Exhibit F

MS. SHEA SLOAN
MS. JUDY WERLINGER
211 W. Ferguson
Tyler, Texas 75702
shea_sloan@txed.uscourts.gov

Proceedings taken by Machine Stenotype; transcript was

WI-LAN, INC.)
DOCKET NO. 6:10cv521

Tyler, Texas
12:09 p.m.
July 12, 2013

DOCKET NO. 6:13cv252

HTC CORPORATION, ET AL

TRANSCRIPT OF TRIAL AFTERNOON SESSION BEFORE THE HONORABLE LEONARD DAVIS, UNITED STATES CHIEF DISTRICT JUDGE, AND A JURY
produced by a Computer.
COURT REPORTERS:
regards to the MIN. Yes, Mr. Lanning pointed to the MIN.
Q. So you and Mr. Lanning disagree about whether the MIN is a characteristic of the data item or a characteristic associated with the user?
A. It would appear that way. In my opinion, this MIN is not a characteristic associated with the data item as is required by the Court's construction of TDM techniques.
Q. And if it's not a characteristic associated with a data item, what does that tell us about validity or invalidity?
A. Well, this says the patent cannot be invalid on this. The patent is valid, because there is no anticipation of this claim element.
Q. The claim element being?
A. The TDM techniques, the TDM encoder, and also the TDM decoder.
Q. And now that you mentioned those claim elements, let's put up the claim chart.

MR. BORGMAN: Your Honor, may I put up a claim chart, please?

THE COURT: Yes, you may.
MR. BORGMAN: Thank you.
Q. (By Mr. Borgman) Can you see it?
that will be for User 1, User 2, User 3, User 4.
Q. Right. And that's how time division multiplexing works, right?
A. Some forms of time division multiplexing.
Q. That's how traditional time division multiplexing works when taking turns. One user goes, then the next user, then the next user, and then next user. That's how time division multiplexing works, right?
A. Generally, yes.
Q. And you talked about that in your direct examination just a few days ago?
A. That's right, I did.
Q. Okay. So your -- your -- what your beef is, you're suggesting that, although the slots are allocated based on the user's identity, the user's identity is not a characteristic associated with the data item; that's what your position is, right?
A. That's correct, yes.
Q. Now, you agree, though, a user is associated with the data that a base station is transmitting to that user. You agree with that, right?
A. Say it again, please.
Q. A user is associated with its data, the data that's being transmitted to that user. You'll agree
with that?
A. Generally, yes, it would be associated with it.
Q. Right. The user is associated with its data, correct?
A. Yes.
Q. And the encoder in that paging channel is inserting data from mobiles -- that encoder that's inserting the data for those mobiles into the paging channel has to know the identity of that user to do that, right?
A. It has to know it, but it doesn't -- it doesn't look at the characteristics of that data item.
Q. It's looking at the user identity, though, right?
A. It knows -- it has to know which end-user to send the data to.
Q. Okay. And using that mobile identity, this paging channel allocates those slots in a pre-defined repeated sequence. You'll agree with that, right?
A. That's right, yes.
Q. So your view is that allocation based on the user in a pre-defined repeated sequence, is excluded by the Court's construction. That's your view?
A. That's right.

Do you see that?
A. I do.
Q. And then if we go down in the same paragraph, it talks about a system in which the individual time slots can transmit a given number of bits for voice, 'n' bits, or video, 'm' bits, transmissions using different amounts of medium bandwidth.

Do you see that?
A. Yes, I do.
Q. Voice is a type of data, right?
A. Yes.
Q. And video is a type of data, right?
A. It can be, yes.
Q. And here we see ' n ' bits are given to voice, 'm' bits are given to video, different amounts of bits given to different types of data, right?
A. I see that written down here.
Q. Now, let me turn to, actually, just briefly to the Gilhousen patent.

Now, we've seen this figure from the Gilhousen patent application a number of times, right?
A. From the Gilhousen application, yes.
Q. That's what I'm looking at, right?
A. Let's see. Yes.
Q. Okay. And we've seen this figure a number of
rates increase on the forward traffic channel, then fewer codes are available.

Then look at the next sentence, sir.
For example, there can be 32 forward traffic channels assigned at 38.4 kilobits per second. Some of those -- of these 32 channels can also be split.

Do you see that word?
A. Yes, I do.
Q. For example, there can be 16 channels assigned at 38.4 kilobits per second and 64 channels assigned at 9600 bits per second.

Do you see that?
A. Yes, I see that.
Q. So right here, the document itself uses the word "split" for channels, right?
A. It does.
Q. Okay. And then if we look at Figure 4-3 -you didn't show us this figure on direct, did you?
A. No, I didn't, because this -- the -- Tiedemann here talks about this overlay code generator as merging codes together. This -- this figure makes no sense in the context of this patent -- of this paper.
Q. It says: Overlay Encoding, is the title of this figure, right?
A. Yes. And as I said, just because it says
overlay encoding, doesn't mean it's an overlay encoder.
Q. It says: Overlay encoding at the bottom of this figure. You'll agree with that, right?
A. I agree they're the words that are written on this page; but, as I said, that is not what is disclosed within this paper.
Q. Okay. And just as we read in the documents, there were 32 channels at 3800 and -- 38400 bits per second, right?
A. That's what's written here, but this isn't overlay encoding as construed by the Court.
Q. And most channels are split to 64 orthogonal channels at 1900 and 200 bits per second; isn't that right?
A. Again, this is what's written here, but this isn't overlay encoding as construed by the Court.
Q. 38400 is twice 1900 -- 19200, right?
A. I would agree to that.
Q. Okay. And then those channels can be split again 128 at 9600 bits per second, right? That's what the figure shows us, right?
A. That's what the figure shows us, but once again, this is not overlay encoding as disclosed in the patent.
Q. So when we're talking about the infringement

64 channels assigned at 9600 bits per second, right?
A. That's what it said, but --
Q. And if we turn, we see that the figure that's being referred to is the figure I showed you before, Figure 4-3, a tree, right?
A. I don't know. I mean, it's not a spreading tree, because it -- the Tiedemann reference talks about merging these channels together. This makes no sense.
Q. It's not a spreading tree? It says spreading right at the top of the tree.
A. It doesn't say spreading tree; it says spreading.
Q. It says spreading right at the top of the tree, right?
A. I see that it says spreading, yes.
Q. About 75 percent of your time is spent consulting with lawyers; is that right?

MR. BORGMAN: Your Honor, outside the scope of redirect.

THE COURT: Sustained.
Q. (By Mr. Appleby) Going back to Tiedemann, we also see, do we not, a separate overlay encoder and a separate orthogonal code generator, correct?
A. I see a box that's labeled as an overlay encoder, and I see a box that's labeled as a Walsh code
/s/ Judith Werlinger JUDITH WERLINGER, CSR
Deputy Official Court Reporter
State of Texas No.: 731
Expiration Date 12/31/14
So we'll be adjourned. (Court adjourned.)

CERTIFICATION

 best of our abilities./s/ Shea Sloan
SHEA SLOAN, CSR
Official Court Reporter
State of Texas No.: 3081
Expiration Date: 12/31/14
 COURT SECURITY OFFICER: All rise.

I HEREBY CERTIFY that the foregoing is a true and correct transcript from the stenographic notes of the proceedings in the above-entitled matter to the

