Eolas Technologies Incorporated v. Adobe Systems Incorporated et al Doc. 581 Att. 5

EXHIBIT D2

Dockets.Justia.com

http://dockets.justia.com/docket/texas/txedce/6:2009cv00446/118976/
http://docs.justia.com/cases/federal/district-courts/texas/txedce/6:2009cv00446/118976/581/5.html
http://dockets.justia.com/

90/006,831
Art Unit: 3992

manner designed to provide maximum benefit to members of a collaborative

engineering team.

For example, messages are inserted in chronological order as “NoteMail”

pages in an approach that departs from the functionality of prior art web

‘around stored bookmarks that provide URL links to web pages (and
associated objects) that may reside anywhere on the Internet.

The Examiner concurs with the Patent Owner’s contention that the

“NoteMail” design (i.e., teaching restricted, collaborative access to a
centralized database) runs counter to the intended purpose of the Mosaic

(APA), Berners-Lee, Raggett I and II hypothetical four-way combination. The
intended purpose of the four-way combination is to provide a distributed
system that enables universal access to web pages (and associated objects)
that may be stored anywhere on the Internet.

In contrast, Toye discloses a system that permits applications to reside
anywhere on the Internet, while collaborative, restricted access to the data

is only permitted via a centralized database [Toye, p. 40, col. 2, paragraph
2, last line]

Accordingly, the Examiner concurs that the Toye reference teaches away
from modifying the Mosaic (APA), Berners-Lee, Raggett I and II hypothetical
four-way combination as proposed by the rejection set forth in the last office
action.

EOLASTX-0000001337

90/006,831
Art Unit: 3992

PART V. The secondary consideration of commercial success
attached Declaration of Robert J. Dolan, Dean at the University
professor at Michigan Business School (“"Dolan”) sets forth facts
and evidence to legally and factually establish the secondary.
consideration of commercial success of the invention claimed in
claims 1 and 6 of the '906 patent.

a. There is a nexus between the claimed invention and the
commercial success.

In response to the Patent Owner’s argument V(a), the Examiner has

reviewed the supporting “Dolan” Declaration and does not find it persuasive
in terms of demonstrating a nexus between the instant claimed ‘906
invention and commercial success.

The "Dolan” Declaration relies upon the alleged infringement of the ‘906

patent claims by Microsoft in marketing the Microsoft Internet Explorer
browser (IE). In particular, it is alleged that the “IE browser’s support for
“plug-ins, applets, and Active X functionality incorporates the technology

i i i claration,

page 2].

The Patent Owner’s argument of commercial success is thus predicated on
Microsoft’s infringement of the ‘906 patent as determined by a jury in the
trial at the U.S. District Court (Northern District of Illinois, Eastern Division).

EOLASTX-0000001338

90/006,831
Art Unit: 3992

However, at the time of this writing, the litigation is still ongoing and is on
remand back to the District Court from the CAFC.

While the infringement issue is not being considered on remand from the

CAFC, the affirmative defenses of public use and inequitable conduct, if

infringement would be moot. Therefore, the PTO does not consider there to

be a final judgment on i infri i

been exhausted and the litigation has concluded. A nexus between the

claimed invention and the commercial success of the IE browser cannot be

shown (based upon alleged patent infringement) in the absence of a final
judgment to establish such infringement.

Accordingly, the Patent Owner has not met the burden of proof required to
establish a factual and legally sufficient connection between the evidence of
commercial success and the claimed invention such that the evidence is of
probative value in the determination of nonobviousness.

b. The evidence of commercial success is commensurate with the
scope of the '906 claims.

Objective evidence of nonobviousness including commercial success must be
commensurate in scope with the claims. In re Tiffin, 448 F.2d 791, 171
USPQ 294 (CCPA 1971). In order to be commensurate in scope with the
claims, the commercial success must be due to claimed features, and not

due to unclaimed features. Joy Technologies Inc. v. Manbeck, 751 F. Supp.

EOLASTX-0000001339

90/006,831
Art Unit: 3992

225, 229, 17 USPQ2d 1257, 1260 (D.D.C. 1990), aff'd, 959 F.2d 226, 228.
22 USPQ2d 1153, 1156 (Fed. Cir. 1992).

The Patent Owner relies upon the “Dolan” Declaration (pages 6-9, numbered
paragraphs 25-41) to support the contention that the evidence of

i ' in scope with claims 1 and 6 of the

instant ‘906 patent.

In response to the Patent Owner’s argument V(b), the Examiner need not
reach this issue because a nexus between the claimed invention and

commercial success has not been established, as discussed in the response
~ toargument V(a), supra. A nexus between the claimed invention andthe
commercial success of the IE browser cannot be shown (based upon alleged
patent infringement) in the absence of a final court judgment to establish
such infringement (i.e., until all appeals have been exhausted and the
litigation has concluded).

The Examiner cannot reasonably address the issue raised by argument V(b)

without commenting on the merits of the ongoing litigation. Subject matter

concerning patent infringement constitutes a federal question that properly
—falls- within the subject matter jurisdiction of the Federal Court system.

Subject matter concerning patent infringement is not considered by the U.S.

Patent and Trademark Office.

EOLASTX-0000001340

90/006,831
Art Unit: 3992

Cc. The commercial success is derived from the invention.

In response to the Patent Owner’s argument V(c), the Examiner does not

find the Patent Owner’s arguments and the associated “Dolan” Declaration
persuasive for the following reasons:

In considering evidence of commercial success, care should be taken to

determine that the commerci ic di :

invention claimed, in a marketplace where the consumer is free to choose on

the basis of objective principles, and that such success is not the result of

heavy promotion or advertising, shift in advertising, consumption by
purchasers normally tied to applicant or assignee, or other business events

extraneous to the merits of the claimed invention, etc. In re Mageli, 470
F.2d 1380, 176 USPQ 305 (CCPA 1973) (conclusory statements or opinions
that increased sales were due to the merits of the invention are entitled to
little weight); In re Noznick, 478 F.2d 1260, 178 USPQ 43 (CCPA 1973).

Even assuming, arguendo, that the Patent Owner has demonstrated the
required nexus between the instant claimed ‘906 invention and the
commercial success of an allegedly infringing product, the “Dolan”

browser was not the result of heavy promotion or advertising or other

business events extraneous to the merits of the claimed invention.
In particular, Microsoft made the IE browser available to users at little or no

cost. Microsoft also bundled the IE browser as an integral component of
various Microsoft operating systems (e.g., Windows 95, 98, and Windows

EOLASTX-0000001341

90/006,831
Art Unit: 3992

2000). Significantly, the “"Dolan” Declaration is silent regarding the issue of

free or low cost distribution of the IE browser as a factor in Microsoft’s

successful capture of market share.

In more traditional business models that involve tangible products, a rational

i i i i i rgi cost o

the n™ unit produced exceeds the marginal revenue generated from that n"

unit. However, when software is distri i

cost of each unit of downloaded software approaches zero as the number of

downloads approaches infinity. This is true because the sunk software

development costs and the relatively fixed cost of maintaining distribution
servers are averaged over a potentially infinite number of downloads.

Obviously, if there exists a quantifiable market demand for a given product,
the quantity of units demanded will increase as the cost per unit approaches
zero. This was likely true in the case of the Microsoft IE browser because it

was offered to the public as a free download (or merely for the cost of the
CD media plus postage and handling). ‘

Microsoft clearly offered the IE browser to the public at little or no cost in an

though it may also be true that Microsoft viewed the functionality of Active X

(allegedly infringing upon the ‘906 patent functionality) as giving IE an
advantage over Netscape [e.qg., see "Dolan” Declaration, page 8, paragraph
36]. In addition, such free distribution of the IE browser clearly promoted
and helped to advertise Microsoft’s main operating system and application
software products.

EOLASTX-0000001342

90/006,831
Art Unit: 3992

Because Microsoft made the IE browser available to the public at little or no

cost, the past distribution of IE has at least the appearance of “heavy

promotion or advertising.” While the alleged infringement of ‘906

functionality may indeed have been a factor in the market success of the IE

browser, patent infringement has not been shown by a final court judgment.

| Significantly, the Patent C has failed to-address the Microsoft-marketi

strategy of distributing the IE browser to the public at little or no cost.

Because Microsoft was already an established market leader with respect to
desktop operating systems and applications, the success of the IE browser

could also be reasonably attributed to Microsoft’s extensive advertising and
position as a market leader before the introduction of the allegedly infringing
product (i.e., the IE browser). See Pentec, Inc. v. Graphic Controls Corp.,
776 F.2d 309, 227 USPQ 766 (Fed. Cir. 1985) (commercial success may
have been attributable to extensive advertising and position as a market

leader before the introduction of the patented product).

Accordingly, even when the facts are viewed in a light most favorable to the
Patent Owner, the Patent Owner has failed to demonstrate by a

preponderance of the evidence that the commercial success of Microsoft’s IE

EOLASTX-0000001343

———Reexamination/Control Number:
90/006,831
Art Unit: 3992

B
Q
Q
p
D
un

The Viola Code

The CAFC op nion (Docket No. 04-1234, March 2, 2005) states on page 11,

~nd parag ranh
z pafragrapn

In contrast, the record indicates Wei not only demonstrated DX34 to two Sun
Microsystems engineers without a confidentiality agreement (on May 7,
1993), but only twenty-four days later (on May 31, 1993) posted DX37 on a
publicly-accessible Internet site and notified a Sun Microsystems engineer
that DX37 was available for downloading.

The ‘906 invention was reduced to practice no later than January, 27, 1994
when it was presented on that date to a conference “Medicine Meets Virtual

Reality II1.” 2 From the court record, it is clear that the date of publication on

~ the Internet of the DX37 code (May 31, 1993) antedates the dateof
reduction to practice (Jan. 27, 1994) of the ‘906 invention. Accordingly, the
DX37 code submitted by the Patent Owner on Dec. 30, 2003 (received by

the PTO on Jan 5, 2004) has been considered by the Patent and Trademark
Office as a publication that constitutes prior art for purposes of this

reexamination proceeding.

The “Viola Code” is stored as an artifact (i.e., a CD disk) associated with the
instant Image File Wrapper (IFW) reexamination file. The contents of

artifacts are not stored as images on the PTO IFW system. The Viola code
CD contains two compressed zip files representing "Viola Source code"
("DX34" and "DX37"):

2 See “Ruling on the Defense of Inequitable Conduct”, No. 99 C 626, U.S. District Court
Northern District of Illinois, Eastern Division, page 9.

EOLASTX-0000001344

90/006,831
Art Unit: 3992

1) viola930512.tar.gz.zip - this compressed file represents the
earlier Viola source code, also referred to as "DX34" in the
- CAFCopinion (Docket no. 04-1234, March 2, 2005, seealso —
IFW "Reexam Notice of Court Action" dated April 11, 2005;
(corresponding to IFW page 16 of 32). The
viola930512.tar.gz.zip (i.e., “DX34") file, when unzipped,
contains 1,027 files in 35 folders consisting of 8 total
megabytes in size.

2) violaTOGO.tar.Z.zip - this compressed file represents the
i B in the
CAFC opinion. The violaTOGO.tar.Z.zip (i.e., “DX37") file,
when unzipped, contains 1,030 files in 34 folders consisting of
7.7 total megabytes in size.

To conduct a thorough and comprehensive review of the DX37 code (1,030
files), the Examiner successfully unzipped the provided “violaTOGO.tar.Z.zip"
compressed file and indexed all DX37 files using a commercially available

text searching program designed for such purpose. 3

In this manner, every DX37 file containing textual content (including code)
was fully and comprehensively text searched with the resulting “hits” being

highlighted in the full-text context of each document. Several representative

art publication.

3 The Examiner used the “dtSearch” program to index and text search all DX7 files that
contained textual content. See http://www.dtsearch.com/

EOLASTX-0000001345

90/006,831
Art Unit: 3992

How Viola embeds Viola scripts in a hypermedia document

In particular, the file “violaApps.hmml” (contained in the “docs” directory)

illustrates how interactive applications (i.e., actually Viola scripts) are

embedded in a Viola hypermedia document as designated by a matched pair
of <VOBJF> and </VOBIF> tags that specify a Viola script that is used to
—————generate the embedded object, as shownbetow: —— — — — — — — — —

<VOBJF> ../apps/clock.v </VOBJF>

When the Viola hypermedia browser parses the hypermedia document (e.g.,

“violaApps.hmml”, denoting a hypermedia document written in Hyper Media
Markup Language) and encounters the matched pair <VOBJF> and

</VOBIJF> tags, the browser then retrieves the Viola script “clock.v” from
the directory location specified by the directory path (i.e., ../apps/).

Significantly, the Viola script “clock.v” is INTERPRETED to embed an
interactive application object within the same window of the Viola browser.

Each Viola script line is interpreted by translating the Viola script code (or
corresponding byte code) to native binary machine code instructions that are

executed in a sequential fashion.

The Viola documentation states: “The extension language is C-like in syntax
and is processed into byte-code for efficient interpretation” [see
“violaCh1l.hmml” in the “docs” directory]. Although the aforementioned
“clock.v” example is clearly a Viola script, it appears that an intermediate
byte-code representation may be interpreted at runtime. In such case, the

Viola script must be compiled in advance to intermediate byte-code form.

EOLASTX-0000001346

90/006,831
Art Unit: 3992

The “violaApps.hmml” hypermedia document file (as parsed by the Viola

browser) and the corresponding “clock.v” script file are shown below:

W, .0 ”

(located within the “docs” directory)

<!'DOCTYPE hmml SYSTEM>

A RS =

<TITLE>Test</TITLE>

<H1>List No. 5</H1>

<P>

The <CMD><VOBJF></CMD> tag can be used to insert viola
applications.

Using this capability allows you embed in your document what you
can access or build using viola's programming, and GUIs. Of
course too much violaism reduces the portability of your document

———on—the WorldWide Web;butanyway—-—7: 09—

<p>

Here are some examples.
<H2>Clock</H2>
<VOBJF>. . /apps/clock.v</VOBJF>
<H2>Vicon</H2>

<VOBJF>. ./apps/vicon.v</VOBJF>
<p>

This can be a handy menu to tuck away at a corner of the screen.
<H2>Query</H2>

<VOBJF>. ./apps/vwq.v</VOBJF>
<P>

This application is intended to gather user information.
<H2>Wave fun</H2>

<VOBJF>../apps/wave.v</VOBJF>

<H2>Noodle Doodles</H2>

<VOBJF>. ./apps/doodle.v</VOBJF>

<P>

So I was bored...
<P>

The end

The first portion of the corresponding “clock.v” Viola script
(located in the “apps” directory)

\name {clock}

\class {vpane}

\parent {}

\width {200}

\height {210}

\children {clock.dial clock.mesg}

EOLASTX-0000001347

90/006,831
Art Unit: 3992

\

\name {clock.dial}
\class {XPMBG}
\parent {clock}

\script {
print ("@RRREREG clock: ");
for (i =0; i < arg[]; i++) print(arg(il, ", ");

print ("\n");

switch (arg[0]) {

(ISR 1)
case CICK

date = date();

clock.mesg ("update") ;

second = int (nthWord(date, 6));
minute = int (nthWord(date, 5));
hour = int(nthWord{date, 4));

if (hour >= 12) hour = hour - 12;

secondD = (second / 60.0 * 360.0) - 90.0;
minuteD = (minute / 60.0 * 360.0) - 90.0;
hourD = (hour / 12.0 * 360.0) - 90.0 + (minute / 60.0 * 30.0);

secondX = secondR * cos(secondD) + centerX;
secondY = secondR * sin(secondD) + centerY;
minuteX = minuteR * cos(minuteD) + centerX;
minuteY = minuteR * sin{(minuteD) + centerY;
hourX = hourR * cos(hourD) + centerX;
hourY = hourR * sin(hourD) + centerY;

if (lminuteX != minuteX) {
clearWindow() ;
clock.dial ("render"); /* brutally redraw */
drawLine (centerX, centery, minuteX, minuteY);
drawLine (centerX, centerY, hourX, hourY);
invertline (centerX, centery, lsecondX, lsecondyY);

}
invertLine(centerX, centerY, lsecondX, lsecondY):;
invertLine (centerX, centerY, secondX, secondY);

lsecondX = secondX;

lsecondY = secondyY;

IminuteX = minuteX;

IminuteY = minuteY;

lhourX = hourX;

lhourY = houry;

if (view) after (1000, "clock.dial", "tick");

return;
break;
case "render":
usual () ;

for (L =1; 41 <=12; 1 =1 + 1) {

EOLASTX-0000001348

90/006,831
Art Unit: 3992

x = letterR * cos((i / 12.0 * 360) - 90) +
centerX 103

y = letterR * sin((i / 12.0 * 360) - 90) +
\aclltCLY 5,

drawText (x, y, i, str(i));
}

return;
break;
case "VIEW ON":
view = 1;

return;
break;
case "VIEW_OFF":
view = 0;
return;

break;

case "expose":
clearWindow() ;

lminuteX = 0; /* forces redrawing */
lhourX = 0; /* forces redrawing */
break;
case "config":
usual {}y

aSHaxr77
send(self(), "resize", arg[3], argl[4]):
return;
break;
case "resize":
if (arg[l] < arg([2])
radius = arg[l] / 2.0;
else
radius = arg(2] / 2.0;

centerX arg(l) / 2.0;

centerY = arg([2] / 2.0;
secondR radius * 0.95;
minuteR radius * 0.9;

hourR = radius * 0.6;
letterR (radius - 9) * 0.94;

/*

*/

atter (2000, "clock.dial™, "tick"™);
IminuteX = 0;

system(concat (environVar ("VIOLA"), "/play ",

environVar("VIOLA_DOCS"), "/cuckoo.au"));

break:;

}

usual () ;

EOLASTX-0000001349

90/006,831
Art Unit: 3992

The Viola DX37 approach to embedding interactive objects using interpreted

Viola scripts (or corresponding byte-code forms) does not anticipate nor

fairly suggest the 906 invention as claimed for at least the following

reasons:

based intéractive processing, the Examiner can find no indication from a

_ comprehensive text search of the Viola DX37 files that such interactivity
results from the use of a parsed embed text format that specifies the
location of an object external to the hypermedia document, where the

browser application uses type information associated with the object
to identify and locate an external executable application, and where

the parsing step results in the browser automatically invoking the
executable application to display the object and enable interactive
processing of the object within the same browser-controlled window, when

the instant '906 patent claims 1 and 6 are properly accorded the broadest
reasonable interpretation consistent with the specification.

I. VIOLA <VOBJF> TAGS DO NOT
ANTICIPATE NOR FAIRLY SUGGEST THE
“EMBED TEXT FORMAT” AS CLAIMEDIN
THE 906 PATENT.

Unlike the instant '906 claimed “embed text format,” the Viola <VOBIF>
tags use no arguments or additional elements beyond a directory path and
filename. The Viola <VOBIF> tag simply loads the Viola script using the

EOLASTX-0000001350

90/006,831
Art Unit: 3992

path and filename specified between the <VOBJF> and </VOBIJF> tags, as

shown:

element associated with the external object (i.e., “type information” as

claimed) to identify and locate an executable application external to the

distributed hypermedia document [see 906 patent, TABLE II and associated
discussion col. 13].

Significantly, the Viola browser application does not fairly teach nor suggest

where the browser application uses type information associated with the
external object to identify and locate an external executable application.

II. VIOLA SCRIPTS (OR CORRESPONDING
BYTE-CODE FORMS) DO NOT ANTICIPATE
NOR FAIRLY SUGGEST THE EXTERNAL
“OBJECT” AS CLAIMED IN THE ‘906
PATENT.

If the Viola <VOBIJF> tags are considered as arguably corresponding to the
instant claimed '906 “embed text format” (in the sense that the Viola
<VOBIJF> tags specify “the location of at least a portion of an object external
to the first distributed hypermedia document” as claimed in ‘906 claims 1
and 6), then the Viola script program specified between the <VOBIF> tags is
not equivalent to the instant ‘906 claimed external “object” when the

EOLASTX-0000001351

90/006,831
Art Unit: 3992

claimed ‘906 external “object” is interpreted in a manner consistent with the
specification of the ‘906 patent.

The Viola, “clock.v” script is a high-level source code PROGRAM. In contrast,
the scope of the claimed ‘906 external “object” broadly encompasses myriad

] , i -extracting data objects [see patent,

col. 3, lines 33-51].

The scope of the claimed ‘906 external “object” is broad when construed in a
manner consistent with the specification (i.e., see ‘906 patent, col. 3, lines

36-39: “a data object is information capable of being retrieved and

resented to a user of a computer s m.”). H

claimed ‘906 external “object” clearly does not read upon a high-level source
code PROGRAM, such as a Viola script, nor does it read upon an object in
byte-code form.

When the scope of the claimed ‘906 external “object” is construed in a

manner consistent with the specification, it is clear that any executable
component of the claimed 906 external data “object” is limited to
performing self-extraction of the compressed data object:

See ‘906 patent, col. 3, lines 43-51:

When a browser retrieves an object such as a self-extracting data object the -
browser may allow the user to "launch" the self-extracting data object to
automatically execute the unpacking instructions to expand the data object to
its original size. Such a combination of executable code and data is limited in

that the user can do no more than_invoke the code to perform a sinqular

EOLASTX-0000001352

90/006,831
Art Unit: 3992

function such as performing the self-extraction after which time the obiject is
a standard data object.

. = i j i i executable code to

expand the compressed data object to its original size, this type of self-

extraction extracts DAT i i inh-

PROGRAM in the form of a Viola script, or a byte-code file, or the like.

- III. VIOLA SCRIPTS (OR CORRESPONDING
BYTE-CODE FORMS) DO NOT ANTICIPATE

NOR FAIRLY SUGGEST THE EXTERNAL
“EXECUTABLE APPLICATION” AS CLAIMED

IN THE ‘906 PATENT.

The Examiner finds that the Viola code publication does not fairly teach nor

suggest that the browser automatically invokes an executable application,

exterhal to the hypermedia document, to display the object and enable
—interactive processing of the object, when the instant ‘906 patent claims 1~

and 6 are properly accorded the broadest reasonable interpretation

consistent with the specification, where such interpretation is also consistent

with the interpretation that those skilled in the art would reach. In re Hyatt

211 F.3d 1367, 1372, 54 USPQ2d 1664, 1667 (Fed. Cir. 2000); In re

Cortright, 165 F.3d 1353, 1359, 49 USPQ2d 1464, 1468 (Fed. Cir. 1999).

While expert witnesses and dictionaries (considered as extrinsic evidence)
may differ regarding the proper construction of the instant claimed
“executable application”, the Central Processing Unit (i.e., CPU or

EOLASTX-0000001353

90/006,831
Art Unit: 3992

microprocessor) found in every computer system has only a single, precisely

defined interpretation as to what constitutes an “executable application.”

When the CPU initiates a “fetch and execute” cycle, the program counter is

loaded with the address of the next executable instruction. To be
“executable” the contents of the memory location pointed to by the program

—counter must containan-instruction-in binary formthatisa memberof the

native instruction set of the microprocessor (i.e., a binary machine language

instruction). The binary repr i i i i

language instruction that determines what kind of action the computer

should take (e.g., add, jump, load, store) is referred to as an operation code

(i.e., OP code). From the perspective of the CPU, if a recognizable machine
language instruction (i.e., a native CPU instruction) is not found within the

memory location pointed to by the program counter, the computer will
crash.

The Viola system uses “C-like” Viola scripts that must be INTERPRETED by
the browser and then TRANSLATED or CONVERTED into binary native
executable machine code that can be understood by the CPU. Alternately,

the Viola script is precompiled to intermediate byte-code form and the byte-
code is interpreted (i.e., translated) into binary native executable machine
performance penalty, as interpreted applications run much slower than
compiled native binary executable applications.

Accordingly, the “C-like” Viola scripts (or corresponding byte-code

representations) are not “executable applications” from the perspective of

the CPU, which is the only perspective that really matters at runtime. A

EOLASTX-0000001354

90/006,831
Art Unit: 3992

conventional CPU is only capable of processing binary machine language

instructions from its own native instruction set.

Without an intermediate translation step performed by an interpreter

component of the Viola browser, a Viola script (or corresponding byte-code

Significantly, the instant '906 specification is silent regarding the use of
applications that rely upon scripts that must be interpreted before they can
be executed. The instant ‘906 specification is silent with respect to

interpreting code prior to execution. The instant ‘906 specification is silent
with respect to the use of byte-code intermediate forms.

IV. THE INTENDED USE OF THE VIOLA RAPID
PROTOTYPING INTERPRETED SCRIPTING
SYSTEM TEACHES AWAY FROM THE
INTENDED USE OF THE ‘906 PATENT.

The Viola scripting system teaches away from the primary intended use of

provide an interpreted operating environment primarily designed for rapid
prototyping.

In contrast, the main object of the ‘906 invention is to provide a system
“that allows the accessing, display and manipulation of large amounts of

EOLASTX-0000001355

90/006,831
Art Unit: 3992

data, especially image data, over the Internet to a small, and relatively

cheap, client computer ['906 patent, col. 6, lines 21-25].

The use of an interpreted script application (or corresponding intermediate
byte-code representation) in the ‘906 patent context would be unacceptably
—slowinprocessing large amounts of data, especially the kind of complex
' three-dimensional image data used in one embodiment of the ‘906 patent.
~ One must reflect on the fact that the personal computers used in 1994 were
significantly slower than the high speed computers widely used today
(2005).

Overcoming the existing bandwidth and processing speed constraints

associated with the prior art are central objects of the ‘906 invention [see
‘906 patent, col. 5, lines 39-56]:

The open distributed hypermedia system provided by the Internet allows users to
easily access and retrieve different data objects located in remote geographic
locations on the Internet. However, this open distributed hypermedia system as it
currently exists has shortcommgs |n that today S Iarge data obJects are Ilmlted

Internet and Iocallzed networks, and by the Ilmlted processmg power, or computlng
constraints, of small computer systems normally provided to most users. Large data
objects are difficult to update at frame rates fast enough (e.g., 30 frames
per second) to achieve smooth animation. Moreover, the processing power

needed to perform the calculatlons to ammate such lmages in real time does
not e

browsers and viewers are not capable of performmg the computatlon

necessary to generate and render new views of these large data objects in
real time.

Also see ‘906 patent, col. 6, lines 21-31:

On the other hand, small client computers in the form of personal computers or
workstations such as client computer 108 of FIG. 2 are generally available to a much
larger number of researchers. Further, it is common for these smaller computers to
be connected to the Internet. Thus, it is desirable to have a system that allows
the accessing, display and manipulation of large amounts of data, especially

EOLASTX-0000001356

—Reexamination/Control Number:
90/006,831
Art Unit: 3992

v
Q)
Q
M
un
00)

image data, over the Internet to a small, and relatively cheap, client
computer.

Due to the relatively low bandwidth of the Internet (as compared to today's large

data objects) and the relatively small amount of processing power availableat
client computers, many valuable tasks performed by computers cannot be

performed by users at client computers on the Internet.

The importance of "speed of access” to application client 210 (corresponding
to the instant claimed “executable application”) is further demonstrated by

access [See '906 patent, col. 8, lines 66, 67, contd, col. 9, lines 1-14]:

Client computer 200 includes processes, such as browser client 208 and application
client 210. In a preferred embodiment, application client 210 is resident within
client computer 200 prior to browser client 208's parsing of a hypermedia document
as discussed below. In a preferred embodiment application client 210 resides on the
hard disk or RAM of client computer 200 and is loaded (if necessary) and executed
when browser client 208 detects a link to application client 210. The preferred
embodiment uses the XEvent interprocess communication protocol to exchange
information between browser client 208 and application client 210 as described in
more detail, below. Another possibility is to install application client 210 as a
"terminate and stay resident” (TSR) program in an operating system
environment, such as X-Window. Thereby making access to application client 210
much faster.

The Examiner submits that “"Terminate and Stay Resident” (TSR) programs
were notoriously understood to be native binary executable code by those of
ordinary skill in the art at the time of the ‘906 invention. *

For example, in the legacy Microsoft MS-DOS environment, TSR programs
were native binary executables designated as COM or EXE programs that
were preloaded in memory for fast execution. TSR programs were typically
used to allow utilities, drivers, or interrupt handlers to be preloaded in

EOLASTX-0000001357

90/006,831
Art Unit: 3992

memory for quick access. > The purpose of memory preloading for quick

access would not be well served if a TSR program in the form of a script had

to be interpreted (i.e., translated) to binary native code before it could be

~ executed.

' “spreadsheet programs, database programs, and word processor programs”

most commercial spreadsheet programs, database programs, and word

processor applications were usually sold as native binary executable

applications. The Examiner does concede that applications of the
aforementioned types were available in interpreted lanquages at the time of

the invention (e.g., a database program written in the BASIC language).
However, an interpreted application in source code form cannot be executed
directly by the CPU without first being translated to native binary executable
machine code form, as discussed supra.

4 See e.g., U.S. Patent 5,056,057 to Johnson et al., “Keyboard interface for use in
computers incorporating terminate-and-stay-resident programs”, issued Oct. 8, 1991.
5 Duncan, Ray, “Advanced MSDOS Programming”, Microsoft Press, 1986, page 391.

EOLASTX-0000001358

'90/006,831
Art Unit: 3992

V. EVEN ASSUMING, ARGUENDO, THAT

“INTERPRETING' A SCRIPT” (OR

CORRESPONDING BYTE-CODE
REPRESENTATION) MAY BE BROADLY

CONSIDERED AS EQUIVALENT TO
“EXECUTING AN APPLICATION"”, SUCH
INTEPRETATION MERGES THE BROWSER

UTABLE APPLICATION"”
INTO ONE PROGRAM THAT FAILS TO

TEACH EVERY ELEMENT OF THE ‘906
PATENT CLAIMS.

Assuming arguendo that one adopts the alternate broader modern
construction where “interpreting a script” (or interpreted the corresponding
byte-code representation) may be considered as equivalent to “executing an
application,” then the Viola script arguably becomes an integral component

of the Viola browser that parses, interprets (i.e. translates), and executes
each line of the script (or corresponding byte-code). In such case, the

browser and the “executable application” merge into one program, and

and a discrete “executable application” as claimed by the instant ‘906 patent
[see claims 1 and 6].

Lastly, The Examiner takes particular note of the fourth line of the
“violaBrief.hmml” file ("Technical Overview of Viola,” see the “docs”

EOLASTX-0000001359

90/006,831
Art Unit: 3992

directory) that leads one to conclude that the Viola DX37 invention may not
have been fully enabled at the time of publication:

<TITLE>Viola, A Technical Summary</TITLE>
<CAUTION>THIS DOCUMENT IS IN DRAFT STATUS</CAUTION>

~ For at least the aforementioned reasons, the DX37 Viola files, when
considered as a prior art publication for purposes of reexamination, do not

. . \ . . .
—————teach nor fairly suggest the instant ‘906 invention, as claimed. —

An appendix is attached that presents some of the more relevant Viola
documentation files. The files were created for display by a Viola browser

and are presented with the included hypermedia tags as found on the CD
artifact disk.

EOLASTX-0000001360

90/006,831
Art Unit: 3992

Conclusion

In summary, the Examiner concurs with the Patent Owner with respect to

arguments I-IV for the reasons discussed supra.

Although the Examiner does not concur with the Patent Owner with respect

to argument V, the issue of establishing a nexus between the claimed

The Patent Owner’s arguments traversing the rejecti i

the “preponderance of the evidence” standard to succeed in having the
determination of patentability must be based on consideration of the entire
record, by a preponderance of evidence, with due consideration to the
persuasiveness of any arguments and any secondary evidence. In re
Qetiker, 977 F.2d 1443, 24 USPQ2d 1443 (Fed. Cir. 1992).

Accordingly, for at least the aforementioned reasons set forth with respect to
arguments I-1V, the Examiner has reconsidered and withdrawn the
rejections set forth in the last office action (mailed Aug. 16, 2004).

In addition, the DX37 Viola files have been considered as a prior art
publication. For the reasons discussed supra, the DX37 Viola files included
on the CD artifact do not teach nor fairly suggest the instant ‘906 invention,
as claimed.

EOLASTX-0000001361

90/006,831
Art Unit: 3992

Instant U.S. Patent 5,838,906 claims 1-10 are hereby confirmed.

Any comments considered necessary by PATENT OWNER regarding the
above statement must be submitted promptly to avoid processing delays.

Such submission by the patent owner should be labeled: "Comments on
Statement of Reasons for Patentability and/or Confirmation" and will be

laced in tl ination file.

St. John Courtenay III
Primary Examiner ‘
Central Reexamination Art Unit 3992

Mark Reinhart, First Conferee
Special Programs Examiner (SPRE)
Central Reexamination Art Unit 3992

Second Conferee

EOLASTX-0000001362

90/006,831
Art Unit: 3992

VIOLA APPENDIX

The contents of file “viola.desc” (contained in the “docs” directory):

language: viola (Visual Interactive O Language and Application)
package: viola

version: 2.0 beta

parts: interpreter, applications, documentation,

how to get: ftp xcf.berkeley.edu src/local/viola/*

description: A language/toolkit for hypermedia applications. Very loosely

modeled after Hypercard. Intended as a tool for building
and running hypermedia applications that are composed of

———~<collectionof classed objects interacting with the wser
444444444444444AAAAAAAAAAAAAAand—paSSiﬂg—messages—amcnggeach4otherT4Has‘sInmﬂI?Tﬁﬁ?“““““““““‘
specification language. Is event driven (X-Window, timer,
I/0). Notion of "objects" for modularization and scalability.
Syntax is C like. Bytecode compilation is done incremental
(object by object). Is single class inheritanced.
+ has objects
dynamic array
message passing
bytecode compiler, interpreter
graphical interface toolkit
pseudo-terminal I/0 interface
socket I/0 interface
world wide web interface
non dynamic class definition (C level definition)
non dynamic data types: string, char, int, float, array
- little interactive authoring tools for naive users
- development on language is slow, but application driven
ports: Unix/X
author: Pei Y. Wei <wei@xcf.berkeley.edu>
status: actively developed, application driven
discussion: viola@xcf.berkeley.edu
updated:

L+ 4+ 4+ + + 4 +

reference: The X Resources, O'Reilly & Associates

europe: ftp info.cern.ch pub/www/src/viola*
japan: ftp srawgw.sra.co.jp pub/xll/viola*

EOLASTX-0000001363

90/006,831
Art Unit: 3992

The file “violaBrief.hmml” (contained in the “docs” directory) provides a

technical overview of Viola, and is reproduced for the record in its entirety

below (including the “hmml tags” associated with the browser hypermedia

markup language):

“violaBrief.hmml” Technical Overview of Viola (see the “docs” directory)

<!DOCTYPE hmml SYSTEM>

<HMML>

<TITLE>Viola, A Technical Summary</TITLE>

<CAUTION>THIS DOCUMENT IS IN DRAFT STATUS</CAUTION>
<HSEP>gold</HSEP>

<H1>VIOLA</H1>

<H3>Visual Interactive Object-oriented Langage and Applications</H3>

P
T

This paper presents a technical overview of viola.

<HSEP>gold</HSEP>

<H1>Overview</H1>

<P> .
Viola is a tool for the development and support of interactive media
applications. Its basic functionality is not unlike that of
HyperCard and Tcl/Tk. Viola uses an object oriented model for
encapsulating data into " “object'' units, and to enforce a
classing and inheritance system. The extension language is
C-like in syntax, and is compiled into byte-code for

efficient interpretation. The graphical elements (widgets)
exist as classes in the Viola class hierarchy. The set of
widgets implemented in Viola are similar to those found in
graphical user interface toolkits like Xt, plus more

unusual widgets such as HyperCard-like cards and invisible
celopane buttons, and hypertext textfield.

<H2>Classes and Objects</H2>

<P>

The single inheritance classing system defines the basic types of

object instances. Many of these predefined class types happen to be

GUI oriented, because of the current application emphasis on hypermedia,
but many are non-visual and have nothing to do with GUIs. A modular object
model is enforced to control complexity: to provide a relatively simple
way of data encapsualization; for improving the size scalability of viola
applications; and for possibly helping network distribution of objects.

A scripting language exists for application writers to program
modifications to default object behaviors, and for application programming.
<P>

This is the Viola class hierarchy as of this writing.

It is rapidly evolving:

<VOBJF>../apps/chier.v</VOBJF>

EOLASTX-0000001364

90/006,831
Art Unit: 3992

<p>
i an rom
some point of view, it's probably true) compared to the GUIs
. . . . — not—as

deficient as it seems. For the same reason as Tk, Viola does
not require hard coding of, for example, dialog boxes to

achieve the same functionality.

<pP>

Because of the interpretive nature of the system, complex
GUIs can be composed out of primitive elements, dynamically.

I'o build a dialog box, a script could be written to create
and necessary objects, and somehow combine them together to
constitute a dialog box.

object'', and to send to it a message:
‘"Please make me a dialog box, with the following specifications''.

<H3>Hello, World!</H3>
<P>
Here's the proverbial <ITALIC>Hello World</ITALIC> program.

Go—ahead click

N3t
aReat; C1ICK—On 1t

<VOBJF>../apps/violaBriefExample hello.v</VOBJF>
<P>And its file level representation:
<EXAMPLE>
\class {txtButton}
\name {violaBriefExample hello}
\label {Hello, world!}
\script {

switch (arg[0]) {

case "buttonRelease":

bell();

break;

}

usual () ;
}
\width {100}
\height {30}

\BGColor {grey4d5]

\BDColor {white}

\FGColor {white}

\

</EXAMPLE>

<p>

In reality the <CMD>switch()</CMD> would be busier than just handling
one message. But it could just as easily be written thusly (and with
non-essential color information left out):

<EXAMPLE>

\class {txtButton}

\name {hello}

\label {Hello, world!'}

EOLASTX-0000001365

90/006,831
Art Unit: 3992

\script {
—if {argl0}=="buttonRelease"} belr ¢t} — — — — —
usual () ;

)|
\width {100}

\height {30}

</EXAMPLE>

<P> .

Although it may seem that some simple binding mechanism would be less
verbose, this free form allows one to easily compose the message
handler in any order -- doing the default action first, then do

the special thing, or any which way.

<H2>Messaging system</H2>

<P>

Viola is messag

number of sources. A message is typically caused by the

user interacting with a graphical user interface object,

but it could also be generated by other objects, or by

a timer facility. Through a communication facility such

as the socket, a message may also be generated from another

process on the network.

<pP>

In the above "'Hello, world!'' example, when the button is clicked on,
that button object "hello" will eventually receive a "buttonRelease"
message, which according to the script will execute the <CMD>bell ()</CMD>
command. If the object does not have any message handlers, the message
will "“fall thru'' the object, and (by way of <CMD>usual ()</CMD>)

the class default action will occur.

<pP>

A typical viola application consists of a collection of objects interacting
~— generating, receiving, and delegating messages -- with each other, and
with the user.

<H2>The Extension Language</H2>

<P>

As seen in the example above, viola scripts are C-like in syntax.

The language supports way few constructs: <CMD>if, while, for, switch</CMD>.
The commands like <CMD>print(), exit(), create()</CMD>, etc are all

i methods . Instead o uilding the commonly
used commands into the language grammar, they actually are just defined
early enough in the class hierarchy as to be accessible by all subclasses
that may need them. '

<p>

All objects can be individually programmed using the scripting

language. Each object is essentially its own interpretive

environment, and each object is its own variable scope.

<p>

For optimization, object scripts are compiled into <ITALIC>byte
codes</ITALIC> before applying the byte code interpreter on them. Because an
object's script is basically a message event handler that is likely to
receives many messages in its instance life time, the one time

EOLASTX-0000001366

90/006,831
Art Unit: 3992

cost of parsing and simple transformation into byte codes is

apparent when the objects deal with time critical "mouseMove"
-~ messages, or if there are tight looping operations.

<HSEP>gold</HSEP>
<H1>Applications</H1>
<p>
Along side the development of the Viola language/toolkit
<ITALIC>engine</ITALIC> itself, there is also the development of real
— working applications using the engine. The two processes provide reality
checks for each other.
<P>
Here we show screendumps of two developing viola applications.

<H2>World Wide Web Browser</H2>

<FIGURE TYPE="image/gif" SRC="../docs/violaWWW.gif">
<P>

This ""ViolaWWW'' application is currently among the most actively developed
viola application. The initial viola-WWW effort was made in order to
provide to viola a clean network transport mechanism. But the ViolaWww
browser application itself turned out to be useful enough, that it is being

<P>
An early version of this browser has been in use in the WWW community
since mid 92, it being the first publically available World Wide Web
browser for X-Windows.

<H2>The Whole Internet Resource Catalog</H2>

<FIGURE TYPE="image/gif" SRC="twi.gif">

<pP>

An electronic version of the resource catalog portion of the book
<ITALIC>The Whole Internet</ITALIC>. This application uses HyperCard
style card-flipping technique to flip among four basic GUI sets

(the cover frame is shown here; others frames contain documents and
controlling GUI elements).

<HSEP>gold</HSEP>

<H1>Summary</H1>

<P>

In sum, the Viola language/toolkit system provides an environment

where applications are composed of groups of objects, where objects
interact, by message passing, with the user and with each other.

<P>

As more applications are developed, more reusable objects will be created.
And development of successive applications will become easier and easier.
One of the goals of the Viola project is to accumulate a collection of
objects useful for constructing hypermedia applications.

<P>

The immediate future direction of Viola development will continue to aim
towards the path of hypermedia applications, with the World Wide Web

as the document/object network transport infrastructure.

EOLASTX-0000001367

90/006,831
Art Unit: 3992

<p>
4444444444444Ii4youL;e4inte;ested4ia4eent{ibutiﬁq4%e—the—deveiopment4effortr44‘4‘4“““““““““‘

please contact me.

<HSEP>gold</HSEP>

<ADDRESS>

<P>Pei Y. Wei

<P>Developer, O'Reilly & Associates, Digital Media Group

<P><CMD>wei@ora.com</CMD>

</ADDRESS>

</HMML>

The contents of file “violaCh1.hmml” (contained in the “docs” directory):

- <!'DOCTYPE hmml SYSTEM
[
1>
<HMML>
<SECTION NAME="chapterl">
<H1>Introduction to Viola</H1>
<FIGURE TYPE="image/xbm" SRC="viola.xbm">

<SECTION NAME="whatIsViola">
<H2>What is Viola?</H2>
<P>
Viola is a hypermedia application authoring and supporting system.
It contains a graphical user interface set, an "‘object oriented''
data organization and storage model, and a built-in extension
language. Perhaps the most important contribution of Viola is its
potential in bringing HyperCard-like capability to a very wide
range of platforms.
<p>
Viola can be used for the development and support of
interactive media applications. It provides an object data
organization model, an interpreted extension language,
graphical elements for user interface. The Viola operating
environment is interpretive, designed for rapid prototyping.
<P>
Viola is desigend to aid the development and support of
interactive/hyper media applications for the Unix/X platform.

Its functionality is similar to HyperCard and Tcl/Tk.
Viola uses an object oriented model to facilitate data
encapsulation into "‘object'' units, and to enforce a

classing and inheritance system. The extension language is
C-like in syntax and is processed into byte-code for
efficient interpretation. The graphical elements (widgets)
exist as classes in the Viola class hierarchy. The set of
widgets implemented in Viola are similar to those found in

user interface toolkits like Xt, plus more unusual widgets

such as HyperCard-like cards and invisible celopane buttons,

and hypertext textfield.

EOLASTX-0000001368

90/006,831
Art Unit: 3992

<P>

4444444444444%h+49£ﬂf4Vie}agpfevides—aﬁ—envircnment4in4which4appiiCatitnEr""““““““““““““

are composed of groups of objects where each object interacts,

by message passing, with-the user-and witheach other:/ 7 7 —

<p>

Because most aspects of an object is accessible and controllable

through the interpreted extension language, building an

application in Viola can be done dynamically, without the

edit/compile cycle. As with other systems with built-in

extension language (Emacs/ELisp, Tk/Tcl, HyperCard/HyperTalk),

Viola derives much of its versitility from its extension

language.

<p>

The rest of this paper gives a brief overview of the Viola

basics: the object model, language, and GUI elements.
It also describes some applications(?)

</SECTION>

<SECTION NAME="objectSystem">

<HZ>The Object System</H2>

<pP>

This section briefly describes Viola's notion of object
orientation.

<P>

Each Viola object consists of an array of ““slot'' values.
These values are information pertaining specifically to the
object: its class, name, script, color, and so on. The number
and type of each slot in an object are determined by the class
of the object.

<p>

Each class inherits slot definitions from its superclasses,
and has the option to set new values for the inherited slots.
In addition to those inherited slots, it may define two types
of new slots: private and common.

<p>

Common slots define slots that are shared by all object
instances of the same class. Private slots define slots that
make up each object instance. The separation of common and
private slots reduces redundancy of information carried by
each object:

<P>

As with slots, class methods are also inherited. The idea,
again, is to provide a mechanism for sharing as much code

as possible. It also makes the task of subclasing relatively
easy and systematic. It should be noted that modification of
the object system (to subclass, adding slots and methods)
must, at this point, be done in C.

<P>

This is the Viola class hierarchy as of this writing. It is
evolving rapidly.

</SECTION>

EOLASTX-0000001369

———Reexamination/Control Number: ———— Page 71
90/006,831
Art Unit: 3992

<SECTION NAME="violaClassHierarchy">

<H2>The Vieocla Class Hie rehvy</H2

+=Cowo 114CT 1y 711
<EXAMPLE>

cosmic

generic
field
BCard
FCard
XBM
XBMButton
toggle
XPM ‘
XPMButton
GIF
dial
client
TTY
socket
menu
pane
hpane
txt
txthabel
txtButton
txtDisp
txtEdit
vpane
project
rubber
slider
stack
tray
</EXAMPLE>
<p>

The cosmic class defines the minimal object: a private slot

that lets the object know what class it belongs to; and essential
methods such as create(), destroy(), save(), etc. From here on
the slots and methods definition is rather arbitrary and depends

on—whatthe dpplibdtion is.

<P>

As Viola was designed for visually interactive applications,
most of the classes are GUI widgety oriented. The two notable
exceptions are the socket and TTY classes, which are useful
for communicating with other processes.

<pP>

The class hierarchy seems deficient (at this point and from
some point of view, it's probably true) compared to the GUIs
provided by toolkits like Motif. But, it's actually not as
deficient as it seems. For the same reason as Tk, Viola does
not require hard coding of, for example, dialog boxes to
achieve the same functionality.

EOLASTX-0000001370

90/006,831
Art Unit: 3992

<P>
——Because of the interpretive nature of the system, eomplex — — — — — —
GUIs can be composed out of primitive elements, dynamically.
= To build a dialog box, a script could be written to create —
and necessary objects, and somehow combine them together to
constitute a dialog box.
<P>
As in Tk, making a dialog box can be made easy by calling a
pre written procedure. The current way to do this in Viola is

to build a "~“dialog box maker object'', and to send to it a
——— Please make mea dialog box, with the following specifications' .
<P>

It's worthwhile to illustrate with an examplé, which will
show many other aspects of Viola.

</SECTION>

<SECTION NAME="hello.v">
<H2>hello.v</H2>
<EXAMPLE>
\class {txtButton}
\name {hello}
\label {Hello, world!'}
\script {
switch (arg[0]) {
case "buttonRelease™:
res.dialog("show",
"Are you sure you want to exit?",
"Yes", "callback_exit",
"No", "callback nevermind"};

break;

case "callback exit":

. exit (0);

case "callback nevermind":
return; /* do nothing */

}

usual () ;

}
</EXAMPLE>

</SECTION>
</SECTION>

</HMML>

EOLASTX-0000001371

90/006,831
Art Unit: 3992

How to Contact the Examiner:

the examiner should be directed to St. John Courtenay III, whose telephone
number. The Examiner can normally be reached on Monday - Friday, 9:00
AM - 5:00 PM.

If attempts to reach the examiner by telephone are unsuccessful, the
Examiner’s Supervisor, Mark Reinhart who can be reached at 571-272-1611.

proceeding is assigned is:

CENTRAL REEXAMINATION UNIT FAX NUMBER:

571-273-9900
- T A

Commissioner for Patents
PO Box 1450

Mail Stop ex parte REEXAM
Alexandria, VA 22313-1450

M@ 2R | 4 /g,é,. W

i /%LJ{/,%,bv SPRi=CRU 599 2 OURTENAY 1l
- PRIMARY DISMNCR

EOLASTX-0000001372

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS

PO Box 1450

Alexandria, Virginia 22313-1450

Pro-go

DN Ao CONFIRMATION NO. 9718

Bib Data Sheet

FILING DATE
SERIAL NUMBER 10/30/2003 CLASS GROUP ART UNIT | ATTORNEY DOCKET |
90/006,831 709 3092 NO. '
RULE

APPLICANTS

5838906, Residence Not Provided;

CA:

¥ T

Director Ordered Reexam, Alexandria, VA;

bew CONTINUING DATA edede e de sk ek e e ek A e ek

This application is a REX of 08/324,443 10/17/1994 PAT 5,838,906

g7

ekl FOREIG N APPLICATI ON S e dede e de e e vk e e ek e e e e e e

ST-4¢

Foreign Priority claimed Oyes E{ TOTAL INDEPENDENT
s USC 119 (a-d - STATE OR SHEETS

-d) conditions meté%lfs no] tafter Allowance
Verified and Acknowledged E Tz £ Signature Initials COUNTRY DRAWING CL':‘:)MS CLA:;MS
IADDRESS
30080
LAW OFFICE OF CHARLES E. KRUEGER
P.O. BOX 5607

WALNUT CREEK , CA

OAAROL 40077

Y& 0J0-10U7

TITLE
DISTRIBUTED HYPERMEDIA METHOD FOR AUTOMATICALLY INVOKING EXTERNAL APPLICATION PROVIDING
INTERACTION AND DISPLAY OF EMBEDDED OBJECTS WITHIN A HYPERMEDIA DOCUMENT

U All Fees
U 1.16 Fees (Filing)

FILING FEE |FEES: Authority has been given in Paper a 1.17 Fees (Processing Ext. of time)

No. to charge/credit DEPOSIT ACCOUNT
RECEIVED [No.______forfollowing: U 1.18 Fees (Issue)
0.00
Q other
O Credit
http://neo:8000/PrexServlet/PrexAction 1/19/2006

EOLASTX-0000001373

Application/Control No. Applicant(s)/Patent under

Search Notes Reexamination
80/006,831 5838906
inel i ATt Unit
St. John Courtenay [l 3992

SEARCH NOTES

SEARCHED (INCLUDING SEARCH STRATEGY)
Class Subclass Date Examiner DATE EXMR
715 5011 | 8252005 | sTuc N .
se:f;zgf&s“mwsr‘e 8/25/2005 | STIC
Class 718, subclass 106, text sear
;‘n,y. g . ch 8/25/2005 | STiC

Class 715, subclasses 513, 516, 526, 8/25/2005 sTIC

760,777, text search-only-

Class 719, subclass 310, text search

only. 8/25/2005 | STJC

Class-345;-subclasses 419,427,619,
638, 649, 653, 654, 655, 656, text 8/25/2005 STJC
search only. .
INTERFERENCE SEARCHED Class 745, subclass 5041 8/25/2005 STIC
Class Subclass Date Examiner
715 501.1 8/25/2005 STJC
U.S. Patent and Trademark Office . Part of Paper No. 20050823

EOLASTX-0000001374

ame - ' PRIMARY EXANENER Count

DB=PGPB,USPT; PLUR=YES; OP=0OR
i L35 128 0orL34 1
7 L34 132and L33 : 1
r L33 (client$l and server$1 and (embed$3 adj text) and hypermedia and 1
browser$1 and 125 and 126 and 127).clm

DB=USPT.USOC,EPAB,JPAB,DWPI TDBD; PLUR=YES; OP=0OR
I L32 128 and L31 1
i L31 1290ri30 9897
I L30 HTorll1Z or113 or114 or 115 or 116 or 117 or [18 or [19 or 120 3309
r 6689

L29 1ltorl2orl3orldorl5Sorl6orl7orli8ori9 orll0

L8 715/526.ccls.

I L27 interactive and browser$1 and 123 433
i L26 object$1 or (data adj object$1) same embedded 4656119
I L25 executable adj (application$1 or program$1 or code$1) 11456
0 L24 browser$1 30663
i L23 hypermedia 1614
i L22 embed$3 adj text 350
I L21 client$1 and server$1 73723
i L20 345/656.ccls. 67
I L19 345/655.ccls. 12
I L18 345/654.ccls. 17
I L17 345/653.ccls. 38
I3 L16 345/649.ccls. 147
L L15 345/638.ccls. 20
I L14 345/619.ccls. 664
[T LI3 345427.ccls. 592
i L12 345/419.ccls. " 1640
[T LIl 719310.ccls. 423
o L10 715/777.ccls. 72
i L9 715/760.ccls. 170
I 344

http://westbrs:9000/bin/cgi-bin/srchhist.pl?state=8iu5av.37.1&f=ffsearch&userid=jcourtenay 8/25/2005

EOLASTX-0000001375

[

[, 78 Mit List

Search Results - Record(s) 1 through 2 of 2 returned.

I 1. Document ID: US 5838906 A
Using default format because multiple data bases are involved.

128 nlu.:._y 1Iof 2 File: USPT Nov 17, 13938

US-PAT-NO: 5838906
DOCUMENT-IDENTIFIER: US 5838906 A

TITLE: Distributed hypermedia method for automatically invoking external
application providing interaction and display of embedded objects within a
hypermedia document

DATE-ISSUED: November 17, 1998

INVENTOR-INFORMATION §
NAME) CITY STATE ZIP CODE COUNTRY

Doyle; Michael D. Alameda CA
Martin; David cC. San Jose CA

Ang; Cheong S. Pacifica CA

US-CL-CURRENT: 709/202; 709/218, 715/51 715/515, 115/516, 715/738, 715/804,
719/315

RN
Full i Titie | Citaiion| Front 1hf/nwil 3umn1 Dnulﬁ

7 2. Document ID: US 5838906 A
L28: Entry 2 of 2 File: DWPI Nov 17, 1998

DERWENT-ACC-NO: 1999-023910
DERWENT-WEEK: 200377
COPYRIGHT 2005 DERWENT INFORMATION LTD

TITLE: Interactive hypermedia access method for Internet - involves executing
external application associated with hypermedia document on client workstation

Fuxl

Kic i Deamu O

[Terms ' ’ ~ |IDocuments :”

http://westbrs:9000/bin/gate.exe?f=TOC&state=8iu5av.29&ref=28&dbname=USPT.,USO... 8/25/2005

EOLASTX-0000001376

i
f

[==

[32 - (3% witList

Search Results - Record(s) 1 through 1 of 1 returned.

{7 1. Document ID: US 5838906 A

Using default format because multiple data bases are involved. '
L3227 Entry 1 or 1 File: USPT Nov ll-, 13938

US-PAT-NO: 5838906
DOCUMENT-IDENTIFIER: US 5838906 A

TITLE: Distributed hypermedia method for automatically invoking external
application providing interaction and display of embedded objects within a
hypermedia document

DATE-ISSUED: November 17, 1998

NAME CITY ' STATE ZIpP CODE COUNTRY
Doyle; Michael D. Alameda CA
Martin; David C. San Jose CA
Ang; Cheong S. Pacifica CA

US-CL-CURRENT: 709/202; 709/218, 715/513, 715/515, 715/516, 715/738, 715/804,
719/315

i}‘ erms ‘ IDocuments
|L28 and L31 , 1

Previous Page Next Page Go to Doc#

http://westbré:9000/bin/gate.exe?%TOC&state=8iu5av.34&ref=32&dbname=USPT,USO... 8/25/2005

EOLASTX-0000001377

. 'S h History Transcript Page 2 of 2

¢’
o L7 715/516.ccls. 110
i L6—715/513¢ccls: 1050
I L5 718/106.ccls.- 368
[L4 709/203.ccls. 2814
] L3 7097219 ccls. 1930
I L2 709/200.ccls. 711
i L1 715/501.1.ccls. 680

END OF SEARCH HISTORY

http://westbrs:9000/bin/cgi-bin{srchhist.pl?state=8iu5av,37.l&f=ffsearch&userid=jcourtenay 8/25/2005

EOLASTX-0000001378

H I Application/Control No. Applicant{s)/Patent Under
Reexamination B ination

A AR AR R A

Requester Correspondence Address: (0 patent Owner [Third Party

Director of Patents
P.O. Box 1450
Alexandria VA 22313-1450

LITIGATION REVIEW (X <7, 8-24-05
(examiner initials) {date)
Case Name . Director Initials

(1) Eolas Technologies Inc. and The Regents of The University of
California v. Microsoft Corp.,

U.S. District Court, N. District of lllinois, Eastern Division,
Docket No. 99 C 0262, decided Jan. 14, 2004.

(2) Eolas Technologies Inc. and The Regents of The University of
California v. Microsoft Corp.,

U.S. Court of Appeals for the Federal Circuit, Docket No. 04-1234,
decided March 2, 2005.

COPENDING OFFICE PROCEEDINGS

TYPEOFPROCEEDING | NUMBER —
1. None
2.
3.
4.
U.S. Patent and Trademark Office DOC. CODE RXFILJKY

EOLASTX-0000001379

N = Application/Control No. | Gl
Issue Classification Reexamination
80/006,831 5838906
'_;E . ! l l' -I
St. John Courtenay |l 3992
ISSUE CLASSIFICATION
ORIGINAL . CROSS REFERENCE(S)
CLASS SUBCLASS CLASS SUBCLASS (ONE SUBCLASS PER BLOCK)
715 5011 709 203 219
INTERNATIONAL CLASSIFICATION 718 106
GlOl6|F -9/54 715 513 516 526 760 777
/ 719 310
/ 345 419 427 619 638 649 653 654
/ 345 655 656
/
= ST.JOHN COURTENAY i Total Claims Allowad: 10
PRIMARY EXANYNER ’
{Assistant Examlne:! ‘Date!)
/S,f',JOhP) Courtenay lil 0G. 0G.
o I} .- 0 42 - et e e, -
v Y ’ > §-29-05 Print Claim(s) Print Fig.
{Legal Instruments Examiner) (Date) 8/?""“”3' E’Lﬂ iner) 5 (Cate) 1 9
X Claims renumbared in the same order as presented by applicant | [J CPA
© E o E © ® w© E
£ 2 £ 2 E é E =
“| 3 “16 : 6
1 31 121
2 32 122
3 33 123
4 34 124
5 35 125 155 185
6 36 126 186
7 37 127 157 187
8 38 128 158 188
] 39 129 159 189
10 40 130 160 180
11 41 131 161 191
12 42 132 162 192
13 43 133 163 193
14 44 134 164 194
15 45 135 165 195
16 46 136 166 196
17 47 137 167 197
18 48 138 168 198
19 49 139 169 199
20 50 140 170 1200
21 51 141 171 201
22 52 142 172 202
23 53 143 173 203
24 54 144 174 204
25 55 145 175 205
26 56 146 176 206
27 57 147 177 207
28 58 148 178 208
29 59 149 179 209
30 60 150 180 | 210

U.S. Patent and Trademark Office

Part of Paper No. 20050823

EOLASTX-0000001380

ControlNo. [PatentUnder Reexamination |
Ex Parte Reexamination Interview Summary | 90/006,831 5838906
Examiner Art Unit
St. John Courtenay Tl 3992
— [Altparticipants {(USPTO personnet, patent owner, patentowner's representative):
(1) St_John Courtenay il (3) Michael D. Doyle
| 2) MarkReinhart : (4)Charles Krueger

Date of Interview: 18 August 2005

Type: a Telephonic i

¢)X] Personal (copy given to: 1)[] patentowner 2)[X] patent owner’s representative)

Exhibit shown or demonstration conducted: d)X Yes .)] No.
If Yes, brief description: Powerpoint presentation of Patent Owner's arguments.

| Agreement with respect to the claims)] was reached. g)LJ was notreached. h)lJ N/A.

Any other agreement(s) are set forth below under “Description of the general nature of what was agreed to..."

~_| Claim(s) discussed: 1 and 6
ldentification of prior art diswséed: Mosaic (APA), Berners-Lee, Raggett | & I, and Toye.

vescription of the general nature of what was agreed to if an agreement was reached, or any other comments:
The Patent Owner presented a Powerpoint presentation summarizing the Patent Owner's arquments of record. The -
Examiner informed the patent owner that OPLA was reviewing the Viola code to dstermine if it should be considered as a

prior art publication.

(A fuller description, if necessary, and a copy of the amendments which the examiner agreed would render the claims
patentable, if available, must be attached. Also, where no copy of the amendments that would render the claims
patentable is available, a summary thereof must be attached.)

S LUDE PATENT OWNER'S
STATEMENT OF THE SUBSTANCE OF THE INTERVIEW. (See MPEP § 2281). IF A RESPONSE TO THE

LAST OFFICE ACTION HAS ALREADY BEEN FILED, THEN PATENT OWNER IS GIVEN ONE MONTH FROM THIS
INTERVIEW DATE TO PROVIDE THE MANDATORY STATEMENT OF THE SUBSTANCE OF THE INTERVIEW

(37 CFR 1.560(b)). THE REQUIREMENT FOR PATENT OWNER'S STATEMENT CAN NOT BE WAIVED. EXTENSIONS
OF TIME ARE GOVERNED BY 37 CFR 1.550(c). '

ST. JOHN COURTENAY Il
PRIMARY EXANINER
cc: Requester (if third party requester) . Exan’/r:er's signature, if reét;ed
U.S. Patent and Trademark Office
PTOL-474 (Rev. 04-01) Ex Parte Reexamination Interview Summary Paper No. 20050823

EOLASTX-0000001381

