EXHIBIT E

COURT REPORTERS:
MS. SHEA SLOAN
MS. JUDY WERLINGER
211 W. Ferguson
Tyler, Texas 75702
shea_sloan@txed.uscourts.gov

Proceedings taken by Machine Stenotype; transcript was produced by a Computer.

IN THE UNITED STATES DISTRICT COURT FOR THE EASTERN DISTRICT OF TEXAS TYLER DIVISION

DOCKET NO. 6:10cv521

Tyler, Texas
9:01 a.m.
) July 12, 2013
)
DOCKET NO. 6:13cv252

HTC CORPORATION, ET AL

TRANSCRIPT OF TRIAL
MORNING SESSION
BEFORE THE HONORABLE LEONARD DAVIS, UNITED STATES CHIEF DISTRICT JUDGE, AND A JURY
. uscoulco.gov
A. Right.
Q. Didn't invent time division multiplexing?
A. Right.
Q. Didn't invent combining TDMA and CDMA -- and CDMA?
A. That's correct.
Q. Did not invent combining orthogonal codes and overlay codes?
A. That's correct.
Q. And did not invent using overlay codes to subdivide an orthogonal channel into multiple channels?
A. That's correct as well.
Q. So if Dr. Wells agreed that all of these things were not things that were invented by the Airspan inventors, what does he assert the inventors actually invented?
A. It's my understanding that Dr. Wells and Wi-LAN is claiming that it's a combination of these elements that is the invention.
Q. Okay. Have you seen that combination that Dr. Wells asserts in the prior art?
A. Yes, I have.
Q. And where have you seen that?
A. One of the references would be in the

Tiedemann reference.
Q. So let's talk about that. And who is Tiedemann?
A. Tiedemann is a Qualcomm employee. And what I've shown here is a picture of Qualcomm and what this picture is, is the co-founders are celebrating their 10th anniversary, and this occurred in 1985. So Qualcomm had been around since 1975. And that's why I've included this picture, to show that Qualcomm has been around a long time.
Q. So let's talk specifically about this Tiedemann reference, which is Defendants' Exhibit 124.

Can you tell us what we're looking at?
A. Yes. This is a document that Mr. Tiedemann presented at a telecommunications conference that was held in Boston in 1994. And as I mentioned, the name, if you look at the top right, shows that it's Edward G. Tiedemann, Jr., and he is employed by Qualcomm out of San Diego.

Now, the title of the -- of the document that he provided was CDMA for Cellular and PCS.

In the bottom right-hand corner, you see in the highlighting that Mr. Tiedemann is explaining that his solution for PCS, this personal communications system, is an extension to IS-95.
Q. So I'd like to talk about what you found here
in this Tiedemann paper. Did you find that Tiedemann describes CDMA using orthogonal codes and orthogonal code generators?
A. Yes, I did.
Q. Can you explain that?
A. As shown on this slide, you see the text that's highlighted, and it says the orthogonal covering codes are a set -- are the set of 64-ary Walsh functions. In English, that means that there are 64 squared, or they're a square box of 64, and that's the same 64 Walsh codes that I showed you on the slide.

So that 64-ary is probably not a common word many of us use, but that's what is meant by that.
Q. And did you also find that TDM -- or that Tiedemann described TDM techniques?
A. Yes, I did.
Q. And could you explain that?
A. Yes. And if this looks similar, this is very similar to the language that I showed you for the IS-95-A specification. And here at the top, Mr. Tiedemann is describing the paging channel that I talked about. It's divided into slots of 80 milliseconds' duration.

So this is the interval of time, are those $80-m i l l i s e c o n d$ slots. And then he describes that there
is a period of repetition, and that would be the frame. And those are assigned slots.

And then he discusses that there's hash
functions that are used on the paging channel for a specific slot that the mobile and the base station are to use. The mobile is to monitor.

So you can see -- and that is almost the exact language out of the IS-95-A specification.
Q. And so did you find that the Tiedemann document itself described TDM techniques under the Court's construction?
A. Yes.
Q. And did you also find that Tiedemann described overlay codes?
A. Yes.
Q. And could you explain that?
A. As you can see -- as you can see, it's pretty easy to find. It actually says there is a technique called overlay encoding, and overlay encoding adds additional orthogonal channels.

And then he actually refers to an overlay
encoder block to show how he's modifying IS-95, or extending it to support these new PCS system requirements.
Q. And so there is a diagram in Tiedemann, Figure

4-2. Can you explain what we're looking at?
A. Yes. Mr. Tiedemann provided this block diagram in his paper on the left. And I draw your attention first to the top box on the blue -- it's here (indicating) -- that says Walsh Code generator. And those are those Walsh codes. That's where the Walsh codes are generated. Those 64-ary Walsh codes are that whole page.

He also then shows where the overlay encoder and generator is at. And now I've also included on the page a figure, Figure 7A, from the overlay patents.

As you can see, I've colored-coded to show that the overlay code of patents have overlay code generator. That's in purple.

And we also have the RW code generator here. The RW, remember it stands for Rademacher-Walsh codes. Those are the Walsh codes that match the Walsh codes on the left, and the encoder.
Q. I would now like to go through the claims of the asserted patents and see if we can find each one of the elements, and I have some boards to do that.

MR. APPLEBY: Your Honor, may I set up one of the boards?

THE COURT: Yes, you may.
MR. APPLEBY: And I will wear the
microphone, so I can come up to the board.
Q. (By Mr. Appleby) With regard to the Tiedemann reference itself, did you find that the Tiedemann reference disclosed what we call the preamble of Claim 1?

We're looking at Claim 2, and you understand Claim 2 is dependent on Claim 1?
A. That's correct.
Q. And what does that mean?
A. That's a shorthand way, that's another one of those things I had to learn. Why didn't they just write all the claims as independent claims.

Well, it's a shorthand way of writing a claim. So if you see a dependent claim, like we have here in Claim 2, you just include everything with Claim 1, like it was all written for Claim 2, and then add the part for Claim 2. At least that's the easiest way I use to remember it.

It's just so they don't use a lot of pages, is the way I figure it of rewriting the same text over and over.

So if you have a dependent claim, we have to first look at the components of the claim it depends on. And it says it depends on Claim 1, so that's what we'll look at first.
Q. Okay. So did you find the preamble of Claim 1 in Tiedemann?
A. Yes, I did.
Q. And could you explain that?
A. Tiedemann is -- has -- you need to turn it a little more.
Q. Sorry, Mr. Lanning.
A. I'm struggling to stay at the microphone and seeing the slide. There you go.

Tiedemann describes a transmission controller for processing the data items transmitted over the wireless link. Well, that would be at least for the paging channel.

And then to the subscriber terminal, that's to the mobile phone.

And then a single frequency channel, the CDMA system that he's describing uses a single frequency channel, and it's transmitting data items pertaining to the plurality of frames, meaning to the different cell phones.
Q. So can I check this that was found in the preamble?
A. Yes.
Q. So did you find an orthogonal code generator in the Tiedemann reference?
A. Yes, and I pointed to it. I'll point to it again. That would be the Walsh code generator that you see right there in blue.
Q. So can I check the orthogonal code generator?
A. Yes.
Q. And did you find a first encoder? This is the first encoder element in the Tiedemann reference?
A. Yes. And I'll circle this one, and it is a circle with a plus in it. That's the encoder. You see the arrow that goes from the Walsh code generator, that's where it goes down and it's encoded with other codes. That's what that means.

Specifically, it's an exclusive -- or a gate, but we did put a circle with a plus in there. That means it's included.
Q. And may I check that element?
A. Yes.
Q. And did you find a TDM encoder arranged to apply time division multiplexing techniques in the Tiedemann reference?
A. Yes. As I explained earlier, this slide shows that this is the TDM techniques that they're explaining here; that it has all three components.

It has -- it has the interval of time; it has the predetermined frame; and it has one or more
characteristics associated with the data item, which would be the actual identification of the cell phone.
Q. And so can I check that off?
A. Yes.
Q. Now, moving down the Claim 2, did you find -MR. APPLEBY: Can I have the slide back up?
Q. (By Mr. Appleby) Did you find an overlay code generator in the Tiedemann reference?
A. One more slide. There it is.

Yes. If we can look -- if we look at this box in purple, it actually says overlay code encoder as required by the claim.
Q. So may I check that box?
A. Yes.

I should be clear. This box has both the overlay code generator, which is the first part of Claim 2, and it has the second encoder, which is the overlay encoder.
Q. So I can check both of those?
A. Yes.
Q. And Claim 2 is a preamble, a transmission controller as claimed in Claim 1. Do we have that?
A. Yes, because we have the same transmission controller in Claim 1 that I described.
Q. So I may check that?
A. Yes.
Q. And in the Tiedemann reference, are the -- is the overlay code -- is the overlay encoding done on the same channels that the TDM techniques are done?
A. No, they're not.
Q. So they are on separate channels?
A. Yes. They're all orthogonal channels, but because the way a cellular system needs to work, you have two different types of channels, at least two. One type are the control channels and paging channel is part of the control channels. Then you have what we refer to as the traffic channels. The traffic channels are used to carry the voice conversation.

And so there's two different types of channels. And so the overlay encoder is used in Tiedemann for the traffic channels, and the TDM encoder is used for the paging channel.
Q. And looking back at our figure, did you -- did you compare Figure 4-2 from Tiedemann that we see from the overlay patents?
A. Yes, I did. And you can see there the comparisons with the color codes for the relevant portions of each diagram.
Q. And we see the overlay code generator and
second encoder in that comparison?
A. Yes.
Q. Where is that?
A. The overlay encoder with the -- in the purple box here, and you see the overlay code generator and encoder here in the pink.
Q. And we also see the orthogonal code generator and first encoder in that comparison?
A. Yes. Here is the overlay code generator. Here's the overlay code encoder. Here is the overlay code generator. Here is the overlay code encoder (indicating).
Q. So now I'd like to -- so now that we've checked all of Claim 2, what is your opinion as to whether Claim 2 is anticipated by the Tiedemann reference?
A. The ' 326 patent, Claim 2 is anticipated, because I've shown you that it actually describes each and every limitation of Claim 2, which includes Claim 1. So my opinion is that Tiedemann anticipates Claim 2.
Q. Okay. So now I'd like to move to another claim. Asserted claim? I'm going to move to the '211 patent, Claim 2.

And could you tell us what's different -- what
difference, if any, exists between the ' 211 patent, Claim 2 and the Claim 2 we just saw in the ' 326 patent?
A. I realize you've heard this before, but if you can think of the '326 as the transmitter or the base station. The ' 211 claims are the receiver for the mobile phone. And that's why you see a difference. Instead of an encoder, there's a decoder. It has to do the reverse function at the mobile phone.
Q. Okay. So did you find the preamble of Claim 1 in -- of the ' 211 patent in Tiedemann?
A. Yes, I did, for the same reasons I specified earlier for the '326, Claim 2.
Q. So may I check that?
A. Yes.
Q. And did you find the orthogonal code generator and decoder elements of Claim 2 in the Tiedemann reference?
A. Yes, I did. And, again, to remind you that's that Walsh code generator and the encoder right there.
Q. And so may I check those?
A. Yes.
Q. And did you find a TDM decoder disclosed in the Tiedemann reference?
A. Yes, I did, for the same reasons. Again, that's the paging channel.
Q. And the Tiedemann reference discusses both the base station and the mobiles --
A. Yes.
Q. -- is that correct?
A. Yes.
Q. And so ' 211 would be directed to the mobiles, and the ' 326 is directed to the base station?
A. That's correct. Yes.
Q. So moving down to Claim 2, do we find a reception controller as in Claim 1 in the Tiedemann reference?
A. Yes.
Q. And why is that?
A. Tiedemann describes it, and this would be the same controller that we discussed earlier. This whole block diagram is the controller, essentially.
Q. And did we -- did you find an overlay code generator and second decoder in Tiedemann for Claim 2 of the ' 211 patent?
A. Yes. This right here would be that box. It performs both of those functions.
Q. And may I check those?
A. Yes.
Q. So what is your opinion as to whether Claim 2 of the ' 211 patent is anticipated by Tiedemann?
A. The Tiedemann indeed does anticipate the '211, Claim 2.
Q. Okay. So let me move to another claim. Let me go to the ' 211 patent, Claim 5.

And this is -- the '211 patent is directed to a subscriber terminal or mobile unit, right?
A. Yes.
Q. So let's go through this.

Did you find a subscriber terminal of the wireless communication system in Tiedemann?
A. Yes, I did.
Q. And why is that?
A. It essentially is this whole block diagram that it's describing.
Q. So may I check that?
A. Yes.
Q. And did you find the orthogonal code generator and first decoder of Claim 5? Are these elements any different from what we saw before?
A. No. They're the same elements as the '211, Claim 2. So they should look familiar to you. They are the same.

So I believe we should check those as well.
Q. And is the TDM decoder element any different in Claim 5 from the element we saw in Claim 2?
A. No. It's the same as Claim 2. So we should check that as well.
Q. And is -- the overlay code generator and second decoder elements, are they any different than what we saw in Claim 2?
A. No. So, again, we should be able to check those.
Q. Now, this last element we see is a different color. Is that because Claim 5 has added another element?
A. Yes. This essentially is the only difference between Claim 2 and Claim 5. Claim 5 adds the use of Rademacher-Walsh codes.
Q. And did you find those in the Tiedemann reference?
A. Yes. As the box actually says, there's the Walsh codes that are used for that. And Walsh codes and Rademacher-Walsh codes are the same. Some people just call them by both names or just one name for short.
Q. So in -- can I check that?
A. Yes.
Q. And so what is your opinion as to whether Claim 5 of the '211 patent is -- is anticipated by the Tiedemann reference?
A. Tiedemann anticipates Claim 5 of the ' 211
patent.
Q. Okay. Now I'd like to move to another claim. And this is the ' 326 patent, Claim 5. And are any of these elements that we see in Claim 5 the same as the elements that we saw in the ' 326 patent, Claim 2?
A. Yes. If you look at the -- from the beginning, it's referred to as the preamble, to the limitations all the way down the blue, the orange, and the purple. All of those limitations are essentially the same, if not exactly the same, as the '326, Claim 2.
Q. And so have we found those elements in the Tiedemann reference for the same reasons that you gave previously?
A. Yes. So I believe we can check all the way down until you get to the last two colors. Those will be different.
Q. And with respect to the last two, I'd actually like to start with the last one, the green one: Wherein the set of orthogonal codes comprise a set of Rademacher-Walsh codes.

Did you find that in Tiedemann?
A. Yes, I did. As I just discussed for the '211, Claim 5, that the Rademacher-Walsh codes are there, again, as described in this box.
Q. So may I check that?
A. Yes.
Q. Now, the last element that we have yet to check is storage. What is that directed to?
A. This limitation requires that the set of orthogonal codes -- and what it means by the set of orthogonal codes -- in this case, it would be those 64 orthogonal codes that are 64-bits long -- are stored. And those are stored in this Walsh code generator.
Q. And why do you believe that the Tiedemann reference discloses storage?
A. Because the 64 Walsh functions are fixed. It's very straightforward, and it's the only feasible way to actually use the 64 Walsh code functions, is to just simply store them in memory and pull them out.

It's a very small amount of memory. It's only -- it only takes 512 bytes of memory to store all 64 of these codes.

To give you an idea -- you probably don't have anything to relate that to. If you have a song stored on your smartphone or your computer or one of the kids have it stored, it uses at least 3 million bytes for one of those songs.

To store these Walsh codes would be only 512 bytes. So if you were to play 512 bytes, that's 3/100ths of a second, to give you a comparison of how
small it is to store this chip.
Q. Okay. So may I check that?
A. Yes.
Q. So what is your opinion as to whether the '326, Claim 5 is anticipated by Tiedemann?
A. Tiedemann anticipates Claim 5 of the '326 patent.
Q. Okay. Sir, I think we've gone through four of the six asserted claims, and we've found those to be anticipated by Tiedemann. And just to put -- put this in the timeframe, can we explain what we have on this slide?
A. This shows -- we've already looked at and saw where IS-95 came out in 1993, and IS-95-A in 1995. Now, I've added Tiedemann on the timeline to show that it was published in 1994, the middle of 1994, which is more than two years, two-and-a-half years before the Airspan patents.
Q. Okay. So I want to move to your opinions on obviousness. What does -- what does obviousness -- can you explain that for us?
A. Obviousness is different than anticipation. If you recall, for anticipation, the document has to disclose each and every limitation.

For obviousness, there's -- there's two tests.

And obviousness can be for one document or one publication, and it would be obvious to a person of ordinary skill in the art that you could make extensions or that the modification could be made to meet the same requirements listed by the invention.

Or there's another way to show obvious (sic), and that's where I can combine two or more references together to show that those two references would be obvious to be combined together that would then disclose or describe the invention that's in the claims.
Q. So do you have an opinion as to who a person of ordinary skill in the art would be?
A. A person of ordinary skill in the art is a legal definition that I need to use. It's for a hypothetical person. But typically, just in English, it means a person that's knowledgeable, has an appropriate education, working in the industry looking at these documents.

I've provided the specific type of degree and education that they need to have, in my mind, and the type of experience.

In the second bullet, you'll see that I explain that they need to have two or more years experience in the design and configuration of cellular networks. They need to have some knowledge of what a
cellular network is like.
And they also need to be familiar with the second-generation and third-generation cellular -cellular networks. And this hypothetical person of ordinary skill also has access to all the prior art.

It's like that they have a knowledge and know that that prior art exists.
Q. So let's turn to Claim 9 and -- of the '326 patent and Claim 11 of the ' 819 patent.

And are those dependent claims?
A. Yes. Yes, they are.
Q. And Claim 9 of the ' 326 patent depends on Claim 5?
A. That's correct.
Q. And we've already found that Claim 5 has all the elements that Tiedemann shows, all the elements of Claim 5; is that right?
A. That's correct.
Q. So what does Claim 9 require?
A. Claim 9 requires that a -- that the control channel, or the acquisition channel, as specifically listed here, includes overlay codes instead of time slots, or TDM encoders, or that TDM techniques as we describe.
Q. And is that disclosed by Tiedemann?
A. No, it's not.
Q. And why do you say that?
A. Tiedemann applies the overlay codes only to the traffic channels for increasing the data-rate or slowing the data-rate down on the traffic channels that I described that were used for either data connections or voice connections. Tiedemann does not describe applying overlay codes to a paging channel.
Q. Why do you believe Claim 9 -- I should say do you believe that Claim 9 would be obvious in light of Tiedemann?
A. Yes. This is the first test. This would be just a single reference, obviousness. One of ordinary skill in the art, reading Claim 9 in Tiedemann, would understand that it would be obvious to modify Tiedemann to just apply the overlay codes to the paging channel, because that -- or instead of the TDM encoder because overlay codes are already being used. All the circuitry is there. As you saw, that circuitry was in the block diagram.
Q. And so is it your conclusion that Claim 9 is obvious in light of the Tiedemann reference?
A. Yes.
Q. So let me move to Claim 11 of the ' 819 patent. And Claim 11 depends from Claim 7 of that
patent; is that right?
A. Yes, that's correct.
Q. Now, looking at Claim 7, are -- the elements in Claim 7, have we seen those elements already today?
A. Yes. These are all of the elements -- these elements are in Claim 5 of the '326, I believe. Yes.
Q. And we have already found all of those elements in the Tiedemann reference; is that right?
A. That's correct, yes.
Q. And Claim 11, what does Claim 11 add to Claim 7?
A. Claim 11 is like the opposite of Claim 9. And if we can read it, it says: A TDM encoder arranged to apply time division multiplexing techniques, TDM techniques, to data items sent over the traffic channel.

Well, remember Tiedemann puts TDM on the paging channel, but he doesn't put TDM on the traffic channels. He put overlay codes.

So this is somewhat just the reverse of Claim 9.
Q. And so did you find Claim 11 disclosed by Tiedemann?
A. No, I did not.
Q. And why not?
A. Because Tiedemann does not have a TDM encoder that would be used for the traffic channels. He uses just the overlay encoder.
Q. Do you believe that Claim 11 would have been obvious in light of Tiedemann?
A. Yes, I do.
Q. And why is that?
A. Because, again, the same circuitry is all there. If one of ordinary skill in the art wanted to add that TDM functionality, all those slots that we saw on the paging channel, if they wanted to just add slots on the traffic channels, they would just simply use the same circuitry to do that.
Q. And what would the motivation or purpose of one of ordinary skill in the art have for modifying Tiedemann that way?
A. If they wanted to actually divide the traffic channels into different slots so that they could support different users for each overlay code, that would be the motivation to --
Q. And --
A. -- make that modification.
Q. If Tiedemann shows that TDM encoder on a control channel, why would it have been obvious to one of skill in the art to use that on a traffic channel?
A. Again, for the same reasons you have the TDM encoder on the paging channel, so that you can actually divide that orthogonal channel up into multiple time slots.
Q. If -- would one of ordinary skill in the art recognize that if you could use a Tiedemann -- TDM encoder on a paging channel, that you could also use it on a traffic channel?
A. Yes. It's -- everything is the same essentially. It's just the choice, do I want to engage this encoder or this encoding circuitry for my traffic channels.
Q. In looking back at Claim 9, would one of ordinary -- Claim 9 of the ' 326 patent, would one of ordinary skill in the art recognize that if you did overlay coding on a traffic channel, you could also use that on a control channel?
A. Again, it's all the same circuitry. Tiedemann has described how you do it on a traffic channel. If there was a reason that I wanted to divide up the channel for the paging channel using overlay codes, I could do the same thing with the same circuitry, same block diagram.
Q. Okay. So now I'd like to move to another reference.

Can you describe what we're looking at here on Slide 28 ?
A. This was a patent that was -- the inventor is Gitlin, Richard Gitlin. You've heard of Dr. Richard Gitlin. He was part of the Bell Labs or the Alcatel -I should say Lucent. I think it was in the Lucent days. He was an employee of Bell Labs. He's one of the pioneers.

And this is a patent that describes how CDMA -- how to combine CDMA with TDM.
Q. So let's look forward -- move ahead one slide. And can you describe what Gitlin -- what Gitlin disclosure exists, if any, about CDMA plus TDM techniques?
A. All right. If we look -- so the CDMA or the orthogonal codes, the CDMA, is shown here. And it's labeled code space and it's C0 through C7. Those refer to 7 -- 8 different codes. Since we start at 0, there's 8 different codes.

Then he also has time slots going sideways on the horizontal from S0 to S6. So he's combining codes with slots. CDMA plus TDM.
Q. And did you find TDM techniques as construed by the Court?
A. Yes.
Q. Could you explain that?
A. You have TDM techniques. So there's a frame. So we need three pieces, right? We need a -we need this slot, or we need the increment of time.

And we see all kinds of different slots. This would be the slots (indicating) that are shown from S0 to S6. And then the frame period would be from S0 through S6. That's the frame period.

And the third thing we need for that construction -- for the Court's construction for TDM techniques is a characteristic of the data. Well, if you look down at the bottom of Gitlin, you'll see that the characteristics of data have to do with whether you have high-speed users, medium-speed users, or low-speed users, and also the user ID.

So there's two different characteristics associated with the data item.
Q. And why would the users need different speeds?
A. Users have different speeds, want to pay different amounts, or they may only want to send a fax part of the time, and then want lower speed for voice calls or lower speed data connections at other times.
Q. Okay. So let's look quickly at the claim -actually, yeah, let's look quickly at the claim language.

And did you find a -- the preamble satisfied by -- actually, it says Gitlin plus Tiedemann. Why would you combine Gitlin and Tiedemann?
A. Because Gitlin doesn't have the overlay codes. So, essentially, for at least the reason -- there's two different reasons; but the main reason is that Gitlin doesn't describe overlay codes. But as I showed you earlier, Tiedemann does.

So in combining Gitlin with Tiedemann, Gitlin gives us the CDMA plus TDM; Tiedemann gives us the overlay codes.

Additionally, Tiedemann also gives us the Walsh codes, if we need to show for the orthogonal codes or CDMA. I have it in two places. Both Gitlin and Tiedemann gives it -- gives us the orthogonal codes.
Q. Okay. So does the Gitlin plus Tiedemann combination disclose the preamble of Claim 1 ?
A. Yes.
Q. And may I check that?
A. Yes.
Q. And does -- did you find in Gitlin an orthogonal code generator -- let me start over.

Did you find in a combination of Gitlin and Tiedemann an orthogonal code generator and a first encoder?
A. Yes.
Q. And can you explain that?
A. That -- well, we can look at it two ways, but it's at least in Tiedemann. As I've already explained, that there is an orthogonal code generator and the first encoder.

And if you remember, it's the box with walsh encoder or Walsh generator, and then the circle with the plus in it.
Q. And we saw C -- CDMA in Gitlin, right?
A. Yes. And Gitlin is for CDMA as well.
Q. Okay. May I check those?
A. Yes.
Q. And did we find a TDM encoder arranged to apply time division multiplexing techniques in Gitlin?
A. Yes, we did.

As you can see with the slots that are here, this would be the TDM encoder. We also find a TDM encoder in Tiedemann for the paging channels. So we've doubled up there as well for the TDM encoder.
Q. And may I check that?
A. Yes.
Q. And the elements of Claim 2, the overlay code generator and the second encoder, where do we find those?
A. Those are found in Tiedemann and not Gitlin.
Q. Okay. And why would it have been obvious in your mind to combine Gitlin and Tiedemann?
A. Because both of these patents are in regard to cellular systems, specifically, CDMA wireless systems. And Gitlin was from Bell Labs, AT\&T Bell Labs. Tiedemann was from Qualcomm. And as you've heard, in the early 1990s, they were working together on CDMA solutions.

So there's multiple reasons why one of ordinary skill in the art would combine Gitlin with Tiedemann.
Q. Okay. So may I check the elements of Claim 2?
A. Yes.
Q. And so what is your conclusion about whether Claim 2 of the ' 326 patent is obvious over Gitlin plus Tiedemann?
A. The combination of Gitlin plus Tiedemann invalidates Claim 2 of the '326 patent.
Q. And if we look at Claim 5 of the '326, we found all of these elements in Gitlin and Tiedemann already; is that correct?
A. Yes, that's correct.
Q. And would your opinion of obviousness, combining Tiedemann and Gitlin, be to render obvious

Claim 5 of the ' 326 patent?
A. Yes. The combination of Gitlin plus Tiedemann invalidates Claim 5 of the ' 326 patent.
Q. For all the reasons you've already given?
A. Yes, that's correct.
Q. And with respect to -- with respect to the ' 211 patent, Claim 2, we found all these elements in Gitlin plus Tiedemann; is that correct?
A. That's correct.
Q. And so what's your opinion as to whether Gitlin plus Tiedemann would render obvious Claim 2 of the '211 patent?
A. That the combination of Gitlin plus Tiedemann renders obvious or invalidates Claim 2 of the '211 patent.
Q. And with respect to Claim 5 of the ' 211 patent, we've found all those elements in Gitlin plus Tiedemann already, as well, have we not?
A. That's correct.
Q. And what would your opinion be as to whether Claim 5 of the ' 211 patent would be rendered obvious by Gitlin plus Tiedemann?
A. That Claim 5 of the ' 211 patent is rendered obvious or invalid, based on the combination of Gitlin plus Tiedemann.
Q. And what's your opinion as to whether Claims 9 and -- of the '326 patent and Claim 11 of the '819 patent would be rendered obvious by Gitlin plus

Tiedemann?
A. That both of those claims would be rendered obvious by the combination of Gitlin plus Tiedemann.
Q. Okay. So let me talk about one more thing. Now, you heard Dr. Wells point to OVSF codes in the -- as evidence of overlay codes in the accused systems. You've heard that testimony, right?
A. Yes.
Q. Were OVSF codes known before the Airspan patents?
A. Yes, they definitely were.
Q. And where were they known before the Airspan patents?
A. This is a reference that you've seen at least a couple of times, at least I remember seeing it a couple of times, from Qualcomm, co-founder Klein Gilhousen. And this describes OVSF codes.
Q. And could you explain how Gilhousen describes -- how the Gilhousen OVSF codes relate to what we see in the W-CDMA standard?
A. Yes. Again, this is another slide that you've seen a couple of times, so I won't spend too much time State of Texas No.: 731 Expiration Date 12/31/14 best of our abilities.
/s/ Shea Sloan
SHEA SLOAN, CSR
Official Court Reporter State of Texas No.: 3081
Expiration Date: 12/31/14
/s/ Judith Werlinger JUDITH WERLINGER, CSR Deputy Official Court Reporter

16

17

CERTIFICATION

I HEREBY CERTIFY that the foregoing is a true and correct transcript from the stenographic notes of the proceedings in the above-entitled matter to the

