EXHIBIT B

http://dockets.justia.com/docket/texas/txedce/6:2012cv00660/139824/
http://docs.justia.com/cases/federal/district-courts/texas/txedce/6:2012cv00660/139824/1/2.html
http://dockets.justia.com/

OO

a2z United States Patent (10) Patent No.: US 6,415,280 B1
Farber et al. 45) Date of Patent: *Jul. 2, 2002
(54) IDENTIFYING AND REQUESTING DATA IN 5638443 A 6/1997 Stefik et al. ..o 705/54
NETWORK USING IDENTIFIERS WHICH 5640564 A * 6/1997 Hamilton et al. 709/303
ARE. BASED ON CONTENTS OF DATA 5,802,291 A 9/1998 Balick et al. 709202
: 5,809,494 A * 91998 Nguyenvveeeinnes 70711

. i Tar . 5907,704 A 511999 Gudmundson et al.
(75) Inventors: g‘“’“} fl-)F‘I‘;b‘l’lr : Olalhc‘?h(bus)i; L 6,006,018 A * 12/1999 Bummell et al. 395/200.49
(1?;)& - Lachiman, Northbroo 6134603 A * 10/2000 Jones ef al. .oooovr..orrn... 7097330

OTHER PUBLICATIONS
(73) Assignees: Kinetech, Inc., Northbraok, IL (US);
Digital Island, Ine., San Francisco, CA Gwertzman, James, et al. “The Case for Geographical Push-

(US) Caching.” Technical Report HU TR 34-94 (excerpt), Har-
vard University, DAS, Cambridge, MA 02138, 1594, 2 pgs.
(*) Notice: Subject to any disclaimer, the term of this Grigni, Michelangelo, et al. “Tight Bounds on Minimum
patent is extended or adjusted under 35 Broadcasts Networks.” SIAM Journal of Discrete Math-
U.5.C. 154(b) by G days. ematics, vol. 4, No. 2, May 1991, pp. 207-222.
This patent is subject to a lerminal dis- (List continued cn next page.)
claimer.

Primary Examiner—Jean R. Homere
(74) Attorney, Agent, or Finn—Pillsbury Winthrop LLP
[niellectual Property

(57 ABSTRACT

{21) Appi. No.: 09/283,160
(22) Filed: Apr. 1, 1999

Related U.S. Application Data In a system in which a set of data items are distributed across

o o a nelwork of servers, at leas! some of the data items being

(62) Division of application No. 08/960,079. filed on Oct, 24, cached versions of data items from a source server, a content
1997, now Pat. No. 5,978,791, which is a coatinuation of deli hod includes d L. data identifier £

applicalion No, 08/425,1()0, filed on Apl’ 11, !995, now & IYEfy metho Ilﬂc udes ﬂtcrﬂ?lﬂlnlg a ala'l entifier -01.' a

abandoned. particular data item, the data identifier being determined

7 . using a given function of the data comprising the particular

e - GOGF 17/30 data item; and responsive to a request for the particular data

(52) US.ClL ... n707/2 707/3 707/10; item, the request including at least the data identifier of the

. 707"]01 709 203; 709/219; 709/229 particular data item, providing the particular data item from

(58) Ficld of Search 707/3, 10, 101, a given one of the servers of the network of servers. The

707/2: 709[203: 219, 279 request for the particular data item may be resolved based on

a measure of availability of at least one of the servers, where

(56) References Cited the measure of availability may be a measurement of band-
U.S. PATENT DOCUMENTS width to the server; a measurement of a cost of a connection
to the server, and/or a measurement of a reliability of a
4922417 A 51990 Churm &t al. wceeoeeees 7071 oonpection to the server. The function used to determine the
5202982 A v 411993 Gramlich et al. e 10772 identificr may be a message digest function or & hash
5,287.49% A 2/1994 Nemes ... s 02 [enction
5341477 A 871994 Pitkin o al, .. e TORS226 ’
5432447 A * 9/1995 Nelsonetal ... e TOT4205
5,542,087 A 7/1996 Neimal et al. ...cccovevrnnes 707710 55 Claims, 31 Drawing Sheets
PROCESSOR 102 K

102 102

STORAGE STORAGE
BEVICE LR DEVICE PROCESSOR! « & « PROCESSOR

| | e

708

' CPU 55
102 102 03 i AL
PROCESSOR| PROCESSOR, PROCESSOR| i
130

2

STORAGE GFL

EVIGE
. _ g7}
34D

US 6,415,280 Bl
Page 2

OTHER PUBLICATIONS

Devine, Robert. “Design and Implementation of DD A
Distributed Dynamic Hashing Algorithm.” In Proceedings
of 4th International Conference on Foundations of Data
Organizations and Aigorithms, 1993, pp. 101-114.
Deering, Stephen, et al. “Multicast Routing in Datagram
Internetworks and Extended LANs.” ACM Transactions on
Computer Systems, vol. 8§, No. 2, May 1990, pp. 85-110.
Cormen, Thomas H., et al. Introduction to Algorithms, The
MIT Press, Cambridge, Massachusetts, 1994, pp. 219-243,
991-993,

Naar, Moni, et al. “The Load, Capacity and Availability of
Quorum Systems.” In Proceedings of the 35th IECE Sym-
positm on Foundations of Computer Science, Nov. 1994,
pp. 214-225.

Nisan, Noam. “Psuedorandom Generators for Space—
Bounded Computation.” In Proceedings of the Twenty—
Second Annuat ACM Symposium on Theory of Computing,
May 1990, pp. 204212,

Palmer, Mark &t al. “Fido: A Cache that Leams to Feich.” In
Proceedings of the 17th Inlernational Conference on Very
Large Data Bases, Sep. 1991, pp. 255-264.

Peleg, David, et al. “The Availability of Quorum Systems.”
Information and Computation 123, 1995, 210-223.

Rabin, Michacl. “Efficient Dispersal of Information for
Sceurity, Load Balancing, and Fault Tolerance.” Joumnal of
the ACM, vol. 36, No. 2, Apr. 1989, pp. 335-348.

Ravi, R., “Rapid Rumor Ramificalion: Approximating the
Minimum Broadcast Time.” In Proceedings of the 35th
IEEE Symposium on Foundation of Computer Science, Nov.
1994, pp. 202-213.

Schmidt, Jeanette, et al, “Chernoff~Hoeflding Bounds for
Applications with Limited Independence.” In Proceedings
of the 4th ACS-SIAM Symposium on Discrete Algoritbms,
1993, pp. 331-340.

Tarjan, Robert Endre, et al. “Storing a Sparse Table.”
Communications of the ACM, vol. 22, No. 11, Nov. 1979,
pp. 606-611.

Wegman, Mark, et 2l. “New Hash Functions and Their Use
it Authentication and Sei Equality.” Journal of Compuier
and System Sciences vol. 22, Jun. 1981, pp. 265-279.

Vitter, Jeffrey Scott, et al. “Optimal Prefetching via Data
Compression.” In Proceedings of 32nd IEEE Symposium on
Foundations of Computer Science, Nov. 1991, pp. 121-130,

Fredman, Michacl, et al. “Storing a Sparse Table with O(1)
Worst Case Access Time.” Journal of the Association for
Computing Machinery, vol. 31, No. 3, Jul. 1984, pp.
538-544.

Yao, Andrew Chi-Chih. “Should Tables be Sorted?” Journal
of the Association for Computing Machinery, vol. 28, No. 3,
Jul. 1981, pp. 615-028.

Floyd, Sally, et al. “A reliable Multicast Framework for
Light-Weight Sessions and Application Level Framing.” In
Proceedings of ACM SIGCOMM °95, pp. 342-356.

Feeley, Michael, et al. “Implementing Global Memory Man-
agement in 2 Workstation Cluster.” In Proceedings of the
15th ACM Symposium on Operating Systems Principles,
1995, pp. 201-212.

Carter, J. Lawrence, el al. “Universal Classes of Hash
Functions.” Journal of Computer and System Sciences, vol.
18, No. 2, Apr. 1979, pp. 143154,

Patent Abstracts of Japan, “Electronic Mail Multiplexing
System and Communicatior Control Method in The Sys-
tem.” Jun. 30, 1993, JP 051625203,

Kim et al.,, “Experiencess with Tripwire: Usinglntergrity
Checlkers For Intruosion Detection”, Coast Labs. Dept. of
Computer Sciences Purdue University, Feb. 22, 1995, pp.
1-12.

Kim et al., “The Design and Implementation of Tripwire: A
fite System Integeity Checker”, Coast Labs. Dept. of Com-
puter Sciences Purdue University, Nov. 18, 1993, pp. 1-21.

* cited by examiner

US 6,415,280 B1

Sheet 1 of 31

Jul. 2, 2002

U.S. Patent

a01
¥OSSIV0Ud ¥0SSID0YUd ¥0SSIO0Ud
20l 201 “o01
301
¥0SS3D0Yd M0SS$AO0Ud 2onaa |, ., . 20IA3A
2OVYOLS 9VHOLS
(0)I ©OId

US 6,415,280 B1

Sheet 2 of 31

Jul. 2, 2002

U.S. Patent

e e e T = T s = ma m e — s ———

1437
ERIRE(
J9VH01S
ndd
801
HOSS300Ud

" 19

" avs 851

m ¥SL

! 1

" 149 acl

” zs1

" 18

: aws 0S1

! 951

m 1y

“ W 82l

“ vEl

' -E1

“ 4V 9zl

" Zel

! aqal

m AHOWAN ek

: 0Ll

_ 20}

e e e e e
L

(4)1 914

US 6,415,280 B1

Sheet 3 of 31

Jul. 2, 2002

U.S. Patent

ININOH3S

LNIWOLAS 1NIWO3S

2z zz))
374 3714 114
0z1 0z 0zh
AMOLOSNIG ANOLOIHIA AHOLOINIA
8LL 8Ll gLl
NOIOTY NOI93Y " NOIO3Y NOIOTY
— LY I i
WILSAS 2 9Old
—

oLl

U.S. Patent Jul. 2, 2002 Sheet 4 of 3t US 6,415,280 B1

FIG. 3

Region ID

138

Pathname

True Name
Type
File ID

Time of last access

Time of last modification
Safe flag
Lock flag

Bize

Owner

FIG. 4

True Name
File ID

140

Conpressed File ID

Seource IDs

Dependant pProcessors

Use count

Time of last access

Expiration

Grooming delete count

42

Region ID

Region file system

Region pathname

Region status

Mirror processor(s)

Mirror duplication count

Policy

FIG.5

US 6,415,280 B1

Sheet 5 of 31

Jul. 2, 2002

U.S. Patent

S9SULOTT

smeEN onIJ

osl

suey onir

Axjus Jo addl

Aajue Jo 23®p

8t

DWeN ongl

amBuyleq

s TERTEET A

dl JI0ss900ad

adAg

uotTaleIado

smeN Teutbrao

ovl

UGT}E00] 90IN0S8

AJTITARTTRAR @oanos

s3UbYI ®oxnos

2¢A]} 20IN0s

dI =202aInos

a7l

6 914

8 '9l4

4 9ld

9 9Old

U.S. Patent Jul. 2, 2002 Sheet 6 of 31 US 6,415,280 B1

FIG. 10(a)

SIMPlE

DATA ITEM

S212 | ‘

COMPUTE MD FUNCTION ON
DATA ITEM

A 4
5214

APPEND LENGTH MODULO 32 OF
DATA ITEM

- em e em o e e e e o n A o e e em e e o e
o m am o e Mm v e Am WL wm e G B ok e M P A e wm e W T

e AR e i e e A e o e e e mmll e e M e ER mm mm e e Ew o o o =

U.S. Patent Jul. 2, 2002 Sheet 7 of 31 US 6,415,280 Bl

°_‘1 FIG. 10(b)

S216

-YES DATA ITEM
SIMPLE?
§220
PARTITION DATA ITEM INTO
SEGMENTS
5222
ASSIMILATE EACH SEGMENT
(COMPUTING ITS TRUE NAME)
_______ Y. ____.
/ 5218 S
: COMPUTE TRUE |
: NAME OF SIMPLE |
““““““““ CREATE INDIRECT BLOCK OF
SEGMENT TRUE NAMES
5226

ASSIMILATE INDIRECT BLOCK
(COMPUTING [TS TRUE NAME)

5228
REPLACE FINAL 32 BITS OF TRUE
NAME WITH LENGHT MOD 32 OF DATA
TEM

US 6,415,280 B1

Sheet 8 of 31

Jul. 2, 2002

U.S. Patent

+

al 3714 3¥oLs
6E£¢S

+

o

Q1 A714 IAVH
Ad1Nd 8304

!

Qi 3714 313134
BECS

S3A

LAYLSIOTY

SJA

74 INYL NI 1S3
JNVYN 3NYL 8300

JWYN INAL
ANIWYEL3A

0eCs

+

%

Sa1314 Y¥Y3aHLO 13S »
ai3Td IL0LS «

} OL INNOD ISN 13S »
AYLNT M3IN 3LVIYHD &

9ees

RESIE

U.S. Patent Jul. 2, 2002 Sheet 9 of 31 US 6,415,280 Bl

FIG. 12

5238 5240
YES

»| DEPENDENCY
LOCKED?
/ LIST
NO l

S242
SEND MESSAGE TO
Y‘ CACHE SERVER TO
S244 UPDATE CACHE
COMPRESS
(IF DESIRED)
3246
MIRROR

(IF DESIRED)

oot -

”
U.S. Patent Jul. 2, 2002 Sheet 10 of 31 US 6,415,280 Bl

l FIG.13
5250
SEARCH FOR
THE NOT EQLIND > FAIL
PATHNAME

LDE INCLUDES NO

JRUE NAME?

YES
$258
q— ASSIMILATE LDE IDENTIFIES
FILE ID DIRECTORY?
5256
{— FREEZE
DIRECTORY

U.S. Patent Jul. 2, 2002 Sheet 11 of 31 US 6,415,280 B1

5260

CONFIRM THAT
TRUE NAME
EXISTS LOCALLY

v FIG.14

SEARCH FOR
PATHNAME IN
LDE TABLE

5264

CONFIRM THAT
DIRECTORY
EXISTS

S266

YES 5268
NAMED FILE p| DELETE
EXISTS? TRUE FILE

8270
CREATE
ENTRY IN LBE
& UPDATE

US 6,415,280 B1

Sheet 12 of 31

Jul. 2, 2002

U.S. Patent

!

(azuIs3a
_ p| AT g
INYL AJNMEA
4L 2878
OLNiI G3NUNL3Y 3714 anid
T4 INYL YILNA 0829
9,28 %
A
Tivd
ISNOJdS3Y
IALLISOd
ASNOdSaY
¥Od LIvM LNNOW
2 3OVSSAN 1s3noay
414 aN3s
)78 3SNOJS3Y 8.3
IAILYOIN
2H0SS300Y

S3A

V NOILVOO01 Sl

ON

US 6,415,280 Bl

Sheet 13 of 31

Jul. 2, 2002

U.S. Patent

(D)9l

JE

Tivd

ON

ISNOJSTY
3nijisod
S1IVM
IN3ND _
88¢S 1N03wiL
A ¥0
FSNOJSTY
s1lsvoavous FJALLYDIN
IN3IMD
98zs

S3A

a3aloaa
SY0SS3a00Ud
ANY
§87S

(S)0ssH00ud
$103138
N3O
ygZs

;7

US 6,415,280 Bl

Sheet 14 of 31

Jul. 2, 2002

U.S. Patent

181 0.l Qv aNY

PN

. (NZLSAS

31Va NOWLVAIXE g - >|A ONIHSIgNd

INIWY313d
P16¢S

. SI3NUNOs
20623

X

SAVN INYL
H04d 801 32JN0S Ol
al NOILYJ0713DUN0S
aav 2 INVYN INYL
¥Od ¥l 4N MOOT
H062S

A

SFA

¢NOILVNILSAG
WOY SH3441a 3NVYN
3MN¥1l 40 3UN0S

oN—P}

HOSSd00Ud
FORANOS NO
3714 3NYL JALISTY
01 39VSSIN aN3s

018¢S

Qi HOSS3D0U

IOLS
062S

1

(d)9l 9Old

US 6,415,280 B1

Sheet 15 of 31

Jul. 2, 2002

U.S. Patent

-

441374
QSS3aUdINCD

SSEUL4INOD3AA

86¢2S SIA

062S

ZAUINT SIHL
Hod4 al 374

<INVN
AMAL HOL U4L NI

%

CIVARDLIE

US 6,415,280 B1

Sheet 16 of 31

Jul. 2, 2002

U.S. Patent

(9)L1'91d

S3A

{s)anunos
Wo¥d4 31
INYL AZ1vaY

80es

QNEO /

a1 3doLs
00€sS

SQI 30UN0S N EREETTE
_ __S0] 30¥N0S_y)|
lo3as TUON ON 31V901]
p0es 80£S
A
¥asn
A4ILON
20ES
1 ¥

US 6,415,280 B1

Sheet 17 of 31

Jul. 2, 2002

U.S. Patent

—y—

Y201 A7
INYL IUYIN

[4425)

%

C

<371 INL

3NOa

4s74<_ ¥od a3

(D)8I 914

3NUL 40 Ad03 39

aNOg
14 HOLVHOS
M3IN 3LVIUD

0ZeS

714 InuL +
313730 C
8188

%l (374

IMYL ONILSIXT

S3A

434

S3ALLNAAI 30G7
gles

US 6,415,280 B1

Sheet 18 of 31

Jul. 2, 2002

U.S. Patent

AYLN3

A4l JAONTY
? 41374 3AVS

8cts

A

STA

1

NNOD 38N
9ces

INNOD
IsSnN INIWINO3A
‘79V.L3AT NI
dl 3714 3¥oLs ‘I
M3N Ol 3714 AdOD
0EES

A

ON

(4)81 914

US 6,415,280 Bl

Sheet 19 of 31

Jul. 2, 2002

U.S. Patent

374
AMOLD3¥Ia
QaLVIINISSYNA
JLVIINISSY Al mvwwwmu_ <
985S
(D)6l 914

—

W3l viva
M3N J1V340

LEES

\>m0._.omm5 N3Al

ANV 371d

ALVNIqHO4gns
HOVY3 ¥Od

o)

JHL NI AMOLO3¥Ia

J

AJ07 2334
JININAHONI

[ARNSS

!

US 6,415,280 B1

Sheet 20 of 31

Jul. 2, 2002

U.S. Patent

(9)el 914

NOILVINYOINI
aduis3aa
TVYNOILIaay
qyoo3d
OveS

———

W3l
YiVad M3N
Ol AY.LN3 aav
8EES

————

!

AO01
43344 IHL
R EHE e (4]

pres

W3Ll V1va AMEN
JHL LY INISSY

CYES

H

[)

AHOLOIHIA NIAID
dHL NI AMOLO3YIa
aNv 374
JLVNIqHOdans
HOV3 ¥Od

1

US 6,415,280 B1

Sheet 21 of 31

Jul, 2, 2002

U.S. Patent

HJINVYN IMIL
O.L HLVd MNIN

¢8ES

kﬁ

JWVNHLVd
TINA 31v3aH0

0GES

»,

AdOLO3MId
av3ay

gvesS

| ——SINIINT

mmoﬁlﬁ

AY1IN3I
Ad0OLOIA
HOV3 404
mmmw

-

vo0T ITid
ANAYL IANVIN

9yesS

P

SARNMLINT
FAON ON

E
pGES

02 9Old

U.S. Patent Jul. 2, 2002 Sheet 22 of 31 US 6,415,280 B1

y

S354
WAIT FOR
FREEZE LOCK
TO TURN OFF

§356
FIND TFR FIG. 21

ENTRY

5358
DECREMENT
REFERENCE

COUNT

REFERENCE GOUNT IS YES DSE’;?-E
ZERO & NO DEPENDENT TRUE FILE
SYSTEMS IN TFR?
NO
Y
$364

REMOVE FILE ID |
< AND COMPRESSED

¢ FILE ID

Sheet 23 of 31

U.S. Patent Jul. 2, 2002

!

5365

GET
OPERATION

FIG. 22

3366

US 6,415,280 B1

S368
Cf;ﬂEogﬁYq?R YES ASSIMILATE
S360
NEW TRUE
COPY OR DELETE YES FILE
COMPOUND? l
S378 S370
NO MODIEY USE RECORD TRUE
COUNT OF EACH NAME IN AUDIT
COMPONENT FILE
4 l
Y
S379

FOR EACH PARENT
DIRECTORY OR FILE,
UPDATE USE COUNT,
LAST ACCESS AND
MODIFY TIMES

!

U.S. Patent Jul. 2, 2002 Sheet 24 of 31 US 6,415,280 B1

v

S382

VERIFY
F' G 23 GROOMING
LOCK OFF

5384
SET
GROOMING
LOCK

S386

SET GROOM
COUNTS

U.S. Patent Jul. 2, 2002 Sheet 25 of 31 US 6,415,280 B1

5388

FIND LDE
RECORD

FIG. 24

8390

FIND TFR
RECORD

85392

INCREMENT
GROOMING
DELETE COUNT

S394

ADJUST FILE
SIZES

U.S. Patent Jul. 2, 2002 Sheet 26 of 31 US 6,415,280 Bl

FIG. 25

S396
DELETE
FILE

A 4
S398
UNLOCK
GROOMING
LOCK

US 6,415,280 Bl

Sheet 27 of 31

Jul. 2, 2002

U.S. Patent

&
HOL1VdOS

N3dO - - - -
6LYS 1igiHoud a
AL
+| AHOLITHIR
STA AINC-aV3y
LATNO
SIA avay ON
oL¥S
NOI93Y N3dO 2a3LVaND
E| S EETE] 11giHOYd [€—¢ ONIZd
govs yors 2068
ZATTIVO01
SIA S1SIX3 A4 ON
(P)92 9l

US 6,415,280 Bl

Sheet 28 of 31

Jui. 2, 2002

U.S. Patent

a

(9)92 914

I

¥4l WOHd
a1 3714 NYnLad
'8 NOISH3A
IVO0T 3NV
0eps

'

A

AdQD
HO1VHOS
JLVEHO
LL¥S

L

o

aaxao
LON di X001

2L¥S

A

S3A

al
3714 HOLVMOS |
NYAL3Y !
AL
3714 HOLYYOS
I1VIANO
o0FS
Yy
Fuaasva|
1 __ievs
NILLINMEY A

AF131dNOD
ONi=d

8L¥S

US 6,415,280 Bl

Sheet 29 of 31

Jul. 2, 2002

U.S. Patent

(0)L2 9Oi

NOILZT3a
LigiHOYd

€—gax

-

JAVN
INYLWO¥MLA 3T
FNYL AJLINIAI

yevsS

A
ON

4AH0L03¥Id

ATNO-avaY
NI O Gax¥0071 314
HJO QY00 3a7 O

and
04 SAUO0J3Y
AYLNZ 1Y
'? 347 3ININY3130

(444

1

US 6,415,280 B1

Sheet 30 of 31

Jul. 2, 2002

U.S. Patent

374 Lanvy 3NO AS INNOD
OL A¥iNa aav | asn IoNa3y
92vs LEYS
i £

394 3L
313130
0ErS ON
314 40 Xzo
AdO2 HOLVNOS Sax SILNNOD 3SN
213730 s34 INYL
12¥S
SAWVN aNNL

ON

ON SYH 31d

S3A

US 6,415,280 B1

Sheet 31 of 31

Jul. 2, 2002

U.S. Patent

HASNOdS3Y
JAILVOIN

8EVS

»

0

LQ3AHVAUOL
39 01 1s3Nn0ay

183Ny

S3A Pl auvYMEOS [0

(4445

LANNO

8¢ 914

ON

ASNOJS3Y
JAILISOd

A4S

A

S3A

&at a1

azass3aUdNOD UO
at 27141 s3anToN

yevs

SWYN Nl
dNX007

[AN4S)

1

S3aA

US 6,415,280 Bl

1

IDENTIFYING AND REQUESTING DATA IN
NETWORK USING IDENTIFIERS WHICH
ARE BASED ON CONTENTS OF DATA

This is a division of application Ser. No. 08/960,079,
filed Oct. 24, 1997, now U.S. Pat. No. 5,978,751 filed Oct.
24, 2001 which is a continuation of Ser. No. 08/425,160,
filed Apr. 11, 1995, now abandoned.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to data processing systems and,
more particularly, to daia processing systems wherein data
items are identified by substantially unique identifiers which
depend on all of the data in the data items and only on the
data in the data items.

2. Background of the lnvention

Data processing (DP) systems, computers, networks of
computers, or the like, typically offer uscrs and programs
various ways to identify the data in the systems.

Users typically identify data in the data processing system
by giving the data some form of name. For example, a
typical operating system (OS) on a computer provides a file
system in which data items arc named by alphanumeric
identifiers. Programs typically identify data in the data
processing system using a location or address. For cxample,
a program may identify a record in # file or database by using
a record number which serves to locate that record.

In all bu the most primitive operating systems, users and
programs are able o create and use collections of named
data ilems, these collections themselves being named by
identifiers. These named collections can then, themselves,
be made part of other named collections. For example, an
0S may provide mechanisms to group files (data items) into
directories {collections). These directories can then, them-
selves be made part of other directories. A data ilem may
thus be identified relative to these nested directories using a
sequence of names, or & so-called pathname, which defines
a path through the directories to a particular dala item (file
or directory).

As another example, a database management sysiem may
group data records (data items) into tables and then group
these tables into database files (collections). The complete
address of any data record can then be specified using the
database file name, the table name, and the record number of
that data record.

Other examples of identifying data items include: identi-
fying files in a network file system, identifying objects in an
object-oricnted database, identifying images in an image
database, and idenifying articles in a text database.

In general, the terms “data” and “data item” as used herein
refer to sequences of bits. Thus a data item may be the
contents of a fle, a portion of a file, a page in memory, an
object in an object-oriented program, a digital message, a
digital scanned image, a part of a video or audio signal, et
any other entity which can be represented by a sequence of
bits. The term “data processing” herein refers to the pro-
cessing of data items, and is sometimes dependent ou the
type of data item being processed. For cxample, a data
processor for a digital image may differ from a data pra-
cessor for an audio signal.

In alt of the prior dafa processing systems the nzmes or
identifiers provided to identify data items (the data items
being files, directories, records ia the database, objects in
objeci-oriented programming, locations in memory or on a

30

50

35

60

2

physical device, or the like) are always defined relative 10 a
specific context. For instance, the file identified by a par-
ticular file name can only be determined when the directory
containing the file (the context) is known. The file identified
by a pathname can be determined only when the file system
(context) is known, Similarly, the addresses in a process
address space, the keys in a database table, or domain names
on a global computer network such as the Internet are
meaningful only because they are specified relative to a
coniext.

In prior art systems for identifying data itemos there is no
direct relationship between the data names and the data item.
The same data name in two different contexts may refer to
different data items, and two different data names in the
same conlext may refer to the same data item.

In addition, because there is no correlation between a dala
name and the data it refers to, there is no a priori way to
confirm that a given data item is in fact the one named by a
data name. For instance, in a DP system, if one processor
requests that another processor deliver a data item with a
given data name, the requesting processor cannot, n
peneral, verify that the data delivered is the correct data
(given only the name). Therefore it may require further
processing, typically on the part of the requestor, to verify
that the data item it has cbtained is, in fact, the itern it
requested.

A common operation in a DP system is adding a new data
item to the system. When a new data ilem is added to the
syslem, a name can be assigned to it only by updating the
contexl in which names are defined. Thus such systems
require a centralized mechanism for the management of
names. Such a mecharism is required even in a multi-
processing system when data items are created and identified
at separate processors in distinct locations, and in which
there is no other need for communication when data items
are added.

In many data processing systems or emvironments, data
iterns ate transferred between different locations in the
systern. These locations may be processors in the data
processing system, storage devices, memory, or the like. For
example, one processor may abtain a data item from anctber
processor or from an external storage device, such as a
floppy disk, and may incomparate that data item inio its
system (using the name provided with that data ilem).

However, when a pracessor (or some location) obtains a
data item from another location in the DP system, it is
possible that (his oblained data item is already present in the
system (either at the location of the processor or at some
other location accessible by the processor) and therefore a
duplicate of the data item is created. This situation is
common in a netwark data processing environment where
proprietary software products are installed from floppy disks
onto several processors sharing & common file server. In
these syslemns, il is often the case that the same product will
be installed on several systems, 5o that several copies of
each file will reside on the common file server.

In some data processing systems in which several pro-
cessors are connecled in a network, one syslem is designated
as a cache server 1o maintain master copies of data ilems,
and other systems are designated as cache clients to copy
local copies of the master data items into a local cache on an
as-needed basis. Before using a cached item, a cache client
must cither reload the cached item, be informed of changes
10 the cached item, or confirm that the master item corre-
sponding to the cached item has not changed. In other words,
a cache chent must synchronize its data items with those on

US 6,415,280 Bl

3

the cache server. This synchronization may involve rcload-
ing data items onto the cache client. The need to keep the
cache synchronized or reload it adds significant overhead 10
existing caching mechanisms.

In view of the above and other problems with prior art
syslems, il is therefore desirable to have a mechanism which
aHows each processor in a multiprocessor system to deter-
mine a common and substantialy unique identifier for a data
itern, using only the data in the data item and not relying on
any sorl of context,

1t is further desirable to have a mechanism for reducing
multiple copies of data items in a data processing system and
to have a mechanism which cnables the identification of
identical data ilems so as to reduce multiple copies. It is
further desirable to determine whether twe instances of a
data ilem are in fact the same data item, and to perform
various other systems’ functions and applications on data
iterns without relying on any context information or prop-
erties of the data item.

It is alse desirable 1o provide such a mechanism in such
a way as to make it transparent to users of the data
processing system, and it is desirable that a single mecha-
nism be used to address each of the problems described
above.

SUMMARY OF THE INVENTION

This invention provides, in a data processing system, a
method and apparatus for identifying 2 data item in the
system, where the identity of the data item depends on all of
the data in the data item and only on the data in the data item.
Thus the identity of a data item is independent of its name,
origin, location, address, or other irformation not derivable
directly from the data, and depends only on the data itself.

This invention further provides an apparatus and a method
for determining whether a particular date item is preseant in
the system or at a location in the system, by examining only
the data identities of a plurality of data items.

Using the method or apparatus of the present invention,
the efficiency and integrity of a data processing system can
be improved. The present invention improves the design and
operation of a data storage system, file system, relational
database, object-oriented database, or the like that stores a
plurality of data items, by making possible or improving the
design and operatioa of at least some or all of the following
features:

the syslem stores al most one copy of any data ilem at a

given location, even when multiple data names in the
system refer to the same contents;

the system aveids copying data ffom source to destination

locations when the destination locations already have
the data;

the system provides transparent access to any data item by
reference only to iis identity and independent of its
preseat location, whether it be local, remote, or offline;

the system caches data items from a server, so that only
the most recently accessed data items need be retained;

when the system is being used 10 cache data items,
problems of maintaining cache comsistency are
avoided;

the system maintains a desired level of redundancy of data
items in a network of servers, to protect against failure
by cnsuring that multiple copics of the data ilems are
present at different locations in the system;

the system automatically archives data items as they are
created or maodified;

10

2¢

a5

60

4

the system provides the size, age, and location of groups
of data items in order to decide whether they can be
safely removed from a local file system;

the system can efficiently record and preserve any coi-
fection of data items;

the system can efficienily make a copy of any collection
of data items, to support a version control mechanism
for groups of the data items;

the system can publish data items, allowing other, possi-
bly anonymous, systems in a network to gain access lo
the data items and to rely on the availability of the data
items;

the system can maintain a local inventory of all the data
items located on a given removable medium, such as a
diskette or CD-ROM, the inventory is independent of
other properties of the data items such as their name,
location, and date of creation;

the system allows closely related sets of data items, such
as matching or corresponding directories on discon-
nected computers, 10 be periodically resynchronized
with one another;

the system can verify that data retrieved from another
location is the desired or requested data, using only the
dala identifier used to retrieve the data;

the system can prove possession of specific data items by
content without disclosing the content of the data items,
for purposes of later legal verification and to provide
anonymity;

Ihe system tracks possession of specific data items accord-
ing to content by owner, independent of the name, date,
or other properties of the data item, and tracks the uses
of specific data items and files by content for account-
ing purposes.

Other objects, features, and characteristics of the present
invention as well as the methods of operation and functions
of the related elements of structure, and the combination of
parts and economies of manufacture, will become more
apparent upon consideration of the following description
and the appended claims with reference to the accompany-
ing drawings, all of which form a part of this specification.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1(a) and 1(b) depict a typical data processing
system in which a preferred embodiment of the presemt
invention operates;

FIG. 2 depicts a hierarchy of data items stored at any
location in such a data processing system;

FIGS. 3-9 depict data structures used 1o implement an
embodiment of the present invention; and

FIGS. 10{2)-28 arc flow charis depicting operation of
various aspects of the present invenlion.

DETAILED DESCRIPTION OF THE
PRESENTLY PREFERRED EXEMPLARY
EMBODIMENTS

An embodiment of the present invention is now described
with reference to a typical data processing system 100,
which, with reference to FIGS. 1(a) and 1(}), includes one
or more pracessors (ar computers) 102 and various storage
devices 104 connected in some way, for example by a bus
106.

Each processor 102 includes a CPU 108, 2 memory 110
and one or mare local storage devices 112. The CPU 108,
memory 110, and local storage device 112 may be internally

US 6,415,280 Bi

5

connected, for example by a bus 114. Each processor 102
may also include other devices (not shown), such as a
keyboard, a display, a printer, and the like.

In a data processing system 100, wherein more than one
processor 102 is used, that is, in a multiprocessor system, the
processors may be in ooe of various relationships. For
example, two processors 102 may be in a client/server,
client/client, or a server/server relationship. These inter-
processor relationships may be dynamic, changing depend-
ing on particular situations and functions. Thus, a particular
processor 102 may change its relationship to other proces-
sors as needed, essentially setting up a peer-to-peer relation-
ship with other processors. In a peer-to-peer retationship,
sometimes a particular processor 102 acts as a clieat
processor, whereas at other times the same processor acts as
a server processor. In other words, there is no hierarchy
imposed on or required of processors 102.

Ir a multiprocessor system, the processors 102 may be
homogeneous or heterogeneous. Further, in a muliiprocessor
data processing system 100, some or all of the processors
102 may be disconnected from the network of processors for
periods of time. Such disconnection may be part of the
rormal operation of the system 100 or it may be because a
particular processor 102 is in need of repair,

Within a data processing system 100, the data may be
organized to form a hierarchy of dala storage elements,
wherein lower level data storage elements are combined to
form higher level elements. This hierarchy can consist of, for
example, processars, file systems, regions, direclories, data
files, segments, and the like. For example, with reference 1o
FIG. 2, the data items on a parlicular processor 102 may be
organized or structured s a file system 116 which comprises
regions 117, each of which comprises directories 118, each
of which can contain other directories 118 or files 120. Each
fite 120 being made up of one or more data segmenls 122.

In a typical data processing system, some or all of these
elements can be named by users given cerlain implementa-
tion specific naming conventions, the name (or pathname) of
an element being relative to a context, In the context of a
data processing system 100, a pathname is fully specified by
a processor name, a filesystem name, a sequence of zero or
more directory names identifying nested directories, and a
final file name. (Usually the lowest level clements, in this
case segments 122, cannot be named by users.)

In other words, a file system 116 is a collection of
directories 118. A directory 118 is a collection of named files
120—both data files 120 and other directory files 118. A file
120 is 2 named data item which is either a data file (which
may be simple or compound) or a dircctory file 118. A
simple file 120 consists of a single data segment 122. A
compound file 129 consists of a sequence of data segments
122, A data segment 122 is a fixed sequence of bytes. An
imporiant property of any data segment is ils size, the
number of bytes ia the sequence.

A single processor 102 may access one or more file
systems 116, and a single storage device 1(4 may contain
one or more file systems 116, or portions of a file systemn 116.
For instance, a file system 116 may span several storage
devices 104.

In order to implement coatrols in a file system, file system
116 may be divided into distinct regions, where each region
is a unit of management and control. A region consists of a
given directory 118 and is identified by the pathmame (user
defined) of the directory.

In the following, the term *location”, with respect 1o a
data processing system 100, refers 1o any of a particular

w

i

40

435

50

60

65

6

processor 102 in the system, a memory of a particular
processor, a slorage device, a removable slorage medium
(such as 2 floppy disk or compact disk), or any other physical
location in the system. The term “local” with respect to a
particular processor 102 refers to the memory and storage
devices of that particular processor.

In the following, the terms “True Name”, “dala identity”
and “data identifier” refer to the substantially unique data
identifier for a particular data item. The term “True File”
refers 1o the actual file, segment, or data item identified by
a True Name.

A file system for a data processing systern 100 is now
described which is intended 1o work with an cxisting oper-
aling system by augmenting some of the operating system’s
file management system cedes. The embodiment provided
relies on the standard file management primitives for actu-
ally storing 1o and retrieving data items from disk, but uses
the mechanisms of the present invention to reference and
access those data items.

The processes and mechanisms (services) provided in this
embodiment are grouped into the following categories:
primitive mechamisms, operating system mechanisens,
remote mechanisms, background mechanisms, and extended
mechamsms.

Primitive mechanisms provide fundamental capabilitics
used to support other mechanisms. The following primitive
mechanisms are described:

1. Calculate True Name;

. Assimilate Data Item;

. New True File;

. Get True Name from Path;
. Link path to True Name;

. Realize True File from Location;
. Locate Remote File;

. Make True File Local;

. Create Scratch Iile;

. Freeze Directory;

. Expand Frozen Dircclory;
. Delete True File;

. Process Audit File Entry;

14. Begin Grooming;

15. Select For Removal; and

16. End Grooming,

Operating system mechanisms provide typical familiar
file system mechanisms, while maintaining the data struc-
wres required lo offer the mechanisms of the, present
invention. Operaling system mechanisms are designed 10
augment existing operating systems, and in this way to make
the present invention compatible with, and generally trans-
parens to, existing applications. The following operating
system mechanisms are described:

1. Open File;

. Ciose File;

. Read File;

. Write Tile;

. Delete File or Directory;
. Copy File or Directory;
. Move File or Directory;
. Get File Status; and

9. Get Files in Directory.

Remote mechanisms are used by the operating systern in
responding to requests from other processors. These mecha-

TS0~ S b e

— =
Wl = O

00 =1 v n W

US 6,415,280 Bl

7

nisens enable the capabilitics of the present invention in a
peec-to-peer network mode of operation. The foliowing
remote mechanisms are described:

1. Locate True File;

2. Reserve True File;

3, Request True File;

4. Retire True File;

5. Cancel Reservation;

6. Acquire True File;

7. Lock Cache;

8. Update Cache; and

9. Check Expiration Date.

Background mechanisms are intended to run occasionally
and at a low priority. These provide automated management
capabilities with respect to the present invention. The fol-
lowing background mechanisms are described:

1. Mirror Frue File;

2. Groom Region;

3. Check for Expired Links; and

4. Verify Region; and

5. Groom Source List.

Extended mechanisms run within application programs o
over the operating system. These mechanisms provide solu-
lions to specific problems and applications. The follawing
extended mechanisms are described:

i. Inventory Existing Directory,

. Inventory Remavable, Read-only Files;

10

15

30

2

3. Synchronize directories;

4, Publish Region;

5. Retire Directory;

6. Realize Directory at location;

7. Verify True File;

8. Track for accounting purposes; and
¢

35

. Track for licensing purposes.

The file system hercin described maintains sufficient
information to provide a variely of mechanisms not ordi-
narily offered by an operating system, some of which are
listed and described here. Various processing performed by
this embodiment of the prescat invention will now be
described in greater detail.

In some embodiments, some files 120in 2 data processing
systern 100 do not have True Names because they have been
recently received or created or modified, and thus their True
Names have not vel been computed. A file that does not yet
have a True Name is called a scratch file. The process of
assigning a Truc Name to a file is referred to as assimilation,
and is described later. Note that a scraich file may have a
user provided name.

Some of the processing performed by the present inven-
tion can take place in a background mode or on a delayed or
as-needed basis. This background processing is used to
determine information that is not immediately required by
the system or which may never be required. As an example,
in some cases a scrateh file is being changed at a rate greater
than the rate at which it is uscful to determine its True Name.
In these cases, determining the True Name of the file can be
posiponed or performed in the background.

60

Data Structures

The following data structeres, stored in memory 110 of
one of more processors 102 are used w implement the
mechanisms described herein. The data structures can be

8

local to cach processor 102 of the system 100, or they can
reside on only some of the processars 102.

The data structures described are assumed to reside on
individual peer processors 102 in the data processing system
100. However, they can also be shared by placing them on
a remots, shared file server (for instance, in a local area
network of machines). In order to accommodate sharing data
structures, it is necessary that the processors accessing the
shared database use the appropriate locking techniques to
ensure that changes to the shared database do not interfere
with one anclher bui are appropriately serialized. These
locking techniques are well understood by ordinarily skilled
programmers of distributed applications.

It is sometimes desirable to allow some regions to be local
1o 2 particular processor 102 and other regions to be shared
among processoes 102. (Recall that a region is a unit of file
system management and control consisting of a given direc-
tory identified by the pathname of the directory.) In the case
of local and shared regions, there would be both local and
shared versions of each data structure. Simple charges to the
processes described below must be made to ¢asure that
appropriate dala structures are selected for a given operation.

The local directory extensions (LDE) table 124 is a data
structure which provides information about files 120 and
directories 118 in the data processing system 100. The locak
directory extensions lable 124 is indexed by a pathname or
contextual name {that is, a user provided name) of a file and
includes the True Name for most fites. The information in
local directory extension table 124 is in addition to thal
provided by the native file system of the operating system.

The True File registry (TFR) 126 is a data store for lisling
actual data items which have True Names, both files 120 and
segments 122. When such data items occur in the True File
regisiry 126 they are known as True Files. True Files are
identified in True File registry 126 by their True Names or
identities. The table True File registry 126 also stores
location, dependency, and migration information abouwt True
Files.

The region table (RT) 128 defines areas in the network
storage which are 1o be managed separately. Region table
128 defines the rules for access o and migration of files 120
among various regions with the local file system 116 and
remote peer file systemns.

The source table (ST} 138 is a list of the sources of True
Files other than the current True File registry 126. The
source 1able 130 includes removable volumes and remote
Processors.

The audit file (AF) 132 is a list of records indicating
changes to be made in local or remote files, hese changes to
be processed in background.

The accounting log (AL) 134 is a log of file transactions
used to create accounting information in a manaer which
preserves the identity of files being tracked indepeadent of
their pame or lacation,

The license table (LT) 136 is a table identifying files,
which may only be used by licensed users, in a manner
independent of their name or location, and the uscrs licensed
to use them.

Detailed Descriptions of the Data Structures

The following table summarizes the fields of an local
directory extensions table eatry, as illustrated by record 138
in FIG. 3.

US 6,415,280 Bl

Field Description

Region [D idemifies the region in which this file is contained,

Pathname the user provided name or contextual name
of the file or directory, relative to the
region in which it occurs.

True Name the computed True Name or identity of the
file or directory. This True Name is not
always up to date, and it is set to &
special value when a file is modified and
is later recompated in the background.

Type indicates whether the file is a data file or a directory.

Scratch the physical location of the file in the

File ID file system, when no True Name has been
calculated for the file. As noted above,
such a file is called a scratch file.

Time of the last access time 1o this file. [f this

Tast file is a dircclory, this is the last

aceess access time to any file in the directory.

Time of the time of last change of this file. If

last this file is a directory, this is the last

modification medification time of any file in the directory.

Safe flag indicates that this file (and, if this file
is 2 directory, all of its suberdinate
files) have been backed up on some olher
system, and it is therefore safe to remove them.

Lock flag indicates whether a lile is locked, that
is, it is being medificd by the local pro-
cessor oI a remote processor. Only one
processor may modify a file at a time.

Size the full size of this directory (including
all subordinate files), if all files in It
were fully expanded and duplicated. For 2
file that is rot a directory (his is lhe
size of the actual True File.

Qwner the identily of the user who owns this

file, for accounting and license tracking purposes.

Each record of the True File registry 126 has the fields
shown in the True File regisiry record 140 in FIG. 4. The
True File registry 126 consists of the database described in
the table below as well as the actual True Files identified by
the True File IDs below.

Field Description

True Name compuled True Name or identity of the file.

Compressed compressed version of the Truc File

File ID may be stored instead of, or in addition to,
an uncompressed version. This field provides the
identity of the actual representation of the
compressed version of the file.

Grooming tentative count of how many

references have been selected for
deletion during a grooming operation.
most recent date and time the

delele count

Time of last

aceess content of this file was accessed.

Expiralion date and time afler which this file
may be deleted by this server.

Dependent processer [Ds of other processors

ProcessoIs which contain references ta this True File.

Source iDs source ID(s) of zero or more sources from
which this file or data item may be retrieved.

True File 1D identity or disk location of the actual physical
representation of the file or file segment. It is
sulficient to use a filename in the registration
directory of the underlying operating system. The
True File ID is absent if the actual file is not currently
present al Lhe current location.

Use count number of other records on this

processer which identify this Frue File.

A region lable 128, specified by a direciory pathname,
records storage policies which allow files in the file system

10

15

40

45

50

55

60

10

10 be stored, accessed and migrated in different ways.
Storage policies are programmed in a configurable way
using a set of rules described below.

Each region table record 142 of region table 128 includes

the fields described in the following table (with reference to
FIG. 5):

Field Descriplion

Region [D
Region file system

internally used identifier for this region.
file system on the tocal processos of
which this region is a pari.

a pathname relative to the region file
system which defines the localion of

this region. The region consists of

all files and directories subordinale

to this pathname, excepl those in a

region subordinate to this region,

zero or more identifiers of processors
which are to keep mirmor of archival
copies of all files in the current

region. Multiple mirror processors

can be defined to form a mimer group.
number of copies of cach file in this
region that should be retained in a mirrr group.
specifies whether this region is local

lo & single processor 102, shared by
several processors 102 (if, for

instance, il 1esides on a shared file
server), or managed by a remote processor.
the migration policy to apply to this
region. A single region might

participate in several policies. The
policies are as fallows (parameters in
brackets arc specified as part of the policy):
region is a cached version from
[pracessor D],

region is a member of a mirror set
defined by [processor ID}

region is to be archived on

{processor [D]

region is 10 be backed up locally,

by placing new copies in {region ID].
region is read only and may not be
changed.

region is published and expires on

[date].

Files in this region should be compressed.

Region pathname

Mirror processer(s)

Mirror duplication
count
Region status

Policy

A source table 130 identifies a source location for True
Files. The source table 130 is also used to identify client
processors making reservations on the current processor.
Each source record 144 of the source tabje 130 includes the
fields summarized in the following table, with reference to
FIG. 6:

Field Description
source [D inlernal identifier used lo identily a particular source.
source type of souree loeation:
type Removable Storage Volume
Loeal Region
Cache Server
Mirror Group Server
Cooperative Server
Publishing Server
Client
source includes information about the rights of this processor,
rights such as whether it can ask the local processor to
store data ilems for it.
S0LICE measurcment of the bandwidth, cost, and

availability reliability of the comnection to this scurce of

True Files, The availability is used to select

US 6,415,280 Bl

-continued
Field Description
from among several possible sources.
source information on how the local processor
lecation is lo access Lhe source. This may be, for example,

the name of a removable storage volume, or the
processor ID and region path of a region on 2
remaotc PTOCESSO]’.

The audit file 132 is a table of events ordered by
timestamp, each record 146 in audit file 132 including the
fields summarized in the following table (with reference to
FIG. 7)

Field Description

Original Name path of the file in question.

Operation whether the file was created, read,
written, copied or deleled.
Type specifies whether the source is a file or a dircetory.

Processor §D [D of the remole processor generaling

this event (if not local).

time and date file was closed (required

only for accessed/modified files).

Name of the fite (required only for rename),
computed Trug Name of the file. This is used

by temole systems to mitror changes to the directory
and is filled in during background processing.

Timestamp

Pathname
True Name

Each record 148 of the accounting log 134 records an
event which may later be used to provide information for
billing mechanisms. Each accounting log entry. record 148
includes at least the information summarized in the follow-
ing table, with reference to FIG. 8:

Field Description

date of cotry
type of entry
True Name
owner

date and time of this log entry.

Entry types include creale file, delete file, and transmit file.
True Name of data item in question.

identity of the user responsible for this action.

Each record 1350 of the license table 136 records a
relationship between a licensable data item and the user
licensed to have access to it. Each license table record 150
includes the information summarized in the following table,
with reference to FIG. 9:

Field Description

Frue Name
licensee

Tme Name of a dala {lem subject to license validation,
identity of a user authorized to have access lo this object.

Various other data structures are employed on some or all
of the processors 102 in the data processing system 100.
Each processor 102 has a global freeze lock {GFL) 152
(FIG. 1), which is used o prevent synchronization errors
when a directory is frozen or copied, Any processor 102 may
include a special archive directory (SAD) 154 into which
directories may be copied for the purposes of archival. Any
processor 102 may include a special media directory (SMD)
156, into which the directories of removable volumes are
stored to form a media inventory. Each processor has a

10

15

20

30

35

40

45

50

60

65

12

grooming lock 158, which is sct during a grooming opera-
tion. During this periad the grooming delete count of True
File registry entries 140 is active, and no True Files should
be deleted until grooming is complete. While groeming is in
effect, grooming information mcludes a table of pathnames
selected for deletion, and keeps track of the amount of space
that would be freed if all of the files were deleted.

Primitive Mechanisms

The first of (he mechanisms provided by the present
invention, primitive mechanisms, are now described. The
mechanisms described here depend on underlying data man-
agemeni mechanisms to create, copy, read, and delete data
items in the True File registry 126, as identified by a True
File ID. This support may be provided by an underlying
operating system or disk storage manager.

The following primitive mechanisms are described:

. Calculate True Name;

. Assimilate Data Item,

. New True File;

. Get True Name from Path;

. Link Path to True Name;

. Realize True File from Location;

. Locate Remote Fiie;

. Make True File Local;

. Create Scratch File;

10. Freeze Direclory;

11. Expand Frozen Directory;
12. Delete True File;

13. Process Audit File Entry,
14. Begin Grooming;

15. Select For Removal; and
16. End Grooming,.

. Calculate True Name
A True Name is computed using a function, MD, which

reduces a data block B of arbitrary length to a relatively

small, fixed size identifier, the True Name of the data block,
such that the True Name of the data block is virtually
guaranteed to represent the data block B and only data block

B.

The [unction MDD must have the following properties:

1. The domain of the function MD is the set of all data

itemns. The range of the function MID is the set of True
Names.

. The function M} must take a data item of arbitrary
length and reduce it to an integer value in the range 0
10 N--1, where N is the cardinality of the set of True
Names. That is, for an arbitrary length data block B,
0=MD(B)<N.

3. The results of MD(B) must be evenly and randomly
distributed over the range of N, in such a way tha
simple or regular changes 1o B are virtuaHy guaranteed
to produce a different value of MD(B).

4. It must be computationally difficult to find a different
value B' such that MD(B)=MD{(B").

3. The function MD(B) must be efficiently computed.

A family of functions with the above propertics are the
so-called message digest functions, which are used in digital
securily systems as technigues for authentification of data.
These functions (or algorithms) include MD4, MDS, and
SHA.

In the presently preferred embodiments, either MDS or
SHA is employed as the basis for the computation of True

W O0d s3Iy B L D e

—

(8]

US 6,415,280 Bl

13

Names. Whichever of these two message digest functions is
employed, that same function must be employed on a
system-wide basis.

It is impossible {o define a function having 2 unique
output for each possible input when the number of clements
in the range of the function is smaller than the number of
elements in its domain. However, a crucial observation is
that the actual data items that will be encountered in the
operation of any system embodying this invention form a
very sparse subset of all the possible inputs.

A colliding set of data items is defined as a set wherein,
for one or more pairs x and y in the set, MD(x)=MD(y).
Since a function conforming to the requirements for MD
must evenly and randomly distribute its oulputs, it is
possible, by making the range of the function large enough,
to make the prabability arbitrarily small that actual inputs
encountercd in the operation of an embodiment of this
jnvention will form a colliding sel.

To roughly quantify the probability of a collision, assume
that there are no more than 2°° storage devices in the world,
and that each storage device has an average of at most 2*°
different data items. Then there are at most 2°° data items in
the world. If the outpuis of MD range between 0 and 2128,
it can be demonstrated that the probability of a collision is
approximately 1 in 2%% Delails on the derivation of these
probability values are found, for example, in P. Flajolet and
A. M. Odlyzko, “Random Mapping Statistics,” Lecfure
Notes in Computer Science 434: Advances in Cryptology-—
Euarocrypr ‘80 Proceedings, Springer-Verlag, pp. 329-354.

Note that for some less preferred embodiments of the
present invention, lower probabilities of uniqueness may be
acceptable, depending on the types of applications and
mechanisms used. In some embodiments il may also be
useful 1o have more than one level of True Names, wilh
some of the True Names having different degrees of unique-
ness. If such a scheme is implemented, it is necessary 1o
ensure that less unique True Names are not propagated in the
system.

While the inveation is described herein using only the
True Name of a data item as the identifier for the data itlem,
other preferred embodiments use tagged, typed, categorized
or classified data items and usc a combination of both the
True Name aexl the tag, type, category or class of the dala
itemn as an identifier. Examples of such categorizations are
files, directcries, and segments; executable files and data
files, and the like. Examples of classes are classes of objects
in an object-oriented system. In such a sysiem, a lowes
degree of True Name uniqueness is acceptable over the
entire universe of data iiems, as long as sufficient unique-

ness. is provided per calegory of data ilems. This is because

the tags provide an additional level of uniqueness.

A mechanism for calcutating a True Narae given a data
itern is now described, with reference to FIGS. 1({a) and
10(b).

A simple data item is a data item whose size is less than
a particular given size (which must be defined in each
particular implementation af the invention). Ta determine
the True Name of a simple data ilem, with reference to FIG.
10(a), first compuie the MD function (described above) on
the given simple data item {Step 5212). Then append 1o the
resulting 128 bits, the byte length modula 32 of the data item
(Step S214). The resulting 160-bit value is the True Name of
the simple data item.,

A compound data item is one whose size is greater than
the particular given size of a simple data item. To determine
the True Name of an arbitrary (simple or compound) data
item, with reference to FIG. 10(b), first determine if the data

10

14

itern is a simple or a compound <ata item (Step $216). If the
data item is a simple data item, then compute its True Name
in step 218 (using steps $212 and $214 described above),
otherwise partition the data itern into segments (Step 5220)
and assimilate each segment (Step S222) (ihe primitive
mechanism, Assimilate a Data Ttem, is described below),
computing the True Name of the segment. Then create an
indirect block consisting of the computed segment True
Names (Step $224). An indirect block is a data item which
consists of the sequence of True Names of the segments.
‘Then, in step S226, assimilate the indirect block and com-
pute its True Name. Finaliy, replace the final thirty-two (32)
bits of the resulting True Name (that is, the length of the
indirect block) by the length modulo 32 of the compound
data item (Step $228). The result is the True Name of the

-~ compound data item.

30

Noie that the compound data item may be sc large that the
indirect block of segment True Names is itself a compound
dala ftem. In this case the mechanism is invoked recursively
until only simple data items are being processed.

Boih the use of segments and the attachment of a length
to the True Name are not strictly required in a system using
the present invention, but are currently considered desirable
features in the preferred embodiment.

2. Assimilate Data ltem

A mechanism for assimilating a data item (scratch file or
segment) inlo a file system, given the scraich file ID of the
data item, is now described with reference to FIG. 11. The
purpose of this mechanism is to add a given data item to the
True File registry 126. If the data item already exists in the
True File registry 126, this will be discovered and used
during this process, and the duplicate will be eliminated.

Thercby the system stores at most one copy of any data
ilem or file by content, even when multiple names refer to

5 the same content.

First, determine the True Name of the data item corre-
sponding 1o the given scratch File 1D using the Calculate
True Name primitive mechanism (Step $230). Next, look for
an entry far the True Name in the True File registry 126
(Step $232) and determine whether a Truc Name entry,
record 140, exists in the True File registry 126. 1f the entry
record includes a corresponding True File ID or compressed
File 1D {Step $237), delete the file with the scratch File ID
(Step $238). Otherwise store the given True File ID in the
entry record {step S239).

If it is determined (in step $232) that no True Name entry
exists in the True File registry 126, then, in Step S236, create
a new eatsy in the True File registry 126 for this True Name.
Set the True Name of the entry to the caleulated True Name,
sel the use count [or the new entry to one, stare the given
True File ID in the entry and set the other fields of the entry
as appropriate.

Because this procedure may take some time to compute,
it is intended to run in background after a file has ceased to
change. In the meantime, the file is considered an unassimi-
iated scratch file.

3. New True File

The New True File process is invoked when processing
the audit fite 132, some time after a True File has been
assimilated (using the Assimilaie Data Item primitive
mechanism), Given a local difectory extensions table entry
record 138 in the local directory extensions table 124, the
New True File process can provide the following steps (with
reference to FIG. 12), depending on how the local processor
is configured:

First, in step 5238, examine the local directory extensions
table entry record 138 to determine whether the file is locked

US 6,415,280 Bl

15

by a cache server. If the file is locked, then add the [D of the
cache server to the dependent processor list of the True File
registry table 126, and then send a message to the cache
server to update the cache of the current processor using the
Updale Cache remote mechanism (Step 242).

If desired, compress the True File (Step S246), and, if
desired, mirror the True File using the Mirror True File
background mechanism (Step 5248).

4. Get True Name from Path

The True Name of a file can be used to identify a file by
contents, to confirm that a file maiches its original contents,
or to compare two files. The mechanism to get a True Name
given the pathname of a file is now described with reference
o FIG. 13.

First, search the local directory extensions table 124 for
the entry record 138 with the given pathname (Step S250).
If the patbname is not found, this process fails and no True
Name corresponding to the given pathname exists. Next,
determine whether the local directory extensions table entry
record 138 includes a True Name (Step $252}, and if so, the
mechanism’s task is complete. Otherwise, determine
whether the local directery extensions table entry record 138
identifies a directory (Step S254), and if so, freeze the
directory (Step 5256) (the primitive mechanism Freeze
Directory is described below).

Otherwise, in slep S258, assimilale the file (using the
Assimilate Data [tem primitive mechanism) defined by the
File ID field 1o generate its True Name and store its True
Name in the local directory ¢xtensions entry record. Then
return the True Name identified by the local directory
exlensions table 124,

5. Link Path to True Name

The mechanism to link a path to a True Name provides a
way of creating a new directory cntry record identifying an
exisling, assimilated file. This basic process may be used 1o
copy, move, and rename files without a need lo copy their
contents. The mechanism to link a path to a True Name is
now described with reference to FIG. 14.

First, if desired, confirm that the True Name exists locally
by searching for it in the True Name registry or local
directory extensions table 135 (Step 5260). Most uscs of this
mechanism will require this form of validation. Next, search
for the path in the local directory extensions table 135 (Step
$262). Confirm that the directory containing the file named
in the path already exists (Step S264). If the named file itself
exists, delete the File using the Delete True File operating
system mechanism (see below) (Step 5268).

Then, create an entry record in the local directory exten-
sions with the specified path (Step 5270) and update the
entry record and other data structures as follows: fill in the
True Name field of the entry with the specified Troe Name;
increment the use count for the True File registry entry
record 140 of the corresponding True Name; nole whelher
the entry is a directory by reading the True File to see if it
contains a tag {magic number) indicating that it represents a
frozen directory (see also the description of the Freeze
Directory primitive mechanism regarding the tag); and com-
pute and set the other fields of the Jocal directory extensions
appropriately. For instance, search the region lable 128 to
identily the region of the path, and set the time of last access
and time of last modification to the current time.

6. Realize True File from Location

This mechanism s used to try to make a local copy of a
True File, given its True Name and the name of a source
location (processor or media) that may contain the True File.
This mechanism is now described with reference ta FIG. 15.

First, in step 5272, determine whether the location speci-
fied is a processor. If it is determined that the location

30

45

50

55

60

65

16

specified is a processor, then send a Request True File
message (using the Request True File remote mechanism) to
1he remote processer and wait for a tesponse (Step 5274). If
a negative Tesponse is received or no response 18 received
after a timeout period, this mechanism fails. If a positive
response is received, enter the True File returned in the True
File tegistry 126 (Step S276). (If the file received was
compressed, enter the True File ID in the compressed File ID
field.)

If, on the other hand, it is determined in step S272 that the
location specified is not a processor, then, if necessary,
request the user or operator to mount the indicated volume
(Step $278). Then {Step 5280) find the indicated file on the
given volume and assimilate the file using the Assimilate
Data Item primitive mechanism. If the volume does not
contain a True File registry 126, search the media inventory
1o find the path of the file on the volume, If no such file can
be found, this mechanism fails.

Al this point, whether or not the location is determined (in
step $272) to be a processor, if desired, verify the True File
(in step S282).

7. Locate Remote File

This mechanism allows a processor to locate a file or data
item from a remote source of True Files, when a specific
source is unknown or unavailable. A client processor system
may ask onc of several or many sources whether it can
supply a data object with a given True Name. The steps o
perform this mechanism are as follows (with reference to
FIGS. 16(a) and 16{b)).

The client processor 102 uses the source table 145 1o
select one or more source processors (Step S284). If no
source processor can be found, the mechanism fails, Next,
the client processor 102 broadeasts to the selected sources a
request to locate the fite with the given True Name using the
Locate True File remote mechanism (Step 5286). The
request 1o locate may be augmented by asking lo propagate
this request to distani servers. The client processor then
waits for one or more servers to respond positively (Step
5288). After all servers respond negalively, or after a timeout
period with no positive response, the mechanism repeais
selection (Siep S284) 10 attempt to identify alternative
sources. If any selected source processor responds, its pro-
cessor 11 is the result of this mechanism. Store the processor
ID in the source field of the True File registry entry record
140 of the given True Name (Step 5290).

If the source location of the True Name is a different
processor or medium than the destination (Step S290x),
perform the following steps:

(i) Look up the True File registry entry record 140 for the

corresponding True Name, and add the source location
ID to the list of sources for the True Name (Step
$290b); and

(ii) If the source is a publishing system, determine the

expiration date on the publishing system for the True
Name and add that to the list of sources. If the source
is not a publishing syslem, send a message (O reserve
the True File on the source processor (Step S290¢).

Source selection in step 5284 may be based on opiimi-
zalions involving geoperai availability of the source, access
time, bandwidth, and transmission cost, and ignoring pre-
viously selected processors which did not respond in step
5288.

8. Make True File Local

This mechanism is used when a True Name is known and
a locally accessible copy of the corresponding file or data
item is required. This mechanism makes it possible
actually read the data in a True File. The mechanism takes

US 6,415,280 Bl

17

a True Name and returns when there is a local, aceessible
copy of the True File in the True File registry 126. This
mechanism is described here with reference to the flow chart
of FIGS. 17(a) and 17(b).

First, look in the True File registry 126 for a True File
entry record 140 for the corresponding True Name (Step
$292). If no such entry is found this mechanism fails. If
there is already a True File ID for the entry (Step $294), this
mechanism’s task is complete. If there is a compressed file
ID for the entry (Step S296), decompress the file corre-
sponding 1o the file ID (Step $298) and store the decom-
pressed file 1D in the entry (Step S300). This mechanism is
then complete.

If there is no True File ID for the entry (Step S294) and
there is no compressed file ID for the entry (Step $296), then
continue searching for the requested file. At this time it may
be necessary to nolify the user that the sysiem is searching
for the requested file.

I there are one or more source 1Ds, then select an order
in which to attempt to realize the source ID (Step S304), The
order may be based on optimizations involving general
availability of the source, access time, bandwidth, and
transmission cost. For each sowrce in the order chosen,
realize the Trae File from the source location (using the
Realize True File from Locaiion primitive mechanism), until
the True File is realized (Step S5306). If it is realized,
continue with step $294. If no known source can realize the
True File, vse the Locate Remote File primitive mechanism
10 attempt to find the True File (Step S308). If this succeeds,
realize the True File from the identified source location and
continue with step S296.

9. Create Scratch File

A scratch copy of a file is required when a file is being
created or is about to be modified. The scratch copy is stored
in the file system of the underlying operating system. The

scratch copy is eventually assimilated when the audit file 3

record entry 146 is processed by the Process Audit File Eatry
primitive mechanism. This Create Scratch File mechanism
requires a local directory extensions table entry record 138.
When it succeeds, the local directory extensions table entry
record 138 contains the scratch file ID of 2 scratch file that
is not contained in the True File registry 126 and that may
be modified. This mechanism is now deseribed with refes-
ence 1o FIGS. 18(a) and 18(5).

First determine whether the scratch file should be a copy
of the existing True File (Step S310). If so, continue with
step $312, Otherwise, determine whether the jocal directory
extensions table entry record 138 identifies an existing True
File (Step $316), and if so, delete the True File using the
Delete True File primitive mechanism (Step $318). Then
create a new, empty scraich file and store its scraich file ID
in the local directory exteasions table entry record 138 (step
$320). This mechanism is then complete.

If the local direclory extensions table entry record 138
identifies a scratch file ID {Step S312), then the entry already
has a scraich file, so this mechanism succeeds.

If the local directory extensions table entry record 138
identifies a True File (S316), and there is no True File ID for
the True File (S312), then make the True File local using the
Make True File Local primitive mechanism (Step $322). If
there is still no True File ID, this mechanism fails.

There is now a local True File for this file. 1f the use count
in the cosresponding True File registry entry record 140 is
one {Step 5326), save the True File ID in the scratch file 1D
of the local directory extensions table entry record 138, and
remove the True File registry entry record 140 (Step S328).
(This step makes the True File into a scratch file.) This
mechanism’s task is complete.

30

45

55

60

o
by

18

Otherwise, if the use count in the corresponding True File
registry entry record 140 is ot one (in step $326), copy the
file with the given True File ID to a new scratch file, using
the Read File OS mechanism and store its file ID in the local
directory extensions table entry record 138 (Step 5330), and
reduce the use count for the True File by one, If there is
insufficient space to make a copy, this mechanism fails.
10. Freeze Directory

This mechanism freezes a directory in arder to calculate
its True Name. Since the True Name of a directory is a
function of the files within the directory, they must not
change during the computation of the True Name of the
directory. This mechanism requires the pathname of a direc-
tory 1o freeze. This mechanism is described with reference
1o FIGS. 19(¢) and 1%(b).

In step S332, add one to the global freeze lock. Then
search the local directory extensions lable 124 to find each
subordinate data file and directory of the given directory, and
freeze each subordinate directory found using the Freeze
Directory primitive mechanism (Step S334). Assimilate
each unassimilated data file in the directory using the
Assimilate Data Item primitive mechanism (Step S336).
Then create a data item which begins with a tag or marker
(a “magic number”) being a unique data item indicating that
this data item is a frozen directory (Step $337). Then list the
file name and True Name for each file in the current
directory (Step $338). Record any additional information
required, such as the lype, time of lasl access and
modification, and size (Step $340). Next, in step S342, using
the Assimilate Data Item primitive mechanism, assimilate
the data jtem created in step S338. The resulting True Name
is the True Name of the frozen directory. Finally, subtract
one from the globai freeze lock (Step S344).

11. Expand Frozen Directory

This mechanism expands a frozen directory in a given
location. 1t reguires a given pathname into which to expand
the directory, and the Truze Name of the directory and Is
described with reference to FIG. 20

First, in step S346, make the True File with the given True
Name local using the Make True Tile Local primitive
mechanism. Then read each directory entry in the local file
crealed in step $346 (Step S348). For each such directory
entry, do the following:

Create a full pathname using the given pathname and the

file name of the entry (Step $350); and

link the created path to the True Name (Step S352) using

the Link Path to True Name primitive mechanism.
12. Delete True File
This mechanism deletes a reference to a True Name. The
underlying True File is not removed from the True File
registry 126 unless there are no additional references to the
file. With reference to FIG. 21, this mechanism is performed
as follows:
If the global freeze lock is on, wait until the global freeze
lock is turned off (Step $354). This prevents deleting a True
File while a directory which might refer to it is being frozen.
Next, find the True File regisury entry record 140 given the
True Name (Step $356). 1f the reference count field of the
True File registry 126 is greater than zero, subtract one from
the reference count field (Step $358). If it is determined (in
step S360) that the reference count field of the True File
registry eniry record 140 is zcro, and if there are no
dependent systems listed in the True File registry entry
record 140, then perform the following steps:
(i} If the True File is a simple data item, then delete the
True File, otherwise,

(ii) (the True File is a compound data item) for each True
Name in the data item, recursively delete the True File
corresponding to the True Name (Step 5362).

US 6,415,280 B1

19

(iii) Remove the file indicated by the True File ID and
compressed file 1D from the True File registry 126, and
remove the True File registry entry record 148 (Step
S364).

13, Process Audit File Entry

This mechanism performs tasks which are required to
maintain information in the local directory extensions table
124 and Tme File registry 126, but which can be delayed
while the processor is busy doing more time-critical tasks.

Entries 142 in the audit file 132 should be processed at a

background priority as long as there are entries fo be
processed. With reference to FIG. 22, the steps for process-
ing an entry are as follows:

Determine the operation iu the eatry 142 currently being
processed (Step $365). If the operation indicates that a file
was created or written (Step $366), then assimilate the file
using the Assimilate Data Item primitive mechanism (Step
5368), use the New True File primitive mechapism to do
additional desired processing (such as cache update,
compression, and mirroring) (Step $369), and record the
newly computed True Name for the file in the audit file
record entry (Step S370).

Otherwise, if the entry being processed indicates that a
compound data item or directory was copied {or deleted)
(Step $376), then for cach componcnt True Name in the
compound data item or directory, add (o1 subiract) ane to the
use count of the True Tile regisiry entry record 140 corre-
sponding 1o the component True Name (Step S378).

In all cases, for cach parent directory of the given file,
update the size, time of last access, and time of last
modification, according to the operation in the audit record
(Step 5379).

Note that the andit record is not removed after processing,
but is retained for some reasonable period so that it may be
used by the Synchronize Directory extended mechanism 10
allow a disconnected remote processor to update its repre-
sentation of the local system.

14, Begin Grooming

This mechanism makes it possible to select a set of files
for remaval and determine the overall amount of space o be
recovered, With reference to FIG. 23, first verify that the
global grooming lock is currently unlocked (Step S382).
Then set the global grooming lock, sct the total amount of
space freed during grooming to zero and empty the list of
files selected for deletion (Step S384). For cach True File in
the True File registry 126, set the delete count to zero (Step
5386).

15. Select For Removal

This grooming mechanism tentatively selects a pathname
to allow its corresponding Truc File 1o be removed. With
reference 1o FIG. 24, first find the local directory extensions
table entry record 138 corresponding to the given pathname
(Step S388). Then find the True File regisiry entry record
140 corresponding to the True File name in the local
directory extensions table entry record 138 (Step 8390). Add
one to the grooming delete count in the True File registry
entry record 140 and add the pathname to a list of files
selected for deletion (Step S392). If the grooming delete
count of the True File registry entry record 140 is equal to
the use count of the True File registry eatry record 140, and
if the there are no entries in the dependency list of the True
File registry entry record 140, then add the size of the file
indicated by the True File ID and or compressed file ID to
the total amount of space freed during grooming (Step
$394).

16. End Grooming

This grooming mechanism ends the grooming phase and

removes all files selected for removal. With reference to

30

35

45

55

60

63

20

FEG. 25, for each filc in the list of files selected for deletion,
delete the file (Step $396) and then unlock the global
arooming lock (Step S398).

Operating System Mechanisms

The next of the mechanisms provided by the present
invention, operating system mechanisms, are now described.
The following operating system mechanisms are
described:
. Open File;
. Close File;
. Read File;
. Write File;
. Delete File or Directory;

6. Copy File or Directory;

7. Move File or Directory;

8. Get File Status; and

9, Get Files in Directory.

1. Open File

A mechanism to open a file is described with reference to
FIGS. 26(z) and 26(p). This mechanism is given as input a
pathname and the type of access required for the file (for
example, read, wrile, read/wrile, create, ete.) and produces
either the File ID of the file to be opened or an indication that
no file should be apened. The local direciory extensions
table record 138 and region table record 142 associated with
the opened file are associated with the oper file for later use
in other processing functions which refer to 1he file, such as
read, write, and close.

First, determine whether or not the named file exists
locally by examining the local directory cxtensions table 124
1o determine whether there is an entry correspording 1o the
given pathname (Step 5400). If it is determined that the file
name does not exist locally, then, using the access type,
determine whether or not the file is being created by this
opening process (Step S402). If the file is not being ereated,
prohibit the open {Step 5404), If the file is being created,
create a zero-length scratch file using an cntry in local
directory extensions table 124 and produce the scratch file
ID of this scratch file as the result (Step S406).

If, on the other hand, it is determined in step S400 thal the
file name does exist locally, then determine the region in
which the file is located by searching the region table 128 to
find the record 142 with the longest region path which is a
prefix of the file pathname (Step $408). This record identi-
fies the region of the specified file.

Next, determinc using the access type, whether the file is
being opened for wriling or whether it is being opened only
for reading (Step S410}. If the file is being opened for
reading only, then, if the file is a scraich file (Step S419),
return the scratch File ID of the file (Step 5424). Otherwise
get the True Name from the local directory extensions table
124 and make a local version of the True File asscciated with
the True Name using the Make True File Local primitive
mechanism, and then return the True File ID associated with
the True Name (Step 5420).

If the file is not being opened for reading only (Step
S410), then, if it is determined by inspecting the region table
entry record 142 that the file is in a read-only directory (Step
5416), then prohibit the opening (Step $422).

If it is determined by inspecting the region table 128 that
the file is in a cached region (Step S423), then send a Lock
Cache message to the corresponding cache server, and wait
for a return message (Step S418). If the return message says
the file is already locked, prohibit the opening.

oA W

US 6,415,280 Bl

21

If the access type indicates that the file being moditied is
being rewrilten completely (Step $419), so that the original
datz will not be required, then Delete the File using the
Delete File OS mechanism (Step $421) and perform step
$406. Qtherwise, make a scratch copy of the file (Step S417)
and produce the scratch file I of the scratch file as the resull
(Step S424).

2. Close File

This mechanism takes as input the local dircctory exten-
sions table entry record 138 of an open filc and the data
maintained for the open file. To close a file, add an eatry to
the audit file indicating the time and operation (create, read
or write). The audit file processing (using the Process Audit
File Entry primitive mechanism) will take care of assimi-
lating the file and thereby updating the other records.

3. Read File -

To read a file, a program must provide the offsel and
length of the data to be read, and the location of a buffer into
which to copy the data read.

The file to be read from is identified by an apen file
descriptor which includes a File 1D as computed by the Open
File operating system mechanism defined sbove. The File iD
may identify either a scraich file or a True File {or True File
segment). If the File ID identifies a True File, it may be

either a simple or a compound True File. Reading a file is »

accomplished by the following steps:

In the case where the File ID identifies a scratch file or a
simple True File, use the read capabilities of the underlying
operaling system.

In the case where the File 1D identifies a compound file,
break the read operation into one or more read operations on
component segments as follows:

A. Identify the segmeht(s) to be read by dividing the

specified file offset and length each by the fixed size of

a segment (a system dependent parameter), {o deter-

mine the segment number and number of segements that

must be read.

B. For each segment number computed above, do the

following:

i. Read the compound Truc File index block to deter-
mine the True Name of the segment to be read.

ii, Use the Realize Truc File from Location primitive
mechanism to make the True File segment available
locally, (If that mechanism fails, the Read File
mechanism fails).

iii. Determine the File ID of the True File specified by
the True Name corresponding to this segment.

iv. Use the Read File mechanism (recursively) to read
from this segment into the corresponding location in
the specified buffer.

4. Wriie File

File writing uses the file 1D and data managemenl capa-
bilities of the underlying operating system. File access
{Make File Local described above) can be deferred until the
first read or write.

5. Delete File or Directory

The process of deleting a file, for a given pathname, is
described here with reference 1o FIGS. 27(a) and 27(b).

Firsl, determine the focal direclory extensions table entry
record 138 and region t1able entry record 142 for the file
(Step S422). I the fife has no local directory extensions table
entry record 138 or is locked or is in a read-only region,
prohibit the deletion.

Identify the corresponding True File given the True Name
of the file being deleted using the True File registry 126
(Step $424). If the file has no True Name, (Step 5426) then
delete the scratch copy of the file based on ils scratch file [

10

15

20

35

40

45

50

55

60

65

22

in the local dircctory extensions table 124 (Step 5427), and
continue with step 5428,

If the file has a True Name and the True File’s use count
is one (Step $429), then delete the True File (Step S430), and
continue with step S428.

If the file has a True Name and the True File’s use count
is greater than one, reduce its use count by one (Step $431).
Then proceed with step S428.

In Step S428, delete the local directory extensions table
entry record, and add an entry to the audit file 132 indicating
the time and the operation performed (delete).

6. Copy File or Directory

A mechanism is provided to copy a file or directory given
a source and destination processor and pathname. The Copy
File mechanism does nol actually copy the data in the file,
only the True Name of the file. This mechanism is performed
as follows:

(A) Given the source path, get the True Name frem the

path. If this step fails, the mechanism fails.

(B) Given the True Name and the destination path, link
the destination path to the True Name.

{C) If the source and destination processors have different
True File registries, find (or, if necessary, create) an
entry for the True Name in the True File registry table
126 of the destination processor. Enter into the source
10 field of this new entry the source processor identity.

{T}) Add an entry to the audit file 132 indicating the time
and operation performed (copy).

This mechanism addresses capability of the system to
avoid copying data from a source location to a destination
location when the destination already has the data. In
addition, because of the ability 10 freeze a directory, this
mechanism also addresses capability of the system imme-
diately to make a copy of any collection of files, thereby to
support an efficient version control mechanisms for groups
of files.

7. Move File or Directory

A mechanism is described which moves (or renames) a
file from a source path to a destination path. The move
operation, like the copy operaiion, requires no actual transfer
of data, and is performed as follows:

{A) Copy the file from the source path to the destination

path.

(B) If the source path is different from the destination
path, delete the source path.

8. Get File Status

This mechanism takes a file pathname and provides
information about the pathname. First the local directory
extensions table entry record 138 cormesponding to the
pathoame given is found. If po such eniry exisls, then this
mechanism Ffails, otherwise, gather information about the file
and ils corresponding True File from the local directory
exiensions table 124. The information can include any
information shown in the data structures, including the size,
Lype, owner, True Name, sources, time of last access, time of
last modification, state (local or not, assimilated or not,
compressed or not), use count, expiration date, and reser-
vations.

9. Gel Files in Directory

This mechanism enumerates the files in a directory. It is
used (implicitly) whenever it is necessary lo determine
whether a file exists (is present) in a directory. For instance,
it is implicitly used in the Open Fite, Delete File, Copy File
or Directory, and Move File operating system mechanisms,
because the files operated on are referred to by pathnames
containing directory names. The mechanism works as fol-
lows:

US 6,415,250 Bl

23

The local directory exlensions table 124 is scarched for an
entry 138 with the given directory pathname. If ro such
entry is found, or if the entry found is not a directory, then
this mechanism fails.

If there is a corresponding True File field in the local
directory extensions table record, then it is assumed that the
True File represents a frozen directory. The Expand Frozen
Directory primitive mechanism is used to expand the exist-
ing True File into directory entries in the local directory
extensions table.

Finally, the local directory extensions table 124 is again
searched, this time to find each directory subordinate to the
given directory. The names found are provided as the result.

Remeote Mechanisms

The remote mechanisms provided by the present inven-
tion are now described. Recall that remote mechanisms are
used by the operating system in responding to requests from
other processars. These mechanisms enable the capabilities

of the present invention in a peer-to-peer network mode of 2

operation.

In a presently preferred embodiment, processors commu-
nicate with cach other using a remote procedure call (RPC)
style interface, running over one of any number of commu-
nication prelocols such as IPX/SPX or TCP/IP. Each peer
processor which provides zccess 10 its True File registry 126
or file regions, or which depends on another peer processor,
provides a number of mechanisms which can be used by its
peers.

The following remote mechanisms are described:

. Locate True File;

. Reserve True Tile;

. Request True File;

. Retire True File;
Cancel Reservation;
. Acquire Truee File;
Lock Cache;

. Update Cache; and

9. Check Expiration Date.
1. Lacate True File

This mechanism allows a remote processor to determine
whether the local processor contains a copy of a specific
True File. The mechanism begins with a True Name and a
flag indicating whether to forward requests for this file to
other servers. This mechanism is now described with refer-
ence to FIG. 28.

First determine if the True File is available locally or if
there is some indication of where the True File is located {for
example, in the Source IDs field). Look up the reguested
True Name in the True File registry 126 (Step 5432).

If a True File registry entry record 140 is not found for this
True Name {Step S$434), and the flag indicates that the
request is not to be forwarded (Step 8436}, respond nega-
tively (Step $438). That is, respond 1o the effect that the True
File is not available.

One the other hand, if a True File registry entry record 140
is not found (Step S434), and the flag indicates that the
request for this True File is to be forwarded (Step S436),
then forward a request for this True File to some other
processors in the system {Step $442). If the source table for
the current processor identifies one or more publishing
servers which should have a copy of this True File, then
forward the request to each of those publishing servers (Step
5436).

If a True File repistry entry record 140 is found for the
required True File (Siep S434), and if the enlry includes a

00 -1 Oh L A W e

10

15

30

35

40

48

55

60

65

24

True File 1D or Compressed File 1D (Step S440), respond
positively (Step S444). If the entry includes a True File 1D
then this provides the identity or disk location of the aclual
physicat representation of the file or file segment required.
If the eniry include a Compressed File ID, then a com-
pressed version of the True File may be stored instead of, or
in addition to, an uncompressed version, This field provides
the identity of the actual representation of the compressed
version of the file.

If the True File registry entry record 140 is found {Step
$434) but does not include a True File ID (the File ID is
absent if the actual file is not currently present at the current
location) (Step S440), and if the True File registry entry
record 140 includes one or more source processors, and if
the request can be forwarded, then forward the request for
this True File to one or more of the source processors (Step
S444).

2. Reserve True File

This mechanism allows a remote processer to indicate
that jt depends on the local processor for access to a specific
True File. It takes a True Name as input. This mechanism is
described here.

{A) Find the True File registry entry record 140 associated
with the given Trme File. If no entry exists, reply
negatively.

{(B) It the True File regisiry entry record 140 does ool
include a True File ID or compressed File ID, and if the
True File regisiry entry record 140 includes no source
1Ds for removabie storage volumes, then this processor
does not have access to a copy of the given file. Reply
negalively.

{C) Add the ID of the sending processor o the list of
dependent processors for the True File registry eniry
record 140. Reply positively, with an iodication of
whether the reserved True File is on line or off line.

3. Request Truc File

This mechanism allows a remole processor lo request a
copy of a True File from the local processor. It requires a
Tree Name and responds pesitively by sending a True File
back to the requesting processor. The mechanism operates as
{ollows:

{A) Find the True File registry entry record 140 associated
with the gives True Name. If there is no such True File
registry entry record 140, reply negatively.

(B) Make the True File local using the Make True File
Local primitive mechanism. 1f this mechanism fails, the
Request True File mechanism also fails.

{C) Send the local True File in either it is uncompressed
or compressed form to the requesting remole processor.
Note that if the True File is a compound file, the
components are not sent,

(D) If the remote file is listed in the dependent process list
of the True File registry entry record 140, remove it,

4. Retire True File

This mechanism allows a remole processor io indicate
that it mo longer plans to mainiain a copy of a given True
Fitc. An afternate source of the True File can be specificd, if,
for instance, the True File is being moved from one server
1o another. It begias with a True Name, a requesting pro-
cessor 1D, and an optionat alternate source. This mechanism
operates as follows:

{A) Find a True Name entry in the True File registry 126.
1f there is no entry for this True Name, this mecha-
nism’s task is complete.

(B) Find the requesting processor on the source list and,
if it is there, remove it.

US 6,415,280 Bl

25

(C) 1f an alternate source is provided, add it 1o the source
list for the True File registry entry record 144.

(D} If the source list of the True File registry entry record
140 has no items in it, use the Locate Remote File
primitive mechanism to search for another copy of the
file. If it fails, raise a scrious error.

5. Cancel Reservation

This mechanism altlows a remote processor to indicate
_that it no fonger requires access lo a True File stored on the
local processor. It begins with a True Name and a requesting
processor ID and proceeds as follows:

(A) Find the True Name entry in the True File registry
126. If there is no entry for this True Name, this
mechanism’s iask is complete.

(B) Remove the identity of the requesting processor from
ihe list of dependent processors, if it appears.

(C) If the list of dependent processors becomes zero and
the use count is also zero, delete the True File.

6. Acquire True File

This mechanism allows a remiote processor 1o insist that
a local processor malce a copy of a specified True File. It is
used, for example, when a cache client wants to write
through a new version of a file. The Acquire True File
mechanism begins with a data item: and an optiopal True
Name for the data item and proceeds as follows:

{A) Confirm that the requesting processar has the right to
require the local processor 1o acquire dala items. If not,
send a negative reply.

(B) Make a local copy of the dala item transmitted by the
remole processer.

(C) Assimilate the data item into the True File registry of
the local processor.

(D) I a True Name was provided with the file, the True
Name calculation can be avoided, or the mechantsm
can verify that the file received matches the True Name
sent.

(E) Add an entry in the dependent processor list of the true
lile registry record indicaling that the requesting pro-
cessor depends on this copy of the given True File.

(F) Send a positive reply.

7. Lock Cache

This mechanism atlows a remote cache client to lock a
local file so that local users or other cache clienis cannot
change it while the remote processor is using it. The
mechanism begins with a pathname and proceeds as follows:

(A) Find the local directory extensions table eniry record
138 of the specified pathname. If no such eniry exists,
reply negatively.

(B) If an local directory extensions table entry record 138
exists and is already locked, reply negatively that the
file is already locked.

(C) If an local directory extensions table entry record 138
exists and is not locked, lock the entry. Reply posi-
tively.

8. Update Cache

This mechanism allows a remole cache client to unlock a
local file and updaie it with new conlents. It begins with a
pathname and & True Name. The file coresponding to the
Frue Name must be accessible from the remote processor.
This mechanism operates as follows:

Find the local directory extensions table entry record 138
corresponding to the given pathaame. Reply negatively if no
such entry exists or if the entry is not locked.

Lirk the given pathname te the given True Name using
the Link Path to True Name primitive mechanism.

w

15

20

40

45

0

o

26
Unlock the local directory extensions table entry record
138 and return positively.
9. Check Expiration Date
Return current or new expiration date and possible alter-
nalive source to caller,

Background Processes and Mechanisms

The background processes and mechanisms provided by
the present invention are now described. Recall that back-

18 pround mechanisms are intended to run occasionally and at

a low priority to provide automated management capabilities
with respect to the present invention.

The following background mechanisms are described:
1. Mirror True File;

2. Groom Region;

3. Check for Expired Links;

4, Verify Region; and

5. Groom Source List.
. Mirror True File

This mechanism is used to ensure that files are available
in alternate locations in mirror groups or archived on archi-
val servers. The mechanism depends on application-specific
rnigration/archival criteria {size, time since last access, num-

25 her of copics required, number of cxisting alternative

sources) which determine uader whal conditions a file
should be moved. The Mirrer True File mechanism operates
as follows, using the True File specified, perform the fol-
lowing steps:

(A) Count the number of available locations of the True
File by inspecting the source list of the Tree File
registry entry tecord 140 for the True File. This step
determines how many copies of the True. File are
available in the system.

(B) If the True File meets the specified migration criteria,
select a mirror group server (o which a copy of the file
should be sent. Use the Acquire True File remote
mechanism to copy the True File to the selected mirror
group server. Add the identity of the selected systern to
the source list for the True File.

2. Groom Region

This mechanism is used to automaltically free up space in
a processor by deleting data items that may be available
elsewhere. The mechanism depends on application-specific
grooming criteria (for instance, a file may be removed if
there is an alternate online source for it, it has not been
accessed in a given number of days, and it is larger than a
given size). This mechanism operates as follows:

Repeat the following steps (i) to (ii) with more aggressive
grooming criteria until sufficient space is freed or until all
grooming criteria have been exercised. Use grooming infor-
mation 10 determine how nruch space has been freed. Recall
that, while grooming is in effect, grooming information
includes a table of pathnames selected for deletion, and
keeps track of the amount of space that would be freed if all
of the files were delcted.

(i} Begin Grooming (using the primitive mechanism).
(i) For each pathname in the specified region, for the True

0 File corresponding to the pathname, if the True File is

piesent, has at least one alternative source, and meets
application specific grooming criteria for the region,
select the file for removal (using the primitive
mechanism).

s (iii) End Grooming (using the primitive mechanism).

If the region is used as a cache, no other processors are
dependent on True Files to which it refers, and all such True

US 6,415,280 B1

27

Files are mirrored ¢lsewhere. In this case, True Files can be
removed with impunity. For a cache region, the grooming
criteria would ordinarily eliminate the least recently
accessed True Files first. This is best done by sorting the
True Files in the region by the most recent access time
before performing step (i) above. The application specific
criteria would thus be to select for removal every True File
encountered (beginning with the least recently used) until
the required amount of free space is reached.

3. Check for Expired Links

This mechanism is used 1o determine whether dependen-
cies on published files should be refreshed. The following
steps describe the operation of this mechanism:

For each pathname in the specified region, for each True
File corresponding to the pathname, perform the following
step:

If the True File registry entry record 140 corresponding to
the True File contains at least ome source which is a
publishing server, and if the expiration date on the depen-
dency is past or close, then perform the following steps:

{A) Determine whether the True File registry entry record
contains olber sources which have not expired.

{B) Check the True Name expiration of the server. If the
expiralion date has been extended, or an allernate
source is suggested, add the source to the True File
registry entry record 140.

(C) If no acceptable alternate source was found in steps
{(A) or (B) above, make a local copy of the True File.

(D) Remove the expired source.

4. Verify Region

This mechanism can be used 1o ensure that the data items
in the True File regisiry 126 have not been damaged acci-
dentally or maliciously. The operation of this mechanism is
described by the following steps:

(A) Search the local directory extensions table 124 for
each pathname in the specified region and then perform
the following steps:

(i) Get the True File name corresponding 1o the path-
name;

(ii) If the True File registry entry 140 for the True File
does not have a True File ID or compressed file ID,
ignore it.

(iii) Use the Verify True File mechanism (see cxtended
mechanisms below) to confirm that the True File
specified is correct.

5. Groom Source List

The source list in a True File entry should be groomed
somelimes to ensure there are not too many mirror or archive
copies. When 2 file is deleted or when a region definition or
its mirror criteria are changed, it may be necessary Lo inspect
the affected True Files to determine whether there are loo
many mirror copies. This can be done with the following
steps:

For each affected True File,

{A) Search the local directory extensions table 1o find

cach region that refers to the True File.

(B) Create a set of “required sources”, initially cmpty.

(C) For each region found,

() detersine the mirroring criteria for that reglon,

(b) determine which sources for the True File satisfy
the mirroring criteria, and

(c) add these sources to the sct of required sources.

(D) For each source in the True File registry entry, if the
source identifies a remote processor (as opposed to
removable media), and if the source is not a publisher,
and if the source is not in the set of required sources,

10

20

25

30

35

40

45

35

€0

65

28

then eliminate the source, and use the Cancel Reser-
vation remote mechanism to efiminate the given pro-
cessor from the list of dependent processors recorded at
the remote processor identified by the source.

Extended Mechanisms

The extended mechanisms provided by the present inven-
tion are now described. Recall that extended mechanisms
run within application programs over the operating syslem
to provide solutions to specific problems and applications.

The following extended mechanisms are described:

1. Inventory Existing Directory;

. Inventory Removable, Read-only Files;
. Synchronize Directories;
. Publish Region;
Retire Directory;
. Realize Directory at Location;
. Verify True File;
. Track for Accounting Purposes; and
9. Track for Licensing Purposes.
1, Inventory Existing Directory

This mechanism determines the True Names of files in an
existing on-line direclory in the underlying operating sys-
temn. One purpose of this mechanism is to install True Name
mechanisms in an existing file system.

An effect of such an installation is to eliminate immedi-
ately all duplicate files [rom the file system being iraversed.
If several file systems are inventoried in a single True File
registry, duplicates across the volumes are also eliminated,

(A) Traverse the underlying file system in the operating

system. For each file encountered, excluding

directories, perform the following:

(i) Assimilate the flle enconntered (using the Assimilate
File primitive mechanism). This process compules
its True Name and moves its data into the True File
registry 126.

{ii) Create a pathname consisting of the path to the
valume directory and the relative path of the file on
the media. Link this paih to the computed Trec Name
using the Link Path to Tru¢ Name primitive mecha-
nism.

2. Inventory Removable, Read-only Files

A system with access to removable, read-only media
volumes (such as WORM disks and CD-ROMs) can create
a usable inventory of the files on these disks witheut having
10 make online copies. These objects can then be used for
archival purposes, directory overlays, of other needs. An
operator must request that an mventory be created for such
a volume.

This mechanism allows for maintaining inventories of the
contents of files and data ilems on removable media, such as
diskettes and CDD-ROMS, independent of other properties of
the files such as name, lecation, and date of creation.

The mechanism creales an online inventory of the files on
one or more removable volumes, such as a floppy disk or
CD-ROM, when the data on the volume is represented as a
directory. The inventory service uses a True Name to iden-
tify each file, providing a way (o locate the data independent
of its name, date of creation, or location.

The inventory can be used for archival of data (making it
possible 10 avoid archiving data. When that data is already
on a separate volume), for grooming (making it possible 1o
delete infrequently accessed files if they can be retrieved
from removable volumes), for version control (making it
possible 1o generate a pew version of a CD-ROM without
having to copy the old versien), and for other purposes.

00 N &R Wb

US 6,415,280 Bl

29

The inventory is made by crealng a volurae direclory in
the media inventory in which each file named identifies the
data item on the volume being inventoried. Data items are
not copied from the removable volume during the inventary
process.

An operator must request that an inventory be created for
aspecific volume. Once created, the volume direclory can be
frozen or copied like any other directory. Data items from
either the physical volume or the volume directory can be
accessed using the Open File operating system mechanism
which will cause them to be read from the physical volume
using the Realize True File from Location primitive mecha-
nism.

To create an inventory the following steps are laken:

{A) A volume direclory in the media invenlory is crealed
to correspond o the volume being inventoried. Iis
contextual name identifies the specific volume.

(B) A source table entry 144 for the volume is created in
the source table 130. This entry 144 identifies the
physical source volume and the volume directory cre-
ated in step (A).

(C) The filesystem on the volume is traversed. For each
file encountered, excluding directorics, the following
sieps are taken:

(i) The True Name of the file is computed. An entry is
created in the True Name registry 124, including the
True Name of the file using the primitive mecha-
nism. The source field of the True Name regisiry
entry 140 identifies the source table entry 144.

(i1} A pathname is created consisting of the path to the
volume directory and the relative path of the file on
the media. This path is linked to the computed True
Name using Link Path to True Name primitive
mechanism.

(D) After ail files have been inventoried, the volume
dircctory is frozen. The volume directory serves as a
table of contents for the volume. It can be copied using
the Copy File or Directory primilive mechanism to
create an “overlay” directory which can thco be
modified, making it possible to edit a virtual copy of a
read-only medium.

3. Synchronize Dircctories

Given two versions of a directory derived from the same
starting point, this mechanism creates a new, synchronized
version which includes the changes from each. Where a file
is changed in both versions, this mechanism provides a user
exit for handling the discrepancy. By using True Names,
comparisons are instantaneous, and o copies of files are
necessary.

This mechanism lets a local processor synchronize a
directory to account for changes made at 2 remote processor.
Its purpose is to bring a local copy of a directory up o date
after a period of no communication between the loczl and
remete processor. Such a period might occur if the focal
processor wege a mobile processor detached from ils server,
or if two distant processors were run independently and
updated nightly.

An advantage of the described synchronization process is
that it does not depend on synchronizing he clocks of the
local and remote processors. However, it does require that
the local processor track its position in the remote proces-
sor’s audit file.

This mechanism does not resolve changes made simulta-
neously to the same file at several sites. If that occurs, an
external resolution mechanism such as, for example, opera-
tor imtervention, is required.

The mechanism takes as input a start time, a local
directory pathname, a remote processor name, and a remote
directory pathname name, and it operates by the following
steps:

15

30

35

40

45

35

60

63

30

(A) Request a copy of the audii file 132 from the remole
processor using the Request True File remote mecha-
nism.

(B) For each entry 146 in the audit file 132 after the start
time, if the entry indicates a change to a file in the
remote directory, perform the following steps:

(i} Compute the pathname of the corresponding file in
the local directory. Determine the True Name of the
corresponding file.

(ii) If the True Name of the local file is the same as the
obd True Mame in the audit file, or if there is no local
file and the audit entry indicates a new file is being
crealed, link the new True Name in the audit file 10
the local pathname using the Link Path to True Name
primitive mechanism.

(iii) Otherwise, note that there is a problem with the
synchronization by sending a message to the opera-
tor or to a problem resolution program, indicating the
local pathname, remote pathname, remote processor,
and time of change.

{C) After synchronization is complete, record the lime of
the final change. This time is to be used as the new start
time the next time this directory is synchronized with
the same remote processor.

4. Publish Region

The publish region mechanism allows a processar to offer
the files in a region to any client processors for a limited
period of time.

The purpose of the service is to eliminate any need for
client processors to make reservations with the publishing
processor. This in turn makes it possible for the publishing
processor 1o service a much larger number of clients.

When a region is published, an expiration date is defined
for all files in the region, and is propagated into the pub-
lishing system’s True File registry entry record 140 for cach
file.

When a remate file is copied, [or instance using the Copy
File operating syslem mechanism, the expiration date is
copied into the source field of the client’s True File registry
entry record 140. When the scurce is a publishing system, no
dependency need be created.

The client processar must occasionally and in
background, check for expired links, to make sure it stili has
access lo these [iles. This is described in the background
mechanism Check for Expired Links.

5. Retire Directory

This mechanism makes it possible to eliminate safely the
True Files in a directory, or at least dependencies on them,
after ensuring that any client processors depending on those
files remove their dependencies. The files in the directory are
not actually deleted by this process. The directary can be
defeted with the Delete File operating sysiem mechanism.

‘The mechanism (akes the pathname of a given directory,
and optionally, the identification of a preferred alternate
source processor for clients to use. The mechanisi performs
the following steps:

(A) Traverse the directory. For each file in the directory,

perform the following steps:

(i) Get the True Name of the file from its path and find
the True File registry entry 140 associated with the
Tree Name.

(ii) Determine an alternate source for the True File. If
the source IDs field of the TFR entry includes the
preferred alternate source, that is the aliernate
source. If it does not, but includes some other source,
that is the alternate source. If it contains no alternate
sources, there is no alternate source.

US 6,415,280 Bl

31

(iii} For each dependent processor in the True File
registry entry 140, ask that processor lo retire the
True File, specifying ap altemate source if one was
determined, using the remote mechanism.
6. Realize Directory at Location

This mechanism allows the user or operating system 10
force copies of files from some souzce location to the True
File registry 126 at a given location. The purpose of the
mechanism is to ensure that files are accessible in the event
the source location becomes inaccessible. This can happen
for instance if the source or given location are on mobile
computers, or are on removable media, or if the network
commection to the source is expected to become unavailable,
or if the source is being retired.

This mechanism is provided in the following steps for
each file in the given directory, with the exception of
subdirectories:

{(A) Get the local directory extensions table entry record

138 given the pathname of the file. Get the True Name
of the local directory extensions table entsy record 138.
This service assimilates the file if it has not already
been assimilated.

(B) Realize the corresponding True File at the given
location. This service causes il lo be copied lo the given
location from a remote system or removable media.

7. Verify True File

This mechanism is used to verify that the data item in a
True File registry 126 is indecd the correct data item given
its True Name. Its purpose is to guard against device errors,
malicious changes, or other problems.

If an error is found, the syslem has the ability 1o “heal”
itself by finding another source for the True File with the
given name. It may also be desirable to verify that the error
has nol propagated lo other systems, and to log the problem
or indicate i to the computer operator. These details are not
described here.

To verify a data item that is not in a True File registry 126,
use the Calculate True Name primitive mechanism described
above.

The basic mechanism begins wilh a True Name, and
aperates in the following steps:

(A) Find the True File regisiry eniry record 140 corre-

sponding to the given True Name.

(B) Tf there is a True File ID for the True File registry
entry record 140 then use it. Otherwise, indicate that no
file exists to verify.

(C) Calculate the True Name of the data item given the file
1D of the data item.

{[) Confirm that the calculzied True Name is equal te the
given True Name.

(E) If the True Names are not equal, there is an error in
the True File registry 126. Remove the True File ID
from the True File registry entry record 140 and place
it somewhere else. Indicate that the True File registry
entry record 140 contained an errot.

&. Track for Accounting Purposes

“This mechanism provides a way to know reliably which
files have beer stored on a system or lransmitted from one
system to another. The mechanism can be used as a basis for
a value-based accounting system in which charges are based
on the identity of the data stored or transmitted, rather than
simply on the number of bits.

This mechanism allows the systent fo track possession of
specific data items according to content by owner, indepen-
dent of the name, date, or other praperties of the data item,
and tracks the uses of specific data items and files by content

]
w

30

35

55

60

32
for accounting purposes. True names make it possible 10
identify each file briefly yet uniquely for this purpose.

Tracking the ideatities of files requires maintaining an

accounting log 134 and processing it for accounting or
billing purposes. The mechanism operates in the fellowing
sleps:

{A) Note every time a file is created or deleted, for
instance by monitoring audit entries in the Process
Audit File Entry primitive mechanism. When such an
event is encountcred, create an entry 148 in the
accounting, log 134 that Shows the responsible party
and the identity of the file created or deleted.

(B) Every time a file is transmilted, for instance when a
file is copied with a Request True File remote mecha-
nism or an Acquire True File remote mechanism, create
an eptry in the accounting log 134 that shows the
responsible parly, the identily of the file, and the source
and destination processors.

(C) Oceasionally run an accounting program io process
the accounting log 134, distributing the events to the
account records of each responsible party. The account
records can eventually be summarized for billing pur-
poses.

9. Track for Licensing Purposes

This mechanism ensures that licensed files are not used by
unauthorized parties. The True Name provides a sale way 10
identify licensed material. This service allows proof of
possession of specific files according to their contents with-
out disclosing their contents.

Enforcing use of vakid licenses can be active (for example,
by refusing to provide access to a file without authorization)
or passive (for example, by crcating a report of users who do
not have proper authorization).

One possible way to perform license validation is to
perform oceasional avdits of employee sysiems. The service
described herein relies on True Names to support such an
audit, as in the following steps:

(A) Tor each licensed product, record in the license lable
136 the True Name of key files in the product (that is,
files which are required in order to use the product, and
which do not oceur in other products) Typically, for a
software product, this would include the main execut-
able image and perhaps other major files such as
¢lip-art, seripts, or online help. Also record the identity
of cach system which is authorized 1o have a copy of
the file.

(B) occasionally, compare the contents of each user
processor against the license table 136. For each True
Name in the license table do the following:

(i) Unless the user processor is authorized to have a
copy of the file, confirm that the user processor does
not have a copy of the file using the Locate True File
mechanism.

(1i) If the uscr processor is found to have a file that it
is not autharized to bave, record the user processor
and True Name in a license violation table.

The System in Operation

Given the mechanisms described above, the operation of
a typical DP system employing these mechanisms is now
described in order to demonsirate how the present invention
meels its requirements and capabilities.

In operation, data items (for example, files, database
records, messages, data segments, dala blocks, directories,
instances of object classes, and the like) in a DP system
employing the present invention are identified by substan-

US 6,415,280 Bl

33

tially upique identifiers (True Names), the identifiers
depending an all of the data in the data iterns and only on the
data in the data items. The primitive mechanisms Calculate
True Name and Assimilate Data Ttem: support this properiy.
For any given data item, using the Calculate True Name
primitive mechanism, a substantially unique identifier or
True Name for that data ilem can be determined.

Further, in operation of a DP system incorporating the
present invention, multiple copies of data items are avoided
{unless they are required for some reason such as backups or
mirror copies in a fault-tolerant system). Multiple copies of
data jtems are avoided oven when multiple names refer to
the same data item. The primitive mechanisms Assimilate
Data Items and New True File support this property. Using
the Assimilate Data Item primitive mechanism, if a data item
already exists in the system, as indicated by an entry in the
True File registry 126, this existence will be discovered by
this mechanism, and the duplicate data item (the new data
item) will be eliminated (or not added). Thus, for example,
if a data file is being copied onto a system from a floppy
disk, if, based on the True Name of the data file, it is
determined that the data file alrcady exists in the system (by
the same or some other name), then the duplicate copy will
1ot be installed. If the data jtem was being installed on the
system by some name other {han its currenl name, then,
using the Link Path to True Name primitive mechanism, the
other (or new) name can be linked to the already existing
data item.

In general, the mechanisms of the present invention
operate in such a way as to avoid recreating an actual data
jtem at a location when a copy of that data item is already
present al thal location. o the case of a copy from a [loppy
disk, the data item (file) may have to be copied (into a
scratch file) before it can be determined that it is a duplicate.
This is because only one processor is involved. On the other
hand, in a multiprocessor enviropment or DP system, cach
processor has a record of the True Names of the data items
on that processor. When a data item is to be copied 10
another location (another processer) in the DP syslem, atk
that is mecessary is to examine the True Name of the data
jtem prior Lo the copying. If a data item with the same True
Name already exists at the destination lecation (processor),
then there is no need o copy the data item. Note that if a data
item which already exists locally at a destination location is
still copied to the destination location (for example, because
the remate system did not have a True Name for the data
item or because i afrives as a stream of un-named data}, the
Assimilate Data ftem primitive mechanism will prevent
multiple copies of the data item from being created.

Since the True Name of a large data item (a compound
data item) is derived from and based on the True Names of
components of the data item, copying of an entire dala item
can be avoided. Since some (or all) of the components ola
jarge data item may already be present al a destination
location, only those composents which are not present there
need be copied, This property derives from the manncr in
which True Names are determined.

Whean a file is copied by the Copy File or Directory
operating system mechanism, only the True Name of the file
is actually replicaled.

When a file is opened (using the open File operating
system mechanism), it uses the Make True File Local
primitive mechanism (either directly or indirectly through
the Create Scratch File primitive mechanism) to create a
local copy of the file. The Open File operating system
mechanism uses the Make True TFile Local primitive

[
o

580

34

mechanism, which uses the Realize True File from Location
primitive mechanism, which, in turn uses the Request True
File remote mechanism.

The Request True File remote mechanism copies only a
single data item from one processor to another. If the data
item is a compound file, its component segments are ool
copied, only the indirect block is copied. The segmenis are
copied only when they are read (or otherwise needed).

The Read File operating system mechanism actually reads
data. The Read File mechanism is aware of compound files
and indirect blocks, and it uses the Realize True File from
Location primitive mechanism to make sure that component
segments are locally available, and then uses the operating
system file mechanisms o read data from the local file.

Thus, when a compound file is capied from a remote
system, only its True Name is copied. When it is opened,
onty its indirect block is copied. When the corresponding file
is read, the required component segments are reatized and
therefore copied.

In operation data items can be accessed by reference to
their identities (True Names) independent of their present
location. The actual data item or True File corresponding to
a given data identifier or True Name may reside anywhere in
the system (that is, locally, remotely, offline, ¢tc). If a
required True File is present locally, then the data in the file
can be accessed. If the data item is not present locally, there
are a number of ways in which it can be obtained from
wherever il is present. Using the source IDs field of the True
File registry table, the location(s) of copies of the True File
corresponding to a given True Name can be determined. The
Realize True File from Location primitive mechanism tries
10 make a local copy of a True File, given its True Name and
the name of a source location (processer or media) that may
contain the True File. If, on the other hand, for some reason
it is nal known where there is a copy of the True File, ar if
the processors identified in the source IDs field do not
respond with the required True File, the processor requiring
the data ilem can make a general request for the data item
using the Request True File remote mechanism from all
processors in the system that it can contact.

As a result, the system provides (ramsparent access Lo anay
data item by reference 1o its data identily, and independent
of its present location.

In operation, data items in the system can be verified and
have their integrity checked. This is from the manoer in
which True Napes are determined. This can be used for
securily purposes, for instance, to check for viruses and to
verify that data retrieved from another location is the desired
,and requested data. For example, the system might store the
True Names of all executable applications on the system and
then periodically redetermine the True Names of each of
these applications to ensure that they maich the stored True
Names. Any change in a True Name potentiaily signals
corruption in the system and can be further investigated. The
Verify Region background mechanism and the Verify True
File cxtended mechanisms provide direct support for this
mode of eperation. The Verify Region mechanism is used o
ensure that the data items in the True File registry have oot
been damaged accidentally or maliciously. The Verify True
File mechanism verifies that a data item in a True File
regisiry is indeed the correct data item given its True Name.

Once a processor has determined where (that is, at which
other processor or location} a copy of a data item is in the
DP system, that processor might need that other processor or
location to keep a copy of that data item. For example, a
processor might want to delete local copies of data items 10

US 6,415,280 Bi

35

maike space available locally while knowing that it can rely
on retrieving the data from somewhere else when needed. To
this end the system allows 2 processor to Reserve (and
cance! the reservation of) True Files at remote locations
(using the remote mechanism). In this way the remotc
locations are put on notice that another location is relying on
the presence of the True File at their location.

A DP system employing the present invention can be
made inle a fault-tolerant system by providing a certain
amount of redundancy of data items at multiple locations in
the system. Using the Acquire True File and Reserve True
File remote mechanisms, a particular processor can imple-
ment its own form of fauli-tolerance by copying data items
1o ather processars and then reserving them there. However,
the system also provides the Mirror True File background
mechanism te mirror {make copies) of the True File avail-
able elsewhere in the system. Any degree of redundancy
(limited by the number of processors or locations n the
system) can be implemented. As a result, this invention
maintains a desired degree or level of redundancy in a
network of processars, to protect against fature of any
particutar processor by ensuring that multiple copies of data
itemns exist at different locations.

The data structures used to implement various features
and mechanisms of this invertion store a variety of useful
information which can be used, in conjunction with the
various mechanisms, to implement storage schemes and
policies in a DP system employing the invention. For
example, the size, age and location of a data item (or of
groups of data items) is provided. This information can be
used to decide how the data items should be treated. For
example, 4 processor may implement a policy of deleting
local copies of all data items over a certain age if other
copies of those data items are present elsewhere in the
system. The age (or variations on the age) can be determined
using the time of last access or modification in the local
directory ¢xtensions table, and the presence of other copies
of the data item can be determined either from the Safe Flag
or the source 1Ds, or by checking which other processors in
the system have copies of the data ilem and then reserving
al least one of those copies.

In operation, the system can keep track of data items
regardless of how those items are named by users {or
regardless of whether the data items even have names). The
system can also track data items that have different names
(in different or the same location) as well as different data
items that have the same name. Since a data item is identified
by the data in the item, without regard for the context of the
data, the problems of inconsistent paming in a DP system are
overcome.

In operation, the system can publish dala items, allowing
other, possibly anonymous, systems in a network to gain
access to the data items and to rely on the availability of
these data items. True Names are globally unique identifiers
which can be published simply by copying them. For
example, a user might create a textual representation of a file
on system A with True Name N (for instance as a hexadeci-
mal siring), and post it an a computer bulletin board.
Another user on system B could create a directory entry F
for this True Name N by using the Link Path o True Name
primitive mechanism, (Alternatively, an application could
be developed which hides the True Name from the users, but
provides the same public transfer service.)

When a program on system B attempis to open patkname
F linked to True Name N, the Locate Remote File primitive
mechanism would be used, and would use the Locate True

oy

20

40

43

55

60

36

File remote mechanism 1o search for True Name N on one
or more remote processors, such as system A. If system B
has access to system A, it would be able to realize the True
File (using the Realize Tme File from Location primitive
mechaaism) and use it locally. Allematively, system B could
find True Name N by accessing any publicly available True
Name server, if the server could eventually forward the
request (o system A.

Clients of a local server can indicate that they depend on
a given True File (using the Reserve True File remote
mechanism) so that the True File is not deleted from the
server regisiry as long as some client requires access to it.
(The Retire True File remote mechanism is used to indicate
that a client no longer needs a given True File.)

A publishing server, on the other hand, may want to
provide access to many clients, and possibly anonymous
ones, without incurring the overhead of tracking dependen-
cies for each client. Therefore, a public server can provide
expiration dates for True Files in its registry. This allows
client systems to safely maintain references to a True File on
the public server. The Check For Expired Links background
mechanism allows the client of a publishing server to
occasionally confirm that its dependencies on the publishing
server are safe.

In a variation of this aspect of the invention, a processar
that is newly comnected (or reconnected afier some absence)
to the system can obtain a current vession of all {or of
needed) data in the system by requesting it from a server
processor. Any such processor can send a request Lo update
or resynchronize all of its directories (starling at a root
directory), simply by using the Synchromize Directorics
extended mechanism on the needed directories.

Using the accounting log or some other user provided
mechanism, a user can prove the existence of certain data
items at certain times. By publishing (in a public place) a list
of all True Names in the system on 2 given day (or al some
given time), a user can later refer back to that list to show
that a particular data ilem was present in Lhe system at the
time that list was published. Such a mechanism is useful in
tracking, for example, laboratory notebocks or the like 1o
prove dafes of conception of inventions. Such a mechanism
also permits proof of possession of a data item at a particular
date and time.

The accounting log file can also track the use of specific
data items and fites by content {or accounting purposes. For
instance, an information utility company can determine the
data identities of data ilems that are stored and {ranseited
through its compuier systems, and use these identities o
provide bills to its customers based on the identities of the
data items being transmitted (as defined by the substantially
unique identifier). The assignment of prices for storing and
transmitting specific True Files would be made by the
information utility and/or f1s data suppliers; this information
would be joined periodically with the information in the
accounting log file 1o produce customer statements.

Backing up data items in a DP system employing the
present invention can be done based on the True Names of
lhe data ilems. By tracking backups using True Names,
duplication in the backups is prevented. In operation, the
system maintains a backup record of data identifiers of data
items aircady backed up, and invokes the Copy File or
Directory operating system mechanism lo copy only those
data items whose data identificrs are not recorded in the
backup record. Once a data item has been hacked up, it can
be restored by retrieving it from its backup location, based
on the identifier of the data item. Using the backup record

US 6,415,280 Bl

37

produccd by the backup to identify the data item, the data
item can be obtained using, for example, the Make True File
Local primitive mechanism.

In operation, ke system can be used 10 cache data ilems
from a server, so that only the most recently accessed data
itemns need be retained. To operate in this way, a cache clicat
is configured to have a local registry (its cache) with a
remote Local Directory Extensions table (from the cache
server). Whenever a file is opened (or read), the Local
Direciory Extensions table is used to identify the True
Name, and the Make True File Local primitive mechanism
inspects the local regisiry. When the local registry alrcady
has a copy, the file is already cached. Otherwise, the Locale
"True File remote mechanism is used 1o get a copy of the file.
This mechanism consults the cache server and uses the
Request True File remote mechanism to make a local copy,
effectively loading the cache.

The Groom Cache background mechanism flushes the
cache, removing the least-recenily-used files from the cache
client’s Trae File registry. While a file is being modified on
a cache clicnt, the Lock Cache and Update Cache remote
mechanisms prevent other clients from trying to madify the
same file.

In operation, when the system is being used to cache data
items, the problems of maintaining cachc consistency are
avoided.

To access a cache and to £l it from its server, a key is
required to identify the data item desired. QOrdinarily, the key
is & name or address (in this case, it would be the pathname
of a file). If the data associated with such a key is changed,
the client’s cache becomes inconsistent; when the cache
client tefers to that name, it will retrieve the wropg data. In
order to maintain cache consistency it is necessary to notify
every client immediately whenever a change occurs on the
SErver. ' ’

By using an embodiment of lhe present invention, the
cache key uniquely identifies the data it represents. When
the data associated with a name changes, the key itsell
changes. Thus, when a cache client wishes 10 access the
modified data associated with a given file name, it wiil use
anew key (the True Name of the new file) rather than the key
1o the old file contems in its cache. The client will always
request the correct data, and the old data in its cache will be
eventually aged and fushed by the Groom Cache back-
ground mechanism.

Because il is not necessary to immediately notify clients
when changes on the cache server occur, the present inven-
tion makes it possible for a single server to support a much
larger number of clients than is otherwise possible.

In operation, the system automatically archives data items
as they are created or modified. After a file is created ot
modified, the Close File operating system mechanism cre-
ates an audit file record, which is eventually processed by
the Process Audit File Entry primitive mechanism. This
mechanism uses the New True File primitive mechanism for
any file which is newly created, which in tum uses the
Mirror True File background mechanism if the True File is
in a mirrored or archived region. This mechanism causes one
or more copies of the new file to be made on remole
Processors.

In operation, the system can efficiently record and pre-
serve any collection of data items. The Freeze Directory
primitive mechanism creates a True File which identifies all
of the files in the directory and its subordinates. Because this
True File inchudes the True Names of its conslituents, it
represents the exact contents of the directory tree at the time

30

35

40

50

55

60

33

it was frozen. The frozen direclory can be copicd with its
componenis preserved.

The Acquire True File remote mechanism (used in mir-
roring and archiving) preserves the directory tree structure
by ensuring that all of the component scgments and True
Files in a compound data item are actually copied to a
remole system. Of course, no ransfer is necessary for data
items already in the registry of the remote system.

In operation, the system can cfficiently make a copy of
any collection of data items, to support a version control
mechanism for groups of the data items.

The Freeze Directory primitive mechanism is used to
create a collection of data items. The constiluent files and
segments referred 1o by the frozen direclory are maintained
in the registry, without any need 1o make copies of the
constituents each time the directory is frozen.

Whenever a pathname is traversed, the Get Files in
Directory operating system mechanism is used, and when it
encounters a frozen directory, it uses the Expand Frozen
Directory primitive mecharism.

A frozen directory can be copied from ope pathname io
another efficiently, merely by copying its True Name. The
Copy File operaling system mechanism is used to copy a
frozen directory.

Thus it is possible to cfficiently create copies of different
versions of a directory, thereby creating a record of its
history (hence a version control system).

In cperation, the system can maintain a local inventory of
all the data items located on a given removable medium,
such as a diskette or CD-ROM. The inventory is indepen-
denl of other properties of the data items such as their name,
location, and date of creation.

The Inventory Existing Dircctory exiended mechanism
provides a way 1o create True File Registry entries for all of
the files in a directory. One use of this inventory is as a way
to pre-load a True File repistry with backup record infor-
mation. Those files in the registry (such as previously
installed software) which are on the volumes invenioried
need not be backed up onto other volumes.

The Invemtory Removable, Read-only Files exlended
mechanism not only determines the True Names for the files
on the medium, but also records directory entries for each
file in a frozen directory structure. By copying and modi-
fying this directory, it is possible to create an on line patch,
or small modification of an existing read-only file. For
example, it is possible to create an online representation of
a modified CD-ROM, such that the unmodified [iles are
actually on the CD-ROM, and only the modified files are
online.

In operation, the system tracks possession of specific data
items according to content by owner, independent of the
name, date, or other properties of the data item, and tracks
the uses of specific data itemss and files by content for
accounting purposes. Using the Track for Accounting Pur-
poses extended mechanism provides a way 1o know reliably
which files have been stored on a system or transmitted from
ope system to another.

True Names in Relational and Objeci-Oriented
Databases

Although the preferred embodiment of this invention has
been presented in the context of a file system, the invention
of True Names would be equally valuable in a relational or
object-oriented database. A relational or object-oriented
database system using True Names would have similar

US 6,415,250 Bl

39

benefits 1o those of the file system employing the invention.
For instance, such a database would permit efficient elimi-
nations of duplicate records, support a cache for records,
simplify the process of maintaining cache consistency, pro-
vide location-independent access to records, maintain
archives and histories of records, and synchronize with
distant or disconnected systems or databases.

The mechanisms described above can be easily modified
1o serve in such a database environment. The True Name
registry would be used as a repository of database records.
All references to records would be via the True Name of the
record. {The Local Directory Extensions table is an example
of a primary index that uses the True Name as the unique
identifier of the desired records.)

In such a database, the operations of inserting, updating,
-and deleting records would be implemented by first assimi-
lating records inlo the regisiry, and then updaling a primary
key index to map the key of the record to its contents by
using the True Name as a pointer to the contents.

The mechanissus described in the preferred embodiment,
of similar mechanisms, would be employed in such a
system. These mechanisms could include, for example, the
mechanisms for calculating true names, assimilating,
locating, realizing, deleting, copying, and moving True
Files, for mirroring True Files, for maintaining a cache of
True Files, for grooming True Files, and other mechanisms
based on the use of substantially unique identifiers.

While the invention has been described in connection
with what is presently considered 1o be the most practical
and preferred embodiments, it is to be understood that the
invention is not 1o be limited to the disclosed embodiment,
but on the contrary, is intended to cover various modifica-
tions and equivalent arrangements included within the spirit
and scope of the appended claims.

What is claimed is:

1. In z system in which a set of data files are distributed
across a network of servers, at least some of the data files
being cached versions of data files from a source server,
wherein the source server is distinet from the servers in the
aetwork, a content delivery method comprising:

determining a data identifier for a particular data file on

the source server, the data identifier being determined
using a given function of the data, wherein said data
used by the given funclion to determine the data
identifier comprises the contents of the particular data
file; and

responsive to a request for the particular data file, the

request including at least the data identifier of the
particular data file, providing the particular data filc
from a given one of the servers of the network of
servers, said providing being based on the data identi-
fier of the requested data itern.

2. A method as in claim 1 wherein the given function is
a message digest function or a hash function.

3. A method as in claim 2 wherein the given function is
selecied from the functions: MD4, MD35, and SHA.

4. A method as in claim 1 wherein the given funclion
randomfy distributes its outputs.

5. A method as in claim 1 wherein, for a particular data
file, the given function produces a substantially unique value
based on the data comprising the data file.

6. A method as in claim I wherein a data file may
comprise a file, a portion of a file, a page in memory, a digital
message, a digital image, a video signal or an audio signal.

7. A method as in claim 1

wherein cerlain processors in the network communicate

with each ather using a TCP/IP communication profo-
col.

10

30

35

40

55

60

40

8. A mcthod as in claim 1 whercin said data identificr for
said particular data file, as determined using said given
Function, will change when the particular data file is modi-
fied.
9. In a system in which a set of data files are distributed
across a netwark of servers, some of the data files being
cached from a source server distinct from the servers in the
network, a content delivery method comprising:
determining a data identifier for a particular data file on
the source server, the data identifier being determined
using 2 given function of the dala, wherein said data
used by the given function to detcrmine the data
identifier comprises the contents of the particular data
file; and
responsive (o a request for the particular data file, the
request including at least the data identifier of the
particular data file, causing a copy of the particular data
file to be provided from a given one of the servers of the
network of servers.
10. A contenl delivery method, comprising:
distributing a set of data files across a network of servers;
determining a data identifier for a particular data file, the
data identificr being determined using a given function
of the data, wherein said data uwsed by the given
function to determine the data identifier comprises the
contents of (he particular data file; and
in response 1o a request for the particular data file, the
request including at least the data identifier of the
particutar data file, providing the particular data file
from 2 given one of the servers of the network of
servers, said providing being based on the data identi-
fier of the particular data file.
11. A method as in claim 10 further comprising:
determining whether the data identifier correspands to a
data identifier of any data file present on the given
Server.

12. A methed as in claim 11 further comprising:

bascd on said determining, if the data identifier does not
correspond to a data file present on the given server,
locating the particular data file from another server.

13. A method as in claim 12 further comprising:

obtaining, oo the given server, a local copy of the par-

ticular data file, from the olher server.

14. A method as in claim 10 wherein at least some of the
data files distributed across the network of servers are
cached versions of data files from another server, distinct
from the network of servers.

15. A method as in claim 1@ further comprising:

resolving the request for the particular data file based on

a measure of availability of at least one of the servers.

16. A method as in claim 15 wherein the measure of
availability is based on one or more of:

{a) 2 measurement of bandwidih 1o the server;

(b} a measurement of a cost of a connection to the server,

and

(<) a measurement of a reliability of a connection to the

Server.

17. A method as in claim 10 wherein the data file is a
cornpound data file made up of various component data files,
the method further comprising:

for each component data file of at least some of the

componen! data files:

(a) determining a data identifier for the component data
file, the data identifier for the component file deter-
mined using the given function of the data, wherein

US 6,415,280 Bl

41

said data used by the given function to determine the
data identifier comprises the contents of the compo-
nent data file; and

{b) providing the component data file from a given ane
of the servers of the network of servers.

18. A content delivery method, comprising:

distributing a set ol data files across a aetwork of servers;

for a particular data file having a particular name speci-

fying a location in the network at which the data file
may be located, determining another name for the
particular data file, the other name including a data
identifier determined using a given function of the data,
where said data used by the given [unction comprises
the contents of the particular data file; and

in response to a request for the particular data file, the

request including the other name of the particular data

file, providing the particular data file from a given one
of the servers of the network of servers.

19, A method as in claim 18 whercin at least some of the
data files are cached versions of data files from another
server which is distinct from the network of servers.

20. A method as in claim 18 further comprising:

resolving the request for the particular data file based on

a measure of availability of at least one of the servers.

21. A method as in claim 20 wherein the measure of
availability is based on one or more of:

{a)} a measurement of bandwidth to the server;

(b) a measurement of a cost of a connection to the server,

and

{c) a measurement of a reliability of a connection to the

SETVET,

22. A method as in claim 18 wherein the particular data
file is a compound data file comprising various component
data files, the method further comprising:

for at least one component data file:

() determining a data identifier for the compenent data
file, the data identifier determined using a given
function of the data, wherein said data used by the
given function comprises the contents of the com-
ponent data file; and

{b) providing the component data file from a given one
of the servers of the network of servers.

23. A content delivery method, comprising:

distributing a set of data files across a network of scrvers,

at least some of the data files being cached versions of

data files from another server, distinet from the network
of servers;

determining a data identifier for a particular data file, the

data identifier determined using a given function of the

data, wherein said data used by the given function
comprises the contents of the paricular data file; aad

in response to a request for the particular data file, the
request including at least the dala identifier of the
particular data file, providing the particular data file
from a given one of the servers of the network of
servers.

24. A contcat delivery method, comprising:

causing a set of data files lo be distributed across a

network of servers, ai least some of the data files being

cached versions of data files from another server dis-
linet from the network of scrvers;

determining a data identifier for a particular data file, the

data identifier determined using a given function of the

data, wherein said data used by the given function
camprises the contents of the particular data file; and

15

25

30

35

40

50

55

60

65

42

in response 1o a request for the particular data file, the
request includinp, at least the data identifier of the
particular data file, causing the particular data file to be
provided from a given one of the servers of the network
of servers.

25. A content delivery method, comprising:

distributing & set of data files across a network of servers,
the metwork of servers being organized into a set of
regions;

determining a data identifier for a patticular data file, the

data identifier determined using a given function of the
data, wherein said data used by the given function
comprises the contents of the data file;
in response to a client request for the particular dala file,
the request including at least the data identifier of the
particular data file, providing the chient with the par-
ticular data file from a given one of the servers of the
network of servers within the region.
26. In a system in which a set of data files are distributed
across a network of servers, at least some of the data files
being cached versions of data files from a source server
distinct from the network of servers, a content delivery
method comprising:
responsive to a request for a particular data file, the
request including at least a data identificr of the par-
ticular daia file, wherein the data identifier is deter-
mined by applying a message digest functior MD3 1o
the data, wherein said data used by the MD5 function
to determine the data identifier is the contents of the
particular data file, providing the particular data file
from a given one of the servers of the metwork of
SCIVEES,

wherein a data file may be a file, 2 portion of a file, a page
in memory, a digital message, a digital image, a video
signal or an audio signal.

27. A content delivery method, comprising:

distributing a set of data files across a network of servers,

at lcast some of the data files being cached versions of
data files from another server distinct from the network
of servers;

determining a data identifier for a particular data file, the

data identifier determined using a given function of the
data, wherein said data used by the given [function
comprises the contents of the particular data file, and
wherein the given function randomly distributes its
ouiputs; and

in response to @ request for the particular data file, the

request including at least the data identifier of the
particular data file, providing the particular data file
from a given one of the servers of the metwork of
servers, said providing being based on the data identi-
fier of the particular data item.

28. A method as in claim 27 further comprising;

maintaining accounting information relating to the data

files; and

using the accounting information as a basis for a value-

hased accounting system in which charpes arc based on
an identity of the data files.

29. A method as in claim 28 wherein the mamntaining of
accounting information includes al leasl some of:

(a) tracking which data files have been stored on a system;

and

(b) tracking which data files have been transmitted from

a server.
30. A method as in claim 28 further comprising:

US 6,415,280 Bl

43

cnsuring that a data fite is not used by an unauthorized
party.

31. A content delivery method, comprising:

distnibuting a set of data files across a network of servers;

determining an MD3 hash of the contents of 2 particular
data file; and

ip response to a request for the particular data fite, the
request including at least the MD5 hash of the particu-
lar data file, providing the particular data file from a
given one of the servers of the network of servers, said
providing béing based on the MD5 hash of the particu-
lar data file.

32. A method as in claim 31 fusther comprising:

resolving the request for the particular data file based on
a measure of availability of at least one of the servers.

33. A method as in claim 32 wherein the measure of

availability for a server is based on one or mare of:

(2) a measurement of bandwidth to the server;

- (b} a measurement of a cost of a connection ta the server,
and

(¢) a measurement of reliability of a connection to the

SEIVer

34. A content delivery method, comprising:

distributing a se1 of data files across a network of servers;

for a particular data fle having a particular data identifier

specifying a location in the network al which the
particular data file may be located, determining another
data identifier for the particular data file, the other data
identifier including a data identifier determined using a
message digest function of the contents of the particular
data file;

in response to a request for the particular data file, the

request including the other data identifier of the par-
ticular data file, providing the particular data file from
a given one of the servers of the network of servers,
said providing being based on the other data identifier
which was determined using the message digest func-
tion.

35. A content delivery method, comprising:

distributing a set of data files across a network of servers,

at Jeast some of the data files being cached versions of
data files from another server, said other server being
distinct from the neiwork of servers;

determining a data identifier for a pasticular data file, the

data identifier including a hash of the contents of the
particular data file; and

in response to a request for the particular data file, the

request including at least the data ideatifier of the
particular data file, providing the particular data file
from a given onc of Lhe servers of the network of
SEIVETS.

36. A method of delivering a data file in a network
comprising a plurality of processors, some of the processors
being servers and seme of the processors being clients, the
method comprising:

storing the data file is on a first server in the network and

storing copies of the data file on a set of servers in the
network distinct from the first server; and

responsive to a client request for the daia file, the request

including a hash of the contents of the data file, causing
the data file to be provided to the client.

37. A method as in claim 36 wherein the data file has a
contexteal name comprising a pathepame including a pro-
cessor name and a file name, the method further comprising:

44
associating the contextual name of the data file with the
hash of the contents of the data file.
38. A method of delivering a data file in a neiwork
comprising a plurality of processors, some of the processors
5 being servers and some of the processors being clients, the
method comprising:

storing the data file is on a first server and storing copies
of the data file on a set of servers distinct from the first
server; and

responsive 10 a client request for the data file, the request
including a value determined as a given function of the
contents of the data file, providing the data file to the
client.

39. A method as in claim 38 wherein the data file has a
contextual name comprising a pathname including a pro-
cessor name and a file name, the method further comprising:

associating the contextual name of the data file with the
value delermined as the given function of the data in the
data file.

40. A method of deljvering a data file in a network
comprising a plurality of processors, some of the pracessors
being servers and some of the processors being clients,
wherein some processors in the network communicate with
each other using a TCP/IP communication protocol, wherein
a key is required to idemify a data file on the network and
wherein ordinarily the key is 2 name or address for the data
file, the method comprising:

storing some data files on a first server in the network and
storing copies of some of the daiz files on a set of cache
servers distinct from the first server;

determining a different cache key from the ordinarily used
cache key, the different cache key being a function ot
the contents of the data it represents; and

responsive 1o a client request for the data file, the request
inclnding the different cache key for the data file,
providing (he data file to the client.

41, A method as in claim 40 wherein the function is a

message digest function or & hash function.
4w 42 A method as in claim 4} wherein the function is
selected from the functions: MD4, MD35, and SHA.

43. A method as in claim 40 whesein the function ran-
domly distributes its outputs.

44. A framework operative in a computer network in
which users of client processors connect 1o a conlent server,
the framework comprising:

a st of content servers, distinet from the content provider
server, for hosting at least some of the dala files that are
normally hosted by the content provider server;

a mechanism constructed and adapted to delermine an
identifier for a data file as a given function of the
contents of a data file in the network;

wherein, in response 1o requests for a data file, generated
by one of the client machines the request including an
identifier based on the given function of the contents of
the particular data file, the particular data file is served
from one of the content servers,

45. A framework as in claim 44 wherein the given

function is a message digest function or a hash function.

46. A framework as in claim 45 wherein the given
function is selected from the functions: MD4, MDS, and
SHA.

47. A framework as in claim 44 wherein the given
function randemly distributes its outputs.

48. A framework as in claim 44 wherein processors in the
network communicate with each other using a TCP/AP
communication protocol.

15

20

[~
Ly

30

35

50

55

60

63

US 6,415,280 Bl

45

49. A framework as in claim 44 wherein the data file has
a contextual name, the framework further comprising:

a mechanism constructed and adapted to associate the
contextuzl name of the data file with the identifier for
the data file,

50. A framework as in claim 49 whercin the contextual
name of the data file comprises a pathname including a
processor name and a file name.

51. A framework as in claim 44 wherein a dala file may
be a file, a portion of a file, a page in memory, a digital
message, a digital image, a video signal or an audio signal.

52, In a network comprising a plurality of processors,
some of the processors functioning as servers and some of
the processars functioning as clients, wherein some proces-
sors in the network communicate with each other using a
TCP/IP communication protocol, wherein a key is required
to idemtify a data file on the network and wherein ordinarily
the key is a name or address for the data fils, a method of
delivering a data file:

storing some data fites on a first server in the network and
storing copi¢s of some of the data files from the first
server on a set of cache servers distinct from the first
SEIVER;

for a particular data file, determining a different cache key
from the ordinarily used cache key for the data file, the
different cache key being determined using a message
digest function MDS3 of the data, wherein said data used
by the MD5 function comprises the contents of the
particular data file; and

responsive to a client request for the particular dala file,
the request including the different cache key for the
data file, causing the particular data file o be provided
to the client,

wherein the data file may be a file, a portion of a file, a
page in memory, a digital message, a digital image, a
video signal or an audio signal.

53, A framework operative in a compiter neiwork in
which users of client processors connect to a contenl server,
wherein processors in the network communicate with cach
other using a TCP/IP communication protocel, the frame-
work comprising:

a mechanism constructed and adapted to determine a
given function of a data file in the network, the given
function being a message digest function or a hash
function;

a sel of content servers, distinct from the content provider
server, for bosting al least some of the data files thal are
normally hosted by the conlent provider server;

10

20

35

46

wherein, in response to requests for a data file, generated
by one of the client machines the request including an
identifier based oa the given function of the contents of
the particular data file, the particular data file i served
from one of the content servers.
54. A content delivery method in a network in which at
least some processors in the network communicate with
cach other using a TCP/IP communication protocol, the
method comprising:
for a particular data file having a particular pame speci-
fying a lacation in the network at which the data file
may be localed, determining another name for the
particular data file, the other name including a data
ideatifier determined using message digest function
MD5 of the data, wherein said data used by the MD3
funetion comprises the contents of the particular data
file; and
in response to & request for the particular data file, the
request including the other name of the particular data
file, causing the patticular data file to be provided from
a given one ol the servers of the network of servers,

wherein the data file may be a file, a portion of a file, a
page in memory, a digital message, a digital image, a
video signal or an audio signal.
55. A method, in a network comprising a plurality of
processors, some of the processors functioning as servers
and some of the processors funciioning as clients, wherein
some processoss in the network communicate with each
other using a TCP/IP communication protocol, wherein &
key is required to identify a file on the network and wherein
ordinarily the key is a name or address for the file, the
method comprising:
storing some files on a ficst server in the network and
storing copies of some of the files from the first server
on a set of cache servers distinct from the first server;

for a particular file, determining a different cache key
from the ordinarily used cache key for the file, the
different cache key being determined using a message
function M3 of the data, wherein said data used by the
MDS5 function comprises the contents of the particular
file; and

responsive 1o a client request for the particular file, the

request including the different cache key for the file,
causing the particular file to be provided to the clien:,
wherein the data in the file may represent a digital
message, a digital image, a video signal or an audio

signal.

