Parallel Networks, LLC v. Adidas America, Inc. et al Doc. 1 Att. 1

Exhibit A

Dockets.Justia.com

http://dockets.justia.com/docket/texas/txedce/6:2010cv00491/125517/
http://docs.justia.com/cases/federal/district-courts/texas/txedce/6:2010cv00491/125517/1/1.html
http://dockets.justia.com/

US006446111B1

a2 United States Patent

Lowery

(10) Patent No.:
5) Date of Patent:

US 6,446,111 B1
Sep. 3, 2002

(549) METHOD AND APPARATUS FOR
CLIENT-SERVER COMMUNICATION USING
A LIMITED CAPABILITY CLIENT OVER A
LOW-SPEED COMMUNICATIONS LINK
(75) Inventor: Keith A. Lowery, Richardson, TX (US)
(73) Assignee: epicRealm Operating Inc., Richardson,
TX (US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.
(21) Appl. No.: 09/336,186
(22) Filed: Jun. 18, 1999
(51) Int. CL7 oo GOG6F 158/16
(52) US.CL ... 709/203; 709/200; 709/315;
707/10; 707/103; 345/326; 345/332; 345/333;
345/334; 345/335
(58) Field of Searchc.cccoceuvveiine. 709/203, 200,
709/315; 707/10, 103; 345/332, 333, 334,
335, 326
(56) References Cited
U.S. PATENT DOCUMENTS
5,901,286 A * 5/1999 Danknick et al. 709/203
5,923,885 A * 7/1999 Johnson et al. 717/11
5,928,323 A * 7/1999 Gosling et al. 709/203
5,999,941 A * 12/1999 Andersen 707/103
6,026,474 A * 2/2000 Carter et al. 7117202
6,054,983 A * 4/2000 Simomoff et al. 345/335
6,108,687 A * 8/2000 Craigccooevvivinnns 709/203
6,125,402 A * 9/2000 Nagarajayya et al. 709/304
6,131,096 A * 10/2000 Ngetal.c.covnriinnnnns 707/10
6,181,781 B1 * 1/2001 Porter et al. 379/88.17

OTHER PUBLICATIONS

IBMTD, vol, No. 37, issue 4B, p. 325-328, title : Strategy
for supporting CM/2 and DB/2 with . . . , Apr. 1994.*
IBMTD, vol. No. 41, issue 1, pp. 711-712, title : Informa-

XP-000827900: Pich, Joachim, et al., “Plug—and—Play im
Netz So funktioniert Jini”, Wissen & Trend, Chip Zeitschrift
Fuer, pp. 244-247/ Apr. 4, 1999.

XP-002154835: Lemay, L., et al., “Teach Yourself Java 1.2
in 21 Days”, Sams Publishing, pp. 11-12, p. 19, and pp.
136-138, May 1998.

Fox, A., et al., “Reducing WWW latency and bandwidth
requirements by real-time distillation”, Computer Networks
and ISDN Systems, pp. 1445-1456, Jun. 15, 1996.

XP-002154834: Sun, “What is the Java™ Platform Micro
Edition?”. Online web page address: http://www.sun.com/

consumer—embedded/cover/j2me.html, retrieved on Dec. 5,
2000, Jun. 15, 1999.

WO 00/17783: Inventors—Taivalsaari, A., et al, Appli-
cant—Sun Microsystems, Inc., “Method and Apparatus for
Managing Class Files on Devices Without a File System”,
Application No. PCT/US99/20079, Specification—33 pgs.,
Drawings—14 pgs, Mar. 30, 2000.

WO 00/17783: Sun Microsystems, Inc., Application No.
PCT/US99/20079, substitute page Nos. 2-14, Mar. 30,
2000.

* cited by examiner

Primary Examiner—Ayaz Sheikh
Assistant Examiner—Frantz B. Jean
(74) Attorney, Agent, or Firm—Baker Botts L.L.P.

(7) ABSTRACT

A request is sent from a client (12) to a server (18) over a
communications link (16). A web server (20) on the server
responds to the request with a dynamically generated,
selected characteristic enabled, transient applet (26) includ-
ing a plurality of data items (28) therein. The data items are
represented in the applet as a plurality of respective non-
updateable, pre-loaded elements (36) and a subset of the data
items may be represented by respective updateable elements
(38). The applet is executed on the client and then substan-
tially discarded when the client no longer requires the data
or services of the applet.

tion Retrieval and Presentation Apparatus . . . Jan. 1998.* 27 Claims, 2 Drawing Sheets
CUENT | yemory APPLET 35
43 36 28
INPUT PRELOADED _ DATA
SYSTEM OATA ELEMENT — ITEM
MANIPULATION 36 28
OUTPUT
PRELOADED _ DATA
7 30 ELEMENT ITEM
“ o EO |
PRELOADED _ DATA
ELEMENT — ITEM
34 38 28
rooo | UPDATABLE _ DATA 1
I, -
L oo 1l e T e
—-3-- _ ELewe
1
<
COMMUNICATION 40
46" SYSTEM
T
TP R S

™16

SERVER

U.S. Patent Sep. 3, 2002 Sheet 1 of 2 US 6,446,111 B1

10
FIC. 1 cuent |12 /
14 - T T .
16 :
NETWORK SERVER
22 24 WEB SERVER | | 18
\ p APPLICATION
DATA oATA | ... [DA —

SOURCE | | SOURCE ", | SOURCE 20
CLIENT 1" memory APPLET 36
42 36 28

A \ /
INPUT PRELOADED _ DATA
SYSTEM - ELEMENT — ITEM

MANIPULATION 38 2/8
OUTPUT . .
SYSTEM PRELOADED _ DATA
7 % ELEMENT — ITEM
44 o 32 3 28
N ° /
PRELOADED _ DATA
ELEMENT — ITEM
34 38 28
pustuet i BT T
| 1 _>l _ 1
| LOADER = | ELEMENT — ITEM !
I_....—m.___l e e e o o e e e e - — -
Y \
COMMUNICATION 40
46 SYSTEM
| |
/ | L
12 16/'___ —_-IL\16
: FIG. 2

A SERVER

18 14

U.S. Patent

66

Sep. 3, 2002 Sheet 2 of 2 US 6,446,111 B1
FIG. 38
(START)

=V

CLIENT SENDS REQUEST |48
\

SERVER RECEIVES REQUEST |90
\

SERVER COLLECTS DATA 92
L/

GENERATE APPLET - 33
Y

TRANSMIT APPLET L~ o4
v

PP
EXECUTE APPLET ”
UPDATABLE \YES 60
DATA? y /
LOAD DATA
FROM SERVER
L

NO END

Ny

DISCARD
APPLET

I

SESSION?

DISCARD APPLET

- 64

CanD)

US 6,446,111 B1

1

METHOD AND APPARATUS FOR
CLIENT-SERVER COMMUNICATION USING
A LIMITED CAPABILITY CLIENT OVER A
LOW-SPEED COMMUNICATIONS LINK

TECHNICAL FIELD OF THE INVENTION

This invention relates in general to client-server systems
and, more particularly, to a method and apparatus for client-
server communication involving a dynamically generated,
transient applet having selected characteristics enabled
therein as a response to a request from a limited capability
client coupled to the server through a communications link.

BACKGROUND OF THE INVENTION

Traditionally, programs have been designed toward the
goal of writing the program once and then using the
program, with little-to-no modification, to access and utilize
a large variety of different types of data. Such “generic
programming” concepts have lead to the development of
many generic programming methods for accessing and
utilizing data. One common generic design method is to
provide a single interface to a user or programmer for data
access and utilization while providing multiple specific
“backends™ for accessing and utilizing different types of
data. One example of such a generic design method is the
open database connectivity standard (ODBC). ODBC pro-
vides a single interface that can be used to access various
databases by using the single interface in combination with
multiple backends wherein each backend is tailored to a
specific database. Many other standards similar to the
ODBC standard, which provide similar generic-to-specific
functionality, have been developed and are presently in use
today. A disadvantage to the single interface with multiple
backends is that numerous different types of systems, each
with their own specific interface requirements, have been
developed and have necessitated the creation of numerous
back-ends. In short, underneath a single interface there is
typically a backend specific implementation or implemen-
tations. Another disadvantage to such generic systems is that
often all or many of the different backends are included with
each piece of application software written to use the generic
interface so that the application software can utilize a large
variety of specific systems.

As computer technology has advanced, computers and
electronic devices have become smaller and smaller. Along
with the shrinking of computers has come the creation of
handheld and credit-card-size computers. The personal digi-
tal assistants that have appeared are common examples of
handheld and credit-card-size computers. The small size and
easy portability of the handheld and credit-card-size com-
puters has limited the amount of physical memory and
secondary storage that may be included in these devices.
“Physical memory” is used here to refer to memory, such as
random access memory (RAM), that loses its contents in the
absence of electrical or battery power. “Secondary storage,”
as used here, refers to persistent storage such as hard drives,
CD-ROMSs, and floppy disks which retain their contents in
the absence of electrical or battery power.

Traditional methods of computer-to-computer communi-
cation have involved wire-based networks. An example of
such a wire-based network technology is the 10baseT Eth-
ernet networks used in many corporations. Handheld and
credit-card-size computers are typically not suited to tradi-
tional wire-based networking methods. Thus, wireless com-
munications methods are often used with handheld and
credit-card-size computers for networking with other com-

10

15

20

25

30

35

40

45

50

55

60

65

2

puters. For example, many handheld and credit-card-size
computers communicate with other computers or devices
using infrared light or over the cellular phone network.

Infrared light and the cellular phone networks share the
limitation of having a low speed relative to wire-based
networks. Traditional network applications, having been
developed on wire-connected computers, often do not take
into account the limitations imposed by the low-speed
connections used by handheld and credit-card-size comput-
ers. For example, the World Wide Web (the “web”) uses the
HyperText Transfer Protocol which may require a server
system to resend an entire web page even if only a single
data item on that web page has to be updated. For another
example, many traditional web-enabled applications utilize
plug-ins that must be loaded onto the client to allow the
client to use the particular functionality of a server. The
plug-ins typically remain on the client following the termi-
nation of an interactive session and, thus, consume the
limited storage resources of handheld devices. Handheld and
credit-card-size computers may have no secondary storage,
thus requiring the plug-ins to be stored in the limited
physical memory of the device which reduces the amount of
memory available for use by other applications running on
the handheld and credit-card-size computers.

SUMMARY OF THE INVENTION

From the foregoing, it may be appreciated that a need has
arisen for a method and apparatus for responding to a client
request so as to reduce bandwidth usage over a low-speed
connection and reduce the consumption of storage space on
the client.

According to one embodiment of the present invention, a
data processing system is provided that comprises a client
device coupled to a communications link and operable to
communicate a request over the communications link. The
system further comprises a server coupled to the communi-
cations link and operable to receive the request and to collect
a plurality of data items from a plurality of distinct sources
where the data items comprise information collected as a
function of the request. The system also comprises an
executable applet dynamically generated by the server in
response to the request, a constituent system associated with
the applet comprising a subset of the data items, each data
item in the subset used as a pre-loaded value in the applet.
The applet is operable to be transferred over the communi-
cations link to the client device and the client device is
operable to execute the applet to access the subset of the data
items.

According to another embodiment of the present
invention, the pre-loaded values are non-updateable.

According to another embodiment of the present
invention, the applet further comprises a plurality of update-
able elements.

The present invention provides a number of technical
advantages. One such technical advantage is the capability
to respond to client requests for information from a server
using a dynamically generated, selected characteristic
enabled, transient applet. The applet that is sent to the client
is substantially self-sufficient and depends on substantially
no services being available on the client for the applet to use.
For example, if a person is trying to buy a book from an
online book seller, the online bookseller may provide the
user with a customized capability for book browsing and the
applet will comprise the requisite functionality for the
custom book browser and the necessary data for the client to
use with the book browser. Accordingly, the use of such an

US 6,446,111 B1

3

applet allows the human operator of a handheld device
which has limited memory and limited or no secondary
storage capabilities to initiate and complete a transaction
with a server without having to load and store a variety of
support programs which may be required by the server.
Another advantage is that by discarding the applet after a
transaction, each transaction between the client and the
server may be made independently of previous transactions
and with little or no post-transaction impact on the limited
resources of the client.

A further advantage is that the total amount of data
transferred between the client and the server over a com-
munications link is decreased. By transmitting the appro-
priate data and associated data handling capabilities as a
group, the client may be required to communicate over a
low-speed communications link a greatly reduced number of
times or, in some cases, only once. Yet another advantage is
found in the avoidance of transmitting duplicate data by
using updateable elements and a loader within the applet to
load only new data desired by the client from the server,
instead of completely retransmitting all the information in
order to include small changes.

BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the present invention will be
realized from the detailed description that follows, taken in
conjunction with the accompanying drawings, in which:

FIG. 1 is a block diagram of a client-server system as used
in the present invention;

FIG. 2 is a block diagram showing further details of the
system of FIG. 1; and

FIG. 3 is a flow chart showing the operation of a client-
server system constructed according to the teachings of the
present invention.

DETAILED DESCRIPTION OF THE
INVENTION

The Internet is a world wide network of networks that
links many computers through many separate, but inter-
communicating, networks. Using the Internet, users can
access vast amounts of stored information and establish
communication with other Internet capable computers.

Much of the Internet is based on the client-server model
of information exchange and processing. The client-server
model, which is a computer architecture, generally uses a
server or host for servicing a number of less powerful
computers. The server is typically a single powerful com-
puter or a group of computers that may behave as a single
computer. The less powerful computers are typically called
clients, and the clients couple to the server over one or more
communication links. Servers typically have greater pro-
cessing power than clients. For example, the server may
comprise a mainframe, mini-computer, or powerful personal
computer, while clients generally comprise simpler and less
powerful personal computers. One type of client that is
typically significantly less powerful than the server com-
prises the group of portable, handheld computers known as
personal digital assistants (PDAs). PDAs may comprise only
a limited amount of physical memory, as compared to
servers, and no secondary storage capabilities. “Secondary
storage” as used here refers to hard drives, CD-ROMs and
the like which retain their contents even in the absence of
electrical or battery power. “Physical memory” as used here
refers to memory that loses its contents in the absence of
electrical or battery power, for example, the random access

10

15

20

25

30

35

40

45

50

55

60

65

4

memory (RAM) found in many computers. An example of
a computer known as a personal digital assistant is the
PalmPilot by 3Com, another example is the growing number
of cellular phones with alphanumeric displays and additional
functionality such as calendars, phone lists, and other func-
tionality. PDAs often comprise physical memory less than 8
megabytes and no secondary storage capability, while serv-
ers often comprise physical memory measured in the hun-
dreds of megabytes, or even in the gigabyte range, and
secondary storage capabilities in the tens to hundreds of
gigabytes range. Clients usually communicate with a single
server at any one time, although clients may communicate
with each other using the server or they may use the server
to communicate with other servers.

The Internet supports various protocols for information
transfer between clients and servers. The World Wide Web
(hereinafter the “web”) is one of the most popular of the
Internet’s information transfer protocols. Web-accessible
information is identified by a Uniform Resource Locator
(“URL”) which specifies the location of information on the
Internet in terms of a specific computer and a location on
that computer of a file having the information. Any computer
connected to the Internet may access the file with the proper
communication protocol and the URL of the desired infor-
mation. Typically, the URL has the format
http:\ \<host>\<path>, where “http” refers to the HyperText
Transfer Protocol, which comprises the communication
protocol, “<host>" is the Internet identifier of one of the
servers on the Internet, and “<path>" specifies the location
of the information on the server. A website is typically a set
of information stored on a computer connected to the
Internet which makes information on the computer available
to other server and client computers on the Internet. The
information made available by the website is typically
broken down into one or more “web pages”, which comprise
formatted, tree-structured information. The information on
the web pages may comprise text, images, sounds, and
animations or other information.

One important ability of the web is the connection of one
document to many other documents using hypertext links. A
link typically appears as an underlined portion of text in a
document, and when the user of a document which has
hypertext links therein moves the cursor or mouse pointer
over the underlined text and clicks, the document referred to
by the selected link is retrieved. The linked document may
be located on the same server or on a different server from
the original document.

Hypertext and web searching capabilities are typically
implemented on the client using a computer program called
a “web browser”. When the client is connected to the
Internet, the web browser utilizes URLs, which may be
provided either directly by the user or by a link that the user
has clicked on, to locate, retrieve, and display the informa-
tion at the URL. Display is used here very generally and may
comprise basic rendering of pictures and text, real time
playing of audio and video segments, printing of data, or
storage of data for later use or display. Clients typically use
the web browser to view web pages by using the web
browser to retrieve web pages from servers and then dis-
playing the information in the web pages locally on the
client.

Traditionally, web pages have been written in the Hyper-
Text Markup Language (“HTML”) which is used to specify
the layout and content of the web page. However, HTML is
primarily suited only for relatively simplistic representation
of data web pages. A web page typically may provide only
predetermined information, in a predetermined format, to

US 6,446,111 B1

5

the client. To provide “dynamic” information, which is
information that may be different for different clients and
different users of clients, or to provide complex information,
such as graphs and animations, typically requires the use of
programs on the server external to the web page to change
the web page for the different clients. Dynamic web pages
may necessitate the inclusion of user or client specific
information in the web page, providing animations on the
web page, changing the appearance of the web page in
response to the position of the cursor on the web page, or
providing other suitable dynamic changes to the web page.
For example, in order to include the name of a person
accessing the web page using the web browser, the web
server would have to use an additional, external program in
addition to the web page. The external program would
acquire the user’s name, build a new web page incorporating
that name, save that web page on the web server, and then
send the newly created web page to the client.

The external programs used to provide dynamic or com-
plex web pages to clients have grown in ability and com-
plexity and have resulted in the development of “plug-ins”.
Plug-ins are typically external modules or add-on programs
run on the client which are used to provide various abilities,
such as dynamic capabilities, to web pages. Plug-ins are
typically attached or added to the web browser on the client
and stored on the client so that the client may process and
display the dynamic web page after the web page has been
retrieved by the client. An example of a plug-in may
comprise the Shockwave plug-in from Macromedia. In
particular, Shockwave, when installed on a client, allows the
viewing on the client of multimedia files and multimedia
effects which are embedded as part of the web page.

The added abilities provided by plug-ins are not free of
effect on the client however. When the web browser encoun-
ters web content requiring a plug-in that the web browser has
never before encountered, the needed plug-in is typically
downloaded to the client from the server and added to the
web browser on the client. In the future, when the client
encounters web pages that include content that needs the
newly added plug-in in order to be viewed, the web browser
will be able to utilize the plug-ins’ added functionality, but
at the cost of having to continually devote space, in physical
memory or on secondary storage, to storing the plug-in. The
plug-in consumes physical memory or secondary storage
space on the client when the plug-in is unused or even if the
plug-in is used only once by the web browser. Additionally,
the space consumed by plug-ins grows as the number of
plug-ins the client encounters grows and as previously
installed plug-ins are updated to new versions which typi-
cally take up more space than their predecessors. Also,
plug-ins often comprise multiple files which are installed in
various locations on the client when the plug-in is added to
the web browser, thus, there is often no easy method
provided to the user of the client to remove the plug-ins for
which the user no longer has a need. Plug-ins are generally
unsatisfactory for use with PDAs due to the storage space
consumed by the plug-ins. As PDAs often have limited
storage capabilities, the plug-ins’ disadvantage of consum-
ing storage space while sitting around unused is a significant
barrier to the successful use of plug-ins with PDAs.

A more recent method for providing dynamic web pages
involves the use of the Java programming language. The
Java language is a well-known, machine-independent com-
puter language that facilities dynamic display of informa-
tion. “Applets” may be created using the Java language,
which may comprise programs embedded within web pages
that can interact with the user locally using “Java-capable”

10

15

20

25

30

35

40

45

50

55

60

65

6

web browsers. The applet is typically transferred to the web
browser with other web page information. The information
used by the Java applet may be located on the same web
page as the applet, on a different web page from the applet,
or on an entirely different server. Applets themselves may
request web pages or activate links.

More specifically, Java applets are sent to the client in the
form of a message. The message may comprise a plurality of
groups (“packets”) of data which are sent over the commu-
nications link from the server to the client and then reas-
sembled at the client. Once the message is received and
reassembled at the client, the client opens the message and
finds a program, which is the Java applet, inside. The user of
the client may then execute the Java applet or the applet may
execute automatically. Often, one of the first actions the Java
applet would take would be to contact the server over the
communications link. One common reason for the Java
applet contacting the server is so that the Java applet can
receive needed data, and another common reason is to begin
loading a separate plug-in onto the client from the server. A
further common reason for the Java applet to contact the
server is to retrieve objects and classes used by the Java
applet to access data, for example, Java Database Connec-
tivity (JDBC) classes. The downloaded objects and classes
will then typically retrieve the actual data the downloaded
classes and objects will be used with.

Java applets may be used to address the space consump-
tion problem associated with plug-ins. Java applets are often
designed to be machine independent and have a low impact
on the client. Typically, the Java applet will be transferred to
the client, executed, and then disposed of. Unlike typical
plug-ins, the Java applet may be removed by the Java Virtual
Machine (discussed in more detail below). In addition, the
operating system may be operable to discard Java applets.

Using Java applets is also not free of impact on the client
however, as a Java Virtual Machine (“JavaVM?), which is
similar to the plug-ins, must be provided on the client for the
Java applet to function. The JavaVM is a program stored on
and executed on the client which provides an interface
between the machine independent code that comprises the
Java applet and the specific requirements of the client.
Typically, a given JavaVM implementation will execute
only on a particular client or type of client, even though Java
applets are machine independent. Storing the Java applet
over the long term is advantageous as compared to storing
multiple plug-ins, because one JavaVM will run Java applets
regardless of what the Java applets are doing, while plug-ins
typically provide only the particular dynamic ability that the
plug-in has been designed to supply. The JavaVM typically
discards applets when performing “garbage collection” on
memory. Garbage collection typically includes discarding
unused data, classes, applets, and other information from
memory associated with the JavaVM which is no longer
needed by any applet or application currently using the
JavaVM. The JavaVM is typically operable to remove itself
from memory when no more Java applets or Java applica-
tions are running which require the JavaVM. Multiple
plug-ins will typically consume more space than the single
JavaVM. For example, the Shockwave plug-in noted previ-
ously provides only Shockwave related services, and in
order to add Structured Query Language (SQL) capabilities
a separate SQL plug-in must be loaded onto and stored by
the client. In contrast, the single JavaVM is operable to
execute Shockwave-like Java applets and SQL-like Java
applets, with the additional advantage that the Shockwave-
like and SQL-like applets will remove and discard them-
selves when the user is done with them.

US 6,446,111 B1

7

Java applets therefore offer an advantage over plug-ins to
PDAs through the transient nature of the Java applets. The
PDA is required to store only the JavaVM and generally is
able to discard the Java applet when the PDA is done with
the Java applet.

Another alternative for dynamic web pages may comprise
ActiveX controls. ActiveX controls may or may not be
machine independent. Thus, some ActiveX controls are
limited to use with browsers and computers that are com-
patible with the ActiveX controls. ActiveX is similar to the
plug-ins discussed previously, but may be used to provide
more general capabilities to the client than most plug-ins.
ActiveX controls, unlike Java applets, do not rely on a
JavaVM-like interface between the controls and client,
instead, ActiveX controls are often written to use the
ActiveX plug-in for specific clients.

The basic concept of the web page is that there exists a
division of responsibility between the client’s web browser
and the server’s web page. The web browser typically
locates, retrieves and displays the web pages, executes
hyperlinks and applets, and generally interprets web page
information. The web page comprises the raw data,
hyperlinks, and HTML constructs that may be executed by
the web browser.

Web pages and web browsers may be used on an intranet
as well as the Internet. The web pages, web browsers,
clients, and servers operate over an intranet in a manner
similar to the operation of the web pages, web browsers,
clients, and servers over the Internet.

Both the Internet and intranets are typically formed using
wire-based networks. Wire-based networks generally use
cabling, such as co-axial cable or fiber optic cable, to
connect clients and servers. However, other methods besides
cables may be used to form networks and couple clients and
servers.

Wireless networks are one alternate method for coupling
clients and servers. Wireless networks, in comparison to
wire-based networks, are typically not capable of transmit-
ting data as quickly as the wire-based networks. Thus,
wireless networks are said to have a lower speed and a lower
bandwidth than the wire-based networks. For example, an
infrared network could be used for wireless networking.

The small size of PDAs and the need for PDAs to be
portable often make them unsuited to wire-based networks
and thus these systems often use wireless networking, such
as an infrared network or a cellular phone network, for
communication with other computers. Often, wireless net-
works do not have the speed to carry the amount of data that
computers often share with each other. In particular, refer-
ring to the plug-ins described above, the transferring and
installing of the plug-ins on the PDA requires both patience
and foresight. Patience is required because the plug-ins are
typically designed to be transferred across wire-based net-
works and significantly greater time may be required to
transfer the plug-ins across a wireless network. Foresight is
required because the user must decide whether to commit
part of the limited storage of the PDA to storing the plug-ins
and whether the plug-ins will provide functionality sufficient
to justify devoting storage resources on the PDA to the
plug-ins. Java applets provide a better alternative to PDAs,
as Java applets require a lower storage commitment than the
plug-ins. However, Java applets, once transferred, typically
must go back out over the wireless network two or more
times. Once, to get classes and objects needed by the applet,
and again to get the very data that the Java applet requires
to make the Java applet useful to the user of the PDA. Thus,

10

15

25

30

35

40

45

50

55

60

65

8

not only has the Java applet user had to wait for the Java
applet to transfer to the PDA, but must wait a further period
of time for the Java applet to transfer needed classes, objects
and data over the network to the PDA. According to the
teachings of the present invention, a Java applet can be
augmented to address this problem by including all or most
of the required data and the associated functionality in a
single transmission to the client.

FIG. 1 is a block diagram of a client-server system 10
constructed according to the teachings of the present inven-
tion that comprises a client 12 coupled to a server 18. A
communications link 16 may either directly connect the
client 12 to the server 18 or indirectly connect the client 12
to the server 18 through a network 14. In the disclosed
embodiment, the client 12 may comprise a handheld or
credit-card-size portable computing device with limited
physical memory, as compared to the server 18, and limited
or no secondary storage. For example, the client 12 may
comprise a PalmPilot by 3Com Corporation or a cellular
phone which comprises the ability to display alphanumeric
information. The client 12 may also comprise any other
suitable type of computer or electronic device comprising
physical memory that may be coupled to the communica-
tions link 16. The client 12 further allows a human operator
(not shown) to use the client 12 to retrieve, access, manipu-
late and display information on the client 12. In a typical
application, the client 12 transmits a data request over the
communications link 16 to the server 18. The client 12 is
described later in more detail in association with FIG. 2.

In the disclosed embodiment, the network 14 may com-
prise the Internet or another suitable type of Local Area
Network (LAN), Medium Area Network (MAN), Wide Area
Network (WAN), intranet or any other suitable computer
network well-known in the art. In the disclosed embodiment,
the communications link 16 may comprise a wireless com-
munications link having relatively low-speed as compared to
wire-based networks. “Low-speed” is used here to denote
that the communications link is a limited resource as
opposed to an actual number. Specifically, low-speed gen-
erally refers not to the absolute speed of the communications
link, but the rate at which the communications link may
transfer information versus the amount of data that is sought
to be transferred over the communications link. The com-
munications link 16 may also comprise any other suitable
kind of communications link that constitutes a relatively
limited resource as compared to the processing and storage
capabilities of the remainder of the system. The communi-
cations link 16 may comprise any of a variety of other
suitable wireless and non-wireless communications links
well known in the art for coupling clients 12 to servers 18.

For example, OC-48 is a wire-based communications link
that is capable of transferring 2.488 gigabits per second
(gbps). OC-48 could be classified as a low-speed link if
0OC-48 is used to couple computers having a need to transfer
data at the rate of, for example, 100 gbps. For another
example, an IrDA infrared communications link, which is
one standard used for providing an infrared communications
link, generally provides a wireless connection at about 115
kilobits per second (kbps), which comprises a low-speed
communications link when compared to 10 megabit per
second (mbps) wire-based Ethernet networks. In absolute
numbers 115 kbps may not be low-speed, but when a 115
kbps communications link is used with a program designed
to be transferred over 10 mbps Ethernet, the 115 kbps
communications link is low-speed in the sense that the 115
kbps communications link is a limited resource that must be
accommodated by the remainder of the system.

US 6,446,111 B1

9

Returning to FIG. 1, the client-server system 10 further
comprises the server computer 18 hosting a web server
application 20. The server computer 18 receives the requests
from the client 12 and may transmit and receive data from
a plurality of data sources 22, 23, and 24. The data sources
22,23, and 24 provide various data and content information
which may be either static or dynamic. The server computer
18 may also comprise any of a variety of suitable server
computer systems well known in the art which operate
similarly to the server 18. In the disclosed embodiment, the
web server application 20 is an application program running
on the server 18 for communicating with multiple clients 12
using a communications protocol such as the HyperText
Transfer Protocol (HTTP) and for generating an applet 26
(shown in more detail in association with FIG. 2). The web
server application 20 handles requests from the client 12
sent to the server 18. The web server application 20 may also
be any of a variety of suitable and well-known applications
and programs for processing web data requests from the
Internet, an intranet or an extranet, and which may execute
external programs or applications which add further func-
tionality to the web server application 20. The data sources
22 through 24 may comprise other logical or physical
computer systems coupled to the network 14 that may be
contacted by or communicate with the server 18. The data
sources 22 through 24, in the disclosed embodiment, each
comprise a plurality of content and data items 28 therein that
may be retrieved or utilized by the web server application
20. The server application 20 collects data items 28 in
response to the request. The web server application 20 may
also communicate with the client 12 using any suitable
communications protocol. For example, HTTP, the File
Transfer Protocol (FTP), or the Telnet protocol may be used.

The applet 26, in the disclosed embodiment, may com-
prise a Java, ActiveX or other suitable type of applet which
can be executed by the client 12. The applet 26 may also be
encoded using any other suitable programming language,
scripting language, or the like suitable for use on the client
12. According to the teachings of the present invention,
when the applet 26 is generated, the applet 26 does not
merely contain an executable program as with typical
applets. In contrast, the applet 26 also comprises particular
services and data for the client 12 based on the request. The
applet 26 may be generated either directly by the web server
application 20 or by an external program utilized by the web
server application 20. The applet 26 is described in more
detail in association with FIG. 2.

The teachings and advantages of the present invention
may be best understood in the context of an example. A
person with a cellular phone, which acts as the client 12,
may desire to purchase a drink from a vending machine,
which acts as the server 18. The cellular phone may com-
municate with the vending machine using an infrared data
link, which acts as the communication link 16 and forms a
direct link to the vending machine. In order to illustrate the
benefits of the present invention, this example will present
the above transaction using the traditional method followed
by the transaction using the teachings of the present inven-
tion.

Using the traditional method the cellular phone would be
required to be executing a web browser, executing the web
browser requires the user to select the web browser on the
cellular phone and wait for the web browser to start execut-
ing. The web browser on the cellular phone would likely be
a general purpose web browser because the web browser
would be required to handle contact with any suitable
website, thus, the web browser would likely take up a

10

15

20

30

35

45

50

55

60

10

significant amount of the limited storage capability of the
cellular phone and require significant start-up time due to the
limited processing power of the cellular phone. The cellular
phone would then contact the vending machine over the
infrared data link and the vending machine would transfer
all of the data representing available drink types and avail-
able stock of drinks. The vending machine would also be
transferring all of the HTML code required to format the
drink type and availability data so that the web browser
could properly display the data. Since only the data and
formatting codes for the data are provided by the server, the
processing of the formatting commands would be done by
the web browser executing on the cellular phone. The
vending machine may also provide the user the ability to
purchase a drink using the user’s credit card, however, in
order to complete the credit card transaction the vending
machine may have to transfer a plug-in to the client to enable
the user to use the user’s credit card with the vending
machine. The user will likely be required to wait while a
plug-in is transferred over the low-speed infrared link. Once
the user has purchased the desired drink, the web browser
may stop executing. The user has now invested time in
waiting for the browser to launch, receiving vending
machine data, receiving the credit-card-purchase plug-in and
ending the web browser. The user has also committed
storage resources to storing the credit-card-purchase plug-in
and if the web browser did not inform the user that the
plug-in was being loaded, the user may have committed the
storage resources without the user’s knowledge. If different
vending machines, such as those provided by Coke® and
Pepsi®, use different credit-card-purchase plug-ins, the user
will quickly run out of storage on the cellular phone trying
to buy drinks.

Using the teachings of the present invention, in response
to the person entering the proper commands into the cellular
phone, the cellular phone will send a data request over the
infrared communications link to the vending machine. The
data request represents the desire by the user of the cellular
phone to purchase a drink from the vending machine. The
vending machine will then construct an applet having the
available drink types and available stock information, along
with whatever data manipulation abilities are required to use
such type and availability information. More specifically, the
applet can provide the user the ability to scroll through the
type and availability information and to select a particular
drink. The applet requires much less functionality than the
web browser since the server knows what information is
being provided to the cellular phone and what functionality
is required to use the data as opposed to being a general
purpose web browser. In particular, the applet requires that
the cellular phone comprise a JavaVM so that the applet may
execute on the cellular phone. If the vending machine
provides the ability to purchase the drink with a credit card,
the necessary credit card transaction functionality may be
included in the applet by the vending machine. All the
processing to create and transmit the applet is performed by
the vending machine. As the vending machine likely com-
prises greater storage and processing capabilities than the
cellular phone, the generation of the applet will likely be
faster and more efficient than waiting for the web browser on
the cellular phone to format the data received from the
vending machine using the less powerful cellular phone. The
generated applet will then be transferred to the cellular
phone over the infrared link. Once the applet is transferred,
the cellular phone has all of the data and processing routines
the user needs to purchase the drink and the applet may
begin executing. The start-up time for the applet will likely

US 6,446,111 B1

11

be less than the start-up time required for the web browser
because the applet is customized to perform a specific set of
tasks and will likely be smaller than the web browser. Once
the user has selected a particular drink and completed the
transaction, the applet can be discarded and the cellular
phone has suffered no loss of storage resources.

FIG. 2 is a block diagram showing further details of the
system of FIG. 1. As discussed previously, because of the
unique construction of the applet, the applet 26 comprises
both a data manipulation system 30 and a data storage
system 32 which are each constituent systems associated
with the applet 26. The data manipulation system 30 may
also comprise a portion of the applet 26, similarly, the data
storage system 32 may also comprise a portion of the applet
26. The data manipulation system 30 includes all capabilities
required for the operator of the client 12 to utilize data in the
data storage system 32. The data manipulation system 30
enables the applet 26 to handle the various characteristics
associated with the data included in the applet 26 items 28
retrieved in response to the request from the client 12 and to
handle client specific characteristics. In particular, the data
manipulation system 30 of the applet 26 will provide the
client 12 with whatever suitable data interface is required to
access and utilize the data in the data storage system 32. For
example, if the data manipulation system 30 includes data
which requires the functionality associated with a particular
database system, the data manipulation system 30 will
include suitable functionality for accessing the database data
included in the applet 26 in the data storage system 32. The
data storage system 32 comprises a plurality of pre-loaded
elements 36 representing non-updateable data items 28. The
pre-loaded elements 36 are each initialized using respective
data items 28 retrieved by the web server application 20 in
response to the request. The pre-loaded elements 36 are
non-updateable in the sense that the pre-loaded elements 36
will only change in response to data or input from the client
12 and will not be updated with information acquired over
the communications link 16 after the applet 26 has been
transferred to the client 12. The pre-loaded elements 36
serve to decrease the amount of data transmitted over the
communications link 16 by eliminating or decreasing the
need for the applet to have generic data access and collection
functionality. As noted above, the communications link 16
may comprise a low-speed wireless link. Due to the low
speed available, the least amount of data should be trans-
ferred over the communications link 16. By representing the
data items 28 as pre-loaded, non-updateable elements in the
applet 26, the total size of the applet 26 is reduced. Reducing
the size of the applet 26 is also useful when the client 12
comprises limited physical memory capabilities. When the
client 12 comprises limited physical memory capabilities,
the smaller the size of the applet 26, the smaller the impact
on the physical memory of the client 12 by the applet 26.

The data manipulation system 30 may include specific
functionality required by the data in the data storage system
32. By combining the functionality in the data manipulation
system 30 with the data of the data storage system 32 the
design methodology behind the applet 26 can be shifted
from the traditional focus on writing a generic program one
time and using that program with a variety of different data
types, to writing a program specifically for particular data.
By shifting the design methodology from generic to specific,
the data manipulation system 30 can be optimized for the
data included in the data storage system 32. In addition, the
tying together of the data in the data storage system 32 with
the functionality in the data manipulation system 30 allows
for an overall decrease in the size of the applet 26 as little

10

15

20

25

30

35

40

45

50

55

60

65

12

or none of the overhead associated with generic function-
ality need be included. The total number of accesses made
over the communications link 16 from the client 12 is also
decreased by including the data requested by the client 12 in
the applet 26 as part of a single transmission. Stated another
way, instead of downloading generic program functionality
to the client 12 and then having the program use the
communication link 16 in order to access required data, the
needed functionality and the required data are bundled
together in the applet 26 and may be transferred to the client
12 as part of the single transaction.

The applet 26 may be generated in a variety of ways. The
applet 26 may be generated by combining various pre-
defined units together based on the data in the data storage
system 32. The applet 26 may also be generated by using
templates which are customized based on the data to be
included in the data storage system 32. The templates may
define data that is to be added to existing code, code that is
to be added to existing code, entirely new code, class
definitions, class names, and other suitable program ele-
ments. For example, based on the data to be added to the data
storage system 32, a prewritten procedure may be added to
the data manipulation system 30 to allow the user to scroll
a display in order to see all of the data, a catalog class could
be created because the data is from a product catalog, and
database access functionality could be added to the data
manipulation system 30 because the data is stored in a
particular database format.

When the applet 26 is generated, the programmatic capa-
bilities for utilizing the data items 28 represented as pre-
loaded elements 36 in the applet 26 are included in the data
manipulation system 30. Thus, the applet 26 need not rely on
a substantial amount of functionality being available on the
client 12. In particular, the applet 26 need not rely on a
substantial amount of functionality being provided on the
client 12 for manipulating the data in the data storage system
32 of the applet 26. Accordingly, in contrast to the plug-ins
discussed previously, the applet 26 does not require sub-
stantial preloading of software onto the client 12 before the
applet 26 may execute. Also, as a result of the data manipu-
lation system 30 comprising the required functionality to use
and manipulate data in the data storage system 32, the applet
26 may be utilized by the client 12 even after the client 12
is no longer coupled to the communications link 16 or to the
server 18. In addition, once the client 12 is finished with the
applet 26, the applet 26 may be substantially discarded by
the client 12, unless the client 12 wishes some part of the
applet 26 to remain on the client 12. When the client 12
comprises limited memory and no secondary storage
capability, such as when the client 12 comprises a PDA, the
client 12 has no substantial spare memory in which to store
information the client 12 no longer needs.

Another way of looking at the applet 26 is to consider the
applet 26 as comprising a program, which acts as the data
manipulation system 30, with a particular payload of data
occupying the data storage system 32. When the applet 26 is
generated by the server 18, the data manipulation system 30
may be customized as a function of the data items 28
represented in the data storage system 32. The data storage
system 32 is more than merely a collection of data structures
and variables as the contents of the data storage system 32
may be collected in response to the request from the client
12 and are typically specific to the request. Additionally, the
contents of the data storage system 32 may represent current
data that may have become available only very recently, or
may even have been created in response the request.

Referring back to the example of the person trying to buy
a drink from the vending machine using the cellular phone,

US 6,446,111 B1

13

the applet generated by the vending machine for the cellular
phone would comprise whatever programmatic capabilities
the vending machine required the cellular phone to have in
order to purchase a drink. In particular, the vending machine
may generate the applet with the types of drinks available
and the unavailable stock of drinks in the data storage
system 32 while also providing the applet the ability to
manipulate the type and availability information in the data
manipulation system 30. In contrast to the general web
browser discussed previously in association with the cellular
phone example, the data manipulation system 30 of the
applet for the cellular phone will likely consume less space
on the cellular phone than the general purpose web browser
because the data manipulation system 30 of the applet for the
cellular phone may be customized by the vending machine
and provide only the functionality that is currently required
by the applet.

Some applications may be implemented more efficiently
with a combination of pre-loaded, non-updateable data, data
manipulation functionality, and a limited number of update-
able elements 32. For example, a person with a PalmPilot
may desire to purchase a book from an on-line bookseller.
The PalmPilot is a PDA and typically uses a low-speed
wireless communications link for communication with the
server, as well as having limited storage and limited pro-
cessing capabilities relative to a server associated with the
bookseller. The bookstore example will be presented using
both the traditional web browser method and according to
the teachings of the present invention.

Using the traditional web browser method, the data and
formatting information needed to represent the author, title
and price (“author-title-price information”) of all available
books is transferred to the web browser executing on the
PalmPilot. The web browser is likely a general purpose web
browser because the web browser likely provides general
capabilities to browse websites similar to the general pur-
pose web browser discussed previously in association with
the drink example. The web browser then processes and
displays the transferred data on the PalmPilot. The user may
then select a particular book and the bookseller may transfer
availability, review and excerpt (“availability-review-
excerpt”) information to the PalmPilot which must be for-
matted by the web browser executing on the PalmPilot. If
the user wishes to consider another book, the user will have
to return to the previous display of the author-title-price
information. However, since the PalmPilot has a limited
storage capacity, there may not have been sufficient storage
capacity for the PalmPilot to simultaneously store the web
browser, the plug-ins associated with the web browser, the
author-title-price information from the bookseller, and the
availability-review-excerpt information, thus, the PalmPilot
may have discarded the author-title-price information in
order to store the availability-review-excerpt information. If
the PalmPilot has discarded the author-title-price
information, all of that information will have to be retrans-
ferred to the PalmPilot over the communications link and
again be formatted by the web browser using the limited
processing capabilities of the PalmPilot.

According to one embodiment of the present invention,
the server system associated with the bookseller may
dynamically determine that the applet generated for the
PalmPilot will comprise titles of all available books, the
authors of such books, and the price of each book (“author-
title-price information™) as pre-loaded, non-updateable ele-
ments while also including updateable information repre-
senting the availability of each book, an excerpt and review
of each book (“availability-excerpt-review information”) as

10

15

20

25

30

35

40

45

50

55

60

65

14

updateable elements. In this example, the author, title and
price are relatively small pieces of information that the user
needs to know about every book, while the availability,
excerpt, and review are relatively large pieces of information
that the user will want to know for only certain books.
Additionally, the availability may be constantly changing
and greater efficiency is achieved by using the powerful
processing capabilities and large storage capacity of the
server to perform the updating and tracking of the availabil-
ity rather than having the less powerful, low-storage capa-
bility PalmPilot do the updating and tracking. Thus, the
storage and processing capabilities of the server are utilized
to decrease processing and memory usage on the PalmPilot.
The total amount of data transferred over the low-speed link
is decreased because the relatively large data is transferred
only as needed and the functionality needed for the PalmPi-
lot to browse the data is transferred only once during the
initial communication. Furthermore, since the author, title,
and price are stored as pre-loaded, non-updateable elements
in the applet, the user need not transfer this information from
the server again.

The availability-excerpt-review information will not be
needed for every book and will only need to be supplied to
the client when needed by the user. The updateable elements
in the above example would probably not be initialized by
the server because at the time of the user’s request, the server
does not know which books the user wishes to purchase and,
to decrease the amount of information transferred over the
communications link, the server will not transfer the
availability-excerpt-review information to the client until
that information is needed. However, if the server knows
from previous transactions something about the particular
user, some or all of the updateable elements might be
initialized with availability-excerpt-review information
based on the server’s prediction of how to decrease the total
amount of information transferred. The availability-excerpt-
review information might be supplied if, for example, the
server knows that the particular user typically buys books by
a particular author. In this manner, although two sequential
communication sessions take place, the total amount of
information transferred is less than under traditional
methods, thus allowing the applet to more efficiently utilize
the low-speed communications link and the limited storage
and processing capabilities of the PalmPilot.

Accordingly, the data storage system 32 may further
comprise the plurality of optional updateable elements 38
which are each optionally initialized using selected data
items 28. The data items 28 maybe selected dynamically
from the data items 28 based on a plurality of criteria. The
criteria may include a dynamic determination of whether
each data item 28 is likely to require independent updating
by the applet 26 in order to appropriately respond to the
client’s 12 request. Other criteria may be used in other
combinations in order to determine which data items 28
should be represented by updateable elements 38 in the
applet 26.

The data manipulation system 30 may further comprise an
optional loader 34 which may be used to update the update-
able elements 38 with updated data items while the applet 26
is running on the client 12. The loader 34 updates the
updateable elements 38 using a communication system 46
on the client 12 to communicate with the server 18.

The client 12 further comprises memory 40 which stores
the applet 26 while the applet 26 is executing. Memory 40
may comprise Static Random Access Memory (SRAM),
Dynamic Random Access Memory (DRAM), flash memory,
or other memory technology suitable for use with the client

US 6,446,111 B1

15

12. The client 12 further comprises an input system 42, an
output system 44, and the communications system 46. The
input system 42 allows the operator of the client 12 to
interact with the client 12 and the applet 26. The output
system 44 allows the operator of the client 12 to receive
output from the client 12 and, more particularly, the output
of the applet 26. The communications system 46 allows the
client 12 to communicate with the server over the commu-
nications link 16. As an example to illustrate the above, the
client 12 may comprise a PalmPilot computer. The input
system 42 of the PalmPilot comprises the pen, screen, and
writing area used to interact with the PalmPilot. The output
system 44 of the PalmPilot comprises the screen upon which
the user may view the results of the user’s input. The
communication system 46 of the PalmPilot may comprise
the infrared link found on some models of the PalmPilot.

FIG. 3 is a flow chart showing the operation of the
client-server system 10 of FIG. 1. The method begins at step
48 where the client 12 initiates communication with the
server 18 by sending the request over the communications
link 16. The method proceeds to step 50 where the server 18
receives the request and hands the request off to the web
server application 20 for handling.

The method proceeds to step 52 where the server 18
collects the data items 28 that represent an appropriate
response to the request from the client 12. The web server
application 20 may collect the data from the plurality of data
sources 22 through 24 and the server 18.

The method proceeds to step 53 where the web server
application 20 or an external application generates the applet
26, once the appropriate data items 28 have been collected.

In order to decrease the amount of data transmitted over
the communications link 16, the data items 28 may be
represented by the pre-loaded elements 36 in the applet 26.
When the applet 26 is generated, the applet 26 also com-
prises substantially all of the data manipulation capabilities
for reviewing, manipulating, and utilizing the data items 28
represented by pre-loaded elements 36 in the applet 26.
Since the applet 26 comprises substantially all of the data
items 28 appropriate to respond to the request, repeated
transfers of information over the communications link 16
may be avoided. Stated another way, the pre-loaded ele-
ments 36 may leech off of the loading of the data manipu-
lation capabilities to provide data and functionality to the
applet 26.

The applet 26 may also be generated with the data items
28 represented as both pre-loaded elements 36 and update-
able elements 38. Based on the request from the client 12
and the data items 28 collected in response to the request, the
web server application 20 may dynamically determine
whether or not the applet 26 should have updateable infor-
mation in the form of the updateable elements 38. The
determination of whether to include updateable elements 38
in addition to the pre-loaded elements 36 may be based on
a dynamic determination made at the time the applet 26 is
generated as a function of a prediction of whether or not the
addition of the updateable elements 38 will result in a lower
total amount of information that must be transferred over the
communications link 16 as compared to representing all of
the data items 28 using pre-loaded elements 36. Referring
again to the online bookseller example, if the user were
attempting to purchase a book from an online bookseller, the
user of the client 12 may need to know the title of the book,
the author of the book, and the price of the book. At some
point, the user may decide to purchase a particular book and
the user will then want to see an excerpt of that book and

10

15

20

25

30

35

40

45

50

55

60

65

16

whether or not any copies of that book are available. Instead
of transferring the excerpt and availability of every book
along with the title, author, and description, the web server
application 20 may generate the applet 26 to have the author,
title and price as respective pre-loaded elements 36 while the
availability and excerpt information are not transferred. The
availability and excerpt information may be included as
updateable elements 38 so that the availability and excerpt
information are sent later for only the book the user wishes
to purchase. While updateable links require multiple trans-
missions of information across the communications link 16,
the total amount of information transferred will be less
because the user will not be required to again download the
entire applet 26, only the small amount of information the
client 12 is now requesting. The use of both pre-loaded
elements 36 and updateable elements 38 also allows the
client 12 to avoid resending duplicate data over the com-
munications link 16 by updating only individual updateable
elements 38 as needed.

Referring again to FIG. 3, the method proceeds to step 54
where the applet 26 is transmitted from the server 18 over
the communications link 16 to the client 12. The method
proceeds to step 56 where the client 12 loads the applet 26
into memory 40 and executes the applet 26. During
execution, the client 12 may view data, manipulate data and
otherwise utilize the applet 26.

The method proceeds to a decisional step 58 when the
operator of the client 12 has indicated that the applet 26
requires new or updated data which may require updating
the updateable elements or may require an entirely new
applet to be generated as shown in the following steps.
Continuing the example above of buying a book, the opera-
tor may have selected a particular book and is now request-
ing excerpt and availability information on the selected
book. A check is performed by the applet 26 based on the
request of the client 12. If the new or updated data requested
by the client 12 has been previously represented by update-
able elements 38 then the YES branch of decisional step 58
is followed. If the YES branch of decisional step 58 is
followed, the method proceeds to step 60 where the loader
34 updates the respective updateable elements 38 that
require updating with further data items sent by the web
server application 20. The method then returns from step 60
to step 56 where the applet 26 continues to be executed on
the client 12. Returning to decisional step 58, if the applet 26
has no updateable elements 38 or if the new data desired by
the client 12 has not been represented using updateable
elements 38, then the NO branch of decisional step 58 is
followed and the method proceeds to decisional step 62.

At decisional step 62 a check is made by the applet 26 to
see if communications session of the client 12 with the
server 18 has ended, for example, if the user has instructed
the applet 26 to end. If the client 12 is done communicating
with the server 18, then the YES branch of decisional step
62 is followed which proceeds to step 64 where the applet
26 may be substantially discarded by the client 12. In step
64, the applet 26 typically leaves substantially no remnants
of itself on the client 12 so as to conserve physical memory
resources on the client 12. However, the applet 26 may leave
data or other information on the client 12 at the request of
the client 12. Also in step 64, if the applet 26 has been
generated to send return information back to the server 18
when the client 12 discards the applet 26, the applet 26 will
transmit the return information. For example, if the server 18
wishes to keep a record of how the client 12 used the applet
26, the record would be transmitted back to the server in step
64.

US 6,446,111 B1

17

Returning to decisional step 62, if communication session
of the client 12 with the server 18 is not complete then the
NO branch of decisional step 62 is followed and proceeds to
step 66. If the communication session is not complete, then
the client 12 may be sending a completely new request to the
server 18 or may be requesting new data that was not
represented by updateable elements 38 in the applet 26. At
step 66, the applet 26 is discarded in a manner similar to that
in step 64, and the method returns to step 48 so that a new
transaction may begin to handle the new request from the
client 12 and result in a new applet 26 will be generated.

The teachings of the present invention allow a server
computer to provide data and applications of various types
to clients without the use of plug-ins. The data and infor-
mation may be packaged together in an applet with associ-
ated functionality for the data and information. The data and
information may be represented using pre-loaded, non-
updateable elements or through a selected combination of
non-updateable elements and updateable elements in the
applet based on a prediction made by the server regarding
which method will result in lower total amounts of infor-
mation being transferred over a low-speed link coupling the
server to a client. Thus, more efficient use of client and
communications link resources over traditional methods is
provided.

Although several alternative embodiments have been
illustrated and described in detail, it should be understood
that various changes, substitutions and alterations can be
made therein without departing from the scope of the present
invention. For example, although the disclosed server is
represented by a single computer, the system could comprise
multiple servers instead of a single server. Moreover,
although the disclosed data sources are shown as connecting
to the network, the data sources may be directly coupled to
the server, such as in a fire walled corporate intranet or
datastore. In addition, although the disclosed embodiment
utilizes the Internet, an intranet could be used.

It should also be recognized that direct connections dis-
closed herein could be altered such that two disclosed
components or elements would be coupled to one another
through an intermediate device or devices without being
directly connected, while still realizing the present inven-
tion. Other changes, substitutions and alterations are also
possible without departing from the spirit and scope of the
present invention, as defined by the following claims.

What is claimed is:

1. A data processing system comprising:

aserver coupled to a communications link and operable to
receive a request from a client device and to collect a
plurality of data items, wherein the data items comprise
specific information collected as a function of the
request;

an executable applet dynamically generated by the server
in response to the request, a constituent system asso-
ciated with the applet comprising a subset of the data
items, each data item in the subset used as at lease one
pre-loaded value in the applet;

a further constituent system associated with the applet
comprising a data interface capability configured to
provide a plurality of operations on the pre-loaded
values, the operations comprising operations associated
with the subset of the data items; and

the applet operable to be transferred over the communi-
cations link to the client device.

2. A data processing system according to claim 1, wherein

the pre-loaded values are non-updateable.

10

15

20

25

30

35

40

45

50

55

60

65

18

3. Adata processing system according to claim 1, wherein
the client device comprises a wireless phone.

4. A data processing system according to claim 3, wherein
the client device comprises a personal digital assistant.

5. A data processing system according to claim 1, wherein
the communications link comprises a wireless communica-
tions link.

6. A data processing system according to claim 5, wherein
the wireless communications link comprises a cellular phone
network.

7. A data processing system according to claim 5, wherein
the wireless communications link comprises an infrared
communications link.

8. A data processing system according to claim 1, wherein
the applet is further operable to be substantially discarded
from the client following execution of the applet and access
of the subset of the data items.

9. A data processing system according to claim 8, wherein
the constituent system associated with the applet is substan-
tially discarded when the client device communicates a
further data request to the server over the communications
link.

10. A data processing system according to claim 1,
wherein the applet further comprises a plurality of update-
able elements and wherein the pre-loaded values are non-
updateable.

11. A data processing system according to claim 10,
wherein the updateable elements are initialized during the
generation of the applet based on a further subset of the data
items.

12. A data processing system according to claim 11,
wherein the data items comprising the further subset are
selected based on a prediction which represents a total
amount of information expected to be transferred over the
communications link.

13. A data processing system according to claim 11,
wherein the data interface capability is further configured to
provide a further plurality of operations on the updateable
elements of the client device, the operations comprising
operations specific to the further subset of the data items and
wherein the capability further includes a loader which is
operable to independently update each updateable element
with a further respective data item from the server.

14. A data processing system according to claim 1,
wherein a further constituent system associated with the
applet includes a data interface capability configured to
provide a plurality of operations on the pre-loaded values to
the client device, the operations comprising operations spe-
cific to the subset of the data items.

15. A data processing system according to claim 14,
wherein the capability further comprises substantially all
functionality required by the pre-loaded values.

16. A data processing system according to claim 1,
wherein the applet comprises a Java programming language
applet and the data request comprises a web page request.

17. A method of processing data comprising:

receiving a data request from a client device at a server

system over a communications link;

collecting on the server a plurality of data items in

response to the data request;

generating an executable applet dynamically in response

to the data request, a constituent system associated with
the applet including a subset of the data items therein
as pre-loaded values;

wherein a further constituent system associated with the

executable applet comprises a data interface capability
configured to provide a plurality of operations on the

US 6,446,111 B1

19

pre-loaded values, the operations comprising opera-
tions associated with the subset of the data items; and

transferring the applet to the client device.

18. A method of processing data according to claim 17
further comprising discarding the applet by the client device
following execution of the applet and access of the subset of
the data items.

19. A method of processing data according to claim 17,
wherein the applet further comprises a plurality of update-
able elements, wherein the pre-loaded values are non-
updateable, and wherein generating an executable applica-
tion further comprises initializing the updateable elements
based on a further subset of the data items.

20. A method of processing data according to claim 19,
wherein initializing the updateable elements further com-
prises predicting a total amount of information to be trans-
ferred over the communications link based on the data items
and selecting the further subset based on the prediction.

21. A method of processing data according to claim 20,
wherein the further constituent system further comprises a
loader, and further comprising updating the updateable items
over the communications link using the loader.

22. A method of processing data according to claim 17,
wherein the communications link comprises a wireless link.

23. A method of processing data according to claim 17
and further comprising manipulating the pre-loaded values
using a plurality of operations in the further constituent
system associated with the applet, the operations comprising
operations specific to the pre-loaded values and wherein the
pre-loaded values are non-updateable.

24. A method of processing data according to claim 17,
wherein the data request comprises a web page request and
the applet comprises a Java applet.

25. A method according to claim 24, wherein transferring
the applet comprises transferring the applet using a hyper-
text transfer protocol.

10

15

20

25

30

35

20

26. A method according to claim 17, wherein the pre-
loaded values are non-updateable.
27. A data processing system comprising:

a communications link;

a handheld, portable client device coupled to the com-
puter network;

a web page request transmitted over the communications
link from the client device;

a web page server system being coupled to the commu-
nications link and being operable to receive the web
page request and to collect a plurality of data items
from a plurality of sources in response to the web page
request and wherein the data items comprise informa-
tion collected as a function of the request; and

an executable applet dynamically generated by the server
system comprising a first portion and a second portion,
the first portion comprising a first subset of the data
items as respective pre-loaded and non-updateable val-
ues therein and a second subset of the data items as
respective initial values for respective updateable
elements, the second portion comprising an interface
capability which is operable to allow the client device
to manipulate the applet in response to input from a
client device user and to allow the applet to update the
updateable elements using data from a location remote
from the client device, the applet executable on the
client device, the applet further operable to be substan-
tially discarded after the client device transmits a
further web page request to the server, and the applet
transmittable over the communications link to the client
device.

