Exhibit B

IN THE UNITED STATES DISTRICT COURT FOR THE EASTERN DISTRICT OF TEXAS

TYLER DIVISION

```
WI-LAN, INC. )
    -VS- )
ALCATEL-LUCENT USA, INC., 8:27 a.m.
ET AL ) July 11, 2013
```

WI-LAN, INC.)
-vs-)
HTC CORPORATION,
ET AL)
DOCKET NO. 6:13cv252
-vs -
)

```
            TRANSCRIPT OF TRIAL
                MORNING SESSION
            BEFORE THE HONORABLE LEONARD DAVIS,
    UNITED STATES CHIEF DISTRICT JUDGE, AND A JURY
```

COURT REPORTERS:
MS. SHEA SLOAN
MS. JUDY WERLINGER
211 W. Ferguson
Tyler, Texas 75702
shea_sloan@txed.uscourts.gov
Proceedings taken by Machine Stenotype; transcript was
produced by a Computer.
channels. It specifically says: Blocked by lower code in tree. If I use this code here, I can't use this one.
Q. Can an orthogonal channel spread with that code circled in red, ever be created in HSDPA at any time?
A. No. If you did, you would interfere with your control channels.
Q. Now, do you recall Dr. Wells testifying that a 256 chip OVSF code includes an orthogonal code and an overlay code?
A. Yes.
Q. Do you agree with that conclusion?
A. No.
Q. And why not?
A. I think it goes against the Court's claim construction, first. The Court's claim construction said the overlay codes are additional codes. Not portions of a code or expansions of a code; it's an additional code.
Q. And just so we're clear on what Dr. Wells is calling the overlay code and the orthogonal code, in his view, the first 16 bits of the 256 chip code were the orthogonal code? Is that -- was that what you understood?
A. That's correct.
Q. And what did you understand the overlay code to be?
A. The overlay code was the actual code itself; in other words, the length 256 code.
Q. So the overlay code was the entire 256 chips in Dr. Wells' view. Is that what you understood?
A. That was my understanding.
Q. He wasn't saying that it was the first 16 bits for the orthogonal code and the remaining 40 were the overlay code. That's not what he testified to, was it?
A. That's correct. He was actually using the first 16 bits twice. He said the first 16 bits were both the orthogonal code and part of the overlay code.
Q. And do you think it's proper to use the first 16 bits twice to satisfy the overlay code construction?
A. No. I think the Court was clear that it's an additional sequence. You can't count the same sequence twice.
Q. Now, do you recall Dr. Wells testifying that, in his opinion, an OVSF code was equivalent to an orthogonal code and an overlay code?
A. Yes.
Q. And do you agree with that testimony?
A. No.
Q. Why not?
A. Well, what the patents call for is this ability to use overlay codes to subdivide existing orthogonal channels, so you can serve more users, take care of more subscribers.

The simple use of one code doesn't do that. It doesn't give you that ability to expand the system to cover more people. You've just got one code. And furthermore, using two codes and using one code, that's substantially different. One code uses one encoder; two codes have two encoders that are required. So they seem like very different things to me.
Q. Do you find the differences to be substantial or insubstantial?
A. I would say they're substantial, because basically you've got one system that's fixed, it can serve a certain number of users, and that's it -namely, the HSDPA; it's got 15 data channels; it's fixed -- whereas, the other system, the one that's described in the patent is flexible; you can subdivide channels by using additional overlay codes to serve more subscribers. I think that's a substantial difference.
Q. Now, do you recall Dr. Wells testifying that a 256 chip code could be viewed as a 16 chip code multiplied by another 16 chip code.

Do you recall that?
A. Yes.
Q. And do you agree with Dr. Wells that that means that it's equivalent to an overlay code and an orthogonal code?
A. No.
Q. Why not?
A. Well, first off, he's simply underlying some underlying mathematics that have been well-known for a long time.

Secondly, he could have done 16-by-16 or he could have done 4-by-4-by-4-by-4, and then we've got four codes. You know, we can have codes all over the place if we're going to count them like that. That can't be right. That can't be what the claims mean.
Q. And is that type of multiplication, a 16-bit code times another 16-bit code, does that ever happen in HSDPA?
A. No.
Q. Now, were OVSF codes known before Airspan
filed for its patents?
A. Yes.
Q. And did we see that earlier?
A. Yes.
Q. Can you explain that?
A. Basically, OVSF codes, the underlying
mathematics were known for a long time.
For example, I summarized them in my first book. Klein Gilhousen actually patented the OVSF tree, the actual structure that's now being used in HSDPA. He did that in 1993, several years before the Airspan patents were applied for.
Q. And although OVSF codes were known, did the Airspan inventors describe them in their patents?
A. No.
Q. What did they describe?
A. They described two completely different sets of sequences. They had the set of orthogonal sequences that I showed you in one table, and then they had overlay codes in a different table.

They showed two different sets of codes, one for orthogonal channels, one for subdividing those orthogonal channels.
Q. So, in summary, do you believe HSDPA-compatible base stations use overlay codes?
A. No, they don't.
Q. Do you believe that HSDPA base stations have an overlay code generator?
A. No, they don't.
Q. And do you believe that HSDPA-compatible base stations have the second encoder required by the claims

of the overlay code patents?

A. No.
Q. Now, I'd like to direct your attention to another aspect of Claim 5, and I have advanced the slide.

Could you tell us what we're looking at here?
A. Okay. This is the portion of the claims that covers selective operability. I think we talked about this a little bit yesterday afternoon.

But basically what it says is: A second encoder, selectively operable instead of the TDM encoder.

So you've got this ability to go back and forth. Remember, there's two solutions. There's the first solution that uses overlay codes and then the second solution that uses time division multiplexing. What this language tells me is that you can choose either one. You can't do both at the same time, but both are available. You can pick one or the other.
Q. And do the patents illustrate how this might operate?
A. Yes.
Q. So I have put up the Figure $7 B$ of the patents, and could you describe what we're looking at here?
A. Okay. There's a lot of stuff going on here,
but I'd like you to note first this switch, 109. That's the way we draw switches in such block diagrams. It's basically creating a connection -- let me do that a little better -- it's either creating a connection with this line or with this line (indicating).

So the switch is taking the TDM encoder in and out of the circuit. What that switch allows us to do is to use the TDM encoder, in which case the overlay code generator won't be doing anything, all right?

Alternatively, we can switch so that we're not connected to the TDM encoder, in which case the overlay code generator will be in use. That switch allows us to selectively operate either in TDM mode or overlay code mode, selectively enable the first solution or the second solution.
Q. And do you have an animation that illustrates how this might work?
A. Yes.

Okay. What this shows is we've got two possible solutions: Add time division multiplexing or add overlay codes. So now I want to show you how this might work.

We can bring in the TDM encoder, in which case the second encoder and overlay code generator are off.

So right now, we're using the TD -- TDM

```
Alcatel-Lucent's base stations in particular?
    A. No. No. If you go through the documents and
you read what the engineers said about the base
stations, you will not find an overlay code generator.
    You will not find overlay codes. You won't
find the second encoder, and you won't find the
selective operability.
    Q. So you had anticipated my next question, which
was about storage.
                    MR. APPLEBY: So let's go to Slide 51.
    Q. (By Mr. Appleby) And I want to talk about an
additional requirement that's in Claim 5.
        Could you -- could you tell us what we're
looking at here?
    A. Okay. This is a portion of the last of the
claim elements for Claim 5. And what this says is that
the orthogonal code generator -- now remember,
there's -- the claim requires two different kinds of
code generators.
    We've got overlay code generators. That's
here. This is referring back up here to the orthogonal
code generator, which is there (indicating).
    So what the claim calls for is the orthogonal
code generator being a storage arranged to store the set
of orthogonal codes. So what it's saying is that the
```

```
    orthogonal codes used to create those original channels
    are going to be stored; in other words, they'll be in
    memory, so when we need them we will just read them out
    of memory.
    Q. Okay. Restoring a set of orthogonal codes?
    A. That's right. It says the set, so that would
    be all of them.
    Q. And do the patents discuss storage of the set
    of orthogonal codes?
            A. Yes, they do.
            Q. So let's look at the patent, and this is an
    excerpt from the '326 patent.
        Could you -- could you explain what we're
    looking at?
```

 A. Okay. This is the ' 326 patent, and it's on
 Column 3, Lines 30 through 36 . It's talking about
 different ways you can obtain these orthogonal code
 sequences. So what it's saying is the orthogonal code
 generator may be arranged to generate orthogonal codes
 on-the-fly.
 In other words, whenever you need them, you
 generate them using predetermined algorithms. We have
 actually seen some of those algorithms today.
 However, the orthogonal code generator may be
 provided as a storage arranged to store the set of
 orthogonal codes. So it's saying there are two different approaches. You could do it on-the-fly, or, alternatively, you can have a storage arranged to store the set of orthogonal codes.
Q. So it's one or the other. You either generate the codes on-the-fly, or you can store the entire set of orthogonal codes?
A. Yes. I think it's -- you know, it's really clear. It's basically saying here is one technique on-the-fly. Alternatively, there's another thing you can do, which is storage arranged to store, et cetera.
Q. So if we turn back to Claim 5, which of those two approaches is the claim directed to?
A. Well, it's the second approach. In fact, you can see the language is exactly the same: Storage arranged to store the set of orthogonal codes.

If you go back to the previous slide -- if we can go back to the previous slide -- it stays storage arranged to store the set of orthogonal codes. It's the exact same words.
Q. So now I'd like to talk about what

Alcatel-Lucent's base stations actually do.
And do you recall that Dr. Wells testified about that during his testimony?
A. Yes.
Q. I'd like to show you a question and answer from Dr. Wells, if I could.

So this is testimony from a couple of days ago, and Dr. Wells was asked: So now let's talk very briefly about where those codes are or where they sort of physically reside in the products. And it's correct, isn't it, that the Defendants' products basically have an on-the-fly system where they generate the codes as they need them? Right?

Answer: Yes, they do.
Do you recall Dr. Wells giving that testimony?
A. Yes.
Q. And what is he telling us?
A. He's telling us that the accused products do the first solution, the on-the-fly generation of the codes, as opposed to the storage.
Q. Now, have you looked at Alcatel-Lucent's base stations to see if they do the storage element of Claim $5 ?$
A. Yes, I have.
Q. And do you agree with Dr. Wells that

Alcatel-Lucent's base stations generate on-the-fly?
A. Yes, he's correct about that.
Q. And what did you do to confirm this point?
A. Well, I went to the code. There's a kind of

```
off channels?
```

A. Yes.
Q. And we have some excerpts from the '327 patent on the next slide.

Could you explain what they're telling us?
A. Okay. If you'll look at this first excerpt, it's from Column 2, Line 16 through 20. It says: Since taking a code division multiplexed channel out of commission, enhances the interference rejection.

So it's saying once we see that a particular channel is affected by the interference, we're going to take it out of commission. It's not going to be available to anybody. It's going to be locked out.

We see similar language over here on the right, that a code -- this is from the '327, Column 3, Lines 4 through 11: That a code division multiplexed channel should be removed from use. So it's as if we've got this big pool of channels, and we've identified some that are particularly affected by interference. We're going to take them out of the pool. No one can use them.
Q. Now, do you recall Dr. Wells testifying that this patent described simply removing a channel from use from one subscriber terminal and then giving it to another subscriber terminal?
A. Yes.
Q. Do you agree that that's what this patent describes?
A. No.
Q. And why not?
A. Well, you can see that from the language of the patent. What the patent's calling for is taking a code division multiplexed channel out of commission.

You're not taking something out of commission if I simply take it from one user and give it to another. That's not what that means.

We're locking them out from all users, not
simply reassigning them.
Q. So let's turn to the asserted claims of this patent. I want to look at Claim 11 to start with. And can you tell us what we have highlighted here?
A. Okay. Claim 11 is on the left, and what I've done is I've highlighted portions of two of the claim elements, the analyzer portion, which I've blown up here, and the channel controller portion, which I've blown up here (indicating).

The analyzer is what determines how much interference from other cells is there. So it says an analyzer for receiving parameters -- I'll skip some of

```
words -- an analyzer for receiving parameters indicative
of whether that wireless link is subject to interference
from signals generated by other cells.
    So this is what determines the other cell
interference.
    We then have a channel controller right here
(indicating) that selectively reduces the number of code
division multiplexed channels in the channel pool --
that complete set of channels that's available to
everybody -- we're going to reduce the number of
channels in the pool in order to reduce the effect of
interference from the other cells.
Q. Now I'd like to show you a document -- I think you have it in your binder. Exhibit 2 -- Defendants' Exhibit 203?
MR. APPLEBY: We can bring it up too.
A. Okay.
Q. (By Mr. Appleby) And what is Defendants'
Exhibit 203?
A. Okay. Defendants' Exhibit 203 is the file history. The file history -- I think I mentioned this yesterday -- is the conversation -- it's kind of thick. It's a conversation between the inventor and the Patent Office.
```

And as I noted yesterday, it's helpful because
interference from other cells. You simply don't know.
Q. Okay.

MR. APPLEBY: So let's turn back to Claim
11.
Q. (By Mr. Appleby) And have you formed an opinion, Dr. Wicker, as to whether HSDPA-compatible base stations have the analyzer required by Claim 11?
A. Yes.
Q. And what is that opinion?
A. It's not present.
Q. And why do you say that?
A. There is nothing in the handsets that's able
to tell how much interference is being -- is coming from adjacent cells. There's simply no way to do it.
Q. And, therefore, the base station has no
information regarding whether a handset is experiencing
interference from other cells?
A. That's right. The base station will simply know roughly what
the handset thinks it can receive. Many factors come into that particular number.
Q. So let's move to the last element of Claim 11. And could you remind us again what the last element requires.
A. Okay. That's the channel controller. This is
the portion of the claim that takes that estimate of how channels are being affected by other cell interference and takes some of those cells out of the people, takes them out of commission, and says: These channels cannot be used by anybody in the cell, because of this interference from other cells.
Q. And do HSDPA-compatible base stations satisfy that element of Claim 11 ?
A. No.
Q. And why do you say that?
A. We talked a lot about HSDPA and the 15 data channels. They're going to be allocated to someone within the cell if there's data to send. There is no situation in which one of those channels is locked out, taken out of use because of interference from other cells. It simply doesn't happen.
Q. Looking back at this demonstrative that we used earlier in the day, is there anything on this figure that -- that relates to that opinion?
A. Yes. What this shows, once again, our 15 codes, they create 15 data channels.

Okay. Going this way, as we go from TTI to TTI, transmission time interval to transmission time interval, all those channels are being used. They're being assigned to different users at different times;
but at no point do we take a channel and say: We're going to take this out of the -- of the pool. No one can use it.

In this example, all the channels are being used all the time.
Q. So turning back to Claim 11, have you formed an opinion about whether the last element is present in HSDP -- HSDPA-compatible base station itself?
A. Yes.
Q. And what is that opinion?
A. It's not there.
Q. And have you formed an opinion about whether Claim 11 is infringed by HSDPA-compatible base stations?
A. Yes.
Q. And what is that opinion?
A. Well, once again, all the elements have to be present, and I've shown you that these two are not present. Since they're not present, the claim's not infringed.
Q. And your opinion is based on the HSDPA
standard; is that correct?
A. That's correct.
Q. So regardless of who manufactures the HSDPA-compatible base station, be it Alcatel-Lucent or Ericsson, is it your view that that base station would
not the reason that your clients -- or your opinion that your clients don't infringe, correct?
A. That's correct.
Q. All right. Well, let's look at DDX 10-41 for just a minute.

You believe -- I believe you pointed to this (indicating) as the encoder; is that correct?
A. As the second encoder.
Q. As the second encoder.
A. That's correct
Q. And this was the first encoder (indicating)?
A. Yes, sir, that's right.
Q. All right.

MR. WEAVER: Let me have Slide 23.
Q. (By Mr. Weaver) All right. This is DDX 10-37.

And do you remember this from your conversations with Mr. Appleby this morning?
A. Yes.
Q. Now, I want to focus down here on overlay code.

You said that you were applying the Court's claim construction in your analysis of these claims, which is that the overlay code is an additional code that subdivides an orthogonal channel, correct?
A. That's correct.
Q. Well, in fact, sir, you applied a different construction. You applied -- you've changed the Court's construction, and you said that an overlay code is an additional code that is separate from the orthogonal code that subdivides an orthogonal channel, didn't you, sir?
A. No.
Q. Well, in fact, you did. You said that the claim requires that it's got to be separate from the orthogonal code. You said that they could not be part of the same -- that one code could encompass both of them, didn't you, sir?
A. That's correct.
Q. Okay. So you said they had to be separate.
A. I am simply disagreeing with regard to the claim construction.
Q. All right. Well, I want to go to your -- it was DDX 10-50.

And this is where, for Claim 5, you walked through the bases for your opinions. Do you recall that from this morning?
A. Yes, I do.
Q. And you said that there's no overlay code generator, no overlay code, no second encoder, and no selectively operable second encoder.

All right. I'd like to walk through those. So let's talk about the overlay code generator. What you actually, sir, are saying is that the overlay code generator is not there because it is not separate from the orthogonal code generator. You want two code generators, don't you, sir?
A. No.
Q. I'm sorry?
A. No.
Q. Well, that's -- that's the position you've taken in this case, is that you need the overlay code generator to be separate from the orthogonal code generator. They can't both operate together.
A. I don't agree.
Q. Well, sir, what you're trying to do is simply
insert into the claim, additional language that doesn't appear in the claim. You're trying to insert into the claim that it is separate from the orthogonal code generator; that they have to be separate generators. And the reason for that is because HSDPA uses one code generator, doesn't it? It generates one set of codes from the same generator, doesn't it, sir?
A. That's correct.
Q. Well, let's look at overlay code. Again, your
construction of overlay code is that it has to be

```
separate from the orthogonal code. So you'd like to
shoehorn that language into the claim, even though it
doesn't appear.
    So the overlay code has to be separate from
the orthogonal code. That's your approach?
    A. I do agree that it has to be separate. Yes.
    Q. Okay. Let's look at the second encoder. You
    want the second encoder to be separate from the first
    encoder.
            Again, you need to see two different encoders
because HSDPA uses one encoder, and the Alcatel-Lucent
base stations products use one encoder. And so, again,
you want to shove into the claim language that it is a
separate -- that the second encoder is separate from the
first encoder, don't you, sir?
    A. I don't agree.
    Q. So then -- all right. Let me -- let me go to
the next -- to the next point.
                            All right. Let's look at your -- the
orthogonal code generator is a storage arranged to store
the set of orthogonal codes.
    And this is DDX 10-53. Do you remember
talking about that with Mr. Appleby?
    A. Yes, I do.
    Q. And actually, during your testimony, you said
```

```
that the orthogonal code generator is a storage arranged
to store all the orthogonal codes at the same time,
didn't you?
    A. Yes.
    Q. That is your testimony?
    A. Yes, it is.
    Q. So you'd like to shoehorn that language into
the -- into the claim itself, don't you, sir?
    A. No.
    Q. Well, your testimony was --
            MR. WEAVER: And can we pull up -- can we
pull up the slide with his testimony in it, please?
    Q. (By Mr. Weaver) All right. And this was from
yesterday, sir.
            You said that: At no point did I see any
memory that would store all the orthogonal codes at the
same time.
    A. That's correct.
    Q. So you do want the "at the same time language"
in the claim, don't you, sir?
    A. I don't agree that we're adding it. I think
that's what the language means.
    Q. I understand that's your opinion, sir. But
that language is being added under your opinion.
    A. (No response.)
```

Q. All right. Let's talk about -- let's go back to the three --

MR. WEAVER: Can you pull up Claim -sorry.
Q. (By Mr. Weaver) Let's talk about the '327 patent for a minute, and I want to walk you through what you discussed with Mr. Appleby. Now, you argue that the Alcatel-Lucent products don't infringe the ' 327 patent because the CQI doesn't measure essentially only intercell interference.

Isn't that what you're arguing?
A. Yes.
Q. And it doesn't just need to be indicative of. So we can strike that language. It needs to be only measuring whether the wireless link is subject to interference solely from signals generated by other cells.

That's really your opinion, isn't it, sir?
A. It is my opinion that the analyzer has to receive parameters indicative of, and I'm simply interpreting that word indicative.
Q. So you interpreted the word "indicative of" to mean only measuring the interference from other cells?
A. That's right. It indicates the interference
from other cells.
Q. And you went through testimony where you said there's interference that's caused by other things, correct?
A. That's correct.
Q. There's intercell interference. It might be in an elevator. You said those things could happen.

But, sir, if you hold all of those things constant and the interference from another cell changes, you'd agree that the CQI that's measured would change, don't you?
A. If everything was kept constant, including the type of phone, the sensitivity of the phone --
Q. Correct.
A. -- the only thing that changed was other cell interference, then you're correct. Yes, the CQI would change only because of the other cell interference change.
Q. All right. So let's look at what happens as a result of that.

Now, you've said that the claim requires that you selectively reduce the number of code division multiplexed channels in the channel pool from the entire cell.

So no one in the cell can use those channels;
that's your opinion?
A. Yes, I did. In one of the patents, that is true.
Q. In the '326 patent, that's what it talks about --
A. That's correct.
Q. -- doesn't it?

In the '819 patent, it talks about it that way
too, doesn't it, sir?
A. Yes, it does.
Q. And in the '211 patent, it talks about it that way, doesn't it, sir?
A. Yes.
Q. So it wasn't just one of the patents; it's all three of the patents that deal with the overlay code generation.
A. Well, they certainly all three deal with overlay codes, that's correct.
Q. So is your opinion that the inability to modify a channel, such as Channels RW 14 or RW 15 from Figure 15A does not fall within the scope of the selectively operable limitation we've been talking about?
A. No.
Q. It's not your opinion that that's the case.
A. No. It wouldn't be just one channel; it would
be the entire system.
Q. I'm sorry?
A. In other words, the fact that one channel can't be modified doesn't mean that another channel can be modified. The selective operability in the claim language, as opposed to this figure, says that we have a choice. We have a choice between the first solution and the second solution.

So we get one or the other, according to the claim language.
Q. But here -- I mean, you're not suggesting that these first 15 channels are not subject to TDM techniques?
A. They can be shared in different ways among different users. I would not call them TDM techniques as construed by the Court.
Q. Sir, are these time division multiplex channels, 0 through $15 ?$
A. They may be used by different users at different times, but they don't cycle in a frame structure.
Q. So your position is, even though the lawyers have talked about this during opening and throughout this case that these channels are subject to time division multiplexing, that they aren't subject to time
division multiplexing?
Is that your position?
A. I'm sorry. You'll have to repeat the question. You gave me both sides.
Q. Is it your position that these channels are not subject -- channels 0 through 14 are not subject to time division multiplexing?
A. They are not time division multiplexed as construed by the court.
Q. Sir, you've read the Court's claim construction opinion in this case.
A. Yes, I have.
Q. Okay. And with respect to overlay codes, you'd agree with me that you can apply the overlay code before you apply the orthogonal code, correct?
A. That's correct.
Q. And you could apply the overlay code after you apply the orthogonal code, correct?
A. That's correct.
Q. Doesn't matter which order you do it?
A. That's correct.
Q. And, in fact, you can apply it simultaneously, can't you?
A. That's correct.
Q. And -- and that's the -- the construction
A. I believe that's correct. Yes.
Q. And we can go all the way down to 256 down to these channels, all right, and the first 16 bits are going to be those 16 bits?
A. That's correct.
Q. So 256 bits long, the first 16 bits are going to be the 16 bits for this spreading factor 16 code?
A. The first 16 bits, the length 256 sequence, the 128 that you indicated in the 64 will be the same bits that comprise the spreading factor of 16.
Q. Okay.
A. The spreading factors are different, even though they have different time sequences, et cetera. I just want to be sure that's clear.
Q. Yes. The spreading factors will be different. That's the whole point, right?
A. Yes, exactly.
Q. You want to spread that data out. You're getting a smaller portion of the pipe, so less data can go through, which is why we use that for control channels, isn't it?
A. Exactly. We want the control channels to be more reliable, so we trade off data-rate for spreading factor.
Q. Exactly. What we don't want is to be sending
the high -- that can't be used for high-speed downlink data, because it's frankly too small of a pipe, isn't it, at that point?
A. I think it would be more accurate to say it's simply too slow. The data rate is too slow.
Q. Too slow. Let me go back to the overlay code. Now, you agree with me that the basis of your opinions is that the overlay code must be separate from the orthogonal code.
A. My use of the construction was for additional.

I understood additional to mean a separate sequence.
Q. So you agree with me, your opinions are based upon your view of the Court's construction that an additional code must be a separate code.
A. That's correct.
Q. And so if the Ladies and Gentlemen of the Jury don't agree with you, then your opinions are not appropriate in this case.
A. If they feel that I'm not using the construction properly, then they can -- they can take the consequences -- excuse me -- conclude from that that I'm not doing it properly.
Q. All right. Thank you.

MR. WEAVER: Your Honor, Plaintiffs move

```
Defendants' Exhibit 173.
    THE COURT: Any objection?
    MR. APPLEBY: No objection.
    THE COURT: Be admitted.
    MR. WEAVER: Thank you, Your Honor.
    THE COURT: All right. Any further
    redirect?
    MR. APPLEBY: Just briefly.
    REDIRECT EXAMINATION
BY MR. APPLEBY:
Q. You were asked some more questions about the overlay code. Has Dr. Wells pointed to an additional code that subdivides an orthogonal channel?
A. No.
Q. And why is that?
A. There isn't one.
Q. There's only a single OVSF code used on each channel in HSDPA; isn't that right?
A. That's correct. One channel/one code. There are no additional codes.
Q. Now, just a couple of questions on CQI.
You were asked a question about if we hold all
other things constant and we have interference from other cells, then that CQI will be indicative of other cell interference.
```

Also asserted against Ericsson is the '327, which is that other cell interference patent. Against Sony Mobile, there's just one patent asserted against them, and that's the '211, which we've also looped into being an overlay code patent.
Q. Could you describe for the jury what
investigation you did to determine whether there was any infringement by the Ericsson or Sony Mobile products?
A. Sure. The first thing I did is, I got the patents, got the file histories for the patents, read and studied those. Then I proceeded to the court documents, the depositions, the pleadings, the expert reports, and especially the claim construction order.

I then went to get technical documents to further my opinions and support my opinions, such as standards documents, published articles.

And then finally, I looked at product information, such as product documentation from Sony and Mobile -- Sony Mobile and Ericsson source code and schematics.
Q. And approximately how many hours have you spent doing this investigation?
A. Over a hundred hours.
Q. And over what period of time?
A. Since April last year.
Q. April of 2012?
A. Yes.
Q. Now, I'm sure the jury doesn't -- wouldn't appreciate going all the way through all of the details of your analysis, but could you summarize the conclusions that you've reached?
A. Sure.

My conclusions are that the Ericsson base
stations do not infringe the Airspan patents; and we're talking about the '326 patent here, the '819, and the '327.

It's also my opinion that the Sony Mobile phones do not infringe the Airspan patent, the ' 211 patent.
Q. And is it your understanding that the Ericsson base station products and the Sony Mobile products comply with the HSDPA standard?
A. Yes, it is.
Q. Is there any dispute about that in this case?
A. I don't believe so.
Q. Now, were you present in the courtroom for all of Dr. Wicker's testimony?
A. Yes, I was.
Q. And based on the independent investigation
that you performed, do you disagree with any of the

```
opinions that Dr. Wicker reached regarding
HSDPA-compatible products?
```

A. No, I do not.
Q. And are -- in fact, are Dr. Wicker's opinions consistent with those that you made as part of your independent investigation?
A. Yes, they are.
Q. And, in fact, have you ever even discussed your opinions with Dr. Wicker?
A. Never.
Q. And when was the first time you met

Dr. Wicker?
A. Here in the courtroom.
Q. Before we go further, is it possible for Ericsson or Sony Mobile to comply with the HSDPA standard and infringe the HS -- or the Airspan patents?
A. Yes. I'm sorry. I misunderstood your question.
Q. Okay. Can Ericsson and Sony Mobile comply with the HSDPA standard and infringe the Airspan patents?
A. No, they cannot.
Q. And why -- why is that?
A. Because the HSDPA standards describe a system that is fundamentally different than what's claimed in
the Airspan patents.
Q. Well, with respect to the Ericsson base stations, can you explain how the HSDPA standard is different from the asserted claims of the Airspan patents?
A. Sure.

We've already heard this before, but briefly, for the overlay code patents on the Ericsson base station -- we're talking about the '326 and '819-- I could find no overlay codes, no overlay code generator, and no second encoder for applying the overlay code in the HSDPA standards.

And, additionally, for the ' 327 patent, I could find no receiving parameters indicative of interference from other cells or removing channels based on interference from other cells.
Q. Do Ericsson's base stations use overlay codes?
A. No, they do not.
Q. And did you determine that -- how did you determine that?
A. By looking at the documentation, looking at the source code, looking at the schematics.
Q. And do the Ericsson base stations have the ability to analyze parameters indicative of interference generated by signals from other cells?
A. No, they do not.
Q. Now, did you -- could you summarize your opinions for the Sony Mobile phones?
A. Sure.

For the Sony Mobile phones, it's a very
similar slide.
For the ' 211 patent, I could find no overlay
codes, no overlay code generators, and no second decoder
for applying the overlay codes in the Sony Mobile products.
Q. And, again, what type -- what investigation did you do with respect to the Sony Mobile phones?
A. Product documentation, reviewing the standards, looking at schematics and source code.
Q. Well, does Sony -- does Sony Mobile manufacture the internal components of its phones that actually implement the HSDPA standard?
A. No, they do not.
Q. Where do they get those components?
A. They get them primarily from Qualcomm and some others from ST Ericsson.
Q. And are those computer chips that they purchase?
A. Yes. They can purchase a small chip that does that functionality.
Q. Let's first take a look at the patents that are asserted against the Ericsson base stations.

Now, can you characterize the -- the claims of the overlay code patents that you mentioned earlier?
A. Sure.

So we've all seen this before. The overlay code patents are the '326 patent, the ' 819 patent, as far as the transmitter, and the asserted claims in those are 2, 5, and 9 for the ' 326 patent and Claim 11 for the '819 patent.
Q. Now, this is a slide similar to what we've seen before, correct? But could you briefly describe the various parts of the '326 patent, Claim 5.
A. Sure. So just looking at these particular areas of Claim 5 of the ' 326 patent, we have that top portion where we're talking about the overlay code parts.

We -- you know, we're talking about the orthogonal code parts. We have the orthogonal code generator, an orthogonal code, and a first encoder for applying that orthogonal code.

Later we have the overlay code portion of the claim where we're talking about an overlay code generator, an overlay code, and a second encoder for applying that overlay code.
subdivide a channel.
Wi-LAN has been pointing to these control channels here in the bottom right; but as you can see, as soon as you assign a control channel lower in the tree, everything else above it is blocked. You cannot use that for assignment.
Q. And so when you say you can't use it for assignment, are you saying there's not a channel that can be subdivided?
A. There's not a channel that can be subdivided in an OVSF tree.
Q. And is that something that the Court's claim construction requires?
A. Yes, it is.
Q. And how is that?
A. Because we have a Markman order stating that the overlay code is an additional code to subdivide an orthogonal channel.
Q. Let's take a look at the claim language.

Based on your investigation, did you reach
some conclusions with respect to the Ericsson base
stations?
A. Yes, I did.
Q. And what did you determine?
A. That the Ericsson base stations accused do not
infringe the overlay code patents.
Q. And why is that?
A. Because, first of all, there's no overlay code.
Q. Anything else?
A. There's also -- because there's no overlay code, there's no overlay code generator.
Q. Anything else?
A. And since there's no overlay code, you don't
have a second encoder for applying the overlay code.
Q. Now, you heard Dr. Wicker talking about a
couple of other elements of Claim 5 of the ' 326 patent.
A. Yes, I did.
Q. And specifically, he was pointing to the selectively operable language.
A. Yes, he was.
Q. Do you agree with Dr. Wicker's opinion
regarding the selectively operable language?
A. Yes, I do.
Q. How about the opinions that Dr. Wicker gave
with respect to the storage element?
A. I agree with those also.
Q. Now, are there other claims asserted against Ericsson base stations from the '326 patent?
A. Yes, there are. They are Claim 2 and Claim 9.
Q. And have you included Claim 1 just for completeness?
A. Yes. Claim 2 is one of those dependent claims, which means that we have to look to another claim to understand what's required in Claim 2.
Q. But Claim 1 is not asserted in this case,
right?
A. That's my understanding. Yes.
Q. So what did you conclude about the -- all of the overlay code patents in the ' 326 patent?
A. That, again, they're missing this key element at least, which is an overlay code, an overlay code generator, and a second encoder for applying the overlay code.
Q. And what conclusions did you reach regarding whether the Ericsson base stations infringe these claims?
A. For at least those reasons, they cannot infringe these claims.
Q. Now, is there another claim that's been asserted that also includes overlay code?
A. Yes, there is.
Q. What is that?
A. That's Claim 11 of the '819 patent.
Q. And did you reach conclusions about whether

example of one of the textbooks you've looked at?
 A. Sure. This textbook here called 3G Evolution was written by four Ericsson engineers, and it discusses

 CQI.Q. I think that book has been designated DX 283. How did you -- did you rely on that book in doing your investigation?
A. Yes.
Q. Okay. And what does the $3 G$ Evolution book say about the calculation of the channel quality indicator?
A. It says that the CQI -- generally, the CQI represents the instantaneous channel conditions. It's what the cell phone is receiving at this particular time.
Q. Does it explicitly state the channel quality?
A. Well, it goes on to say the CQI is not an explicit indication of channel quality. But as we heard before, it's actually a request from the cell phone to the cell phone tower saying give me this much data; I believe I can handle this much data accurately. So it just continually requests data over and over again.
Q. Does the CQI provide any information to the base station as to why the CQI has the particular value it does?
A. No, it does not. It's just a number from 0 to 30.
Q. Does it indicate whether a particular wireless
link is experiencing intercell interference?
A. No, it does not.
Q. Does it indicate whether a particular wireless
link is subject to an obstruction?
A. No, it does not.
Q. Does it indicate whether a particular wireless link is subject to interference from within the cell?
A. No, it does not.
Q. Does it indicate anything about the reasons
why it has the particular value it has?
A. No, it does not.
Q. Now, can the CQI be affected by the design or -- of the mobile phone itself?
A. Yes. As I stated earlier, how advanced your receivers are, can affect your CQI value.
Q. Did you look at any Ericsson documentation that actually explains that?
A. Sure. So this is the HSDPA User Plane document from Ericsson. And here in Section 8.1, they're talking about the calculation of channel quality estimate. The important thing to see here is that the

CQI, first of all, is a recommended amount of data that you want to send down, such that the UE thinks he's going to receive the data with only a 10-percent probability of loss.

The base station, which is what we're talking about here, perceives the UE, which is the mobile, as a black box. And it's kind of an engineering term that means we're not going to go look in and figure out what's going on there.

A black box is something you don't -- kind of imagine it as a teenager's bedroom. You don't want to know what's going on in there. All you want to do is get the request out for the data, and you're going to operate on that.

And they go on to state that even a good receiver can report higher $C Q I$ than a bad receiver, even if you're in the same channel conditions.
Q. So that would mean if two phones were experiencing the exact same amount of intercell interference, they could report different CQIs?
A. Yes, they could.
Q. And so in that way, does the CQI indicate whether either of those phones is experiencing interference from other cells?
A. No, it does not.

```
no overlay code, no overlay code generator, and no
second decoder, the Sony Mobile HSDPA phones do not
infringe the asserted claims of the '211 patent.
Q. Thank you. Thank you, Dr. Olivier. MR. WYNNE: Pass the witness. THE COURT: All right. Cross-exam? MR. BORGMAN: Yes, Your Honor. Thank
    you.
BY MR. BORGMAN:
```

Q. Good morning, Dr. Olivier.
A. You barely made it. It's almost noon.
Q. Good afternoon, Dr. Olivier.

Do you remember meeting me about 10 years ago?
A. No, I do not. I'm sorry.
Q. It's been a number of years. We met in a different patent case, the NetIQ case.
A. Okay.
[Laughter]
Q. (By Mr. Borgman) I remember you.
[Laughter]
A. I apologize.
Q. (By Mr. Borgman) You know, I'm happy to be forgettable. Now, we've heard testimony all morning from
both you and Dr. Wicker on a number of points. And with putting the ' 211 patent to the side, the one that relates to the mobile phones, is it fair to say that you and Dr. Wicker essentially have the same opinions with respect to the reasons why the Ericsson and Alcatel-Lucent base stations do not infringe the base station patents?
A. I don't know all of his opinions. The only ones I know are the ones that he presented here today.
Q. And you agree with those, right?
A. I'm sorry?
Q. And you agree with those?
A. Yes, I agree with those.
Q. And those are the ones you went through in your testimony, right?
A. That is correct.
Q. All right. Now, so you agree with Dr. Wicker
that in the definition of overlay code, when it says additional, that the Court's claim construction means separate, correct?
A. I agree with Dr. Wicker that the Court's claim construction, when you apply ordinary meaning to it, it requires a separate code.
Q. All right. And, again, like Dr. Wicker said when he was on the stand, if the jury disagrees with

```
your reading of that term, then the jury's free to
disregard your opinions, correct?
A. The opinions regarding the overlay code, yes.
Q. Now, Dr. Wicker also, I believe, said this morning that you could use the same hardware and software to provide a first encoder and a second encoder for an orthogonal code generator and overlay code generator.
Do you remember that testimony?
A. I think you're confused. I don't understand your question.
```

Q. All right. Do you remember the testimony about the first encoder and the second encoder?
A. Yes, I do.
Q. All right. You remember the testimony about the orthogonal code generator and the overlay code generator, right?
A. Yes, I do.
Q. All right. Now, there was testimony about whether those have to be separate; in other words, separate hardware, separate software for the first encoder and the second encoder.
A. Okay. So we're talking about the first encoder and second encoder?
Q. Correct.

