EXHIBIT F

http://dockets.justia.com/docket/texas/txedce/6:2012cv00660/139824/
http://docs.justia.com/cases/federal/district-courts/texas/txedce/6:2012cv00660/139824/1/6.html
http://dockets.justia.com/

a2 United States Patent

Farber et al.

O

US 8,001,096 B2
*Aug. 16, 2011

(10y Patent No.:
45) Date of Patent:

(54

75

(73)

*)

(21)

(22)
(65)

(60

COMPUTER FILE SYSTEM USING
CONTENT-DEPENDENT FILE IDENTIFIERS

Inventors: David A, Farber, Ojai, CA (US);
Ronald D. Lachman, Northbrook, 1L
{Us)

Kinetech, Inc., Studio City, CA (US),
Level 3 Communications, LLC,
Broomfield, CO (US)

Assignees;

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.5.C. 154(b) by 514 days.

This patent is subfect 10 a terminal dis-
claimer.

Appl. No.: 11/980,677

Filed: Oct. 31, 2007

Prior Publication Data
US 2008/0082551 Al Apr. 3, 2008

Related U.S. Application Data

Continuation of application No. 11/724,232, filed on
Mar. 15, 2007, which is a continnation of application
No. 11/017,650, filed on Dec. 22, 2004, which is a
continuation of application No. 10/742,972, filed on
Dec. 23, 2003, which is a continuation of application
No. 09/987,723, filed on Nowv. 15, 2001, now Pat. No.
6,928,442, which is a continuation of application No.
09/283,160, filed on Apr. 1, 1999, now Pat, No.
6,415,280, which is a divisien of application No.
08/960,079, filed on Oct. 24, 1997, now Pat. No.
5,978,791, which is a continuation of application No.
08/425,160, filed on Apr. 11, 1995, now abandoned,
application No. 11/980,677, which is a continuation of
application No. 10/742,972, filed on Dec. 23, 2003,
which is a division of application No. 09/987,723, filed
on Nov. 15, 2001, now Pat. No. 6,928,442, which is a
centinuation of application Ne. 09/283,160, filed on
Apr. 1, 1999, now Pat. No. 6,415,280, which is a

continuation of application No. 08/960,079, filed on
Oct. 24, 1997, now Pat. No. 5,978,791, which is a
continuation of application No. 08/425,160, filed on
Apr. 11, 1995, now abandoned.

Int. CL

GO6F 17/30 (2006.01)

US.CL e T07/698; 707/690, 7G7/699

Field of Classification Search 707/690,
707/698, 699

See application file for complete search history.

(1)

(52)
(58)

(56) References Cited

U.S. PATENT DOCUMENTS
3,668,647 A 6/1972 Evangelisti et al.
{Continued)

FOREIGN PATENT DOCUMENTS
0268069 A2 5/1988
{Continued)
OTHER PUBLICATIONS
Cheriton, David R. and Mann, Timothy P.. “Decentralizing a global
naming service for improved performance and fault tolerance”, ACM

Transactions on Computer Systems, vol. 7, No. 2, May 1989, pp.
147-183. .

EP

(Continued)

Primary Examiner — Khanh B Pham

(74} Attorney, Agent, or Firm — Davidson
Jackson & Gowdey, LLP; Brian Siritzky

(57) ABSTRACT

A file system includes a plurality of servers to store file data
as segments or chunks; and first data that includes file iden-
tifiers for files for which the file data are stored as segments;
and second daia that maps the file identifiers to the segments
to which the file identifiers correspond; and location data that
identifies which of the plurality of servers stores which of the
segments, the location data being keyed on segment identifi-
ers, each segment identifier being based on the data in a
corresponding segment.

137 Claims, 31 Drawing Sheets

Berquist

! 2N

COMPUTEMD FUNGTION ON
; DATA [TEM

h 4

214

APPEND LENGTH MODULD 32 OF
DATA ITEM

US 8,001,096 B2

Page 2

1.8, PATENT DOCUMENTS 5359523 A 10/1994 Talbott et al.
3835260 A 9/1974 Prescher et al. gggigg.ﬁ, i i;’.{ggj Clark et al.
2096568 A 6/1978 Bennett elal 3T /1994 Brown et al.
4215402 A /1986 Mitchell ot al 2375,206 A 1271994 Hunter et al.
BEL diom e U A Vi can
4290105 A 9/1981 Cichelli et al. 403630 A 4100 Bel :
4376299 A 3/1983 Rivest 403, / elsan ot al.
4405829 A /1983 Rivestetal. JA404.308 A 411995 Konrad etal
4412285 A 1071983 Neches et al. Mg A LSS Dyman
4414624 A 1171983 Summer, Jr. etal. Saasces A ol ato et al,
41441155 A 4/1984 Fletcher et l. P & olge porelsonetal
4464713 A 8/19% Benhase et al. Tasyan A oi1o9s N e“ﬂ'l
4490782 A 12/1984 Dixon etal. TA30000 A 91905 Darpmor®
4558413 A 12/1985 Schmidt et al. TA34030 A 911995 Comont |
4571900 A 2/1986 Emry,Jretal. A . oppersmith et 21.
4577203 A 3/1986 Matick et al 3439860 A 1071995 Burnett
Feavae & 21980 Malick o al. 5465365 A 1171995 Winterbottom
Aot A 31057 Moand 5467471 A 11/1995 Bader
4658003 A 4/1987 Heflman 2473826 A 1271995 Lischer
4675810 A /1987 Gruner etal. 3’33?‘3?‘7‘,’2 lgﬁggg ?}ql“blbt 1
4,691,299 A 9/1987 Rivestetal. 3499204 A 371906 Frivdman
4725945 A 2/1988 Kronstadt et al. 3504'379 A 2/1996 Fisonbers ef al
4973039 A 9/1988 Zamora 5300757 A 6[‘1996 Koo ’i““-
4,820,184 A 4/1989 Clancy et al. 5.537.585 A "I’1996 Blickenstat
4.887.235 A 12/1989 Holloway ct al. 237, " ickenstall et al.
Aas e A 13ios9 podowayd 5542087 A 7/1996 Neimat et al.
4'914‘571 A 471990 Baratzetal. 5,548,724 A 871996 Akizawa et al.
4'914'586 A 471990 Sw'meharteltal 5,553,143 A 9/1996 Rossetal.
4027414 A 5/1990 Holloway ot al 5,568,181 A 10/1996 Greenwood et al.
4922417 A 5/1990 Churm et al. gggig;g i 1351996 Stern
4937.863 A 6/1990 Robert etal. 8L, /1996 Burnett
4’949’302 A $/1990 Arnold ot al 5,581,764 A 12/1996 Fitzgerald et al.
1991205 & 900 peoderal 5,583.005 A 12/1996 Gardner et al.
4997367 A 1171990 Bﬁrk;! T etak 5,588,147 A 12/1996 Neeman etal.
5’02‘5"421 -A 6:’1991 Cho 5,596,744 A 1{]997 Dao et al.
5,014,192 A 7/1991 Mansfield et al. g'ggg‘gg; i g;}gg; ig.‘;”d
5032979 A 7/199] Hechtetal. gl - !
S047.918 A 9/1991 Schwastz et al 2,604,892 A 271997 Nuttall et al.
5’050’074 A 0/1991 Marca 5,630,067 A 5/1997 Kindell et al.
5030212 A 011991 Duson 5632031 A 511997 Velissaropoulos et al
5057.837 A 10/1991 Colwell et al. oA & Geor Stefiketal
5077658 A 12/1991 Bendert 640364 A 671997 Hamilton el al.
Toeass A 171007 Moer 5,640,196 A 771997 Woodhill et at.
PN Siee 5677952 A 1041997 Blakley, il et al.
5,129,081 A 7/1992 Kobayashi et al. gg;g,gﬁ: }gligg; g:}(:_ktel'etal» !
5,129,082 A 7/1992 Tirfing et al. P ’ ihetal o, 7071829
5.144!667 n 9/1997 Pomus. Jr. el al 5,604,472 A 12/1997 Johnson ei al.
3163147 & 11/1992 Orﬁa’ s etak 5,604,596 A 12/8997 Campbell
Tloogee & liloos o ielal 5700316 A 121997 Alferness ef al.
192950 & 11903 Torwellelal 5710922 A 1/1998 Alleyetal.
5’199‘073 A 3/1003 Scolt ' 5724425 A 3!_!998 Chang el al.
5,202,080 A 4/1993 Gramlich et al. JTMaT A MISos loda
5204897 A 4/1993 Wyman 3945970 A 41998 W
5,204958 A 471993 Cheng et al. 757913 A 51998 Bellae ctal
5,204,966 A 471993 Wittenberg et al. 5757015 A 51998 ith et
5208858 A 5/1993 Vollerteral. 157915 il Aucsmith el al.
DI A ar1093 wereets 5,781,629 A 771998 Haber et al.
5“2'56’051 A 71993 Quan ’ 5,802,291 A 9/1998 Balick et al.
5239648 A $/1993 Nukui 3809.494 A 9/1998 Nguyen
ATl A 51903 R 5826049 A 1071998 Ogata et al.
5’24?,620 N 9/1993 Fukuzawa'etal 5,835,087 A 181998 Herz et al.
260999 A 111993 Woman - 5864683 A /1999 Boebert et al.
5,276,869 A 171994 Forrest et al. g’gg;‘gég i g’.{ggg Davis
5076901 A 1/1994 Howell et al. 2077 g Gudmundson el al.
5!287’499 A 2/1994 Nemes 5,940,504 A 81999 Griswold
D3ersia & Silooq comne 5978791 A 111999 Farber el al.
5‘297‘279 AA 3/1994 Rannon et al 5991414 A 1!{1999 Garay et al.
5301286 A 4/1994 Rajani ’ 6,006,018 A 12/1999 Burnett el al.
53001316 A /1994 Hamilton et al. g’}g‘s"ggé ,:: ig’;ggg f\";}fﬁ et‘;‘l"
5317693 A 5/1994 Cuenod ef al. 123 ’ et al-
$320'841 A 6/1994 Fast et al. 6,415,280 Bl 7/2002 Farber et al.
5341477 A 81994 Pitkin et al. 6,816,872 BL 1172004 Squibb
5,343,527 A 81994 MOOLE ..oooveeeeerrrresras 7137179 6928442 B2 82005 Farberetal
5347653 A 9/1994 Flynn et al. 200200052884 A1 5/2002 Farber et al.
535,302 A 9/1994 Leighton etal. 2002/0082999 A1 672002 Leeetal.
5357440 A 10/1994 Talbott et al. 3003/0078888 Al 472003 Lee etal.
5357623 A 10/1994 Megory-Cohen 20030078889 Al 472003 Iee etal.
5,357,630 A 10/1994 Opresen et al. 2003/0095660 Al 5/2003 Leeetai.

US 8,001,096 B2

Page 3

2004/0139097 Al
2005/0010792 Al
2005/0114296 Al
2007/0185848 Al
200870065635 Al
20080066191 Al

772004 Farber et al.
1/2005 Carpentier et al.
5/2005 Farber et al.
8/2007 Farber et al.
3/2008 Farber et al.
3/2008 Farber et al.
200870071855 Al 3/2008 Farber et al.
200870082551 Al 4/2008 Farber et al.

FOREIGN PATENT DOCUMENTS

EP 0315425 5/1989
EP 0558945 A2 9/1993
EP 0566 967 A2 10/1993
EP 0592045 4/1994
EP 0631226 AL 12/1994
EP 0654920 A2 571995
EP 0658022 A2 6/1995
GB 2204132 A 4/1996
JP 59058564 4/1984
JP 63-106048 5/1988
JP 63-273961 11/1988
JP 2-127755 5/1990
JP 05162529 6/1993
JP 06187384 A2 7/1994
IP 06348558 A 12/1994
WO WO 92/20021 1171992
WO WO 94/06087 3/1994
WO WO 94/20013 9/1994
WO WO 95/01599 1/1995
WO WO 97/43717 1171997
OTHER FPUBLICATIONS

Request for Reexamination of U.S. Patent No. 6,928.442: Reexam
Control No. 90/010,260, filed on Aug. 29, 2008.

USPTO, U.S. Reexam Control Na. 90/010,260, Notice of Intent to
Issue Ex Parte Reexamination Certificate, Apr. 8, 2010.

WIPQ, International Preliminary Examination Report (IPER), Jul.
1997, PCT/AUS96/04733 {5 pgs.).

Fowler, et al. “A User-Level Replicated File System,” AT&T Bell
Laboratories Technical Memorandum 0112670-930414-05, Apr.
1993, and USENIX 1993 Summer Conference Proceedings, Cincin-
nati, QOH, Jun. 1993.

Greene, D, et al., “Multi-Index Hashiag for Information Retrieval”,
Nov. 20-22, 1994, Proceedings, 35th Annual Symp on Foundations of
Computer Science, [EEE, pp. 722-73F.

Hirano, et al, “Fxtendible hashing for concurrent insertions and
retrievals,” in Proc 4th Euromicro Workshop on Paralle! and Distrib-
uted Processing. 1996 (PDP *96), Jan. 24, 1996 to Jan. 26, 1996, pp.
235-242, Braga , Portugal.

Preneel et al., “The Cryptographic Hash Function RIPEMD-150",
appeared in CryptoBytes RSA Laboratories, vol. 3, No. 2, pp. 9-14,
Fall, 1997 (aiso Bosselaers et al., “The RIPEMD-160 Cryptographic
Hash Function”, Jan. 1997, Dr. Dobb’s Journal, pp. 24.28).
Prusker et al., “The Siphon: Managing Distant Replicated Reposito-
ries” Nov. 8-8, 1990, Proc. Management of Replicated Data [EEL.
Reply to Examination Report, Mumich, Nov. 18, 2009, in Application
No. EP96 910 762.2 [19 pgs.].

Rich, K. et al, “Hobgoblin: A File and Directory Auditor”, Sep.
30-Oct. 3, 1991, Lisa V., San Diego, CA.

USPTO Final Office Action in 17,5, Appl. No. 10/742.972, Dec. 22,
2005,

USPTQ, Advisory Action, Mar. 23, 2010, in 1.5, Appl. No.
14/980.679.

USPTO, Final Office Action in U.S. Reexam Controi No.
50/010,260, Jan. 29, 2010.

USPTO, Final Office Action mailed Jan. 12,2010 in U.S. Appl. No.
11/980,679.

USPTO, Final Office Action mailed Aug. 18, 2009 in U.S. Appl. No.
11/017,650.

USPTO, Final Office Action mailed Sep. 30, 2009 ir U.S. Appl. No.
11/724,232.

USPTO, Final Office Action, Mar. 5, 2010 in US. Appl. No.
11/980,687.

Bowman, C.M., et al., “Scalable Internet Resource Discovery:
Research Problems and Approaches,” University of Colorade, Dept.
of Comp. Sci. Technical Report# CU-CS-679-93 (Oct. 1993).
Bowman, C.M., et al., “Research Problems for Scalable Internet
Resource Discovery,” CU-CS-643-93, Mar, 1993, University of
Colorado at Boulder, Dept. of Comp. Sci.
Cate, V., “Alex—a Global Filesystermn,” Proceedings of the USENIX
File Systems Workshop, pp. 1-11, May 1992.
Dewitt, et al. (Jun. 1984). “Implementation techniques for main
menory database systems™, Proc. ACM SIGMOD Conf 14 (4): £-8.
Fagin, R., et al. Extendible hashing—a fast access method for
dynamic files. ACM Trans. Database Syst. 4,3 (Sep. 1979), 315-344.
Griswold, William G.; Townsend, Gregg M. {Apr. 1993), “The
Design and Implementation of Dynamic Hashing for Sets and Tables
in Icon™, Software— Practice and Experience 23 (4): 351-367 {Apr.
1993),
Hardy D. R., et al., “Essence: A resource discovery system based on
semantic file indexing,” USENIX Winter 1993 Technical Conf., San
Diego, CA (Jan. 1993), pp. 361-374.
Kahn, R.E., “Deposit, Registration and Recordation in an Electronic
Copyright Management System,” Tech. Report, Corporation for
National Research Initiatives, Reston, Virginia, Aug. 1992 (down-
loaded from htip://archive.ifla.org/documents/infopol/copyright/
kahn.txt on Nov, 10, 2010).
Kitsuregawa, M.; Tanaka, H.; Moto-Oka, T. {Mar. 1983). “Applica-
tion of Hash to Data Base Machine and Iis Architecture”. New Gen-
eration Computing 1 (1): 63-74, OLIMSHA, LTD. and Springer-
Veriag.
Litwin, W., “Linear Hashing: a New Tool for File and Table Address-
ing.” Proc. 6th Int. Conf. on Very Large Databases, [EEE 1980,
212-223.
Manber, U, Finding similar files in a large file system, Dept. of
Computer Science TR 93.33, Oct. 1993., U. of Arizona, Tucson, AZ..
Manber, U., Finding similar files in a large file system, USENIX. pp.
1-10, San Francisco, CA, Jan. 1994, (WTEC*94, Proc. USENIX
Winter 1994 Technical Conf.)
ZSPTO, Non-Finat Office Action mailed Jul. 2, 2010 in U.S. Appl.
No. 11/98(,688.
LSPTO, Notice of Allowance mailed Apr. 30, 2010 in U.S. Appl. No.
11/980,687.
USPTO, Netice of Allowance mailed Jun. 24, 2010 in U.S. Appt. No.
11/980,687.
USPTO, Supplemental Notice of Allowability mailed May 27, 2¢10
in U.S. Appl. No. [1/980,687.
[Proposed] Order Regarding Construction of Termns, filed Mar. 29,
2007 in C.D. Cal. case No. CV 06-3086 SJO (Ex) [¢ pas.]
Analysis of Plaintiffs’ Claim Chart for the *280 Patent As Against
Defendant Media Sentry, Inc. 11 pages filed May 21, 2007,
Analysis of Plaintiffs’ Claim Chart for the *791 Patent As Against
Defendant Media Seatry, Inc. (11916.001.0150.a) pp. 1-48, fited
Aug, 14, 2006.
Analysis of Plaintiffs’ Claim Chart for the *791 Patent As Against
Deferdant Overpeer pp. 1-40, filed Aug. 14, 2006.
Barbara, D., et al., “Exploiting symmetries for low-cost comparison
of file copres,” 8th Int’t Conf. on Distributed Computing Systems;
Jun. 1988, pp. 471-479, San Jose, CA.
Campbelt, M., “The Design of Text Signatures for Text Retrieval
Systems,” Tech. Repori, Sep. S, 1994, Deakin University, School of
Computing & Math. Geelong, Australia.
Chang, W. W. et al., “A signature access method for the Starburst
database system,” in Proc. 15th Int’l Conf. on Very Large Data Bases
(Amsterdam, The Nethertands), pp. [45-153, 1989.
Changes to Mar. 23, 2007 Deposition of Robert B, K. Dewar, in C.D.
Cal, case No. CV 06-5086 SJO (Ex) [3 pgs + cover lelter.].
Conununication from EPO in European Application No. 96 $10
762.2-—1225 dated May 8. 2009 {4 pgs.].
Communication pursuant to Article 96(2) EPC from EPQ (Examina-
tion Report), Jan. 17, 2007, in Application No. EP 96 910 762.2-225
[1 pg. with 5 pg. annex].
Complaint for Patent Infringement, Permanent Injunction and Dam-
ages, Aug. §, 2006, in C.D. Cal. case No, CV 06-5086 SJO (Ex) [1}
g5.].

US 8,001,096 B2
Page 4

Complaint for Patent Infringement, Permanent Injunction and Dam-
ages, filed Sep. 21, 2007 in C.D. Cal. Case No. CV (07-06161 VBF
(PLAx) [0 pgs.).
Declaration of Charles S. Baker in Support of Defendant Lime Wire’s
Motion to Stay Pending Reexamination of Patent and Request for
Extension of Deadlines, Aug. 29, 2008, in C.D. Cal. Case No. CV
07-06161 VBF {PLAX} [2 pgs.]).
Defendaat Lime Wire, LLC’s First Amended Answer, Affirmative
~Defenses and Counterclaims, Oct. 2, 2008, C.D. Cal. case No.
07-06161 VBF {PLAX) [13 pgs.].
Defendant Lime Wire, LLC’s Second Amended Answer, Affirmative
Defensesand Counterclaims, Oct. 27, 2008, from C.D. Cal. case No.
07-06161 VBF (PLAX) [13 pgs.].
Defendant Michael Weiss's Answer to Plaintiff's Complaint for
Patent Infringement, Permanent Injunction and Damages; Demand
for Jury Trial, Sep. 15, 2006, case No. CV 06-5086 SJO (Ex) [10
pas-1
Defendant Recerding Industry Association of America’s Amended
Notice of Motion and Motion for Partial Sumimary Judgment on
Plaintiffs’ Claims for Patent Infringement and Inducing Patent
Infringement; Memorardum of Points and Authorities, May 22,
2006, redacted, original confidential, filed under seal, in C.D. Cal.
case No. CV 04-7456 JFW (CTx) [19 pgs.].
Defendant Recording Industry Association of America’s and
Mediasentry, Inc.’s Notice of Motion and Motion for Partial Sum-
mary Judgment Based on Implied License or, In the Alternative,
Based on Palent Misuse and Unclean Hands, May 22, 2006,
Redacted, in C.D. Cal. case No. CV 04-7436 JFW (C'Ix) [21 pgs.].
Defendamt Recording Industry Association of America’s and
Mediasentry, Inc's Notice of Motion and Motion for Partial Swn-
mary Judgment Based on [mplied License or, in the Alternative,
Based on Patent Misuse and Unclean Hands, May 8, 2006, in C.D.
Cal. case No. CV 04-7456 JFW (CTx) [20 pgs.].
Defendant StreainCast Networks Inc.’s Answer to Plaintiff's Com-
plaint for Patent Infringement, Penmanent Injunction and Damages;
Demand for Jury Trial, Sep. 5, 2006, C.D. Cal. case No. CV 06-5086
SJO(Ex) {10 pgs.].
Pefendants” Amended Preliminary Claim Constructions [Patent
Rule 4-2], filed Feb. 7, 2007 in C.D. Cal. case No. CV 06-5086 SJO
(Ex) [10 pgs.].
Defendant’s Second Amended Preliminary Claim Coastruclions
[Patent Rule 4-2], filed Feb. ¢, 2007 in C.D. Cal. case No. CV
06-3086 $JO (Ex) [1¢ pgs.].
Dewar, Rebuttat Expert Report of Robert B.K. Dewar, in C.D. Cal.
case No. CV 04-7450 JFW (CTx), Apr. 10, 2006 [87 pgs].
Faloutsos, C. “Access methods for text,” ACM Comput. Surv. 17, 1
(Mar. 1985), 49.74.
Faloutsos, C. et al,, “Description and performance analysis of signa-
ture file methods for office filing,” ACM Trans. Inf. Syst. 5, 3 (Jul.
1987), 237-257.
Faloulses, C. et al., “Signature fites; an access method for documents
and its analytical performance evaluation,” ACM Trans. Inf. Syst. 2,
4 (Oct. 1984), 267-288.
Federa! Information Processing Standards (FIPS) Publication 180-1;
Secure Hash Standard, Apr. 17, 1995 [17 pgs.]
Feigenbaum, J. et al,, “Cryptographic protection of databases and
software,” in Distributed Computing and Cryptography: Proc.
DIMACS Workshop, Apr. 1991, pp. 161-172, American Mathemati-
cal Society, Boston, Mass.
First Amended Answer of Defendant Mediasentry to Second
Amended Cornplaint and Counterclaim, Apr. 24, 2006, in C.D. Cal,
case No. CV 04-7456 JFW(CTx) [29 pes.].
First Amended Answer of Defendant RIAA to Second Amended
Complaint and Counterclaim, Apr. 24, 2006, in C.D. Cal. Case No.
CV 04-7456 JFW (CTx) [27 pgs.].
First Amended Complaint for Patent Infringement, Permanent
Injunction and Damages, filed Sep. 8, 2008 in C.ID. Cal. Case No. CV
07-06161 VBF (PLAX) [10 pgs.].
Harrison, M. C., “Implementation of the substring test by hashing,”
Conunun. ACM 14, 12 (Dec. 19713, 777-779.
IEEE, The Authoritative Dicticnary of IEEE Standards Terms, 7th
cd., Copyright 2000, pp. 107, 176, 209, 240, 241, 432, 468, 505, 506,
632, 1016, 1113, 1266, and 1267.

Ishikawa, Y., et al., “Evatuation of signature files as set access facili-
ties in OODBs,” [a Proc. of the 1993 ACM SIGMOD Inter. Conf. on
Management of Data (Washington, D.C., U.S., May, 1993). P. Bune-
man & S. Jajodia, Eds. SIGMOD "93. ACM, NY, NY, 247-256.
Joint Claim Construction and Prehearing Statement, N. D. Cal. Rule
4-3, Feb. 12, 2007, in C.D. Cal. case No. CV (6-5086 SJO (Ex) [20
pes]-

Karp, R. M. and Rabin, M. O., “Efficient randoinized pattern-match-
ing algorithms,” IBM J. Res. Dev. 31, 2 (Mar. 1987), 249-260.

List of Asserted Claims and Infringement Chart for Each Asserted
Claim, Jul. 28, 2008, in C.D. Cal. Case No. CV 07-06161 VBF
(PLAX) [31 pgs.].

McGregor). R. and Mariani, J. A, “Fingerprinting—A technique for
file identification and maintenance,” Software: Practice and Experi-
ence, vol. 12, No. 12, Dec. 1982, pp. 1165-1166.

Notice of Interested Parties, filed Sep. 21, 2007 in C.D. Cal. Case No.
CV 07-06161 VBF (PLAX) {2 pgs.}.

Notice of Motion and Motion of Defendant Lime Wire to Stay Liti-
gation Pending Reexamination of Patent and Request for Extension
of Deadlines, Sep. 22, 2008, C.D. Cal. Case No. CV 07-06161 VBF
(PLAX) EL pgs.].

Notice of Related Cases, filed Sep. 21, 2007 in C.D. Cal. Case No. CV
07-06161 VBF (PLAX) [2 pgs.].

Panagopoulos, G., et al., “Bit-sliced signature files for very large text
databases on a parailel machine architecture,” in Proc. ofthe 4th Inter,
Conf. on Extending Database Technelogy (EDBT), Cambridge,
UK., Mar. 1994, pp. 379-392 (Proc. LNCS 779 Springer 1994, ISBN
3-540-57818-8) [14 pgs.].

Patent Abstract, “Management System for Plural Versions,” Pub. No.
63273961 A, published Nov. 11, 1988, NEC Corp.

Padent Abstracts of Japan, “Data Processor,” Appln. No. 05135620,
filed Jug. 7, 1993, Toshiba Corp.

Plaintiff Kinetech, Inc.’s Responses to Defendant Mediasentry's
First set of Interrogatories, May 1, 2006, in C.ID. Cal. Case No. CV
04-7456 JFW (CTx) [14 pgs.].

Plaintiff-Counterclaim Defendant Alinet, Inc.'s Supplemental
Responses to Defendant-Counterclaim Plaintiff Overpeer Inc.’s First
Set of [nlerrogatorics, Mar. 8, 2006, redacted, in C.I. Cal. case No.
CV 04-7456 JFW (CTx) [24 pgs.].

Plaintiff-Counterclaim Defendant Brilliant Digital Entertainment,
Inc.’s Supplemental Responses to Defendant-Counterclaim Plaintiff
Qverpeer Inc.’s First Set of Interrogatories, Mar. 8, 2006, redacted, in
C.D. Cal. case No. CV 04-7456 JFW (CTx) [24 pgs.].
Plaintiff-Counterclaim Defendant Kinetech, Inc.’s Supplemental
Responses to Defendant-Counterclaim Plaintiff Overpeer Inc.”s First
Set of Interrogatories Mar, 8, 2006, redacted, in C.D. Cal. case No.
CV 04-7456 JFW (CTx) [24 pgs.).

Plaintiffs Altnet, Inc., Brilliant Digitat, Inc., and Kinetech, Inc.’s
Responses to Defendant Recording Industry Association of Ameri-
ca's First Sel of Requests for Admissions, Jan. 6, 2006, in C.D. Cal.
case No. CV 04-7456 JFW (CTx) [26 pgs.].

Piaintiffs’ Claim Construction Opening Briefand Exhibits A-D, F, G;
May 7, 2007, in C.D. Cal. case No. CV 06-5086 SJIO{Ex) {112 pgs.].
Piaintiffs’ Prefiminary Claim Constructions and Extrinsic Evidence,
Feb. 6, 2006, in case CV 05-5086 SJO (Ex) [20 pgs.].

Plaintiff’s Reply to Defendant Mediasentry’s Counterclaims in its
Answer to the Second Amended Complaint, May 1, 2006, in C.D.
Cal. Case No. CV 04-7456 JFW (CTx) [11 pgs.].

Plaintiff"s Reply to Defendant RIAA’s Counterclaims in its Answer
to the Second Amended Complaint, May 1, 2006, in C.D. Cal. case
No. CV (4-7456 TFW (CTx) [11 pgs.}.

Plaintiffs’ Reply to Defendants” Claim Construction Brief, filed Apr.
23, 2007 in C.D. Cal. case No. CV 06-5086 ODW (Ex) [15 pgs.]-
Reply to Examination Report, Jul. 19, 2007, in Application No. EP 96
910 762 2-1225 7 pgs .

Response to Non-Final Office Action filed May 19, 2009 in 11.8.
Appl. No. 11/017,650 {19 pgs.].

Rivest, R., RFC 1320, “The MD4 Message-Digest Algorithm,” The
Internet Engineering Task Farce (IETF), Apr. 1992.

Sacks-Davis, B.. et al., “Multikey access methods based on superim-
posed coding techniques,” ACM Trans. Database Syst. 12, 4 (Nov.
1987}, 655-696.

US 8,001,096 B2
Page 5

Siegel, A., et al., “Deceit: a Flexible Distributed File System,” Proc.
Workshop on the Management of Replicated Data, Houston, TX, pp.
15-17, Nov. 8-9, 1990.

Siegel, A, et al., “Deceit: a Flexible Distributed File System,” Tech-
nical Report, TR89-1042, Cornell University, Nov. 1989.
Stipulation and Proposed order to (i) Amend the Complaint, (2)
Amend pretrial Schedule, and (3) Withdraw Motion to Stay, filed Sep.
g, 2008 in C.D. Cal. Case No. CV 07-06161 VBF (PLAX) [6 pgs.].
Streamcast Networks Inc.'s Supplemental Responses to Certain of
Plaintiffs’ First Set of Interrogatories, Apr. 16,2007, in C.D. Cal. case
No. CV 06-5086 SIO (Ex) [61 pgs.].

StreamCast's Brief Re Claim Construction, Apr. 12, 2007, in C.1.
Cal. case Ne. CV 06-5086 SFO (Ex) [11 pgs.].

Transcript of Deposition of David Farber, Feb. 16, 2006, in C.D. Cal.
case No. CV 04-7456 JFW (CTx) [94 pgs.].

Transcript of Deposition of Robert B. K. Dewar, Mar. 23, 2007, in
C.D. Cal. case No. CV 06-3086 SIO (Ex) [61 pgs.].

Transcript of Deposition of Renald Lackman, Feb. 1, 2006, C.D. Cal.
case No. CV 04-7456 JFW{CTx) [96 pgs.].

USPTO, Non-Final Office Action mailed May 6, 2009 in U.S. Appl.
No, 11/980.679.

USPTO, Non-Final Office action mailed Jun. 15, 2009 in U.S. Appl.
No. 11/980.687.

USPTO, Non-Final Office action majled Jun, 1§, 2009 in Reexam
No. 90/010.260.

Advances in Cryptology-AUSCRYPT ’92—Workshop on the
Theory and Application of Cryptographic Techniques Gold Coast,
Queensland, Australia Dec, 13-16, 1992 Proceedings.

Advances in Cryptology-EUROCRYPT 93, Workshop on the
Theory and Application of Cryptographic Techniques Lofthus, Nor-
way, May 23-27, 1993 Proceedings.

Affidavit of Timothy P. Walker in Support of CWES” Opening Mark-
man Brief Construing the Terms at [ssue in U.S. Patent No.
6,415,280, dated Jul. 25, 2003, from Civil Action No. (2-11430
RWZ.

Akamai and MIT’s Memorandwm in Suppoert of Their Claim Con-
struction of USPAT 5,978,791, dated Aug. 31, 2001, from Civil
Action No. 00-cv-1185IRWZ.

Akamai’s Answer, Affinmative Defenses and Counterclaims to
Amended Complaint, filed Dee. 8, 2002, in Civil Action No. ¢2-CV-
i [A30RWZ.

Akamai's Brief on Claim Construction, dated Aug. 8, 2003, from
Civil Action No. 02-11430 RWZ.

Albert Langer {(cnf851@anu.oz.zu), hitp://groups.google.com/
groups?selm=1991Aug7.225159.786%40newshost.anu. edu.au&
oe=UTF-8&output=gplain, Aug. 7, 1991.

Alexander Dupuy (dupuy@smarts.com), “MD5 and LIFNs {was:
Misc Commcnts)”, www.acl.lanl gov/URVarchive/uri-9492. mes-
sages/0081 himl, Apr. 17, 1994,

Alexander Dupuy (dupuy@smarts.com}, “Re: MDS5 and LIFNs {was:
Misc Comuments)”, www.acl.lanl.gov/URI/archive/uri-94q2.mes-
sages/0113 htinl, Apr. 26, 1994.

Answer of Defendant RTAA to First Amended Complaint and Coun-
terclaim, dated Feb. 8, 2005, [rom Civil Action No, CV04-7456 JFW
(CTx).

Berners-Lee, T. et al., “Hypertext Transfer Protocol---HTTP/1.0,"
May 1996, pp. I-54.

Berners-Lee, T. et al., “Uniform Resource Locators (URL)," pp. 1-25,
Dee. 1994,

Berners-Lee, T., “Universal Resource Identifiers in WWW." Jun.
1994, pp. 1-25.

Bert dem Boer, et al., Collisions for the compression function of
MD.sub.5 pp. 292-304, 1994,

Birgit Pfitzinan, Sorting Out Signature Schemes, Nov. 1993, 1.sup.st
Conf. Computer & Comin. Security *93, p. 74-85.

Birgit Pfitzmann, Sorting Out Signature Schemes, Nov. 1993, Ist
Conf. Computer & Comm. Security '93 pp. 74-85.

Bowman, C. Mic, et al,, “Harvest: A Scalable, Customizable Discov-
ery and Access Systermn,” Aug. 4, 1994, pp. [-27.

Bowman, C. Mic, et al., “Harvest; A Scalable, Customizable Discov-
ery and Access System,” Mar. 12, 1995, pp. 1-29.

Brisco, T., “DNS Support for Load Balaneing,” Apr. 1993, pp. I-7.
Browne, Shirley et al.,, “Location-Independent Naming for Virtual
Distributed Software Repositories,” 1995, 7 pages.

Browne, Shirley et al,, “Location-Independent Naming for Virtual
Distsibuted Software Repositories,” 1995, printed from hitp:/www.
netlib.org/utk/papersAlifn/main htin} on Mar. 22, 2006, 18 pages.

Carter, I. Lawrence, et al. “Universal Classes of Hash Functicns.”
Journal of Computer and Systemn Sciences, vol. 18, No. 2, Apr. 1979,
pp. 143-154.

Chris Charnes and Josef Pieprzky, Einear Nonequivalence versus
Nonlinearity, Pieprzky, pp. 156-164, 1993.

Civil Minutes General dated Jan. 25, 2005, from Civil Action No. CV
04-7456-JFW {(CTx).

Clifford Lynch (Calur@uccmvsa bitnet), “ietf urlfuri overview draft
paper (long)”, www.acllanl gov/URI/archive/uri-93q! .messages/
0015.html, Mar. 25, 1993.

Complaint for Patent Infringement, Permanent Injunction, and Dam-
ages, dated Sep. 8, 2004, from Civil Action No. CV 04-7456 JTFW
(ATWx).

Cormen, Thomas H., et al. Introduction to Algorithms, The MIT
Press, Cambridge, Massachusetts, 1994, pp. 219-243, 991-993.
CWIS' Opening Markman Brief Construing the Terms at Issue in
1.5, Patent No. 6,415,280, dated Jul. 25, 2003, from Civil Action Na.
02-11430 RWZ,

CWIS’ Reply Markman Brief Construing the Terms at Issue in U.S.
Patent No. 6,415,280, dated Aug. 15, 2003, from Civil Action No.
02-11430 RWZ.

Danzig, P.B., et al., ““Distributed Indexing: A Scalable Mechanism
for Distributed Inforration Retrieval"” Proceedings of the 14th
Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 220-229, Oct. 13-16,
1991.

Davis, James R., “A Server for a Distributed Digital Technical Report
Library,” Jan. 15, 1994, pp. 1-8.

Declaration of Robert B.K. Dewarin Support of CWIS® Construction
of the Terms at Issue in U.S. Patent No. 6,415,280, dated Jul, 25,
2003, from Civil Action No. 02-¢cv-11430RWZ.

Deering, Stephen, et af, “Multicast Routing in Datagram
Internetworks and Extended LANs.” ACM Transactions on Com-
puter Systems, vol. 8, No. 2, May 1990, pp. 85-110.

Defendant Digital Island’s Opening Brief on Claim Construction
Issues dated Aug. 7, 2001, from Civil Action No. 00-cv-11851-
RWZ.

Defendant Lime Wire, LLC’s Answer, Affirmative Defenses and
Counterclatms dated Nov. 15, 2007, from Civil Action No. 07-06161
VBF (PLAx).

Defendant Media Sentry, Ine.’s Reply Memorandum of Points and
Authorilies in Further Support of Its Motion to Dismiss, dated Nov.
15, 2004, from Civil Action No. CV04-7456 JFW (CTx).
Defendant MediaSentry Ine.’s Notice of Motion and Motion to Dis-
miss First Amended Complaint; Memorandum of Points and
Authorities in Support Thereof, dated Dec, 13, 2004, from Civil
Action No. CV04-7456 JFW (.

Defendant MediaSentry, Inc.’s Answer to Plaintiffs’ First Ameaded
Complaint and Counterclaims, dated Feb. 8, 2005, from Civil Action
No. CV04-7456 JFW (CTx).

Defendant RIAA's Notice of Motion and Motion to Dismiss First
Amended Complaint; Memorandum of Poirts and Authorities in
Support Thercof, dated Dec. 13, 2004, from Civil Action No. CV04-
7456 FFW (CTx).

Defendants Loudeye Corp.'s and Overpeer, Inc.’s Answer to Plain-
tiffs” First Amended Complaint and Counterclaim, dated Feb. 8,
2005, from Civil Action No. 04-7456 JFW (ATWX).

Defendants’ Preliminary Invalidity Contentions dated Dec. 14, 2006,
from Civil Action No. CV 06-5086 SJO (Ex).

Devine, Robert. *Design and Implementation of DDH: A Distributed
Dynamic Hashing Algorithin™ In Proc. of 4th International Confer-
cnce on Foundations of Data Organizations and Algorithms, 1993,
pp. 101-114.

European Search Report issued Dec. 23, 2004 in correpsonding
European Application No. 96910762.2-2201.

Lxpert Report of Protessor Fllis Horowitz, dated Mar. 6, 2006, from
Civil Action No. 04-7456 JFW (CTx).

Expert Report of the Honorable Gerald J. Mossinghoff, dated Mar.
13, 2006, from Civil Action No. 04-7456 JEW (CTx).

Faltstrom, P. et al., “How to Interact with a Whois++ Mesh” Feb.
1996, pp. 1-9.

Feeley, Michael, et al. “Implementing Global Memory Management
in a Workstation Cluster” In Proc. of the 15th ACM Symp. on Oper-
ating Systems Principles, 1995, pp. 201-212.

Tielding, R. et al., “Hypertext Transfer Protocol—HTTP/1.1,” Jan.
1997, pp. 1-163.

US 8,001,096 B2
Page 6

Fielding, R. et al., “Hypertext Transfer Protocel —HTTP/1.1,” Jun.
1999, pp. 1-157.

First Amended Complaint for Patent Infringement, Permanent
Injunction and Damages, dated Nov. 24, 2004, from Civil Action No.
CV 04-7456 JFW (CTx).

Floyd, Sally, et al. “A reliable Multicast Framework for Light-Weight
Sessions and Application Level Framing” In Proceeding of ACM
SIGCOMM '95, pp. 342-356,

Fredman, Michael, et al. “Storing a Sparse Table with 0(1) Worst
Case Access Time.” Journal of the Association for Computing
Machinery, vol. 31, No. 3, Jul. 1984, pp. 538-544.

G. L. Friedinan, Digital Camera With Apparatus For Authentication
of Images Produced From an Image File, NASA Case No. NPO-
19108-1-CU, 17.S. Appl. No. 08/159,980, filed Nov. 24, 1993.
Grigni, Michelangelo, et al. “Tight Bounds on Minimman Broadcasts
Networks.” SIAM Jowrnal of Discrete Mathematics, vol. 4, No. 2,
May 1991, pp. 207-222,

(Gwertzman, James, et al. “The Case for Geographical Push-Cach-
ing.” Technical Report HUJ TR 34-94 (excerpt), Harvard University,
DAS, Cambridge, MA 02138, 1994, 2 pgs.

H. Goodman, Ada, Object-Oriented Techniques, and Concurrency in
Teaching Data Structures and File Management Report Dociunenta-
tion p. AD-A275 385—94-04277.

H. Goodman, Ada, Object-Oriented Techniques, and Concurrency in
Teaching Data Sructures and File Management Report Documenta-
tion p. AD-A275 385-—94-04277.

Hauzeur, B. M., “A Model for Naming, Addressing, And Routing,”
ACM Trans. Inf. Syst. 4, Oct. 4, 1986), 293-311.

International Search Report dated Jun. 24, 1996 in comresponding
international application PCTAIS1996/004733.

K. Sollins and L. Masinter, “Functional Requirements for Uniform
Resource Names”, www.w3.org/ Addressing/rfc 1737 txt, Dec. 1994,
pp. 1-7.

Khare, R. and Lawrence, S., “Upgrading to TLS Within HTTP/1.1.”
May 2000, pp. 1-12.

Khoshafian, S. N. et al. 1986. Object identity. In Conf. Proc. on
Object-Oriented Programming Systems, Languages and Applica-
tions (Portland, Oregon, United States, Sep. 29.Oct. 2, 1986). N,
Meyrowitz, Ed. OOPLSA *86. ACM Press, New York, NY, 406416,
Kim et al., “Experiences with Tripwire: Using Integrity Checkers for
Intrusion Dietection”, COAST Labs. Dept. of Computer Sciences
Purdue Universily, Feb. 22, 1995, pp. 1-12.

Kim et al, “The Design and [mplementation of Tripwire: A file
System Integrity Checker”, COAST Labs. Dept. of Computer Sci-
ences Purdue University, Feb. 23, 1995, pp. 1-18.

Kim et al., “The Design and Imptementation of Tripwire: A file
System Integrity Checker”, COAST Labs. Dept. of Computer Sci-
ences Purdue University, Nov. 19, 1893, pp. 1-21.

Kim, Gene H., and Spafford. Eugene H., “Wriling, Supporting, and
Lvahuating Tripwire: A Publicly Available Security Tool”” COAST
Labs. Dept. of. Computer Sciences Purdue University, Mar, 12,1994,
pp 1-23.

Knuth, Donald E., “The Art of Computter Programming,” 1973, vol.
3, Ch. 6.4, pp. 506-549.

Lantz, K. A., et al., “Towards a universal directory service.” In Proc.
4th Annual ACM Symp. on Principles of Distributed Computing
(Minaki, Ontario, Canada). PODC *85. ACM Press, New York, NY,
250-260.

Leach, P. J., et al., The file system of an integrated local network. In
Proc. 1985 ACM 13th Annual Conf. on Comp. Sci. CSC *85. ACM
Press, NY, NY, 309-324.

Leach, P.J., et al, “UIDs as Internal Names in a Distributed File
System,” In Proc. 15t ACM SIGACT-SIGOPS Symp. on Principles of
Distributed Computing (Ottawa, Canada, Aug. 18-20, 1982). PODC
'82. ACM Press, New York, NY, 34-41.

Ma, C. 1992. On building very large naming systems. In Proc. 5th
Workshop on ACM SIGOPS European Workshop: Models and Para-
digms For Distributed Systems Structuring (France, Sep. 21-23,
1992). EW 5. ACM Press, New York, NY, 1-5.

Memorandum of Points and Authorities in Support of Loudeye’s and
Overpeer’s Motioa to Dismiss the First Amended Complaint for
Failure to State a Claim or, in the Alternative, for a More Definitive
Statement, dated Dec. 13, 2004, from Civil Aclion No. CV-04-7456
JFW (ATWX).

Ming-Ling Lo et al., On Optimal Processor Allocation to Support
Pipelined Hash Joins, ACM SIGMOD, pp. 69-78, May 1993.
Moats, R., “URN Syntax,” May 1997, pp. {-$.

Murlidhar Koushik, Dynamic Hashing With Distributed Overfiow
Space: A File Crganization With Good Insertion Performance, 1993,
Info. Sys., vol. 18, No. 5, pp. 299-317.

Myers, J. ard Rose, M., “The Content-MD35 Header Field,” Qct.
1995, pp. 1-4.

Naor, Moni, et al. “The Load, Capacity and Availability of Quorum
Systems.” In Proceedings of the 35th IEEE Symposium on Founda-
tions of Computer Science, Nov. 1994, pp. 214-225,

Nisan, Noam. “Psucdorandem Generators for Space-Bounded Com-
putation:” In Proceedings of the Twenty-Second Annual ACM Sym-
posium on Theory of Computing, May 1990, pp. 204-212.

Office Action in corresponding Japanese Application No. 531,073/
1996 mailed on Apr. 25, 2006.

Office Commuaication in corresponding European Application No.
26910762.2-1225 dated Jan. 17, 2007.

Order Re Claim Construction dated Nov. 8, 2001, from Civil Action
No. 00-11851-RWZ.

Palmer, Mark, et al. “Fido: A Cache that Learns to Fetch™ In Pro-
ceedings of the [7th International Conference on Very Large Data
Bases, Sep. 1991, pp. 255-264.

Patent Abstracts of Japan, “Device for Generating Database and
Method for the Same,” Application No. 03-(180504, Sun Microsyst.
Inc., published Jun. 1993, 38 pages.

Patent Abstracts of Japan, “Electronic Mail Multiplexing System and
Communication Control Method in the System.” Jun. 30, 1993, IP
051625293

Patent Abstracts of Japan, “Method for Registering and Retrieving
Data Base,” Application No. 03-187303, Nippon Telegr. & Teleph.
Corp., published Feb. 1993, 11 pages.

Peleg, David, et al. “The Availability of Quorum Systems.” Informa-
tion and Computation £23, 1995, 210-223.

Peter Deutsch (peterd@bunyip.comn), “Re: MD5 and LiFNs (was:
Misc Comments)”’, www.acl.lanl.gov/URI/archive/uri-94q2.mes-
sagesi0106 . html, Apr. 26, 1994.

Peterson, L. L. 1988. A ycllow-pages service for a local-area net-
work. In Proc. ACM Workshop on Frontiers in Computer Commu-
nicatiens Technology {Vermont, 1987). 1. 1. Garcia-Luna-Aceves,
Ed. SIGCOMM "87. ACM Press, New York, NY, 235-242.
Plaintiffs’ Memorandum of Points and Authorities in Opposition to
Loudeye Defendants® Motion to Disiniss, dated Nov. 8, 2004, from
Civil Action No. CV.04.7456 JFW (ATWX).

Plaintiffs’ Opposition to Media Sentry’s Motien to Dismiss; Memo-
randum of Points and Authorities in Support Thereof, dated Nov. 8§,
2004, from Civil Action No. CV 04-7456 JFW (CTx).

Plaintiff’s Opposition to Recording industry Association of Ameri-
ca’s Motion to Dismiss; Memorandum of Points and Authorities in
Support Thereef, dated Nov. &, 2004, from Civil Action No. CV-(4-
7456 JFW (CTx).

Plaintiff’s Reply to Defendant Loudeye Corp.”s and Overpeer, Inc.’s
Counterclaims, dated Mar. 3, 2005, from Civil Action No. CV
04-7456 JFW {CTx).

Plaintiff’s Reply to Defendant MediaSentry's Counterclaims, dated
Mar. 3, 2005, from Civil Action No. CV 04-7456 JFW (CTx).
Plaintiff’s Reply to Defendant RIAA’s Couaterclaims, dated Mar. 3.
20035, from Civil Action No. (4-7456 JFW (CTx).

Proceedings ofthe 1993 ACM SIGMOI} International Conference on
Management of Data, vol. 22, [ssue 2, Jun. 1993.

Rabin, Michael. “Efficient Dispersal of Information for Security.
Load Batancing, and Fault Tolerance.” Journal of the ACM, vol. 36,
No.2, Apr. 1989, pp. 335.348.

Ravi, R., “Rapid Rumor Ramification: Approximating the Minimum
Broadcast Time.” In Proc. of the 35th IEEE Symp. on Foundation of
Computer Science, Nov. 1994, pp. 202-213.

Ravindran, K. and Ramaksishnan, K. K. 1991. A naming system for
feature-based service specification in distributed operating systems.
SEGSMALL/PC Notes 17, 3-4 (Scp. 1991), 12-21.

Reed Wade (wade@cs.utk.edu), “re: Dienst and Bed/Lien docu-
ment,” Aug. 8, 1994, printed from http://www.webhistory.org/www.
lists/waww-talk 1994q3/0416.hernl on Mar. 22, 2006, (7 pages).
Rivest, R.. “The MDS5 Message-Digest Algorithm,” Apr. 1992, pp.
1-19 and errata sheet (1 page}.

Rose, M., “The Content-MD3 Header Field,” Nov. 1993, pp. 1-3.
Ross, K., “Hash-Routing for Collections of Shared Web Caches,”
IEEE Network Magazire, pp. 37-44, Nov.-Dec. 1997.

Sakti Pramantk et al., Multi-Directory Iasing, 1993, Info. Sys., vol.
18, No. 1, pp. 63-74.

US 8,001,096 B2
Page 7

Schmidt, Jeanette, et al. “Chernoff-Hoeffding Bounds for Applica-
tions with Limited Independence.” In Proceedings of the 4th ACS-
SIAM Symposium on Discrete Algerithins, 1993, pp. 331-340.
Schneier, Bruce, “One-Way Hash Functions, Using Crypographic
Algorithms for Hashing,” 1991, printed from http://202.179135.4/
data/DDJ/articles/1991/2109/91909g/9109g.htm on Mar, 22, 2006.
Schwartz, M., etal. 1987, A name service for evolving heterogenecus
systems. In Proc. 11th ACM Symp. on OS Principles {Texas, Nov.
8-11, 1987). SOSP *87. ACM Press, NY, NY, 52-62.

Search Report dated Jun. 24, 1996.

Shaheen-Gouda, A. and Loucks, L. 1992 Name borders. In Proc, 5th
Workshop on ACM SIGOPS European Workshop: Models and Para-
digms for Distributed Systems Structuring (Mont Saint-Michel,
Trance Sep. 21-23, 1992). EW 5. ACM Press, NY, NY, [-6.

Sun Microsystems, Inc., “NFS: Network File System Protocol Speci-
fication,” Mar. 1989, pp. 1-25.

Tarjan, Robert Endre, et al. “Storing a Sparse Table” Commurica-
tiens of the ACM, vol. 22, No. 11, Nov. 1979, pp. 606-611.

Terzry, D. B. 1984. An analysis of naming conventions for distributed
computer systems. In Proc, ACM SIGCOMM Symp. on Communi-
cations Architectures and Protocols: Tutorials & Symp. SIGCOMM
"84, ACM Press, NY, NY, 218-224,

Thomas A. Berson, Differential Cryptanalysis Mod 2.sup.32 with
Applications to MD3, pp. 69-81, 1952,

Vijay Kumar, A Concurrency Control Mechanism Based on Extend-
ible Hashing for Main Memory Database Systems, ACM, vol. 3,
1989, pp. 100-113.

Vijay Kumar, A Concurrency Control Mechanism based on Extend-
ible Hashing for Main Memory Database Systems, pp. 109-113,
ACM, vol. 3, 1989.

Vincenzetti, David and Cotrrozzi, Massimo, “Anti Tampering Pro-
gram,” Proceedings of the Fourth {USENIX} Security Symposium,
Santa Clara, CA, 1993, 11 pages.

Vincenzetti, David and Cotrrozzi. Massimo, “Anti Tampering Pro-
gram,” Proceedings of the Fourth {USENIX] Security Symposiun,
Santa Clara, CA, undated, printed from http://www.ja.net/CERI/
Vincenzetti_and_ Cotrozzi/ATP__Anti_ Tamp on Mar. 22, 2006, 8
pages.

Vitter, Jeffrey Scott, et al. “Optimal Prefetching via Data Compres-
sion.” In Proceedings of 32nd IEEE Symposium on Foundations of
Computer Science, Nov. 1991, pp. 121-130.

W3ICID, HTITP: A protocol for networked information, “Basic
HTTP as defined in 1992”7, www:w3.org/Protocols/HTTP2.htnl,
1992.

‘Wegman, Mark, et al. “New Hash Functions and Their Use in Authen-
tication and Set Equality.” Journal of Computer and System Scieaces
vol. 22, Jun. E981, pp. 265-279.

William Pertizo, et al., Distributed Join Processing Performance
Evaluation, 1994. Twenty-Seventh Hawaii International Conference
on System Sciences, vol. 11, pp. 236-244.

Witold Litwin et al., LH.sup.® -Linear Hashing for Distributed Files,
HP Labs Tech. Report No. HPL-93-21, Jun. 1993, pp. 1-22.

Witold Litwin et al., LH.sup.* Linear Hashing for Distributed Files.
HP Labs Tech. Report No HPL-93-21 Jun. 1993 pp. 1-22.

Yao, Andrew Chi-Chih. “Should Tables be Sorted?” Journal of the
Association for Computing Machinery, vol. 28, No. 3, Jul. 1981, pp.
615-628.

Yuliang Zheng, et ai., Haval—A One-Way Hashing Algorithm with
Variable Length of Output (Extended Abstract), pp. 83-105,
Advances in Cryptology, AUSCRIPT "92, 1992,

Zhiyu Tian, et al., A New Hashing Function: Statistical Behaviour
and Algerithm, pp. 3-13, SIGIR Forum, 1993.

Birrell et ai., A Universal File Server, [EEE Trans. on Software
Engineering, vol. SE-6, No. 5, Sep. [980.

Filing in EPQO in related application (EP1996210762), Amended
claims with annotations [10 pgs.], Annex [12 pgs.}, Letter filed in
EPO [2 pgs.], claims [9 pgs.}, Nov. 29, 2010.

Guy, R. G., Ficus: A Very Large Scale Reliable Distributed File
System, Jun. 3, 1991, Technicai Report CSD-910018, Computer
Science Departient, University of California Los Angeles, CA.
Guy, R.G. et al, Implementation of the Ficus Replicated File System,
Proc. of the Summer USENIX Conference, Anaheim, CA, Jun. 1990,
pp. 63-71.

Heidemann, J.8., “Stackable Layers: An Architecture for File System
Development,” UCLA, Aug. 1991 (available as Technical Report
C8D-210056 of the UCLA Computer Science Department).
Needham, R M., et al,, The Cap Filing System, Proc. Sixth ACM
Symp. on Operating System Principles, Nov. 1977, 11-16.

Page, Thomas W. Ir,, et al., Management of Replicated Volime Loca-
tioa Data in the Ficus Replicated File Systemn, Proc, of the Summer
[USENIX Conference, Jun. 1991, pp. 17-29,

Popek, Gerald . et al., Replication in Ficus Distributed File Systems,
Proc. of the Workshop on Management of Replicated Data, Nov.
1990, pp. 20-25.

Reiher, P. et al., Resolving File Conflicts in the Ficus File System, in
Proc. of the Summer USENIX Cenference, Jun. 1994, pp. 183-195.
Sturgis, H. el al, Issues in the design and wse of a distributed file
system, SIGOPS Oper. Syst. Rev., vol. 14, No. 3. (1980), pp. 55-69.
Swinchart, D., et al, WFS: A Simple Shared File System for a Dis-
tributed Environment, Xerox, Palo Alto Research Center, Palo Alto.
CA, CSL-79-13, Oct. 1979.

* cited by examiner

US 8,001,096 B2

Sheet 1 of 31

Aug. 16, 2011

U.S. Patent

[{[+s]%
MOSSI00Ud ¥OSSIO0Ud YOSSAD0Y
Z01 20} 201
901
291A3Q .. a01A30
UOSSIADOMUI Hd08S330Md FOVNOLS IOVHOLS
20} 20 <. o>
(0)I OId

US 8,001,096 B2

Sheet 2 of 31

Aug. 16, 2011

U.S. Patent

147’

AT

39VHOLS

Ndd

_..u..fl-!s:---...;..--!.I{.e||-!..ii:nl-!:i%-
m 19

" avs 95y

! el

" 11

: H9 ot}

" 51

“ 1S

! aws oct

" 951

“ ERY

! v azL

._ vel

! H4L

" 4V ozl

" 261

: =leg)

: AHOWaW Yk

: 0Ll

| 204

N e e o — — . = -
-
[P,

80}

CHRIE

US 8,001,096 B2

Sheet 3 of 31

Aug. 16,2011

U.S. Patent

LNINOIS

A._.szmmm _ ININOZAS

rAA R ZZ) rAA)
azL ozl 0Z1
AHOLOZMNIG AHOLlo3uIa AHOLOTHIA
811 gl gLL
NO1D3Y NOI93Y - NOID3d NOIDIY
Lt LLY L}y L}
WILSAS ¢ 94
314 :

bl

U.S. Patent Aug. 16, 2011 Sheet 4 of 31 US 8,001,096 B2

FIG.3

Region ID

Yathname

True Name

Type

File ID

Time of lagt accese
Time of last modification
Bafe flagq

Lock flag

Size

Owner

FIG. 4

True Name
File ID

138 -

140

Compressed File ID

Source IDs

Dependent processors

Use count

Time of last access

Expiration

Greoning delete count

142

Region ID

Region file system

Reglon pathname

Region status

Mirror processor({s)

Mirror duplication count

Policy

FIG.5

US 8,001,096 B2

Sheet 5 of 31

Aug. 16, 2011

U.S. Patent

SOBUBDTT

DURN ortrl

0¢l

omey BnIy,

Axjue Jo edAx

AIJUS Jo elep

8b]

OHeN onaxy

ameuieq

duenSouTy,

aI Jogsanold

adAl

WOTARIACY

eWeN 1eujBIIo

bl

UOY3EDOT eodnos

AYTITQUTICAY SOINoS

53UDTYX enxnos

edAl 90anas

qI =danag

bl

6 9ld

8 014

4914

9'9ld

U.S. Patent Aug. 16, 2011 Sheet 6 of 31 US 8,001,096 B2

FIG. 10(a)
SIMPL

DATA ITEM

oS TR Ly e T W M YR SR am e W e R el P e e e i dk we owr e me

' 5212 ‘

COMPUTE MD FUNCTION ON
DATA ITEM

Y
S214

APPEND LENGTH MODULO 32 OF
DATA ITEM

P i
T o e o e S e W S dn M G A bk e ke e e YRy e s wmam e

U.S. Patent Aug. 16,2011 Sheet 7 of 31 US 8,001,096 B2

8216

DATA ITEM
SIMPLE?

FIG. 10(b)

Y
$220

PARTITION DATA iTEM INTO
SEGMENTS

$222

ASSIMILATE EACH SEGMENT
{COMPUTING ITS TRUE NAME)

——————————————

: COMPUTE TRUE
' NAME OF SIMPLE
i DATAITEM 57

--------------- CREATE INDIRECT BLOCK OF
SEGMENT TRUE NAMES

o e e oy —

5226

ASSIMILATE INDIRECT BLOCK
(COMPUTING ITS TRUE NAME)

S228
REPLACE FINAL 32 BITS OF TRUE
NAME WITH LENGHT MOD 32 OF DATA
ITEM

1

US 8,001,096 B2

Sheet 8 of 31

Aug. 16, 2011

U.S. Patent

t

ai 314 AHOLS
6ECS

)

o)

401 37 SAYH
AYLN3 S300

SIA

t

Gt 3714 313730
1A

STA

LAHLSIDAY

%

SANAI UIHLO L3S,
GI374-3404S .
FOLLNROD SN 138,
AYINT M3N 3LVIHD .,

9EcS

04 INHL NI LSIX3

ANVN INAL 8300

HAVYN Iyl
EL{ e

AT

+

11°914

U.S. Patent Aug. 16,2011 Sheet 9 of 31 US 8,001,096 B2

$238 5240
FILE YES > UPDATE
DEPENDENCY
LOCKED? 1 IST
o]
5242
SEND MESSAGE TO
v‘ CACHE SERVER TO
5544 UPDATE CACHE
COMPRESS
(IF DESIRED})
S246
MIRROR

(IF DESIRED)

U.S. Patent Aug. 16,2011 Sheet 10 of 31 US 8,001,096 B2

l FIG.13
§250
SEARCH FOR
THE — HNOTEOUND .y FAIL
PATHNAME

LDE INCLUDES
JRUE NAME?

NO

5258

§-] ASSIMILATE
FILEID

LDE IDENTIFIES
DIRECTORY?

S

v

5256

< FREEZE
DIRECTORY

U.S. Patent Aug. 16, 2011 Sheet 11 of 31 US 8,001,096 B2

£§260

CONFIRM THAT
TRUE NAME
EXISTS LOCALLY

v FIG. |4

5262
SEARCHFOR
PATHNANE IN

LDE TABLE

S264

CONFIRM THAT
DIRECTORY
EXISTS

S266

$268
NAMED FILE VES DELETE
EXISTS? TRUE FILE

8270
CREATE
ENTRY IN LDE
& UPDATE

US 8,001,096 B2

Sheet 12 of 31

Aug. 16,2011

U.S. Patent

+

i

g4l
OLNI Q3NUNLIY
AT INYL YA LNS

8128

A

3SNOdSIY
FALLISOd

ISNOJdSTY
204 LvM
? IOVSSIW
414 N3S
Y223

(gauisan
A 371
INYUL AJIRI3A
2828

Gl '9ld

2 |

Tvd

ISNOdSaY
INLYOEAN

S3A

4058300

¥ NOLLVOO1 S

2714 QNI
08¢g

+

INNOW
LS3N03Y

8428

US 8,001,096 B2

Sheet 13 of 31

Aug. 16,2011

U.S. Patent

(D)9l

L]

old

Tivd

JSNOJSIY
ALYSOd
SLIVM
INITIO _
882S ANQINIL
A ¥o
ISNOdSIY
sisvoavoua | FALYOIN
NSO
0678

{S)40SS300Md
$103713S
ININD
T4

ﬂ

US 8,001,096 B2

Sheet 14 of 31

Aug. 16, 2011

U.S. Patent

L]

N\ UOSSIDOM
1Si7 Ol aav any . JWILSAS 39MN0S NO
ALYA NOLLVAIdXE A.mm»:A Pl oNP| 3114 3INYL IAYISTY

~ S e OL 39VSS3W aNas

PLBZS /ﬂ 21625
JWYN INNL
H04 SAt A9HNOS OL
Al NOLLYD01 204N0S
aav g INYN anyL
HMO4 ¥41 d HOOT
H06ZS
SIA
LNOILYNLLSIa
ai H085300Ud
—p WOYS SHA4141Q IWYN | THOLS
aANML 30 FOUNOS
082S

1t

(4)o1 914

US 8,001,096 B2

Sheet 15 of 31

Aug. 16, 2011

U.S. Patent

-.-k;“"-'

—f—

LA =B

SSTAUJNOD3Q a3sSTHLNOD

8628 S3A 8625

LAULINS SIHL
dod ar3d

Y,

JANVYN
ANYLYO-L UL NI
AYINI 3714 30Ny

(D)1 'Ol

US 8,001,096 B2

Sheet 16 of 31

Aug. 16,2011

U.S. Patent

(9)21 914

(s)anunos
WO¥A A1d
ANl IV

90€S

*

Sat 30"nos
1037138

YOES

adi3yols
00ES

a1 30HN0S_ | 15 S
AHOW ON
80ES
i | i

US 8,001,096 B2

Sheet 17 of 31

Aug. 16, 2011

U.S. Patent

NOQ
Vo034 T4 HOLVUOS
3NAUL IRVIN P MIN FLVIHD

228 0768

* T4 INYL *
e 31313 0
BLES
(R EEN I ﬁ a1
N0 tesma<_woraizna STA ket
&1
JNY1 40 Ad0D 38
) TINCHS HOLVND

A Uu m_ @ I 01ES

US 8,001,096 B2

Sheet 18 of 31

Aug. 16, 2011

U.S. Patent

AYLNT

dd41 SAONW3Y
? A1 F71d 3AVS

8CES

A

ANNOD
35N LNINIFYD3A
‘H19VL AT NI

gl 374 oLs ‘a1

M3N Q1 371d AdOD
0eES

SJA

A

INNOD 3SN
9¢es

ON

(3)81914

US 8,001,096 B2

Sheet 19 of 31

Aug. 16, 2011

U.S. Patent

g

W31 viva
AN IALVIUD
LEES

1

r

4 ,
AMOLOZNIG
QILVUMISSVNN L
ILVIINISSY 41373384
]
(D)6l 914

\

AHOLOZMIA sz_...uJ
FHL NI AMO.LO3Ma

GNY 31
JLYNIQYOANsS
HOV3 ¥0d

J

H

HI0T FZ3ad
ANAWIHOINI

ZEES

|

US 8,001,096 B2

Sheet 20 of 31

Aug. 16,2011

U.S. Patent

HoO0'1
7334 3HL
N3N0
PES
WL VLVQ AIN
JHL LV WSSV
Zres
NOLLYIWYO-NI ﬁmosmm_c zmaw/
amNIsaq wal JHL NI AMOLO3NIq
YLVYa M3N ANY T4
TYNOLlQay [¢ —
QuOOT OL AMLNZ aaV JLVYNIGHOANS
0pES BEES HOV3 ¥O4d
= » y,

|

1

US 8,001,096 B2

Sheet 21 of 31

Aug. 16, 2011

U.S. Patent

AINVN INyL
OL HLVd MNIN
Z6ES
JWVYNHLVd
TINd ILYID
0SES
» k4
ANINI
AYO1034!ia ~ SIANINT AHOLOIMIT
avay JHOW HOY3 ¥O4
BYES €GeS
Vo013
INYL INYIN
opES

I

S3IYINT
JHOW ON

0¢ 9Oid

U.S. Patent Aug, 16,2011 Sheet 22 of 31 US 8,001,096 B2

¢

S354
WAIT FOR
FREEZE LOCK
TO TURN OFF

5356
FIND TFR FIG. 2

ENTRY

5358
DECREMENT
REFERENCE

COUNT

REFERENCE GOUNT IS YES ngag%e
ZERO & NO DEPENDENT TRUE EILE
SYSTEMS IN TFR?
NO
4
5354
REMOVE FILE ID
< , AND COMPRESSED
FILE ID

U.S. Patent Aug. 16, 2011 Sheet 23 of 31 US 8,001,096 B2

\

5365
GET
OPERATION
S366 <55
CREATE OR YES »
MODIFY? ASSIMILATE
A A
S369
NEW TRUE
COPY OR DELETE YES, FILE
COMPOUND? l
8378 3370
NO MODIFY USE RECORD TRUE
COUNT OF EACH NAME IN AUDIT
COMPONENT FILE
o« l
Y
S379
FOR EACH PARENT
DIRECTORY OR FILE,
UPDATE USE COUNT,
LAST ACCESS AND
MODIFY TIMES

'

U.S. Patent Aug. 16,2011 Sheet 24 of 31 US 8,001,096 B2

v
$382

| VERIFY
Fl G' 23 GROOMING
LOCK OFF

5384
SET
GROOMING
LOCK

A 4
S386

SET GROOM
COUNTS

U.S. Patent Aug. 16, 2011 Sheet 25 of 31 US 8,001,096 B2

l

5388

FIND LDE
RECORD

FIG. 24

8380

FIND TFR
RECORD

5392

INCREMENT
GROOMING
DELETE COUNT

S394

ADJUST FILE
SIZES

U.S. Patent Aug. 16, 2011 Sheet 26 of 31 US 8,001,096 B2

FIG. 25

A 4
S398

UNLOCK
GROOMING
! LOCK

l

US 8,001,096 B2

Sheet 27 of 31

Aug. 16, 2011

U.S. Patent

N3do
LEHO¥d

Ze¥S

ZATNO

AHOLIZNIC
ATND-QVIY

avay
0SS

NOIOTY
R R Ty

g0¥S

(P)92 914

ON—

N3dO
LGIHOH
FOps

4-—p,

LATIVIOT

4Q3aLvVIYD
ONizR

Z0¥S

SA1SDHH I

ON

US 8,001,096 B2

Sheet 28 of 31

Aug. 16, 2011

U.S. Patent

a

(4)92 914

I

H41 WOMd
al 374 NenL3y
2 NOISHIA
VOO0 AAVIN
0cys

g

A

AdOD
HOLVHO3
ALVY3HO
WS

(i

N

a3xoan
JON I M0

al
5114 HOLVHOS
NHA1TH
vZbs

8ibs

A

S3A

NILLREMAR
AN3137dWo0
ONiEg

eLys

209HOYD
g (E

< _
3113 HOLVUOS
JULVAHED
00¥S
Tnazsyual
1 Zbe

US 8,001,096 B2

Sheet 29 of 31

Aug. 16,2011

U.S. Patent

(D)22Z Old

NOL=13a
1iglHOud

g

-

VYN
2N NONS 371
3NYL AHLIN3AI

vers
A
ON

LAYOLOFYID

ATNG-aQVaY
NI ¥0 aaxo 01 3T
20 Qo33 A1 O

XA

4
HO4 SGUOO3
AYLNZ 1Y
2 AT ININYAI30
[44.43]

]

US 8,001,096 B2

Sheet 30 of 31

Aug. 16,2011

U.S. Patent

+

A Lanv
OL AMINT aay

8Zvs

ﬁ

2713 40
AdOD HOLVYOS
213730

L2VS

ON

{INVYN INYL
ON SYH 3114

(9)22 914
ANO AS INNOD
ASN 35Na3M
LEYS
INI INHL
31371304
aeys
INO
SLINMIOD IASN
S3A Sand aImul

S3A

US 8,001,096 B2

Sheet 31 of 31

Aug. 16,2011

U.S. Patent

d
1

ASNOJSIEY
aAILYDIN

8EPS

349 Ol 1s3nO

%

A3 QUMY O

1s3N03Y
S3A P auvanio: [« O

s

20ONNOA

ON

8¢ Old

ASNOGSEY
IALLISOd

4Q1 3HA
JaSSI4N0D U0
a1l 314 S3ANTON

0bpS

YEPS

AWVYN INAL
dN¥001

CEYS

1

S3A

US §,001,096 B2

1
COMPUTER FILE SYSTEM USING
CONTENT-DEPENDENT FILE IDENTIFIERS

RELATED APPLICATIONS

This application is a continuation of and claims priority to
co-pending U.S. patent application Ser. No. 11/724,232, filed
on Mar. 15, 2007 which is a continuation of co-pending
application Ser. No. 11/017,650, filed Dec. 22, 2004, which is
a continuation of pending application ser. No. 10/742,972,
filed Dec. 23, 2003, which is a continuation of 09/987,723,
filed Nov. 15, 2001, patented as 6,928.442; which is a2 which
is a continuation of application Ser. No. 09/283,160, filed Apr.
1, 1999, now U.S. Patent No. 6,415,280, which is a division of
application Ser. No. 08/960,079, filed Oct. 24, 1997, now
U.S. Pat. No. 5,978,791, which is a continuation of Ser. No.
08/425,160, filed Apr. 11, 1995, now abandoned, the contents
of which each of these applications are hereby incorporated
herein by reference. This application is a continuation of and
claims proerity to co-pending application Ser. No. 11/017,
650, fited Dec. 22, 2004, which is a continuation of applica-
tion Ser. No. 09/987,723, filed Nov. 15, 2001, now U.S, Patent
No. 6,928,442, which is a continuation of application Ser. No.
09/283,160, filed Apr. 1, 1999, now U.S. Patent No. 6,415,
280, which is a division of application Ser. No. 08/960,079,
filed Oct. 24, 1997, now U.S. Pat. No. 5,978,791, which 1s a
continuation of Ser. No. 08/425,160, filed Apr. 11, 1995, now
abandoned, the contents of which each of these applications
are hereby incorporated herein by reference. This is also a
continuation of and claims priority to co-pending application
Ser. No. 10/742,972, filed Dec. 23, 2003, which is a division
of application Ser. No. 09/987,723, filed Nov. 15, 2001, now
T.S. Pat. No. 6,928,442 which is a continuation of applica-
tion Ser. No.09/283,160, filed Apr. 1, 1999, now U.S. Pat. Ne,

6,415,280, which is a division of application Ser. No. 08/960, 3

079, filed Oct. 24, 1997, now U.S. Pal. No. 5,978,791, which
is a continuation of Ser. No. 08/425,160, filed Apr. 11, 1995,
now abandoned, the contents of which each of these applica-
tions are hereby incorporated herein by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to data processittg systems and, more
particularly, to data processing systems wherein data items
are identified by substantially unique identifiers which
depend on all of the data in the data items and only on the data
in the data items.

2. Background of the Invention

Data processing (DP) systems, computers, networks of
computers, or the like, typically offer users and programs
varigus ways 10 identify the data in the systems.

Users typically identify data in the data processing system
by giving the data some form of name. For example, a typical
operating systen: (O8) ona computer provides a filesystem in
which data items are naimed by alphanumeric identifiers. Pro-
grams typically identify data in the data processing system
using a location or address. For example, a program may
identify a record in a file or database by using a record number
which serves to locate that record.

In all but the mest prinutive operating systems, users and
programs are able to create and use collections ofnamed data
itemns, these collections themselkves being named by identifi-
ers. These named collections can then, themselves, be made
part of other named collections. For example, an OS5 may
provide mechanisms to group [iles (dafa items) inlo directo-
ries {collections). These directories can then, themselves be

—

0

5

ra

3

40

43

50

40

2

made part of other directories. A data item may thus be
identifted relative to these nested directories using a sequence
of names, or a so-called pathname, which defines a path
through the directories to a pasticular data item (file or direc-
tory).

As another example, a database management system may
group data records (data items) into tables and then group
these tables into database files (collections). The complete
address of any data record can then be specified using the
database file name, the table name, and the record number of
that data record.

Other examples of ideatifying data items include: identi-
fying files in a network file system, identifying objects in an
object-oriented database, identifying images in an image
database, and identifying articles in a text database.

In general, the terms “data” and “data item” as used herein
refer to sequences of bits. Thus a data item may be the con-
tents of a file, a portion of'a file, a page in memory, an object
in an object-oriented program, a digital message, a digital
scanned image, a part of a video or audio signal, or any other
entity which can be represented by a sequence of bits. The
term “data processing’ herein refers to the processing of data
items, and is sometimes dependent on the type of data item
being processed. For example, a data processor for a digital
image may differ from a data processor for an audio signal.

In all of the prior data processing systems the names or
identifters provided to identify data items (the data items
being files, directories, records in the database, objects in
object-oriented programming, locations in memory or on a
physical device, or the like) are always defined relative 10 a
specific context. For instance, the file identified by a particu-
lar file name can only be determined when the directory
containing the file (the context) is known. The file identified
by a pathname can be determined only when the file system
{context) is known. Similarly, the addresses in a process
address space, the keys in a database table, or domain names
on a global computer network such as the Internet are mean-
ingful only because they are specified relative to a context.

In prior art systems for identifying data items there is no
direct relaticuship between the data names and the data item.
The same data name in two different contexts may refer to
different data items, and two different data names 10 the same
context may refer to the same data item.

In addition, because there is no correlation between a data
name and the data it refers to, there is no a priori way to
confinn that a given data item is in fact the one named by a
data name. For instance. in a DP system, il one processor
requests that another processor deliver a data item with a
given data name, the requesting processor cannot, in general,
verify that the data delivered is the correct data {given only the
name). Theretore it may require fusther processing, typically
on the part of the requestor, o verify that the data item it has
obtained is, in fact, the item it requested.

A commean operation in a DP system is adding a new data
item 1o the system. When a new data item is added to the
system, a name can be assigned to it only by updating the
context in which names are defined. Thus such systems
require a centralived mechanism for the management of
names. Such a mechanism is required even in a multi-pro-
cessing system when data items are created and identified at
separate processors in distinet locations, and in which there 1s
no other need for communication when data items are added.

In many data processing systems or environments, data
items are transferred between different locations in the sys-
tem. These locations may be processors in the data processing
system, storage devices, memory, or the like. For example,
one processor may obtain a data item from another processor

US 8,001,096 B2

3

or from an external storage device, such as a floppy disk, and
may incorporate that data ilem into its system (using the name
provided with that data item).

However, when a processor (or some lecaiton) obtains a
data item from another focation in the DP system, it is pos-
sible that this obtained data item is already present in the
system (eitherat the location of the processor or at some other
location accessible by the processor) and therefore a dupli-
cate of the data item is created. This situation is commeoen in a
network data processing environment where proprietary soft-
ware products are installed from floppy disks onto several
processors sharing a common file server. In these systems, i
is often the case that the same product will be installed on
several systems, so that several copies of each file will reside
on the common file server.

In some data processing systems in which several proces-
sors are connected in a network, one system is designated as
a cache server to maintain master copies of data items, and
other systems are designated as cache clients to copy Iocal
copies of the master data items into a local cache on an
as-needed basis. Before using a cached item, a cache clien
must either reload the cached iteim, be informed of changes 1o
the cached item, or confirm that the master item correspond-
ing to the cached item has not changed. In other words, a
cache client must synchronize its data items with those on the
cache server. This synchronization may involve reloading
data items onto the cache client. The need to keep the cache
synchronized or reload it adds significant overhead to existing
caching mechanisms.

In view of the above and other problems with prior art
systems, it is therefore desirable to have a mechanmsm which
allows each processor in a multiprocessor system to deter-
mine a common and substantially unique identifier for a data
jtem, using only the data in the data item and not relying on
any sort of context.

It is further desirable to have a mechanism for reducing
multiple copies of data items in a data processing system and
to have a mechanism which enables the identification ofiden-
tical data items so as to reduce multiple copies. It is further
desirable to determine whether two instances of a data item
are in fact the same data item, and to perform various other
systems’ functions and applications on data items without
relying on any context information or properties of the data
item.

It is also desirable to provide such a mechanism in such a
way as to make it transparent to users of the data processing
system, and it is desirable that a single mechanism be used to
address each of the problems described above.

SUMMARY OF THE INVENTION

This invention provides, i a dala processing syslem, a
method and apparatus for identifying a data jtem in the sys-
tem, where the identity of the data item depends on all of the
data in the data item and only on the data in the data item. Thus
the identity of a data item is independent of its name, origin,
location, address, or other information not derivable direcily
from the data, and depends onby on the data itself.

This invention further provides an apparatus and a method
for determining whether a particular data item is present in the
system or at a location in the system, by examining only the
data identities of a plurality of data items.

Using the method or apparatus of the present invention, the
efficiency and integrity of a data processing system can be
improved. The present invention improves the design and
operation of a data storage system, file system, relational
database, cbject-oriented database, or the like that stores a

20

25

30

35

40

45

60

4

plurzlity of data itemns, by making possible or improving the
design and operation of at least sorne or all of the following
features:

the system stores at most one copy of any data item at a
given location, even when multiple data names in the system
refer to the same contents;

the system avoids copying data from scurce to destination
locations when the destination locations already have the
data;

the system provides transparent access (o any data item by
reference only to its identity and independent of its present
location, whether it be local, remote, or offline;

the system caches data items from a server, so that only the
most recently accessed data items need be retained;

when the system is being used to cache data items, prob-
lems of maintaining cache consistency are avoided;

the system maintains a desired level of redundancy of data
items in a network of scrvers, to protect against failure by
ensuring that multiple copies of the data items are present at
different locations in the system;

the system automatically archives data items as they are
created or modified;

the system provides the size, age, and location of groups of
data items in order to decide whether they can be safely
removed from a local file system,;

the system can efficiently record and presetve any collec-
tion of data items;

the system can efficiently make a copy of any collection of
data items, to suppost a version control mechanism for groups
of the data items;

the system can publish data items, allowing other, possibly
anonymous, systems in a netwaork to gain access to the data
items and to rely on the availability of the data items;

the system can maintain a local inventory of all the data
items located on a given removable medium, such as a dis-
kette or CD-ROM, the inventory is independent of other
properties of the data items such as their name, location, and
date of creation;

the system allows closely related sets of data items, such as
matching or corresponding directories on disconnected com-
puters, to be periodically resynchronized with one another;

the system can verify that data retrieved from another loca-
tion is the desired or requested data, using omdy the data
identifier used to reirieve the data;

the system can prove possession of specific data items by
content without disclosing the content of the data items, for
purposes of later legal verification and to provide anonymity;

the system tracks possession of specific data items accord-
ing lo content by owner, independent of the name, date, or
other properties of the data item, and tracks the uses of spe-
cific data items and files by content for acconnting purposes.

Other objects, features, and characteristics of the present
invention as well as the methods of operation and functions of
the related elements of structure, and the combination of parts
and economies of manufacture, will become mare apparent
upon consideration of the following deseription and the
appended claims with reference to the accompanying draw-
ings, all of which form a part of this specification.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1{a)and 1{b) depict a typical data processing system
in which a preferred embodiment of the present invention
operates;

FIG. 2 depicts a hierarchy of data items stored at any
location in such a data processing system;

US 8,001,096 B2

5

FIGS. 3-9 depict data structures used to implement an
embodiment of the present invention; and

FIGS. 10(a)-28 are flow charts depicting operation of vari-
ous aspects of the present invention.

DETAILED DESCRIPTION OF THE PRESENTLY
PREFERRED EXEMPLARY EMBODIMENTS

An embodiment of the present invention is now described
withreference toa typical data processing system 100, which,
with reference to FIGS. 1{a) and 1(5), includes one or more
processors (or computers) 102 and various storage devices
104 connected in some way, for example by a bus 106.

Each processer 102 includes a CPU 108, 2 memory 110
and one or more local storage devices 112. The CPU 108,
memory 110, and local storage device 112 may be internally
connected, forexample by a bus 114. Each pracessor 102 may
also include other devices (not shown), such as a keyboard, a
display, a printer, and the like.

In a data processing system 100, wherein more than one
processor 102 is used, that is, in a multiprocessor system, the
processors may be in one of various relationships. For
example, two processors 102 may be in a client/server, client/
client, or a server/server relationship. These inter-processor
relationships may be dynamic, changing depending on par-
ticular situations and functions. Thus, a particular processor
102 may change its relationship to other processors as
needed, essentially setting up a peer-to-peer relationship with
other processors. In a peer-to-peer relationship, sometimes a
particular processor 102 acts as & client processor, whereas at
other times the same processor acts as a server processor. [n
other words, there 15 no hierarchy imposed on or required of
pracessors 102.

In a multiprocessor system, the processors 102 may be
homogeneous or heterogeneaus. Further, in a multiprocessor
data processing system 100, some or all of the processors 102
may be disconnected from the network of processors for
periods of ime. Such disconnection may be part of the normal
operation of the system 100 or it may be because a particular
processor 102 is in need of repair.

Within a data processing systemn 100, the data may be
organized to form a hierarchy of data storage elements,
wherein lower leve] data storage elements are combined 1o
form higher level elements. This hierarchy can consist of, for
example, processors, file systems, regions, directories, data
files, segments, and the fike. For example, with reference to
FIG. 2, the data items on a particular processor 102 may be
organized or structured as a file system 116 which comprises
regions 117, cach of which comprises directories 118, each of
which can contain other directories 118 or files 120. Each file
126 being made up of one or more data segments 122,

In a typical data processing system, some or all of these
elements can be named by users given certain implementation
specific naming conventions, the name (or pathvname) of an
element being relative to 2 context. In the context of a data
processing system 100, a pathname is fully specified by a
processor name, a filesystem name, a sequence of zero or
moze directory names identifying nested directories, and a
final file name. (Usnally the lowest level elements, in this case
segments 122, cannot be named by users.)

In other words, a file system 116 is a collection of directo-
ries 118. A directory 118 is a collection of named files 120—
both data files 120 and other directory files 118. A file 120 is
a named data item which is either a data file (which may be
simple or compeund) or a dicectory file 118. A simple file 120
consists of a single data segment 122. A compound file 120
consists of a sequence of data segments 122. A data segment

b

0

—

5

20

35

40

50

60

65

6

122 is afixed sequence of bytes. An important property of any
data segment is its size, the number of bytes in the sequence.

A single processor 102 may access one or more file systems
116, and a single storage device 104 may contain cne or more
file systems 116, or portions of a file system 116. For instance,
a file system 116 may span several storage devices 104.

In order to implement controls in a file system, file system
116 may be divided into distinct regions, where each region is
aunit of management and control. A region consists of a given
directory 118 and is identified by the pathname (user defined)
of the directory.

In the following, the term “location”, with respect to a data
processing system 100, refers to any of a particular processor
102 in the system, a memory of a particular processor, a
storage device, a removable storage medium (such as a floppy
disk or compact disk), or any other physical location in the
system. The term “local” with respect to a particular proces-
sor 102 refers to the memory and storage devices of that
particular processor.

In the following, the terms “True Name”, “data identity”
and “data identifier” refer to the substantially unique data
identifier for a particular data item. The term “True File”
refers to the actual file, segment, or data item identified by a
True Name.

A file system for a data processing system 100 is now
described which is intended to waork with an existing operat-
ing system by augmenting some of the operating system’s file
management system codes. The embodiment provided relies
on the standard file management primitives for actually stot-
ing to and retrieving data items from disk, but uses the mecha-
nisms of the present invention to reference and access those
data items.

The processes and mechanismes (services) provided in this
embodiment are grouped into the following categories: primi-
tive mechanisms, operating system mechanisms, remote
mechanisms, background mechanisms, and extended mecha-
nisms.

Primitive mechanisms provide fundamental capabilities
used to support other mechanisms. The following primitive
mechanisms are described:

. Calculate True Name;

. Assimilate Data Item;

. New True File;

Get True Name from Path;

. Link path to True Name;

- Realize True File from Location;
. Locate Remote File;

. Make True File Local;

. Create Scratch File;

10. Freeze Directory;

11. Expand Frozen Directory;

12. Delete True File;

13. Process Audit File Entry;

14, Begin Grooming;

15. Select For Removal; and

16. End Grooming,.

Operating system mechanisms provide typical familiar file
systemn mechanisms, while maintaining the data structures
required to offer the mechanisms of the, present invention.
Operating system mechanisms are designed io augment exist-
ing operating systems, and in this way to make the present
invention compatible with, and generally transparent to,
existing applications. The following operating system
mechanisms are described:

1. Open File;

2. Close File;

3. Read File;

e Y N

US 8,001,096 B2

7

4. Write File;

3. Delete File or Directory;

6. Copy File or Directory;

7. Move File or Directory;

8. Get File Status; and

9. Get Files in Directory.

Remote mechanisms are used by the operating system in
responding to requests from other processors. These mecha-
nisms enable the capabilities of the present invention in a
peer-to-peer network mode of operation. The following
remote mechanisms are described:

1. Locate True File;

2. Reserve True File,

3. Request True File;

4. Retire True File;

5. Cancel Reservation;

6. Acquire True File;

7. Lack Cache;

8. Update Cache; and

9. Check Expiration Date.

Background mechanisms are intended to min cccasionally
and at a low priority. These provide automated management
capabilities with respect to the present invention. The follow-
ing background mechanisms are described:

1. Mirror True File;

2. Groom Region;

3. Check for Expired Links; and

4. Verify Region; and

3, Groom Source List.

Extended mechanisms rurr within application programs
over the operating system. These mechanisms provide solu-
tions to specific problems and applications. The following
extended mechanisims are described:

1. Inventory Existing Directory;

2. Inventory Removable, Read-only Files;

3. Synchronize directories;

4. Publish Region;

5. Retire Directory;

6. Realize Directory at ocation;

7. Verify True File;

8. Track for accounting purposes; and

9. Track for licensing purposes.

The file system herein described maintains sufficient infor-
mation to provide a variety of mechanisms not ordinarily
offered by an operating system, some of which are listed and
described here. Various processing performed by this
emhodiment of the present irzvention will now be described in
greater detail.

In some embodiments, some files 120 in a data processing
system 100 do not have Trie Names because (hey have been
recently received or created or modified, and thus their True
Names have not yet been computed. A file that dees not yet
have a True Name is called a scratch file. The process of
assigning a True Name to a file is referred to as assimilation,
and is described later. Note that a scratch file may have auser
provided name.

Some of the processing performed by the present invention
can take place in a background mode or on a delayed or
as-needed basis. This background processing is used to deter-
mine information that is not immediately required by the
system or which may never be required. As an example, in
some cases a scratch file is being changed at arate greater than
the rate at which it is useful to determine its True Name. In
these cases, determining the True Name of the file can be
posiponed or performed in the background.

25

30

35

40

45

50

65

8

Data Structures

The following data structures, siored in memory 110 of one
of more processors 102 are used to implement the mecha-
nisms described herein. The data structures can be local 1o
cach processor 102 of the system 100, or they can reside an
only some of the processors 1062.

The data structures described are assumed to reside on
individual peer processors 102 in the data processing system
100. However, they can also be shared by placing them on a
remote, shared file server (forinstance, in alocal area network
of machines). In order to accornmodate sharing data struc-
tures, it is necessary that the processors accessing the shared
database use theappropriate Jocking techniques to ensure that
changes to the shared database do not interfere with one
another but are appropriately serialized. These locking tech-

nigues are well understood by ordinarily skilled programmers

of distnbuted applications.

It is sometimes desirable to allow some regions to be local
to a particular processor 102 and other regions to be shared
among processors 102, (Recall that a region is a unit of file
system management and control consisting of a given direc-
tory identified by the pathname of the directory.) In the case of
local and shared regions, there would be both local and shared
versions of each data structure. Simple changes to the pro-
cesses described below must be made to ensure that appro-
priate data structures are selected for a given operation.

The local directory extensions (LDE) table 124 is a data
structure which provides information about files 120 and
directories 118 in the data processing system 100, The local
directory extensions table 124 is indexed by a pathname or
contextual name (that is, a user provided name) of a file and
includes the True Name for most files. The information in
local directory extension table 124 is in addition to that pro-
vided by the native file system of the operating system.

The True File registry (TFR) 126 is a data store for listing
actual data ilems which have True Names, both files 120 and
segments 122. When such data items oceur in the True File
registry 126 they are known as ‘Lrue Files. True Files are
identified in True File registry 126 by their True Names or
identities. The table True File registry 126 also stores foca-
tion, dependency, and migration information about True
Files.

The region table (RT} 128 defines areas in the network
storage which are to be managed separately. Region table 128
defines the rules for access to and migration of files 120
among, various regions with the local file system 116 and
remote peer file systems.

The source table (ST) 130 is a list of the sources of True
Files other than the current True File registry 126. The source
table 130 includes removable volumes and remole proces-
SOrS.

The andit file (AF) 132 is a list of records indicating
changes to be made in local or remote files, these changes 1o
be processed in background.

The accounting log (AL) 134 is a log of file transactions
used to create accounting information in a manner which
preserves the identity of files being tracked independent of
their name or location.

The license table (LT) 136 is a table identifying files. wlich
may only be used by licensed users, in a manner independent
of their name or location, and the users licensed to use them.
Detailed Descriptions of the Data Structures

The following table surmmarizes the fields of an local direc-
tory extensions table entry, as illustrated by record 138 in
FIG. 3.

US 8,001,096 B2

10

Field Description Field Description
Region ID identifies the region in which this file is contained. Reg{on I internally used identifier for this reglon. . _—
. 5 Regionfite file system on the local processor of which this region is a
Pathname the user provided pame or contextual name of the file or system part
direstory, relative to the xcgi?n in _Whj"h it occurs.) Region & pathname relative to the region file system which defines
True Name the computed True Name or identity of the file or directory. pathname the location of this region. The region consists of ail files and
This True Name is not always up to date, and it is setto a directories subordinste to this pathname, except those in a
special value when a file is modified and is later recomputed region subordinate to this region.
in the background. 10 Mirror zero or mone identifiers of processors which are to keep
Type indicates whether the fie is 2 data file or & directory. processer(s) mirn?r ar a.r'chival copies of all files in.the current regir.'\n.
. , , B Multiple mirror processors can be defined to form a misror
Scratch File the physical location of the file in the file system, when no group
D True Na.me. has been calculated for the file. As noted above, Mirror number of copies of each file in this region that should be
sucha file is called a seratch fie. duplication retained in a mirror group.
Time of last the last access time to this file. If this file is a directory, this 15 count
ACCess is the last access time to any file in the directory. Region specifies whether this region is local 10 a single processor
Time of last the time of last change of this file. If this file is a directory, status 102, shared by several processors 102 (if, for instance, it
modification this is the tast medification time of any file in the directory. resides on a shared file server), or mansged by a remote
Safe flag indicates that this file {and, if this file is a directory, all of its . DIOCCSSOF.
- s] Policy the migration policy to apply to this region. A single region
subordinate files) have been backed up on some other X L) L . o =
o might participate in several poticies. The policies are as
.sys!:cm. and it is thcrcfo?e safe to remove .them. . 20 follows (parameters in brackets are specified as part of the
Lock flag indicates whether a file is locked, that is, it is being modified policy):
by the local processor or a remote processor. Only one rogion is a cached version from {processor ID;
processor may modify a file at a time. region is a member of & mirror set defined by [processer ID).
Size the full size of this directory (including ail subordinate files), region is to be archived on [processor ID]. L
if all Rles in it were fully expanded and duplicated. For a file 35 1['eg|c.m l;];(i be backed up locally, by placing new copics in
. . L. . . 2 region ID].
that.ls no.t & directory this is the size of the actual True File. region is read only and may not be changed.
Ovner the identizy of the nser who owns this file, for accounting region is published and expires on [date].
and license tracking purposes. Files in this region should be compressed.
30

Each record of the True File registry 126 has the [ields
shown in the True File registry record 140 in FIG. 4. The True
File registry 126 consists of the database described in the
table below as well as the actual True Files identified by the
"Frue File IDs below.

Tield Description

True Name computed True Narme or identity of the file.

Compressed compressed version of the True File may be stored instead of,

File ID or in addition to, an uncompressed version. This field
provides the identity of the actual representation of the
compressed version of the file.

Grooming tentative count of how many references have been selected

delete count for deletion during a grocming operation.

Time of last most recent date and time the content of this filc was

access accessed.

Expiration date and time after which this file may be delered by this
SEIVCT.

Dependenl processor IDs of other processors which conlain references to

processors this True File.

Source [Ds source 1D(s) of zero or more seurces from which this file or
data itemn may be retrieved.

True File ID identity or disk location of the actual physical representation
of the file or file segment. It is sufficient to use a filename in
the repistration directory of the underlying operating system.
The True File 1D is absent if the actual file is not currently
present at the current location.

Use count mumnber of other records on this processor which identify this

True Fils.

A region table 128, specified by a directory pathname,
records storage policies which allow files in the file system to
be stored, accessed and migrated in different ways. Storage
policies are programmed in a configurable way using a set of
rules described below.

Each region table record 142 of region table 128 incindes
the fields described is the following table (with reference to
FIG. 5):

35

40

45

50

=3
<

63

A source table 130 identifies a source focation for True
Files. The source table 130 is also used to identify client
processors making reservations on the current processor.
Each source record 144 of the source table 130 includes the
fields summarized in the following table, with reference to
FIG. 6:

Field Description
source [D internal identifier used to identify a particalar source.
source type type of seurce location:

Removable Storage Volume

Local Region

Cache Server

Mimor Group Server

Cooperative Server

Publishing Server

Client
source includes information about the rights of this processor,
rights such as whether it can ask the jocal processor to store

data items for il
source measurement of the bandwidth, cost, and reliability of the
availability connection to this spurce of True Files, The availability is

used to select from among several possible sources.
source information on how the locsl processor isto aceess the sowse,
location This may be, for example, the name of a removable storage

volume. or the processor [D and region path of a region on a
ICITOC Processor.

The audit file 132 is a table of events ordered by timestamp,
each record 146 in audit file 132 including the fields summa-
rized in the following table (with reference to FIG. 7):

Field Description
QOriginal path of the (ile in questior.
Name

US 8,001,096 B2

i1
-continued
Field Description
Operation whether the file was created, read, written, copied or deleted.
Type specifies whether the source is a file or a directory.
Processor T of the remote processor generating this event (if not local),
D
Timestamp time and date file was closed (required only for
accessedimodified files).
Pathname Name of the file (required only for rename).
Tree Name computed True Name of the file. This is used by remote

systems to mirror changes to the directory and is filled in
during background processing.

Each record 148 of the accounting log 134 records an event
which may later be used to provide information for billing
mechanisms. Each accounting log entry record 148 includes
at least the information summarized in the following table,
with reference o FIG. 8:

Field Description

date of entry date and time of this log entry,

type of entry Entry types include create file, delete file, and transmit file.
True Name True Name of data item in question.

owaner identity of the user responsibie for this action.

Each record 150 of the license table 136 records a relation-
ship between a licensable data item and the user lcensed to
have access to it. Each license table record 150 includes the
information sununarized in the following table, with refer-
ence o F1G. 9:

Field Description

True Name
licensee

True Name of a data itern subject 1o license validation.
identity of a user anthorized 10 have access to this object.

Various other data structures are employed on some or all
of'the processors 102 in the data processing system 100. Each
processor 102 has a global freeze lock (GFL) 152 (FIG. 1),
which is used to prevent synchronization errors when a direc-
tory is frozen or copied. Any processor 102 may include a
special archive directory (SAD) 154 into which directories
may be copied for the purposes of archival. Any processor
102 may include a special media directory (SMD) 156, into
which the directories of removable volurnes are stored to form
a media inventory. Each processor has a grooming lock 158,
which is set during a grooming operation. During this period
the grooming delete count of True File registry entries 140 is
active, and no True Files should be deleted vntil grooming is
complete. While grooming is in effect, grooming information
includes a table of pathnames selected for deletion, and keeps
track of the amount of space that would be freed if all of the
files were deleted.

Primitive Mechanisms

The first of the mechanisms provided by the present inven-
tion, primitive mechanisms, are now described. The mecha-
nisms described here depend on underlying data management
mechanisms to create, copy, read, and delete data items in the
True File registry 126, as identified by a True File ID. This
support may be provided by an underlying operating system
or disk storage manager.

10

15

b
=

30

35

40

55

40

12

The following primitive mechanisms are desctibed:
1. Calculate True Name;

2. Assimilate Data Hem;

3. New True File;

4. Get True Name from Path;

5. Link Path to True Name;

6. Realize True File from Location;

7. Locate Remote File;

8. Make True File Local,

. Create Scratch File;

10. Freeze Directory;

11. Expand Frozen Directory;

12. Delete True File;

13. Process Audit File Entry;

14. Begin Grooming;

15. Select For Removal; and

16. End Grooming.

1. Calculate True Name

A True Name is computed using a function, MDD}, which
reduces a data block B of arbitrary length to a relatively small,
fixed size identifier, the True Name of the data block, such that
the True Name of the data block is virtually guaranteed to
represent the data block B and only data block B.

The function MD must have the following properties:

1. The domain of the function MD is the set of all data
items. The range of the function MD is the set of True
Names.

2. The functicn MD must take a data item of arbitrary
length and reduce it to an integer value in the range 0 to
N-1, where N is the cardinality of the set of True Names.
That is, for an arbitrary length data black B, 0=MD(8)
<N.

3. The results of MID(B) must be evenly and randomly
distributed over the range of N, in such a way that simple
or regular changes to B are virtually guaranteed to pro-
duce a different value of MD(B).

4. It must be computationally difficult to find a different
value B' such then MD(B)=MD(B").

5. The function MD(B) must be efficiently computed.

A family of functions with the above properties are the
so-called message digest functions, which are used in digital
security systems as techniques for authentication of data.
These functions (or algorithms) include MD4, MDS3, and
SHA.

In the presently preferred embodiments, either MDS5 or
SHA is employed as the basis for the computation of True
Names. Whichever of these two message digest functions is
employed, that same function must be employed on a system-
wide basis.

It is impossible to define a function having a unique output
for each possible input when the number of elements in the
range of the function is smaller than the number of elements
1 its domain. However, a crucial observation is that the actual
data items that will be encountered in the operation of any
system embodying this invention form. a very sparse subset of
all the possible inputs.

A colliding set of data items is defined as a set wherein, for
one or more pairs X and y in the set, MD(x)=MD{y). Since a
function conforming to the requirements for MD must evenly
and randomly distribute its outputs, it is possible, by making
the range of the function large enough, to make the probabil-
ity arbitrarily small that actual inputs encountered in the
operation of an embodiment of this vention will form a
colliding set.

To roughly quantify the probability of a collision, assume
that there are no more than 23° storage devices in the world,
and that each storage device has an average of at most 2°°

el

US 8,001,096 B2

13

different data items. Then there are at most 2°° data items in
the world. If the ouiputs of M) range between 0 and 2'#%, i1
can be demonstrated that the probabiiity of a collision is
approximately 1 in 2*°. Details on the derivation of these
probability values are found, for example, in P. Flajoletand A.
M. Cdlyzko, “Random Mapping Statistics,” Lecture Notes in
Computer Science 434: Advances in Cryptology-—Eurocrypt
'89 Proceedings, Springer-Verlag, pp. 329-354.

Note that for some less preferred embodiments of the
present invention, lower probabilities of uniqueness may be
acceptable, depending on the types of applications and
mechanisms used. In some embodiments it may also be useful
to have more than one leve] of True Nammes, with some of the
True Names having different degrees of uniqueness. If such a
scheme is implemented, it is necessary to ensure that less
unique True Names are not propagated in the system.

While the invention 1s described herein using only the True
Name of a data item as the identifier for the data item, other
preferred embodiments use tagged, typed, categorized or
classified data items and use a combination of both the True
Name and the tag, type, category or class of the data iteqn as
an identifier. Examples of such categorizations are files,
directories, and segments; executable files and data files, and
the like. Examples of classes are classes of objects in an
object-odented system. In such a system, a lower degree of
True Name uniqueness is acceptable over the entire universe
of data items, as long as sufficient uniqueness. is provided per
category of data items. This is because the tags provide an
additional level of uniqueness.

A mechanism for calculating a True Name given a data
item is now described, with reference to FIGS. 10{2) and
10(b).

A simple data item is a data item whose size is less than a
particular given size (which must be defined in each particular
implementatien of the invention). To determine the True
Name of a simple data item, with reference to FIG. 10(a), first
compute the MD funciion (described above) on the given
simiple data item (Step S212). Then append to the resuliing
128 bits, the byte length modulo 32 of the data item (Step
$214). The resulting 160-bit value is the True Name of the
simple data item.

A compound data item is onte whose size is greater than the
particular given size of a simple data item. To determine the
True Name of an arbitrary (simple or compound) data item,
with reference to FIG. 10(5), first determine ifthe data item is
a simple or a compound dala item {Step 5216). If the data item
is a simple data item, then compute its True Name in step
5218 (using steps 5212 and 5214 described ahove}, otherwise
partition the data ifem into segments {Step S220) and assimi-
late each segment (Step 8222) (the primitive mechanisin,
Assimilate a Data Item, is described below), computing the
True Name of the segment. Then create an indirect block
consisting of the computed segment True Names (Step 5224).
An mdirect block is a data item which consists of the
sequence of True Names of the segments. Then, in step 3226,
assimilate the indirect block and compute its Trve Name.
Finally, replace the final thirty-two (32) bits of the resulting
True Name (that is, the length of the indirect block) by the
length modulo 32 of the compound data item (Siep S228).
The result is the True Name of the compound data item.

Note that the compound data item may be so large that the
indirect block of segment True Names is itself a compound
data item. In this case the mechanism is invoked recursively
until only simple data items are being processed.

Both the use of segments and the attachment of a length to
the True Name are not strictly required in a system using the

20

25

30

50

§0

65

14

present invention, but are currently considered desirable fea-
tures in the preferred embodiment.
2. Assimilate Data Item

A mechanism for assimilating a data itemn (scraich file or
segment) imto a file system, given the scratch file 1D of the
data item, is now described with reference to F1G. 11. The
purpose of this mechanism is to add a given data item to the
True File registry 126. If the data item already exists in the
True File registry 126, this will be discovered and used during
this process, and the duplicate wiil be eliminated.

Thereby the systemn stores at most one copy of any data
item or file by content, even when multiple names refer to the
same content.

First, determine the True Name of the data item corre-
sponding to the given scratch File 1D using the Calculate True
Name primitive mechanism (Step 5230). Next, look for an
entry for the True Name in the True File registry 126 (Step
5232) and determine whether a True Name entry, record 140,
exists in the True File registry 126. If the entry record includes
a corresponding True File ID or compressed File ID (Step
§237), delete the file with the scratch File ID (Step S238).
Otherwise store the given True File ID in the entry record
(step S239).

If it is determined (in step S232) that no True Name entry
exists in the Tie File registry 126, then, in Step 8236, create
a new eniry in the True File registry 126 for this True Name.
Set the True Name of the entry to the calenlated True Name,
set the use count for the new entry to one, store the given True
File ID in the entry and set the other fields of the entry as
appropriate.

Because this procedure may take some time o compute, it
is intended to run in background alter a file has ceased to
change. In the meantime, the file is considered an unassimi-
lated scratch file.

3. New True File

The New True File process is invoked when processing the
audit file 132, some time afler a True File has been assimilated
(using the Assimilate Data Ttem primitive mechanism). Given
a local directory extensions table entry record 138 in the local
directory extensions table 124, the New True File process can
provide the following steps (with reference to FIG. 12),
depending on how the local processor is configured:

First, in step 5238, examine the local directory extensions
table entry record 138 to determine whether the file is locked
by a cache server. If the file is locked, then add the ID of the
cache server (o the dependent processor list of the True File
registry table 126, and then send a message to the cache server
to update the cache of the current processor using the Update
Cache remote mechanism (Step 242).

If desired, compress the True File (Step 5246), and, if
desired, mirror the True File using the Mirror True File back-
ground mechanisia (Step 5248).

4. Get True Name from Path

The True Name of a file can be used to identify a file by
contents, to confirm that a file matches its original contents, or
to compare two files. The mechanism 10 get a True Name
given the pathname of a file is now described with reference
to FIG. 13.

First, search the local directory extensions table 124 for the
entry record 138 with the given pathname (Step $250). It the
pathname is not found, this process fails and no True Name
corresponding to the given pathname exists. Next, deiermine
whether the local directory extensions table entry record 138
includes a True Name (Step $252), and if so, the mechanism’s
task is complete. Otherwise, determine whether the local
directory exiensions table entry record 138 identifies a direc-

US 8,001,096 B2

15
tory (Step 8254), and if so, freeze the directory (Step S256)
(the primitive mechanism Freeze Directory is described
below).

Otherwise, in step S258, assimilate the file (using the
Assimilate Data Item primitive mechanism) defined by the
File ID field to generate its True Name and store its Trme
Name in the local directory extensions entry record. Then
return the True Name identified by the local directory exten-
sions table 124,

5. Link Path to True Name

The mechanism to link a path to a True Name provides a
way of creating a new directory entry record identifying an
existing, assimilated file. This basic process may be used 1o
copy, move, and rename files without a need to copy their
contents. The mechanism to link a path to a e Name is now
described with reference to FIG. 14.

First, if desired, confirm that the True Name exists locally
by searching for it in the True Name registry or local directory
extensions table 135 (Step S260). Most uses of this mecha-
nistm will require this form of validation. Next, search for the
path in the local directory extensions table 135 (Step $262).
Confirm that the directory containing the file named in the
path already exists (Step S264). Ifthe named file itself exists,
delete the File using the Delete True File operating syslem
mechanism (see below) (Step S268).

Then, create an entry record in the local directory exten-
sions with the specified path (Step S270) and update the entry
record and other data structures as follows: fill in the True
Name field of the entry with the specified True Name; incre-
ment the use count for the True File registry entry record 140
of the corresponding True Name; note whether the entry is a
directory by reading the True File to see if it contains a tag
(magic number) indicating that it represents a frozen direc-
tory (see also the deseription of the Freeze Directory primi-
tive mechanism regarding the tag); and compute and set the
aother fields of the local dircctory extensions appropriately.
For instance, search the region table 128 to identify the region
of the path, and set the time of last access and tume of last
modification 1o the current time.

6. Realize True File from Location

This mechanism is used to try to make a local copy of a
True File, given its True Name and the name of a source
location (processor or media) that may contain the True File,
This mechanism is now described with reference to FIG. 15.

First, in step 5272, determine whether the location speci-
fied is a processor. If it is determined that the location speci-
fied is a processor, then send a Request True File message
(using the Request True File remote mechanisim) to the
remote processor and wail for a response (Step $274). If a
negative response is received or no response is received afier
a timeout period, this mechanism fails. If a positive response
is received, enter the True File returned in the True File
registry 126 (Step 5276). (I the file received was compressed,
enter the True File ID in the compressed File 1D field.)

If, on the other hand, it is determined in step $272 that the
location specified is not a processor, then, if necessary,
request the user or operator t0 mount the indicated volume
(Step S278). Then (Step S280) find the indicated file on the
given volume and assimilate the fileusing the Assimilate Data
Item primitive mechanism. If the volune does not contain a
True File registry 126, search the media inventory to find the
path of the file on the volume. If no such file can be found, this
mechanism fails.

10

15

20

25

30

40

43

50

35

60

16

At this point, whether or not the location is determined (in
step S272) to be a processor, if desired, verify the True File (in
step 5282).

7. Locate Remote File

This mechamsm allows a processor to locate a file or data
item from a remote source of True Files, when a specific
source is unknown or unavailable. A client processor system
may ask one of several or many sources whether it can supply
a data object with a given True Name. The steps to perform
this mechanism are as follows (with reference to FIGS. 16{a)
and 16(5)).

The client processor 102 uses the source table 145 to select
one or more source processors (Step S284). If no source
processor can be found, the mechanism fails. Next, the client
processor 102 broadeasts to the selected sources a request to
locate the file with the given True Name using the Locate True
File remote mechanism (Step 5286). The request to locate
may be augmented by asking to propagate this request to
distant servers. The client processor ther waits for cne or
more servers to respond positively (Step S288). After all
servers respond negatively, or after a timeout peried with no
positive response, the mechanism repeats selection (Step
5284) to attempt to identify alternative sources. If any
selected source processor responds, its processor ID is the
result of this mechanism. Store the processor ID} in the source
field of the True File registry entry record 140 of the given
True Name (Step S5290).

If the source location of the Tre Name is a different
processor or mediwm than the destination (Step $290a), per-
form the following steps:

(1) Look up the True File registry entry record 140 for the

corresponding True Name, and add the source location
ID to the list of sources for the True Name (Step $S2905);
and

(if) If the source is a publishing system, determine the

expiration date on the publishing system for the True
Name and add that to the list of sources. If the source is
not a publishing system, send a message 10 reserve the
True File on the source processor (Step S290¢).

Source selection in step 5284 may be based on optimiza-
tions involving general availability ofthe source, access iime,
bandwidth, and transmission cost, and ignoring previously
selected processors which did not respond in step S288.

8. Make True Fite Local

This mechanism is used when a True Name is knownand a
locally accessible copy of the corresponding file or data item
is required. This mechanism makes it possible to actually read
the data in a True File. The mechanism takes a True Name and
returns when there is a local, aceessible copy of the True File
in the True File registry 126. This mechanism is described
here with reference to the flow chart of F1IGS. 17({a) and 17(5).

First, look in the True File regisiry 126 for a True File entry
record 140 for the corresponding Teue Name (Step 5292). If
no such entry is found this mechanism fails. If there is alrcady
a True File ID for the entry (Step 5294), this mechanism’s
task is complete. H there is a compressed file ID for the entry
(Step 3296}, decompress the file corresponding to the file ID
(Step 5298) and store the decompressed file ID in the entry
(Step 8300). This mechanism is then complete.

If there is no True File 1D for the entry (Step $294) and
there is no compressed file ID for the entry (Step $296), then
continue searching for the requested file. At this time it may
be necessary to notify the uscr that the system is searching for
the requested file.

If there are one or more source IDs, then select an order in
which to attempt to realize the source 1D (Step S304). The
order may be based cn optimizations involving general avail-

US 8,001,096 B2

17

ability of the source, access time, bandwidth, and transmis-
sion cost. For each source in the order chosen, realize the True
File from the source location (using the Realize True File
from Location primitive mechanism), until the True File is
realized (Step 3306). I it is realized, continue with step S294.
If no known source can rezlize the True File, use the Locate
Remaote File primitive mechanism to attempt to find the True
File (Step S308). If this succeeds, realize the True File from
the identified source location and continue with step 5296.
9. Create Scratch File

A scratch copy of a file is required when a file is being
created or is about to be modified. The scratch copy is stored
in the file system of the underlying operating system. The
scratch copy is eventually assimilated when the audit file
record entry 146 is processed by the Process Audit File Entry
primitive mechanism. This Create Scratch File mechanism
requires a local directory extensions table entry record 138.
When # succeeds, the local directory extensions table entry
record 138 contains the scratch file 1D of a scrateh file that is
not contained in the True File registry 126 and that may be
modified. This mechanism is now described with reference to
FIGS. 18(a) and 18(5).

First determine whether the scratch file should be a copy of
the existing True File (Step 8310). If so, continue with step
8312. Otherwise, determine whether the local directory
extensions table entry record 138 identifies an existing True
File (Step 8316), and if so, delete the True File using the
Delete True File primitive mechanism (Step S318). Then
create a new, empty scratch file and store its scratch file IDin
the local directory extensions table entry record 138 (step
5326). This mechanism is then complete.

If the local directory extensions table entry record 138
identifies a scratch file ID (Step $312), then the entry already
has a scratch file, so this mechanism succeeds.

If the local directory extensions table entry record 138
identifies a True File ($316), and there is no True File ID for
the True File (S312), then make the True File local using the
Make True File Local primitive mechanism (Step 83322). Il
there is still no True File 1D, this mechanism fails.

There is now a local True File for this file. If the vse count
in the corresponding True File registry entry record 140 is one
(Step S326), save the True File I in the scratch file ID of the
local directory extensions table entry record 138, and remove
the Truc File registry entry record 140 (Step $S328). (This step
makes the True File into a scratch file.) This mechanism’s task
1s complete,

Otherwise, if the use count in the corresponding True File
registry entry record 140 is not one (in step S326), copy the
file with the given True File 11D to a new scratch file, using the
Read File OS mechanism and store its file 1D in the local
directory extensions table entry record 138 (Step 8330), and
reduce the use count for the True File by one. If there is
insufficient space to make a copy, this mechanism fails.

10. Freeze Directory

This mechanism ireezes a directory in order to calculate its
True Name. Since the True Name of a directory is a function
of the files within the directery, they must not change during
the computaticn of the True Name of the directory. This
mechanism requires the pathname of a directory to freeze.
This mechanism is described with reference to FIGS. 19{(a)
and 19(5).

In step $332, add one to the global freeze lock. Then search
the local directory extensions table 124 to find each subordi-
nate data file and directory of the given directory, and freeze
each subordinate directory found using the Freeze Directory
primitive mechanism (Step 5334). Assimilate each unassimi-
lated data file in the directory using the Assimilate Data Item

20

25

30

40

45

50

55

60

18

primitive mechanism (Step 8336). Then create a data item
which begins with 4 tag or marker (2 “magic number™) being
a unique data item indicating that this data ytem is a frozen
directory (Step $337). Then list the file name and True Name
for each file in the current directory (Step $338). Record any
additional information required, such as the type, time of last
access and modification, and size (Step S340). Next, in step
$342, using the Assimilate Data Item primitive mechanism,
assimilate the data item created in step S338. The resulting
True Name is the True Name of the frozen directory. Finally,
subtract one from the global freeze lock (Step 5344).

11. Expand Frozen Directory

This mechanism expands a frozen directory in a given
location. It requires a given pathname into which to expand
the directory, and the True Name of the directory and is
described with reference to FIG. 20.

First, in step 5346, make the True File with the given True
Name local using the Make True File Local primitive mecha-
nism. Then read each directory entry in the local file created
in step S346 (Step $348). For each such directory entry, dothe
following:

Create a full pathname using the given pathname and the
file name of the entry (Step S3590); and

hink the created path to the True Name (Step 5352) using
the Link Path to True Name primitive mechanism.

12, Delete True File

This mechanism deletes a reference to a True Name. The
underlying True File is not removed from the True Tile reg-
istry 126 unless there are no additional references 1o the file,
With reference to FIG. 21, this mechanism is performed as
follows:

if the global freeze lock is on, wait until the global freeze
lock is tumed off (Step S354). This prevents deleting a True
File while a directory which might refer to it is being frozen.
Next, find the True File registry entry record 140 given the
True Name (Siep S356). II the reference count field of the
True File registry 126 is greater than zero, subtract one from
the reference count field (Step 5358). If it 15 determined (in
step $360) that the reference count field of the True File
regisiry entry record 140 is zero, and if there are no dependent
systems listed in the True File registry entry record 140, then
perform the following steps:

(i) If the True File is a simple data item, then delete the True
File, otherwise,

(i1) (the True File is 2 compound dala itemn) for each True
Name in the data item, recursively delete the True File corre-
sponding to the Tnie Name (Step $362).

(iii) Remove the file indicated by the True File 1D and
compressed file 1D from the True File registry 126, and
remove the True File registry entry record 140 (Step 5364).
13. Process Audit File Entry

This mechanism performs tasks which are required to
maintain information in the local directory extensions table
124 and True File registry 126, but which can be delayed
while the processor is busy doing more time-critical tasks.
fntries 142 in the audit file 132 should be processed at a
background priority as long as there are entries to be pro-
cessed. With reference to FIG. 22, the steps for processing an
entry are as follows:

Determine the operation in the entry 142 currently being
processed (Step $363). If the operation indicates that a file
was creared or written (Step 8366), then assimilate the file
using the Assimilate Data Item primitive mechanism (Step
8368), use the New True File primitive mechanism to do
additional desired processing (such as cache update, com-

US 8,001,096 B2

19

pression, and mirrering) (Step $369), and record the newly
computed True Name for the file in the audit file record entry
(Step S370).

Otherwise, if the-entrysbeing processed indicates that a
compound data item or directory was copied {or deleted)
(Step 8376), then for each component True Name in the
compound data item or directory, add (or subtract) one to the
use count of the True File registry entry record 140 corre-
sponding to the component True Name (Step 5378).

In ali cases, for each parent directory of the given file,
update the size, time of last access, and time of last modifi-
cation, according to the operation in the audit record (Step
5379).

Note that the audit record is not removed afier processing,
but is retained for some reasonable period so that it may be
used by the Synchronize Directory extended mechanism to
allow a disconnected remote processor to update jts represen-
tation of the local system. ‘

14. Begin Grooming

This mechanism makes it possible to select a set of files for
removal and determine the overall amount of space to be
recovered. With reference to FIG. 23, first verify that the
global grooming lock is currently unlocked (Step S5382).
Then set the glebal grooming lock, set the total amount of
space freed during grooming to zero and empty the list of files
selected for deletion (Step $384). For each True File in the
True File registry 126, set the delete count to zero {Step
$386).

15. Select For Removal

This grooming mechanism tentatively selects a pathname
to allow its comresponding True File to be removed. With
reference 10 FIG. 24, first find the local directory extensions
table entry record 138 corresponding to the given pathname
(Step $388). Then find the True File registry entry record 149
corresponding to the True File name inr the local directory
extensions table entry record 138 (Step 8390). Add oneto the
grooming delete count in the True File registry entry record
140 and add the pathname to a list of files selected for deletion
(Step 8392). If the grooming delete count of the True File
registry entry record 140 is equal fo the use count of the True
File registry entry record 140, and if the there are no entries in
the dependeney list of the True File registry entry record 140,
then add the size of the file indicated by the True File ID and
or compressed file ID to the total amount of space freed
during grooming (Step S394).

16. End Grooming

This grooming mechanism ends the grocoming phasc and
removes all files selected for removal. With reference to FIG.
25, for each file in the list of files selected tor deletion, delete
the file (Step $396) and then unlock the global grooming lock
(Step S398).

Operating System Mechanisms

The next of the mechanisms provided by the present inven-
tion, operating system mechanisms, are now described.

The following operating system mechanisms are
described:

1. Open File;

2. Close File;

3. Read File,

4. Write File;

5. Delete File ar Directory;

6. Copy File or Directory;

7. Move File or Directory;

8. Get File Status; and

9. Get Files in Directory.

10

15

20

30

35

40

43

50

55

60

65

20
1. Open File

A mechanism to open a file is described with reference to
FIGS. 26{a) and 26(b). This mechanism is given as input a
pathname and the type of access required for the file (for
example, read, write, read/write, create, etc.) and produces
either the File ID of the file to be opened or an indication that
no file should be opened. The local directory extensions table
record 138 and region table record 142 associated with the
opened file are associated with the open file for later use in
other processing functions which refer to the file, such as
read, write, and close.

First, determine whether or not the named file exists locally
by examining the local directory extensions table 124 1o
determine whether there is an entry corresponding to the
given pathname (Step S400). If it is determined that the file
name does not exist locally, then, using the access type, deter-
mine whether or not the file is being created by this opening
process (Step S402). If the file is not being created, prohibit
the open (Step 5404). If the file is being created, create a
zero-length scratch file using an entry in local directory exten-
sions table 124 and produce the scratch file ID of this scratch
file as the result (Step S406).

I£, on the other hand, it is determined in step 400 that the
file name does exist locally, then determine the region in
which the file is located by searching the region table 128 to
find the record 142 with the longest region path which is a
prefix of the file pathname (Step S408). This record identifies
the region of the specified file.

Next, determine using the access type, whether the file is
being opened for writing or whether it is being opened enly
for reading (Step S410). If the file is being opened for reading
only, then, if the file is a scratch file (Step 5419), return the
scratch File 1D of the file (Step S424). Otherwise get the True
Name from the local direclory extensions table 124 and make
a local version of the True File associated with the True Name
using the Make True File Local primitive mechanism, and
then return the Tnie File ID associated with the True Name
(Step S420).

1f the file is not being opened for reading only (Step S4148),
then, if it is determined by inspecting the region table entry
record 142 that the file is in a read-only directory {Step S416),
then prohibit the opening (Step 5422).

If it is determined by inspecting the region table 128 that
the file is in a cached region (Step S423), then send a Lock
Cache message to the corresponding cache server, and wait
for a retumn message (Step S418). If the return message says
the file is already locked, prohibit the opening.

11" the access type indicates that the file being modified is
being rewritten completely (Step S419), sc that the original
data will not be required, then Delete the File using the Delete
File OS mechanism (Step 5421} and perform step S406.
Otherwise, make a scratch copy of the file (Step S3417) and
produce the scralch file ID of the scratch file as the result (Step
5424).

2. Close File

This mechanism takes as input the local directory exten-
sions table entry record 138 of an open file and the data
maintained for the open file. To close a file, add an entry 1o the
audit file indicating the time and operation (create, read or
wiite). The audit file processing (using the Process Audit File
Entry primitive mechanism) will take care of assimilating the
file and thereby updating the other records.

3. Read File

To read a file, a program must provide the offset and length
of the data to be read, and the location of a buffer into which
to copy the data read.

The file to be read from is identified by an open file descrip-
tor which includes a File ID as computed by the Open File

US 8,001,096 B2

21

operating systetn mechanism defined above. The File ID may
identify either a scratch file or a True File (or True File
segment). If the File 1D identifies a True File, 1t may be either
a simpie or a compound True File. Reading a file is accom-
plished by the following steps:

In the case where the File ID identifies a scratch file or a
simple True File, use the read capabilities of the underlying
operating system.

In the case where the Tile TD identifies a compound file,
break the read operation into one or more read operations on
component segments as follows:

A. [dentify the segment(s) segment(s) to be read by divid-
ing the specified file offset and length each by the fixed size of
a segment (a system dependent paranieter), to deternmine the
segment number and number of segments that must be read.

B. For each segment number computed above, da the fol-
lowing;:

1. Read the compound True File index block to determine

the True Naine of the segment to be read.

ii. Use the Realize True File from Location primitive
mechanism to make the True File segment available
locally. (If that mechanism fails, the Read File mecha-
nism fails).

ili. Determine the File ID of the True File specified by the
True Name corresponding to this segment.

iv. Use the Read File mechanism (recursively) to read from
this segment into the corresponding location in the
specified buffer.

4, Write File

File writing uses the file 1D and data management capa-
bilities of the underlying operating system. File access (Make
File Loca) described above) can be deferred until the first read
or write,

5. Delete File or Dircctory

The process of deleting a file, for a given pathname, is
described here with reference to FIGS. 27(a) and 27(5).

First, determine the Jocal directory extensions table entry
record 138 and region table entry record 142 for the file (Step
S422). 1f the file has ne local directory extensions table entry
record 138 or is locked or is in a read-only region, prohibit the
deletion.

Identity the corresponding True File given the True Name
of the file being deleted using the True File registry 126 (Step
5424). If the file has no True Name, (Step 5426) then delete
the scratch copy of the file based on its scratch file ID) in the
local directory extensions table 124 (Step S427), and con-
tinue with step S428.

H the file has a True Name and the True File’s use count is
one {Step 5429}, then delete the True File (Step S430), and
continue with step S428.

If the file has a True Name and the True File's use count is
greater than one, reduce its use count by one (Step S431).
Then proceed with step S428.

In Step S428, delete the local directory extensions table
enfry record, and add an entry to the audit file 132 indicating
the time and the operation performed (delete).

6. Copy File or Directory

A mechanism is provided to copy a file or directory given
a source and destination processor and pathname. The Copy
File mechanism does not actually copy the data in the file,
only the True Name of the file. This mechanism is performed
as follows:

(A) Given the source path, get the True Name from the
path. If this step fails, the mechanism fails.

(B) Given the True Name and the destination path, link the
destination path to the True Name.

20

30

35

45

W

0

60

63

22

(C) K the source and destination processors have different
True File registries, find (or, if necessary, create) an entry for
the True Name in the True File registry table 126 of the
destination processor. Enter into the source ID field of this
new entry the source processor identity.

(D} Add an entry to the audit file 132 indicating the time
and operation performed (copy).

This mechanism addresses capability of the system to
aveid copying data from a source location to a destination
location when the destination already has the data. In addi-
tion, becaunse of the ability to freeze a directory, this mecha-
nism also addresses capahility of the system immediately to
make a copy of any collection of files, thereby to support an
efficient version control mechanisms for proups of files.

7. Move File or Directory

A mechanism is described which moves (or renames) a file
from a source path to a destination path. The move operation,
Hke the copy operation, requires no actual transfer of data,
and is perfonmed as follows:

(A) Copy the file from the source path to the destination
path.

(B) If the source path is different from the destination path,
delete the source path.

8. Get File Status

This mechanism takes a file pathname and provides infor-
mation about the pathname. First the local directory exten-
sions table entry record 138 cerresponding to the pathname
given is found. If no such entry exists, then this mechanism
fails, otherwise, gather information about the file and its
corresponding True File from the local directory extensions
table 124. The information can include any information
shown in the data structures, including the size, type, owner,
TFrue Name, scurces, time of last access, time of last modifi-
cation, state (local or not, assimilated or not, compressed or
not), use count, expiration date, and reservations.

9. Get Files 11 Directory

This mechanism enumerates the files in a directory. It is
used {(implicitly) whenever it is necessary lo delermine
whether a file exists (is present) in a directory. For instance, it
is implicitly used in the Open File, Delete File, Copy File or
Directory, and Move File operating system mechanisms,
because the files cperated on are referred to by pathnames
containing directory names. The mechanism works as fol-
lows:

The local directory extensions table 124 is searched for an
entry 138 with the given directory pathname. If no such entry
is found, or if the entry lound is not a directory, then this
mechanism fails.

If there is a corresponding True File field in the local
directory extensions table record, then it is assumed that the
Tme File represents a frozen directory. The Expand Frozen
Directory primitive mechanism is used to expand the existing
True File inio directory entries in the local direciory exten-
sions table.

Finally, the local directory extensions table 124 is again
searched, this time to find each directory subordinate to the
given directory. The names found are provided as the result.
Remote Mechanisms

The remote mechanisms provided by the present invention
are now described. Recall that remote mechanisms are used
by the operating systern in responding to requests from other
processors. These mechanisms enable the capabilities of the
present invention in a peer-ta-peer network mode of opera-
tion.

In a presently preferred embodiment, processors commu-
nicate with each other using a remote procedure call (RPC)
style interface, running over one of any number of commu-

US 8,001,096 B2

23

nication protocols such as IPX/SPX or TCP/IP. Each peer
processor which provides access 1o its True File registry 126
or file regions, or which depends on another peer processor,
provides a number of inechanisms which can be used by its
peers.

The following remote mechanisms are described:

1. Locate True File;

2. Reserve True File;

3. Request True File;

4. Retire True File;

5. Cancel Rescrvation;

6. Acquire True File;

7. Lock Cache;

8. Update Cache; and

9. Check Expiration Date.

1. Locate True File

This mechanism allows a remote processor to determine
whether the local processor contains a copy of a specific True
File. The mechanism begins with a True Name and a flag
indicating whether to forward requests for this file 1o other
servers. This mechanism is now described with reference to
FIG. 28.

First determine if the True File is available locally or if
there is some indication of where the True File is located (for
example, in the Source IDs field). Look up the requested True
Name in the True File registry 126 (Step Sd432).

If a True File registry entry record 140 is not found for this
True Name (Step S434), and the fiag indicates that the request
is not to be forwarded (Step S436), respond negatively {Step
S438). That is, respond to the effect that the True File is not
available,

One the other hand, if a True File registry entry record 140
is not found (Step S434), and the flag indicates that the
request for this True File is to be forwarded (Step S436), then

forward a request for this True File to some other processors :

in the system (Step 5442). If the source table for the cumrent
processor identifies one or more publishing servers which
should have a copy of this True File, then forward the request
10 each of those publishing servers (Step $436).

If a True File registry entry record 140 is found for the
required True File (Step S434), and if the entry includes a
True File ID or Compressed File ID (Step S440), respond
positively (Step 5444). If the entry includes a True File 1D
then this provides the identity or disk location of the actual
physical representation of the file or file segment required. I
the entry include a Compressed File 1D, then a compressed
version af the True File may be stored instead of, or in addi-
tion to, an uncompressed version. This field provides the
identity of the actual representation of the compressed ver-
sion of the file.

If the True File registry entry record 140 is found (Step
5434) but does pol include a True File ID (the File 1D is absem
if the actual file is not currently present at the current focation)
(Step 5440), and if the True File registry entry record 140
includes one or more source processors, and if the requestcan
be forwarded, then forward the request for this True File to
one or more of the source processors (Step S444).

2. Reserve True File

This mechanism allows a remote processor to indicate that
it depends on the local processor for access to a specific True
File. It takes a True Name as input. This mechanism is
described here.

(A) Find the True File registry entry record 140 associated
with the given True File. If no entry exists, reply negatively.

(B) If the True File repistry entry record 140 does not
nclude a True File ID or compressed File ID, and if the True
File registry entry record 140 includes no source 1Ds for

10

15

40

45

50

55

60

65

24

removable storage volumes, then this processor does not have
access 10 a copy of the given [ile. Reply negatively.

(C) Add the ID of the sending processor to the list of
dependent processors for the True File registry entry record
140. Reply positively, with an indication of whether the
reserved True File is on line or off line.

3. Request True File

This mechanism allows a remote processor to request a
copy of a True File from the local processor. It requires a Trie
Name and responds positively by sending a True File back to
the requesting processor. The mechanism operates as folows:

(A) Find the True File registry entry record 140 associated
with the given True Name. If there is no such True File
registry entry record 140, reply negatively.

(B) Make the True File local using the Make True File
Local primitive mechanism. If this mechanism fails, the
Request True File mechanism also fails.

(C) Send the local True File in cither it is uncompressed or
compressed form to the requesting remote processor. Note
that if the True File is a compound file, the components are not
sent.

(D) If the remote file is listed in the dependent process Hst
of the True File registry entry record 140, remove it.

4. Retire True File

This mechanism allows a remote processor to indicate that
it no longer plans to maintain a copy of a given True File. An
alternate source of the True File can be specified, if, for
instance, the True File is being moved from one server to
another. It begins with a True Name, a requesting processor
ID, and an optional alternate source. This mechanism oper-
ates as follows:

(A)Find a True Name entry in the True File regisury 126. If
there is no entry for this True Name, this mechanism’s task is
complete.

(B) Find the requesting processor on the source list and, if
it is there, remove it.

{C) If an altemate source is provided, add it 1o the source
list for the True File registry entry record 140.

(D) If the source list of the True File registry entry record
140 has no items in i, use the Locate Remote File primitive
mechanism to search for another copy of the file. If it fails,
raise a serious error.

5. Cancel Reservation

This mechanism allows a remote processor to indicate that
it no longer requires access to 2 True File stored on the local
processor. 11 begins with a True Name and a requesting pro-
cessor ID and proceeds as follows:

(A)Find the True Name entry in the True File registry 126.
If there is no entry for this True Name, this mechanism’s task
is complete.

(B) Remove the identity of the requesting processor from
the list of dependent processars, if it appears.

(C) Ifthe list of dependent processors becomes zero and the
use count is also zero, delete the True File.

6. Acquire True File

This mechamsm ailows a remote processor to insist that a
local processor make a capy of a specified True File. Itis used,
for example, when a cache client wants to write throngha new
version of a file. The Acquire True File mechanism begins
with a data item and an optional Teue Name for the data item
and proceeds as follows:

(A) Confirm that the requesting processor has the right to
require the local processor to acquize data items. If not, send
a negative reply.

(B) Make a local copy of the data item transmitted by the
remote processor.

US 8,001,096 B2

25

(C) Assimilate the data item into the True File registry of
the local processor.

(D) If a True Name was provided with the [file, the True
Name calculation can be avoided, or the mechanism can
verify that the file received matches the True Name sent.

(E} Add an entry in the dependent processor list of the true
file registry record indicating that the requesting processor
depends on this copy of the given True File.

(F) Send a positive reply.

7. Lock Cache

This mechanism allows a remote cache client 1o lock a
local file so that local users or other cache clients cannot
change it while the remote processor is using it. The mecha-
nism begins with a pathname and proceeds as follows:

(A) Find the local directory extensions table entry record
138 of the specified pathname. If no such entry exists, reply
negatively.

(B) If an local directory extensions table entry record 138
exists and is already locked, reply nepatively that the file is
already locked.

(C) If an local directory extensions table entry record 138
exists and is not locked, lock the entry. Reply positively.

8. Update Cache

This mechanism allows a remote cache client to unlock a
local file and update it with new contents. It begins with a
pathname and a True Name. The file corresponding to the
True Name must be accessible from the remote processor.
This mechanism operates as follows:

Find the local directory extensions table entry record 138
corresponding fo the given pathname. Reply negatively if no
such entry exists or if the entry is not locked.

Link the given pathname to the given True Name using the
Link Path to True Name primitive mechanism.

Unlock the local directory extensions table entry record 3

138 and return positively.
9. Check Expiration Date

Return current or new expiration date and possible alter-
native source to caller.
Background Processes and Mechanisms

The background processes and mechanisms provided by
the present invention are now described. Recall that back-
ground mechanisms are intended to run occasionally and at a
low priority to provide automated management capabilities
with respect to the present invention.

The following background mechanisms are described:

1. Mirror True File;

2. Groom Region;

3. Check for Expired Links;

4, Verify Region; and

5. Groom Source List.
1. Mirror True File

This mechanism is used to ensure that files are available in
alternate locations in mizror groups or archived on archival
servers. The mechanism depends on application-specific
magration/archival criteria (size, time since last access, num-
ber of copies required, number of existing alternative sources)
which determine under what conditions a file should be
moved. The Mirror True File mechanism operates as follows,
using the True File specified, perform the following steps:

(A) Count the number of available locations of the True
File by inspecting the source list of the True File registry entry
record 140 for the True File. This step detenmines how many
copies of the True. File are available in the system.

(B) If the True File meets the specified migration criteria,
select a mirror group server (o which a copy of the file should
be sent. Use the Acquire True File remote mechanism to copy

40

43

50

53

60

26

the True File to the selected mirror group server. Add the
identity of the selected system to the source list for the True
File.

2. Groom Region

This mechanism is used to automatically free up spaceina
processor by deleting data itlems that may be available else-
where. The mechanism depends on application-specific
grooming criteria (for instance, a file may be removed if there
is an alternate online source for it, it has not been accessed in
a given number of days, and it is larger than a given size). This
mechanism operates as foflows:

Repeat the following steps (i) to (1ii) with more aggressive
grooming ctiteria until sufficient space is freed or utit all
grooming criteria have been exercised. Use grooming infor-
mation to determine how much space has been freed. Recall
that, while grooming is in effect, grooming information
includes a table of pathnames selected for deletion, and keeps
track of the amount of space that would be freed if all of the
files were deleted.

(i} Begin Grooming (using the primitive mechanism).

{ii) For each pathname in the specified region, for the True
File corresponding to the pathname, if the True File is present,
has at least one alternative source, and meets application
specific grooming criteria for the region, select the file for
removal (using the primitive mechanism).

(iii) End Greoming (using the primitive mechanism).

If the region is used as a cache, no other processors are
dependent on True Files to which it refers, and all such True
Files are mirrored elsewhere. In this case, True Files can be
removed with impunity. For a cache region, the grooming
criteria would ordinarily eliminate the least recently accessed
True Files first. This is best done by sorting the True Files in
the region by the most recent access time before perfonming
step (ii) above. The application specific criteria would thus be
to select for removal every True File encountered (beginning
with the Jeast recently used) unti} the required amount of free
space is reached.

3. Check for Expired Links

This mechanism is used o determine whether dependen-
cies on published files should be refreshed. The following
steps describe the operation of this mechanism:

For each pathname in the specified region, for each True
File corresponding to the pathname, perform the following
step:

H the True File registry entry record 140 corresponding to
the True File contains at least one source which is a publishing
server, and if the expiration date on the dependency is past or
close, then perform the following steps:

(A) Determine whether the True File registry entry record
contains other sources which have not expired.

(B) Check the True Name expiration of the server. If the
expiration date has been extended, or an allemate source is
suggested, add the source to the True File registry entry
record 140.

(C) If no acceptable altemate source was found in steps (A)
or (B) above, make a local copy of the True File.

(D) Remove the expired source.
4. Verify Region

This mechanism can be used to ensure that the data items in
the True File registry 126 have not been damaged accidentally

or maliciousty. The operation of this mechanism is described
by the following steps:

US 8,001,096 B2

27

(A) Search the local directory extensions table 124 for each
pathname in the specified region and then perform the fol-
fowing steps:

(i) Get the True File name corresponding to the pathname;

(11) kf the True File registry entry 140 for the True File does

not have a True File ID or compressed file 1D, ignore it.

(iii) Use the Verify True File mechanism (sec extended

mechanisms below) to confirm that the True File speci-
fied is correct.
5. Groom Source List

The source list in a True File entry should be groomed
sometimes to ensure there are not too many mirror or archive
copies. When afile is deleted or when a region definition or its
irror criteria are changed, it may be necessary to inspect the
affected True Files to determine whether there are tco many
mirror copies. This can be done with the following steps:

For each affected True File,

(A) Search the local directory extensions table to find each
region that refers to the True File.

(B) Create a set of “required sources™, initially empty.

() For each region found,

(a) determine the mirroring criteria for that region,

(b) determine which sources for the True File satisfy the

mirroring criteria, and

(c) add these sources to the set of required sources.

(D) For each source in the True File registry entry, if the
source identifles a remote processor (as opposed to removable
media), and if the source is not a publisher, and if the scurce
is not in the set of required sources, then eliminate the source,
and use the Cancel Reservation remote mechanism to elimi-
nate the given processor from the list of dependent processors
recorded at the remote processor identified by the source.
Extended Mechanisms

The extended mechanisms provided by the present inven-

tion are now described. Recall that extended mechanisms run

within application programs over the operating system 1o
provide solutions to specific problems and applicaticns.

The following extended mechanisims are described:

1. Inventory Existing Directory;

2. Inventory Removable, Read-only Files;

3. Synchronize Directories;

4. Publish Region;

5. Retire Directory;

6. Realize Direclory at Location;

7. Verify True File;

8. Track for Accounting Purposes; and

9. Track for Licensing Purposes.

1. Inventory Existing Directory

This mechanism determines the True Names of files in an
existing on-line directory in the underlying operating system.
One purpose of this mechanism is to install True Name
mechanisms in an existing file system.

An effect of such an installation is to eliminate immedi-
ately all duplicate files from the file system being traversed. If
several file systems are inventoried in a single True File
registry, duplicates across the volumes are also eliminated.

(A) Traverse the underlying file system in the operating
system. For each file encountered, excluding directories, per-
form the following:

(i) Assimilate the file encountered (using the Assimilate
File primitive mechantsm}. This process computes its
True Name and moves its data into the True File registry
126.

(it) Create a pathname consisting of the path to the volume
directory and the relative path of the file on the media.
Link this path to the computed True Name using the Link
Path t¢ True Name primitive mechanism.

10

—

5

20

40

45

28

2. Inventory Removable, Read-only Files

A system with access to removable, read-only media vol-
umes (such as WORM disks and CD-ROMSs) can create a
usable inventory of the files on these disks without having to
make online copies. These objects can then be used for archi-
val purposes, directory overlays, or other needs. An operator
must request that an inventory be created for such a volume.

This mechanism allows for maintaining inventories of the
contents of files and data items on removable media, such as
diskettes and CD-ROMs, independent of other properties of
the files such as name, location, and date of creation.

The mechanism creates an online inventory of the files on
one or more removable volumes, such as a floppy disk or
CD-ROM, when the data on the volume is represented as a
directory. The inventory service uses a True Name to identify
each file, providing & way to locate the data independent of its
name, date of creation, or location.

The inventory can be used for archival of data (making it
possible to avoid archiving data when thal data is already on
a separate volume), for grooming (making it possible to
delete infrequently accessed files if they can be retrieved from
removable volumes), for version control {making it possibie
to generate a new version of a CD-ROM without having to
copy the old version), and for other purposes.

The inventory is made by creating a volume directory inthe
media inventory in which each file named identifies the data
item on the volume being inventoried. Data items are not
copied from the removable volume during the inventory pro-
cess.

An operator must request that an inventory be created for a
specific volume. Once created, the volume directory can be
frozen or copied like any other directory. Data items from
either the physical volume or the volume directory can be
accessed using the Open File operating system mechanism
which will cause them to be read from the physical volume
using the Realize True File from Location primitive mecha-
nism.

To create an mventory the following steps are taken:

{A) A volume directory in the media inventory is created to
correspond to the volume being inventoried. Tts contextual
name identifies the specific volume.

{B) A source table entry 144 for the volune is created in the
source table 130. This entry 144 identifies the physical source
volume and the volume directory created in step (A).

(C)The filesystem on the volume is traversed. For each file
encountered, excluding directories, the following steps are
laken:

(1) The True Name of the file is computed. An entry is
created in the True Name registry 124, including the
True Name of the file using the primitive mechanism.
The source field of the True Name repistry entry 140
identifies the source table entry 144.

(i} A pathname is created consisting of the path to the
volume directory and the relative path of the file on the
media. This path s linked te the computed True Name
using, Link Path to True Name primitive mechanism.

(D) After all files have been inventoried, the volume direc-
tory is frozen. The volume directory serves as a table of
contents for the volume. It can be copied using the Copy File
or Directory primitive mechanism to create an “overlay”
directory which can then be modified, making it possible to
edit a virtual copy of a read-only medium.

3. Synchronize Directories

Given two versions of a directory derived from the same
starting point, this mechanism creates a new, synchronized
version which includes the changes from each. Wherea fileis
changed in both versions, this mechanism provides a user exit

US 8,001,096 B2

29

for handling the discrepancy. By using True Names, compari-
S0Is are instantaneous, and no copies of files are necessary.

This mechanism lefs a local processor synchrenize a direc-
tory to account for changes made at a remaote processor. Its
purpose is to bring a local copy of a directory up to date after
a period of no communication between the local and remote
processor. Such a period might occur if the Jocal processor
were a mobile processor detached from its server, or if two
distant processors were run independently and updated
nightly.

An advantage of the described synclironization process is
that it does not depend on synchronizing the clocks of the
local and remote processors. However, it does require that the
local processor track its position in the remote processor’s
audit file.

This mechanism does not resolve changes made simuiia-

neously to the same file at several sites. If that occurs,™an *

external resolution mechanism such as, for example, operator
intervention, is required.

The mechanism takes as input a start time, a local directory
pathiname, a remote processor name, and a remote directory
pathname name, and it operates by the following steps:

(A) Request a copy of the audit file 132 from the remote
processor using the Request True File remote mechanism.

(B) For each entry 146 in the audit file 132 after the start
time, if the entry indicates a change to a file in the remote
directory, perform the following steps:

(i) Compute the pathname of the corresponding file in the
local directory. Determine the True Name of the corre-
sponding file.

(i1} If the True Name of the local file is the same as the old
True Name in the audit file, or if there is no local file and
the andii entry indicates a new file is being created, link
the new True Name in the audit file to the local pathname

using the Link Path to True Name primitive mechanism. :

(111} Otherwise, note that there is a problem with the syn-
chronization by sending a message to the operator ar 1o
a problem resolution program, indicating the local path-
name, remote pathname, remote processor, and time of
change.

(C) After synchromzation is complete, record the time of
the final change. This time is to be used as the new start time
the next time this directory is synchronized with the same
remote processor.

4. Publish Region

The publish region mechanism allows a processor to offer
the files in a region to any client processors for a limited
period of time.

The purpose of the service is to eliminate any need for
client processors to make reservations with the publishing
processor. This in turn makes it possible for the publishing
processor {o service a much larger number of clients.

‘Wlien a region is published, an expiration date is defined
forall files in the region, and is propagated into the publishing
system’s True File registry entry record 140 for each file.

When a remote file 1s copied, for instance using the Copy
File operating system mechanism, the expiration date is cop-
ied into the source field of the client’s True File registry entry
record 140, When the source is a publishing system, no
dependency need be created.

The client processor must occasionally and in background,
check for expired links, to make sure it still has access to these
files. This is described in the background mechanism Check
for Expired Links.

5. Retire Directory

This mechanism makes it possible to eliminate safely the

True Files in a directory, or at least dependencies on them,

20

25

30

40

45

55

60

63

30

after ensuring that any client processors depending on those
files remove their dependencies. The files in the directory are
not acmally deleted by this process. The directory can be
deleted with the Delete File operating system mechanism.

The mechanism takes the pathname of a given directory,
and optionally, the identification of a preferred alternate
source processor for clients to use. The mechanism performs
the following steps:

(A) Traverse the directory. For each file in the directory,
perform the following steps:

(i} Get the True Name of the file from its path and find the
True File registry entry 140 associated with the True
Name.

(i1) Determine an alternate source for the True File. If the
source IDs field of the TFR entry includes the preferred
alternate source, that is the alternate source, If it does not, but
includes some other source, that is the alternate source. If it
contains no alternate sources, there is no alternate source.

(1ii) For each dependent processor in the True File registry
entry 140, ask that processor 1o retire the True File,
specifying an altemate source if one was determined,
using the remote mechanism.

6. Realize Directory at Location

This mechanism allows the user or operating system to
force copies of files from some source location to the True
File registry 126 at a given location. The purpose of the
mechanism is to ensure that files are accessible in the event
the source location becomes inaccessible. This can happen
for instance if the source or given location are on mobile
computers, or are on removable media, or if the network
connection to the source is expected to become unavailable,
or if the source is being refired.

This mechanism is provided in the following steps for each
file in the given directory, with the exception of subdirecto-
ries:

(A) Get the local directory extensions table entry record
138 given the pathname of the file. Get the True Name of the
local directory extensions table entry record 138. This service
assimilates the file if it has not already been assimilated.

(B) Realize the corresponding True File at the given loca-
tion. This service causes it to be copied to the given location
from a remote system or removable media.

7. Verify True File

This mechanism is used to verify that the data item ina True
File registry 126 is indeed the correct data item given its True
Name. Its purpose is to puard against device errors, malicious
clianges, or other problerns.

If an error 1s found, the system has the abilitv to “heal”
itself by finding another source for the True File with the
given name. It may also be desirable to verify that the error
has not propagated 1o other systems, and to log the problem or
indicate it to the compuler operator. These details are not
described here.

To verity a data item that is not in a True File registry 126,
use the Calcnlate True Name primitive mechanism described
above.

The basic mechanism begins with a True Name, and oper-
ates in the foilowing steps:

(A) Find the True File registry eniry record 140 corre-
sponding to the given [rue Name,

(B) If there is a Trug File ID for the True File registry entry
record 140 then use it. Otherwise, indicate that no file exists to
verify.

{C) Calculate the Trne Name of the data item given the file
1D of the data item.

(D) Confirm that the calculated True Name is equal o the
given True Name.

US 8,001,096 B2

31

(E) If the True Names are not equal, there is an error in the
True File registry 126. Remove the True File ID from the True
File registry entry record 140 and place it somewhere else.
Indicate that the True File registry entry record 140 contained
41l €ITor.

8. Track for Accounting Purposes

. .., This mechanism provides a way to know reliably which
" "files have been stored on a system or transmitted from one
system to another. The mechanism can be used as a basis for
a value-based accounting system in which charges are based
on the identity of the data stored or transmitted, rather than
simply on the number of bits.

This mechanism allows the system to track possession of
specific data items according to comntent by owner, indepen-
dent ofthe name, date, or other properties of the dataitem, and
tracks the uses of specific data items and files by content for
accounting purposes. True names make it possible to identify
each file briefly yet uniquely for this purpose.

Tracking the identities of files requires mainlaining an

accounting log 134 and processing it for accounting or bifling 2

purposes. The mechanism operates in the following steps:

(A} Note every time a file is created or deleted, for tnstance
by monitoring audit entries in the Process Audit File Entry
primitive mechanism. When such an event is encountered,
create an entry 148 in the accounting log 134 that shows the
responsible party and the identity of the file created or
deleted.

(B) Every time a file is transmitted, for instance when a file
is copied with a Request True File remote mechanism or an
Acquire True File remote mechanism, create an entry in the
accotmting log 134 that shows the responsible party, the iden-
tity of the file, and the source and destination processors.

(C) Geeasionally run an accounting program Lo process the
accounting log 134, distributing the events to the account
records of each responsible party. The account records can
eventually be summarized for billing purposes.

9. Track for Licensing Purposes

This mechanism ensures that licensed files are not used by
unautharized parties. The True Name provides a safe way to
identify licensed material. This service allows proof of pos-
session of specific files according to their contents without
disclosing their contents.

Enforcing use of valid licenses can be active (for example,
by refusing to provide access to a file without authorization)
or passive (for example, by creating a report of users who do
not have proper authorization).

One possible way 10 perform license validation is to per-
form occasional audits of employee systems. The service
described herein relies on Truc Names to suppott such an
audit, as in the following steps:

{A) For each licensed product, recerd in the license table
136 the True Name of key files in the product (that is, files
which are required in order to use the product, and which do
not eccur in other products) Typically, for a saftware product,
this would include the main executable image and perbaps
other major files such as clip-art, scripts, or online help. Also
record the identity of each system which is authorized to have
a copy of the file.

(B) Occasionally, compare the conients of each user pro-
cessor against the license table 136. For each True Name in
the license table do the following:

(i} Unless the user processor is authorized to have a capy of
the file, confirm that the user processor does not have a
copy of the file using the Locate True File mechanism.

(i1) if the user processor is found to have a file that it is not
authorized to have, record the user processor and True
Name in a license violation table.

—_
f=1

wn

)
i

30

35

41}

50

32

The System in Operation

Given the mechanisms described above, the operation of a
typical DP system employing these mechanisms is now
described in order to demonstrate how the present invention
meets ifs requirements and capabilities.

In operation, data items (for example, files, database
records, messages, data segments, data blocks, directories,
instances of object classes, and the kike) in a DP system
employing the present invention are identified by substan-
lially unique identifiers (True Names}, the identifiers depend-
ing on all of the data in the data items and only on the data in
the data items. The primitive mechanisms Calculate True
Name and Assimilate Data Item support this property. For any
given data item, using the Calculate True Name primitive
mechanism, a substantially unique identifier or True Name
for that data item can be determined.

Further, in operation of a DP system incorporating the
present invention, muliiple copies of data items are avoided
(anless they are required for some reason such as backups or
mirror copies in a fanlt-tolerant system). Multiple copies of
data items are avoided even when multiple names refer to the
same data item. The primitive mechanisms Assimilate Data
Ttems and New True File support this preperty. Using the
Assimilate Data Itemn primitive mechanism, if a data item
already exists in the system, as indicated by an entry in the
True File registry 126, this existence will be discovered by
this mechanism, and the duplicate data item (the new data
item) will be eliminated (or not added). Thus, for example, if
adata fileis being copied onto a system from a floppy disk, if,
based on the True Name of the data file, it is determined that
the data file already exists in the system (by the same or some
other name), then the duplicate copy will not be installed. If
the data item was being installed on the system by some name
other than its current name, then, using the Link Path to True
Name primitive mechanism, the other (or new) name can be
Hnked to the already existing data item.

In general, the mechanisims of the present invention operate
in such a way as 10 avoid recreating an aciua) data item at a
Jocation when a copy of that data item is already present at
that location. In the case of a copy from a floppy disk, the data
item (file) may have to be copied (into a scratch file) before it
can he determined that it is a duplicate. This is because only
one processor is involved. On the other hand, in a multipro-
cessorenvironment or DP system, each processor has a record
of the True Names of the data items on that processor. When
a data item is to be copied to another location (another pro-
cessar) in the DP system, all that is necessary 1s to examine
the True Name of the data item prior to the copying. If a data
itern with the same True Name already exists at the destina-
tion location (processor), then there is no need to copy the
data item. Note that if'a data item which already exists locally
at a destination location is still copied to the destination

5 location (for example, because the remote system did not

have a True Name for the data iterm or because it arrives as a
stream of un-named data), the Assimilate Data Item primitive
mechanism will preveat multipie copies of the data item fraimn
being created.

Since the True Name of a large data item (a compound data
item) is derived from and based on the True Names of com-
ponents of the data item, copying of an entire data item can be
avoided. Since some (or all) of the components of 2 large data
item may already be present at a destination location, only
those components which are not present there need be copied.
This property derives from the manner in which True Names
are determined.

US 8,001,096 B2

33

When a file is copied by the Copy File or Directory oper-
ating system mechanism, only the True Name of the file is
actually replicated.

When a file is opened (using the Open File operating sys-
tem mechanismy), it uses the Make True File Local primitive
mechanism {either directly or indirectly through the Create
Scratch File primitive mechanism) to create a local copy of
the file. The Open File operating system mechanism uses the
Make True File Local primitive mechanism, which uses the
Realize True File from Location primitive mechanisin,
which, in tumn uses the Request True File remote mechanism.

The Request True File remote mechanism copies only a
single data item from one processor to another. If the data item
is a compound file, its component segments are not copied,
anly the indirect block is copied. The segments are copied
only when they are read (or otherwise needed).

The Read File operating system mechanism actually reads
data. The Read File mechanism is aware of compound files
and indirect blocks, and it uses the Realize True File frem
Location primitive mechanism to make sure that component
segments are locally avajlable, and then uses the operating
system file mechanisms to read data from the local file.

Thus, when a compound file is copied from a remote sys-
tem, only its True Name is copied. When it is opened, only its
indirect block is copied. When the cormresponding file is read,
the required component segments are realized and therefore
copied.

In operation data items can be accessed by reference to
their identities (True Names) independent of their present
location. The actual data item or True File corresponding to a
givendataidentifier or True Name may reside anywhere in the
system (that is, locally, remotely, offline, etc). If a required
True File is present locally, then the data in the file can be
accessed. If the data item is not present locally, there are a
number of ways in which it can be obtained from wherever it
1s present. Using the source 1Ds field of the True File registry
1able, the location(s) of capies of the True File corresponding,
10 a given True Name can be determined. The Realize True
File from Location primitive mechanism tries to make a Jocal
copy of a True File, given its True Name and the name of a
source location (processor or media) that may contain the
True File. If, on the other hand, for some reason it is not
known where there is a copy of the True File, or if the pro-
cessors identified in the source IDs field do not respond with
the required True File, the processor requiring the data item
can make a general request for the data item using the Request
True File remote mechanisin from all processors in the sys-
tem that it can contact.

As a result, the system provides transparent access to any
data item by reference to its data identity, and independent of
its present location.

In operation, data items in the system can be verified and
have their integrity checked. This is from the manner in which
True Names are determined. This can be used for security
purposes, for instance, to check for viruses and to verify that
data retrieved from another location is the desired, and
requested data. For example, the system might store the True
Names of all executable applications on the system and then
periadically redetermine the True Names of each of these
applications to ensure that they match the stored True Names.
Any change in a True Name potentially signals corruption in
the system and can be firther investigated. The Verify Region
background mechanism and the Verify True File extended
mechanisms provide direct support for this mode of opera-
tion. The Verify Repion mechanism is vsed to ensure that the
data items in the True File registrv have not been damaged
accidentally or maliciousty. The Verify True File mechanism

—

0

bt

5

34

verifies that a data item in a True File registry is indeed the
correct datz item given its True Name,

Once a processor has determined where (that is, at which
other processor or location) a copy of a data item is in the DP
system, that processor might need that other processor or
location to keep a copy of that data item. For example, a
processor might want to delete local copies of data items to
make space available locally while knowing that it can rely on
retrieving the data from somewhere else when needed. To this
end the system allows a processor lo Reserve (and cancel the
reservation of) True Files at remote locations (using the
remote mechanism). kn this way the remote locations are put
on notice that another location is relying on the presence of
the True File at their location.

A DP systemn employing the present invention can be made
into a fault-tolerant system by providing a certain amount of
redundancy of data items at multiple locations in the systern.
Using the Acquire True File and Reserve True File remote
mechanisms, a particular processor can implement its own
form of fault-tolerance by copying data items to other pro-
cessors and then reserving them there. However, the system
also provides the Mirror True File background mechanism to
mirror (make copies) of the True File available elsewhere in
the system. Any degree of redundancy {limited by the number
of processors or locations in the system) can be implemented.
As a result, this invention maintains a desired degree or level
of redundancy in a network of processors, 10 protect against
failure of any particular processor by ensuring that multiple
copies of data items exist at different locations.

The data structures used to implement various features and
mechanisms of this invention store a variety of useful infor-
mation which can be used, in conjunction with the various
mechanisms, to implement storage schemes and policies in a
DP system employing the invention. For example, the size,
age and lacation of a data item {or of groups of data items) is
provided. This information can be used to decide how the data
items should be treated. For example, a processor may imple-
ment a policy of deleting local copies of all data items over a
certain age if other copies of those data itemns are present
elsewhere 1n the system. The age (or variations on the age) can
be determined using the time of last access or modification in
the local directory cxtensions table, and the presence of other
copies of the data iterm can be determined either from the Safe
Flag or the source 1Ds, or by checking which other processors
in the system have copies of the data item and then reserving
at least one of those copies.

In operation, the system can keep track of data items
regardless of how those items are named by users (or regard-
less of whether the data itenis even have names). The system
can also track data items that have different names (in differ-
ent or the same location) as well as different data items that
have the same name. Since a data item is identified by the data
in the item, without regard for the context of the data, the
problems of inconsistent naming in a DP system are over-
come.

In operation, the system can publish data itemns, allowing
other, possibly anonymous, systems in a network to gain
access to the data items and to rely onthe availability of these
data items. True Names are globally unique identifiers which
can be published simply by copying them. For example, a
user might create a textual representation of a file on system
A with True Name N (for instance as a hexadecimal string),
and post it on a computer bulletin board. Another user on
system B could create a directory entry F for this True Name
N by using the Link Path to True Name primitive mechanism.

US 8,001,006 B2

35

(Alternatively, an application could be developed which hides
the True Name from the wsers, but provides the same public
transfer service.)

When a program on system B attempts to open pathname F
linked to True Name N, the Locate Remote File primitive
mechanism would be used, and would use the Locate True
File remote mechanism to search for True Name N on one or
more remote processors, such as system A. If system B has
access to system A, it would be able to realize the True File
(using the Realize True File from Location primitive mecha-
nism) and use it locally. Alternatively, system B could find
True Name N by accessing any publicty available True Name
server, if the server could eventually forward the request to
system A.

Clients of a local server can indicate that they dependona
given True File (using the Reserve True File remote mecha-
nism} so that the True File is not deleted from the server
registry as long as some client requires access to it. {The
Retire True File remote mechanism is used to indicate that a
client no longer needs a given True File,)

A publishing server, on the other hand, may want to pra-
vide access to many clients, and possibly anonymous ones,
without incurring the overhead of tracking dependencies for
each client. Therefore, 2 public server can provide expiration
dates for True Files in its registry. This allows client systems
10 safely maintain references to a True File on the public
server. The Check For Expired Links background mechanism
allows the client of a publishing server to occasionally con-
firm that its dependencies on the publishing server are safe.

In a variation of this aspect of the invention, a processor
that is newly connected (or reconnected after some absence)
to the system can obtain a current version of all (or of needed)
data in the system by requesting it from a server processor.
Any such processor can send a request to update or resyn-
chronize all of its directories (starting at a root directory),
sunply by using the Synchronize Directories extended
mechanism on the needed directories.

Using the accounting log or some other user provided
mechanism, a user can prove the existence of certain data
items at certain times. By publishing {in a public place) a list
of all True Names in the system on a given day (or at some
given time), a user can later refer back to that list to show that
aparticular data item was present in the system at the time that
list was published. Such amechanism is useful intracking, for
example, [aboratory notebooks or the like to prove dates of
conception of inventions. Such a mechanism also permits
proofof possession of adata item at a particular date and time.

The accounting log file can also track the use of specific
data items and files by content for accounting purposes. For
instance, an information utility company can determine the
data identities of data items that are stored and transmitted
through its computer systems, and use these identities (o
provide bills to its customers based on the identities of the
data items being transmitted (as defined by the substantially
uiique identifier). The assignment of prices for storing and
transmitting specific ‘Tre Files would be made by the infor-
mation utility and/or its data suppliers; this information
would be joined perodically with the information in the
accounting log file 10 produce customer statements.

Backing up data items in a DP system employing the
present invention can be done based on the True Names of the
data 1tems. By tracking backups using True Names, duplica-
tion in the backups is prevented. In operation, the system
maintains a backup record of data identifiers of data items
already backed up, and invokes the Copy File or Directory
operating svstem mechanism to copy only those data items
whose data identifiers are not recorded in the backup record.

20

30

35

40

45

50

53

60

63

36

Once a data item has been backed up, it can be restored by
retrieving it from its backup location, based on the identifier
of the data 1tem. Using the backup record produced by the
backup to identify the data item, the data item can be obtained
using, for example, the Make True File Local primitive
mechanism.

In operation, the system can be used to cache data items
from a server, so that only the most recently accessed data
items need be retained. To operate in this way, a cache client
is configured to have a local registry (its cache) with a remote
Local Directory Extensions table (from the cache server).
Whenever a file is opened (or read), the Local Directory
Extensions table is used to identify the True Name, and the
Make True File Local primitive mechanism inspects the local
registry. When the local registry already has a copy, the file is
already cached. Otherwise, the Locate True File remote
mechanism is used to get a copy of the file. This mechanism
consults the cache server and uses the Request True File
remoie mechanism to make a local copy, effectively loading
the cache.

The Groom Cache background mechanism flushes the
cache, removing the least-recently-used files from the cache
client's True File registry. While a {ile is being modified ona
cache client, the Lock Cache and Update Cache remote
mechanisms prevent other clients from trying to modify the
same file.

In operation, when the system is being used to cache data
items, the problems of maintaining cache consistency are
avoided.

To access a cache and to fill it from its server, a key is
required to identify the data item desired. Ordinarily, the key
is a name or address (in this case, it would be the pathname of
a file). If the data associated with such a key is changed, the
chient’s cache becomes inconsistent; when the cache client
refers to that name, it will retrieve the wrong data. In order to
maintain cache consistency it is necessary to notify every
chient immediately whenever a change occurs on the server.

By using an embodiment of the present invention, the
cache key uniquely identifies the data it represents. When the
data associated with a name changes, the key itself changes.
Thus, when a cache client wishes to access the modified data
associated with a given file name, it will use a new key (the
True Name of the new file) rather than the key to the old file
contents in its cache. The client wilt always request the cor-
rect data, and the old data in its cache will be eventually aged
and flushed by the Groom Cache background mechanism.

Because it is not necessary to immediately notify clients
when changes on the cache server occur, the present invention
makes it possible for a single server to support a much larger
number of clients than is otherwise possible.

In operation, the system automatically archives data items
as they are created or modified. After a file is created or
modified, the Close File operating system mechanism creates
an audil fife record, which is eventually processed by the
Process Audit File Entry primitive mechanism. This mecha-
nism uses the New True File primitive mechanism for any file
which is newly created, which in turn uses the Mirror True
File background mechanism if the True File is in 2 mirrored or
archived region. This mechanism causes one or more copies
of the new file to be made on remote processors.

1n operation, the system can efficiently record and preserve
any collection of data items. The Freeze Directory primitive
mechanism creates a True File which identifies all of the files

US 8,001,096 B2

37

in the directory and its subordinates. Because this True File
mchuides the True Names of its constituents, it represents the
exact contents of the directory tree at the time it was frozen.
‘The frozen directory can be copied with its components pre-
served.

The Acquire True File remote mechanism (used in mirror-
ing and archiving) preserves the directory tree structure by
ensuring that ali of the component segments and True Files in
acompound data item are actuaily copied to a remote system.
Of course, no transfer is necessary for data items already in
the registry of the remote system.

In operation, the system can efficiently make a copy of any
collection of data items, to support a version control mecha-
nism for groups of the data items.

The Freeze Directory primitive mechanism is used to cre-
ate a collection of data items. The constituent files and seg-
ments referred to by the frozen directory are maintained in the
registry, without any need to make copies of the constituents
each time the directory is frozen.

Whenever a pathname is traversed, the Get Files in Direc-
fory operating system mechanism is used, and when it
encounters a frozen directory, it uses the Expand Frozen
Directory primitive mechanism.

A frozen directory can be copied from one pathname to
another efficiently, merely by copying its True Name. The
Copy File operating system mechanisim is used to copy a
frozen directory.

Thus it is possible to efficiently create copies of differem
versions of a directory, thereby creating a record of its history
(hence a version control system).

In operation, the system can maintain a local inventory of
all the data iterns located on a given removable medium, such
as a diskette or CD-ROM. The inventory is independent of
other propetties of the data items such as their name, location,
and date of creation.

The Inventory Existing Directory extended mechanism
provides a way to create True File Repistry entries for all of
the files in a directory. One use of this inventory is as a way to
pre-load a True File registry with backup record infermation.
Those files in the registry (such as previously installed soft-
ware) which are on the volumes inventoried need not be
backed up onto other volumes.

The Inventory Removable, Read-only Files extended
mechanism not only determines the True Names for the files
on the medium, but also records directory entries for each file
in a frozen directory structure. By copying and modifying this
directory, it is possible to creale an on line palch, or small
medification of an existing read-only file. For example, it is
possible 1o create an enline representation of a modified CD-
ROM, such that the unmodified files are actuaily on the CD-
ROM, and only the modified files are online.

In operation, the system tracks possession of specific data
items according to content by owner, independent of the
name, date, or other properties of the data item, and tracks the
uses of specific data tems and files by content for accounting
purposes. Using the Track for Accounting Purposes extended
mechanism provides a way to know reliably which files have
been stored on a system or transmitted from one system to
another.

True Names in Relational and Object-Oriented Databases

Although the preferred embodiment of this invention has
beeu presented in the context of a file system, the invention of
True Names would be equally valuable in a relational or
object-oriented database. A relational or object-oriented data-
base system using True Names would have similar benefits to
those of the file system employing the invention. For instance,
such a database wounld permit efficient elimination of dupli-

[

0

25

30

35

40

45

55

38

cate records, support a cache for records, simplify the process
of maintaining cache consistency, provide location-indepen-
dent access to records, maintain archives and histories of
records, and synchronize with distant or disconnected sys-
tems or databases.

The mechanisms described above can be easily modified to
serve in such a database environment. The True Name regis-
try would be used as a repository of database records. All
references to records would be via the True Name of the
record. (The Local Direclory Extensions table is an example
of a primary index that uses the True Name as the unique
identifier of the desired records.)

In such a database, the operations of inserting, updating,
and deleting records would be implemented by first assimi-
lating records into the registey, and then updating a primary
key index to map the key of the record to its contents by using
the True Name as a pointer to the contents.

The mechanisms described in the preferred embodiment,
or similar mechanisms, would be employed in such a system.
These mechanisms could include, for example, the mecha-
nisms for calculating true names, assimilating, locating, real-
izing, deleting, copying, and moving True Files, for mirroring
True Files, for maintaining a cache of True Files, for groom-
ing True Files, and other mechanisms based on the use of
substantially unique identifiers.

Whiie the invention has been described in connection with
what is presently considered 0 be the most practical and
preferred embodiments, it is to be understood that the inven-
tion is not to be limited to the disclosed embodiment, but on
the contrary, is intended to cover various modifications and
equivalent arrangements included within the spirit and scope
of the appended claims.

We claim:

1. A computer-implemented method operable in a file sys-
tem comprising a plurality of servers, the methed comprising
Ihe steps of:

(A) adding a data item tc the file system, the data item
consisting of a sequence of non-overlapping parts, each
part consisting of a corresponding sequence of bits, by:
(A1) for eachpart in said sequence of parts, determining,

using hardware in combination with software, a cor-
responding digital part identifier, whercin cach said
digital part identifier for each said part is determined
based at least in part on a first function of afl of the bits
in the sequence of bits comprising the corresponding
part, the first function comprising a first hash func-
tion;

(A2) determining, using a second function, a digital
identifier for the data item, said digital data item iden-
tifier being based, at least in part, on the contents of
the data item, wherein two identical data iters in the
file system wiil have the same digital data item iden-
tifier in the file system, said second function compris-
ing a second hash function;

(A3) storing each part in said sequence of parts on mul-
tiple servers of said plurality of servers in the file
system;

(A4) storing first mapping data that maps the digital data
item identifier of the data item to the digital part
identifiers of the parts comprising the data item;

(A5) stering second mapping data that maps the digital
part identifier of each part in said sequence of parts to
corresponding location data that identifies which of
the plurality of servers in the file sysiem stores the
corresponding part; and

US 8,001,096 B2

39

(B) repeating step (A) for each of a plurality of data items;

and

(C) attempling to access a particular data item in the file

system by:

{Ct) obtaining a particular digital data item identifier of
the particular data item, said particular digital data
item identifier of said particular data item being
included in an attempt to access said particular data
item in said file system;

(C2) attempting to match, using hardware in combina-
tion with software, said particular digital data item
identifier of said particular data item with a digital
data item identifier in said first mapping data; and

(C3) based at least in part on said attempting to match in
step (C2), when said particular digital data item iden-
tifier obtained in step (C1) corresponds to an identifier
in said first mapping data, using said first mapping
data to determine a digital part identifier of each part
comprising the particular data item;

(C4) using said second mapping data and at least one
digital part identifier determined in step (C3) to deter-
mine location data that identifies which of the plural-
ity of servers in the file system stores the correspond-
ing at least one part of the particular data item;

(C5) attempting 10 access at least one part of the particu-
lar data item at one or more servers identified in step
(C4) as storing said at least one part.

2. The method of claim 1 wherein the digital identifier of a
data item determined in step (A2) is based, at least in part, on
said second hash function of the digital part identifiers of the
sequence of parts comprising the data item.

3. The method as recited in claim 2 wherein the second
hash function is selected from the functions: MD4, MD3, and
SHA.

4. The method of claim 1 wherein the digital identifier of
the data item is based, at least in part, on a size ofthe data item.

5. The method of claim 1 wherein the digital identifier of a
data item determined in step (A2) comprises a digital finger-
print of the data jtem.

6. The method of ¢laim 1 wherein the digital identifier of
the data item determined in step (A2) is a True Name of the
data item.

7. The method of claim 1 wherein the digital identifier of
the data item determined in step (A2) is a based on all of the
data and only the data in the data item.

8. The method of claim 1 wherein step (A), comprising
steps (A1) to {A5), is repeated for at least cne other data item
after step (C). to add said at least one other data item to said
file system.

9. The method of claim 1 further comprising:

repeating siep (C), comprising steps (C1) 10 (C5), for a

second particular data item.

10. The method of claim 1 wherein said file system com-
prises adatabase, said database comprising said first mapping
data and said second mapping data.

11. The method of claim 1 wherein the first mapping data
is keved on digital data item identifiers.

12. The method of claim I wherein the second mapping
data is keyed on digital pari identifiers.

13. The method of claim ¥ wherein a data itemn may com-
prise: a file, a portion of a file, a digital message, a portion of
a digital message, a digital image, a portion of a digital image,
a video sigaal, a portion of a video signal, an audio signal, or
a portion of an audio signal, a software preduct, a portion of
a software product, and a sequence of identifiers for compo-
nents of a compound data item,

20

35

a0

30

60

40

14. The method of claim 1 wherein said sequence of parts
comprises a sequence of segments.

15, The method as recited in claim 1 wherein the first hash
function is selected from the functions: MD4, MDS, and
SHA.

16. The method of ¢laim 1 wherein the first hash function
and the second hash function have the same degree of unique-
ness.

17. The method of claim I wherein, in step (A3), each part
1s stored on multiple servers in the file system based, at feast
in part, on a predetermined degree of redundancy.

18. The method of claim 1 wherein, in step (A3), each part
is stored on at least 4 servers of the plurality of servers in the
file system.

19. The method of claim 1 wherein, in step (A3}, each part
is stored on at least 3 servers of the plurality of servers in the
file system.

20, The method asin claim 1 wherein the first hash function
used in step (A1) is the same as the second hash function used
in step (AZ2).

21. The methad of claim 1 wherein, in step (A3), at least
some different parts of said sequence of parts are stored on the
same servers of the plurality of servers in the file system.

22. The method as in claim 1 wherein the digital identifier
for the data item is determined directly from the contents of
the data item.

23. The method of claim 1 wherein said first mapping data
comprises said second mapping data,

24. The method of claim 1 wherein said a one or more
servers used instep (C5) were selected based at least in part on
a measure of availability of at least one server of the one or
more servers.

25, The method of claim 24 wherein the measure of avail-
ability is based at least in part on one or more of:

(a) a measurement of bandwidth to the at feast one server;

(b) 2 measurement of a cost of a connection to the at least

one server, and

(¢) a measurement of a reliability of a connection to the at

least one server.

26. The method as recited in claim 1 wherein access to said
particular data item comprises one or more of: (a) copying the
particular data item to or from at least one of a plurality of
computers; (b) providing the particular data item to at least
one of a plurality of computers; (c) reading the particular data
item; (d) copying the particutar data item; (e} distributing the
particular data item; (f) modilying the particular data ilem;
(g) storing the particular data item; (h) opening the particular
data item; (i) publishing the particular data item; (j) writing
the particular data item; (k) moving the particular data item;
and (1) deieting the particular data item.

27. The method as recited in claim 1 further comprising:

(C) collecting information regarding data items in the file

systemm.

28. A method as recited in claim 27, wherein the informa-
tion collected includes at least one of: (a) information about
which data itermns have been stored on a computer; {b) infor-
mation about the content of the particular data item, (c) infor-
mation about an owner of the particular data item, {d} infor-
mation about a type of particular data item, (e) information
about a contextual name of the particular data item, (f) infor-
mation about whether the particular data item was copied; (g)
the content-based name of the particular data item; {h) infor-
mation about an ideatity of a requestor; (i) a timestamp; {j)
information about whether the particular data item was cre-
aled; and (k) information about whether the particular daia
item was read.

US §,001,096 B2

41

29. The method as in claim 1 wherein the digital identifier
for the data item is determined indirectly from the contents of
the data item.

30. The method of claim 1 wherein at least one data item
added to the file system in step (A) has more than one part.

31.The method of claim I wherein the digital part identifier
for each part is determined in step (A1) using only the data in
the part.

32. The method of claim 1 wherein the digital identifier
each part determined in step {A!} is a True Name of the part.

33. The method of claim 1 wherein a file registry comprises
said first mapping data and the second mapping data.

34. The method of claim 1 wherein step (A2) of determin-
ing a digital identifier for the data item comprises:

(AZ2-1) forming a dlock data irem comprising the digital

part identifiers for the data item; and

(AZ2-2) applying the second hash function to the block data

item to determine the digital identifier for the data item.

35. The method of claim 1 wherein file system is a network
file system.

36. The method of claim 1 wherein said step (A) of adding
a data item to the file system further comprises the step of:

(A6) storing third mapping data in said database to map a

contextual name of the data item to the digital data

identifier of the data item.

37. The method of claim 36 further comprising:

attempting to match a contextual name of the particular

data item to a contextual narme in the database, using said
third mapping data, to obtain the particular digital data
item identifier of the particular data item.

38. The method of claim 1 wherein the first mapping data
and the second imapping data are stored on one or more
computers in said fle system, said one or more compuiers
being distinct from said plurality of servers.

39. The method of claim 38 wherein the attempting to
access in step (C5) is performed on a computer distinet from
said one or more computers.

40. The method of claim 1 wherein the attempting to access
the particular data item in (C) comprises;

attempting to read the particular data item using at least the

particular data item identifier and an offset value.

41. The method of claim 40 further comprising:

using at least the particular data item identifier and the

offset value to detennine a particular data item part to

access.

42. The method of claim 1 further comprising;

maintaining log data of times at which data items or data

item parts are accessed in the file system.

43. The method of claim 42 wherein said log data for data
item parts is keyed on said digital part identifiers.

44. The method according to claimm 42 or 43 wherein the log
dala are ordered by access lime.

45, A computer-implemented method operable in a file
system comprising (i} a plurality of servers, and (ii) a data-
base, the method comprising the steps oft

(A) adding a data item to the file systemn, said data itemn

consisting of a first plurality of parts, wherein each part

consists of a corresponding arbitrary sequence of bits,
by:

(A1) detenmining, using hardware in combination with
software, for each part in said first plurality of parts, a
corresponding digital part identifier, each said digital
part identifier for each said part being determined
based at least in part on a first given fimction of all of
the bits in the sequence of bits comprising the corre-
sponding part, wherein said first given function com-
prises a first hash function;

0

-

5

20

30

45

53

55

42

(A2) determining a digital identifier for the data item,
said digital data item identifier being based, at leastin
part, on a second given function of the data item,
wherein two identical data items in the file system will
have the same digital data item identifier in the file
system as determined by said second given function,
and wherein said second given function comprises a
second hash function;

(A3) replicating each of said first plurality of parts on
multiple servers of said plurality of servers in the file
system;

{A4) storing first mapping data in said database to map
the digital data item identifier of the data item to the
digital part identifiers of the plurality of parts com-
prising the data item;

{AS5) storing second mapping data in said database to
map the digital part identifier of each part of said first
plurality of parts to corresponding location data that
identify which of the plurality of servers in the file
system store the corresponding part; and

{B) attempting, using hardware in combination with soft-
ware, to match a particular digital dara item identifier of
a particular data item with a digital identifier in the
database, wherein said particular data item comprises a
second plurality of parts;

(C)based at least in part on said attempring to match in step
(B), determining information corresponding said par-
ticular data item from said first mapping data in said
database, said information comprising a corresponding
digital part identifier for each of said second plurality of
parts; and

(D) determining, using the second mapping data in the
database and the information determined in step (C), for
at least one part of said particular data item, location data
that identifies which of the plurality of servers in the file
system stores the at least one part of the particular dala
item; and

(E} using at least some of said location data determined in
step (D) to access the at least one part of said particular
data item in the file system.

46. The method of claim 45 wherein the digital data item
identifier of the data tlem determined in step (A2) is based, at
least in part, on the second hash function of the digital part
identifiers of the first plurality of parts comprising the data
item.

47. The method of claim 45 wherein the digital data item
identificr of the data item is 2 True Name of the data item.

48. The method of claim 45 wherein the information cor-
responding to each data item in the database includes license
information aboult the data item.

49. The method of claim 48 wherein, when said particular
digital data item identifier matches an identifier in the data-
base, the information determined in step (C) includes at least
some of the license information about the particulardata item.

50. The method of claim 45 wherein the information cor-
responding to each data item in the database includes meta
data for that data itern.

51. The method of claim 45 wherein step (A2) comprises:

determining the particular digital data item identifier of the
particular data item based on all of the digital part iden-
tifiers of the first plurality of parts.

52. The method of claim 45 wherein a digital identifier of

5 adata item is based, at least in part, on a size of the data item.

53. The method of claim 45 wherein digital identifier of a
data item comprises a digital fingerprint of the data item.

US 8,001,096 B2

43

54. The method of claim 53 wherein said step (B) com-
prises altempting to match said digital fingerprint of said
particular data item with a digital fingerprint in the database.

55. The method as in claim 45, wherein a data item may
comprise a file, a portion of a file, a page in memory, a digital
message, a portion of a digital message, a digital image, a
portion of a digital image, a video signal, a portion of a video
signal, an audio signal, or a portion of an audio signal, a
software product, or a portion of a software product, or a
sequence of identifiers for components of a compound data
item.

56. The method of claim 45 wherein step (A2) comprises:

determining the digital data item identifier based at ieast in

part on the digital part identifiers for the data item.

57. The method of claim 45 wherein step (A) is repeated
after step (B) for at least one other data itemn to add said at least
one other data item to said file system.

58. The method of claim 45 further comprising:

repeating steps (B) to (E) for a second particular data item.

59. The method of claim 45 wherein some mapping data in
the database is keved on digital data item identifiers.

60. The method of claim 45 wherein some mapping data in
the database is keyed on digital part identifiers.

61. The method of claim 45 wherein a data item may
comprise: a file, a portion of a file, a digital message, a portion
of a digital message, a digital image, a portion of a digital
image, a video signal, a portion of a video signal, an audio
signal, or a portion of an audio signal, a software product, a
porticn of a softiware product, and a sequence of identifiers for
components of a compound data item.

62. The method of claim 45 wherein said first plurality of
parts item comprises a sequence of non-overlapping seg-
ments,

63. The method as recited in claim 45 wherein the first hash
function used in step (Al) is selected from the functions:
MD4, MDS5, and SHA; and wherein the second hash function
used to determine the digital data item identifier in step (A2)
is selected from the functions: MD4, M3, and SHA.

64, The method of claim 45 wherein (i) the first hash
function used in step (A1}); and (ii) the second hash function
used to determine the digital data item identifier in step (A2)
have the same degree of uniqueness in the file system.

65. The method of claim 45 wherein the first hash function
is the same as the second hash function.

66. The method as in claim 45 wherein the digital identifier
for the data item is determined indirectly from the conzents of
the data item.

67. The method of claim 45 wherein each part is replicated
on multiple servers in step (A3) based, at least in part, on a
predetermined degree of redundancy for the file system.

68. The method of claim 45 wherein a part is replicated on
at least 4 servers of said phirality of servers in the file system.

62. The method of claim 45 wherein a part is replicated on
at feast 3 servers of said plurality of servers in the file system.

70. The method as recited in ciaim 45 wherein access (o
said at least one part comprises one or more of: (a) copying the
at least one part to or from at least one of a plurality of
computers; (b) providing the at least one part 1o at least one of
a plurality of computers; (c) reading the at least one part; (d)
copying the at least one part; (e) distributing the at least one
part; (fy modifying the at least one part; {g) storing the at least
one pari; () opening the at least one part; (f) publishing the at
least one part; (j) writing the at least one part;

(k) moving the at leas! one part; and (1) deleting the at least

one part.

35

44

45

50

55

60

63

44

7%. The method of claim 45 wlerein at least some different
parts of said first plurality of parts are replicated on the same
SCrvers.

72. The method of claim 45 wherein said multiple servers
on which each part was replicated were selected based at least
in part on a measure of availability of at least one of the
servers.

73. The method of claim 72 wherein the measure of avail-
ability is based at least in: part on one or more of:

(2) a measurement of bandwidth to the at least one server;

(b) a measurement of a cost of a connection to the at least

one server, and

(¢) a measurement of a reliability of a connection to the at

least one server.

74. The method as recited in claim 45 further comprising:

(F) collecting information regarding data items in the file

systeu.

75. The method as recited in claim 74, wherein the infor-
malion collected includes at least one of: {a) information
about which data items have been stored on a computer; {b)
information about the content of the particular data item, (¢)
information about an owner of the particular data item, (d)
information about a type of particular data item, (e) informa-
tion about a contextual name of the particular data item, ()
information about whether the particular data item was cop-
ied; (g) the content-based name of the particular data item; (h)
infoermation about an identity of a requestor; (1) a timestamp;
(1) information about whether the particular data item was
created; and (k) information about whether the particuiar data
item was read.

76. The method of claim 45 wherein the digital part iden-
tifier for each part is determined in step (A1) using only the
data in the corvesponding pari. ;

77. The method of claim 45 wherein the digital identifier
each part determined in step (Al) is a True Name of the
corresponding part.

78. The method as in claim 45 wherein the digital identifier
for the data item is determined directly from the contents of
the data item.

79. The method of claim 45 wlherein said step (A} ofadding
a data item to the file system further comprises the step of:

(A6} storing third mapping data in said database to map a

contextual name of the data item to the digital data
identificr of the data item.

80. The methed of claim 79 further comprising:

attempting to match a contextual name of the particular

dataitem to a contextual name in the database, using said
third mapping data, to obtain the particular digital data
item identifter of the particular data item.

81. A computer-implemented method operable in a file
system comprising (i} a plurality of servers; {ii) a database;
and (iii) at Jeast one computer connected to the servers, the
method comprising:

obiaining, at said at least one computer, a first data item

identifier for a first data item, said first data item con-
sisting of z first plurality of non-overlapping segments,
each of said segmemts consisting of a corresponding
sequence of bits, and each of said segments being stored
on multiple servers of said plurality of servers in the file
system, said first data item identifier being based at least
in part on the data comprising the first data item; and
determining, using hardware in combiration with soft-
warc, at least one maiching record in the database for the
first data item based at least in part on the first data item
identifier, the database comprising a plurality of records,
where the records in the dalabase correspond to data
items, and where the records in the database include: (i}

US 8,001,096 B2

45

first data that includes data item identifiers for data items
for which the data are stored in the file system as seg-
ments; and (i) second data, keyed on data item identifi-
ers, that maps the data item identifiers to the segments to
which the data item identifiers correspond, and (iii} loca-
tion data, keyed on segment identifiers, that identifies
which of the plurality of servers in the file system stores
which of the segments, each of said segment identifiers
being based, at least in part, on a hash function of all of
the data in a corresponding segment; and

based at least in part on said determining, accessing at feast

one segment of the first data item from at least one of the
plurality of servers in the file system.

82. The method of claim 45 wherein the access in (E)
comprises reading the at least one part of the particular data
item, wherein the at Jeast one part of the particular data item
was determined using at least the particular digital data item
jdentifier and an offset value.

83. A computer-implemented method operable in a file
system comprising (1) a plurality of servers to store filedata as
segments; and

{ii) first data that includes file identifiers for files for which

the file data are stored as segments; and (i1} second data
that maps the file identifiers to the segments to which the
file identifiers correspond; and (iv) location data that
identifies which of the plurality of servers stores which
of the segments, the method comprising the steps of:

(A) receiving a digital data item identifier, said digital data

item identifier corresponding to 2 particular data item,
said particular data item consisting of an arbitrary
sequence of bits consisting of a first sequence of non-
overlapping segments, each of said segments in said first
sequence being stored on multiple servers of the plural-
ity of servers in the file system, said digital data item

identifier being based at least in part on a hash function :

of the data comprising the particular data item;

{B) hardware in combination with software, attempting to
match the digital data item identifier of the particular
data item with a digital data item identifier in a database,
said database comprising (i) said first data that includes
file identifiers for files for which the file data are stored
as segments; and (11) said second data that maps the file
identifiers to the segments to which the file identifiers
correspond, and (iii) said location data that identifies
which of the plurality of servers stores which of the
segments; and

(C) based at least in part on said atterpting 1o match in step
(B), determining information corresponding te said par-
ticular data item, wherein said information correspond-
ing to said particular data item data item includes at least
location data that identifies which of the plurality of
servers in the (ile system stores at least one of the seg-
ments in the first sequence of non-overlapping segments
comprising said particular data item; and

(D) using at least some of said lecation data detenmined in
step (C) 1o access at least one of the segments of said
particular data item in the file system.

84. The method as recited in claim 83 wherein the hash
function is selected from the functions: MD4, MDS3, and
SHA.

85. The method as recited in claim 83 wherein the at least
one of the segments is accessed in step (D) from more than
one location in the file system.

86. The methed of claim 83 wherein a data item may
comprise a file, a portion of a file, a page in memory, a digital
message, a portion of a digital message, a digital image, a
portion of a digital image, a video signal, a portion of a video

10

30

45

60

65

46

signal, an audie signal, or a portion of an andio signal, a
software preduct, or & portion of a software product, or a
sequence of identifiers for components of a compound data
item.

87. The method of claim 83 wherein the first data and the
second data and the lecation data are stored on one or more
computers distinct from the plurality of servers.

88. The method of claim 83 wherein the digital data item
tdentifier is received in (A) as part of request to access said
particular data item in the file system.

89. The method of claim 88 wherein the request to access
said particular data item is a request to read said particular
data itern, and wherein said request to read said particular data
item includes said digital data item identifier and an offset
value.

90. The method of claim 89 wherein the at least ane of the
segments in (D) was determined based at least in part on said
digital data item identifier and said offset value.

91. The method in any one of claims 45, 81, and 10,
wherein the database is stored on one or more computers
distinct from the plurality of servers.

92 The method of claim 81 wherein the identifier of a data
item is based at least in part on 2 size or length of the data item.

93. The methed of claim 81 wherein a data item may
comprise a file, 2 portion of a file, 2 page in memory, a digital
message, a portien of a digital message, a digital image, a
portion of a digital image, a video signal, a portion of a video
signal, an audio signal, or a portion of an audic signal, a
software product, or a portion of a software product, or a
sequence of identifiers for components of a compound data
item.

94. The method of claim 81 wherein the first data item
identifier is obtained as part of request to access said first data
item in the file system.

95. The method of claim 94 wherein the request to access
said first data item is a request to read said first data item, and
wherein said request to read said first data item includes said
first data item identifier and an offset value.

96. The method of claim 95 wherein the at least one of
segment of the first data item accessed was determined based
at least in part on said first data item identifier and said offset
value.

97. The method as in claim 83 or 81 wherein each of the
segments is stored on multiple servers in the file system,
based, at least in part, on a predetermined degree of redun-
dancy.

98. The method as in ¢laim 83 or 81 wherein each of the
segments is stored on at least four servers of the plurality of
servers in the file system.

99. The method as in claim 83 or 81 wherein each of the
segments is stored on at least three servers of the plurality of
servers in the file syslem.

100. A computer-implemented method operable in a file
system comprising (i) a plurality of servers; (ii) first mapping
data; and (111) second mapping data,

wherein, for each of a plurality of data items in the file

systent, said data items each consisting of a correspond-
ing sequence of one or mare parts, each part in said
sequence of parts having a corresponding digiial part
identifier, wherein each said part consists of a corre-
sponding sequence of bits, and each said digital part
identifier for each said part is based at least in part on a
message digest function or hash function of the
sequence of bits comprising the corresponding part; and
wherein each data item has a corresponding digital data
item identifier, said digital data item dentifier for the
data item being based, at least in past, on the contents of

US 8,001,096 B2

47

the data item, wherein two identical data items in the file

system have the same digital data item identifier; and

wherein each part is replicated on multiple servers of said
plurality of servers; and

wherein said first mapping data maps the digital data item
identifier of a data item to the digital part identifiers of
the parts comprising the data item; and_

wherein the second mapping data maps the digital part
identifier of each part fo corresponding location data that
identifies which of the plurality of servers stores the
corresponding part, the method comprising the steps oft

(A1) obtaining a particular digital data item identifier of a
particular data item, said particular digital data item
identifier of said particular data item being inchided in
an attempt 10 access said particular data item in said file
system;

(A2) attempting to match, using hardware in combination
with software, said particular digital data item identifier
of said particular data ilem with a digital data item iden-
tifier in said first mapping data; and

(A3) based at least in part on said attempting to match in
step (A2), when said particular digital data item identi-
fier obtained in step (A1) corresponds to an ideniifier in
said first mapping data, using said first mapping data to
determine a digital part identifier of each part compris-
ing the particular data item;

{A4) vsing said second mapping data and at least one
digital part identifier determined in step (A3) to deter-
mine location data that identifies which of the plurality
of servers in the file system stores the corresponding at
least one part of the particular data item;

{A5) attempting to access at least one part of the particular
data item at one or more servers identified in step (A4).

101. The methed of claim 100 wherein the file system
further comprises: third mapping data mapping names of data
ttems in the file system to corresponding digital data item
identifiers for the data items, the method further comprising:

using the third mapping data and a name ol the particuiar
data item to obtain the particular digital data item iden-
tifier of the particular data item.

102. The method of claim 101 wherein the name of the
particular data item is a contextual name of the particular data
item or a user-defined name of the particular data item.

103. A file system comprising:

(i) a plurality of servers to store file data as segments; and

{ii) first data that includes file identifiers for files for which
the file data are stored as segments; and

(iii) second data that maps the file identifiers to the seg-
ments to which the file identifiers correspond; and

(iv) focation data that identifies which of the plurality of
servers stores which of the segments, said location data
being keyed on segment identifiers, each segment iden-
tifier being based on all of the data in a corresponding
segment; and

(v) at least one computer comprsing hardware in combi-
nation with software and connected to the plurality of
servers, the at least cne computer progranuned:

(A) to receive a digital data item identificr, said digital
data item identifier corresponding to a particular data
itemn, said particular data item consisting of an arbi-
trary sequence of bits consisting of a sequence of
non-overlapping segments, each of said segments in
said sequence heing stored on multiple servers of the
plurality of servers in the file system, said digital data
item identifier being based at least in part on a given
function of the data comprising the particular data
itern, said given function comprising a hash function;

10

20

[

0

40

48

(B) 1o attempt to match the digital data item identifier of
the particular data item with a digital data itemn iden-
tifier in a database, said database comprising (i) said
first data that includes file identifiers for files for
which the file data are stored as segments; and (i1) said
second data that maps the file identifiers to the seg-
ments to which the file identifiers correspond, and (3ii)
said location data that identifies which of the plurality
of servers stores which of the segments; and

{C) to delermine, based at least in part on said atiempt to
match in (B), segment identifiers corresponding to the
particular data item, each segment identifier being
based on all of the data in a corresponding segment;

{D} to determine, using at least one of the segment iden-
tifiers determined in (C)}, information corresponding
to said particular data item, wherein said information
corresponding fo said particular data item data item
includes at least location data that identifies which of
the plurality of servers in the file system stores at least
one of the segments in the sequence of nen-overlap-
ping segments compnsing said particular data item;
and

(E) to use at least some of said location data determined
in (D) to access at least one of the segments of said
particular data item in the file system.

104. A device comprising hardware including at least one
processor and memory, said device operable in a file system,
wherein each file in the file system has a corresponding
digital file identifier, each file in the file system consist-

ing of a corresponding sequence of bits, and the corre-
sponding digital file identifier for each file in the file
system being based, at least in part, on given function of

all of the bits of the file, said given function comprising

a hash or message digest function, and wherein two

identical files in the file systein have the same digital file

identifier as determined using said given function; and

wherein the file system comprises a plurality of servers to
store data as fixed-size chunks, and

wherein each file in the file system consists of one or more
non-overlapping chunks, each chunk having a corre-
sponding digital chunk identifier, and wherein each
chunk is replicated on multiple servers of said plurality
of servers, said memory of the device storing at least:

(1) first mapping data that maps each of a plurality of digital
file identifiers of a plurality of files in the file system to
one or more digital chunk identifiers of a corresponding
one or more chunks comprising the corresponding file;
and

(11) second mapping data that maps digital chunk identifiers
of chunks stored on said plurality of servers to corre-
sponding data identifying which of the piurality of serv-
ers stores the corresponding chunks, said device com-
prising softwarc, in combination with said hardware:

(A) to receive at said device a request regarding a par-
ticular file in the file system;

(B} 10 determine, using the first mapping data and a
particular digital file identificr corresponding to the
particular file, cne or more digital chunk identifiers
for a corresponding one or more chunks of the par-
ticular file;

(C) to determine, using said second mapping data and at
least one chunk identifier of the ane or more chunk
identifiers determined in (B), data identifving which
of the plurality of servers in the file system stores at
least one of the chunks of the particular digital file;
and

US 8,001,096 B2

49
(D} to provide at least some of said data determined in
(C).

105. The device as in claim 104 wherein the particular
digital file identifier is received by the device as part of the
request.

106. The device as in claim 104 or 105 wherein the request
regarding the particular file is a request from another deviceto
access the particular file in the file system.

107. The device as in claim 104 further comprising:

third mapping data that maps names of files in the file
system to corresponding digital file identifiers of the
files, and wherein

the device ascertains the particular digital file identifier
used in (B) vsing the third mapping data and a file name
ofthe particular file, said file name having been received
as part of the request.

108. The device as in claim 104 further configured, using

sald software, in combination with said hardware:

(E) to add a secend file to the file system, the second file
consisting of a correspending second sequence of bits,
by:

(E1) determining a second digital file identifier for the
second file, said second digital file identifier being
determined using the given function, and being based,
at least in part, on all of the bits of the second file;

(E2) splitting the second file into one or more non-
overlapping fixed-size chunks, and

(E3) piving each of said chunks a corresponding digital
chunk identifier;

(E4) storing each of said chunks on multiple servers of
satd plurality of servers in the file system;

(ES) updating said first mapping data to map the second
digital file identifier of the second file (o the chunks
comprising, the second file;

(E6) updating the second mapping data to map the digi- :

tal chunk identifier of each of said chunks to corre-
sponding data that identifies which of the plurality of
servers in the file system stores the corresponding
chunk.

109. The device as in claim 108 further comprising;

third mapping data to map names of files in the file system

to corresponding digital file identifiers of the files, and
wherein

the device is further confignred, using said software, in

combination with said hardware:

to update said third mapping data to map a name of said

" second lile o said second digita] file identifier.
110. The device of claim 108 wlerein
updating said first mapping data to map the second digital
fite identifier of the second file to the chunks comprising
the second file comprises:
updating said first mapping data to map the second digital
file identifier of the second file to the digitai chunk
identifiers of chunks comprising the second file.

111. The device as in claim 104 wherein the device is a
computer.

112. A computer-implemented methoed, operable in & file
system comprising (i} a plurality of servers to store file data as
fixed-size chunks, and (ii) at least one computer distinct from
said plurality of servers,

wherein each file in the file system has a corresponding

digital file identifier, the digital file identifier for each file
being based, at least in part, on given function of all of
the bits of the file, said given function comprising a hash
function, wherein two identical files in the file system
have the same digital file identifier as determined by said
given function; and

25

40

45

50

80

65

50

wherein each file in the file system is divided into a corre-
sponding one or more non-overlapping chunks, each
chunk having a corresponding digital chunk identifier,
and each chunk being replicated on multiple servers of
said plurality of servers in said file system, and

wherein said at least one computer has:

{i) first mapping data that includes digital file identifiers for
files in the file system for which the data are stored as one
or more chunks, wherein said first mapping data maps
digital file identifiers to one or more digital chunk iden-
tifiers of a corresponding one or more chunks compris-
ing the corresponding files; and

(ii) second mapping data that maps digital chunk identifiers
to corresponding data identifying which of the plurality
of servers stores the corresponding chunks, the methed
comprising:

(A) receiving, at said at least one computer, and from
another computer, a request regarding a particular file
in the file system; and

(B) responsive to said request:

(b1) ascertaining one or more digital chunk identifiers
for a corresponding one or more chunks of the
particular file, said ascertaining using the first map-
ping data and a particular digital file identifier cor-
responding to the particular file, the particular digi-
tal file identifier being based, at least i part, on the
given function of all of the bits of the particular file;

(b2) determining which of the plurality of servers in
the file system stores at leust one of the chunks of
the particular file, said determining using said sec-
ond mapping data and at least one chunk identifier
ascertained in {(b1); and

(b3) providing from said at least one computer to said
other computer at least some information deter-
mined in (b2) identifying which of the plurality of
servers in the file svstem stores at least one of the
chunks of the particular file.

113. The method of claim 112 wherein said at least one
computer also has (iii) third mapping data to map names of
files in the file system to corresponding digital file identifiers
of the files, the method further comprising:

ascertaining said particular digital file identifier using said
third mapping data and a file name of said particular file.

114. The method of claim 113 wherein the file name of the
particular [ile was oblained as part of the request regarding a
particular file.

115. The method of claim 112 wherein the request regard-
ing the particutlar file is a request by the other computer to
access the particular file.

116. The method of claim 112 or 115 further comprising:

accessing said at least one of the chunks of the particular
file from at feast one of the servers identified by the
information provided in step (b3).

117. The method of claim 112 wherein each digital chunk
identifier is based, at least in part, on data in the corresponding
chunk.

118. A computer-implemented method operable in a data
processing system, the method comprising the steps of:

(A) adding a data item to the data processing system, the
data item consisting of a sequence of non-overtapping
parts, each part consisting of a corresponding arbitrary
sequence of bits, by:

(Al) for each part 1n said sequence of parts, determining,
using hardware in combination with software, a cor-
responding digital part name, wherein each said digi-

US 8,001,096 B2

51

tal part name for each said part is determined based at
least in part on a first function of the corresponding
part;

(A2) determining, using a second function, a digital
name for the data item, said digital data item name
being based, at least in part, on the contents of the data
item, wherein two identical data items in the data
processing system will have the same digital data item
name in the data processing system, said second func-
tion comprising a hash or message digest fonction,

(A3) storing each part in said sequence of parts in muk-
tiple locations in the data processing system;

(Ad) storing first mapping data that maps the digital data
item name of the data itemn to the digital part names of
the parts comprising the data item;

(AS5) storing second mapping data that maps the digital
patt name of each part in said sequence of parts to
corresponding location data that identifies wlhich
locations in the data processing system stores the
corresponding part; and

(B) repeating step (A) for each of a plurality of data items;

and

(C) attempring to access a particular data item in the data

processing system by:

(C1) obtaining a particular digital data item name of the
particular data item, said particular digital data item
name of said particular data item being included in an
attempt to access said particular data item in said data
processing system,

(C2) attempting to match, using hardware in combina-
tion with software, said particular digital data item
name of said particular data item with a digital data
ilem name in said [irst mapping data; and

(C3) based at leastin part on said attempting to match in
step (C2), when said particular digital data item name
obtained in step (C1) corresponds to an name in said
first mapping data, using said first mapping data to
determine a digital part name of each part comprising
the particular data item;

(C4) vsing said second mapping data and at least one
digital part name determined in step (C3) to determine
location data that identifies which of the locations in
the data processing system stores the correspording at
least one part of the particular data item;

(C5) attempting to access at least one part of the particu-
lar data item at one or more locations identified in step
(C4) as sloring said at least one part.

11%. The method of claim 118 wherein the first function
comprises a hash or message digest function.

120. The method of claim 118 wherein the data processing
system comprises a distnibuted file system.

121. A computer-implemented method operable in a data
processing system comprising {i) a plurality of locations, and
(ii} a database, the method comprising the steps of

(A) adding a data item to the dala processing system, said

data item consisting of a first plurality of parts, wherein

each part consists of a corresponding arbitrary sequence
of bits, by:

(Al) determining, using hardware in combination with
software, for each part in said first plurality of parts, a
corresponding digital part name, each said digital part
name for each said part being determined based at
lcast in part on a first given function of the corre-
sponding part;

(A2) determining a digital data item name for the data
itern, said digital data item name being based, at least
in part, on a second given function of the data item,

20

25

30

40

45

52

wherein iwo identical data items in the data process-
ing system will have the same digital data item name
in the data processing system as determined by said
second given function, and wherein said second given
function comprises a hash or message digest function;

(A3) replicating each of said first plurality of parts at
multiple locations of said plurality of locations in the
data processing system;

(A4) storing first mapping data in said database to map
the digital data Hem name of the dala item to the
digital part names of the plurality of parts comprising
the data item;

(AS5) storing second mapping data in said database to
map the digital part name of each part of said first
plurality of parts to corresponding location data that
identify which of the plurality of locations in the data
processing system store the corresponding part; and

(B) attempting, using hardware in combination with soft-
ware, to match a particular digital data item name of a
particular data item with a digital name in the database,
wherein said particular data item comprises a second
plurality of parts;

(C)based at least in part on said attempting to match in step
(B), determining information corresponding said par-
ticular data item from said first mapping data in said
database, said information comprising a corresponding
digital part name for each of said second plurality of
parts; and

(D) determining, using the second mapping data in the
database and the information determined in step (C), for
at least one part of said particular data itein, location data
that identifies which of the plurality of locations in the
data processing system stores the at least one part of the
particular data item; and

(E) using at least some of said location data determined in
step (D) to access the at least one part of said particular
data item in the data processing system.

122. A computer-implemented method operable in a data
processing system comprising (i) a plurality of locations to
store data item data as parts; and

(11) first data that includes data item names for data items
for which the data are stored as parts; and (it} second
data that maps the data item names to the parts to which
the data item names correspond; and (iv) iocation data
that identifies which of the plurality of locations stores
which of the parts, the method comprising the steps of:

(A) receiving a digital data item name, said digital data
item name corresponding to a particular data item, said
particular data item consisting of an arbitrary sequence
of bits consisting of a first sequence of non-overlapping
parts, each of said parts in said first sequence being
stored at multiple locations of the plurality of locations
in the data processing system, said digital data item
name being based at least in part on a hash or message
digest function of the data comprising the particular data
item,;

(B) hardware in combination with software, attempting to
matich the digital data item name of the particular data
itemn with a digital data item name in a database, said
database comprising (1) said first data that includes data
item names for files for which the data item data are
stared as parts; and (if} sajd second data that maps the
data itern narmes to the parts to which the data item
names correspond, and (iii) said lecation data that iden-
tifies which of the plurality of locations stores which of
the parts; and

US 8,001,096 B2

53

(C) based at least in part on said attempting to match in (B),
determining information corresponding to said particu-
lar data item, wherein said information corresponding to
said particular data item data item includes at least loca-
tion data that identifies which of the plurality of loca-
tiens in the data processing system stores at least one of
the parts in the first sequence of non-overlapping parts
comprising said particular data item; and

(D) using at feast some of said location data determined in
step (C) to access at least one of the parts of said par-
ticular data item in the data processing system.

123. The method of claim 122 wherein the data processing

system comprises a distributed file system.

124. The method of claim 122 wherein each part is a
segment.

125. A computer-implemented method operable in a data
processing system comprising {i) a plurality of locations; (ii)
a database; and (iii) at least one processor comnected to the
locations, the method comprising:

obtaining a first data item name for a first data item, said
first data item consisting of a first plurality of non-over-
lapping parts, each of said parts consisting of a corre-
sponding sequence of bits, and each of said parts being
stored on multiple locations of said plurality of focations
in the data processing system, said first data item name
being based at least in part on a function of the data
comprising the first data item; and

determining, using hardware in combination with soft-
ware, at least one matching record in the database for the
first data item based at least in part on the first data item
name, the database comprising a plurality of records,
where the records in the database correspond to data
items, and where the records in the database include: (i)
first data that includes data item names for data items for
which the data are stored in the data processing system
as parts; and (ii) second data, keyed on data item names,
that maps the data item names to the parts to which the
dala item names correspond, and (iii) location data,
keyed on part names, that identifies which of the plural-
ity of locations in the data processing system stores
which of the parts; and

based at least in part on said determining, accessing at least
one part of the first data item from at least one of the
plurality of locations in the data processing system.

126. A computer-implemented method operable in a data
processing system comprising (i) a plurality of locations; (11)
first mapping data; and {111) second mapping data,

wherein, for each of a plurality of data items in the data
processing system, said data items each consisting of a
corresponding sequence of one or more patts, each part
in said sequence of parts having a corresponding digital
parl name; and

wherein each data item has a corresponding digital data
item name, said digital data item name for the data item
being based, at least in part, on the contents of the data
item, wherein two identical data items in the data pro-
cessing system have the same digital data itern name;
and

wherein each partis replicated on multiple locations of said
plurality of locations in said data processing system; and

wherein said first mapping data maps the digital data item
name of a data item to the digital part names of the parts
comprising the data item; and

wherein the second mapping data maps the digital part
name of each part to corresponding location data that
identifies which of the plurality of locations stores the
corresponding part, the method comprising the steps of

5

15

25

30

35

45

53

54

(Al) obtaining a particwlar digital data item name of a
particular data item, said particular digital data item
name of said particular data item having been included
in an attempt 1o access said particular data iiem in said
data processing system;

(A2) attempting to match, using hardware in combination
with software, said particular digital data item name of
said particular data item with a digital data item name in
said first mapping data; and

(A3) based at least in part on said attempting to match in
(A2), when said particelar digital data item name
abtained in (Al) corresponds to an name in said first
mapping data, using said first mapping data to determine
adigital part name of each part comprising the particular
data item;

(A4) using said second mapping data and at least one
digital part name determined in (A3) to determine loca-
tion data that identifies which of the plurality of loca-
tions in the data processing system stores the corre-
sponding at feast one part of the particular data item;

{AS5) attempting to access at least one part of the particular
data item at one or more locations identified in (Ad).

127. A data processing system comprising:

(1) a plurality of locations to store data item data as parts;
and

(i1) first data that includes data item names for data itemns
for which the data item data are stored as parts; and

(ii1) second data that maps the data item names to the parts
t0 which the data item names cormrespond; and

(iv) location data that identifies which of the plurality of
locations stores which of the parts, said location data
being keyed on part itames, each part name being based
on the data in a corresponding par(; and

(v) at least one computer comprising hardware in combi-
nation with software and connected to the plurality of
locations, the at least one computer programmed:

{A) 1o receive a digital data item name, said digital data
item name corresponding 0 a particular data item,
sajd particular data item consisting of an arbitrary
sequence of bits consisting of a sequence of non-
overlapping parts, each of said parts in said sequence
being stored on multiple locations of the plurality of
locations in the data processing system, said digital
data item name heing hased at least in part on a given
function of the data comprising the particular data
item, said given function comprising a hash function;

(B) 10 attempt to match the digital data item name of the
particular data item with a digital data item name in a
database, said database comprising (i) said first data
that includes data item names for data items for which
the data item data are stored as parts; and (i1} said
second data that maps the dala ilem names (o (he parls
to which the data itern names correspond, and (iii)
said lacation data that identifies which of the plurality
of locations stores which of the parts; and

(C) to determine, based at least in part on said attempt 1o
match in (B), part names corresponding to the particu-
iar data item;

(D) to determine, using at least one of the part names
determined in (C), infonnation corresponding to said
particular data item, wherein said information corre-
sponding to said particular data item data item
includes at Jeast location data that identifies which of
the plurality el locations in the data processing system
stores at least one of the parts in the sequence of
non-overlapping parts comprising said particular data
item; and

US 8,001,096 B2

55

(E) to use at least some of said location data determined
in (D) to access at least one of the parts of said par-
ticular data item in the data processing system.

128. A device comprising hardware including at least one
processor and memory, said device operable in a data pro-
cessing system,

wherein each data item in the data processing system has a
corresponding digital data item name, each data item in
the data processing system consisting of a correspond-
ing sequence of bits, and the corresponding digital data
item name for each data item in the data processing
system being based, at least in part, on given function of
all of the bits of the data item, said given function com-
prising a hash or message digest function, and wherein
two identical data items in the data processing system
have the same digital data item name as determined
using said given function; and

wherein the data processing system corprises a plurality
of locations to store data as fixed-size pieces, and

wherein each data item in the data processing system con-
sists of ane or more nen-overlapping pieces, each piece
having a corresponding digital piece name, and wherein
each piece is replicated on multiple locations of said
plurality of Jocations,

said memory of the device storing at least:

(1) first mapping data that maps each of a phurality of digital
data item names of a plurality of data items in the data
processing system to one or more digital piece names of
a corresponding one or more pieces comprising the cor-
responding data item; and

(ii) second mapping data that maps digital piece names of
pieces stored on said plurality of locations to corre-
sponding data identifying which of the plurality of loca-
tions stores the corresponding pieces, said device com-
prising software, in combination with said hardware:
(A) to receive at said device a request regarding a par-

ticular data item in the data processing system;

{B) 10 determine, using the first mapping data and a
particular digita] data item name corresponding to the
particular data item, one or mare digital piece names
for a corresponding one or more pieces of'the particu-
lar data item,

(C) 10 determine, using said second mapping data and at
least one piece name of the one or more piece names
determined in (B), data identifying which of the plu-
rality of locations in the data processing system stores
at least one of the pieces ol the particular digital data
item; and

(D) to pravide at least some of said data determined in
(C).

129. The device of claim 128 wherein each piece is a
segment.

130. The device of claim 128 wherein the pieces are
chunks.

131. The device of claim 128 wherein the data processing 3

system is a file system.

132. The device as in claim 128 wherein the particular
digital data item name is reccived by the device as part of the
request.

133. A computer-implemented method, eperable in a data
processing system comprising (i) a plurality of locations 1o
store data item data as fixed-size pieces, and (i) at least one
computer distinct from said plurality of locations,

wherein each data item in the data processing system has a

corresponding digital data item name, the digital data

5

25

30

45

50

60

56

item name for each data item being based, at least in part,
on given function of all of the bits of the data item, said
given function comprising a hash function, wherein two
identical data items in the data processing system have
the same digital data item name as determined by said
given function; and

wherein each data item in the data processing system is
divided into a corresponding one or more non-overlap-
ping pieces, each piece having a corresponding digital
piece name, and each piece being replicated at multiple
locations of said plurality of locations in said data pro-
cessing system, and wherein said at least one computer
Las:

(i) first mapping data that includes digital data item names
for data items in the data processing system for which
the data are stored as one or more pieces, wherein said
first mapping data maps digital dataitem names tconeor
moredigital ptece names of a corresponding one or more
pieces comprising the corresponding data items; and

(ii) second mapping data that maps digital piece names to
corresponding data identifying which of the plurality of
locations stores the corresponding one or more pieces,
the method comprising:

{A) receiving, at said at least one computer, and from
another computer, a request regarding a particular
data item in the data processing system; and

(B) responsive to said request:

(b1} ascertaining one or more digital piece names for
a corresponding one or more pieces of the particu-
lar data item, said ascertaining using (1} the first
mapping data, and (i1} a particular digital data item
narme corresponding to the particular data item, the
particular digital data jlem name being based, at
least in part, on the given function of all of the bits
of the particular data item;

(b2) determining which of the plurality of locations in
the data processing system stores at least one of the
one or more pieces of the particular data item, said
determining using said second mapping data and at
least one piece name ascertained in (b1); and

{b3) providing from said at least one computer to said
other computer at least some intormation deter-
mined in (b2) identifying which of the plurality of
locations in the data processing system stores at
least one of the one or more pieces of the particular
data item.

134. The method of claim 133 wherein said at least one
computer also has (iii) third mapping data to map names of
data items in the dawa processing system to corresponding
digital data item names of the data items, the methed further
COIpPrising:

ascerlaining said particular digital data item name using
said third mapping data and a data item name of said
particular data iten1.

135, The methed of claim 133 wherein the data item name
of the particular data item was obtained as part of the request
in (A).

136. The method of claim 133 wherein the request in (A)
comprises the data item name of the particular data item.

137. The method of claim 133 further comprising:

accessing said at least one of the pieces of the particular
data item from at least one of the locations identified by
the information provided in step (b3).

* ok ok ko E

