

Portland, Oregon 97204

Telephone: (503) 595-5300
Facsimile: (503) 595-5301

Request for Reexamination of
Patent No. 5,838,906

40

EOLASTX-0000003776

CERTIFICATE OF SERVICE

I certify that a true and correct copy of the foregoing document (with exhibits attached) was

served, as indicated below on The Regents of the University of California, on December 22,

2005.

The Regents of the University of California Via First Class Mail

c/o: Law Office of Charles E. Krueger
P.O. Box 5607
Walnut Creek, CA 94596-1607

Lo ALl

Stephfn A. Wight

41

Request for Reexamination of
Patent No. 5,838,906

EOLASTX-0000003777

