Uniloc USA, Inc. et al v. NATIONAL INSTRUMENTS CORP. et al Doc. 265 Att. 8

DEFENDANTS’ RESPONSIVE BRIEF ON
CLAIM CONSTRUCTION

EXHIBIT 8

http://dockets.justia.com/docket/texas/txedce/6:2010cv00472/125351/
http://docs.justia.com/cases/federal/district-courts/texas/txedce/6:2010cv00472/125351/265/8.html
http://dockets.justia.com/

-9- RICHARDSON, III
Reexam of Pat. No. 5,490,216
Reexam Control No.: 90/010,831
Analysis of Claim 1 Over Hellman in View of Grundy:
34. Claim 1 of the ‘216 patent stands rejected on grounds of obviousness
over Hellman in view of Grundy. Claim 1 recites local and remote “licensee unique ID”
generation by the same algorithm on both local and remote systems.
35. The Office action asserts that “Hellman discloses several algorithms
for local licensee unique ID and remote licensee unique ID generation” and then relies on
Grundy to supply an algorithm for unique ID generation, noting that “it would be
obvious to one of ordinary skill in the art at the time the invention was made to modify

Hellman to use Grundy’s checksum for ID generation, because it is easier to implement”

than the summer disclosed in the ‘216 patent. (‘216 Office action, p. 7).

Neither Hellman Nor Grundy Teach a Local or Remote Licensee Unique ID

36. To form an opinion on the above assertion in the Office action, first I
consider whether either Hellman or Grundy teaches the generation of “licensee unique
ID” (hereinafter “LUID”) in any form. My opinion is that they do not. In support of the
rejection, the ‘216 Office action cites to Hellman at 10:14-18, which refers to the “base
unit” in Hellman’s Figure 7, and equates that to the “local platform™ in the 216 patent.
The Examiner also cites to Hellman at 6:62-7:2, which refers to the “authorization and
billing unit” in Hellman’s Figure 2, and equates that to the “remote platform™ in the ‘216
patent.

37. My showing that Hellman in combination with Grundy does not teach
LUID generation follows three steps: First, I show that Hellman does not teach “licensee

ID generation.” Second, I show that Hellman does not teach “unique ID generation” (at

Atty. Dkt. No. 2914.001REX0

UNIO76171

-10- RICHARDSON, III
Reexam of Pat. No. 5,490,216
Reexam Control No.: 90/010,831
either local or remote locations). Third, I show that Grundy does not cure the
deficiencies of Hellman such that the resulting combination teaches local or remote
LUIDs.

38. First, regarding Hellman and “licensee ID generation”: the process in
Hellman cited by the examiner above shows that the “check value C” (Hellman at
10:17), which the Examiner equates to LUID, is generated from four inputs, designated
as K, N, R, and H. Of these: K is a key to a cryptographic function, which is an indicium
of the computer on which the software is intended to be run. N is the number of usages
of the software requested by the user (see Hellman at 5:65-66); R is a random number
(Hellman at 5:66); H is an indicium of the software package being authorized for use
(Hellman at 6:31-35), which is computed by means of a hash function. A hash function
produces a value that serves as a mathematical “shorthand” for some data that has
properties described appropriately in Hellman at 6:38-61, including that it is efficient to
calculate and store.

39. None of these four inputs is an indicium of the licensee of the
software, i.e., the user intending to run the software on the computer. Therefore Hellman
does not teach “licensee ID generation.”

40. I have reviewed Hellman’s sworn testimony at trial. It reinforces my
conclusion. The following is an excerpt from examination of Hellman at trial:

[Attorney] Question: If you wgnted to indicate that
information associated with the user, unique information
was input into the cryptographic function, you certainly had
the ability to disclose that in the figures, if you so chose.
[Hellman] Answer: Correct.

[Attorney] Question: And you didn’t?
[Hellman] Answer: Correct.

Atty. Dkt. No. 2914.001REX0

UNIO76172

spomeroy
Highlight

spomeroy
Highlight

spomeroy
Highlight

-14 - RICHARDSON, III
Reexam of Pat. No. 5,490,216
Reexam Control No.: 90/010,831

50. First, it is worth noting that the Order granting reexamination of the
‘216 patent characterizes checksums as non-unique: “Checksums are not unique fields,
even if there [sic] are at least in part derived from unique data” (Order
Granting/Denying Request for Ex Parte Reexamination, p. 9, emphasis added)

it B I concur with that characterization of checksums. A checksum is not
usable as a generator of unique IDs. Grundy does not define “checksum” in the
specification in the context of “a checksum of the user data,” but rather suggests
definitions elsewhere in his specification that are consistent with both dictionary
definitions and a definition that a POSA would use, as I will now show.

52. A POSA would understand “checksum” to mean a small number of
check digits that are typically appended to data in order to ensure the data’s integrity
when it is copied, entered by a user, or transmitted. To calculate a checksum of some
data, the data can be added up (e.g., broken up into C-byte chunks, where C is a small
number such as 1, 2, 4, or 8, and summed); the sum is chopped to a fixed length (e.g., C
bytes) and appended to the data before storage or transmission. Checksum algorithms
used in practice are variations on this scheme. When the data is received or retrieved
later, the checksum is re-calculated to ensure that the result is the same as the original
checksum; if the result differs then the data must have been corrupted.

53. The Grundy patent was filed in April 1992 and issued in March 1994,
Definitions of “checksum” from dictionaries of computer terms from that era concur
with the POSA’s definition that I have provided above.

54. For example: The Computer Glossary: The Complete Illustrated Desk

Reference, 6™ Edition, 1993 defines “checksum” as a “Value used to ensure data is

Atty. Dkt. No. 2914.001REX0

UNIO76176

-15- RICHARDSON, III
Reexam of Pat. No. 5,490,216
Reexam Control No.: 90/010,831
transmitted without error. It is created by adding the binary value of each alphanumeric
character in a block of data and sending it with the data. At the receiving end, a new
checksum is computed and matched against the transmitted checksum. A non-match
indicates an error.”
55. As another example, the IBM Dictionary of Computing, 10™ Edition,
1994 defines “checksum” as: “(1) The sum of a group of data associated with the group
and used for checking purposes. (2) In error detection, a function of all bits in a block.
If the written and calculated sums do not agree, an error is indicated. (3) On a diskette,
data written in a sector for error detection purposes; a calculated checksum that does not
match the checksum of data written in the sector indicates a bad sector. The data are
either numeric or other character strings regarded as numeric for the purposes of
calculating the checksum.”
56. In all of these cases, a checksum is much smaller in length than its
input data. For example, a 16-bit (2-byte) or 64-bit (8-byte) checksum may be calculated
on thousands, millions, or billions of bytes of data. This fulfills the checksum’s intended
purpose well, given that most errors in data storage or transmission are small and
localized, making it highly likely that the resulting checksum will differ from the one
originally calculated, and extremely unlikely that corrupted data will produce the same
checksum as the original one. For example, if one or two bits are altered, the checksum
will differ.
57. A few examples highlight this point. Most credit card numbers
contain check digits that serve to make sure that a credit card holder enters the number

properly (e.g., on a website). The check digits are often calculated by means of an

Atty. Dkt. No. 2914.001REX0

UNIO76177

-16 - RICHARDSON, III
Reexam of Pat. No. 5,490,216
Reexam Control No.: 90/010,831
algorithm called the Luhn algorithm, which is a type of checksum algorithm. Because it
is a single digit (with values 0-9), it is clearly impossible for the check digit to be unique,
given that most credit card numbers are 15 digits long (not counting the check digit) and
therefore that there are up to 10% or 1 quadrillion possible credit card numbers.

58. As another example, consider social security numbers, which are 9
digits long. Suppose we wanted to calculate the checksum of a social security number.
We can use the most basic checksum algorithm, in which all the digits in the input data
are added and the result is the checksum. All checksum algorithms in practical use are
derived from this basic one. The social security numbers 123-45-6789 and 987-65-4321
are clearly different, but they both have the same checksum of 45; moreover, it is
impossible to reconstruct (preserve the uniqueness of) the original social security number
given the checksum,

59. As a final example, electronic devices often have memory chips in
them that contain data stored at the factory. These are known as PROMs (Programmable
Read-Only Memory). A typical PROM will contain a checksum of 8 bytes in length,
even though the capacity of the PROM may be in the thousands or millions of bytes, as
illustrated in the diagram below. The data in the PROM can be added up byte by byte,
and the lowest 8 bytes of the result can be used as the checksum. The checksum is used
to ensure that the data in the PROM was copied correctly during manufacturing. It
works well for that purpose, because errors are typically limited to a few bytes, which
would result in a different checksum being calculated. However, many different sets of

PROM data would lead to the same checksum, meaning that uniqueness of the data is not

preserved.

Atty. Dkt. No. 2914.001REX0

UNIO76178

-18 - RICHARDSON, III
Reexam of Pat. No. 5,490,216
Reexam Control No.: 90/010,831

61. From the foregoing, Grundy understood well the use of checksums
according to the POSA’s and dictionary definitions described above; therefore one may
assume that his understanding of checksums applies to all of the disclosures of that term
in his patent, including the “checksum of the user data” as referred to above.

62. Grundy shows the input data to this checksum routine in Fig. 2, 212,
“ENTER NEW USER DETAILS.” This is “new user data, such as the user’s name,
address and telephone number” (Grundy at 12:37-38). Such data might take up roughly
a hundred bytes of data. As indicated above, a checksum of this data would not preserve
its uniqueness; many different sets of user data could produce the same checksum.

63. For the above reasons, a checksum cannot possibly preserve whatever
uniqueness the input data may possess. In particular, a POSA would not ascribe any
reasonable definition of “unique” to the output of a checksum routine.

64. Therefore the checksum as disclosed in Grundy cannot function as a
generator of unique identifiers, which is a required characteristic of the claimed LUID.
Grundy thus does not overcome the acknowledged deficiency in Hellman.

65. I therefore disagree with the factual conclusions stated in the Office

action with respect to the teachings of Hellman and Grundy—neither of them teach or

disclose licensee unique ID generation.

Extension of Arguments to Independent Claim 12:

66. As with claim 1, the ‘216 Office action also rejects claim 12 of the
‘216 patent on grounds of obviousness with respect to Hellman in view of Grundy.

Claim 12 of the ‘216 patent recites a “registration system’ to generate a “security key”

Atty. Dkt. No. 2914.001REX0

UNIO76180

	UNI076163
	UNI076186

