

EXHIBIT B

Eolas Technologies Incorporated v. Adobe Systems Incorporated et al Doc. 996 Att. 4

Dockets.Justia.com

http://dockets.justia.com/docket/texas/txedce/6:2009cv00446/118976/
http://docs.justia.com/cases/federal/district-courts/texas/txedce/6:2009cv00446/118976/996/4.html
http://dockets.justia.com/

Addison-Wesley Publishing Company
Reading, Massachusetts • Menlo Park, California • New York • Don Mills, Ontario
Harlow, England • Amsterdam • Bonn • Sydney • Singapore • Tokyo
Madrid • San Juan • Paris • Seoul • Milan • Mexico City • Taipei

Adobe Systems Incorporated

PostScript®

LANGUAGE REFERENCE
third edition

Library of Congress Cataloging-in-Publication Data
PostScript language reference manual / Adobe Systems Incorporated. — 3rd ed.
 p. cm.
Includes bibliographical references and index.
ISBN 0-201-37922-8
1. PostScript (Computer program language) I. Adobe Systems.
QA76.73.P67 P67 1999
005.13'3—dc21 98-55489

CIP

© 1985–1999 Adobe Systems Incorporated. All rights reserved.

NOTICE: All information contained herein is the property of Adobe Systems Incorporated.

No part of this publication (whether in hardcopy or electronic form) may be reproduced
or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written consent of the publisher.

PostScript is a registered trademark of Adobe Systems Incorporated. All instances of the
name PostScript in the text are references to the PostScript language as defined by Adobe
Systems Incorporated unless otherwise stated. The name PostScript also is used as a prod-
uct trademark for Adobe Systems’ implementation of the PostScript language interpreter.

Except as otherwise stated, any mention of a “PostScript printer,” “PostScript software,” or
similar item refers to a product that contains PostScript technology created or licensed by
Adobe Systems Incorporated, not to one that purports to be merely compatible.

Adobe, Adobe Illustrator, Adobe Type Manager, Chameleon, Display PostScript, Frame-
Maker, Minion, Myriad, Photoshop, PostScript, PostScript 3, and the PostScript logo are
trademarks of Adobe Systems Incorporated. LocalTalk, QuickDraw, and TrueType are
trademarks and Mac OS is a registered trademark of Apple Computer, Inc. Helvetica and
Times are registered trademarks of Linotype-Hell AG and/or its subsidiaries. Times New
Roman is a trademark of The Monotype Corporation registered in the U.S. Patent and
Trademark Office and may be registered in certain other jurisdictions. Unicode is a regis-
tered trademark of Unicode, Inc. PANTONE is a registered trademark and Hexachrome is
a trademark of Pantone, Inc. Windows is a registered trademark of Microsoft Corporation.
All other trademarks are the property of their respective owners.

This publication and the information herein are furnished AS IS, are subject to change
without notice, and should not be construed as a commitment by Adobe Systems Incorpo-
rated. Adobe Systems Incorporated assumes no responsibility or liability for any errors or
inaccuracies, makes no warranty of any kind (express, implied, or statutory) with respect
to this publication, and expressly disclaims any and all warranties of merchantability, fit-
ness for particular purposes, and noninfringement of third-party rights.

ISBN 0-201-37922-8
1 2 3 4 5 6 7 8 9 CRS 03 02 01 00 99
First printing February 1999

iii

Contents

Preface xiii

Chapter 1: Introduction 1

1.1 About This Book 3
1.2 Evolution of the PostScript Language 5
1.3 LanguageLevel 3 Overview 6
1.4 Related Publications 7
1.5 Copyrights and Trademarks 9

Chapter 2: Basic Ideas 11

2.1 Raster Output Devices 11
2.2 Scan Conversion 12
2.3 Page Description Languages 13
2.4 Using the PostScript Language 15

Chapter 3: Language 23

3.1 Interpreter 24
3.2 Syntax 25
3.3 Data Types and Objects 34
3.4 Stacks 45
3.5 Execution 46
3.6 Overview of Basic Operators 51
3.7 Memory Management 56
3.8 File Input and Output 73
3.9 Named Resources 87
3.10 Functions 106
3.11 Errors 114
3.12 Early Name Binding 117
3.13 Filtered Files Details 123
3.14 Binary Encoding Details 156

Chapter 4: Graphics 175

4.1 Imaging Model 176
4.2 Graphics State 178
4.3 Coordinate Systems and Transformations 182

LanguageCHAPTER 3
24

It begins with a brief overview of the PostScript interpreter. The following sec-
tions detail the syntax, data types, execution semantics, memory organization,
and general-purpose operators of the PostScript language (excluding those that
deal with graphics and fonts). The final sections cover file input and output,
named resources, function dictionaries, errors, how the interpreter evaluates
name objects, and details on filtered files and binary encoding.

3.1 Interpreter

The PostScript interpreter executes the PostScript language according to the rules
in this chapter. These rules determine the order in which operations are carried
out and how the pieces of a PostScript program fit together to produce the de-
sired results.

The interpreter manipulates entities called PostScript objects. Some objects are
data, such as numbers, boolean values, strings, and arrays. Other objects are ele-
ments of programs to be executed, such as names, operators, and procedures.
However, there is not a distinction between data and programs; any PostScript
object may be treated as data or be executed as part of a program.

The interpreter operates by executing a sequence of objects. The effect of exe-
cuting a particular object depends on that object’s type, attributes, and value. For
example, executing a number object causes the interpreter to push a copy of that
object on the operand stack (to be described shortly). Executing a name object
causes the interpreter to look up the name in a dictionary, fetch the associated
value, and execute it. Executing an operator object causes the interpreter to
perform a built-in action, such as adding two numbers or painting characters in
raster memory.

The objects to be executed by the interpreter come from two principal sources:

• A character stream may be scanned according to the syntax rules of the Post-
Script language, producing a sequence of new objects. As each object is
scanned, it is immediately executed. The character stream may come from an
external source, such as a file or a communication channel, or it may come
from a string object previously stored in the PostScript interpreter’s memory.

• Objects previously stored in an array in memory may be executed in sequence.
Such an array is known as a procedure.

jquigley
Highlight

Syntax3.2
25

The interpreter can switch back and forth between executing a procedure and
scanning a character stream. For example, if the interpreter encounters a name in
a character stream, it executes that name by looking it up in a dictionary and re-
trieving the associated value. If that value is a procedure object, the interpreter
suspends scanning the character stream and begins executing the objects in the
procedure. When it reaches the end of the procedure, it resumes scanning the
character stream where it left off. The interpreter maintains an execution stack for
remembering all of its suspended execution contexts.

3.2 Syntax

As the interpreter scans the text of a PostScript program, it creates various types
of PostScript objects, such as numbers, strings, and procedures. This section dis-
cusses only the syntactic representation of such objects. Their internal representa-
tion and behavior are covered in Section 3.3, “Data Types and Objects.”

There are three encodings for the PostScript language: ASCII, binary token, and
binary object sequence. The ASCII encoding is preferred for expository purposes
(such as this book), for archiving documents, and for transmission via communi-
cations facilities, because it is easy to read and does not rely on any special charac-
ters that might be reserved for communications use. The two binary encodings
are usable in controlled environments to improve the efficiency of representation
or execution; they are intended exclusively for machine generation. Detailed in-
formation on the binary encodings is provided in Section 3.14, “Binary Encoding
Details.”

3.2.1 Scanner

The PostScript language differs from most other programming languages in that
it does not have any syntactic entity for a “program,” nor is it necessary for an en-
tire “program” to exist in one place at one time. There is no notion of “reading in”
a program before executing it. Instead, the PostScript interpreter consumes a pro-
gram by reading and executing one syntactic entity at a time. From the interpret-
er’s point of view, the program has no permanent existence. Execution of the
program may have side effects in the interpreter’s memory or elsewhere. These
side effects may include the creation of procedure objects in memory that are in-
tended to be invoked later in the program; their execution is deferred.

