persoraed Technotgies Luc-v.Amazon wen servces]I AT AR
US006415280B1

United States Patent

(12) (10) Patent No.: US 6,415,280 B1
Farber et al. 5) Date of Patent: *Jul. 2, 2002
(54) IDENTIFYING AND REQUESTING DATA IN 5,638,443 A 6/1997 Stefik et al. ..coceveenene. 705/54
NETWORK USING IDENTIFIERS WHICH 5,640,564 A * 6/1997 Hamilton et al. 709/303
ARE BASED ON CONTENTS OF DATA 5,802,291 A 9/1998 Balick et al. . 709/202
5,809,494 A * 9/1998 Nguyencccccoovvnnenn. 707/1
. : o . 5,907,704 A 5/1999 Gudmundson et al.
(75) Inventors: 33‘71‘1 (ﬁ‘)Firbir’ 0j alf\rc?hgjs)l’(- 6.006018 A * 12/1999 Burnett et al. 395/200.49
(I});)a - Lachman, Northbroox, 6134603 A * 10/2000 Jones et al.coove....... 709/330
OTHER PUBLICATIONS
(73) Assignees: Kinetech, Inc., Northbrook, IL (US);
Digital Island, Inc., San Francisco, CA Gwertzman, James, et al. “The Case for Geographical Push—
(US) Caching.” Technical Report HU TR 34-94 (excerpt), Har-
vard University, DAS, Cambridge, MA 02138, 1994, 2 pgs.
(*) Notice: Subject to any disclaimer, the term of this ~ Grigni, Michelangelo, et al. “Tight Bounds on Minimum
patent is extended or adjusted under 35 Broadcasts Networks.” SIAM Journal of Discrete Math-
U.S.C. 154(b) by O days. ematics, vol. 4, No. 2, May 1991, pp. 207-222.
This patent is subject to a terminal dis- (List continued on next page.)
laimer.
cramet Primary Examiner—Jean R. Homere
) (74) Attorney, Agent, or Firm—Pillsbury Winthrop LLP
(21) Appl. No.: 09/283,160 Intellectual Property
(22) Filed: Apr. 1, 1999 (57) ABSTRACT
Related U.S. Application Data In a system in which a set of data items are distributed across
o o a network of servers, at least some of the data items being
(62) Division of application No. 08/960,079, filed on Oct. 24, cached versions of data items from a source server, a content
1997, now Pat. No. 5,978,791, which is a continuation of
appli’cation No. 08/425.160. filed on Apr. 11, 1995, now delivery method includes determining a data identifier for a
abandoned. B ’ ’ particular data item, the data identifier being determined
7 using a given function of the data comprising the particular
(51) Int. CL7 o G0§F 17/39 data item; and responsive to a request for the particular data
(52) U-S- Cl- e 7 07/2, 707/3., 707/10, item, the request including at least the data identiﬁer Of the
. 707/101; '709/203; 709/219; 709/229 particular data item, providing the particular data item from
(58) Field of Search 0 7/27097/28/33>21109> 120219> a given one of the servers of the network of servers. The
7 > > > request for the particular data item may be resolved based on
(56) Ref. Cited a measure of availability of at least one of the servers, where
eferences Cite

U.S. PATENT DOCUMENTS

4,922,417 A 5/1990 Churm et al.uuee..... 707/1

5,202,982 A * 4/1993 Gramlich et al. 707/2

5,287,499 A 2/1994 Nemes 707/2

5,341,477 A 8/1994 Pitkin et al. 709/226

5,452,447 A * 9/1995 Nelson et al. 707/205

5,542,087 A 7/1996 Neimat et al. 707/10

702 102

ng? sgmf PROCESSOR| PROCESSOR
| 108

0z 1c|)2 102
PROCESSOR PROCESSOR PROCESSOR|

100

the measure of availability may be a measurement of band-
width to the server; a measurement of a cost of a connection
to the server, and/or a measurement of a reliability of a
connection to the server. The function used to determine the
identifier may be a message digest function or a hash
function.

55 Claims, 31 Drawing Sheets

! PROCESSOR 102)
: i :
; — MEMORY ;
: LDE :
: 132 :
: 26 AR :
H 108 TFR :
: CPU [T34 :
; 128 AL :
| R |
i — 156 .
: 130 SMD :
' ST ;
L B2 ™ 52 :
i | sToracE 138 GFL
i | DEVICE L7 :
' 154 :
; 58 sAD 1
: 114 oL :
i :

Dockets..

http://dockets.justia.com/docket/texas/txedce/6:2011cv00658/133999/
http://docs.justia.com/cases/federal/district-courts/texas/txedce/6:2011cv00658/133999/1/2.html
http://dockets.justia.com/

US 6,415,280 B1
Page 2

OTHER PUBLICATIONS

Devine, Robert. “Design and Implementation of DDH: A
Distributed Dynamic Hashing Algorithm.” In Proceedings
of 4th International Conference on Foundations of Data
Organizations and Algorithms, 1993, pp. 101-114.
Deering, Stephen, et al. “Multicast Routing in Datagram
Internetworks and Extended LANs.” ACM Transactions on
Computer Systems, vol. 8, No. 2, May 1990, pp. 85-110.
Cormen, Thomas H., et al. Introduction to Algorithms, The
MIT Press, Cambridge, Massachusetts, 1994, pp. 219-243,
991-993.

Naor, Moni, et al. “The Load, Capacity and Availability of
Quorum Systems.” In Proceedings of the 35th IEEE Sym-
posium on Foundations of Computer Science, Nov. 1994,
pp- 214-225.

Nisan, Noam. “Psuedorandom Generators for Space—
Bounded Computation.” In Proceedings of the Twenty—
Second Annual ACM Symposium on Theory of Computing,
May 1990, pp. 204-212.

Palmer, Mark et al. “Fido: A Cache that Learns to Fetch.” In
Proceedings of the 17th International Conference on Very
Large Data Bases, Sep. 1991, pp. 255-264.

Peleg, David, et al. “The Availability of Quorum Systems.”
Information and Computation 123, 1995, 210-223.

Rabin, Michael. “Efficient Dispersal of Information for
Security, Load Balancing, and Fault Tolerance.” Journal of
the ACM, vol. 36, No. 2, Apr. 1989, pp. 335-348.

Ravi, R., “Rapid Rumor Ramification: Approximating the
Minimum Broadcast Time.” In Proceedings of the 35th
IEEE Symposium on Foundation of Computer Science, Nov.
1994, pp. 202-213.

Schmidt, Jeanette, et al. “Chernoff-Hoeffding Bounds for
Applications with Limited Independence.” In Proceedings
of the 4th ACS-SIAM Symposium on Discrete Algorithms,
1993, pp. 331-340.

Tarjan, Robert Endre, et al. “Storing a Sparse Table.”
Communications of the ACM, vol. 22, No. 11, Nov. 1979,
pp. 606-611.

Wegman, Mark, et al. “New Hash Functions and Their Use
in Authentication and Set Equality.” Journal of Computer
and System Sciences vol. 22, Jun. 1981, pp. 265-279.

Vitter, Jeffrey Scott, et al. “Optimal Prefetching via Data
Compression.” In Proceedings of 32nd IEEE Symposium on
Foundations of Computer Science, Nov. 1991, pp. 121-130.

Fredman, Michael, et al. “Storing a Sparse Table with 0(1)
Worst Case Access Time.” Journal of the Association for
Computing Machinery, vol. 31, No. 3, Jul. 1984, pp.
538-544.

Yao, Andrew Chi—Chih. “Should Tables be Sorted?” Journal
of the Association for Computing Machinery, vol. 28, No. 3,
Jul. 1981, pp. 615-628.

Floyd, Sally, et al. “A reliable Multicast Framework for
Light—Weight Sessions and Application Level Framing.” In
Proceedings of ACM SIGCOMM °95, pp. 342-356.

Feeley, Michael, et al. “Implementing Global Memory Man-
agement in a Workstation Cluster.” In Proceedings of the
15th ACM Symposium on Operating Systems Principles,
1995, pp. 201-212.

Carter, J. Lawrence, et al. “Universal Classes of Hash
Functions.” Journal of Computer and System Sciences, vol.
18, No. 2, Apr. 1979, pp. 143-154.

Patent Abstracts of Japan, “Electronic Mail Multiplexing
System and Communication Control Method in The Sys-
tem.” Jun. 30, 1993, JP 051625293.

Kim et al., “Experiencess with Tripwire: Usinglntergrity
Checkers For Intruosion Detection”, Coast Labs. Dept. of
Computer Sciences Purdue University, Feb. 22, 1995, pp.
1-12.

Kim et al., “The Design and Implementation of Tripwire: A
file System Integrity Checker”, Coast Labs. Dept. of Com-
puter Sciences Purdue University, Nov. 19, 1993, pp. 1-21.

* cited by examiner

US 6,415,280 Bl

Sheet 1 of 31

Jul. 2, 2002

U.S. Patent

|

00}
"J0SS300dd d0SS30o0ud ¥0SS3o0uUd
c0l [41] [44]
g0t
ERINE(e d0IA3a
d0SS300¥d J0SS300 LR
ud dOVdO0lS JOVHO0LS
(D)1 ‘914

US 6,415,280 Bl

Sheet 2 of 31

Jul. 2, 2002

U.S. Patent

" 19
“ avs 851
“ 1213

" 17
" 149 9l
" 51

m 1s
! aws 0}
" 951

: 1y
” v 8zl
" !

" oL
" v ozl
" zZel

! aal
: AYONIN rel
" oLL

“ 20}
b e

142"
AJIA3a
FOVHOlLS
Nndd
80}
d08S300ud

(9)1 914

US 6,415,280 Bl

Sheet 3 of 31

Jul. 2, 2002

U.S. Patent

1N3INO3S

ccl

IN3INO3S INIWO3S

(442

cclh

ERIE|

()

A4

44 0z 0z
A¥OLO=3NIa AYOLO3MIa Ad01On1a
8L 8LL 8kl
NOI93Y NOI93H = NOIOzd NOIO3Y
L) _ L} Ll LiL
W3L1SAS N mu _ m
ERIE

9L

U.S. Patent Jul. 2, 2002 Sheet 4 of 31 US 6,415,280 B1

FIG.3

Region ID

138

Pathname

True Name
Type
File ID

Time of last access

Time of last modification
Safe flag
Lock flag

Size

owner

FIG. 4

True Name
File ID

140

Compressed File ID

Source IDs

Dependent pProcessors

Use count

Time of last access

Expiration

Grooming delete count

142

Region ID

Region file system

Region pathname

Region status

Mirror processor(s)

Mirror duplication count

Policy

FIG. 5

US 6,415,280 Bl

Sheet 5 of 31

Jul. 2, 2002

U.S. Patent

99SUaOTT

2weN oniy

101%]

2WweN onJig

Axjue Jo adlXy

Aljus Jo @3ep

8vl

2Wey onay

aweuyleg

duelsauTyy,

dI aossadoag

adAg,

uotT3eaado

sweN Teurbrao

Svl

UoT3ed0T 20aInos

A3TITqRTTRAR 20INOS

S3YPTI 90Inos

2dA3 9@oanos

dI =0anos

14%)

6 9ld

89l4

4 9ld

9 0lId

U.S. Patent Jul. 2, 2002 Sheet 6 of 31 US 6,415,280 B1

FIG. 10(a)

SIMPlE
DATA ITEM

S212 \

COMPUTE MD FUNCTION ON
DATA ITEM

A 4
S214

APPEND LENGTH MODULO 32 OF
DATA ITEM

- e ek e el e e e -
S em om o em M PR S ML AR TR TR BR MR MR G M Em R G SR Mm b R

e wm e w wm E e o e e e e em ef e e - e e e e e e e o - - -

U.S. Patent Jul. 2, 2002 Sheet 7 of 31 US 6,415,280 B1

O—l FIG. 10(b)

S220

PARTITION DATA ITEM INTO
SEGMENTS

5216

DATA ITEM
SIMPLE?

5222

ASSIMILATE EACH SEGMENT
(COMPUTING ITS TRUE NAME)

9]
N
pre
(e}

)

COMPUTE TRUE
NAME OF SIMPLE v
\ DATA ITEM : S224

—————————————— CREATE INDIRECT BLOCK OF
SEGMENT TRUE NAMES

1
t
(
1
t
t
t
1

S226

ASSIMILATE INDIRECT BLOCK
(COMPUTING ITS TRUE NAME)

5228
REPLACE FINAL 32 BITS OF TRUE
NAME WITH LENGHT MOD 32 OF DATA
ITEM

US 6,415,280 Bl

Sheet 8 of 31

Jul. 2, 2002

U.S. Patent

$

ai 3714 3yols
6€¢S

*

(o)

¢al 3714 3AVH
AY1N3 S304

!

ai 3714 31313a

8€¢S

S3JA

LAULSIOFY
3714 IN™L NI 1SIX3

S3A

JNVYN INdL s30a

JWVN INYL
ANIWY313Q

0ges

»

%

SA731d Y3H10 13S «
ai 3714 3HOlS

} OL1INNOD 3SN 13S
AYLNZ M3N 3LV

9e¢s

ON

11914

U.S. Patent Jul. 2, 2002 Sheet 9 of 31 US 6,415,280 B1

S238 S240
FILE YES ,| UPDATE
DEPENDENCY
LOCKED? e
NO l
S242
SEND MESSAGE TO
v< CACHE SERVER TO
S244 UPDATE CACHE
COMPRESS
(IF DESIRED)
S246
MIRROR

(IF DESIRED)

U.S. Patent Jul. 2, 2002 Sheet 10 of 31 US 6,415,280 B1

l FIG. 13

S250
SEARCH FOR

THE NOT EOQLIND > FAIL
PATHNAME

LDE INCLUDES
JRUE NAME?

NO

5258
€—| ASSIMILATE LDE IDENTIFIES
FILE ID DIRECTORY?
256
<« FREEZE
DIRECTORY

U.S. Patent

Jul. 2, 2002

5260

CONFIRM THAT

TRUE NAME

EXISTS LOCALLY

v

SEARCH FOR
PATHNAME IN

5262

LDE TABLE

CONFIRM THAT

5264

DIRECTORY
EXISTS

5266

NAMED FILE
EXISTS?

Sheet 11 of 31

YES

US 6,415,280 Bl

FIG.14

5268
DELETE

TRUE FILE

S270
CREATE
ENTRY IN LDE
& UPDATE

US 6,415,280 Bl

Sheet 12 of 31

Jul. 2, 2002

U.S. Patent

¢

Gl 9Old

<

(@3yIs3a
»|)3
| INYL AJIN3A
EN 28¢s
OLNI a3aNyNL3y
I714 INYL ¥YILNT
9.2S
A
Tvd
ISNOJS3Yy
IAILISOd yy
ISNOJS3Y
HO4d LIYm
2 IOVSSIN
414 aN3s
¥179 aSNOdS3Y
JAILYOAN
240SS300Y
VY NOILY2 01 81

S3IA

3714 ANId
082S

ﬂ

1NNOW
1s3N03y

8.¢CS

US 6,415,280 Bl

Sheet 13 of 31

Jul. 2, 2002

U.S. Patent

(D)9l 914

1ivd

ISNOJSIY
3nyIsod
SLIVM
IN3IND) _l_
88¢S 1no3awiL
A 40
ISNOJSTY
s1SvYoavoug JAILYO3IN
AN3I1D
082S

S3A

a3aloan3a
SY0SS300Ud
ANV
§8¢s

(s)uoss3noud
$15313S
AN3IND
¥82S

4‘

US 6,415,280 Bl

Sheet 14 of 31

Jul. 2, 2002

U.S. Patent

181701 Qav anv . UNILSAS Mwwﬂm%%mm_
B s X3 A.m.n;.A Pl oN—P| 37114 3Ny IANTS3Y
T 00628 Ol I9DVSSIN AN3S
PL6ZS g
SWVYN INYL
¥04 S4I 30UNOS OL
al NOILYD01 304N 0S (4)91 914
aav 2 IWVN 3nyL
¥O ¥4L dN MO0
80625
SFA
¢NOILVNILS3Q
Qi ¥OSSA20¥d
«— INOY S¥IJId IWVN A
© 3NYL 40 0UNOS
062S

1

US 6,415,280 Bl

Sheet 15 of 31

Jul. 2, 2002

U.S. Patent

.

al 374
Q3SS3UdINOD

SS=TUJIN0D3C

862S SIA

96¢s

JAYINT SIHL
d04 at 34

I

<JNVN
JNYL UO4 U4L NI
AYLINI 3714 3ny

)VARDIE!

US 6,415,280 Bl

Sheet 16 of 31

Jul. 2, 2002

U.S. Patent

(9)L1 914

dl 3Hols
00€sS

S3A

(s)3ounos
Woud 3714
INYL 3Z1Mvay

90€S

T oo

Sl 32¥N0S 4
1™ logas |—~Sa/3ounos_y,

JHOW ON
y0ES

3714 31LON3Y
3Lvo01

80€S

T 4

y3asn
AdILON
¢0€S

1

US 6,415,280 Bl

Sheet 17 of 31

Jul. 2, 2002

U.S. Patent

aNoda

(P)8l 9l

va01 3714
JNYL IMYIN

¢CES

»

¥od a1 3d

dANOQ

i

3714 HOLVYOS
M3N 31V3Yo

0ceS

3714 3Nyl
31373a

8les

i

S3A

434

3NYL 40 AdOD 38
JTNOHS HOLYYO

*

)

¢3Tid
INAUL ONILSIXT
S3ILLNIAl 3a7

oles

US 6,415,280 Bl

Sheet 18 of 31

Jul. 2, 2002

U.S. Patent

Ad1N3

dd1 IAONIY
® dl 3714 IAVS

8CES

A

S3A

9¢EsS

INNOD

2SN INIWT¥O3Q
‘T8YLIATNI
QI T4 AOLS ‘T4
M3N OL 314 Ad0D
oges
A
>
1INNOD 3SN ON

(9)81 914

US 6,415,280 Bl

Sheet 19 of 31

Jul. 2, 2002

U.S. Patent

3114
QILVIINISSYNN | ﬁw.wwww_m
ILVIINISSY 123
9e€s

|

o

W3ll viva
M3N 3LV3HO
LEES

a

\>m0._.om~=0 zm>y
JHL NI AYO.LOIa
ANV 3714

(D)6l 914

31LvNIQHOodns
HOV3 ¥O4d

_ y

A

MO0 3723344
INIWIHONI

CEES

I

US 6,415,280 Bl

Sheet 20 of 31

Jul. 2, 2002

U.S. Patent

!

AOOT
323344 JHL
AINIW3YO3Q

| 24X

W3LI VLV M3N
IHL LY TWISSY
ZreS
Qmokomma zm_>_U
zowm,_w__)__w%m_ NI w3l SHL NI AYOLO3NIa
JvNollaay [€&—— VIVAMIN e | anvaud
04003 OL AMIN3 aav aLvNIgdogns
8£es HOV3 ¥O4
oves
- »_ Y,

1

US 6,415,280 Bl

Sheet 21 of 31

Jul. 2, 2002

U.S. Patent

JINVN 3INYL
Ol HLvd MNIT

¢SES

+

JWVNHLVd
TINd 31LV34D

0G€eS

%

AHOLO3NIQ
av3y

8VES

A.lmm_m._.zm_

Y

JHON

AYLN3
AJOLOZYIa
HOV3 HOd
€6es

»

1vo0T13Td
JNdl INVIN

9veS

1

SAMLNT
JUOWN ON

aNOa
pPGES

O¢ 9ld

U.S. Patent Jul. 2, 2002 Sheet 22 of 31 US 6,415,280 B1

!

S354
WAIT FOR
FREEZE LOCK
TO TURN OFF

S356
FIND TFR FIG.2|

ENTRY

$§358
DECREMENT
REFERENCE

COUNT

REFERENCE COUNT IS YES DESSS%'E
ZERO & NO DEPENDENT g TRUE FILE
SYSTEMS IN TFR?
NO
4
S364
REMOVE FILEID .
¢ AND COMPRESSED
FILEID
v

U.S. Patent Jul. 2, 2002 Sheet 23 of 31 US 6,415,280 B1

!

S365
GET
OPERATION
S366 =5
CREATE OR YES Y
MODIFY? ASSIMILATE
S369
NEW TRUE
COPY OR DELETE YES____ FILE
COMPOUND? l
S378 S370
MODIFY USE RECORD TRUE
COUNT OF EACH NAME IN AUDIT
COMPONENT FILE
— l
Y
S379

FOR EACH PARENT
DIRECTORY OR FILE,
UPDATE USE COUNT,

LAST ACCESS AND

MODIFY TIMES

!

U.S. Patent

FIG. 23

Jul. 2, 2002

Sheet 24 of 31

v

S382
VERIFY
GROOMING
LOCK OFF

S384
SET
GROOMING
LOCK

\ 4

S386

SET GROOM
COUNTS

US 6,415,280 Bl

U.S. Patent Jul. 2, 2002 Sheet 25 of 31 US 6,415,280 B1

S388

FIND LDE
RECORD

FIG. 24

S390

FIND TFR
RECORD

S392

INCREMENT
GROOMING
DELETE COUNT

S394

ADJUST FILE
SIZES

U.S. Patent Jul. 2, 2002 Sheet 26 of 31 US 6,415,280 B1

FIG. 25

S396
DELETE
FILE

\ 4
S398
UNLOCK
GROOMING

LOCK

US 6,415,280 Bl

Sheet 27 of 31

Jul. 2, 2002

U.S. Patent

¢34
HOLVYOS N3do 3 -
R%S ugaiHoud a
YAALS
»l.mm\,
LATINO
—SIA avay ON
0L+S
NOI93Y N3do PX RN L)
=[N SETE] LigIHOYd [4—¢ ONIFg
80vS yovS 20bS
ZATIVOOT
S3K s1SIx3 314 ON
(D)92 914 00¥S

US 6,415,280 Bl

Sheet 28 of 31

Jul. 2, 2002

U.S. Patent

ﬂ

¥4l WOHA
al 374 NdN1ay
'8 NOISH3A
TVO0T INVIN
0¢ys

A

S3A

A
al
> p| T4 HOLVHOS |
NYN13Y _
¥Zys
374 HOLVYOS
31v3yo
90¥S
AdOD A
HOL1VYOS
31V3H0 3714 Isvya ’
LL¥S Lz
H A
o ATE1EdWos \SFA
oNIZg
8LYS
aaMool
LON 413001
8L¥S

US 6,415,280 Bl

Sheet 29 of 31

Jul. 2, 2002

U.S. Patent

(0)L2 91

NOlL313a
ligIHO¥d

g3,

1

JNVN
dNYLNO¥L 3T1d
ANUL AJLLNIAI

yevsS

A
ON

JAYOLOIa
ATINO-QV3Y
NI YO aaxo01 3114
JO Q¥0O3d 301 Op

ERIE
d04 SQHUO0I3Y
AYLNZ 1Y
? 307 ININYZLIA
[4443)

!

US 6,415,280 Bl

Sheet 30 of 31

Jul. 2, 2002

U.S. Patent

%

3714 Lanv
OL AYIN3 aav

8¢vS

A

314 40
AdQOD HOLVYHOS
31313a

LCvS

ON

ONSVH 311

(9).2 914
INO AS INNOD
3sn 3ona3y
LEbS
3714 3Ny »
aLanaa
0EvS ON
Xzo
S1INNO2 3sn
S3A s34 INYL
SIWVN anyL

S3A

US 6,415,280 Bl

Sheet 31 of 31

Jul. 2, 2002

U.S. Patent

dSNOdS3Y
JAILVOIAN

8EVS

%

0

203GHVAYOA
34 0L 1s3nd3y

1s3ano3ay
S3A P QUVMHOA [« O

(A48

¢aNNno4d

8¢ Old

ON

ISNOdSIY
JAILISOd

yyvS

4

S3A

&al a4

A3SS3UJINOD HO
dl 3714 s3AanION

yevs

VN INdL
dNX007

CEVS

%

S3A

US 6,415,280 B1

1

IDENTIFYING AND REQUESTING DATA IN
NETWORK USING IDENTIFIERS WHICH
ARE BASED ON CONTENTS OF DATA

This is a division of application Ser. No. 08/960,079,
filed Oct. 24, 1997, now U.S. Pat. No. 5,978,791 filed Oct.
24, 2001 which is a continuation of Ser. No. 08/425,160,
filed Apr. 11, 1995, now abandoned.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to data processing systems and,
more particularly, to data processing systems wherein data
items are identified by substantially unique identifiers which
depend on all of the data in the data items and only on the
data in the data items.

2. Background of the Invention

Data processing (DP) systems, computers, networks of
computers, or the like, typically offer users and programs
various ways to identify the data in the systems.

Users typically identify data in the data processing system
by giving the data some form of name. For example, a
typical operating system (OS) on a computer provides a file
system in which data items are named by alphanumeric
identifiers. Programs typically identify data in the data
processing system using a location or address. For example,
a program may identify a record in a file or database by using
a record number which serves to locate that record.

In all but the most primitive operating systems, users and
programs are able to create and use collections of named
data items, these collections themselves being named by
identifiers. These named collections can then, themselves,
be made part of other named collections. For example, an
OS may provide mechanisms to group files (data items) into
directories (collections). These directories can then, them-
selves be made part of other directories. A data item may
thus be identified relative to these nested directories using a
sequence of names, or a so-called pathname, which defines
a path through the directories to a particular data item (file
or directory).

As another example, a database management system may
group data records (data items) into tables and then group
these tables into database files (collections). The complete
address of any data record can then be specified using the
database file name, the table name, and the record number of
that data record.

Other examples of identifying data items include: identi-
fying files in a network file system, identifying objects in an
object-oriented database, identifying images in an image
database, and identifying articles in a text database.

In general, the terms “data” and “data item™ as used herein
refer to sequences of bits. Thus a data item may be the
contents of a file, a portion of a file, a page in memory, an
object in an object-oriented program, a digital message, a
digital scanned image, a part of a video or audio signal, or
any other entity which can be represented by a sequence of
bits. The term “data processing” herein refers to the pro-
cessing of data items, and is sometimes dependent on the
type of data item being processed. For example, a data
processor for a digital image may differ from a data pro-
cessor for an audio signal.

In all of the prior data processing systems the names or
identifiers provided to identify data items (the data items
being files, directories, records in the database, objects in
object-oriented programming, locations in memory or on a

10

15

20

25

30

35

40

50

55

60

65

2

physical device, or the like) are always defined relative to a
specific context. For instance, the file identified by a par-
ticular file name can only be determined when the directory
containing the file (the context) is known. The file identified
by a pathname can be determined only when the file system
(context) is known. Similarly, the addresses in a process
address space, the keys in a database table, or domain names
on a global computer network such as the Internet are
meaningful only because they are specified relative to a
context.

In prior art systems for identifying data items there is no
direct relationship between the data names and the data item.
The same data name in two different contexts may refer to
different data items, and two different data names in the
same context may refer to the same data item.

In addition, because there is no correlation between a data
name and the data it refers to, there is no a priori way to
confirm that a given data item is in fact the one named by a
data name. For instance, in a DP system, if one processor
requests that another processor deliver a data item with a
given data name, the requesting processor cannot, in
general, verify that the data delivered is the correct data
(given only the name). Therefore it may require further
processing, typically on the part of the requestor, to verify
that the data item it has obtained is, in fact, the item it
requested.

A common operation in a DP system is adding a new data
item to the system. When a new data item is added to the
system, a name can be assigned to it only by updating the
context in which names are defined. Thus such systems
require a centralized mechanism for the management of
names. Such a mechanism is required even in a multi-
processing system when data items are created and identified
at separate processors in distinct locations, and in which
there is no other need for communication when data items
are added.

In many data processing systems or environments, data
items are transferred between different locations in the
system. These locations may be processors in the data
processing system, storage devices, memory, or the like. For
example, one processor may obtain a data item from another
processor or from an external storage device, such as a
floppy disk, and may incorporate that data item into its
system (using the name provided with that data item).

However, when a processor (or some location) obtains a
data item from another location in the DP system, it is
possible that this obtained data item is already present in the
system (either at the location of the processor or at some
other location accessible by the processor) and therefore a
duplicate of the data item is created. This situation is
common in a network data processing environment where
proprietary software products are installed from floppy disks
onto several processors sharing a common file server. In
these systems, it is often the case that the same product will
be installed on several systems, so that several copies of
each file will reside on the common file server.

In some data processing systems in which several pro-
cessors are connected in a network, one system is designated
as a cache server to maintain master copies of data items,
and other systems are designated as cache clients to copy
local copies of the master data items into a local cache on an
as-needed basis. Before using a cached item, a cache client
must either reload the cached item, be informed of changes
to the cached item, or confirm that the master item corre-
sponding to the cached item has not changed. In other words,
a cache client must synchronize its data items with those on

US 6,415,280 B1

3

the cache server. This synchronization may involve reload-
ing data items onto the cache client. The need to keep the
cache synchronized or reload it adds significant overhead to
existing caching mechanisms.

In view of the above and other problems with prior art
systems, it is therefore desirable to have a mechanism which
allows each processor in a multiprocessor system to deter-
mine a common and substantially unique identifier for a data
item, using only the data in the data item and not relying on
any sort of context.

It is further desirable to have a mechanism for reducing
multiple copies of data items in a data processing system and
to have a mechanism which enables the identification of
identical data items so as to reduce multiple copies. It is
further desirable to determine whether two instances of a
data item are in fact the same data item, and to perform
various other systems’ functions and applications on data
items without relying on any context information or prop-
erties of the data item.

It is also desirable to provide such a mechanism in such
a way as to make it transparent to users of the data
processing system, and it is desirable that a single mecha-
nism be used to address each of the problems described
above.

SUMMARY OF THE INVENTION

This invention provides, in a data processing system, a
method and apparatus for identifying a data item in the
system, where the identity of the data item depends on all of
the data in the data item and only on the data in the data item.
Thus the identity of a data item is independent of its name,
origin, location, address, or other information not derivable
directly from the data, and depends only on the data itself.

This invention further provides an apparatus and a method
for determining whether a particular data item is present in
the system or at a location in the system, by examining only
the data identities of a plurality of data items.

Using the method or apparatus of the present invention,
the efficiency and integrity of a data processing system can
be improved. The present invention improves the design and
operation of a data storage system, file system, relational
database, object-oriented database, or the like that stores a
plurality of data items, by making possible or improving the
design and operation of at least some or all of the following
features:

the system stores at most one copy of any data item at a

given location, even when multiple data names in the
system refer to the same contents;

the system avoids copying data from source to destination

locations when the destination locations already have
the data;

the system provides transparent access to any data item by

reference only to its identity and independent of its
present location, whether it be local, remote, or offline;
the system caches data items from a server, so that only
the most recently accessed data items need be retained;
when the system is being used to cache data items,
problems of maintaining cache consistency are
avoided;
the system maintains a desired level of redundancy of data
items in a network of servers, to protect against failure
by ensuring that multiple copies of the data items are
present at different locations in the system;

the system automatically archives data items as they are

created or modified;

10

15

20

25

30

35

40

45

50

55

60

65

4

the system provides the size, age, and location of groups
of data items in order to decide whether they can be
safely removed from a local file system;

the system can efficiently record and preserve any col-
lection of data items;

the system can efficiently make a copy of any collection
of data items, to support a version control mechanism
for groups of the data items;

the system can publish data items, allowing other, possi-
bly anonymous, systems in a network to gain access to
the data items and to rely on the availability of the data
items;

the system can maintain a local inventory of all the data
items located on a given removable medium, such as a
diskette or CD-ROM, the inventory is independent of
other properties of the data items such as their name,
location, and date of creation;

the system allows closely related sets of data items, such
as matching or corresponding directories on discon-
nected computers, to be periodically resynchronized
with one another;

the system can verify that data retrieved from another
location is the desired or requested data, using only the
data identifier used to retrieve the data;

the system can prove possession of specific data items by
content without disclosing the content of the data items,
for purposes of later legal verification and to provide
anonymity;

the system tracks possession of specific data items accord-

ing to content by owner, independent of the name, date,
or other properties of the data item, and tracks the uses
of specific data items and files by content for account-
ing purposes.

Other objects, features, and characteristics of the present
invention as well as the methods of operation and functions
of the related elements of structure, and the combination of
parts and economies of manufacture, will become more
apparent upon consideration of the following description
and the appended claims with reference to the accompany-
ing drawings, all of which form a part of this specification.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1(a) and 1(b) depict a typical data processing
system in which a preferred embodiment of the present
invention operates;

FIG. 2 depicts a hierarchy of data items stored at any
location in such a data processing system;

FIGS. 3-9 depict data structures used to implement an
embodiment of the present invention; and

FIGS. 10(2)-28 are flow charts depicting operation of
various aspects of the present invention.

DETAILED DESCRIPTION OF THE
PRESENTLY PREFERRED EXEMPLARY
EMBODIMENTS

An embodiment of the present invention is now described
with reference to a typical data processing system 100,
which, with reference to FIGS. 1(a) and 1(b), includes one
or more processors (or computers) 102 and various storage
devices 104 connected in some way, for example by a bus
106.

Each processor 102 includes a CPU 108, a memory 110
and one or more local storage devices 112. The CPU 108,
memory 110, and local storage device 112 may be internally

US 6,415,280 B1

5

connected, for example by a bus 114. Each processor 102
may also include other devices (not shown), such as a
keyboard, a display, a printer, and the like.

In a data processing system 100, wherein more than one
processor 102 is used, that is, in a multiprocessor system, the
processors may be in one of various relationships. For
example, two processors 102 may be in a client/server,
client/client, or a server/server relationship. These inter-
processor relationships may be dynamic, changing depend-
ing on particular situations and functions. Thus, a particular
processor 102 may change its relationship to other proces-
sors as needed, essentially setting up a peer-to-peer relation-
ship with other processors. In a peer-to-peer relationship,
sometimes a particular processor 102 acts as a client
processor, whereas at other times the same processor acts as
a server processor. In other words, there is no hierarchy
imposed on or required of processors 102.

In a multiprocessor system, the processors 102 may be
homogeneous or heterogeneous. Further, in a multiprocessor
data processing system 100, some or all of the processors
102 may be disconnected from the network of processors for
periods of time. Such disconnection may be part of the
normal operation of the system 100 or it may be because a
particular processor 102 is in need of repair.

Within a data processing system 100, the data may be
organized to form a hierarchy of data storage elements,
wherein lower level data storage elements are combined to
form higher level elements. This hierarchy can consist of, for
example, processors, file systems, regions, directories, data
files, segments, and the like. For example, with reference to
FIG. 2, the data items on a particular processor 102 may be
organized or structured as a file system 116 which comprises
regions 117, each of which comprises directories 118, each
of which can contain other directories 118 or files 120. Each
file 120 being made up of one or more data segments 122.

In a typical data processing system, some or all of these
elements can be named by users given certain implementa-
tion specific naming conventions, the name (or pathname) of
an element being relative to a context. In the context of a
data processing system 100, a pathname is fully specified by
a processor name, a filesystem name, a sequence of zero or
more directory names identifying nested directories, and a
final file name. (Usually the lowest level elements, in this
case segments 122, cannot be named by users.)

In other words, a file system 116 is a collection of
directories 118. A directory 118 is a collection of named files
120—both data files 120 and other directory files 118. A file
120 is a named data item which is either a data file (which
may be simple or compound) or a directory file 118. A
simple file 120 consists of a single data segment 122. A
compound file 120 consists of a sequence of data segments
122. A data segment 122 is a fixed sequence of bytes. An
important property of any data segment is its size, the
number of bytes in the sequence.

A single processor 102 may access one or more file
systems 116, and a single storage device 104 may contain
one or more file systems 116, or portions of a file system 116.
For instance, a file system 116 may span several storage
devices 104.

In order to implement controls in a file system, file system
116 may be divided into distinct regions, where each region
is a unit of management and control. A region consists of a
given directory 118 and is identified by the pathname (user
defined) of the directory.

In the following, the term “location”, with respect to a
data processing system 100, refers to any of a particular

10

15

20

25

35

40

45

50

55

60

65

6

processor 102 in the system, a memory of a particular
processor, a storage device, a removable storage medium
(such as a floppy disk or compact disk), or any other physical
location in the system. The term “local” with respect to a
particular processor 102 refers to the memory and storage
devices of that particular processor.

In the following, the terms “True Name”, “data identity™
and “data identifier” refer to the substantially unique data
identifier for a particular data item. The term “True File”
refers to the actual file, segment, or data item identified by
a True Name.

A file system for a data processing system 100 is now
described which is intended to work with an existing oper-
ating system by augmenting some of the operating system’s
file management system codes. The embodiment provided
relies on the standard file management primitives for actu-
ally storing to and retrieving data items from disk, but uses
the mechanisms of the present invention to reference and
access those data items.

The processes and mechanisms (services) provided in this
embodiment are grouped into the following categories:
primitive mechanisms, operating system mechanisms,
remote mechanisms, background mechanisms, and extended
mechanisms.

Primitive mechanisms provide fundamental capabilities
used to support other mechanisms. The following primitive
mechanisms are described:

1. Calculate True Name;

. Assimilate Data Item;

. New True File;

. Get True Name from Path;
. Link path to True Name;

. Realize True File from Location;
. Locate Remote File;

. Make True File Local;

. Create Scratch File;

. Freeze Directory;

. Expand Frozen Directory;
. Delete True File;

. Process Audit File Entry;
. Begin Grooming;

15. Select For Removal; and

16. End Grooming.

Operating system mechanisms provide typical familiar
file system mechanisms, while maintaining the data struc-
tures required to offer the mechanisms of the, present
invention. Operating system mechanisms are designed to
augment existing operating systems, and in this way to make
the present invention compatible with, and generally trans-
parent to, existing applications. The following operating
system mechanisms are described:

1. Open File;

. Close File;

. Read File;

. Write File;

. Delete File or Directory;
. Copy File or Directory;
. Move File or Directory;
. Get File Status; and

9. Get Files in Directory.

Remote mechanisms are used by the operating system in
responding to requests from other processors. These mecha-

O 00 NN AW

== = e
A~ WO

O 1 & B~ W

US 6,415,280 B1

7

nisms enable the capabilities of the present invention in a
peer-to-peer network mode of operation. The following
remote mechanisms are described:

1. Locate True File;

. Reserve True File;

. Request True File;

. Retire True File;

. Cancel Reservation;
. Acquire True File;

. Lock Cache;

. Update Cache; and

9. Check Expiration Date.

Background mechanisms are intended to run occasionally
and at a low priority. These provide automated management
capabilities with respect to the present invention. The fol-
lowing background mechanisms are described:

1. Mirror True File;

2. Groom Region;

3. Check for Expired Links; and

4. Verify Region; and

o N B Y Y I]

5. Groom Source List.

Extended mechanisms run within application programs
over the operating system. These mechanisms provide solu-
tions to specific problems and applications. The following
extended mechanisms are described:

1. Inventory Existing Directory;

. Inventory Removable, Read-only Files;
. Synchronize directories;

. Publish Region;

. Retire Directory;

. Realize Directory at location;

. Verify True File;

. Track for accounting purposes; and

O 00 NN AW

. Track for licensing purposes.

The file system herein described maintains sufficient
information to provide a variety of mechanisms not ordi-
narily offered by an operating system, some of which are
listed and described here. Various processing performed by
this embodiment of the present invention will now be
described in greater detail.

In some embodiments, some files 120 in a data processing
system 100 do not have True Names because they have been
recently received or created or modified, and thus their True
Names have not yet been computed. A file that does not yet
have a True Name is called a scratch file. The process of
assigning a True Name to a file is referred to as assimilation,
and is described later. Note that a scratch file may have a
user provided name.

Some of the processing performed by the present inven-
tion can take place in a background mode or on a delayed or
as-needed basis. This background processing is used to
determine information that is not immediately required by
the system or which may never be required. As an example,
in some cases a scratch file is being changed at a rate greater
than the rate at which it is useful to determine its True Name.
In these cases, determining the True Name of the file can be
postponed or performed in the background.

Data Structures

The following data structures, stored in memory 110 of
one of more processors 102 are used to implement the
mechanisms described herein. The data structures can be

10

15

20

25

30

35

45

60

8

local to each processor 102 of the system 100, or they can
reside on only some of the processors 102.

The data structures described are assumed to reside on
individual peer processors 102 in the data processing system
100. However, they can also be shared by placing them on
a remote, shared file server (for instance, in a local area
network of machines). In order to accommodate sharing data
structures, it is necessary that the processors accessing the
shared database use the appropriate locking techniques to
ensure that changes to the shared database do not interfere
with one another but are appropriately serialized. These
locking techniques are well understood by ordinarily skilled
programmers of distributed applications.

It is sometimes desirable to allow some regions to be local
to a particular processor 102 and other regions to be shared
among processors 102. (Recall that a region is a unit of file
system management and control consisting of a given direc-
tory identified by the pathname of the directory.) In the case
of local and shared regions, there would be both local and
shared versions of each data structure. Simple changes to the
processes described below must be made to ensure that
appropriate data structures are selected for a given operation.

The local directory extensions (LDE) table 124 is a data
structure which provides information about files 120 and
directories 118 in the data processing system 100. The local
directory extensions table 124 is indexed by a pathname or
contextual name (that is, a user provided name) of a file and
includes the True Name for most files. The information in
local directory extension table 124 is in addition to that
provided by the native file system of the operating system.

The True File registry (TFR) 126 is a data store for listing
actual data items which have True Names, both files 120 and
segments 122. When such data items occur in the True File
registry 126 they are known as True Files. True Files are
identified in True File registry 126 by their True Names or
identities. The table True File registry 126 also stores
location, dependency, and migration information about True
Files.

The region table (RT) 128 defines areas in the network
storage which are to be managed separately. Region table
128 defines the rules for access to and migration of files 120
among various regions with the local file system 116 and
remote peer file systems.

The source table (ST) 130 is a list of the sources of True
Files other than the current True File registry 126. The
source table 130 includes removable volumes and remote
processors.

The audit file (AF) 132 is a list of records indicating
changes to be made in local or remote files, these changes to
be processed in background.

The accounting log (AL) 134 is a log of file transactions
used to create accounting information in a manner which
preserves the identity of files being tracked independent of
their name or location.

The license table (LT) 136 is a table identifying files,
which may only be used by licensed users, in a manner
independent of their name or location, and the users licensed
to use them.

Detailed Descriptions of the Data Structures

The following table summarizes the fields of an local
directory extensions table entry, as illustrated by record 138
in FIG. 3.

US 6,415,280 B1

Field Description
Region ID identifies the region in which this file is contained.
Pathname the user provided name or contextual name

of the file or directory, relative to the
region in which it occurs.

True Name the computed True Name or identity of the
file or directory. This True Name is not
always up to date, and it is set to a
special value when a file is modified and
is later recomputed in the background.

Type indicates whether the file is a data file or a directory.
Scratch the physical location of the file in the
File ID file system, when no True Name has been
calculated for the file. As noted above,
such a file is called a scratch file.
Time of the last access time to this file. If this
last file is a directory, this is the last
access access time to any file in the directory.
Time of the time of last change of this file. If
last this file is a directory, this is the last
modification modification time of any file in the directory.
Safe flag indicates that this file (and, if this file

is a directory, all of its subordinate
files) have been backed up on some other
system, and it is therefore safe to remove them.
Lock flag indicates whether a file is locked, that
is, it is being modified by the local pro-
cessor or a remote processor. Only one
processor may modify a file at a time.
Size the full size of this directory (including
all subordinate files), if all files in it
were fully expanded and duplicated. For a
file that is not a directory this is the
size of the actual True File.
Owner the identity of the user who owns this
file, for accounting and license tracking purposes.

Each record of the True File registry 126 has the fields
shown in the True File registry record 140 in FIG. 4. The
True File registry 126 consists of the database described in
the table below as well as the actual True Files identified by
the True File IDs below.

Field Description

True Name computed True Name or identity of the file.
Compressed compressed version of the True File

File ID may be stored instead of, or in addition to,

an uncompressed version. This field provides the
identity of the actual representation of the
compressed version of the file.

Grooming tentative count of how many
delete count references have been selected for

deletion during a grooming operation.
Time of last most recent date and time the
access content of this file was accessed.
Expiration date and time after which this file

may be deleted by this server.
Dependent processor IDs of other processors
processors which contain references to this True File.
Source IDs source ID(s) of zero or more sources from

which this file or data item may be retrieved.

True File ID identity or disk location of the actual physical
representation of the file or file segment. It is
sufficient to use a filename in the registration
directory of the underlying operating system. The
True File ID is absent if the actual file is not currently
present at the current location.

Use count number of other records on this
processor which identify this True File.

A region table 128, specified by a directory pathname,
records storage policies which allow files in the file system

10

15

20

25

30

35

40

45

50

55

60

65

10

to be stored, accessed and migrated in different ways.
Storage policies are programmed in a configurable way
using a set of rules described below.

Each region table record 142 of region table 128 includes
the fields described in the following table (with reference to

FIG. 5):
Field Description
Region ID internally used identifier for this region.

Region file system

Region pathname

Mirror processor(s)

Mirror duplication
count
Region status

Policy

file system on the local processor of
which this region is a part.

a pathname relative to the region file
system which defines the location of

this region. The region consists of

all files and directories subordinate

to this pathname, except those in a

region subordinate to this region.

zero or more identifiers of processors
which are to keep mirror or archival
copies of all files in the current

region. Multiple mirror processors

can be defined to form a mirror group.
number of copies of each file in this
region that should be retained in a mirror group.
specifies whether this region is local

to a single processor 102, shared by
several processors 102 (if, for

instance, it resides on a shared file
server), or managed by a remote processor.
the migration policy to apply to this
region. A single region might

participate in several policies. The
policies are as follows (parameters in
brackets are specified as part of the policy):
region is a cached version from
[processor ID];

region is a member of a mirror set
defined by [processor ID].

region is to be archived on

[processor ID].

region is to be backed up locally,

by placing new copies in [region ID].
region is read only and may not be
changed.

region is published and expires on

[date].

Files in this region should be compressed.

A source table 130 identifies a source location for True
Files. The source table 130 is also used to identify client
processors making reservations on the current processor.
Each source record 144 of the source table 130 includes the
fields summarized in the following table, with reference to

FIG. 6:
Field Description
source ID internal identifier used to identify a particular source.
source type of source location:
type Removable Storage Volume
Local Region
Cache Server
Mirror Group Server
Cooperative Server
Publishing Server
Client
source includes information about the rights of this processor,
rights such as whether it can ask the local processor to
store data items for it.
source measurement of the bandwidth, cost, and
availability reliability of the connection to this source of

True Files. The availability is used to select

US 6,415,280 B1

-continued
Field Description
from among several possible sources.
source information on how the local processor
location is to access the source. This may be, for example,

the name of a removable storage volume, or the
processor ID and region path of a region on a
remote processor.

The audit file 132 is a table of events ordered by
timestamp, each record 146 in audit file 132 including the
fields summarized in the following table (with reference to
FIG. 7).

Field Description

Original Name path of the file in question.

Operation whether the file was created, read,
written, copied or deleted.
Type specifies whether the source is a file or a directory.

Processor ID ID of the remote processor generating

this event (if not local).

Timestamp time and date file was closed (required

only for accessed/modified files).
Pathname Name of the file (required only for rename).
True Name computed True Name of the file. This is used

by remote systems to mirror changes to the directory
and is filled in during background processing.

Each record 148 of the accounting log 134 records an
event which may later be used to provide information for
billing mechanisms. Each accounting log entry record 148
includes at least the information summarized in the follow-
ing table, with reference to FIG. 8:

Field Description

date of entry
type of entry
True Name
owner

date and time of this log entry.

Entry types include create file, delete file, and transmit file.
True Name of data item in question.

identity of the user responsible for this action.

Each record 150 of the license table 136 records a
relationship between a licensable data item and the user
licensed to have access to it. Each license table record 150
includes the information summarized in the following table,
with reference to FIG. 9:

Field Description
True Name True Name of a data item subject to license validation.
licensee identity of a user authorized to have access to this object.

Various other data structures are employed on some or all
of the processors 102 in the data processing system 100.
Each processor 102 has a global freeze lock (GFL) 152
(FIG. 1), which is used to prevent synchronization errors
when a directory is frozen or copied. Any processor 102 may
include a special archive directory (SAD) 154 into which
directories may be copied for the purposes of archival. Any
processor 102 may include a special media directory (SMD)
156, into which the directories of removable volumes are
stored to form a media inventory. Each processor has a

10

15

20

25

30

35

40

50

55

60

65

12

grooming lock 158, which is set during a grooming opera-
tion. During this period the grooming delete count of True
File registry entries 140 is active, and no True Files should
be deleted until grooming is complete. While grooming is in
effect, grooming information includes a table of pathnames
selected for deletion, and keeps track of the amount of space
that would be freed if all of the files were deleted.

Primitive Mechanisms

The first of the mechanisms provided by the present
invention, primitive mechanisms, are now described. The
mechanisms described here depend on underlying data man-
agement mechanisms to create, copy, read, and delete data
items in the True File registry 126, as identified by a True
File ID. This support may be provided by an underlying
operating system or disk storage manager.

The following primitive mechanisms are described:

. Calculate True Name;
. Assimilate Data Item;
. New True File;
. Get True Name from Path;
. Link Path to True Name;
. Realize True File from Location;
. Locate Remote File;
. Make True File Local;
. Create Scratch File;
. Freeze Directory;
. Expand Frozen Directory;
. Delete True File;
. Process Audit File Entry;
. Begin Grooming;
15. Select For Removal; and
16. End Grooming.
1. Calculate True Name

A True Name is computed using a function, MD, which
reduces a data block B of arbitrary length to a relatively
small, fixed size identifier, the True Name of the data block,
such that the True Name of the data block is virtually
guaranteed to represent the data block B and only data block
B.

The function MD must have the following properties:

1. The domain of the function MD is the set of all data
items. The range of the function MD is the set of True
Names.

2. The function MD must take a data item of arbitrary
length and reduce it to an integer value in the range 0
to N-1, where N is the cardinality of the set of True
Names. That is, for an arbitrary length data block B,
0=MD(B)<N.

3. The results of MD(B) must be evenly and randomly
distributed over the range of N, in such a way that
simple or regular changes to B are virtually guaranteed
to produce a different value of MD(B).

4. It must be computationally difficult to find a different
value B' such that MD(B)=MD(B").

5. The function MD(B) must be efficiently computed.

A family of functions with the above properties are the
so-called message digest functions, which are used in digital
security systems as techniques for authentification of data.
These functions (or algorithms) include MD4, MDS5, and
SHA.

In the presently preferred embodiments, either MDS or
SHA is employed as the basis for the computation of True

Nelie SN e Y e o A

== e
A~ W= O

US 6,415,280 B1

13

Names. Whichever of these two message digest functions is
employed, that same function must be employed on a
system-wide basis.

It is impossible to define a function having a unique
output for each possible input when the number of elements
in the range of the function is smaller than the number of
elements in its domain. However, a crucial observation is
that the actual data items that will be encountered in the
operation of any system embodying this invention form a
very sparse subset of all the possible inputs.

A colliding set of data items is defined as a set wherein,
for one or more pairs x and y in the set, MD(x)=MD(y).
Since a function conforming to the requirements for MD
must evenly and randomly distribute its outputs, it is
possible, by making the range of the function large enough,
to make the probability arbitrarily small that actual inputs
encountered in the operation of an embodiment of this
invention will form a colliding set.

To roughly quantify the probability of a collision, assume
that there are no more than 2°° storage devices in the world,
and that each storage device has an average of at most 2%°
different data items. Then there are at most 2°° data items in
the world. If the outputs of MD range between 0 and 2%,
it can be demonstrated that the probability of a collision is
approximately 1 in 2°°. Details on the derivation of these
probability values are found, for example, in P. Flajolet and
A. M. Odlyzko, “Random Mapping Statistics,” Lecture
Notes in Computer Science 434: Advances in Cryptology—
Eurocrypt 89 Proceedings, Springer-Verlag, pp. 329-354.

Note that for some less preferred embodiments of the
present invention, lower probabilities of uniqueness may be
acceptable, depending on the types of applications and
mechanisms used. In some embodiments it may also be
useful to have more than one level of True Names, with
some of the True Names having different degrees of unique-
ness. If such a scheme is implemented, it is necessary to
ensure that less unique True Names are not propagated in the
system.

While the invention is described herein using only the
True Name of a data item as the identifier for the data item,
other preferred embodiments use tagged, typed, categorized
or classified data items and use a combination of both the
True Name and the tag, type, category or class of the data
item as an identifier. Examples of such categorizations are
files, directories, and segments; executable files and data
files, and the like. Examples of classes are classes of objects
in an object-oriented system. In such a system, a lower
degree of True Name uniqueness is acceptable over the
entire universe of data items, as long as sufficient unique-
ness. is provided per category of data items. This is because
the tags provide an additional level of uniqueness.

A mechanism for calculating a True Name given a data
item is now described, with reference to FIGS. 10(a) and
10(b).

A simple data item is a data item whose size is less than
a particular given size (which must be defined in each
particular implementation of the invention). To determine
the True Name of a simple data item, with reference to FIG.
10(a), first compute the MD function (described above) on
the given simple data item (Step S212). Then append to the
resulting 128 bits, the byte length modulo 32 of the data item
(Step S214). The resulting 160-bit value is the True Name of
the simple data item.

A compound data item is one whose size is greater than
the particular given size of a simple data item. To determine
the True Name of an arbitrary (simple or compound) data
item, with reference to FIG. 10(b), first determine if the data

10

15

20

25

30

35

40

45

50

55

60

65

14

item is a simple or a compound data item (Step S216). If the
data item is a simple data item, then compute its True Name
in step S218 (using steps S212 and S214 described above),
otherwise partition the data item into segments (Step S220)
and assimilate each segment (Step S222) (the primitive
mechanism, Assimilate a Data Item, is described below),
computing the True Name of the segment. Then create an
indirect block consisting of the computed segment True
Names (Step S224). An indirect block is a data item which
consists of the sequence of True Names of the segments.
Then, in step S226, assimilate the indirect block and com-
pute its True Name. Finally, replace the final thirty-two (32)
bits of the resulting True Name (that is, the length of the
indirect block) by the length modulo 32 of the compound
data item (Step S228). The result is the True Name of the
compound data item.

Note that the compound data item may be so large that the
indirect block of segment True Names is itself a compound
data item. In this case the mechanism is invoked recursively
until only simple data items are being processed.

Both the use of segments and the attachment of a length
to the True Name are not strictly required in a system using
the present invention, but are currently considered desirable
features in the preferred embodiment.

2. Assimilate Data Item

A mechanism for assimilating a data item (scratch file or
segment) into a file system, given the scratch file ID of the
data item, is now described with reference to FIG. 11. The
purpose of this mechanism is to add a given data item to the
True File registry 126. If the data item already exists in the
True File registry 126, this will be discovered and used
during this process, and the duplicate will be eliminated.

Thereby the system stores at most one copy of any data
item or file by content, even when multiple names refer to
the same content.

First, determine the True Name of the data item corre-
sponding to the given scratch File ID using the Calculate
True Name primitive mechanism (Step S230). Next, look for
an entry for the True Name in the True File registry 126
(Step S232) and determine whether a True Name entry,
record 140, exists in the True File registry 126. If the entry
record includes a corresponding True File ID or compressed
File ID (Step S237), delete the file with the scratch File ID
(Step S238). Otherwise store the given True File ID in the
entry record (step S239).

If it is determined (in step S232) that no True Name entry
exists in the True File registry 126, then, in Step S236, create
anew entry in the True File registry 126 for this True Name.
Set the True Name of the entry to the calculated True Name,
set the use count for the new entry to one, store the given
True File ID in the entry and set the other fields of the entry
as appropriate.

Because this procedure may take some time to compute,
it is intended to run in background after a file has ceased to
change. In the meantime, the file is considered an unassimi-
lated scratch file.

3. New True File

The New True File process is invoked when processing
the audit file 132, some time after a True File has been
assimilated (using the Assimilate Data Item primitive
mechanism). Given a local directory extensions table entry
record 138 in the local directory extensions table 124, the
New True File process can provide the following steps (with
reference to FIG. 12), depending on how the local processor
is configured:

First, in step S238, examine the local directory extensions
table entry record 138 to determine whether the file is locked

US 6,415,280 B1

15
by a cache server. If the file is locked, then add the ID of the
cache server to the dependent processor list of the True File
registry table 126, and then send a message to the cache
server to update the cache of the current processor using the
Update Cache remote mechanism (Step 242).

If desired, compress the True File (Step S246), and, if
desired, mirror the True File using the Mirror True File
background mechanism (Step S248).

4. Get True Name from Path

The True Name of a file can be used to identify a file by
contents, to confirm that a file matches its original contents,
or to compare two files. The mechanism to get a True Name
given the pathname of a file is now described with reference
to FIG. 13.

First, search the local directory extensions table 124 for
the entry record 138 with the given pathname (Step S250).
If the pathname is not found, this process fails and no True
Name corresponding to the given pathname exists. Next,
determine whether the local directory extensions table entry
record 138 includes a True Name (Step S252), and if so, the
mechanism’s task is complete. Otherwise, determine
whether the local directory extensions table entry record 138
identifies a directory (Step S254), and if so, freeze the
directory (Step S256) (the primitive mechanism Freeze
Directory is described below).

Otherwise, in step S258, assimilate the file (using the
Assimilate Data Item primitive mechanism) defined by the
File ID field to generate its True Name and store its True
Name in the local directory extensions entry record. Then
return the True Name identified by the local directory
extensions table 124.

5. Link Path to True Name

The mechanism to link a path to a True Name provides a
way of creating a new directory entry record identifying an
existing, assimilated file. This basic process may be used to
copy, move, and rename files without a need to copy their
contents. The mechanism to link a path to a True Name is
now described with reference to FIG. 14.

First, if desired, confirm that the True Name exists locally
by searching for it in the True Name registry or local
directory extensions table 135 (Step S260). Most uses of this
mechanism will require this form of validation. Next, search
for the path in the local directory extensions table 135 (Step
$262). Confirm that the directory containing the file named
in the path already exists (Step S264). If the named file itself
exists, delete the File using the Delete True File operating
system mechanism (see below) (Step S268).

Then, create an entry record in the local directory exten-
sions with the specified path (Step S270) and update the
entry record and other data structures as follows: fill in the
True Name field of the entry with the specified True Name;
increment the use count for the True File registry entry
record 140 of the corresponding True Name; note whether
the entry is a directory by reading the True File to see if it
contains a tag (magic number) indicating that it represents a
frozen directory (see also the description of the Freeze
Directory primitive mechanism regarding the tag); and com-
pute and set the other fields of the local directory extensions
appropriately. For instance, search the region table 128 to
identify the region of the path, and set the time of last access
and time of last modification to the current time.

6. Realize True File from Location

This mechanism is used to try to make a local copy of a
True File, given its True Name and the name of a source
location (processor or media) that may contain the True File.
This mechanism is now described with reference to FIG. 15.

First, in step S272, determine whether the location speci-
fied is a processor. If it is determined that the location

5

10

15

20

25

30

35

40

45

50

55

60

65

16

specified is a processor, then send a Request True File
message (using the Request True File remote mechanism) to
the remote processor and wait for a response (Step S274). If
a negative response is received or no response is received
after a timeout period, this mechanism fails. If a positive
response is received, enter the True File returned in the True
File registry 126 (Step S276). (If the file received was
compressed, enter the True File ID in the compressed File ID
field.)

If, on the other hand, it is determined in step S272 that the
location specified is not a processor, then, if necessary,
request the user or operator to mount the indicated volume
(Step S278). Then (Step S280) find the indicated file on the
given volume and assimilate the file using the Assimilate
Data Item primitive mechanism. If the volume does not
contain a True File registry 126, search the media inventory
to find the path of the file on the volume. If no such file can
be found, this mechanism fails.

At this point, whether or not the location is determined (in
step S272) to be a processor, if desired, verify the True File
(in step S282).

7. Locate Remote File

This mechanism allows a processor to locate a file or data
item from a remote source of True Files, when a specific
source is unknown or unavailable. A client processor system
may ask one of several or many sources whether it can
supply a data object with a given True Name. The steps to
perform this mechanism are as follows (with reference to
FIGS. 16(a) and 16(b)).

The client processor 102 uses the source table 145 to
select one or more source processors (Step S284). If no
source processor can be found, the mechanism fails. Next,
the client processor 102 broadcasts to the selected sources a
request to locate the file with the given True Name using the
Locate True File remote mechanism (Step S286). The
request to locate may be augmented by asking to propagate
this request to distant servers. The client processor then
waits for one or more servers to respond positively (Step
S288). After all servers respond negatively, or after a timeout
period with no positive response, the mechanism repeats
selection (Step S284) to attempt to identify alternative
sources. If any selected source processor responds, its pro-
cessor ID is the result of this mechanism. Store the processor
ID in the source field of the True File registry entry record
140 of the given True Name (Step S290).

If the source location of the True Name is a different
processor or medium than the destination (Step S290q),
perform the following steps:

(1) Look up the True File registry entry record 140 for the

corresponding True Name, and add the source location
ID to the list of sources for the True Name (Step
$290b); and

(i) If the source is a publishing system, determine the

expiration date on the publishing system for the True
Name and add that to the list of sources. If the source
is not a publishing system, send a message to reserve
the True File on the source processor (Step S290c¢).

Source selection in step S284 may be based on optimi-
zations involving general availability of the source, access
time, bandwidth, and transmission cost, and ignoring pre-
viously selected processors which did not respond in step
S288.

8. Make True File Local

This mechanism is used when a True Name is known and
a locally accessible copy of the corresponding file or data
item is required. This mechanism makes it possible to
actually read the data in a True File. The mechanism takes

US 6,415,280 B1

17

a True Name and returns when there is a local, accessible
copy of the True File in the True File registry 126. This
mechanism is described here with reference to the flow chart
of FIGS. 17(a) and 17(b).

First, look in the True File registry 126 for a True File
entry record 140 for the corresponding True Name (Step
$292). If no such entry is found this mechanism fails. If
there is already a True File ID for the entry (Step S294), this
mechanism’s task is complete. If there is a compressed file
ID for the entry (Step S296), decompress the file corre-
sponding to the file ID (Step S298) and store the decom-
pressed file ID in the entry (Step S300). This mechanism is
then complete.

If there is no True File ID for the entry (Step S294) and
there is no compressed file ID for the entry (Step S296), then
continue searching for the requested file. At this time it may
be necessary to notify the user that the system is searching
for the requested file.

If there are one or more source IDs, then select an order
in which to attempt to realize the source ID (Step S304). The
order may be based on optimizations involving general
availability of the source, access time, bandwidth, and
transmission cost. For each source in the order chosen,
realize the True File from the source location (using the
Realize True File from Location primitive mechanism), until
the True File is realized (Step S306). If it is realized,
continue with step S294. If no known source can realize the
True File, use the Locate Remote File primitive mechanism
to attempt to find the True File (Step S308). If this succeeds,
realize the True File from the identified source location and
continue with step $296.

9. Create Scratch File

A scratch copy of a file is required when a file is being
created or is about to be modified. The scratch copy is stored
in the file system of the underlying operating system. The
scratch copy is eventually assimilated when the audit file
record entry 146 is processed by the Process Audit File Entry
primitive mechanism. This Create Scratch File mechanism
requires a local directory extensions table entry record 138.
When it succeeds, the local directory extensions table entry
record 138 contains the scratch file ID of a scratch file that
is not contained in the True File registry 126 and that may
be modified. This mechanism is now described with refer-
ence to FIGS. 18(a) and 18(b).

First determine whether the scratch file should be a copy
of the existing True File (Step S310). If so, continue with
step S312. Otherwise, determine whether the local directory
extensions table entry record 138 identifies an existing True
File (Step S316), and if so, delete the True File using the
Delete True File primitive mechanism (Step S318). Then
create a new, empty scratch file and store its scratch file ID
in the local directory extensions table entry record 138 (step
$320). This mechanism is then complete.

If the local directory extensions table entry record 138
identifies a scratch file ID (Step S312), then the entry already
has a scratch file, so this mechanism succeeds.

If the local directory extensions table entry record 138
identifies a True File (S316), and there is no True File ID for
the True File (8312), then make the True File local using the
Make True File Local primitive mechanism (Step S322). If
there is still no True File ID, this mechanism fails.

There is now a local True File for this file. If the use count
in the corresponding True File registry entry record 140 is
one (Step S326), save the True File ID in the scratch file ID
of the local directory extensions table entry record 138, and
remove the True File registry entry record 140 (Step S328).
(This step makes the True File into a scratch file.) This
mechanism’s task is complete.

10

15

20

25

30

35

40

45

50

55

60

65

18

Otherwise, if the use count in the corresponding True File
registry entry record 140 is not one (in step S326), copy the
file with the given True File ID to a new scratch file, using
the Read File OS mechanism and store its file ID in the local
directory extensions table entry record 138 (Step S330), and
reduce the use count for the True File by one. If there is
insufficient space to make a copy, this mechanism fails.
10. Freeze Directory

This mechanism freezes a directory in order to calculate
its True Name. Since the True Name of a directory is a
function of the files within the directory, they must not
change during the computation of the True Name of the
directory. This mechanism requires the pathname of a direc-
tory to freeze. This mechanism is described with reference
to FIGS. 19(a) and 19(b).

In step S332, add one to the global freeze lock. Then
search the local directory extensions table 124 to find each
subordinate data file and directory of the given directory, and
freeze each subordinate directory found using the Freeze
Directory primitive mechanism (Step S334). Assimilate
each unassimilated data file in the directory using the
Assimilate Data Item primitive mechanism (Step S336).
Then create a data item which begins with a tag or marker
(a “magic number”) being a unique data item indicating that
this data item is a frozen directory (Step S337). Then list the
file name and True Name for each file in the current
directory (Step S338). Record any additional information
required, such as the type, time of last access and
modification, and size (Step S340). Next, in step S342, using
the Assimilate Data Item primitive mechanism, assimilate
the data item created in step S338. The resulting True Name
is the True Name of the frozen directory. Finally, subtract
one from the global freeze lock (Step S344).

11. Expand Frozen Directory

This mechanism expands a frozen directory in a given
location. It requires a given pathname into which to expand
the directory, and the True Name of the directory and is
described with reference to FIG. 20.

First, in step S346, make the True File with the given True
Name local using the Make True File Local primitive
mechanism. Then read each directory entry in the local file
created in step S346 (Step S348). For each such directory
entry, do the following:

Create a full pathname using the given pathname and the

file name of the entry (Step S350); and

link the created path to the True Name (Step S352) using

the Link Path to True Name primitive mechanism.
12. Delete True File
This mechanism deletes a reference to a True Name. The
underlying True File is not removed from the True File
registry 126 unless there are no additional references to the
file. With reference to FIG. 21, this mechanism is performed
as follows:
If the global freeze lock is on, wait until the global freeze
lock is turned off (Step S354). This prevents deleting a True
File while a directory which might refer to it is being frozen.
Next, find the True File registry entry record 140 given the
True Name (Step S356). If the reference count field of the
True File registry 126 is greater than zero, subtract one from
the reference count field (Step S358). If it is determined (in
step S360) that the reference count field of the True File
registry entry record 140 is zero, and if there are no
dependent systems listed in the True File registry entry
record 140, then perform the following steps:
() If the True File is a simple data item, then delete the
True File, otherwise,

(ii) (the True File is a compound data item) for each True
Name in the data item, recursively delete the True File
corresponding to the True Name (Step S362).

US 6,415,280 B1

19

(iii) Remove the file indicated by the True File ID and
compressed file ID from the True File registry 126, and
remove the True File registry entry record 140 (Step
S364).

13. Process Audit File Entry

This mechanism performs tasks which are required to
maintain information in the local directory extensions table
124 and True File registry 126, but which can be delayed
while the processor is busy doing more time-critical tasks.
Entries 142 in the audit file 132 should be processed at a
background priority as long as there are entries to be
processed. With reference to FIG. 22, the steps for process-
ing an entry are as follows:

Determine the operation in the entry 142 currently being
processed (Step S365). If the operation indicates that a file
was created or written (Step S366), then assimilate the file
using the Assimilate Data Item primitive mechanism (Step
S368), use the New True File primitive mechanism to do
additional desired processing (such as cache update,
compression, and mirroring) (Step S369), and record the
newly computed True Name for the file in the audit file
record entry (Step S370).

Otherwise, if the entry being processed indicates that a
compound data item or directory was copied (or deleted)
(Step S376), then for each component True Name in the
compound data item or directory, add (or subtract) one to the
use count of the True File registry entry record 140 corre-
sponding to the component True Name (Step S378).

In all cases, for each parent directory of the given file,
update the size, time of last access, and time of last
modification, according to the operation in the audit record
(Step S379).

Note that the audit record is not removed after processing,
but is retained for some reasonable period so that it may be
used by the Synchronize Directory extended mechanism to
allow a disconnected remote processor to update its repre-
sentation of the local system.

14. Begin Grooming

This mechanism makes it possible to select a set of files
for removal and determine the overall amount of space to be
recovered. With reference to FIG. 23, first verify that the
global grooming lock is currently unlocked (Step S382).
Then set the global grooming lock, set the total amount of
space freed during grooming to zero and empty the list of
files selected for deletion (Step S384). For each True File in
the True File registry 126, set the delete count to zero (Step
S386).

15. Select For Removal

This grooming mechanism tentatively selects a pathname
to allow its corresponding True File to be removed. With
reference to FIG. 24, first find the local directory extensions
table entry record 138 corresponding to the given pathname
(Step S388). Then find the True File registry entry record
140 corresponding to the True File name in the local
directory extensions table entry record 138 (Step S390). Add
one to the grooming delete count in the True File registry
entry record 140 and add the pathname to a list of files
selected for deletion (Step S392). If the grooming delete
count of the True File registry entry record 140 is equal to
the use count of the True File registry entry record 140, and
if the there are no entries in the dependency list of the True
File registry entry record 140, then add the size of the file
indicated by the True File ID and or compressed file ID to
the total amount of space freed during grooming (Step
S394).

16. End Grooming

This grooming mechanism ends the grooming phase and

removes all files selected for removal. With reference to

10

15

20

25

30

35

40

45

50

55

60

65

20
FIG. 25, for each file in the list of files selected for deletion,
delete the file (Step S396) and then unlock the global
grooming lock (Step S398).

Operating System Mechanisms

The next of the mechanisms provided by the present
invention, operating system mechanisms, are now described.

The following operating system mechanisms are
described:

1. Open File;

. Close File;

. Read File;

. Write File;

. Delete File or Directory;
. Copy File or Directory;
. Move File or Directory;
. Get File Status; and

9. Get Files in Directory.
1. Open File

A mechanism to open a file is described with reference to
FIGS. 26(a) and 26(b). This mechanism is given as input a
pathname and the type of access required for the file (for
example, read, write, read/write, create, etc.) and produces
either the File ID of the file to be opened or an indication that
no file should be opened. The local directory extensions
table record 138 and region table record 142 associated with
the opened file are associated with the open file for later use
in other processing functions which refer to the file, such as
read, write, and close.

First, determine whether or not the named file exists
locally by examining the local directory extensions table 124
to determine whether there is an entry corresponding to the
given pathname (Step S400). If it is determined that the file
name does not exist locally, then, using the access type,
determine whether or not the file is being created by this
opening process (Step S402). If the file is not being created,
prohibit the open (Step S404). If the file is being created,
create a zero-length scratch file using an entry in local
directory extensions table 124 and produce the scratch file
ID of this scratch file as the result (Step S406).

If, on the other hand, it is determined in step S400 that the
file name does exist locally, then determine the region in
which the file is located by searching the region table 128 to
find the record 142 with the longest region path which is a
prefix of the file pathname (Step S408). This record identi-
fies the region of the specified file.

Next, determine using the access type, whether the file is
being opened for writing or whether it is being opened only
for reading (Step S410). If the file is being opened for
reading only, then, if the file is a scratch file (Step S419),
return the scratch File ID of the file (Step S424). Otherwise
get the True Name from the local directory extensions table
124 and make a local version of the True File associated with
the True Name using the Make True File Local primitive
mechanism, and then return the True File ID associated with
the True Name (Step S420).

If the file is not being opened for reading only (Step
S410), then, if it is determined by inspecting the region table
entry record 142 that the file is in a read-only directory (Step
S416), then prohibit the opening (Step S422).

If it is determined by inspecting the region table 128 that
the file is in a cached region (Step S423), then send a Lock
Cache message to the corresponding cache server, and wait
for a return message (Step S418). If the return message says
the file is already locked, prohibit the opening.

O 1 & B~ W

US 6,415,280 B1

21

If the access type indicates that the file being modified is
being rewritten completely (Step S419), so that the original
data will not be required, then Delete the File using the
Delete File OS mechanism (Step S421) and perform step
S406. Otherwise, make a scratch copy of the file (Step S417)
and produce the scratch file ID of the scratch file as the result
(Step S424).

2. Close File

This mechanism takes as input the local directory exten-
sions table entry record 138 of an open file and the data
maintained for the open file. To close a file, add an entry to
the audit file indicating the time and operation (create, read
or write). The audit file processing (using the Process Audit
File Entry primitive mechanism) will take care of assimi-
lating the file and thereby updating the other records.

3. Read File

To read a file, a program must provide the offset and
length of the data to be read, and the location of a buffer into
which to copy the data read.

The file to be read from is identified by an open file
descriptor which includes a File ID as computed by the Open
File operating system mechanism defined above. The File ID
may identify either a scratch file or a True File (or True File
segment). If the File ID identifies a True File, it may be
either a simple or a compound True File. Reading a file is
accomplished by the following steps:

In the case where the File ID identifies a scratch file or a
simple True File, use the read capabilities of the underlying
operating system.

In the case where the File ID identifies a compound file,
break the read operation into one or more read operations on
component segments as follows:

A. Identify the segmeht(s) to be read by dividing the

specified file offset and length each by the fixed size of

a segment (a system dependent parameter), to deter-

mine the segment number and number of segments that

must be read.

B. For each segment number computed above, do the

following:

i. Read the compound True File index block to deter-
mine the True Name of the segment to be read.

ii. Use the Realize True File from Location primitive
mechanism to make the True File segment available
locally. (If that mechanism fails, the Read File
mechanism fails).

iii. Determine the File ID of the True File specified by
the True Name corresponding to this segment.

iv. Use the Read File mechanism (recursively) to read
from this segment into the corresponding location in
the specified buffer.

4. Write File

File writing uses the file ID and data management capa-
bilities of the underlying operating system. File access
(Make File Local described above) can be deferred until the
first read or write.

5. Delete File or Directory

The process of deleting a file, for a given pathname, is
described here with reference to FIGS. 27(a) and 27(b).

First, determine the local directory extensions table entry
record 138 and region table entry record 142 for the file
(Step S422). If the file has no local directory extensions table
entry record 138 or is locked or is in a read-only region,
prohibit the deletion.

Identify the corresponding True File given the True Name
of the file being deleted using the True File registry 126
(Step S424). If the file has no True Name, (Step S426) then
delete the scratch copy of the file based on its scratch file ID

10

15

20

25

30

35

40

45

50

55

60

65

22

in the local directory extensions table 124 (Step S427), and
continue with step S428.

If the file has a True Name and the True File’s use count
is one (Step S429), then delete the True File (Step S430), and
continue with step S428.

If the file has a True Name and the True File’s use count
is greater than one, reduce its use count by one (Step S431).
Then proceed with step S428.

In Step S428, delete the local directory extensions table
entry record, and add an entry to the audit file 132 indicating
the time and the operation performed (delete).

6. Copy File or Directory

A mechanism is provided to copy a file or directory given
a source and destination processor and pathname. The Copy
File mechanism does not actually copy the data in the file,
only the True Name of the file. This mechanism is performed
as follows:

(A) Given the source path, get the True Name from the

path. If this step fails, the mechanism fails.

(B) Given the True Name and the destination path, link
the destination path to the True Name.

(C) If the source and destination processors have different
True File registries, find (or, if necessary, create) an
entry for the True Name in the True File registry table
126 of the destination processor. Enter into the source
ID field of this new entry the source processor identity.

(D) Add an entry to the audit file 132 indicating the time
and operation performed (copy).

This mechanism addresses capability of the system to
avoid copying data from a source location to a destination
location when the destination already has the data. In
addition, because of the ability to freeze a directory, this
mechanism also addresses capability of the system imme-
diately to make a copy of any collection of files, thereby to
support an efficient version control mechanisms for groups
of files.

7. Move File or Directory

A mechanism is described which moves (or renames) a
file from a source path to a destination path. The move
operation, like the copy operation, requires no actual transfer
of data, and is performed as follows:

(A) Copy the file from the source path to the destination

path.

(B) If the source path is different from the destination
path, delete the source path.

8. Get File Status

This mechanism takes a file pathname and provides
information about the pathname. First the local directory
extensions table entry record 138 corresponding to the
pathname given is found. If no such entry exists, then this
mechanism fails, otherwise, gather information about the file
and its corresponding True File from the local directory
extensions table 124. The information can include any
information shown in the data structures, including the size,
type, owner, True Name, sources, time of last access, time of
last modification, state (local or not, assimilated or not,
compressed or not), use count, expiration date, and reser-
vations.

9. Get Files in Directory

This mechanism enumerates the files in a directory. It is
used (implicitly) whenever it is necessary to determine
whether a file exists (is present) in a directory. For instance,
it is implicitly used in the Open File, Delete File, Copy File
or Directory, and Move File operating system mechanisms,
because the files operated on are referred to by pathnames
containing directory names. The mechanism works as fol-
lows:

US 6,415,280 B1

23

The local directory extensions table 124 is searched for an
entry 138 with the given directory pathname. If no such
entry is found, or if the entry found is not a directory, then
this mechanism fails.

If there is a corresponding True File field in the local
directory extensions table record, then it is assumed that the
True File represents a frozen directory. The Expand Frozen
Directory primitive mechanism is used to expand the exist-
ing True File into directory entries in the local directory
extensions table.

Finally, the local directory extensions table 124 is again
searched, this time to find each directory subordinate to the
given directory. The names found are provided as the result.

Remote Mechanisms

The remote mechanisms provided by the present inven-
tion are now described. Recall that remote mechanisms are
used by the operating system in responding to requests from
other processors. These mechanisms enable the capabilities
of the present invention in a peer-to-peer network mode of
operation.

In a presently preferred embodiment, processors commu-
nicate with each other using a remote procedure call (RPC)
style interface, running over one of any number of commu-
nication protocols such as IPX/SPX or TCP/IP. Each peer
processor which provides access to its True File registry 126
or file regions, or which depends on another peer processor,
provides a number of mechanisms which can be used by its
peers.

The following remote mechanisms are described:

. Locate True File;

. Reserve True File;

. Request True File;

. Retire True File;

. Cancel Reservation;

. Acquire True File;

. Lock Cache;

. Update Cache; and

. Check Expiration Date.
1. Locate True File

This mechanism allows a remote processor to determine
whether the local processor contains a copy of a specific
True File. The mechanism begins with a True Name and a
flag indicating whether to forward requests for this file to
other servers. This mechanism is now described with refer-
ence to FIG. 28.

First determine if the True File is available locally or if
there is some indication of where the True File is located (for
example, in the Source IDs field). Look up the requested
True Name in the True File registry 126 (Step S432).

If a True File registry entry record 140 is not found for this
True Name (Step S434), and the flag indicates that the
request is not to be forwarded (Step S436), respond nega-
tively (Step S438). That is, respond to the effect that the True
File is not available.

One the other hand, if a True File registry entry record 140
is not found (Step S434), and the flag indicates that the
request for this True File is to be forwarded (Step S436),
then forward a request for this True File to some other
processors in the system (Step S442). If the source table for
the current processor identifies one or more publishing
servers which should have a copy of this True File, then
forward the request to each of those publishing servers (Step
S436).

If a True File registry entry record 140 is found for the
required True File (Step S434), and if the entry includes a

O 01N W

10

15

20

25

30

35

40

45

50

55

60

24

True File ID or Compressed File ID (Step S440), respond
positively (Step S444). If the entry includes a True File ID
then this provides the identity or disk location of the actual
physical representation of the file or file segment required.
If the entry include a Compressed File ID, then a com-
pressed version of the True File may be stored instead of, or
in addition to, an uncompressed version. This field provides
the identity of the actual representation of the compressed
version of the file.

If the True File registry entry record 140 is found (Step
S434) but does not include a True File ID (the File ID is
absent if the actual file is not currently present at the current
location) (Step S440), and if the True File registry entry
record 140 includes one or more source processors, and if
the request can be forwarded, then forward the request for
this True File to one or more of the source processors (Step
S444).

2. Reserve True File

This mechanism allows a remote processor to indicate
that it depends on the local processor for access to a specific
True File. It takes a True Name as input. This mechanism is
described here.

(A) Find the True File registry entry record 140 associated
with the given True File. If no entry exists, reply
negatively.

(B) If the True File registry entry record 140 does not
include a True File ID or compressed File ID, and if the
True File registry entry record 140 includes no source
IDs for removable storage volumes, then this processor
does not have access to a copy of the given file. Reply
negatively.

(C) Add the ID of the sending processor to the list of
dependent processors for the True File registry entry
record 140. Reply positively, with an indication of
whether the reserved True File is on line or off line.

3. Request True File

This mechanism allows a remote processor to request a
copy of a True File from the local processor. It requires a
True Name and responds positively by sending a True File
back to the requesting processor. The mechanism operates as
follows:

(A) Find the True File registry entry record 140 associated
with the given True Name. If there is no such True File
registry entry record 140, reply negatively.

(B) Make the True File local using the Make True File
Local primitive mechanism. If this mechanism fails, the
Request True File mechanism also fails.

(C) Send the local True File in either it is uncompressed
or compressed form to the requesting remote processor.
Note that if the True File is a compound file, the
components are not sent.

(D) If the remote file is listed in the dependent process list
of the True File registry entry record 140, remove it.

4. Retire True File

This mechanism allows a remote processor to indicate
that it no longer plans to maintain a copy of a given True
File. An alternate source of the True File can be specified, if,
for instance, the True File is being moved from one server
to another. It begins with a True Name, a requesting pro-
cessor ID, and an optional alternate source. This mechanism
operates as follows:

(A) Find a True Name entry in the True File registry 126.
If there is no entry for this True Name, this mecha-
nism’s task is complete.

(B) Find the requesting processor on the source list and,
if it is there, remove it.

US 6,415,280 B1

25

(O) If an alternate source is provided, add it to the source
list for the True File registry entry record 140.

(D) If the source list of the True File registry entry record
140 has no items in it, use the Locate Remote File
primitive mechanism to search for another copy of the
file. If it fails, raise a serious error.

5. Cancel Reservation

This mechanism allows a remote processor to indicate
that it no longer requires access to a True File stored on the
local processor. It begins with a True Name and a requesting
processor ID and proceeds as follows:

(A) Find the True Name entry in the True File registry
126. If there is no entry for this True Name, this
mechanism’s task is complete.

(B) Remove the identity of the requesting processor from
the list of dependent processors, if it appears.

(O) If the list of dependent processors becomes zero and
the use count is also zero, delete the True File.

6. Acquire True File

This mechanism allows a remote processor to insist that
a local processor make a copy of a specified True File. It is
used, for example, when a cache client wants to write
through a new version of a file. The Acquire True File
mechanism begins with a data item and an optional True
Name for the data item and proceeds as follows:

(A) Confirm that the requesting processor has the right to
require the local processor to acquire data items. If not,
send a negative reply.

(B) Make a local copy of the data item transmitted by the
remote Processor.

(C) Assimilate the data item into the True File registry of
the local processor.

(D) If a True Name was provided with the file, the True
Name calculation can be avoided, or the mechanism
can verify that the file received matches the True Name
sent.

(E) Add an entry in the dependent processor list of the true
file registry record indicating that the requesting pro-
cessor depends on this copy of the given True File.

(F) Send a positive reply.

7. Lock Cache

This mechanism allows a remote cache client to lock a
local file so that local users or other cache clients cannot
change it while the remote processor is using it. The
mechanism begins with a pathname and proceeds as follows:

(A) Find the local directory extensions table entry record
138 of the specified pathname. If no such entry exists,
reply negatively.

(B) If an local directory extensions table entry record 138
exists and is already locked, reply negatively that the
file is already locked.

(O) If an local directory extensions table entry record 138
exists and is not locked, lock the entry. Reply posi-
tively.

8. Update Cache

This mechanism allows a remote cache client to unlock a
local file and update it with new contents. It begins with a
pathname and a True Name. The file corresponding to the
True Name must be accessible from the remote processor.
This mechanism operates as follows:

Find the local directory extensions table entry record 138
corresponding to the given pathname. Reply negatively if no
such entry exists or if the entry is not locked.

Link the given pathname to the given True Name using
the Link Path to True Name primitive mechanism.

10

15

20

25

30

35

40

45

50

55

60

26

Unlock the local directory extensions table entry record
138 and return positively.
9. Check Expiration Date

Return current or new expiration date and possible alter-
native source to caller.

Background Processes and Mechanisms

The background processes and mechanisms provided by
the present invention are now described. Recall that back-
ground mechanisms are intended to run occasionally and at
a low priority to provide automated management capabilities
with respect to the present invention.

The following background mechanisms are described:

1. Mirror True File;

2. Groom Region;

3. Check for Expired Links;

4. Verify Region; and

5. Groom Source List.

1. Mirror True File

This mechanism is used to ensure that files are available
in alternate locations in mirror groups or archived on archi-
val servers. The mechanism depends on application-specific
migration/archival criteria (size, time since last access, num-
ber of copies required, number of existing alternative
sources) which determine under what conditions a file
should be moved. The Mirror True File mechanism operates
as follows, using the True File specified, perform the fol-
lowing steps:

(A) Count the number of available locations of the True
File by inspecting the source list of the True File
registry entry record 140 for the True File. This step
determines how many copies of the True. File are
available in the system.

(B) If the True File meets the specified migration criteria,
select a mirror group server to which a copy of the file
should be sent. Use the Acquire True File remote
mechanism to copy the True File to the selected mirror
group server. Add the identity of the selected system to
the source list for the True File.

2. Groom Region

This mechanism is used to automatically free up space in
a processor by deleting data items that may be available
elsewhere. The mechanism depends on application-specific
grooming criteria (for instance, a file may be removed if
there is an alternate online source for it, it has not been
accessed in a given number of days, and it is larger than a
given size). This mechanism operates as follows:

Repeat the following steps (i) to (iii) with more aggressive
grooming criteria until sufficient space is freed or until all
grooming criteria have been exercised. Use grooming infor-
mation to determine how much space has been freed. Recall
that, while grooming is in effect, grooming information
includes a table of pathnames selected for deletion, and
keeps track of the amount of space that would be freed if all
of the files were deleted.

(i) Begin Grooming (using the primitive mechanism).

(i) For each pathname in the specified region, for the True
File corresponding to the pathname, if the True File is
present, has at least one alternative source, and meets
application specific grooming criteria for the region,
select the file for removal (using the primitive
mechanism).

(iii) End Grooming (using the primitive mechanism).

If the region is used as a cache, no other processors are

dependent on True Files to which it refers, and all such True

US 6,415,280 B1

27

Files are mirrored elsewhere. In this case, True Files can be
removed with impunity. For a cache region, the grooming
criteria would ordinarily eliminate the least recently
accessed True Files first. This is best done by sorting the
True Files in the region by the most recent access time
before performing step (ii) above. The application specific
criteria would thus be to select for removal every True File
encountered (beginning with the least recently used) until
the required amount of free space is reached.

3. Check for Expired Links

This mechanism is used to determine whether dependen-
cies on published files should be refreshed. The following
steps describe the operation of this mechanism:

For each pathname in the specified region, for each True
File corresponding to the pathname, perform the following
step:

If the True File registry entry record 140 corresponding to
the True File contains at least one source which is a
publishing server, and if the expiration date on the depen-
dency is past or close, then perform the following steps:

(A) Determine whether the True File registry entry record
contains other sources which have not expired.

(B) Check the True Name expiration of the server. If the
expiration date has been extended, or an alternate
source is suggested, add the source to the True File
registry entry record 140.

(O) If no acceptable alternate source was found in steps
(A) or (B) above, make a local copy of the True File.

(D) Remove the expired source.

4. Verify Region

This mechanism can be used to ensure that the data items
in the True File registry 126 have not been damaged acci-
dentally or maliciously. The operation of this mechanism is
described by the following steps:

(A) Search the local directory extensions table 124 for
each pathname in the specified region and then perform
the following steps:

(1) Get the True File name corresponding to the path-
name;

(ii) If the True File registry entry 140 for the True File
does not have a True File ID or compressed file ID,
ignore it.

(iii) Use the Verify True File mechanism (see extended
mechanisms below) to confirm that the True File
specified is correct.

5. Groom Source List

The source list in a True File entry should be groomed
sometimes to ensure there are not too many mirror or archive
copies. When a file is deleted or when a region definition or
its mirror criteria are changed, it may be necessary to inspect
the affected True Files to determine whether there are too
many mirror copies. This can be done with the following
steps:

For each affected True File,

(A) Search the local directory extensions table to find

each region that refers to the True File.

(B) Create a set of “required sources”, initially empty.

(C) For each region found,

(a) determine the mirroring criteria for that region,

(b) determine which sources for the True File satisfy
the mirroring criteria, and

(c) add these sources to the set of required sources.

(D) For each source in the True File registry entry, if the
source identifies a remote processor (as opposed to
removable media), and if the source is not a publisher,
and if the source is not in the set of required sources,

20

25

()

0

50

55

65

28

then eliminate the source, and use the Cancel Reser-
vation remote mechanism to eliminate the given pro-
cessor from the list of dependent processors recorded at
the remote processor identified by the source.

Extended Mechanisms

The extended mechanisms provided by the present inven-
tion are now described. Recall that extended mechanisms
run within application programs over the operating system
to provide solutions to specific problems and applications.

The following extended mechanisms are described:

1. Inventory Existing Directory;

. Inventory Removable, Read-only Files;
. Synchronize Directories;
. Publish Region;
. Retire Directory;
. Realize Directory at Location;
. Verify True File;
. Track for Accounting Purposes; and
9. Track for Licensing Purposes.
1. Inventory Existing Directory

This mechanism determines the True Names of files in an
existing on-line directory in the underlying operating sys-
tem. One purpose of this mechanism is to install True Name
mechanisms in an existing file system.

An effect of such an installation is to eliminate immedi-
ately all duplicate files from the file system being traversed.
If several file systems are inventoried in a single True File
registry, duplicates across the volumes are also eliminated.

(A) Traverse the underlying file system in the operating

system. For each file encountered, excluding

directories, perform the following:

(1) Assimilate the file encountered (using the Assimilate
File primitive mechanism). This process computes
its True Name and moves its data into the True File
registry 126.

(i) Create a pathname consisting of the path to the
volume directory and the relative path of the file on
the media. Link this path to the computed True Name
using the Link Path to True Name primitive mecha-
nism.

2. Inventory Removable, Read-only Files

A system with access to removable, read-only media
volumes (such as WORM disks and CD-ROMSs) can create
a usable inventory of the files on these disks without having
to make online copies. These objects can then be used for
archival purposes, directory overlays, or other needs. An
operator must request that an inventory be created for such
a volume.

This mechanism allows for maintaining inventories of the
contents of files and data items on removable media, such as
diskettes and CD-ROMs, independent of other properties of
the files such as name, location, and date of creation.

The mechanism creates an online inventory of the files on
one or more removable volumes, such as a floppy disk or
CD-ROM, when the data on the volume is represented as a
directory. The inventory service uses a True Name to iden-
tify each file, providing a way to locate the data independent
of its name, date of creation, or location.

The inventory can be used for archival of data (making it
possible to avoid archiving data. When that data is already
on a separate volume), for grooming (making it possible to
delete infrequently accessed files if they can be retrieved
from removable volumes), for version control (making it
possible to generate a new version of a CD-ROM without
having to copy the old version), and for other purposes.

N e R

US 6,415,280 B1

29

The inventory is made by creating a volume directory in
the media inventory in which each file named identifies the
data item on the volume being inventoried. Data items are
not copied from the removable volume during the inventory
process.

An operator must request that an inventory be created for
a specific volume. Once created, the volume directory can be
frozen or copied like any other directory. Data items from
either the physical volume or the volume directory can be
accessed using the Open File operating system mechanism
which will cause them to be read from the physical volume
using the Realize True File from Location primitive mecha-
nism.

To create an inventory the following steps are taken:

(A) A volume directory in the media inventory is created
to correspond to the volume being inventoried. Its
contextual name identifies the specific volume.

(B) A source table entry 144 for the volume is created in
the source table 130. This entry 144 identifies the
physical source volume and the volume directory cre-
ated in step (A).

(C) The filesystem on the volume is traversed. For each
file encountered, excluding directories, the following
steps are taken:

(1) The True Name of the file is computed. An entry is
created in the True Name registry 124, including the
True Name of the file using the primitive mecha-
nism. The source field of the True Name registry
entry 140 identifies the source table entry 144.

(i) A pathname is created consisting of the path to the
volume directory and the relative path of the file on
the media. This path is linked to the computed True
Name using Link Path to True Name primitive
mechanism.

(D) After all files have been inventoried, the volume
directory is frozen. The volume directory serves as a
table of contents for the volume. It can be copied using
the Copy File or Directory primitive mechanism to
create an “overlay” directory which can then be
modified, making it possible to edit a virtual copy of a
read-only medium.

3. Synchronize Directories

Given two versions of a directory derived from the same
starting point, this mechanism creates a new, synchronized
version which includes the changes from each. Where a file
is changed in both versions, this mechanism provides a user
exit for handling the discrepancy. By using True Names,
comparisons are instantaneous, and no copies of files are
necessary.

This mechanism lets a local processor synchronize a
directory to account for changes made at a remote processor.
Its purpose is to bring a local copy of a directory up to date
after a period of no communication between the local and
remote processor. Such a period might occur if the local
processor were a mobile processor detached from its server,
or if two distant processors were run independently and
updated nightly.

An advantage of the described synchronization process is
that it does not depend on synchronizing the clocks of the
local and remote processors. However, it does require that
the local processor track its position in the remote proces-
sor’s audit file.

This mechanism does not resolve changes made simulta-
neously to the same file at several sites. If that occurs, an
external resolution mechanism such as, for example, opera-
tor intervention, is required.

The mechanism takes as input a start time, a local
directory pathname, a remote processor name, and a remote
directory pathname name, and it operates by the following
steps:

15

20

25

30

35

40

45

50

55

60

65

30

(A) Request a copy of the audit file 132 from the remote
processor using the Request True File remote mecha-
nism.

(B) For each entry 146 in the audit file 132 after the start
time, if the entry indicates a change to a file in the
remote directory, perform the following steps:

(1) Compute the pathname of the corresponding file in
the local directory. Determine the True Name of the
corresponding file.

(ii) If the True Name of the local file is the same as the
old True Name in the audit file, or if there is no local
file and the audit entry indicates a new file is being
created, link the new True Name in the audit file to
the local pathname using the Link Path to True Name
primitive mechanism.

(iii) Otherwise, note that there is a problem with the
synchronization by sending a message to the opera-
tor or to a problem resolution program, indicating the
local pathname, remote pathname, remote processor,
and time of change.

(C) After synchronization is complete, record the time of
the final change. This time is to be used as the new start
time the next time this directory is synchronized with
the same remote processor.

4. Publish Region

The publish region mechanism allows a processor to offer
the files in a region to any client processors for a limited
period of time.

The purpose of the service is to eliminate any need for
client processors to make reservations with the publishing
processor. This in turn makes it possible for the publishing
processor to service a much larger number of clients.

When a region is published, an expiration date is defined
for all files in the region, and is propagated into the pub-
lishing system’s True File registry entry record 140 for each
file.

When a remote file is copied, for instance using the Copy
File operating system mechanism, the expiration date is
copied into the source field of the client’s True File registry
entry record 140. When the source is a publishing system, no
dependency need be created.

The client processor must occasionally and in
background, check for expired links, to make sure it still has
access to these files. This is described in the background
mechanism Check for Expired Links.

5. Retire Directory

This mechanism makes it possible to eliminate safely the
True Files in a directory, or at least dependencies on them,
after ensuring that any client processors depending on those
files remove their dependencies. The files in the directory are
not actually deleted by this process. The directory can be
deleted with the Delete File operating system mechanism.

The mechanism takes the pathname of a given directory,
and optionally, the identification of a preferred alternate
source processor for clients to use. The mechanism performs
the following steps:

(A) Traverse the directory. For each file in the directory,

perform the following steps:

(1) Get the True Name of the file from its path and find
the True File registry entry 140 associated with the
True Name.

(i) Determine an alternate source for the True File. If
the source IDs field of the TFR entry includes the
preferred alternate source, that is the alternate
source. If it does not, but includes some other source,
that is the alternate source. If it contains no alternate
sources, there is no alternate source.

US 6,415,280 B1

31

(iii) For each dependent processor in the True File
registry entry 140, ask that processor to retire the
True File, specifying an alternate source if one was
determined, using the remote mechanism.
6. Realize Directory at Location
This mechanism allows the user or operating system to
force copies of files from some source location to the True
File registry 126 at a given location. The purpose of the
mechanism is to ensure that files are accessible in the event
the source location becomes inaccessible. This can happen
for instance if the source or given location are on mobile
computers, or are on removable media, or if the network
connection to the source is expected to become unavailable,
or if the source is being retired.
This mechanism is provided in the following steps for
each file in the given directory, with the exception of
subdirectories:

(A) Get the local directory extensions table entry record
138 given the pathname of the file. Get the True Name
of the local directory extensions table entry record 138.
This service assimilates the file if it has not already
been assimilated.

(B) Realize the corresponding True File at the given
location. This service causes it to be copied to the given
location from a remote system or removable media.

7. Verify True File

This mechanism is used to verify that the data item in a
True File registry 126 is indeed the correct data item given
its True Name. Its purpose is to guard against device errors,
malicious changes, or other problems.

If an error is found, the system has the ability to “heal”
itself by finding another source for the True File with the
given name. It may also be desirable to verify that the error
has not propagated to other systems, and to log the problem
or indicate it to the computer operator. These details are not
described here.

To verify a data item that is not in a True File registry 126,
use the Calculate True Name primitive mechanism described
above.

The basic mechanism begins with a True Name, and
operates in the following steps:

(A) Find the True File registry entry record 140 corre-

sponding to the given True Name.

(B) If there is a True File ID for the True File registry
entry record 140 then use it. Otherwise, indicate that no
file exists to verify.

(C) Calculate the True Name of the data item given the file
ID of the data item.

(D) Confirm that the calculated True Name is equal to the
given True Name.

(E) If the True Names are not equal, there is an error in
the True File registry 126. Remove the True File ID
from the True File registry entry record 140 and place
it somewhere else. Indicate that the True File registry
entry record 140 contained an error.

8. Track for Accounting Purposes

This mechanism provides a way to know reliably which
files have been stored on a system or transmitted from one
system to another. The mechanism can be used as a basis for
a value-based accounting system in which charges are based
on the identity of the data stored or transmitted, rather than
simply on the number of bits.

This mechanism allows the system to track possession of
specific data items according to content by owner, indepen-
dent of the name, date, or other properties of the data item,
and tracks the uses of specific data items and files by content

10

15

25

30

35

40

50

55

60

65

32

for accounting purposes. True names make it possible to
identify each file briefly yet uniquely for this purpose.

Tracking the identities of files requires maintaining an
accounting log 134 and processing it for accounting or
billing purposes. The mechanism operates in the following
steps:

(A) Note every time a file is created or deleted, for
instance by monitoring audit entries in the Process
Audit File Entry primitive mechanism. When such an
event is encountered, create an entry 148 in the
accounting log 134 that Shows the responsible party
and the identity of the file created or deleted.

(B) Every time a file is transmitted, for instance when a
file is copied with a Request True File remote mecha-
nism or an Acquire True File remote mechanism, create
an entry in the accounting log 134 that shows the
responsible party, the identity of the file, and the source
and destination processors.

(C) Occasionally run an accounting program to process
the accounting log 134, distributing the events to the
account records of each responsible party. The account
records can eventually be summarized for billing pur-
poses.

9. Track for Licensing Purposes

This mechanism ensures that licensed files are not used by
unauthorized parties. The True Name provides a safe way to
identify licensed material. This service allows proof of
possession of specific files according to their contents with-
out disclosing their contents.

Enforcing use of valid licenses can be active (for example,
by refusing to provide access to a file without authorization)
or passive (for example, by creating a report of users who do
not have proper authorization).

One possible way to perform license validation is to
perform occasional audits of employee systems. The service
described herein relies on True Names to support such an
audit, as in the following steps:

(A) For each licensed product, record in the license table
136 the True Name of key files in the product (that is,
files which are required in order to use the product, and
which do not occur in other products) Typically, for a
software product, this would include the main execut-
able image and perhaps other major files such as
clip-art, scripts, or online help. Also record the identity
of each system which is authorized to have a copy of
the file.

(B) occasionally, compare the contents of each user
processor against the license table 136. For each True
Name in the license table do the following:

(1) Unless the user processor is authorized to have a
copy of the file, confirm that the user processor does
not have a copy of the file using the Locate True File
mechanism.

(ii) If the user processor is found to have a file that it
is not authorized to have, record the user processor
and True Name in a license violation table.

The System in Operation

Given the mechanisms described above, the operation of
a typical DP system employing these mechanisms is now
described in order to demonstrate how the present invention
meets its requirements and capabilities.

In operation, data items (for example, files, database
records, messages, data segments, data blocks, directories,
instances of object classes, and the like) in a DP system
employing the present invention are identified by substan-

US 6,415,280 B1

33

tially unique identifiers (True Names), the identifiers
depending on all of the data in the data items and only on the
data in the data items. The primitive mechanisms Calculate
True Name and Assimilate Data Item support this property.
For any given data item, using the Calculate True Name
primitive mechanism, a substantially unique identifier or
True Name for that data item can be determined.

Further, in operation of a DP system incorporating the
present invention, multiple copies of data items are avoided
(unless they are required for some reason such as backups or
mirror copies in a fault-tolerant system). Multiple copies of
data items are avoided even when multiple names refer to
the same data item. The primitive mechanisms Assimilate
Data Items and New True File support this property. Using
the Assimilate Data [tem primitive mechanism, if a data item
already exists in the system, as indicated by an entry in the
True File registry 126, this existence will be discovered by
this mechanism, and the duplicate data item (the new data
item) will be eliminated (or not added). Thus, for example,
if a data file is being copied onto a system from a floppy
disk, if, based on the True Name of the data file, it is
determined that the data file already exists in the system (by
the same or some other name), then the duplicate copy will
not be installed. If the data item was being installed on the
system by some name other than its current name, then,
using the Link Path to True Name primitive mechanism, the
other (or new) name can be linked to the already existing
data item.

In general, the mechanisms of the present invention
operate in such a way as to avoid recreating an actual data
item at a location when a copy of that data item is already
present at that location. In the case of a copy from a floppy
disk, the data item (file) may have to be copied (into a
scratch file) before it can be determined that it is a duplicate.
This is because only one processor is involved. On the other
hand, in a multiprocessor environment or DP system, each
processor has a record of the True Names of the data items
on that processor. When a data item is to be copied to
another location (another processor) in the DP system, all
that is necessary is to examine the True Name of the data
item prior to the copying. If a data item with the same True
Name already exists at the destination location (processor),
then there is no need to copy the data item. Note that if a data
item which already exists locally at a destination location is
still copied to the destination location (for example, because
the remote system did not have a True Name for the data
item or because it arrives as a stream of un-named data), the
Assimilate Data Item primitive mechanism will prevent
multiple copies of the data item from being created.

Since the True Name of a large data item (a compound
data item) is derived from and based on the True Names of
components of the data item, copying of an entire data item
can be avoided. Since some (or all) of the components of a
large data item may already be present at a destination
location, only those components which are not present there
need be copied. This property derives from the manner in
which True Names are determined.

When a file is copied by the Copy File or Directory
operating system mechanism, only the True Name of the file
is actually replicated.

When a file is opened (using the open File operating
system mechanism), it uses the Make True File Local
primitive mechanism (either directly or indirectly through
the Create Scratch File primitive mechanism) to create a
local copy of the file. The Open File operating system
mechanism uses the Make True File Local primitive

10

15

20

25

50

55

60

65

34

mechanism, which uses the Realize True File from Location
primitive mechanism, which, in turn uses the Request True
File remote mechanism.

The Request True File remote mechanism copies only a
single data item from one processor to another. If the data
item is a compound file, its component segments are not
copied, only the indirect block is copied. The segments are
copied only when they are read (or otherwise needed).

The Read File operating system mechanism actually reads
data. The Read File mechanism is aware of compound files
and indirect blocks, and it uses the Realize True File from
Location primitive mechanism to make sure that component
segments are locally available, and then uses the operating
system file mechanisms to read data from the local file.

Thus, when a compound file is copied from a remote
system, only its True Name is copied. When it is opened,
only its indirect block is copied. When the corresponding file
is read, the required component segments are realized and
therefore copied.

In operation data items can be accessed by reference to
their identities (True Names) independent of their present
location. The actual data item or True File corresponding to
a given data identifier or True Name may reside anywhere in
the system (that is, locally, remotely, offline, etc). If a
required True File is present locally, then the data in the file
can be accessed. If the data item is not present locally, there
are a number of ways in which it can be obtained from
wherever it is present. Using the source IDs field of the True
File registry table, the location(s) of copies of the True File
corresponding to a given True Name can be determined. The
Realize True File from Location primitive mechanism tries
to make a local copy of a True File, given its True Name and
the name of a source location (processor or media) that may
contain the True File. If, on the other hand, for some reason
it is not known where there is a copy of the True File, or if
the processors identified in the source IDs field do not
respond with the required True File, the processor requiring
the data item can make a general request for the data item
using the Request True File remote mechanism from all
processors in the system that it can contact.

As a result, the system provides transparent access to any
data item by reference to its data identity, and independent
of its present location.

In operation, data items in the system can be verified and
have their integrity checked. This is from the manner in
which True Names are determined. This can be used for
security purposes, for instance, to check for viruses and to
verify that data retrieved from another location is the desired
,and requested data. For example, the system might store the
True Names of all executable applications on the system and
then periodically redetermine the True Names of each of
these applications to ensure that they match the stored True
Names. Any change in a True Name potentially signals
corruption in the system and can be further investigated. The
Verify Region background mechanism and the Verify True
File extended mechanisms provide direct support for this
mode of operation. The Verify Region mechanism is used to
ensure that the data items in the True File registry have not
been damaged accidentally or maliciously. The Verify True
File mechanism verifies that a data item in a True File
registry is indeed the correct data item given its True Name.

Once a processor has determined where (that is, at which
other processor or location) a copy of a data item is in the
DP system, that processor might need that other processor or
location to keep a copy of that data item. For example, a
processor might want to delete local copies of data items to

US 6,415,280 B1

35

make space available locally while knowing that it can rely
on retrieving the data from somewhere else when needed. To
this end the system allows a processor to Reserve (and
cancel the reservation of) True Files at remote locations
(using the remote mechanism). In this way the remote
locations are put on notice that another location is relying on
the presence of the True File at their location.

A DP system employing the present invention can be
made into a fault-tolerant system by providing a certain
amount of redundancy of data items at multiple locations in
the system. Using the Acquire True File and Reserve True
File remote mechanisms, a particular processor can imple-
ment its own form of fault-tolerance by copying data items
to other processors and then reserving them there. However,
the system also provides the Mirror True File background
mechanism to mirror (make copies) of the True File avail-
able elsewhere in the system. Any degree of redundancy
(limited by the number of processors or locations in the
system) can be implemented. As a result, this invention
maintains a desired degree or level of redundancy in a
network of processors, to protect against failure of any
particular processor by ensuring that multiple copies of data
items exist at different locations.

The data structures used to implement various features
and mechanisms of this invention store a variety of useful
information which can be used, in conjunction with the
various mechanisms, to implement storage schemes and
policies in a DP system employing the invention. For
example, the size, age and location of a data item (or of
groups of data items) is provided. This information can be
used to decide how the data items should be treated. For
example, a processor may implement a policy of deleting
local copies of all data items over a certain age if other
copies of those data items are present elsewhere in the
system. The age (or variations on the age) can be determined
using the time of last access or modification in the local
directory extensions table, and the presence of other copies
of the data item can be determined either from the Safe Flag
or the source IDs, or by checking which other processors in
the system have copies of the data item and then reserving
at least one of those copies.

In operation, the system can keep track of data items
regardless of how those items are named by users (or
regardless of whether the data items even have names). The
system can also track data items that have different names
(in different or the same location) as well as different data
items that have the same name. Since a data item is identified
by the data in the item, without regard for the context of the
data, the problems of inconsistent naming in a DP system are
overcome.

In operation, the system can publish data items, allowing
other, possibly anonymous, systems in a network to gain
access to the data items and to rely on the availability of
these data items. True Names are globally unique identifiers
which can be published simply by copying them. For
example, a user might create a textual representation of a file
on system A with True Name N (for instance as a hexadeci-
mal string), and post it on a computer bulletin board.
Another user on system B could create a directory entry F
for this True Name N by using the Link Path to True Name
primitive mechanism. (Alternatively, an application could
be developed which hides the True Name from the users, but
provides the same public transfer service.)

When a program on system B attempts to open pathname
F linked to True Name N, the Locate Remote File primitive
mechanism would be used, and would use the Locate True

10

15

20

25

30

35

40

45

50

55

60

65

36

File remote mechanism to search for True Name N on one
or more remote processors, such as system A. If system B
has access to system A, it would be able to realize the True
File (using the Realize True File from Location primitive
mechanism) and use it locally. Alternatively, system B could
find True Name N by accessing any publicly available True
Name server, if the server could eventually forward the
request to system A.

Clients of a local server can indicate that they depend on
a given True File (using the Reserve True File remote
mechanism) so that the True File is not deleted from the
server registry as long as some client requires access to it.
(The Retire True File remote mechanism is used to indicate
that a client no longer needs a given True File.)

A publishing server, on the other hand, may want to
provide access to many clients, and possibly anonymous
ones, without incurring the overhead of tracking dependen-
cies for each client. Therefore, a public server can provide
expiration dates for True Files in its registry. This allows
client systems to safely maintain references to a True File on
the public server. The Check For Expired Links background
mechanism allows the client of a publishing server to
occasionally confirm that its dependencies on the publishing
server are safe.

In a variation of this aspect of the invention, a processor
that is newly connected (or reconnected after some absence)
to the system can obtain a current version of all (or of
needed) data in the system by requesting it from a server
processor. Any such processor can send a request to update
or resynchronize all of its directories (starting at a root
directory), simply by using the Synchronize Directories
extended mechanism on the needed directories.

Using the accounting log or some other user provided
mechanism, a user can prove the existence of certain data
items at certain times. By publishing (in a public place) a list
of all True Names in the system on a given day (or at some
given time), a user can later refer back to that list to show
that a particular data item was present in the system at the
time that list was published. Such a mechanism is useful in
tracking, for example, laboratory notebooks or the like to
prove dates of conception of inventions. Such a mechanism
also permits proof of possession of a data item at a particular
date and time.

The accounting log file can also track the use of specific
data items and files by content for accounting purposes. For
instance, an information utility company can determine the
data identities of data items that are stored and transmitted
through its computer systems, and use these identities to
provide bills to its customers based on the identities of the
data items being transmitted (as defined by the substantially
unique identifier). The assignment of prices for storing and
transmitting specific True Files would be made by the
information utility and/or its data suppliers; this information
would be joined periodically with the information in the
accounting log file to produce customer statements.

Backing up data items in a DP system employing the
present invention can be done based on the True Names of
the data items. By tracking backups using True Names,
duplication in the backups is prevented. In operation, the
system maintains a backup record of data identifiers of data
items already backed up, and invokes the Copy File or
Directory operating system mechanism to copy only those
data items whose data identifiers are not recorded in the
backup record. Once a data item has been backed up, it can
be restored by retrieving it from its backup location, based
on the identifier of the data item. Using the backup record

US 6,415,280 B1

37

produced by the backup to identify the data item, the data
item can be obtained using, for example, the Make True File
Local primitive mechanism.

In operation, the system can be used to cache data items
from a server, so that only the most recently accessed data
items need be retained. To operate in this way, a cache client
is configured to have a local registry (its cache) with a
remote Local Directory Extensions table (from the cache
server). Whenever a file is opened (or read), the Local
Directory Extensions table is used to identify the True
Name, and the Make True File Local primitive mechanism
inspects the local registry. When the local registry already
has a copy, the file is already cached. Otherwise, the Locate
True File remote mechanism is used to get a copy of the file.
This mechanism consults the cache server and uses the
Request True File remote mechanism to make a local copy,
effectively loading the cache.

The Groom Cache background mechanism flushes the
cache, removing the least-recently-used files from the cache
client’s True File registry. While a file is being modified on
a cache client, the Lock Cache and Update Cache remote
mechanisms prevent other clients from trying to modify the
same file.

In operation, when the system is being used to cache data
items, the problems of maintaining cache consistency are
avoided.

To access a cache and to fill it from its server, a key is
required to identify the data item desired. Ordinarily, the key
is a name or address (in this case, it would be the pathname
of a file). If the data associated with such a key is changed,
the client’s cache becomes inconsistent; when the cache
client refers to that name, it will retrieve the wrong data. In
order to maintain cache consistency it is necessary to notify
every client immediately whenever a change occurs on the
server.

By using an embodiment of the present invention, the
cache key uniquely identifies the data it represents. When
the data associated with a name changes, the key itself
changes. Thus, when a cache client wishes to access the
modified data associated with a given file name, it will use
anew key (the True Name of the new file) rather than the key
to the old file contents in its cache. The client will always
request the correct data, and the old data in its cache will be
eventually aged and flushed by the Groom Cache back-
ground mechanism.

Because it is not necessary to immediately notify clients
when changes on the cache server occur, the present inven-
tion makes it possible for a single server to support a much
larger number of clients than is otherwise possible.

In operation, the system automatically archives data items
as they are created or modified. After a file is created or
modified, the Close File operating system mechanism cre-
ates an audit file record, which is eventually processed by
the Process Audit File Entry primitive mechanism. This
mechanism uses the New True File primitive mechanism for
any file which is newly created, which in turn uses the
Mirror True File background mechanism if the True File is
in a mirrored or archived region. This mechanism causes one
or more copies of the new file to be made on remote
processors.

In operation, the system can efficiently record and pre-
serve any collection of data items. The Freeze Directory
primitive mechanism creates a True File which identifies all
of the files in the directory and its subordinates. Because this
True File includes the True Names of its constituents, it
represents the exact contents of the directory tree at the time

10

15

20

25

30

35

40

45

50

55

60

65

38

it was frozen. The frozen directory can be copied with its
components preserved.

The Acquire True File remote mechanism (used in mir-
roring and archiving) preserves the directory tree structure
by ensuring that all of the component segments and True
Files in a compound data item are actually copied to a
remote system. Of course, no transfer is necessary for data
items already in the registry of the remote system.

In operation, the system can efficiently make a copy of
any collection of data items, to support a version control
mechanism for groups of the data items.

The Freeze Directory primitive mechanism is used to
create a collection of data items. The constituent files and
segments referred to by the frozen directory are maintained
in the registry, without any need to make copies of the
constituents each time the directory is frozen.

Whenever a pathname is traversed, the Get Files in
Directory operating system mechanism is used, and when it
encounters a frozen directory, it uses the Expand Frozen
Directory primitive mechanism.

A frozen directory can be copied from one pathname to
another efficiently, merely by copying its True Name. The
Copy File operating system mechanism is used to copy a
frozen directory.

Thus it is possible to efficiently create copies of different
versions of a directory, thereby creating a record of its
history (hence a version control system).

In operation, the system can maintain a local inventory of
all the data items located on a given removable medium,
such as a diskette or CD-ROM. The inventory is indepen-
dent of other properties of the data items such as their name,
location, and date of creation.

The Inventory Existing Directory extended mechanism
provides a way to create True File Registry entries for all of
the files in a directory. One use of this inventory is as a way
to pre-load a True File registry with backup record infor-
mation. Those files in the registry (such as previously
installed software) which are on the volumes inventoried
need not be backed up onto other volumes.

The Inventory Removable, Read-only Files extended
mechanism not only determines the True Names for the files
on the medium, but also records directory entries for each
file in a frozen directory structure. By copying and modi-
fying this directory, it is possible to create an on line patch,
or small modification of an existing read-only file. For
example, it is possible to create an online representation of
a modified CD-ROM, such that the unmodified files are
actually on the CD-ROM, and only the modified files are
online.

In operation, the system tracks possession of specific data
items according to content by owner, independent of the
name, date, or other properties of the data item, and tracks
the uses of specific data items and files by content for
accounting purposes. Using the Track for Accounting Pur-
poses extended mechanism provides a way to know reliably
which files have been stored on a system or transmitted from
one system to another.

True Names in Relational and Object-Oriented
Databases

Although the preferred embodiment of this invention has
been presented in the context of a file system, the invention
of True Names would be equally valuable in a relational or
object-oriented database. A relational or object-oriented
database system using True Names would have similar

US 6,415,280 B1

39

benefits to those of the file system employing the invention.
For instance, such a database would permit efficient elimi-
nation of duplicate records, support a cache for records,
simplify the process of maintaining cache consistency, pro-
vide location-independent access to records, maintain
archives and histories of records, and synchronize with
distant or disconnected systems or databases.

The mechanisms described above can be easily modified
to serve in such a database environment. The True Name
registry would be used as a repository of database records.
All references to records would be via the True Name of the
record. (The Local Directory Extensions table is an example
of a primary index that uses the True Name as the unique
identifier of the desired records.)

In such a database, the operations of inserting, updating,
and deleting records would be implemented by first assimi-
lating records into the registry, and then updating a primary
key index to map the key of the record to its contents by
using the True Name as a pointer to the contents.

The mechanisms described in the preferred embodiment,
or similar mechanisms, would be employed in such a
system. These mechanisms could include, for example, the
mechanisms for calculating true names, assimilating,
locating, realizing, deleting, copying, and moving True
Files, for mirroring True Files, for maintaining a cache of
True Files, for grooming True Files, and other mechanisms
based on the use of substantially unique identifiers.

While the invention has been described in connection
with what is presently considered to be the most practical
and preferred embodiments, it is to be understood that the
invention is not to be limited to the disclosed embodiment,
but on the contrary, is intended to cover various modifica-
tions and equivalent arrangements included within the spirit
and scope of the appended claims.

What is claimed is:

1. In a system in which a set of data files are distributed
across a network of servers, at least some of the data files
being cached versions of data files from a source server,
wherein the source server is distinct from the servers in the
network, a content delivery method comprising:

determining a data identifier for a particular data file on

the source server, the data identifier being determined
using a given function of the data, wherein said data
used by the given function to determine the data
identifier comprises the contents of the particular data
file; and

responsive to a request for the particular data file, the

request including at least the data identifier of the
particular data file, providing the particular data file
from a given one of the servers of the network of
servers, said providing being based on the data identi-
fier of the requested data item.

2. A method as in claim 1 wherein the given function is
a message digest function or a hash function.

3. A method as in claim 2 wherein the given function is
selected from the functions: MD4, MDS5, and SHA.

4. A method as in claim 1 wherein the given function
randomly distributes its outputs.

5. A method as in claim 1 wherein, for a particular data
file, the given function produces a substantially unique value
based on the data comprising the data file.

6. A method as in claim 1 wherein a data file may
comprise a file, a portion of a file, a page in memory, a digital
message, a digital image, a video signal or an audio signal.

7. A method as in claim 1

wherein certain processors in the network communicate

with each other using a TCP/IP communication proto-
col.

10

20

25

30

35

40

50

55

60

65

40

8. A method as in claim 1 wherein said data identifier for
said particular data file, as determined using said given
function, will change when the particular data file is modi-
fied.

9. In a system in which a set of data files are distributed
across a network of servers, some of the data files being
cached from a source server distinct from the servers in the
network, a content delivery method comprising:

determining a data identifier for a particular data file on
the source server, the data identifier being determined
using a given function of the data, wherein said data
used by the given function to determine the data
identifier comprises the contents of the particular data
file; and

responsive to a request for the particular data file, the

request including at least the data identifier of the
particular data file, causing a copy of the particular data
file to be provided from a given one of the servers of the
network of servers.

10. A content delivery method, comprising:

distributing a set of data files across a network of servers;

determining a data identifier for a particular data file, the

data identifier being determined using a given function
of the data, wherein said data used by the given
function to determine the data identifier comprises the
contents of the particular data file; and

in response to a request for the particular data file, the

request including at least the data identifier of the
particular data file, providing the particular data file
from a given one of the servers of the network of
servers, said providing being based on the data identi-
fier of the particular data file.

11. A method as in claim 10 further comprising:

determining whether the data identifier corresponds to a

data identifier of any data file present on the given
server.

12. A method as in claim 11 further comprising:

based on said determining, if the data identifier does not

correspond to a data file present on the given server,
locating the particular data file from another server.

13. A method as in claim 12 further comprising:

obtaining, on the given server, a local copy of the par-

ticular data file, from the other server.

14. A method as in claim 10 wherein at least some of the
data files distributed across the network of servers are
cached versions of data files from another server, distinct
from the network of servers.

15. A method as in claim 10 further comprising:

resolving the request for the particular data file based on

a measure of availability of at least one of the servers.

16. A method as in claim 15 wherein the measure of
availability is based on one or more of:

(a) a measurement of bandwidth to the server;

(b) a measurement of a cost of a connection to the server,

and

(c) a measurement of a reliability of a connection to the

server.

17. A method as in claim 10 wherein the data file is a
compound data file made up of various component data files,
the method further comprising:

for each component data file of at least some of the

component data files:

(2) determining a data identifier for the component data
file, the data identifier for the component file deter-
mined using the given function of the data, wherein

US 6,415,280 B1

41

said data used by the given function to determine the
data identifier comprises the contents of the compo-
nent data file; and

(b) providing the component data file from a given one
of the servers of the network of servers.

18. A content delivery method, comprising:

distributing a set of data files across a network of servers;

for a particular data file having a particular name speci-

fying a location in the network at which the data file
may be located, determining another name for the
particular data file, the other name including a data
identifier determined using a given function of the data,
where said data used by the given function comprises
the contents of the particular data file; and

in response to a request for the particular data file, the

request including the other name of the particular data
file, providing the particular data file from a given one
of the servers of the network of servers.

19. A method as in claim 18 wherein at least some of the
data files are cached versions of data files from another
server which is distinct from the network of servers.

20. A method as in claim 18 further comprising:

resolving the request for the particular data file based on

a measure of availability of at least one of the servers.

21. A method as in claim 20 wherein the measure of

availability is based on one or more of:

(2) a measurement of bandwidth to the server;

(b) a measurement of a cost of a connection to the server,

and

(c¢) a measurement of a reliability of a connection to the

server.

22. A method as in claim 18 wherein the particular data
file is a compound data file comprising various component
data files, the method further comprising:

for at least one component data file:

(2) determining a data identifier for the component data
file, the data identifier determined using a given
function of the data, wherein said data used by the
given function comprises the contents of the com-
ponent data file; and

(b) providing the component data file from a given one
of the servers of the network of servers.

23. A content delivery method, comprising:

distributing a set of data files across a network of servers,

at least some of the data files being cached versions of

data files from another server, distinct from the network
of servers;

determining a data identifier for a particular data file, the

data identifier determined using a given function of the

data, wherein said data used by the given function
comprises the contents of the particular data file; and

in response to a request for the particular data file, the
request including at least the data identifier of the
particular data file, providing the particular data file
from a given one of the servers of the network of
servers.

24. A content delivery method, comprising:

causing a set of data files to be distributed across a

network of servers, at least some of the data files being

cached versions of data files from another server dis-
tinct from the network of servers;

determining a data identifier for a particular data file, the

data identifier determined using a given function of the

data, wherein said data used by the given function
comprises the contents of the particular data file; and

10

15

25

30

35

40

45

55

60

65

42

in response to a request for the particular data file, the
request including at least the data identifier of the
particular data file, causing the particular data file to be
provided from a given one of the servers of the network
of servers.

25. A content delivery method, comprising:

distributing a set of data files across a network of servers,
the network of servers being organized into a set of
regions;

determining a data identifier for a particular data file, the
data identifier determined using a given function of the
data, wherein said data used by the given function
comprises the contents of the data file;

in response to a client request for the particular data file,
the request including at least the data identifier of the
particular data file, providing the client with the par-
ticular data file from a given one of the servers of the
network of servers within the region.

26. In a system in which a set of data files are distributed

across a network of servers, at least some of the data files

being cached versions of data files from a source server

distinct from the network of servers, a content delivery
method comprising:
responsive to a request for a particular data file, the
request including at least a data identifier of the par-
ticular data file, wherein the data identifier is deter-
mined by applying a message digest function MDS to
the data, wherein said data used by the MD35 function
to determine the data identifier is the contents of the
particular data file, providing the particular data file
from a given one of the servers of the network of
servers,
wherein a data file may be a file, a portion of a file, a page
in memory, a digital message, a digital image, a video
signal or an audio signal.
27. A content delivery method, comprising:
distributing a set of data files across a network of servers,
at least some of the data files being cached versions of
data files from another server distinct from the network
of servers;
determining a data identifier for a particular data file, the
data identifier determined using a given function of the
data, wherein said data used by the given function
comprises the contents of the particular data file, and
wherein the given function randomly distributes its
outputs; and
in response to a request for the particular data file, the
request including at least the data identifier of the
particular data file, providing the particular data file
from a given one of the servers of the network of
servers, said providing being based on the data identi-
fier of the particular data item.
28. A method as in claim 27 further comprising:
maintaining accounting information relating to the data
files; and
using the accounting information as a basis for a value-
based accounting system in which charges are based on
an identity of the data files.
29. A method as in claim 28 wherein the maintaining of
accounting information includes at least some of:
(a) tracking which data files have been stored on a system;
and
(b) tracking which data files have been transmitted from
a server.
30. A method as in claim 28 further comprising:

US 6,415,280 B1

43

ensuring that a data file is not used by an unauthorized

party.
31. A content delivery method, comprising:

distributing a set of data files across a network of servers;

determining an MDS5 hash of the contents of a particular
data file; and

in response to a request for the particular data file, the
request including at least the MDS5 hash of the particu-
lar data file, providing the particular data file from a
given one of the servers of the network of servers, said
providing being based on the MDS5 hash of the particu-
lar data file.

32. A method as in claim 31 further comprising:

resolving the request for the particular data file based on

a measure of availability of at least one of the servers.

33. A method as in claim 32 wherein the measure of
availability for a server is based on one or more of:

(2) a measurement of bandwidth to the server;

(b) a measurement of a cost of a connection to the server,
and

(¢) a measurement of reliability of a connection to the
server.
34. A content delivery method, comprising:

distributing a set of data files across a network of servers;

for a particular data file having a particular data identifier
specifying a location in the network at which the
particular data file may be located, determining another
data identifier for the particular data file, the other data
identifier including a data identifier determined using a
message digest function of the contents of the particular
data file;

in response to a request for the particular data file, the
request including the other data identifier of the par-
ticular data file, providing the particular data file from
a given one of the servers of the network of servers,
said providing being based on the other data identifier
which was determined using the message digest func-
tion.

35. A content delivery method, comprising:

distributing a set of data files across a network of servers,
at least some of the data files being cached versions of
data files from another server, said other server being
distinct from the network of servers;

determining a data identifier for a particular data file, the
data identifier including a hash of the contents of the
particular data file; and

in response to a request for the particular data file, the
request including at least the data identifier of the
particular data file, providing the particular data file
from a given one of the servers of the network of
servers.

36. A method of delivering a data file in a network
comprising a plurality of processors, some of the processors
being servers and some of the processors being clients, the
method comprising:

storing the data file is on a first server in the network and

storing copies of the data file on a set of servers in the
network distinct from the first server; and

responsive to a client request for the data file, the request

including a hash of the contents of the data file, causing
the data file to be provided to the client.

37. A method as in claim 36 wherein the data file has a
contextual name comprising a pathname including a pro-
cessor name and a file name, the method further comprising:

5

30

50

60

65

44

associating the contextual name of the data file with the
hash of the contents of the data file.

38. A method of delivering a data file in a network
comprising a plurality of processors, some of the processors
being servers and some of the processors being clients, the
method comprising:

storing the data file is on a first server and storing copies
of the data file on a set of servers distinct from the first
server; and

responsive to a client request for the data file, the request
including a value determined as a given function of the
contents of the data file, providing the data file to the
client.

39. A method as in claim 38 wherein the data file has a
contextual name comprising a pathname including a pro-
cessor name and a file name, the method further comprising:

associating the contextual name of the data file with the
value determined as the given function of the data in the
data file.

40. A method of delivering a data file in a network
comprising a plurality of processors, some of the processors
being servers and some of the processors being clients,
wherein some processors in the network communicate with
each other using a TCP/IP communication protocol, wherein
a key is required to identify a data file on the network and
wherein ordinarily the key is a name or address for the data
file, the method comprising:

storing some data files on a first server in the network and
storing copies of some of the data files on a set of cache
servers distinct from the first server;

determining a different cache key from the ordinarily used
cache key, the different cache key being a function of
the contents of the data it represents; and

responsive to a client request for the data file, the request
including the different cache key for the data file,
providing the data file to the client.

41. A method as in claim 40 wherein the function is a

message digest function or a hash function.

42. A method as in claim 41 wherein the function is
selected from the functions: MD4, MD35, and SHA.

43. A method as in claim 40 wherein the function ran-
domly distributes its outputs.

44. A framework operative in a computer network in
which users of client processors connect to a content server,
the framework comprising:

a set of content servers, distinct from the content provider
server, for hosting at least some of the data files that are
normally hosted by the content provider server;

a mechanism constructed and adapted to determine an
identifier for a data file as a given function of the
contents of a data file in the network;

wherein, in response to requests for a data file, generated
by one of the client machines the request including an
identifier based on the given function of the contents of
the particular data file, the particular data file is served
from one of the content servers.

45. A framework as in claim 44 wherein the given

function is a message digest function or a hash function.

46. A framework as in claim 45 wherein the given
function is selected from the functions: MD4, MDS5, and
SHA.

47. A framework as in claim 44 wherein the given
function randomly distributes its outputs.

48. A framework as in claim 44 wherein processors in the
network communicate with each other using a TCP/IP
communication protocol.

US 6,415,280 B1

45

49. A framework as in claim 44 wherein the data file has
a contextual name, the framework further comprising:

a mechanism constructed and adapted to associate the
contextual name of the data file with the identifier for
the data file.

50. A framework as in claim 49 wherein the contextual
name of the data file comprises a pathname including a
processor name and a file name.

51. A framework as in claim 44 wherein a data file may
be a file, a portion of a file, a page in memory, a digital
message, a digital image, a video signal or an audio signal.

52. In a network comprising a plurality of processors,
some of the processors functioning as servers and some of
the processors functioning as clients, wherein some proces-
sors in the network communicate with each other using a
TCP/IP communication protocol, wherein a key is required
to identify a data file on the network and wherein ordinarily
the key is a name or address for the data file, a method of
delivering a data file:

storing some data files on a first server in the network and
storing copies of some of the data files from the first
server on a set of cache servers distinct from the first
server;

for a particular data file, determining a different cache key
from the ordinarily used cache key for the data file, the
different cache key being determined using a message
digest function MDS5 of the data, wherein said data used
by the MDS function comprises the contents of the
particular data file; and

responsive to a client request for the particular data file,
the request including the different cache key for the
data file, causing the particular data file to be provided
to the client,

wherein the data file may be a file, a portion of a file, a
page in memory, a digital message, a digital image, a
video signal or an audio signal.

53. A framework operative in a computer network in
which users of client processors connect to a content server,
wherein processors in the network communicate with each
other using a TCP/IP communication protocol, the frame-
work comprising:

a mechanism constructed and adapted to determine a
given function of a data file in the network, the given
function being a message digest function or a hash
function;

a set of content servers, distinct from the content provider
server, for hosting at least some of the data files that are
normally hosted by the content provider server;

10

15

20

25

30

35

40

45

46

wherein, in response to requests for a data file, generated
by one of the client machines the request including an
identifier based on the given function of the contents of
the particular data file, the particular data file is served
from one of the content servers.
54. A content delivery method in a network in which at
least some processors in the network communicate with
each other using a TCP/IP communication protocol, the
method comprising:
for a particular data file having a particular name speci-
fying a location in the network at which the data file
may be located, determining another name for the
particular data file, the other name including a data
identifier determined using message digest function
MDS of the data, wherein said data used by the MD5
function comprises the contents of the particular data
file; and
in response to a request for the particular data file, the
request including the other name of the particular data
file, causing the particular data file to be provided from
a given one of the servers of the network of servers,

wherein the data file may be a file, a portion of a file, a
page in memory, a digital message, a digital image, a
video signal or an audio signal.
55. A method, in a network comprising a plurality of
processors, some of the processors functioning as servers
and some of the processors functioning as clients, wherein
some processors in the network communicate with each
other using a TCP/IP communication protocol, wherein a
key is required to identify a file on the network and wherein
ordinarily the key is a name or address for the file, the
method comprising:
storing some files on a first server in the network and
storing copies of some of the files from the first server
on a set of cache servers distinct from the first server;

for a particular file, determining a different cache key
from the ordinarily used cache key for the file, the
different cache key being determined using a message
function MDS5 of the data, wherein said data used by the
MDS function comprises the contents of the particular
file; and
responsive to a client request for the particular file, the
request including the different cache key for the file,
causing the particular file to be provided to the client,

wherein the data in the file may represent a digital
message, a digital image, a video signal or an audio
signal.

