

EXHIBIT A

Eolas Technologies Incorporated v. Adobe Systems Incorporated et al Doc. 582 Att. 1

Dockets.Justia.com

http://dockets.justia.com/docket/texas/txedce/6:2009cv00446/118976/
http://docs.justia.com/cases/federal/district-courts/texas/txedce/6:2009cv00446/118976/582/1.html
http://dockets.justia.com/

Page 1

LEXSEE 2000 US DIST LEXIS 18886

EOLAS TECHNOLOGIES, INC., Plaintiff, v. MICROSOFT CORPORATION, De-
fendant.

No. 99 C 0626

UNITED STATES DISTRICT COURT FOR THE NORTHERN DISTRICT OF

ILLINOIS, EASTERN DIVISION

2000 U.S. Dist. LEXIS 18886

December 28, 2000, Decided
December 29, 2000, Docketed

COUNSEL: [*1] For EOLAS TECHNOLOGIES IN-
CORPORATED, plaintiff: Richard M Martinez, Jan M
Conlin, Martin R Lueck, Howard R Orenstein, Robins,
Kaplan, Miller & Ciresi, Minneapolis, MN.

For EOLAS TECHNOLOGIES INCORPORATED,
plaintiff: Thomas Bernard Keegan, Timothy Michael
Block, Robins, Kaplan, Miller & Ciresi, Chicago, IL.

For MICROSOFT CORPORATION, defendant: Richard
A. Cederoth, David T. Pritikin, Sidley & Austin, H. Mi-
chael Hartmann, Brett A. Hesterberg, Steven Peter Peter-
sen, Allen E. Hoover, Leydig, Voit & Mayer, Ltd., Chi-
cago, IL.

For MICROSOFT CORPORATION, defendant: T. An-
drew Culbert, Microsoft Corporation, Redmond, WA.

For MICROSOFT CORPORATION, counter-claimant:
H. Michael Hartmann, Brett A. Hesterberg, Steven Peter
Petersen, Allen E. Hoover, Leydig, Voit & Mayer, Ltd.,
Chicago, IL.

For EOLAS TECHNOLOGIES INCORPORATED,
counter-defendant: Richard M Martinez, Jan M Conlin,
Martin R Lueck, Howard R Orenstein, Robins, Kaplan,
Miller & Ciresi, Minneapolis, MN.

For EOLAS TECHNOLOGIES INCORPORATED,
counter-defendant: Thomas Bernard Keegan, Timothy
Michael Block, Robins, Kaplan, Miller & Ciresi, Chi-
cago, IL.

JUDGES: James B. Zagel, United States District Judge.

OPINION BY: James [*2] B. Zagel

OPINION

MEMORANDUM OPINION AND ORDER

Ease of interactivity is a key ingredient to the popu-
lar success of the Internet and World Wide Web. From
an end-user perspective, manipulating data in a seamless
web page, harnessing the computing power of a network
of machines, and enjoying the luxury of an easy-to-use
browsing experience are all benefits of the current state
of today's computer technology. For many end-users, this
interactivity comes shrouded in mystery; the underlying
technology, computer codes, and indeed, the history of
computer networks become relevant only on a need-to-
know basis. In this sense, computers differ little from
automobiles and microwave ovens with frozen entree
sensors. This case unveils a small portion of Internet
technology.

Michael Doyle, David Martin and Cheong Ang in-
vented a method for building a web browser that can
display interactive objects embedded in a single web
page and that uses another application to enable the in-
teractivity. 1 In this case, plaintiff Eolas Technologies is
the exclusive licensee of the Doyle patent, U.S. Patent
No. 5,838,906 (issued November 17, 1998) (the '906
Patent). Eolas alleges that Microsoft Corporation [*3]
infringes that patent. However, infringement and the
particular accused products are not at issue yet. At this

Page 2
2000 U.S. Dist. LEXIS 18886, *

time, the only question presented is the legal question of
claim construction.

1 I describe the invention in general terms for
now.

A patent claim is that portion of the patent document
that defines the invention, and must "particularly point
out and distinctly claim the subject matter which the ap-
plicant regards as his invention." 35 U.S.C. § 112. The
words used in describing the invention are often subject
to interpretation, and in this case the parties dispute the
meaning of some terms used in the '906 Patent. The
meaning of the words, the construction of the claims, is
for me to decide and it must be decided before the issue
of infringement. Markman v. Westview Instruments, 517
U.S. 370, 391, 116 S. Ct. 1384, 1396, 134 L. Ed. 2d 577
(1996).

I. Background

A. The Internet and World Wide Web

Although issued in 1998, the '906 Patent takes us
back [*4] to 1993 and the early days of the World Wide
Web. Then, as now, the Internet referred to a vast net-
work of networks. A typical network consists of client
computers (e.g., individual desktop computers) that re-
quest information from server computers that, in turn,
provide information back to the client. With the use of a
uniform standard, the Transfer Control Protocol/Internet
Protocol (TCP/IP), localized networks are able to com-
municate with other local area networks, creating a geo-
graphically diverse network -- the Internet.

Other standards, HyperText Transmission Protocol
(HTTP) and HyperText Markup Language (HTML),
allow for the transmission and exchange of data among
computers in a specific format, called hypertext (or when
images, video or sound are involved, hypermedia). Hy-
pertext documents are located throughout the Internet
and are identified by reference to their addresses, known
as URLs (Uniform Resource Locators). Hypertext docu-
ments usually are displayed on a user's screen by way of
a software program called a browser; the browser reads
(parses) the hypermedia document (written in HTML)
and displays (renders) it accordingly. 2 The HTML code
may identify links to other [*5] hypertext documents
and the browser displays those links. The user can click
on the link, and, using HTTP, the browser retrieves that
next hypertext document to render. The array of HTML-
based hypermedia documents (web pages), linked to-
gether and navigable across geographically diverse net-
works, is called the World Wide Web.

2 In the early 1990s, Mosaic was the state-of-
the-art browser; today, Netscape's Navigator and

Microsoft's Internet Explorer are the browsers
most familiar to consumers.

Notwithstanding the "digital divide" that separates
many people in this country (and the world), I assume
familiarity with these terms and with the basics of com-
puting in the Internet environment.

B. The Patented Invention

The '906 Patent is entitled "Distributed Hypermedia
Method for Automatically Invoking External Application
Providing Interaction and Display of Embedded Objects
Within a Hypermedia Document." The inventors identi-
fied two problems that they sought to solve. First, from
the individual end-user perspective, [*6] hypermedia
documents were limited in their ability to deal with large
data objects (e.g., particularly large video files, pseudo-
3-D animated sequences and the like) because of band-
width constraints and the limited processing power of
one person's computer. For example, an animated se-
quence often entails receiving data at a rate fast enough
to display at 30 frames per second and requires a com-
puter with a sophisticated processor able to perform the
calculations necessary to animate images. As the inven-
tors stated in their patent, "Today's browsers and viewers
are not capable of performing the computation necessary
to generate and render new views of these large data ob-
jects in real time." '906 Patent, col. 5, ll. 53-55.

Second, the inventors noted the limited capability of
the state-of-the-art browser (Mosaic) to provide interac-
tion with data objects. Generally, the user needed to go
outside the browser to interact with the data. "Users are
limited to traditional hypertext and hypermedia forms of
selecting linked data objects for retrieval and launching
viewers or other forms of external software to have the
data objects presented in a comprehensible way." '906
Patent col. 6, [*7] ll. 35-39. At the time, these external
software programs were commonly called helper appli-
cations. When Mosaic encountered web pages that re-
quired helper applications to deal with objects, it forced
the user to interact with a separate display area (a pop-up
window). There was no communication between helper
and the browser, i.e., the browser was inactive while the
helper was active. '906 File History, Paper # 19, pp. 7-8.

The inventors envisioned "a system that allows a
user at a small client computer connected to the Internet
to locate, retrieve and manipulate data objects when the
data objects are bandwidth-intensive and compute-
intensive;" and that allows "a user to manipulate data
objects in an interactive way to provide the user with a
better understanding of information presented." '906 Pat-
ent, col. 6, ll. 40-47. An example of this idea is a browser
that is capable of displaying a web page that retrieves
complex 3D medical images (e.g., an image of an em-

Page 3
2000 U.S. Dist. LEXIS 18886, *

bryo). The computational processing of the image is
done by more powerful computers located remotely from
the user's, meanwhile the browser allows the user to ma-
nipulate the image (rotate, scale, reposition the view-
point) [*8] without exiting the browser display area.
'906 Patent, col. 7, ll. 7-28.

The Patent describes a preferred embodiment of the
invention (a modified Mosaic browser), and outlines in
some detail a sequence of events that exemplifies the
method. In the example, an end-user has a client work-
station. A browser and at least one other application re-
side on the client's hard drive. The browser loads a hy-
permedia document and begins to parse its HTML code.
The HTML code indicates that an external application is
required to process some embedded (i.e., in the page)
object. 3 The browser calls on that application, invokes it
(without further input from the user), and the application
processes the request based on information it receives
from the browser, the user, and perhaps other resources
on the Internet. In the example, the application is an im-
age viewer that processes and displays 3D images (the
data object) and allows the user to manipulate the im-
ages. The application's displays are integral to the
browser's -- a 3D image of an embryo appears in the
browser display area and the user is able to manipulate
the image immediately.

3 HTML code is text-based. It uses words to tell
the browser how a web page is to be displayed,
describing colors, fonts, placement of text, etc.
The format of an HTML file uses structures
called tags, which are descriptive words placed in
angle brackets that convey instructions to the
browser, e.g.:

 <EMBED

TYPE = "type"

HREF = "href"

WIDTH = "width"

HEIGHT = "height"

>

'906 Patent col. 12, ll. 54-65.

 [*9] I refer to this example merely to illustrate the
inventors' idea, not to define with precision the scope of
the invention. For that, the devil is in the details and I
must first consider the words used to define this inven-
tion -- the words in the claims, not the descriptive back-
ground exposition of the Patent. The Patent includes two
independent claims, Claim 1 and Claim 6. Both claims

use the same terms and I follow the parties' convention
by focusing on Claim 6.

C. Claim 6

Claim 6 provides, in its entirety:

 What is claimed is: [...]

6. A computer program product for
use in a system having at least one client
workstation and one network server cou-
pled to said network environment,
wherein said network environment is a
distributed hypermedia environment, the
computer program product comprising:

 a computer usable me-
dium having computer
readable program code
physically embodied
therein, said computer pro-
gram product further com-
prising:

computer readable
program code for causing
said client workstation to
execute a browser applica-
tion to parse a first distrib-
uted hypermedia document
to identify text formats in-
cluded in said distributed
hypermedia document and
to respond [*10] to prede-
termined text formats to
initiate processes specified
by said text formats;

computer readable
program code for causing
said client workstation to
utilize said browser to dis-
play, on said client work-
station, at least a portion of
a first hypermedia docu-
ment received over said
network from said server,
wherein the portion of said
first hypermedia document
is displayed within a first
browser-controlled win-
dow on said client work-
station, wherein said first
distributed hypermedia
document includes an em-
bed text format, located at

Page 4
2000 U.S. Dist. LEXIS 18886, *

a first location in said first
distributed hypermedia
document, that specifies
the location of at least a
portion of an object exter-
nal to the first distributed
hypermedia document,
wherein said object has
type information associ-
ated with it utilized by said
browser to identify and lo-
cate an executable applica-
tion external to the first
distributed hypermedia
document, and wherein
said embed text format is
parsed by said browser to
automatically invoke said
executable application to
execute on said client
workstation in order to
display said object and en-
able interactive processing
of said object within a dis-
play area created at said
first location within [*11]
the portion of said first dis-
tributed hypermedia
document being displayed
in said first browser-
controlled window.

D. The Disputed Terms

The parties dispute the meaning of the following key
phrase: "wherein said object has type information as-
sociated with it utilized by said browser to identify
and locate an executable application." What is an ex-
ecutable application? What is the type information that
must be associated with the object? What does it mean
for the type information to be utilized by said browser to
identify and locate the executable application? 4

4 In addition, there are additional claim terms
and phrases subject to possible dispute: "browser
application;" "distributed hypermedia environ-
ment;" "distributed hypermedia document;" "to
enable interactive processing;" and "automati-
cally invoke." To a lesser degree there may be a
dispute as to the meaning of "program code for
causing" and "text format." However, the scope

and relevance of the dispute on all these terms is
unclear. Microsoft suggests I defer construction
of these terms and I agree. The parties are free to
brief and argue in detail the construction of any
other claim terms in light of this opinion.

 [*12] E. The Markman Hearing

In order to resolve this dispute over claim construc-
tion, I held a hearing pursuant to Markman v. Westview
Instruments, 517 U.S. 370, 116 S. Ct. 1384, 134 L. Ed.
2d 577 (1996). The parties submitted briefs, the Patent
itself, and the entire File History (the official record of
proceedings in the Patent Office leading up to the issu-
ance of the Patent). In addition, both parties offered ex-
pert testimony. The plaintiff offered the testimony of
Edward Felten, Associate Professor of Computer Science
at Princeton University. The defendant offered the testi-
mony of H.E. Dunsmore, Associate Professor of Com-
puter Science at Purdue University, and Michael
Wallent, Product Unit Manager for Internet Explorer.

Unless specifically referenced in this opinion, I con-
sidered only the live testimony adduced at the hearing,
the patent itself, and the file history. No other evidence is
admitted.

II. Discussion

A. The Standards for Claim Construction

The basics of claim construction are well-settled.
This is an issue of law for the court to decide. Markman,
517 U.S. 370, 134 L. Ed. 2d 577, 116 S. Ct. 1384. In in-
terpreting the meaning [*13] of a claim, the focus is on
intrinsic evidence -- the claims, the specification and the
prosecution history. Vitronics Corp. v. Conceptronic,
Inc., 90 F.3d 1576, 1582 (Fed.Cir. 1996). This intrinsic
evidence constitutes the public record of the inventors'
claims; it puts the public on notice. A competitor should
be entitled to examine this public record and understand
the scope of the claimed invention. Id. at 1583.

However, I have received some extrinsic evidence in
the form of opinion testimony from experts skilled in the
art of computer science. Given the nature of the inven-
tion, this testimony is necessary so that I may understand
the technology and construe the claims according to their
ordinary and plain meaning, as understood by one skilled
in the art. Pitney Bowes, Inc. v. Hewlett-Packard Com-
pany, 182 F.3d 1298, 1309 (Fed.Cir. 1999); Interactive
Gift Express, Inc. v. Compuserve Inc., 231 F.3d 859,
2000 WL 1644598 *1, * 6 (Fed. Cir. 2000) (the viewing
glass through which claims are construed is that of a per-
son skilled in the art).

B. "Executable Application"

Page 5
2000 U.S. Dist. LEXIS 18886, *

The parties agree that a key part of the invention
[*14] is the ability of the browser to automatically in-
voke some external program (vis-a-vis the hypermedia
document) to process the data object. Generic examples
are image viewers, word processors, and spreadsheets --
programs that display and allow the user to interact with
data. The claim refers to this program as some "executa-
ble application."

The dispute is over the scope of "executable applica-
tion." Eolas defines this term as "program code for caus-
ing the display of the object and enabling interactive
processing of that object." Plaintiff's Memorandum In
Support of Claim Construction, p. 16. Microsoft pro-
poses that executable application refers to "standalone"
programs. The limitation of standalone, as used by Mi-
crosoft, means that the program can be executed
(launched, run or started) irrespective of whether any
other programs have been launched or are running. De-
fendant's Initial Brief on Claim Construction Issues, p. 8.

Computer code is often bundled into discrete com-
ponents. These components can perform specific func-
tions and be used as building blocks for larger programs.
Some components exist separately from larger applica-
tions, and are summoned to assist a larger program
(sometimes [*15] called a host program) when needed.
Dynamically linked libraries (DLLs) are types of com-
ponents that can be shared by different applications to
perform common functions. The example used by the
parties is a spell checker. Both word processors and
spreadsheet programs offer spell checking capability and
can share one spell checking DLL that exists as a sepa-
rate block of code from the larger programs. Components
like DLLs must be invoked by some other application,
they cannot be executed without some host. Thus, in the
spell checker example, one cannot run a spell checker
unless another application, the word processor or spread-
sheet, is also running.

Microsoft's proposed construction of executable ap-
plication excludes components, such as DLLs, from the
scope of the term. To be standalone, an application can-
not be dependent on another application. Microsoft does
not believe a component (a routine, a library, or a mod-
ule), hosted by the browser to perform some function,
could be the executable application referenced in the
invention. The browser and the executable program must
be independent of each other, and function as peers. Eo-
las says the executable application could be a DLL or
[*16] some component, as long as it is code that can be
launched and enable interactive processing (i.e., allows
the user to do something to or with the data, which is the
point of the invention). 5

5 I note that there may be a dispute as to the
scope of "interactive processing," see note 4, su-

pra., but I understand Eolas's position to be that
the executable application must be able to ma-
nipulate the data object (edit numbers, rotate im-
ages, etc.).

Does "executable application" have a plain and ordi-
nary meaning to someone skilled in the art of computer
science? Apparently not. Professor Felten defined it as "a
sequence of computer instructions in a format that is
capable of being executed." Felten Report P 58. 6 Profes-
sor Dunsmore defined it as "a standalone program that
can be run without needing to be included in some other
program." Dunsmore Direct Examination, October 26,
2000, Tr. at 201. 7 This difference in opinion is resolved
by examining which definition best captures the inven-
tors' use of [*17] the term (and related concepts) in the
patent itself and the file history. 8 It is the intrinsic evi-
dence, after all, that is generally dispositive of claim con-
struction issues, and must put the public on notice as to
how the inventors are using the terms. See Vitronics, 90
F.3d at 1582 (patentee may choose to be his own lexi-
cographer); see also Pitney Bowes, 182 F.3d at 1311
(term must be read to correspond to meaning in context);
see also Toro Co. v. White Consol. Indus., Inc., 199 F.3d
1295, (Fed. Cir. 1999) (patent documents establish usage
of words in connection with claimed subject matter).

6 During his live testimony, Prof. Felten did not
provide a definition of executable application. In-
stead, he opined in a defensive posture, saying
that an executable application did not have to be
standalone. I admit P 58 of the expert report to
provide Felten's baseline, affirmative definition.
7 At this writing, the transcript of proceedings
has not been officially certified. Citations are
with reference to an unofficial transcript provided
to the Court.

 [*18]
8 I am not surprised the two experts disagreed
on the general meaning of executable application.
Computer science does not yet seem to enjoy in-
tra-discipline agreement. For example, in 1990
(ancient history from the perspective of this case)
one writer noted that "stand-alone code is pro-
gram code which does not enjoy the full status of
an application." Craig Prouse, "Technote PT 35:
Stand-Alone Code, ad nauseam," (August 1990)
(emphasis added) (with reference to Apple Mac-
intosh), at
http://devworld.apple.com/technotes/pt/pt_35.htm
l. I note this solely to highlight the context-
dependent nature of computer science terminol-
ogy.

The term "application" does appear to have an ordi-
nary meaning in the art of computer science. In 1994, the

Page 6
2000 U.S. Dist. LEXIS 18886, *

Microsoft Press Computer Dictionary defined application
as "a computer program designed to help people perform
a certain type of work. An application thus differs from
an operating system (which runs a computer), a utility
(which performs maintenance or general-purpose
chores), and a language (with which computer programs
are created)...." Microsoft Press Computer [*19] Dic-
tionary 23-24 (2nd ed. 1994). A few years later, the same
dictionary defined application as "a program designed to
assist in the performance of a specific task, such as word
processing, accounting, or inventory management. Com-
pare utility." Microsoft Press Computer Dictionary 27
(3rd ed. 1997). Finally, a third (non-partisan) dictionary
offers the following definition: "A program or group of
programs designed for end users." ZD Webopaedia, at
http://www.zdwebopedia.com/TERM/a/application.html.
I read these three definitions to mean that an application
is a computer program, that is not the operating system
(OS) or a utility, that is designed to allow an end-user to
perform some specific task. 9 Dictionaries are extrinsic
evidence, but may be considered alongside intrinsic evi-
dence. Interactive Gift Express, 231 F.3d 859, 2000 WL
1644598 at * 6 n.1.

9 According to the ZD Webopaedia "execute" is
synonymous with "run" and "launch." ZD We-
bopaedia, at
http://www.zdwebopedia.com/TERM/e/execute.h
tml.

 [*20] 1. The Claim

It is clear from the claim language that whatever an
executable application is, it must have certain features. It
must be external to the hypermedia document, it must be
located on the client workstation, and it must allow the
user to interact with data. A component could have these
features. Thus, the functions enumerated by the claims
do not necessarily imply an exclusion of components.
The claim language provides no other guidance.

2. The Specification

The claim mentions two applications -- the browser
and the executable. In the specification, the inventors
stated that the browser's functionality (the invention)
could be implemented using "routines, processes, sub-
routines, modules, etc." '906 Patent, col. 13, ll. 60-62. I
agree with Microsoft that, at a minimum, this language
stands for the unremarkable proposition that the browser
can be built by putting modules together. At the hearing,
both experts agreed that components can be used as
building blocks for larger programs. The reference to
modules (of which DLLs are a type) is not a reference to
a module as an external application. However, as a per-
son skilled in the art of computer science, Professor
[*21] Felten read this passage to mean that the browser

application could itself be a component or module in-
voked by another application. Felten Direct Examination,
October 25, 2000, Tr. at 59-60. In the context of this
invention, if the browser could be a component, then it is
a logical inference that the executable application (the
only other application referenced in the claim) could be a
component as well. As Microsoft points out, this is an
inference, not an explicit statement in the specification.
Nevertheless, I find it is a logical inference. Moreover,
the preceding sentence is an acknowledgment of all
methods of programming known in the art ("various pro-
gramming approaches such as procedural, object oriented
or artificial intelligence techniques may be employed").
'906 Patent, col. 13, ll. 57-59. The passage indicates that
the patentees sought a broad scope to their invention and
tried to foresee all possible programming methodologies
that were possible.

Elsewhere in the specification, the inventors stated
that the executable application could be installed as a
terminate and stay resident (TSR) program. '906 Patent
col. 9, ll. 11. TSRs are programs that continue to occupy
memory [*22] space even after they are terminated (no
longer being used). In the event the user wants to use the
program again, the computer saves time by being able to
run the program without loading it into memory again.
The experts debate whether TSRs are standalone or not,
but this debate is largely irrelevant. 10 I accept Microsoft's
proposition that TSRs are not traditionally considered
components of other programs. This portion of the speci-
fication does not relate to componentization at all and
does not provide a definition of executable application.
The context of the specification language with regard to
TSRs is not to limit executable applications to any one
permutation, but to comment on the possible use of
memory-saving techniques. The inventors did not use the
language of limitation.

10 Prof. Felten takes issue with calling a TSR
standalone because he does not characterize a
TSR as residing in its own memory space. Felten
Direct Examination, October 25, 2000, Tr. at 79.
However, from Prof. Dunsmore's testimony at the
hearing, I gather Microsoft to focus its definition
of standalone on the ability of a program to run
without some other program running, and not on
OS memory allocation. I believe both Professors
Felten and Dunsmore would agree that a stand-
alone program is a program that can run regard-
less of whether another program is running. See
Felten Cross-Examination, October 26, 2000, Tr.
at 121. This is the definition I use, based on the
agreement by two experts skilled in the art.

 [*23] In discussing the executable application in
reference to the preferred embodiment (the 3D embryo

Page 7
2000 U.S. Dist. LEXIS 18886, *

imaging browser), the patent specification uses the ex-
ample of "x-vis," a data visualization tool designed to
operate on three dimensional image objects. '906 Patent,
col. 13, ll. 3-11. The parties agree that x-vis is not a
component. The Patent goes on to say, "However, any
manner of application program may be specified by the
TYPE element so that other types of applications, such
as a spreadsheet program, database program, word proc-
essor, etc. may be used with the present invention." '906
Patent, col. 13, ll. 11-15. Eolas emphasizes the "any" and
the "etc." of this sentence to suggest that the inventors
wanted executable application to have the broadest pos-
sible meaning. Microsoft emphasizes the examples listed
-- spreadsheet program, database program, and word
processor -- as classic examples of standalone applica-
tions.

Microsoft argues that since the preferred embodi-
ment disclosed in the specification does not use a com-
ponent for the executable application, the patent does not
cover such use and indeed, does not teach someone how
to use a component in that way. The preferred embodi-
ment [*24] launches the executable application as a
"child process of the current running process (Mosaic)."
'906 Patent col. 15, l.22. Elsewhere, the inventors re-
peatedly discuss the communication between the browser
and the executable application as "interprocess commu-
nication." '906 Patent col. 7, ll.1-4; col. 9, ll. 7-10. The
inventors discuss a custom Mosaic/External Application
Program Interface, MEAPI, that allows the browser to
communicate with the executable application. '906 Pat-
ent col. 12, ll. 9-11. Microsoft says MEAPI makes no
sense if the executable application could be a DLL, since
no such interface would be required. Moreover, the ref-
erences to child process and interprocess communication
must refer to peer applications, not a component and a
host, to make sense. Finally, Microsoft says the program
code submitted to the Patent Office does not enable Mo-
saic to launch an interactive DLL. See Felten Cross-
Examination, October 25, 2000, Tr. at 125.

There is no doubt that the preferred embodiment
does not use DLLs or components as the executable ap-
plication. Nor is there any doubt that the inventors re-
peatedly said that the preferred embodiment was but one
possibility of the invention [*25] in practice. In reading
the specification, "care must be taken to avoid reading
limitations appearing in the specification into the
claims." Interactive Gift Express, 231 F.3d 859, 865,
2000 WL 1644598 at * 5 (quotation omitted). The speci-
fication language cited by Microsoft does not limit the
term executable application, it generally does not even
use the term. The Federal Circuit "consistently declines
to construe claim terms according to the preferred em-
bodiment." Northern Telecom Limited v. Samsung Elec-
tronics Co., Ltd., 215 F.3d 1281, 1293 (Fed. Cir. 2000).

Even if the entire specification expresses a preference for
one method of practicing the invention over another, that
is not enough to limit claim terms. Id. In the end, I find
Microsoft's reading of the specification to be overly
strict. The implementation discussed in the specification
does not limit the claims; it teaches what the patentees
had in mind, the problems they sought to solve, and an
example of how to do it. By acknowledging other possi-
bilities, however, and by acknowledging the general us-
age of object oriented programming, routines, and mod-
ules, the inventors expressly avoided [*26] limiting the
claims by way of the specification. See '906 Patent, col.
16, ll. 48-57. It is true that the patentees sometimes re-
ferred to "this invention" in the specification and the
Federal Circuit has held that "when the preferred em-
bodiment is described in the specification as the inven-
tion itself, the claims are not necessarily entitled to a
scope broader than that embodiment." Modine Manufac-
turing Co. v. United States International Trade Commis-
sion, 75 F.3d 1545, 1551 (Fed. Cir. 1996) 11; see also
Wang Laboratories v. America Online, Inc., 197 F.3d
1377, 1383 (Fed. Cir. 1999). But as Wang Laboratories
makes clear, "although precedent offers assorted quota-
tions in support of differing conclusions concerning the
scope of the specification, these cases must be viewed in
the factual context in which they arose." Wang, 197 F.3d
at 1383. The specification in this case clearly states that
the preferred embodiment is not the only way of utilizing
the invention. Therefore, I do not find the specification to
limit the claims to a specific definition of executable
application.

11 Abrogated on other grounds by Festo Corp.
v. Shoketsu Kinzoku Kogyo Kabushiki Co., Ltd.,
234 F.3d 558, 2000 WL 1753646 (Fed. Cir.
2000).

 [*27] The patent claims and specification are fo-
cused on function, not jargon. While the examples used
(spreadsheets, word processors, etc.) may be traditionally
thought of as standalone applications, peers of browsers,
I do not read the claims and specification to be con-
cerned with that element of programming or memory
allocation. Instead, the inventors simply referenced ex-
amples of computer code that can take specific types of
data and use them to interact with the end-user. If com-
puter code in the form of a DLL (a programming tech-
nique well known in the art at the time of patent prosecu-
tion) can be launched by the browser and interact with
the user, then it is the executable application contem-
plated by the claims and specification. Indeed, as Eolas
points out, if the executable application must be a peer of
the browser, then the passage referencing the implemen-
tation of the browser through use of modules supports its
inference of executable application as a module as well.

Page 8
2000 U.S. Dist. LEXIS 18886, *

3. The File History

"Preferred embodiments, without more, do not limit
claim terms," Northern Telecom, 215 F.3d at 1293, and
Microsoft says it has more. Any ambiguity in the claim
and specifications [*28] is resolved by the File History.
According to Microsoft, it is clear that the inventors dis-
claimed the use of components, indeed denigrated their
usefulness in prosecuting the patent. Thus, by looking at
the proceedings before the Patent Office, Microsoft says
I may construe the claims to exclude components or
DLLs from the definition of executable application. See
Elkay Manufacturing Co. v. Ebco Manufacturing Co.,
192 F.3d 973, 979 (Fed. Cir. 1999) (claim limited by
arguments made during prosecution history and exam-
iner's reasons for allowance).

Doyle, Martin and Ang did not sail through the Pat-
ent Office. The patent examiner rejected the patent three
times, saying the invention was an obvious combination
of prior art (inventions that pre-existed the '906 applica-
tion). File History, Paper # 4, pp. 4-5; File History, Paper
12, pp. 2-5; File History, Paper # 15, pp. 2-4. The rele-
vant statute states: "a patent may not be obtained... if the
differences between the subject matter sought to be pat-
ented and the prior art are such that the subject matter as
a whole would have been obvious at the time the inven-
tion was made...." 35 U.S.C. § 103(a).

 [*29] The prior art included HTTP, HTML, clients,
servers and browsing software (i.e., Mosaic); the inven-
tors understood that these basic Web technologies were
prior art and disclosed them to the examiner. At first, the
examiner thought it would have been obvious to combine
this prior art with the teachings of Hansen's "Enhancing
documents with embedded programs: How Ness extends
insets in the Andrew Toolkit." File History, Paper # 4, p.
5. However, in rejecting the patent, the examiner agreed
with the inventors that the disclosed prior art by itself
"does not have embedded controllable application [ex-
ecutable/ interpretable/ 'launchable' program instructions/
codes] in the hypermedia document." Id. Early in the
history, the executable application is thus defined as any
executable, interpretable or launchable program instruc-
tions or codes. This is a broad definition that does not
exclude components, and confirms Eolas's view of the
executable application. Microsoft says I should not read
too much in this language; at the time, the claims used
the term "controllable application" not "executable appli-
cation." See File History, Paper # 1, p. 29. Moreover,
urges Microsoft, later [*30] usage narrowed the term.
While it is true that the original claim language used
"controllable" instead of "executable," it is clear that the
examiner thought those terms essentially synonymous
and that is relevant to my inquiry here.

I read the file history to begin with a broad defini-
tion of executable application, inclusive of componenti-
zation. I next review the subsequent history to glean
whether the inventors or the examiner narrowed their
view of the term.

a. The Khoyi Patent

The examiner rejected the patent a second time be-
cause he felt the invention was an obvious combination
of Mosaic and another prior art patent, U.S. Patent No.
5,206,951 (issued April 27, 1993) (the Khoyi Patent).
Khoyi teaches an operating system in which functions
normally thought to be performed by applications are
performed by routines bundled as part of the OS. Appli-
cations could then use and re-use these functions; Khoyi
teaches a kind of componentization. The inventors sub-
mitted arguments to the examiner to persuade him that in
fact, their invention was not an obvious combination of
Mosaic and Khoyi. The examiner considered the argu-
ment and withdrew his Khoyi-based rejection. File His-
tory, Paper [*31] # 15, p. 2. 12 Microsoft says this means
the inventors disavowed componentization.

12 The examiner's withdrawal of the Khoyi-
based objection was not on the merits, but instead
on mootness grounds. The examiner said that the
Khoyi issue was moot since another obviousness
ground for rejection existed, the Koppolu Patent.
See infra, at II.B.3.b.

Microsoft's reading of the File History on this point
is on too high a level of abstraction. Khoyi teaches a kind
of componentization, and the inventors argued that their
invention was different than Khoyi. However, one must
examine the very factual nature of the distinctions that
the inventors drew. The inventors did not take issue with
the fact that Khoyi allowed a kind of shared functionality
across applications. They did take issue with the fact that
Khoyi was an operating system, not an application.
Doyle, Martin and Ang told the examiner that their in-
vention was not dependent on a particular operating sys-
tem, while Khoyi clearly was; they told the examiner that
[*32] cross-platform functionality (e.g., as allowed by
the Java Virtual Machine) was something new and dif-
ferent from Khoyi. The inventors thus quoted from the
Khoyi patent itself and said "functions and operations
which would normally be performed by the application
programs themselves, are performed by libraries of rou-
tines [pack routines]." File History, Paper # 14, p. 16
(quoting Khoyi Patent, col. 11, ll. 57-59). The inventors
noted the difficulty in making Mosaic work with Khoyi,
saying "Mosaic would have had to be significantly modi-
fied in a number of additional complex and nonobvious
ways to achieve that combination." File History, Paper #
14, p. 17. This was not a statement that the '906 inven-
tion could not work with components or that Mosaic

Page 9
2000 U.S. Dist. LEXIS 18886, *

could not work with components. It was made in the
context of noting the limitations of Khoyi's operating
system model in a cross-platform world. The distinction
drawn by the inventors was not between "executable
applications" and components, but between applications
and operating systems.

The inventors made another argument to suggest a
substantive difference between Khoyi-componentization
and other means of employing components. Doyle [*33]
told the examiner to look to Microsoft. Doyle said that
Mosaic plus Khoyi (developed by Wang Laboratories)
was not the same as Microsoft's ActiveX technology,
Microsoft said so itself. File History, Paper # 14, Doyle
Affidavit pp. 10-11. Doyle said that this shows that his
invention is different than some obvious improvement
upon Mosaic + Khoyi because ActiveX uses the features
of his invention. ActiveX uses a Component Object
Model; it uses components. Id. (quoting interview with
ActiveX product managers from Microsoft).

Eolas says this shows that Doyle did not disavow
components, in fact he acknowledged them by referenc-
ing ActiveX which does use DLLs. Microsoft says that
this reference to ActiveX is a self-serving accusation of
infringement that should not be read to broaden the scope
of the claim. Whether ActiveX employs the '906 inven-
tion or not, the point is that Doyle distinguished Khoyi,
not by disavowing components as executable applica-
tions, but by arguing to the examiner that the '906
method was a different approach.

The inventors did not disavow components as ex-
ecutable applications in order to overcome the examiner's
objection with regard to Khoyi.

b. The Koppolu [*34] Patent

The third time the examiner rejected the invention,
he said it was an obvious combination of the teachings of
disclosed prior art (Mosaic, HTTP, HTML, and the
World Wide Web) and U.S. Patent No. 5,581,686 (issued
Dec. 3, 1996) (the Koppolu Patent). Koppolu teaches a
computer method for "in-place interaction" or "activation
in place." The invention allows a user to interact with
embedded or linked data in a windowing environment
that results from a merger of sorts between a container
application and another application, called a server or
containee application. Koppolu Patent, col. 7, ll. 3-9. The
key to the Koppolu method is OLE (object linking and
embedding, pronounced ole). The OLE Application Pro-
gramming Interface (API) allows applications to com-
municate with each other by providing a set of functions
for container applications to send and receive messages
and data to and from server applications. OLE API uses
object handlers, dynamically linked code that provides
functionality on behalf of the server application. For ex-
ample, the print function of a spreadsheet program could

be written as an object handler. When a spreadsheet ob-
ject (Koppolu's contained object) is embedded [*35] in a
word processor document (the compound document),
OLE API allows the word processor (the container appli-
cation) to invoke the spreadsheet application's (the server
application's) print function without involving the en-
tirety of the server application's process. See Koppolu
Patent, col. 9, ll. 11-28. This is an example of the re-
source-saving capability of dynamically linked compo-
nents.

In the examiner's view, the Koppolu compound
document could be a hypermedia document, and the
method taught by Koppolu allowed for the automatic
display and interaction of a linked object within a portion
of a window controlled by a container application, which
could be a web browser. File History, Paper # 15, p. 3. In
other words, the examiner thought that it would have
been obvious to combine Koppolu's container method
with Web technologies. 13

13 The Koppolu Patent discusses a preferred
embodiment wherein the container application is
a word processor and the containee application
(or server application) is a spreadsheet program.
The preferred embodiment is a means of embed-
ding a spreadsheet object within a word processor
document.

 [*36] The inventors responded with two arguments
relevant here. First, Koppolu did not teach the automatic
invocation of an external function. File History, Paper #
19, pp. 10-11. Second, Koppolu-OLE's object handlers
did not allow for the editing of data that the '906 inven-
tion specifically sought to accomplish. File History, Pa-
per # 19, pp. 13-14.

Microsoft says that in making these arguments, the
inventors disavowed DLLs as executable applications.
As with its reading of the Khoyi issue, Microsoft di-
vorces the inventors' arguments from the context in
which they were made. First, the patentees did not say
that their invention did not use DLLs. Nor did they say
their invention used DLLs. Instead, they said that
Koppolu's DLLs did not do the same thing as their inven-
tion. Quoting from Kraig Brockschmidt's Inside OLE 2.0
(Microsoft Press 1993), the inventors emphasized that
"only when the object is activated does it transition to the
running state where the user may perform any number of
actions on that object, such as playing or editing the
data." File History, Paper # 19, pp. 11-12. The point of
this argument was simply to say that Koppolu-OLE did
not automatically run the server [*37] application, some
intermediate user command was required.

The inventors distinguished DLLs as used by
Koppolu. Quoting Brockschmidt again, the inventors

Page 10
2000 U.S. Dist. LEXIS 18886, *

said "object handlers do not, however, provide any sort
of editing facilities for the object itself." File History,
Paper # 19, p. 13. The inventors argued that this meant
that Koppolu's object handlers did not allow for the "in-
teractive processing" contemplated by their invention. To
edit the object in the Koppolu system, the inventors ar-
gued that the entire server application would have to be
implemented; this could be done as an "in-process" DLL.
However, to use an in-process DLL to edit object data,
the user would have to activate the object (or tell the
container application that she wanted to edit the object).
File History, Paper # 19, p. 13; see also Koppolu Patent,
col. 7, ll. 59-63 ("When the user indicates that the budg-
eting data is to be edited, the word processing program
determines which application should be used to edit the
budgeting data (e.g., the spreadsheet program) and
launches (starts up) that application."). According to the
inventors, in-process DLLs did not teach automatic in-
teractive processing of data.

 [*38] The inventors primarily quoted Brock-
schmidt for two propositions. One, object handlers could
not edit data. Two, in-process DLLs (in-process servers)
could not be automatically invoked by Koppolu. Neither
of these arguments say that the '906 invention cannot use
DLLs; they argue instead that the invention is different
than the use of DLLs disclosed in Koppolu.

The inventors did not limit their use of Brock-
schmidt to these two points. Instead, they noted that
Brockschmidt identified other problems associated with
object handlers and in-process servers. These problems
were: limited cross-platform interoperability and inabil-
ity to access, or link, to data objects external to the con-
tainer document. In-process servers, said the inventors,
could not ever run "stand-alone," so they could never
provide linked objects. File History, Paper # 19, pp. 13-
14. However, I do not read this argument to suggest that
the '906 executable application must be standalone or
that the inventors denigrated all forms of componentiza-
tion.

Context is important. The inventors were trying to
persuade the examiner that Koppolu OLE was different,
it could not do what the '906 invention could do. They
may [*39] have been artful in their presentation to the
examiner. Microsoft attempts to introduce other portions
of Brockschmidt, not quoted in the File History, to show
that Koppolu OLE DLLs can do anything and every-
thing; therefore, the inventors could only have dis-
claimed all DLLs to overcome the obviousness objec-
tion. But the inventors did not tell the examiner this, they
did not quote all of Brockschmidt; instead they said
Koppolu DLLs were of limited usefulness. I am not here
concerned with the accuracy of the inventors' position,
but solely with the position itself.

I find that the inventors, in responding to both the
Khoyi and Koppolu patents, did not disclaim or disavow
componentization as a programming technique employ-
able as the executable application in the '906 invention.

c. Reasons for Allowance

A separate question is whether the examiner be-
lieved the inventors were disclaiming all componentiza-
tion. After considering Paper # 19, the examiner allowed
the patent and said, "the examiner agrees that the claimed
executable application is not a code library extension nor
object handler (e.g. windows dll and OLE) as pointed out
in applicant's argument (paper # 19 pages 12-14)." File
[*40] History, Paper # 23, p. 3.

Eolas says that the reason for allowance simply says
that the examiner agreed with the inventors' argument.
Since the argument did not disavow DLLs, the examiner
did not exclude DLLs from the scope of the claims. Mi-
crosoft says the examiner said what he meant -- the ex-
ecutable application is not a DLL. The Federal Circuit
has noted that where an examiner's reasons for allowance
suggest a disavowal of a specific claim construction, and
where the applicants fail to respond to the examiner's
statement, the patentee's argument that no such dis-
avowal occurred is "particularly unpersuasive." Elkay,
192 F.3d at 979.

The examiner's reference to "windows dll" is explic-
itly tied to Paper # 19. Therefore, the only explanation as
to why the examiner believed the executable application
is not a "windows dll" must be in Paper # 19. Unless I
read the examiner to misunderstand the applicants' argu-
ment, the only explanation for the allowance is that the
examiner agreed that Koppolu OLE DLLs did not have
the functionality of the executable application in the in-
vention. This was the argument made to the examiner.
"Windows dll" as used in Paper # 19 means [*41] object
handlers and in-process servers that cannot edit objects
or be automatically invoked. If the basis for the appli-
cants' argument is false, the File History does not reflect
that fact, and there is no evidence that the examiner had
some broader understanding of the nature of OLE or
DLLs in mind when he allowed the patent. Therefore, I
read the examiner's reason as an acceptance of the nar-
row argument offered by the inventors in Paper # 19.

The File History does not limit the term executable
application to "standalone" applications, nor does the
File History disavow components as a form of executa-
ble application. Therefore, I see no need to add any such
modifiers to the broad claim term as used by the inven-
tors. An executable application, as used in the '906 Pat-
ent, is any computer program code, that is not the operat-
ing system or a utility, that is launched to enable an end-
user to directly interact with data.

Page 11
2000 U.S. Dist. LEXIS 18886, *

C. "Type Information"

The invention parses a hypermedia document and
learns the location of at least a portion of some object.
'906 Patent, col. 18, ll. 13-18. This object has "type in-
formation" associated with it, and this type information
is utilized by the browser [*42] to identify and locate the
executable application. '906 Patent, col. 18, ll. 18-22.
What does type information mean?

1. The Claim and Specification

The claim language suggests that type information
provides a clue to the browser to assist it in identifying
and locating the executable application. Microsoft seeks
to exclude from the scope of "type information" any tag
that simply tells the browser which application to use. In
its view, type information is limited to data types. For
example, according to Microsoft, type information can-
not be "WinAmp," it must be ".mp3." If the type infor-
mation tells the browser what application to use, then the
browser has very little left to do in identifying and locat-
ing the application. But nothing in the claim language
says there has to be a challenge for the browser; if the
author of the hypermedia document being parsed wants
to make it easy for the browser, and tell it what applica-
tion to use, so be it. Identifying an application will often
convey information as to the type of object involved. For
example, identifying the application x-vis conveys that
the object is a three-dimensional image; this gives the
browser some idea of the character [*43] of the object.
The claim says type information is associated with the
object -- both application names and data types can be
associated with objects and both can convey useful in-
formation to the browser for it to use in identifying and
locating the executable application. Neither possibility is
foreclosed by the claim language.

The specification squarely supports this view. The
inventors gave examples of type information in the form
of the HTML TYPE element of an EMBED tag: "Exam-
ples of values for the TYPE element are 'application/x-
vis' or 'video/mpeg'. The type 'application/x-vis' indicated
that an application named 'x-vis' is to be used to handle
the object..." '906 Patent, col. 13, ll. 2-5. Thus, type in-
formation could be either the application itself (x-vis) or
the data type (video/mpeg).

Microsoft argues that to simply identify an applica-
tion no longer "associates" type information with the
object and thus would read "associated with" out of the
claim language. I disagree. There is no evidence that
association is a term of art, and I give it a plain and ordi-
nary meaning. Association requires only some connec-
tion between the object and the type information; type
information [*44] does not have to be integrated into the
object to be associated with it. In the example used in the
specification, by identifying x-vis as the TYPE element

of the EMBED tag, the hypermedia document is associ-
ating x-vis with the object, which is identified by the
HREF element, also within the EMBED tag. 14 '906 Pat-
ent, col. 12, l. 54 - col. 13, l. 18. That is all the claim
language requires.

14 See note 3, supra.

2. The File History

Microsoft says the embodiment in the specification
is wrong; the inventors disavowed such a construction of
type information in the course of prosecuting the patent.
Microsoft acknowledges that this reading would mean
that the inventors did not claim one of the embodiments
in the specification. It is plausible that during a lengthy
prosecution history, patentees fail to update the specifi-
cation language as they amend the claims. However, in
this case, as noted above, I do not find the specification's
example of x-vis as the TYPE element to contradict the
ordinary meaning [*45] of the claim language. Cf. Novo
Nordisk of North America, Inc. v. Genentech, Inc., 77
F.3d 1364, 1369 (Fed. Cir. 1996) (claim language "un-
questionably" does not cover specification language).
Moreover, given that the primary example used by the
patentees in describing the invention, indeed the inven-
tion's apparent origin, is the ability to automatically in-
voke x-vis to allow embedded interaction with 3-D em-
bryo images, I find it difficult to read that embodiment
out of the claim. See Vitronics, 90 F.3d at 1583 (inter-
preting claim to exclude preferred embodiment is rarely
correct). To reach such a conclusion, the file history must
be "highly persuasive." Id.

a. The Khoyi Patent

At the time of the examiner's rejection based on
Khoyi, the claim language said (emphasis added):

 wherein said first distributed hyperme-
dia document includes an embed text
format that specifies the location of an
object external to the first distributed hy-
permedia document and that specifies
type information utilized by said browser
to identify and locate an executable appli-
cation....

The examiner found that Khoyi teaches the ability to
"invoke [*46] a corresponding object manager (a pro-
gram external to the document) in response to an invoca-
tion request to process and control the object" and
teaches "links specifying the object and type." File His-
tory, Paper # 12, p. 3 (emphasis added). The applicants
amended the claim to read (emphasis added):

Page 12
2000 U.S. Dist. LEXIS 18886, *

 wherein said first distributed hyperme-
dia document includes an embed text
format... that specifies the location of at
least a portion of an object external to
the first distributed hypermedia document,
wherein said object has type informa-
tion associated with it utilized by said
browser....

File History, Paper # 14, p. 2. Microsoft says this
amendment, by adding "associated with" overcomes the
Khoyi prior art by implying that type information must
be data type. There is no substantive discussion in the
File History (from either the applicants or the examiner)
relating this amendment to Khoyi. 15 There is no discus-
sion of how this amendment changes, if at all, the mean-
ing of type information. Given the tenor of Paper # 14,
which notes the limitations of Khoyi, one could read the
amendment to be an attempt to broaden, not narrow, the
claim. Perhaps the amendment [*47] signals to the ex-
aminer that this invention can do more than Khoyi -- it
does not use type information in a Khoyi-like manner
specified by the source document, but is more flexible. In
any event, given the ambiguous nature of the amend-
ment's relationship to Khoyi, I think it insufficient to
mandate a claim construction that excludes a preferred
embodiment stated in the specification.

15 Professor Felten testified that, as he read the
file history, the applicants never distinguished
Khoyi based on how type information was used.
Felten Direct Examination, October 25, 2000, Tr.
at 102. Professor Dunsmore testified that he was
not sure why the applicants made the amendment,
but that he assumed the change would help in ac-
ceptance by the examiner. Dunsmore Direct Ex-
amination, October 26, 2000, Tr. at 233.

b. The Koppolu Patent

Microsoft next argues that the applicants, in their re-
sponse to the Koppolu-based objection, revealed an in-
tent to disavow type information as a simple application
identifier. Koppolu-OLE, [*48] according to the appli-
cants, used a binary pointer mechanism and an operating
system registry to identify objects with containee server
applications. File History, Paper # 19, p. 9. This CLAS-
SID system, not the compound document's text, is used
to determine object type. 16 Id. I do not read this to be an
explicit disavowal of the possibility that the '906 browser
reads a named application as a type associated with an
object; instead I read this reference to distinguish a
method of using numerical identifiers and platform-
dependent registries to perform the association. See II.D.,
infra.

16 A CLASSID is a 32-bit number that is a
unique identifier for a particular component. Mi-
chael Wallent Direct Examination, October 25,
2000, Tr. at 169. The Windows operating system
maintains a database registry of CLASSIDs, link-
ing the 32-bit numbers with their corresponding
application. Without recourse to this registry, the
CLASSID is essentially meaningless.

Similarly, the applicants' discussion of the cross-
platform [*49] benefits of the '906 invention does not
disavow the possibility that applications are identified as
type information. See File History, Paper # 19, pp. 21,
25. The applicants were not addressing type information,
they were saying their invention is better than OLE be-
cause it is not platform-dependent; the invention vests
more functionality in the hypermedia document and
browser than allowed in the OLE system, according to
the applicants. Id. Microsoft says it is a logical inference
that, since OLE uses the CLASSID architecture, and
since that platform-dependent system is generally
equivalent to simply naming an application to use with
certain objects, the inventors must have been disclaiming
this more general approach. I disagree.

In both Paper Nos. 14 and 19, the applicants ad-
dressed objections based on prior art, but there is no ex-
plicit discussion of how the type information language
overcomes the objection. While Microsoft makes plausi-
ble arguments by drawing inferences from the file his-
tory, I cannot say the history is anything but ambiguous.
Given that the claim language supports a construction of
type information that includes naming an application,
and given that the [*50] specification's preferred em-
bodiment explicitly embraces such a form of type infor-
mation, I reject a reading of the claim that hoists am-
biguous file history above the claim and specification.

D. "Utilized By Said Browser To Identify and Lo-
cate"

What is the browser supposed to do once it knows of
some type information associated with the object? The
claim says the type information is "utilized by said
browser to identify and locate an executable application
external to the first distributed hypermedia document."
'906 Patent, col. 18, ll. 20-23. Microsoft asks that I clar-
ify the meaning of this phrase to ensure that it is the
browser, not the operating system, that does the "heavy
lifting" of utilizing, identifying and locating.

1. The Claim

The claim certainly says that it is the browser, and
not any other code, that utilizes the type information to
identify and locate the executable application. I read the
claim language to mean that the browser identifies and

Page 13
2000 U.S. Dist. LEXIS 18886, *

locates the executable application and that it is able to
perform these functions because it is armed with the
knowledge of type information. Professor Felten agreed
that the browser must do the identifying and locating.
[*51] Felten Cross-Examination, October 25, 2000, Tr.
at 149. The question is whether the browser can delegate
this function to an outside resource. In other words, can
the browser ask the operating system, or perhaps some
shared utility, to help it identify and locate an executable
application?

Persons skilled in the art define code by its function.
Professor Dunsmore, for example, testified that he thinks
of browsers and operating systems as defined by func-
tionality. Dunsmore Cross Examination, October 26,
2000, Tr. at 256. Sometimes it is easy to draw a line be-
tween browsers and other pieces of code. Functions that
are unique to a web browser (e.g., understanding HTML)
are considered a part of the browser. Id. However, com-
ponentization allows for shared functionality -- the lines
begin to blur. When asked to identify when a shared
function could be considered part of the browser, Profes-
sor Dunsmore said it was a tough question. He hypothe-
sized three possibilities: 1) code is part of the browser; 2)
the browser invokes some component; or 3) the operat-
ing system is asked to perform the function for the
browser. Id. at 257. Professor Felten also acknowledged
the difficulty in [*52] articulating the minimum amount
the browser must do for it to be characterized as per-
forming the functions of identifying and locating. Felten
Cross-Examination, October 25, 2000, Tr. at 149. How-
ever, I believe that experts are able to make such a judg-
ment when presented with specific code.

The claim language assigns the functions of identi-
fying and locating the executable application to the
browser. Whether the browser is performing these func-
tions in any given permutation is a question of fact.

2. The Specification

In a preferred embodiment in the specification, the
browser, not the operating system, identifies and locates
the executable application. However, the browser does
not work alone. The specification makes clear that the
inventors contemplated the browser's use of some outside
resources. Microsoft agrees that operating systems are
always involved on some level, and Microsoft also
agrees that the specification discloses the use of outside
resources. Microsoft does not propose a claim construc-
tion that would entirely preclude the browser from using
the operating system or some external resource. In the
specification, the browser, armed with the type informa-
tion, consults [*53] a user-defined list of application
type/application pairs, such as the MIME (Multipurpose
Internet Mail Extensions) database. '906 Patent, col. 15,
ll. 13-18. The parties agree that the MIME database is

external to the browser. Microsoft's position is that this
embodiment is consistent with its construction because it
is the browser that consults the MIME database, and it is
the browser that uses the MIME database to learn the
application type. This example is also consistent with
Eolas's broad definition of "utilize" -- to put to use. The
browser puts the type information to use by taking it to
some outside resource and then using the resource to
identify and locate the executable application. This is
exactly what the claim language says is supposed to hap-
pen.

The parties' dispute over this term appears to be
more properly viewed as an infringement question than a
claim construction issue. One infringement question will
be whether Microsoft's browser, Internet Explorer, iden-
tifies and locates executable applications. This is not a
question I can answer, yet. All I can decide is that the
claim language means what it says, the functions must be
performed by the browser.

3. The File [*54] History

By arguing that both Khoyi and Koppolu-OLE were
different because they were operating system-dependent,
the inventors highlighted the difference between having
the browser link an object type to an application and us-
ing OLE's CLASSID to perform that function. In Khoyi,
according to the inventors, "the object managers for dif-
ferent data types are coordinated by the operating system
so that each type of displayed data is rendered by its as-
sociated object manager, the actual linking operations are
coordinated by the operating system." File History, Paper
14, p. 14. In attempting to overcome the Koppolu-
based rejection, the inventors said the same thing: "the
actual linking mechanism between the container docu-
ment and the containee server application is coordinated
by the operating system's registry database." File His-
tory, Paper # 19, p. 9. I read the inventors' argument as
saying not just that the operating system maintains a reg-
istry that a browser can use, but that in OLE, it is the
operating system itself that performs the linking func-
tion. This is different than the invention.

The claim language, the specification and the File
History all suggest that the functions [*55] of using type
information to identify and locate the executable applica-
tion must be performed by the browser. No one suggests
that the browser must do it alone, and I do not construe
the claim to require that. However, I accept Microsoft's
construction that, as a factual matter, one must be able to
characterize the browser as doing the heavy lifting,
which is what it does in the specification. Neither the
claim nor the specification give adequate guidance as to
what heavy lifting may be because neither had a need to
address the issue. This is not surprising. "Utilize" is a

Page 14
2000 U.S. Dist. LEXIS 18886, *

common English word, and there is no evidence of a
particular meaning it may have to those skilled in the art.

This does not mean the question is unanswerable, it
merely means the answer lies in specific factual contexts.
This is evidenced by both experts' inability to articulate a
definition in the abstract. A careful examination of code
would be necessary to decide what the browser is utiliz-
ing and how it is utilizing it. Framing this as a claim con-
struction question, Eolas took the view that "by said
browser" did not exclude some use of the operating sys-
tem, probably because it viewed Microsoft as contending
[*56] that the browser must do it all by itself. Microsoft
did not take this position. It conceded that the operating
system was necessarily a part of the browser's arsenal.
Microsoft stood on the proposition that the browser had
to do the heavy lifting in contrast to OLE, where the op-
erating system performs the enumerated functions. Be-
yond this, both sides left the specifics undeveloped.
Therefore I am left to simply construe the claim language
to mean what it says, the functions of utilizing the type
information to identify and locate the executable applica-
tion must be performed by the browser, not the operating
system as in Koppolu's OLE.

III. Conclusion

 A. An "executable application," as used
in the '906 Patent, is any computer pro-
gram code, that is not the operating sys-
tem or a utility, that is launched to enable
an end-user to directly interact with data.

B. "Type Information" may include
the name of an application associated with
the object.

C. "Utilized by said browser to iden-
tify and locate" means that the enumer-
ated functions are performed by the
browser. This is a fact-intensive inquiry.

Enter opinion and order construing disputed claim terms.

 [*57] ENTER:

James B. Zagel

United States District Judge

DATE: 28 Dec 2000

