EXHIBIT A

http://dockets.justia.com/docket/texas/txedce/6:2012cv00662/139828/
http://docs.justia.com/cases/federal/district-courts/texas/txedce/6:2012cv00662/139828/1/1.html
http://dockets.justia.com/

RV 0 0 0

United States Patent [(11 Patent Number: 5,978,791
Farber et al. 45] Date of Patent: Nov. 2, 1999
[54] DATA PROCESSING SYSTEM USING 4922414 5/1990 Holloway et al. ...ccooooreerucneec. 364/200
SUBSTANTIALLY UNIQUE IDENTIFIERS TO 4,972,367 11/1990 Burke coon..... .. 364/900
IDENTIFY DATA ITEMS, WHEREBY 5,007,658 4/1991 Bendert et al. .covcevrerecnrvnarenns 395/600
5,025,421 6/1991 Cho -verreeeee- 5/230.05
%E%?{SIAE%SATA ITEMS HAVE THE SAME 5,050,074 9/1991 Marca ... 364,200
5,050,212 9/1991 Dyson ... e 380725
. . . 5,057,837 10/1991 Colwell et al. 155
[75] Ioventors: David A. Farber, Ojai, Calif.; Ronald 5129081 7/1992 Kobayashi et al. 395/600
D. Lachman, Nerthbrook, 11, 5,129,082 7/1992 Tirfing el al. 395/600
) . 5,144,667 9/1992 Pogue, Ir. ef al. . 380/45
[73] Assignee: Kinetech, Inc., Northbrook, I 5,179,680 1/1993 Colwell et al. ... 305/425
5,202,982 4/1993 Gramlich et al. .. 395/600
[21] Appl. No.: 08/960,079 5,208,858 5/1993 Vollert et al. ... 380743
! 5,276,901 1/1994 Howell ct al. . 365/800
[22] Filed: QOct. 24, 1997 5,301,285 4/1994 Rajani 325/400
5,301,316 4/1994 Hamilion et al, . 395/600
Related U.S. Application Data 5,343,527 8/1994 MOOLE .ouicemverreremaseermns s cbenniens 380/4
5,357,623 10/1994 Megory-Cohenooveiniierennas 305/425
[63] Continuation of application No. 08/425,160, Apr. 11, 1995, 5,384,565 1/1995 Cannon ... - 340/825.44
abandoned. 5,404,508 471995 Konrad et al. coommeoovooveosscennnne 395/600
[51] Imt. L o) F OO ¢ |) Ul /5. OTHER PUBLICATIONS
[52] USe €l e T2 T07/%; 07200 950010 1 ftwin et al, Linear Hashing for Distributed Files,
{58] Field of Searchcccvvcvmnvmrnne. 70772, 1, 200 ACM SIGMOD, May, 1993 pp. 327-336.
[56] References Cited Ming—Ling Lo, et al, On Optimal Processor Allocation to

U.S. PATENT DOCUMENTS

3,668,647 6/1972 Evangelisti et al.
4,215,402 7/1980 Mitckell et al. ...
4,200,105 9/1981 Cichelli et al. .
4,376,299 3/1983 Rivest
4,405,829 941983 Rivest et al. .
4,412,285 10/1983 Neches et al. 364,200
4,414,624 11/1983 Summer, Jr. et al. . 364/200
4,441.155 4/1984 Fletcher et al. .o 364,200
4,464,713 8/1984 Benhase et al.ooieeierinn 364/200
4,490,782 12/1984 Dixon et al. 364/200
4,571,700 2/1985 Emuy, I et al. . 364/900
4,577,293 3/1985 Malick et al. . . 365/189
4,642,793 2/1987 Meaden 364/900
4,675,810 6/1987 Gruner et al. . 364/200
4,691,299 9/1987 Rivest et al. 365/185
4725945 2/1988 Kronstadt et al. . 364/200
4,773,039 9/1988 Zamora 364/900
4,887,235 12/1989 Helloway et al. . 364/900
4,888,681 12/1989 Barnes et al. 364/200

e 34011725
. 364/200
. 364200
e 3647900
. 1787221

Support Pipelined Hash Joins, ACM SIGMOD, pp. 69-78,
May 1993,

Thomas A, Berson, Differential Cryptanalysis Mod 232 with
Applications to MD3, pp. 69-81, 1992,

{List continued on next page.)

Primary Examiner—Paul V. Kulik
Assistant Examiner—Jean R. Homere
Attorney, Agent, or Firm—DPillsbury Madison & Sutro LLP

57 ABSTRACT

In a data processing system, a mechanism identifies data
items by substantially unique identifiers which depend on all
of the data in the data items and only on the data in the data
iterns. The system also determines whether a particular data
item is present in the database by examining the identifiers
of the plurality of data items.

48 Claims, 31 Drawing Sheets

T 7
raocesson) - . . |[PROCESSOR]
T 08
i

STGARGE ETOIAGE

OEVCE " | oewicE

o7 3
PROCESSOR) FADCESSOR

ico

© PROCESSOR

7
FROCEESOR]

5,978,791
Page 2

OTHER PUBLICATIONS

Witliam Perrizo, et al., Distributed Join Processing Perfor-
mance Evaluation, 1994, Twenty-Seventh Hawaii Interna-
tional Conference on System Sciences, vol. 11, pp. 236-244.
A concurrency Control Mechanism based on Extendible
Hashing for Main Memory Database Systems, Vijay Kumar,
pp. 109-113, ACM, vol. 3, 1989.

Birgit Pfitzmann, Sorting Out Signature Schemes, Nov.
1993, 1st Cosaf. Computer & Comm. Security 93 pp. 74-85.
Bert dem Boer, et al.,, Collisions for the compression func-
tion of MD; pp. 292304, 1994.

Sakti Pramanik, et al., Multi-Directory Hashing, 1993, Info.
Sys., vol. 18, No. 1, pp. 63-74.

Murkidhar Koushik, Dynamic Hashing With Distributed
Overflow Space: A File Organization With Good Insertion
Performance, 1993, Info. Sys., val, 18, No. 5, pp. 299-317.
Witold Litwin, el al., LH*-Linear Hashing for Distributed
Files, HP Labs Tech. Report No. HPL~93-21 Jun. 1993 pp.
1-22.

Yuliang Zheng, et al.,, HAVAL, — A One~Way Hashing
Algerithm with Variable Lengih of Outpul (Extended
Abstract), pp. 83-105, Advances in Cryptology, AUSCRIPT
792, 1992.

Chris Charnes and Josef Pieprzky, Lincar Nonequivalence
versus Nonlinearity, Pieprzky, pp. 156-164, 1993.

Zhiyu Tian, ot al, A New Hashing Function: Statistical
Behaviour and Algorithm, pp. 3-13, SIGIR Forum, 1993.
G. L. Friedman, Digital Camera With Apparatus For
Authentication of Images Produced From an Image File,
NASA Case No. NPO-19108-1-CU, Serial No. 08/159,980,
Nov. 24, 1993,

H. Goodman, Feb. 9, 1994 Ada, Object—Oriented Tech-
niques, and Corcurrency in Teaching Data Sructures and
File Management Report Documentation P AD-A275
385 — 94-04277.

Advances in Cryptology-EUROCRYPT 93, Workshop on
the Theory and Application of Cryptographic Technigues
Lofthus, Norway, May 23-27, 1993 Proceedings.
Proceedings ol the 1993 ACM SIGMOD International Con-
ference on Management of Data, vol. 22, Issue 2, Jun, 1993,
Advances in Cryptology-AUSCRYPT ’92 — Workshop an
the Theory and Application of Cryplographic Techniques
Gold Coast, Queensland, Ausfralia Dec, 13-16, 1992 Pro-
ceedings.

Search Report dated Jun. 24, 1996.

5,978,791

Sheet 1 of 31

Nov. 2, 1999

U.S. Patent

00t

H¥0SsSsS3Io0oHd H0sSsSd00dd HOSSAD00Md

Z0l 0l 0L
Aot

a01A3a .. | 3omnaa
¥OSSIO0Ud ¥0SS300Ud TOVNOLS 3OVHOLS
204 Z0L dr>, >
(D)I 914

5,978,791

Sheet 2 of 31

Nov. 2, 1999

U.S. Patent

_” 19 121

! avs 85l

rl - 30IA3a
i FOVHOLS
\ 49 ogL

2L

" 1S

951

: 1¥

MM ! — ndo

m Al 801

“ v ozl

X Zel

307

”. AHONIN rEL

. 0Ll

i 20} H0SS3ID0oUd
R I

CHROIE

5,978,791

Sheet 3 of 31

Nov. 2, 1999

U.S. Patent

ANJWOES

444

IN3JNWO3S ANIWDIS

442

ERiE

VFA 143 gL
Ad0103d1q AdOLOZNMIG Ad0L03Ia
8L} skl 81l
NOIOZY NOID3Y e NOIDIY NO193Y
yA% 4 Ll L1} LLE
W3LSAS ¢ 9l4
ERIE

91

U.S. Patent Nov. 2, 1999 Sheet 4 of 31

FIG. 3

5,978,791

i38

Region ID

Pathname

True Name

Type

File ID

Time of last access

Time of last modification

Safe flag

Lock flag

Size

owner

FIG. 4

140

True Name

File ID

Compressed File ID

Source IDs

Dependent pProcessors

Use count

Time of last access

Expiration

Grooning delete count

42

Region ID

Region file system

Region pathname

Region status

Mirror processor(s)

Mirror duplication count

Policy

FIG. 5

5,978,791

Sheet 5 of 31

Nov. 2, 1999

U.S. Patent

P9SUIDTT

smeN onxj

O&l

SWweN 2040

X1aue Jo edAj

AIjue jJo 93ep

2h-4

aweN 2045

ameuy}ed

duelSauT L

I A0SsSaIV0Id

adAlL

uctleIado

sweN TeEUTDTIO

e

UOT3e00T 20In0s

Z3TITAqRITRAR 20aN0S

S3UDTI 20IN0s

2dA7 20ano0g

di soanos

vad

6 9id

8 9ld

L 9l

9°9l4

U.S. Patent Nov. 2, 1999 Sheet 6 of 31 5,978,791

FIG.10(a) -

- .

SIMPLE
DATA ITEM

— e e e e e e ain o o e e e e = =y

5212 ‘

COMPUTE MD FUNCTION ON
DATA ITEM

Y
S214

APPEND LENGTH MODULO 32 OF
DATA ITEM

U.S. Patent Nov. 2, 1999 Sheet 7 of 31 5,978,791

°_l FIG. 10(b)

5220

PARTITION DATA ITEM INTO
SEGMENTS o

5216

DATA ITEM
SIMPLE?

8222

ASSIMILATE EACH SEGMENT
(COMPUTING ITS TRUE NAME)

COMPUTE TRUE !
NAME OF SIMPLE |
DATA ITEM

N am

5224

CREATE INDIRECT BLOCK OF
SEGMENT TRUE NAMES

5226

ASSIMILATE INDIRECT BLOCK
(COMPUTING TS TRUE NAME)

$228
REPLACE FINAL 32 BITS OF TRUE
NAME WITH LENGHT MOD 32 OF DATA
ITEM

l

5,978,791

Sheet § of 31

Nov. 2, 1999

U.S. Patent

+

al 3714 34048
6€¢S

A

&A1 374 2IAVH
AYLINT 300

t

ai 3714 3137134

8€¢S

S3A

ZANLSIOAY
314 3NdL NiLSIX3

SIA

JNVYN 3N $304

AWVN INYL
ININGIL3G

0ECS

+

%

SRS Y3IHLO 13S »
Q) 37114 FHOLS «

} 0L LNMOD FASN L3S »
AYLINT M3N LYY «

9€¢s

ON

11'9ld

U.S. Patent Nov. 2, 1999 Sheet 9 of 31 5,978,791

FIG.12

5238 5240
YES
FILE UPDATE

»| DEPENDENCY
LOCKED? ST
NO l

S242
SEND MESSAGE TO
v‘ CACHE SERVER TO
S244 UPDATE CACHE
COMPRESS
(IF DESIRED)
S246
MIRROR

(IF DESIRED)

U.S. Patent Nov. 2, 1999 Sheet 10 of 31 5,978,791

l FIG. 13
85250
SEARCH FOR
THE — NOTFOUND o) FAIL
PATHNAME

LDE INCLUDES
TRUE NAME?

NO

YE
5258
44— ASSIMILATE LDE IDENTIFIES
FILEID DIRECTORY?
5256
< FREEZE
DIRECTORY

L

U.S. Patent

Nov. 2,1999

5260

CONFIRM THAT
TRUE NAME
EXISTS LOCALLY

v

5262
SEARCH FOR
PATHNAME IN

LDE TABLE

S264

CONFIRM THAT
DIRECTORY
EXISTS

5266

NAMED FILE
EXISTS?

Sheet 11 of 31

5,978,791

FIG.14
YES 5268
DELETE
TRUE FILE

S270
CREATE
ENTRY IN LDE
& UPDATE

5,978,791

Sheet 12 of 31

Nov. 2, 1999

U.S. Patent

(qauIsaq
— pl AT g
INYL AJI™AA
w4l ¢8¢8
OLNI g3NuNLIA 3114 aNid
31 ANYL ¥3LNT 09ZS
9128
7y i
v
3ISNOJSHY
JALLISOd
ISNOdSZY
04 Livm INNOW
cERYEEEN . 1s3no3y
414 aN3S
v)25 ISNOJSTY §LcS
JAILYOIAN
dy0ssao0Y
¥ NOILYDOT !

S3A

ON

5,978,791

Sheet 13 of 31

Nov. 2, 1999

U.S. Patent

(D)9l

14

aivd

ON

FSNOJSTY
3AIYISOd
SLIVM
waro [
8823 1103
A 4O
ISNOJSTY
sisvoavous | JALyDIN
NSO
9828

S3A

Qq3Lloanz
SH0583004d
ANY
§8CS

(S)yossaN0Ud
$10313S
N3O

¥82S

ﬁ

5,978,791

Sheet 14 of 31

Nov. 2, 1999

U.S. Patent

1Si1 01 adyv aNV

N

. ¢INAISA

21Va NOILYIdX3 A.mmﬁnA ONIHSIENd

ANINY3L3A
PL6ZS

S130UNOS
006¢2S

SWVN 3INL
d04 A 3JUN0S Ol
dlI NOILYO0T1 32dN0S
aav g INVN FNdl
HOd ¥4l 4N MO0
20628

A

SFA

ZNOILVYNILSEA
NOYd SY34d41Q FNVYN
INAL 40 30UNOS

oNP

UOSSIT0Ud
304N0S NO
374 HNYL IAYISTY
Ol 39VSSIW aN3S

01628

a1 40ss300ud

JH0l1S
062S

1

(4)91 Old

5,978,791

Sheet 15 of 31

Nov. 2, 1999

U.S. Patent

g

a1 a4

SS3UdINOO3a a3ssSIUdINGD

86¢S S3A

9628

JAYLNG SIHL
¥03al3anid

L

¢INYN
ANYUL O UL NI
AYINT T4 3Ny

(0)L191d

5,978,791

Sheet 16 of 31

Nov. 2, 1999

U.S. Patent

SJA

(slandnos
NOXd 3114
INYL 3ZITVIY

90ES

% O

)

Sal 30"Nos
1237138

yOES

|_sa1304N0S—y
JHOW ON

3714 3LONWHY
A1Lv001

80€S

al3Ho1s
00€S

A

o3asn
AdILON
[AR

1

5,978,791

Sheet 17 of 31

Nov. 2, 1999

U.S. Patent

N

Tvo01311d
ML NV

[AA%S]

INOQ Loy

(p)81 9Id

%

9)

4374 AL
yo4 Al Aild

3NYL 40 AdJOD 34

anoa
T HOLVHOS
M3N FLVINO
0268
N4 3nYL »
31313a 0
9188
H. 23U
INUL ONILSIXT

S3A

éanid

S3IHIN3AI1 3A7T

5,978,791

Sheet 18 of 31

Nov. 2, 1999

U.S. Patent

AYINZ

d41 SAONEY
® 4l 3714 JAVS

82eS

A

STA

1

NROD 38N
9¢ES

INNOD
3asSN INIW3HOAd
‘I19vL 3G NI
al 314 PoLs ‘Id
M3N 01 3T1d AdOD
0€ES

»

ON

(9)81 9Ol4

5,978,791

Sheet 19 of 31

Nov. 2, 1999

U.S. Patent

ERIE

AH010=Id

QaLVUNISSVNN |g———
JLVIINISSY 3132335

9Ees

yeesS

— g

w3 vivd
M3IN JLVIHO
LEES

%

Qmo._.om_m_c ZmZO/
3HL NI AHO.LO3uId
ANV J71d

Wi

(D)61 914

JLVNIGHOENS
HOV3 04

24\ J

MO0 IZ34ud
INIFWIHINI

2ees

I

5,978,791

Sheet 20 of 31

Nov. 2, 1999

U.S. Patent

CIERCIE
NOILYINHOHNI
a3ayis3a <._.ﬁ_w._m”amz
TvNoiLlaay < Ol AYLN3 aav
ayNooay
oot 8ees

1

pitelen!
323344 3HL
INIWIHOZA

yyES

W3 YLVA M3AN
SHL 3LV IINISSY

[A4A)

H

4 3
AdOLO=EHIAa NIAID
IHL NI A¥OL1D3¥Ia

¢ ANV 3714

JLYNIGH O8NS
HOV3 Y04

I

5,978,791

Sheet 21 of 31

Nov. 2, 1999

U.S. Patent

JINVYN ANAL
Ol HLVd MNIT

[AS3S)

*

FNVYNHLY
TiNd 31v3¥d

0SES

%

AYOLO3HId
av3ayd

8VES

¢——STNINT
IOW

h 4

AYLNH
AH0.LO3dId
HOV3 ¥Od
£8ES

A

V201 21d
INYL IAVA

gyes

I

SARIINI
JHON ON

INOd
yGeS

0Z 9ld

U.S. Patent Nov. 2,1999 Sheet 22 of 31 5,978,791

|

5354
WAIT FOR
FREEZE LOCK
TO TURN OFF

i FI1G.21

FIND TFR
ENTRY

5358
DECREMENT
REFERENCE

COUNT

YES 5362
»| DELETE
TRUE FILE

REFERENCE COUNT IS
ZERO & NO DEPENDENT
SYSTEMS IN TFR?

v

5364

REMOVE FILE ID
AND COMPRESSED
FILE ID

U.S. Patent

{

5365

GET
OPERATION

Nov. 2, 1999

Sheet 23 of 31

5,978,791

$366 555
CREATE OR YES. >
MODIFY? ASSIMILATE
S369
NEW TRUE
COPY OR DELETE YES FILE
COMPOUND? l
5378 S370
NO MODIFY USE RECORD TRUE
COUNT OF EACH NAME IN AUDIT
COMPONENT FILE
¢
\ 4
S379

FOR EACH PARENT
DIRECTORY OR FiLE,
UPDATE USE COUNT,

LAST ACCESS AND

MODIFY TIMES

!

U.S. Patent

FIG. 23

Nov. 2, 1999

Sheet 24 of 31

v

5382
VERIFY
GROOMING
LOCK OFF

S384
SET
GROOMING
LOCK

5386

SET GROOM
COUNTS

5,978,791

U.S. Patent Nov. 2, 1999 Sheet 25 of 31 5,978,791

5388

FIND LDE
RECORD

FIG. 24

5390

FIND TFR
RECORD

5392

INCREMENT
GROOMING
DELETE COUNT

5394

ADJUST FILE
SIZES

U.S. Patent Nov. 2, 1999 Sheet 26 of 31 5,978,791

FIG. 25

S396
DELETE

FILE

A 4
S398
UNLOCK
GROOMING

LOCK

5,978,791

Sheet 27 of 31

Nov, 2, 1999

U.S. Patent

434

HOLVYDS
2

N3dO B
HgiHO¥d a
[4A 2]

r

AYOLOZMIA

S3A ATNO-aV3d

PASENA-Et- 1)
ONIZ8

Z0vS

LAIND
SIA avay ON
OL¥S
NOID3Y N3dO
ININYZLEa 119iHOYd AIIlO
a0vS pO¥S
ZATIVOOT
S3A sisSn@E=d ON
()92 9Old -

5,978,791

Sheet 28 of 31

Nov. 2, 1999

U.S. Patent

H

Hd41 WOHd
al 3714 N8nLaY
8 NOISHZA
Y207 INVIW
0eys

%

(9)92 914

!

AdOD

LIS

HOL1vdOS
EIN-E-

L

(&)

aIaxooi
LON HI MO0

81¥S

A

$3A

al
Tl HOLVAOS |
NNNLTY _
yZvs
314 HOLYHOS
3LVENO
90bS
Tnazevyal

NILINMIE
A13131dN0D
HNIZg

5,978,791

Sheet 29 of 31

Nov. 2, 1999

U.S. Patent

(0)L2 Old

NOLLT12d
gIHOYd

d—g3)

-

dNVN
INYL NO¥UA 3T
aNdl A31LNICI

LAHOLDHNId
ATINO-QV3Y
NI €O @300 31d
HO 003 347 O

ERIE
H0d sSQy0I3Y
AYLNZ 1A
? 3071 ININYL3d

eers

!

5,978,791

Sheet 30 of 31

Nov. 2, 1999

U.S. Patent

»

214 Lanv

0L AWINT aav|*

8¢yS

;ﬂ

A4 40
AdOD HOLVHOS
31373a

L2yS

INO A9 LNNOD
3sn 39Na3IY
LEVS
3114 3nYL
313134
0EvS oN
SI INNOD 38N
SaA 8,311 3Ny
{IWVN 3L

ON

ONSVH 3114 S3A

5,978,791

Sheet 31 of 31

Nov. 2, 1999

-U.S. Patent

ASNOLSHY
3AILVO3AN

BEYS

»

0

LAIQAVYMNMAOL 1s2n03y
34d Ol 1s3Nn03y saA— | auvmuod [0
(4445

LANNOA

3SNOdS3y
JAILISOd

ryyS

4

S3A

&Gl 31d
adSS3U4IN0D ™»O
@l 37714 S3ANON

rersS

ON

JWVN INYL

82 914 dM001

VS

]

S3A

5,978,791

1

DATA PROCESSING SYSTEM USING
SUBSTANTIALLY UNIQUE IDENTIFIERS TO
IDENTIFY DATA ITEMS, WHEREBY
IDENTICAL DATA ITEMS HAVE THE SAME

IDENTIFIERS -

This is a continuation of application Ser. No. 08/425,160,
filed on Apr. 11, 1995, which was abandoned upon the filing
hereof.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to data processing syslems and,
mare particularly, to data processing systems wherein data
itemns are identified by subsiantiaily unique identifiers which
depend on all of the data in the data items and only on the
data in the data ilems.

2. Background of the Invention

Data processing (DF) systems, computers, networks of
computers, or the like, typically offer users and programs
various ways to identify the data in the systems.

Users typically identify data in the data processing system
by giving the data some form of name. For example, a
Lypical operating system (OS) on a computer provides a file
system in which data items are nmamed by alphanumeric
identificrs. Programs typically identify data in the data
processing sysiem vsing 4 location or address. For example,
a program may identify a record in a file or database by using
a recorcd number which serves to locate that record.

In all but the most primitive operating systems, users and
programs are able {o creste and use collections of named
data iems, these collections themselves being named by
identifiers. These named collections can then, themselves,
be made part of other named collections. For example, an
OS may provide mechanisms to group files (data ilems) into
directories (collections). These directories can then, them-
selves be made part of other directories. A data ilem may
thus be identified relative lo these nested direciories using a
sequence of names, or a so-called pathname, which defines
a path through the directories o a particular dala item (file
or directory).

As another example, a database management system may
group data records (data items) into tables and then group
these tables into database files (collections). The complete
address of any data record can then be specified using the
database file name, the table name, and the record number of
that data record.

Other examples of identifying data items include: identi-
Tying files in a network file system, identifying abjects in an
object-oriented database, identifying images in an image
database, and identifying articles in a text database.

In general, the terms “data” and “data item” as used herein
refer to sequences of bits. Thus a dala ilem may be the
contents of a file, a portion of a file, a page in memory, an
object in an object-oriented program, a digital message, a
digital scanned image, a part of a video or audio signal, or
any other entity which can be represented by a sequence of
bits. The term “data processing” herein refers to the pro-
cessing of data items, and is sometimes dependent on the
type of data item being processed. For example, a data
processor for a digital image may differ from a dara pro-
cessor for an audio signal.

In all of the prior data processing systems the namcs or
identifiers provided to identify data items (the data items
being files, directories, records in the database, objects in

30

60

65

. 2
objeet-orienied programming, locations in memory or on a
physical device, or the like) are always defined relative to a
specific context. For instance, the file identified by a par-
ticular file name can only be delermined when the directory
containing the file (the context) is known. The file identified
by a pathname can be determined only when the file system
{context) is known. Similarly, the addresses in a process
address space, the keys in a database tabie, or domain names
on a giobal computer network such as the Internet are

) meaningful only because they are specified relative to a

context.

In prior art systemns for identifying data items there is no
direct relationship between the data names and the data item.
The same data name in two different contexts may refer to
different data items, and two different data names in the
same context may refer 1o the same data item.

In addition, because there is no correlation between a data
name and the data it refers to, there is no a priori way 1o
confirm that a given data item is in fact the one named by a
data name. For instance, in a DP system, if one processor
requests that another processor deliver a data item with a
given data name, the requesting processor cannot, in
general, verify that the data delivered is the correct data
{given only the name). Therefore it may require further
processing, typicaliy on the part of the requestor, to verify
that the data item it has obtained is, in fact, the item it
requesied.

A common operation in a DP system is adding a new data
item to the system. When a new data item is added to the
systemn, a name can be assigaed to it only by updating the
context in which names arc defined. Thus such systems
require a centralized mechanism for the management of
names. Such a mechanism is required even in a multi-
processing system when data items are crealed and identified
al separate processors in distinct locations, and in which
there is no other need for communication when data items
are added,

In many data processing systems or environments, data
items are transferred between different locations in the
system. These locations may be processors in the data
processing system, storage devices, memory, or the like. For
example, one processor may obtain a data item from another
processor or from an external storage device, such as a
floppy disk, 2nd may incorporate that data item into its
systern (using the name provided with that data item).

However, when a processor (or some location) obtains a
data item from another location in the DP system, il is
possible that this obtained data item is already present in the
system (either at the location of the processor or a1 some
other location accessible by the processor) and therefore a
duplicate of the data item is created. This situation is
common in a network data processing environment where
proprictary software products are installed from Hoppy disks
onlo several processors sharing a common file server. In
these systems, it is often the case that the same product witl
be installed on several systems, so that several copies of
cach file will reside on the common file server.

In some dala processing systems in which several pro-
cessors are connected in a network, one system is designated
as a cache server to maintain master copies of data iterns,
and other systems are designated as cache clients lo copy
local copies of the master data items into a [ocal cache on an
as-needed basis. Before using a cached item, a cache client
must ¢ither reload the cached item, be informed of changes
to the cached item, or confirm thal the master item corre-
sponding to the cached item has not changed. In other words,

5,978,791

3

a cache clieat must synchronize its data items with those on
the cache server. This synchronization may involve reload-
ing data items onto the cache client. The need to keep the
cache synchronized or reload it adds significant overhead to
existing caching mechanisms.

In view of the above and other problems with prior art
syslems, i is therefore desirable 1o have a mechanism which
allows each processor in a multiprocessor system to deter-
mine a common and substantially unique identifier for a data
itemn, using only the data in the data item and not relying on
any sort of context.

It is further desirable to have 2 mechanism for reducing
multiple copies of data items in a data processing system and
to have a mechanism which enables the identification of
identical data items so as to reduce multiple copies. It is
[urther desirable to determine whether two ipstances of a
data item are in fact the same data item, and to perform
various other systems’ functions and applications on data
items without relying onr any context information or prop-
erties of the data item.

It is also desirable to provide such a mechanism in such
a way as to make it transpareni to users of the data
processing system, and it is desirable that a single mecha-
nism be used to address cach of the problems described
above.

SUMMARY OF THE INVENTION

This inveation provides, in a data precessing system, a
method and apparatus for identifying a data item in the
system, where the identity of the data item depends on all of
the data in the data ilem and only on the data in the data item.
Thus the identity of a data item is indepeadent of its name,
otigin, location, address, or other information not derivable
directly from the data, and depends anly on the data itself.

This invention further provides an apparaies and a method
for determining whether a particular data ifem is present in
the system or at a location in the systcm, by cxamining only
the data identities of a plurality of data items.

Using the method or apparatus of the prescat invention,
the efficiency and integrity of a data processing system can
be improved. The present invention improves the design and
operation of a data storage system, file system, relational
database, object-oriented database, or the like that stores a
plurality of data items, by making possible or improving the
design and operation of at least some or all of the foltowing
features:

the systemn stores at most one copy of any data item at 2
given location, even when multiple data names in the system
refer to the same contents;

the system avoids copying data from source to destination
locations when the destination locations already have the
data;

the system provides transparent access to any data item by
reference only to its identity and independent of its present
lacation, whether it be local, remote, or offline;

the system caches data items from a server, so that only
the most recently accessed data items need be relained;

when the system is being used to cache data items,
problems of maintaining cache consistency are avoided;

the systemn mainiains a desired level of redundancy of data
items in a network of servers, to protect against failure by
ensuring that multiple copies of the data items are present at
cifferent locations in the system;

the system automatically archives data items as they are
created or modified;

25

30

35

45

50

55

65

4

the system provides the size, age, and location of groups
of data items in order to decide whether they can be safely
removed from a local file system;

the system can efficiently record and preserve any col-
lection of daia items;

the system can efficiently make a copy of any collection
of data items, lo support a version control mechanism for
groups of the data items;

the system can publish data items, allowing other, possi-
bly anonymous, systems in a petwork fo gain access to the
data items and to rely on the availability of the data items;

the system can maintain a local inventory of all the data
items located on a given removable medium, such as a
disketie or CD-ROM, the inventory is indeperdent of other
properties of the data items such as their name, location, and
date of creation;

the system allows closely relzied sels of data items, such
as matching or corresponding directories on disconnected
computers, to be periodically resynchronized with one
another;

the system can verify that data reirieved from another
focation is the desired or requested data, using oaly the data
identifier used to retrieve the data;

the system can prove possession of specific data items by
content without disclosing the content of the data items, for
purposss of later legal verification and to provide anonym-
ity;

the system tracks possession of specific data items accord-
ing 1o contenl by owner, independent of the name, dale, or
other properties of the data item, and tracks the uses of
specific data items and files by content for accounting
PUTpOSES.

Other objects, features, and characteristics of the present
invention as well as the methods of operation and functions
of the related elements of structure, and the combination of
paris and economies of manufacture, will become more
apparent upon considesation of the following description
and the appended claims with reference to the accompany-
ing drawings, all of which form a part of this specification.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1(g) and 1(b) depicis a typical data processing
system In which a preferred embodiment of the presemt
invention aperates;

FIG. 2 depicts a hierarchy of data Hems stored al any
location in such a data processing system;

FIGS. 3-9 depict data structures used to implement an
embodiment of the present invention; and

FIGS. 10(a)-28 are flow charis depicting operation of
various aspects of the present invention.

DETAILED DESCRIPTION OF THE
PRESENTLY PREFERRED EXEMFLARY
EMBODIMENTS

An embodiment of the present invention is now described
with reference to a typical data processing system 100,
which, with reference to FIGS. 1{e) ard 1(h), includes cne
or more processors (or computers) 102 and various storage
devices 104 connected in some way, for example by a bus
106.

Each processor 102 includes a CPU 108, a memory 110
and one or more local storage devices 112, The CPU 108,
memory 110, and local storage device 112 may be internally
connected, for example by a bus 134, Each processor 102

5,978,791

5

may also include other devices (pot shown), such as a
keyboard, a display, a printer, and the like,

In a data processing system 180, wherein more than one
processor 102 is used, that is, in a mulliprocessor system, the
processors may be in one of various relationships. For
example, two processors 102 may be in a client/server,
client/client, or a server/server relationship. These inter-
processor relationships may be dynamic, changing depend-
ing on particular situations and functions. Thus, a particular
processor 102 may change its relationship to other proces-
sors as needed, essentially setting up a peer-ta-peer relation-
ship witk other processors. In a peer-to-peer relationship,
sometimes a particelar processor 102 acts as a client
processor, whereas at other times the same processor acts as
a server processor. In other words, there is no hierarchy
imposed on or required of processors 102.

In a muitiprocessor system, the processors 102 may be
homogeneous or heterogencous. Further, in a multiprocessor
data processing system 100, some or all of the processors
102 may be disconnected from the network of processors for
periods of time. Such disconnection may be part of the
normal operation of the system 100 or it may be because a
particular processor 102 is in need of repair.

Within a data processing system 140, the data may be
organized 1o form z hierarchy of data storage elements,
wherein lower level dala storage elements are combined to
form higher level elements, This hierarchy can consist of, for
example, processors, file systems, regions, directories, data
files, seaments, and the like. For example, with reference 10
FIG. 2, the data items on a particular processor 102 may be
organized or structured as a file system T16 which comprises
regions 117, each of which comprises directories 118, cach
of which can contain ather directories 118 or files 120. Each
file 120 being made up of one or more data segments 122.

In a typical data processing system, some of all of these
elements can be named by users given cerfain implementa-
tion specific naming conventicns, the name {or pathname) of
an element being relative to a context. In the context of a
data processing system 100, a pathname is fully specified by
a processor name, a filesystem name, a sequence of zero or
more directory names identifying nested directories, and a
final file name. (Usually the lowest level elements, in this
case segments 122, cannot be named by users.)

In other words, a file system 116 is a collection of
directories 118. A direclory 118 is a coliection of named files
120—both data files 120 and other directory files 118. A file
120 is a named data item which is either a data file (which
may be simple or compound)} or a directory file 118. A

simple file 120 consists of a single data segment 122. A

compound file 120 consists of a sequence of data segments
122. A data segment 122 is a fixed sequence of bytes. An
impertant property of any data segment is its size, the
number of bytes in the sequence.

A single processor 102 may access one or more file
systems 116, and a single storage device 104 may contain
one or more file systems 116, or porticns of a file system 116,
For instance, a file systern 116 may span several storage
devices 104.

In order to implement controls in a file system, file system
116 may be divided into distinct regions, where each region
is a unit of management and control. A region consists of a
given directory 118 and is identifted by the pathname (user
defined) of the directory.

In the following, the term “location”, with respect 10 a
data processing system 100, refers to any of a particular
processor 102 in the system, a memory of a particular

(5]
o

45

55

60

65

6

processor, 4 slorage device, a semovable storage medium
(such as a floppy disk or compact disk), or any other physical
location in the system. The term “local” with respect 10 a
particular processor 102 refers to the memory and storage
devices of that particular processor.

In the following, the terms “True Name”, “data identity”
and “data identifier” refer to the substantially unique data
identifier for a particular data item. The term “True File”
refers to the actual file, segment, or data item identified by
a True Name.

A file system for a data processing system 100 is now
described which is intended to work with an existing oper-
ating system by augmenting some of the operating system’s
file management system codes. The embodiment provided
relies on the standard file management primitives for actu-
ally storing to and retrieving dala items from disk, bul uses
the mechanisms of the present invention to reference and
access those data items.

The processes and mechanisms (services) provided in this
embodiment are grouped into the following categories:
primitive mechanisms, operating syslem mechanisms,
remote mechanisms, background mechanisms, and extended
mechanisms.

Primitive mechanisms provide fundamental capabilitics
used to support other mechanisms. The following primitive
mechanisms are described:

1. Calculate True Name;

. Assimilate Data Jtem;

. New True File;

. Get True Name from Path;
. Link path to True Name;

. Realize True File from Location;
. Locate Remoie File;

. Make Truc File Local;

. Create Scratch File;

. Freeze Dircclory;

. Expand Frozen Directory;
. Delete True File;

. Process Audit File Entry;
. Begin Grooming;

15, Select For Removal; and

16. End Grooming.

Operating system mechanisms provide typical familiar
file system mechanrisms, while maintzining the data struc-
lures required to offer the mechanisms of the present inven-
tion. Operating sysiem mechanisms are designed 1o augment
cxisting operaiing systems, and in this way to make the
present invention compatible with, and generally transparent
to, existing applications. The following operaling system
mechanisms are described:

O A =1 D Lh R L

Pt
(=]

—=
PN T S]

1. Open File;

2. Close File;

3. Read File;

4. Write File;

5. Delete File or Directory;
6. Copy File or Directory;

7. Move File or Directory;
8. Get File Status; and

9. Get Files in Directary.

Remote mechanisms are used by the operating system in
responding to requests from other processors. These mecha-
nisms enable the capabilities of the present invention in a

5,978,791

7

peer-lo-peer network mode of operation. The following
remote mechanisms are described:

1. Locate True File;

. Reserve True File;

. Request True File;
. Retire True File;

. Cancel Reservation;
. Acquire True File;

. Lock Cache;

. Update Cache; and

9. Check Expiration Date.

Background mechanisms are intended to run occasionally
and at a low priority. These provide antomated management
capabilities with respect to the present invention. The fol-
jowing background mechanisms are described:

1. Misror True File;

2. Groom Region;

3. Check for Expired Links; and

4. Verify Region; and

5. Groom Source List.

Extended mechanisms run within application programs
over the operating system. These mechanisms provide solu-
tions 1o specific problems and applications. The following
extended mechanisms are described:

1. Inventory Existing Directory;

. Inventory Removable, Read-only Files;
. Synchronize directories;

Publish Region;

Retire Directory;

. Realize Directory at location;

Verify True File;

. Track for accounting purposes; and

. Track for licensing purposes.

The file system herein described maintains sufficient
information to provide a variety of mechanisms not ordi-
narily offered by an operating system, some of which are
listed and described here. Various processing performed by
this embodiment of the present invention will now be
described in greater detail.

In some embodiments, some files 120n a data processing
systern 100 do not have True Names because they have been
recently received or created or modified, and thus their True
Names have not yet been computed. A file that does not yet
have a True Name is called a scratch file. The process of
assigning a True Name 10 a file is referred to as assimilation,
and is described later. Note that a scraich file may bave a
user provided name.

Some of the processing performed by the present inven-
tion can take place in a backgronnd mode or on 2 delayed or
as-nceded basis. This background processing is used 1o
determine information that is not irnmediately required by
the system or which may never be required. As an example,
in some cases a scratch file is being changed at a rate greater
than the rate at which it is useful to determine its True Name.
In these cases, determining the True Name of the file can be
postponed or performed in the background.

Data Structures

The following data structures, stored in memory 180 of
one of more processors 102 are used to implement the
mechanisms described herein. The data structures can be
Jocal ta each processor 102 of the system 100, or they can
reside on only some of the processors 102,

The data structures described are assumed to reside on
individual peer processors 102 in the data processing system

00 ~] O n B 2

W N O R W

10

30

35

40

50

55

60

65

8

100. However, they can also be shared by placing them on
a remote, shared file server (for instance, in a local area
network of machines). In order to accommodate sharirg data
siruciures, it is necessary that the processors accessing the
shared database use the appropriate locking techniques to
ensure that changes to the shared database do not imerfere
with one another but are appropriately serialized. These
focking techniques are well understood by ordinarily skilled
programmers of distributed applications.

It is sometimes desirable to allow some regions to be local
1o a particular processor 102 and other regions to be shared
among processors 102, (Recall that a region is a unit of file
syslem management and control consisting of a given direc-
tory ideatified by the pathname of the direclory.) In the case
of local and shared regions, there would be both local and
shared versions of each data structure. Simple changes to the
processes described below must be made to ensure that
appropriate data structures are selected for a given operation.

The local directory extensions (LDE} 1able 124 is a data
structure which provides information about files 120 and
directories 118 in the data processing system 100. The local
directory extensions table 124 is indexed by a pathname or
contextual name (that is, a user provided name) of a file and
includes the True Name For most files. The information in
local directory extension lable 124 is in addition to that
provided by the native file system of the operating sysiem.

The True File registry (TFR) 126 is a data store for listing
actual data items which have True Names, both files 120 and
segments 122. When such data items occur in the True File
registry 126 they are known as True Files. True Files are
identified in True File regisiry 126 by their True Names or
identities. The table True File registry 126 also slores
location, dependency, and migration information zbout True
Files.

The region table (RT) 128 defines arcas in the network
slorage which are to be managed separately. Region table
128 defines the rules for access to and migration of files 120
among various regions with the local file system 116 and
remote peer file systems.

The source table (ST) 130 is a list of the sources of True
Files other than the current True File registry 126. The
source table 130 includes removable volumes and remote
processors.

The audit file (AF) 132 is a list of records indicating
changes to be made in jocal or remote files, these changes to
be processed in background.

The accounting log (AL) 134 is a log of file transactions
used to create accounting information in a manner which
preserves the identity of files being tracked independent of
their name aor tocation.

The license table (LT) 136 is a table identifying files,
which may only be used by licensed uscrs, in a manner
independent of their name or lacation, and the users licensed
to use them.

Detailed Descriptions of the Data Structures

The following table summarizes the fields of an local
directory extensions lable entry, as illustrated by record 138
in FIG. 3,

Field Description

Region ID identifics the region in which this file is
contained.

Pathname the user provided name or contextural name

5,978,791

9

10

-continued -continued
Field Description Field Description
of the file or directory, relative i the underlying operation system, The
region in which it ocenrs. 5 True File ID is absent if the
True Name the computed True Name or identily of the actual file is not currently
file or directory. This True Name is not present at the current location.
always up th date, and it is set to a Use count number of other records on this
special value when a file is modified and processor which identify this True
is later recomputed in the backpround. File.
Type indicates whether the file is a data file 10
or a directory.
Scratch the physical location of the file in the . . .
File ID file system, when no True Name has been A region table 1‘2.8, Spf?fflﬁf-‘d by a dm?ctory pathnarpe,
calenlated for the file. As noted above, records storage policies which allow files in the file system
) such a fils is ealled 2 Sct:f“cb file. 1o be stored, accessed and migrated in different ways.
Time of the Last acciss time to (his fle. IF this 15 Storage policies are programmed in a configurable way
last file is a dircctory, this is the last N =
access access Hime to any file in the directory. using a set of rules described below.
Time of the time of iast change of this file. If . - - .
last modi- this file is a disectory, this is the last Each region }ablelrecord 142 o'f region table 128 includes
frcation modification time of any fils in the the fields described in the following table (with reference to
directory. 5 FIG. 5):
Safe flag indicates that this file (and, if this file 20
is a directory, all of its subordinate
files) have been backed vp on some other i L.
system, and il is therefore safe to remove Field Description
them.
Lock flag indicates whether a file is locked, that Regien [D t:;?:ll) tsed identifier for chis
Lo . ~ 2] X
fs, il is being modified by Lhe tocal pro 3 Region file system file system on the local processor of
cessor or a remote processor. Only one 1 . P
e . which this region Is a part.
processor may wmodify a file at a time. Reri o) . L
X . - ! . egion pathname a palhname relalive to the region file
Size the full size of this directory (including . ;
N . o system which defines the location of
all subordinale files), if all files in it thi : < :
. iis region. The region consists of
were fully expanded and duplicated. For a . . .
. . L L all files and directories subordinate
file that is aot a directory this is the 3n . .
. J to Lhis pathname, except those in a
size of the aclual True File, . . . -
. . . region subordinate to this region.
Owner the identity of the user who owns this Mi . -
. 3 . irfor processor(s) zero or more identifiers of processors
file, for accounting and license tracking -) . .
oses which are to keep mirror or archival
purposes- copies of all files in the current
region. Melliple misror processors
35 can be defined to form a mirror group.
Each record of the True File registry 126 has the ficlds Mirror duplication number ol copies of each Rle in this
. . - . ion that should be retained i
shown in the True File registry record 140 in FIG. 4. The count e gr:u; ould be retained i
True File registry 126 consists of the database described in Region status specifies whether this region is local
the table below as well as the actual True Files identified by to a singfe processor 102, shared by
the True File 1Ds below. 40 several processors 102 (if, for
inslance, it resides on a shared file
server), or maraged by a remote
- . PIOCESSOT.
Field Descriplion Policy the migration policy Lo apply to Lhis
e region. A single region might
True Name computed Frue Name or identity of 25 participate in several policies. The
the file. . . policies are as follows (paramelers in
C_Dmpn:ssed compressed version of the True_ File brackets are specified as pan of the
Tile ID may be stored insteaded of, or in policy):
addx_uun lu,'an uncompr‘essed rcgion’ s = cachod version from
versian. This field provides the [processor ID];
identity of the actual region is a member of a mirror set
representation gf the compressed 50 defined by [processor ID].
. version of the file. region is o be archived on
Grooming tentative count of how many [processar ID).
delete count rcferr.:uccs h‘ave been sel_ected for Tegion is to be backed up locally,
deletion during a grooming by placing new copies in [region
operation. D).
Time of last mosl recenl c}ule and time the 55 region s read only and may not be
access content of this file was accesscd. changed.
Expiration date and time after which this file region is published and expires on
may be deleted by this server. [date].
Dependent processor l’D_s of other processors Eiles in this region should be
Processors which contain references to this compressed.,
True File. 0
Source [Ds scurce [D(s) of zero or more
sources form which this fils or i i .
data item may be retrieved. A source 1able 130 identifics a source location for True
True File [D identity or dlﬁi. location of the Files. The source table 130 is also used io identify client
?Ec'“;:cpzﬁ{;: S:;ii‘:“ﬁ‘;:“ of processors making reservations on the current processor.
sufficient to use & filename in the 65 Each source record 144 of the source table 130 includes the

registration directory of the

fields summarized s the following table, with reference to
FIG. 6:

5,978,791

Field Description Field Dreseription
source [D internal identifier used to identity a True Name True Name of a data item subject to
particular source. 5 license validation.
source Lype of source location: licensee identily of 2 user authorized to have
type Removable Storage Volume access lo this object.
Local Region
Cache Server
Mirror Group Server Various other data struciures are employed on some or all
Sgg}’;;;“;if::f’ 10 of the processors 102 in the data processing system 100.
Client Each processor 102 has a global freeze lock (GFL) 152
source includes informarion about the righls (FIG. 1), which is used to preveni synchronization errors
rights of lhlSkProc?iSSO? such as whether it when a directory is frozen or copied. Any processor 102 may
;zl:aaiier:l:c[o‘:?: processor 1o siore include a special archive directory (SAD) 154 into which
source measurement of the bandwidth, cost, 15 directaries may be t_:opied for lhe.purposes of archival. Any
availabilily and reliability of the connection o processor 102 may include a special media directory (SMD)
“;'_S_SOWCC of True Fllesf- The avail- 156, into which the directories of remaovable volumes are
:e:tgl‘;;ﬁz]?sj:is fam among stored to form a media inventory. Each processor has a
souree information on how the local processor N grooming lock _158, ‘_VhiCh is set d‘-}fing a grooming opera-
location is to access the source. This may be, 20 tion. During this peried the grooming delete count of True
for example, the mme of a removable File registry cntrics 140 is active, and no True Files should
:ﬁﬁegi:::]:l;% (c:fr ;hi;ifﬁfff’f P be deleted until grooming is complete. While grooming is in
FEMIOTE processor. cffect, grooming .informalion includes a table of pathnames
selected for deletion, and keeps track of the amount of space
_) 25 that would be freed if all of the files were deleted.
The audit file 132 is a table of events ordered by Primitive Mechanisms
timestamp, each record 146 in audit file 132 including the The first of the mechanisms provided by the present
fields summarized in the following table {with reference 1o invention, primitive mechanisms, are now described. The
FIG. 7): mechanisms described here depend on underlying data man-
30 apement mechanisms o create, copy, read, and delete data
" . items in the True File registry 126, as identified by a True
Ficld Description File ID. This support may be provided by an underbying
Original Name path of the file i question. operating system or disk storage manager.
Oporation whether the file was created, Tead, The following primitive mechanisms are described:
wriiten, copied or deleted. 35 Y ,
Type specifies whether the source is a file L Cal(:'Ul_d[e’ True Name;
or a directors. 2. Assimilate Data ltem;
Processor 1D ID of the remote processor generating 3. New True File:
this event {if not local).) . !
Timestamp time and date file was closed {required 4. Get True Name from Path;
only for accessed/modified files). 40 5. Link Path to True Name;
Palthname WName of the file {tequired only for . . ’ .
rename). {reg Y 6. Realize True File from Location;
True Name computed True Name of Lhe file. This is 7. Locate Remote File;
uscd by remote systems lo mirror changes . .
to the directory and is filled in during 8. Make True File Lacal;
background processing. 45 9. Create Scraich File;
10. Freeze Directory;
Each record 148 of the accounting log 134 records an 11. Expand sze‘j‘ Directory;
event which may later be used to provide information for 12. Delete Truc File;
billing mechanisms. Each accounting log entry record 148 13. Process Audit File Entry;
@nc]udes at least the information summarnized in the follow- 0 14 Begin Greoming;
ing 1able, with reference to FIG. &: 15. Select For Removal: and
16. End Grooming.
Field Description 1. Calculate True Name
55 A True Name is computed using a function, MD, which
date of date and time of this log eatry. reduces a data block B of arbitrary length to a relatively
f;:?of Eatry types include create file small, fixed size identifier, the Truec Name of the data block,
catry delcte file, and tansmil 8o, such that the True Name of the data block is virtually
Truc Name True Name of data item in question. guaranteed 1o represent the data block B and only data block
owner identity of the user responsible for 0 B.
this action. The function MD must have the following properties:
1. The domain of the function MD is the set of all data
Each record 150 of the licemse table 136 records a items. The range of the function MD is the st of True
relationship between a licensable data item and the user Names.
licensed to have access to it. Each license 1able record 150 65 2. The funciion MD must take a data item of arbitzary

includes the information summarized in the following table,
with reference to FIG. 9:

length and reduce it 1o an integer value in the range 0
to N-1, where N is the cardinalily of the set of True

5,978,791

13
Names. That is, for an arbitrary length data block B,
0=MD(B)=N.

3. The results of MD(B) must be evenly and randomly
distributed over the range of N, in such a way that
simple or regular changes to B are virtually guaranteed
1o produce a different value of MD(B).

4, It must be computationally difficult to find a different
value B' such that MD(B)=MD(B").

5. The function MD(B) must be efficiently computed.

A family of functions with the above properties are the
so-called message digest functions, which are used in digital
security systems as techniques for authentification of data.
These functions (or algorithms) include MDd4, MD3, and
SHA.

In the presently preferred embodiments, cither MD5 or
SHA is employed as the basis for the computation of True
Naines. Whichever of these two message digest functioss is
employed, that same function must be employed on a
system-wide basis.

It is impossible to define a function having a unique
output for each possible input when the number of elements
in the range of the function is smaller than the number of
clements in its domain. However, a crucial observation is
that the actual data items that will be encountered in the
operation ol any syslem embodying this invention form a
very sparse subsel of all the possible inputs.

A colliding set of dala ilems is defined as a sel wherein,
for one or more pairs x and y in the set, MD(x)=MD(y).
Since a function conforming to the requirements for MD
must evenly and randomly distribute its outputs, i is
possible, by making the range of the function large enough,
to make the prabability arbitrarily small that actual inputs
encountered in the operation of an embodiment of this
invention will form a colliding set.

To roughly quantify the probability of a collision, assume
that there are no more than 2°° storage devices in the world,
and that each storage device has an average of at most 2°°
different data items. Then there are at most 2°° data items in
the world. If the outpuls of MD range between 0 and 21%%,
it can be demonstrated that the probability of a collision is
approximately 1 in 2*°. Details on the derivation of these
probability valucs are found, for example, in P. Flajolet and
A. M. Odlyzko, “Random Mapping Statistics,” Lecture
Notes in Computer Science 434: Advances in Cryptology—
Eurcerypt '89 Proceedings, Springer-Verlag, pp. 329-354.

Note that for some less-preferred embodiments of the
present invention, lower probabilities of uniqueness may be
acceptable, depending on the types of applications and
mechanisms used. In some embodiments it may also be
useful o have more than one level of True Names, with
some of the True Names having different degrees of unique-
pess. If such a scheme is implemented, il is necessary o
ensure that less unique True Names are not propagated in the
systemn.

While the invention is described herein using only the
True Name of a data item as the ideatifier for the data item,
other preferred embodiments use tagged, typed, categarized
or classified data items and use a combination of both the
True Name and the tag, type, category or class of the data
ilem as an identifier. Examples of such categorizations are
files, directories, and segments; executable files and data
files, and the like. Examples of classes are classes of objects
in an object-oriented system. In such a system, a lower
degree of True Name uniqueness is acceptable over the
entire universe of data items, as long as sufficient uniqueness
is provided per category of data items. This is because the
tags provide an additional level of uniqueness.

10

20

25

30

35

45

65

14

A mechanism for calculating a True Name given a data
item is now described, with reference 10 FIGS. 10{4) and
10(b).

A simple data item is a data ilem whose size is less than
a particular given size (which must be defined in each
particular implementation of the invention). To delermine
the True Name of a simple daia item, with reference to FiG.
18{a), first compute the MD function (described above) on
the given simple data Hem (Step $212). Then append to the
resulting 128 bils, the byte length module 32 of the data item
(Step $214). The resulting 160-bit value is the True Name of
the simple data item,

A compound data item is ane whose size is greater than
the particular given size of a simple data itemn. To determine
the True Name of an arbitrary (simple or compound) data
item, with reference to FIG. 10(), first determine if the data
item is a simple or a compound data item (Step $216). If the
data item is a simple data item, then compute its True Name
in step 5218 (using steps 5212 and 5214 described above),
otherwise partition the data item into segments (Step 5220}
and assimilate each segment (Step $222) (the primitive
mechanism, Assimilate a Data Item, is described below),
computing the True Name of the segment. Then creale an
indirect block consisting of the computed segment True
Names (Step $224). An indircct block is a data item which
consists of the sequence of True Names of the segments.
Then, in step 5226, assimilate the indirect block and com-
pute its True Name. Finally, replace the final thirty-two (32)
bits of the resuliing True Name (that is, the length of the
indirect block) by the length modulo 32 of the compound
data item (Step 5228). The result is the True Name of the
compound data item.

Note that the compound data item may be so large that the
indirect block of segment True Names is itsclf a compound
data item. In this case the mechanism is invoked recursively
until only simple data items are being processed.

Boih the use of segments and the attachment of a length
to the True Name are not strictly required in a system using
the present invention, but are currently considered desirable
features in the preferred embodiment.

2. Assimilate Data tem

A mechanism far assimilating z data item (scratch file or
segment) into a file system, given the seratch file 1D of the
data ilem, is now described with reference to FI1G. 11. The
purpose of this mechanism is to add a given data item 1o the
True File registry 126. If the data itemn already exists in ihe
True File registry 126, this will be discovered and used
during this process, and the duplicate will be eliminated.

Thereby the system stores at most one copy of any data
item or file by content, cven when muliiple names refer 1o
the same content.

First, determine the True Name of the data itlem corre-
sponding 1o the given scraich File ID using the Calevlale
True Name primitive mechanism (Step S230). Next, look for
an eniry for the True Name in the True File registry 126
{Step 5232) and determine whether a True Name entry,
record 140, exists in the True File registry 126. If the entry
record includes a carresponding True File IT) or compressed
File ID (Step S237), delete the file with the scraich File ID
(Step $238). Otherwise store the given True File ID in the
entry record (step S239).

If it is determined (in step S232) that no True Name entry
exists in the True File registry 126, then, in Step S236, create
a new entry in the True File registry 126 for this True Name.
Set the True Name of the entry to the calculated True Name,
set the use count for the new entry to one, store the given
True File T in the entry and set the other fields of the entry
as appropriate.

5,978,791

15

Because this procedure may take some time to compute,
it is intended to run in background after a file has ceased to
change. In the meantime, the file is considered an unassimi-
lated scratch file.

3. New True File

The New True File process is invoked when processing
the audit file 132, some time after a True File has been
assimilated (using the Assimilate Daia Item primitive
mechanism). Given a local directory extensions table entry
record 138 in the local directory extensions table 124, the
New True File process can provide the following steps (with
reference 1o FIG. 12), depending on how the local processor
is configured:

First, in step $238, examine the local directory extensions
table entry record 138 to detcrmine whether the file is locked
by a cache server. If the file is locked, then add the ID of the
cache server to the dependent processor kst of the True File
registry table 126, and then send a message o the cache
server to update the cache of the current processor using the
Update Cache remote mechanism (Step 242).

If desired, compress the True File (Step 5246), and, if
desired, mirror the True File using the Mirror True File
background mechanism (Step 5248).

4. Get True Name from Path

The True Name of a file can be used to identify a file by
contents, to confirm that a file matches its original contents,
or o compare two files. The mechanism to get a True Name
given the pathnarne of a file is now described with reference
to FIG. 13.

First, scarch the local directory exiensions table 124 for
the entry record 138 with the given pathname (Step $250).
I the pathname is not found, tiis process fails and no True
Name corresponding to the given pathname exists. Next,
determine whether the local directory exlensions table entry
record 138 includes a True Name (Step $252), and if so, the
mechanism’s task is complete. Otherwise, determine
whether the local directory exiensions table entry record 138
identifics a directory (Step $234), and if so, freeze the
directory (Step S256) (the primitive mechanism Freeze
Directory is described below).

Otherwise, in step 5258, assimilate the file (using the
Assimilate Data Item primitive mechanism) defined by the
File ID field to generate its True Name and store its True
Name in the Iocal directory extensions entry record. Then
retern the True Name identified by the local directory
extensions table 124.

5. Lick Path to Trie Name

The mechanism to liok a path to a True Name provides a

way of creating a new directory entry record identifying an

existing, assimilated file. This basic process may be used to s

copy, move, and rename files without a need to copy their
contents. The mechanism {o link a path to a True Name is
now described with reference to FIG. 14.

First, if desired, confirm that the True Name exists locally
by searching for it in the True Name regisiry or local
directory extensions table 135 (Step $260). Most uses of this
mechanism wil require this form of validation. Next, scarch
for the path in the local direciory extensions table 135 (Step
5262). Confirm that the dircctory containing the file named
in the path aiready exisis (Step S264). If the named file itself
exists, delete the File using the Delete True File operating
system mechanism (see below) (Step S268).

Then, create an entry record in the local directory exten-
sions with the specified path (Step S270) and update the
entry record and other data structures as follows: fill in the
True Name field of the entry with the specified True Name;
increment the use count for the True File registry entry

30

40

60

63

16

record 140 of the corresponding True Name; note whether
the entry is a directary by reading the True File to see if it
contains a tag {(magic number) indicating that it represents a
frozen directory (see also the description of the Freeze
Directory primitive mechanism regarding the tag); and com-
pute and set the other fields of the local directory extensions
appropriately. For instance, search the region table 128 1o
identify the region of the path, ard set the time of last access
and time of last modification to the current time.

6. Realize True File from Location

This mechanism is used to try to make a local copy of a
True File, given its True Name and the name of a source
location (processor or media) that may contain the True File.
This mechanism is now described with reference to FIG. 15,

First, it step $272, determine whether the focation speci-
fied is a processor. If it is determined thal the location
specified is a processor, then send a Request True File
message (using the Request True File remote mechanism) to
the remote pracessor and wait for a response {Step S274). If
a negative response is received or no response is received
after a timeout period, this mechanism fails. If a positive
response 1s received, enter the True File returned in the True
File registry 126 (Step S$276). (If the file received was
compressed, enter the True File ID in the compressed File ID
field.)

If, on the other hand, it is determined in step S272 that the
location specified is nol a processor, then, if necessary,
request the user or operator to mount the indicated volume
(Step 5278). Then (Step $280) find the indicated file on the
given volume and assimilate the file using the Assimilate
Data Item primitive mechanism. If the volume does mot
contain a True File registry 126, search the media inventory
10 find the path of the file on the volume. If no such file can
be found, this mechanism fails.

Al this point, whether or not the location is determined (in
step 5272) 1o be a processor, if desired, verify the True File
{in step S282).

7. Locate Remote File

This mechanism allows a processor to locate a file or data
item from a remote source of True Files, when a specific
souree is unknown or unavailable. A client processor system
may ask one of several or many sources whether it can
supply a dala cbject with a given True Name. The steps o
perform this mechanism are as follows (with reference to
FIGS. 16{a) and 16(b).

The client processor 102 uses the source table 145 to
select one or more source processors (Step S284). If no
source processor can be found, the mechanism fails. Next,
the clicut processor 102 broadcasts to the selected sources a
requesl lo locate the file with the given True Name using the
Locate True File remote mechanism (Step S286). The
request to locate may be augmented by asking to propagate
this request to distant servers. The cliemt processor then
wails for one or more servers 1o respond positively (Step
S288). After all servers respond negatively, or after 2 timeout
period with no positive response, the mechanism repeats
sclection (Step S284) two attempt to identfy altermative
sources. If any selected source processor responds, its pro-
cessor [D is the result of this mechanism. Store the processor
ID in the source field of the True File registry entry record
140 of the given True Name (Step S290).

If the source location of the True Name is a different
processor or medivm than the destination (Step 5290a),
perform the following steps:

(i) Look up the True File registry entry record 14(for the
carresponding True Name, and add the source location ID 1o
the list of sources for the True Name (Step $290b); and

5,978,791

17

{i1) If the source is a publishing system, determine the
expiration dale on the publishing system for the True Name
and add that to the list of sources. If the source is not a
publishing system, send a message to reserve the True File
on the source processor (Step S290c).

Source selection in step S284 may be based on optimi-
zations involving general availability of the source, access
time, bandwidth, and transmission cost, and ignoring pre-
viously selected processors which did not respond in step
S288.

8. Make True File Local

This mechanism is used when a True Name is known and
a loczlly accessible copy of the corresponding file or data
item is required. This mechanism makes it possible to
actually read the data in a True File. The mechanism takes
a True Name and returas when there is a local, accessible
copy of ke True File in the True File registry 126. This
mechanism is described here with reference to the flow chart
of FIGS. 17(¢} and 17(b).

First, look in the True File registry 126 for a True File
entry tecord 140 for the corresponding True Name (Step
$292). If no such entry is found this mechanism fails. If
there is already a True File ID for the entry (Step §294), this
mechanism’s task is complete. If there is a compressed file
ID for the eniry {Step S296), decompress the file corre-
sponding 1o the file 1D (Step $298) and store the decom-
pressed file 1D in the entry (Step $300). This mechanism is
then complete.

If there is no True File ID for the entry (Step S294) and
there is no compressed file ID for the entry (Step $296), then
continue searching for the requested file. At this time it may
be necessary to notify the user that the system is searching
for the requested file.

If there are one or more source IDs, then select an order
in which to attempl to realize the source ID (Step $304). The
order may be based on optimizations involving general
availability of the source, access time, bandwidth, and
transmission cost. For each source in the order chosen,
realize the True File from the source location (using the
Realize True File from Location primitive mechanism), until
the True File is realized (Step 5306). If it is realized,
continue with step $294. If no known source can realize the
True File, usc the Locate Remote File primitive mechanism
1o attempl Lo find the True File (Step 8308). If this succeeds,
realize the True File from the identified source focation and
continue with step 3296.

9. Create Scratch File

A scratch copy of a file is required when a file is being
created or is about to be modified. The scratch copy is stored
in the file system of the undertying operating system. The
scralch copy is eventually assimilated when the audil file
record entry 146 is processed by the Process Audit File Entry
primitive mechanism. This Create Scraich File mechanism
requires a local directory extensions table entry record 138.
When it succeeds, the local directory extensions table entry
record 138 contaios the scratch file 1D of a scratch file that
is not contained in the True File registry 126 and that may
be maodified. This mechanism is now described with refer-
ence to FIGS. 18(a) and 18(b).

First delermine whether the scratek file should be a copy
of the existing True File (Step S310). If so, continue with
step $312. Otherwise, determine whether the local directory
extensions table eniry record 138 identifies an existing True
File (Step $316), and if so, delete the True File using the
Delete True File primitive mechanism (Step S318). Then
create a new, empty scraich file and store its scratch file ID
in the local directory extensions table entry record 138 (Step
5320). This mechanism is then complete.

10

15

30

35

40

55

60

65

18

If the local directory extemsions 1able entry record 138
identifies a scratch fite 1D (Step $312), then the entry already
has a scratch file, so this mechanism succeeds.

If the local directory extensions table entry record 138
identifies a True File ($316), and there is no True File ID for
the True File (S312), then make the True Fite local using the
Make ‘True File Local primitive mechanism (Step S322). If
there is still no True File 1D, this mechanism fails.

There is now a local True File for this file. If the use count
in the corresponding True File registry entry record 140 is
one (Step $326), save the True File ID in the scratch file ID
of the local directory extensions table entry record 138, and
remove the True File registry entry record 140 (Step S328).
(This step makes the True File into a scratch file.) This
mechanism’s task is complete.

Otherwise, if the use count in the corresponding True File
registry entry record 140 is not one (in step 8326), copy the
file with the given True File ID 1o a new scratch file, using
the Read File OS mechanism and store its file ID in the focal
directory extensions table entry record £38 (Step 3309, and
reduce the use count for the True File by one. If there is
insufficient space to make a copy, this mechanism fails.
10. Freeze Directory

This mechanism freezes a directory in order to calculate
its True Name. Since the True Name of a directory is a
function of the files wilhin the direclory, they must not
change during the computation of the True Name of the
directory. This mechanism requires the pathname of a direc-
tory to freeze. This mechanism is described with reference
to FIGS. 1%(a) and 19(b).

In step S332, add one to the global freeze lock. Then
search the local directory extensions table 124 1o find each
subordinate data file and direclory of the given directory, and
freeze cach subordinate dircctory found using the Freeze
Directory primitive mechanism (Step S334). Assimilate
each unassimilated data file in the directory using the
Assimilate Data Item primitive mechanism (Step $336).
Then creale & data item which begins with a lag or marker
(a “magic number”) being a unique data item indicating that
this data item is a frozen directory (Step S337). Then list the
file name and True Name for cach file in the current
directory (Slep $338). Record any additional information
required, such as the type, time of last access and
modification, and size (Step S340). Next, in step 8342, using
the Assimilate Data ltem primitive mechanism, assimikate
the data item created in step $338. The resuliing True Name
is the True Name of the frozen directory. Finally, subiract
one from the global freeze jock {Step 5344).

11. Expand Frozen Directory

This mechanism expands a frozen directory in a given
Iocation. It requires a given pathname imto which to expand
the directory, and the True Name of the directory and is
described with reference to FIG. 20.

First, in step 5346, make the True File with the given True
Name local using the Make True File Local primitive
mechanism. Then rezd each directory entry in the local file
created in step S346 (Step S348). For each such directory
eatry, do the following:

Create a full pathname using the given pathname and the
file name of the entry (Step $350); and

link the created path to the True Name (Step $352) using
the Link Path to True Name primitive mechanism.

12. Delete True File

This mechanism deletes a reference to a True Name. The
underlying True File is not removed from the True File
registry 126 unless there are no additional references to the
file. With reference to FIG. 21, this mechanism is performed
as follows:

5,978,791

19

If the global freeze lock is on, wait until the global freeze
lock is turned off (Step S354). This prevents deleting a True
File while a directory which might refer to it is being frozen.
Next, find the True File registry entry record 140 given the
True Name (Step $336). If the reference count field of the
True File registry 126 is greater than zerc, subtract one from
the reference count field (Step S358). If it is determined {in
step $360) that the reference count ficld of the True File
registry entry record 140 is zero, and if there are no
dependent systems listed in the True File regisiry entry
record 140, then perform the following steps:

(1) If the True File is a simple data item, then delete the
True File, otherwise,

(ii} (the True File is a compound data item) for each True
Name in the data item, recursively delete the True File
corresponding 1o the True Name (Step S362).

(iii) Remove the file indicated by the True File ID and
compressed file 1D from the True File registry 126, and
remove the True Tile regisiry entry record 140 (Step $364).
13. Process Audit File Entry

This mechanism performs tasks which are required 1o
maintain information in the local directory exiensions table
124 and True File registry 126, but which can be delayed
while the processor is busy doing more time-critical tasks.
Entrics 142 in the audit file 132 should be processed al a
background priority as long as there are entries to be
processed. With reference to FIG. 22, the steps for process-
ing an entry are as follows:

Determire the operation in the entry 142 currently being
processed (Step S365). If the operation indicates that a file
was created or written (Step $366), thea assimilate the file
using the Assimilate Data Item primitive mechanism (Step
$368), use the New True File primitive mechanism to do
additional desired processing (such as cache update,
compression, and mirroring) (Step S369), and record the
newly computed True Name for the file in the audit file
record entry (Step $370).

Otherwise, if the entry being processed indicates that a
compound data item or directory was copied (or deleted)
(Step $376), then for cach component True Name in the
compound data item or directory, add (or subtract) one to the
use count of the True File registry entry record 140 corre-
sponding to the component True Name (Step S378).

In all cases, for each parent directory of the given file,
update the size, fime of last access, and time of Iast
modification, according to the operation in the audit record
(Step S379).

MNote that the audit record is nat removed after processing,
but is retained for some reasonable period so that it may be
used by the Synchronize Directory extended mechanism 10
allow a disconnected remote processor to update its repre-
sentation of the local system.

14. Begin Grooming
This mechanism makes it possible to select a sel of files

for remova) and determine the overall amount of space tobe s

recovered. With reference 10 FIG. 23, first veniy that the
global grooming leck is currently unlocked (Step 8382).
Then set the global grooming lock, set the total amount of
space freed during grooming {o zero and empty the list of
files selected for deletion (Step S384). For ¢ach True File in
the True File registry 126, set the delete count to zero (Step
5386).
15. Select For Removal

This grooming mechanism tentatively selects a pathname
to allow its corresponding True File to be removed. With
reference to FI1G. 24, fizst find the local directory extensions
1able entry record 138 corresponding to the given pathname

25

40

45

65

20

{Step S388). Then find the True File registry eatry record
140 corresponding to the True File name in the local
directory exiensions table entry record 138 (Step S390). Add
one to the grooming delete count in the True File registry
entry record 140 and add the pathname to a list of files
selected for deletion (Step S392). If the grooming delete
count of the True File registry entry record 140 is equal 10
the use count of the True File registry entry record 140, and
if the there are no entries in the dependency list of the True
Tile registry entry record 140, then add the size of the file
indicated by the True File ID and or compressed file ID tw
the total amount of space freed during grooming (Step
S394).

16. End Grooming

This grooming mechanism ends the grooming phase and
removes all files selected for removal. With reference to
FIG. 25, for each file in the Hist of files selected for deletion,
delete the file (Step §396) and then uniock the global
grooming lock (Step S398).

Operating System Mechanisms

The next of the mechanisms provided by the present
invention, operating system mechanisms, are now described.

The following operating system mechanisms are
described:

. Open File;

. Close File,

. Read File;

. Write File;

. Delete File or Directory;
. Copy File or Directory;
. Move File or Directory;
. Get File Status; and

9. Gel Files in Directory.
1. open File

A mechanism 1o open a file is described with reference 10
FIGS. 26(z) and 26(p). This mechanism is given as input a
pathname and the type of access required for the file (for
cxample, read, write, read/write, create, etc.) and produces
cither the File ID of the file to be opened or an indication that
na file should be opened. The local directory extensions
table record 138 and region table record 142 associated with
the opened file are associated with the open file for later use
in other processing functions which refer to the file, such as
read, write, and close.

Firsl, determine whether or not the named file exists
locally by examining the local directory extensions table 124
to determine whether there is an entry corresponding to the
given pathname (Step S400). If it is determined that the file
name does not exist locally, then, using the access type,
determine whether or not the file is being created by this
opening process (Step 5402). If the file is not being created,
prohibit the open (Step S404). If the file is being created,
create a zero-length scratch file using an entry in local
directory extensions table 124 and produce the scratch file
1D of this scratch file as the result (Step S406).

If, on the other hand, it is determined in step 5400 that the
file name does exist locally, then deiermine the region in
whick the file is located by searching the region table 128 10
find the record 142 with the longest region path which is a
prefix of the file pathname (Step S408). This record identi-
fies the region of the specified file,

Next, determine using the access type, whether the file is
being opened for writing or whether it is being opened only
for reading (Step S410). If the file is being opened for
reading only, then, if the file is a scratch file (Step S419),
refurn the scratch File ID of the file (Step S424). Otherwise

G0 =1 v AL

5,978,791

21

get the True Name from the local directory cxtensions table
124 and make a local vession of the True File associated with
the True Name using the Make Tre File Local primitive
mechanism, and then retuzn the True File ID associated with
the True Name (Step 5420).

If the file is not being opened for reading only (Step
S410), then, if it is determined by inspecting the region table
entry record 142 that the file is in a read-only directory (Step
$416), then prohibit the opening (Step S422).

If it is determined by inspecting the region table 128 that
the file is in a cached region (Step S423), then send a Lock
Cache message to the corresponding cache server, and wait
for a return message (Step S418). If the retura message says
the file is already locked, prohibit the opening.

If the access type indicates that the file being modified is
being rewritien completely (Step $419), so that the original
data will not be required, then Delete the File using the
Delete File OS mechanism (Step S421) and perform step
5406. Otherwise, make a scratch copy of the file (Step S417)
and produce the scratch file ID of the scratch file as the result
(Step S424).

2. Close File

This mechanism takes as input the local directory exten-
sions table entry record 138 of an open file and the data
maintained for the open file. To close a file, add an entry to

the audit file indicating the time and operation (create, read

or write). The audit file processing (using the Process Audit
File Entry primitive mechanism) will take care of assimi-
lating the file and thereby updating the other records.

3. Read File

To read a file, a program must provide the offset and
lenrgth of the data 1o be read, and the location of a bufler into
which to copy the data read.

The file to be read from is identified by an open file
descriptor which includes a File IT) as computed by the Open
File operating system mechanism defined above. The File ID
may identify either a scratch file or 2 True File (or True File
segment). If the File ID identifies a True File, it may be
either a simple or a compound True File. Reading a file is
accomplished by the following steps:

In the case where the File ID identifies & scratch file or a
simple True File, use the read capabilities of the underlying
operating system.

In the case where the File ID identifies 2 compound file,
breal: the read operation into one or more read operations on
component segments as follows:

A, Identify the segment(s) to be read by dividing the
specified file offset and length each by the fixed size of a
segment (2 system dependent parameter), to determine the
segment number and number of segments that must be read.

B. For cach segmeat number computed above, do the
following:

i. Read the compound True File index block 1o determine

the Frue Name of the segment to be read.

ii. Use the Realize True File from Location primitive
mechanism to make the True File segment available
locally. (Jf that mechanism fails, the Read File mecha-
mism fails).

iii. Determioe the File 1D of the True File specified by the
True Name corresponding to this segment.

iv. Use the Read File mechanism (recursively) to read
from this segment into the corresponding location in
the specified buffer.

4, Write File

File writing uses the file ID and data management capa-
bilities of the underlying operating system. File access
(Make File Local described above} can be deferred until the
first read or write,

[

20

40

45

50

55

€0

65

22

5. Delete File or Direclory

The process of deleting a file, for a given pathname, is
described here with reference to FIGS. 27(a) and 27(b).

First, determine the local directory extensions table entry
record 138 and region table entry record 142 for the file
{Step 5422). If the file has no local directory extensions table
entry record 138 or is locked or is in a read-only region,
prohibit the deletion.

Identify the corresponding True File given the True Name
of the file being deleted using the True File registry 126
(Step 5424). If the file has no True Name, (Step 8426) then
delete the scratch copy of the file based on its scratch file ID
in the local directory extensions table 124 (Step 5427), and
continue with step $428.

If the file has a True Name and the True File’s use count
is one {Step 5429), then delete the True File (Step S430), and
continue with step S428.

If the file has a True Name and the True File’s use count
is greater than one, reduce its use count by one (Step $431}.
Then proceed with step S428.

In Step S$428, delete the local directory extensions table
entry record, and add an eniry to the audit file 132 indicating
the time and the operaiion performed (delese).

6. Capy File or Directory

A mechanism is provided Lo copy a file or direclory given
a source and destination processor and pathname. The Copy
File mechanism does not actually copy the data in the Gle,
only the True Name of the file. This mechanism is performed
as follows:

(A) Given the source path, get the True Name from the
path. If this step fails, the mechanism fails.

(B) Given the True Name and the destination path, link
the destination path to the True Name.

(C) I the source and destination processors have different
True File regisiries, find (or, if necessary, create) an entry for
the True Name in the True File registry table 126 of the
destination processor, Enter into the source ID field of this
new entry the source processor identity.

(D) Add an entry to the audit file 132 indicating the time
and operation performed (copy).

This mechanism addresses capability of the system to
avoid copying data from 2 source location to a destination
location when the destination already has the data. In
addition, because of the ability 1o freeze a directory, this
mechanism also addresses capability of the system imme-
diately to make a copy of any collection of files, thereby to
support an efficient version control mechanisms for groups
of files.

1. Move File or Directory

A mechanism is described which moves (or reparmes) a
file from a source path to a destination path. The move
operation, like the copy operation, requires no actual ransfer
of data, and is performed as follows:

{A) Copy the file from the scurce path to the destination
path.

(B) If the source path is different from the destination
path, delete the source path,

8. Get File Status

This mechanism takes a file pathmame amd provides
information about the pathname. First the local directory
extensions table entry record 138 coresponding to the
pathname given is found. If so such entry exists, then this
mechanism fails, otherwise, gather information about the file
and its corresponding True File from the local directory
extensions table 124, The information can include any
informaticn shown in the data structures, including the size,
type, owner, True Name, sources, time of last access, time of

5,978,791

23

last modification, state {Jocal or not, assimilated or nel,
compressed or not), use count, expiration date, and reser-
vations.

9. Get Files in Directory .

This mechanism enumerates the files in a directory. It is
used (implicitty) whenever it is necessary to determine
whether a file exists (is present) in a directory. For instance,
it is implicitly used in the Open File, Delete File, Copy File
or Directory, and Move File operating system mechanisms,
because the files operated on are referred to by pathnames
containing directory names. The mechanism works as fol-
lows:

The local directory extensions table 124 is searched for an
eatry 138 with the given directory pathname. If no such
eatry is found, or if the entry found is not 2 directory, then
this mechanism fails.

If there is a corresponding True File field in the local
directory exiensions table record, then il is assumed that the
True File represents a frozen directory. The Expand Frozen
Directory primitive mechanism is used 10 expand the exist-
ing True File iato directory entries in the local directory
exlensions table.

Finalky, the local direciory extensions table 124 is again
searched, this time to find each directory subordinate to the
given directory, The names found are provided as the result.
Remote Mechanisms

The remote mechanisms provided by the present inven-
tion are now described. Recall that remote mechanisms are
used by the operating system in responding to requests from
other processors. These mechanisms enable the capabilities
of the present invention in a peer-to-peer network mode of
operatiort.

In a presently preferred emboediment, processers commu-
nicate with each other using a remole procedure call (RPC)
style interface, running over one of any number of commu-
nication protocols such as IPX/SPX oc TCF/IP. Each peer
processor which provides access to i1s True File registry 126
or file regioos, or which depends on another peer processor,
pravides a number of mechanisms which can be used by its
peers.

The fellowing remote mechanisms are described:

1. Locate True File;

. Reserve True File;

. Request True File;

. Retire True File;
Cancel Reservation;
. Acquire True File;

. Lock Cache;

. Update Cache; and

9. Check Expiration Date.
1. Localte I'rue File

This mechanism allows a remote processor to determine
whether the local processor contzins a copy of a specific
True File. The mechanism begins with a True Name and a
flag indicating whether to forward requests for this file to
other servers. This mecbanism is now described with refer-
ence to FIG. 28.

First determine if the True File is avaifable locally or if
there is some indication of where the True File is located (for
example, in the Source 1Ds field). Look up the requesied
True Name in the True File registry 126 (Step S432).

If a True File registry entry record 140 is not found for this
True Name (Step 5434), and the flag indicates that the
request is not to be forwarded (Step 5436), respond nega-
tively (Step $438). That is, respond to the effect that the True
File is not available.

= R R ST R N

—

0

P

5

30

35

40

55

24

One the other hand, if a Fruc File registry entry record 140
is not found (Step S434), and the flag indicates that the
request for this True File is to be forwarded (Step $436),
then forward a request for this True File to some other
processors i the system (Step S442). If the source table for
the current processor identifies one or more publishing
servers which should have a copy of this True File, then
forward the request to each of those publishing servers (Step
5436).

If a True File regisiry entry record 140 is found for the
required True File (Step 5434), and if the entry includes a
True File ID or Compressed File ID (Step S440), respond
positively {Step S444). If the entry includes a True File 1D
then this provides the identity or disk location of the actual
physical representation of the file or file segment required.
If the entry include a Compressed File 1D, then a com-
pressed version of the True File may be stored instead of, ar
in addition to, an uncommpressed version. This field provides
the identity of the actual representation of the compressed
version of the file.

If the True File registry entry record 140 is found (Step
S434) but does not include a True File ID (the File ID is
absent if the actual file is not currently present at the current
location) (Step S440), and if the True File registry entry
record 140 includes one or more source processors, and if
the request can be forwarded, then forward the request for
this True File Lo ane or more of the source processors (Step
S444).

2. Reserve True File

This mechanism allows a remote processor to indicate
that it depends on the local processor for access 1o a specific
True File. It takes a True Name as input. This mechanism is
described here.

(A) Find the True File registry entry record 140 associated
with the given True File. If no entry exists, reply negatively.

(B) If the True File registry entry record 140 does not
include a True File ID or compressed File ID, and if the True
File registry entry record 140 includes no source IDs for
remavable storage volumes, then this processor does not
have access to a copy of the given file. Reply negatively.

(C) Add the ID of the sending processor fo the list of
dependent processors for the True File registry entry record
140. Reply positively, with an indication ol whether the
reserved True File is on line or off line.

s 3. Request True File

This mechanism allows a remote processor to request a
copy of a True File from the local processor. It requires a
True Name and responds positively by sending a True File
back to the requesting processor. The mechanism operates as
follows:

(A) Find the True File registry entry record 140 associated
with the given Frue Name. Il there is no such True File
registry entry record 140, reply negatively.

{B) Make the True File local using the Make True File
Local primitive mechanism. If this mechanism fails, the
Request True File mechanism alse fails.

{C) Send the local True File in either it is uncompressed
or compressed form to the requesting remote processor.
Note that if the True File is a compound file, the compaonents
are Tt sent.

(D) If the remote file is listed in the dependent process list
of the True File registry entry record 140, remove it.

4. Retire True File

This mechanism allows a remote processor to indicate
that it no longer plans to maintain a copy of a givea True
File. An alternate source of the True File can be specified, if,
for instance, the True File is being moved from one server

5,978,791

25

to another. It begins with a True Name, a requesting pro-
cessor 1D, and an optional alternate source. This mechanism
operates as follows;

(A) Find a True Name entry in the True File registry 126.
If there is no entry for this True Name, this mechanism’s task
is complete,

(B) Find the requesting processor on the source list and,
if it is there, remove it.

(C) If an altemnate source is provided, add it to the source
list for the True File registry entry record 140.

(D) If the source list of the True File registry entry record
140 has no items in it, use the Locate Remote File primitive
mechanism to search for another copy of the file. If it fails,
raise a Serious error.

5. Cancel Reservation

This mechanism allows a remote processor to indicate
that it no longer requires access to a True File stored on the
locat processor. It begins with a True Name and a requesting
processor 1D and proceeds as follows:

(A) Find the True Name entry in the True File registry
126. If there is no entry for this True Name, this mecha-
nism’s task is complete.

(B) Remove the identity of the requesting processor from
the hst of dependent processors, if it appears.

{C) If the list of dependent processors becomes zere and
the use count is also zero, delete the True File.

6. Acquire True File

This mechanism allows a remole processer to insist that
a local processor make a copy of a specified Truc File. It is
used, for example, when a cache client wants to write
lhrough & new version of a file. The Acquire True File
mechanism begins with a data item and an optional True
Name for the data item and proceeds as follows:

(A) Confirm that the requesting processor has the right o
require the local processor 1o acquire data items. 1f not, send
a negative reply.

(B) Make a local copy of the data item transmitted by the
remaote processor.

(C) Assimilate the data item into the True File registry of
the local processar.

(D) If a True Name was provided with the file, the True
Name calculation can be avoided, or the mechanism can
verify that the file received matches the True Name sent.

(E) Add an entry in the dependent processor list of the true
file registry record indicating that the requesting processor
depends on this copy of the given True File.

(¥) Send a positive reply.

7. Lock Cache

This mechanisin allows a remote cache client o lock a
local file so that local users or other cache clients cannot
change it while the remote processor is using it. The
mechanism begins with a pathname and proceeds as follows:

(A) Find the local directory extensions table eniry record
138 of the specified pathname. I no such entry exists, reply
negatively.

(B) If an local directory extensions table entry record 138
exists and is already locked, repty negatively that the file is
already locked.

(C) If an local directory extensions 1able entry record 138
cxists and is not locked, lock the entry. Reply positively.
8. Updale Cache

This mechanism allows a remote cache chient to untock a
local file and update it with new contents. It begins with 2
pathname and a True Name. The file coresponding to the
True Name must be accessible from the remote processor.
This mechanism operates as follows:

Find the local directory extensions 1able entry record 138
corresponding to the given pathname. Reply negatively if no
such entry exists or if the entry is not locked.

10

25

30

40

45

50

60

65

26

Link the given pathname 10 the given True Name using
the Link Path to True Name primitive mechanism.

Unlock the local directory extensions table eniry record
138 and return positively.

9. Check Expiration Date

Return current or new expiration date and possible alter-
native source to caller.

Background Processes and Mechanisms

The background processes and mechanisms provided by
the present invention are now described. Recall that back-
ground mechanisms are intended to run occasionally and at
a low priorily to provide automated management capabilities
with respect to the present invention.

The following background mechanisms are described:

. Mirror True File;

. Groom Region;

. Check for Expired Links;
. Verify Region; and

. Groom Source Lisl.

1. Mirror True File

This mechanism is used to ensure that files are available
in alternate Jocations in mirror groups or archived on archi-
val servers. The mechanism depends on application-specific
migration/archival criteria (size, lime since last access, nym-
ber of copies required, number of existing alternative
sources) which determine under whal conditions a file
should be moved. The Mirror True File mechanism operates
as follows, using the True File specified, perform the fol-
lowing steps:

(A) Count the number of available locations of the True
File by inspecting the source list of the True File registry
cntry record 140 for the True Fite. This step determines how
many copies of the True File are available in the system.

(B) If the True File meets the specified migration criteria,
select a mirror group server to which a copy of the file
should be sent. Use the Acquire True File remote mechanism
to copy the True File to the selected mirror group server. Add
the identity of the selected system o the source list for the
True File.

2. Groom Region

This mechanism is used to automatically free up space in
a processor by deleting dafa items that may be available
elsewhere. The mechanism depends on application-specific
grooming criteria (for instance, a file may be removed if
there is an alternate online source for i1, it has not been
accessed in a given number of days, and it is larger than a
given size). This mechanism operates as follows:

Repeat the foliowing steps (1) to (ilf) with more aggressive
grooming criteria until sufficient space is freed or until ailt
grooming criteria have been exercised. Use grooming infor-
mation 10 determine how much space has been freed. Recall
that, while grooming is in effect, grooming information
includes a fable of pathnames selected for deletion, and
keeps track of the amount of space that would be freed if all
of the files were deleted.

(i) Begin Grooming (using the primitive mechanism).

(ii) For cach pathname in the specified region, for the True
File corresponding 1 the pathname, if the True File is
present, has at least one alternative source, and meets
application specific groomiag criteria for the region, select
the file for removal (using the primitive mechanism).

(iii) Ead Grooming (using the primitive mechanism).

If the region is used as 2 cache, no other processers are
dependent on True Files to which it refers, and all such True
Files are mirrored elsewhere. In this case, True Files can be
removed with impunity. For a cache region, the grooming

h A~ W ko

27
criteria. would ordiparily eliminate the least rccently
accessed True Files first. This is best done by sorting the
Tree Files in the region by the most recen! access time
before performing step (i) above. The application specific
criteria would thus be to sefec! for removal every True File
encountered (beginning with the least recently used) untif
the required amount of free space is reached.

3. Check for Expired Links

This mechanism is used o determine whether dependen-
cies on published files should be refreshed. The following
steps describe the operation of this mechanism:

For cach pathname in the specified region, for each True
File corresponding 1o the pathname, perform the following
step:

H the True File registry entry record 148 corresponding to
the True File contains at least one source which is a
publishing server, and if the expiration date on the depen-
dency is past or close, then perform the following steps:

(A) Determine whether the True File registry entry record
contains other sources which have not expired.

(B) Check the True Name expiration of the server. If the
expiration date has been extended, or an alternate source is
suggested, add the source to the True Tile registry entry
record 140,

(C) If no acceptable alternate source was found in steps
(A) or {B) above, make a local copy of the True File.

(D) Remove the expired source.

4. Verify Region

This mechanism can be used to ensure that the data items
in the True File registry 126 have not been damaged acci-
dentally or maliciously. The operation of this mechanism is
described by the following steps:

(A) Search the local directory extensions lable 124 Jor
cach pathname in the specified region and then perform the
following steps:

(1) Get the Truc File name corresponding to the pathname;

(i) If the True File registry entry 140 for the True Tile
dees not have a True File ID or compressed file 1D,
ignore it.

(iil) Use the Verify True File mechanism (see extended
mechanisms below) to confirm that the True File speci-
fied is correct.

3. Groom Source List

The source list in a True File entry should be groomed
sometimes to ensure there are not too many mirror or archive
copies. When a file is deleted or when a region definition or
its mirror criteria are changed, it may be necessary to inspect
the affected True Files to determine whether there are too
many mirror ¢opies. This can be done with the following
sieps:

For each affected True File,

(A) Search the local directory extensions table 1o find
each region that refers 1o the True File.

(B) Create a set of “required sources”, initially empty.

(C) For each region found,

{a) determine the mirroring criteria for that region,

(b) determine which scurces for the True File satisfy the
mirroring criteria, and

(c) add these sources to the set of reguired sources.

(D) For each source in the True File registcy entry, if the
source identifies a remote processor (as opposed (o remov-
able media), and if the source is not a publisher, and if the
source is not in the set of required sources, then eliminate the
source, and use the Cancel Reservation remote mechanism
o eliminate the given processor from the list of dependent
processors recorded at the remote processor identified by the
source.

5,978,791

10

15

35

40

45

50

55

60

63

28

Exteaded Mechanisms

The extended mechanisms provided by the present inven-
tion are now described. Recall that extended mechanisms
rin within application programs over the operating system
to provide solutions fo specific preblems and applications.

The following extended mechanisms are described:

1. Inventory Existing Directory;

. Inventory Removable, Read-only Files;
. Synchronize Directories;
. Publish Region;
. Retire Directory;
. Realize Directory at Location;
. Verily True File,
. Track for Accounting Purposes; and
9. Track for Licensing Purposes.
1. Inventory Existing Directory

This mechanism determines the True Names of files in an
existing on-line directory in the underlying operating sys-
tem. One purpose of 1his mechanism is 10 install True Name
mechanisms in an existing file system.

An effect of such an installation is to eliminate immedi-
ately all duplicate files from the file system being traversed.
If several file systems are inventoried in a single True File
regisiry, duplicates across the volumes are also eliminated.

(A) Traverse the underlying file system in the operating
system. For each file encountered, excluding directories,
perform the foflowing:

(i) Assimilate the file encountered (using the Assimilate
File primitive mechanismy). This process computes its
True Name and moves its dala inlo the True File
registry 126. .

(ii) Creale a pathname consisting of the path to the volume
directory and the relative path of the file on the media.
Link this path to the computed True Name using the
Link Path to True Name primitive mechanism.

2. lnventory Remowvable, Read-only Files

A system with access to removable, read-only media
volumes {such as WORM disks and CD-ROMs) can create
a usable inventory of the files on these disks without having
to make ontinc copics. These objects can then be used for
archival purposes, directory overlays, or other needs. An
operator musi request that an inventory be created for such
a volume.

This mechanism allows for maintaining inventories of the
contents of files and data items on removable mediz, such as
diskettes and CD-ROMS, independent of other properties of
the files such as name, location, and date of creation.

The mechanism creates an online inventory of the files on
one or more removable volumes, such as a floppy disk or
CD-ROM, when the dala on the volume is represented as a
directory. The inventory service uses a True Name to iden-
tify each file, providing a way 1o locate the data independent
of its name, date of creation, or location.

The invenlory can be used for archival of data (making it
possible to avoid archiving data when that data is already on
a separate volume), for grooming (making it possible to
delete infrequently accessed files if they can be retrieved
from removable volumes), for version control (making it
possible to generate a new version of a CD-ROM without
having to copy the old version), and for other purposes.

The inventory is made by creating a volume directory in
the media inveniory in which each file named identifies the
data itern on the volume being inventoried. Data items are
ot copied from the removable volume during the inventory
process.

[I = R R T ¥

5,978,791

29

An operator must request that an inventory be created for
a specific volume. Once created, the volume directory can be
frozen or copied like any other directory. Data items from
cither the physical volume or the volume directory can be
accessed using the Open File operating system mechanism
which will cause them to be read from the physical volume
using the Realize True File from Location primitive mecha-
nism.

To create an inventory the following steps are taken:

(A) A volume directory in the media inventory is created
to correspond to the volume being inveatoried. Its contex-
tual name identifies the specific volume.

(B) A source table entry 144 for the volume is created in
the source table 130. This entry 144 identifies the physical
source volume and the volume directory created in step {(A).

(C) The filesystem on the volume is traversed. For each
file encountered, excluding dircctorics, the following steps
are taken:

(i) The True Name of the file is computed. An entry is
created in the True Name registry 124, including the
True Name of the file using the primilive mechanism.
The source field of the True Name registry entry 140
identifies the source table entry 144.

(i) A pathname is created consisting of the path to the
volume directory and the relative path of ihe file on the
media. This path is linked to the computed True Name
using Link Path to True Name primitive mechanism.

(D} After all files have been inventoried, the volume
directory is frozen. The volume directory serves as a table of
contents for the volume. It can be copied using the Copy File
or Directory primitive mechanism to create an “overlay”
directory which can then be modified, making it possible to
edit a virtual copy of a read-only medium.

3. Synchronize Directories

Given two versions of a directory derived from the same
slarting point, this mechanism creates a new, synchronized
version which includes the changes from each. Where a file
is changed in both versions, this mechanism provides a user
exil for handling the discrepaacy. By using True Names,
comparisons are instantaneous, and no copics of files are
necessary.

This mechanism lets a local processor synchronize a
direclory to account for changes made at a remole processor.
Its purpose is to bring a local copy of a directory up to date
after a period of no communication between the local and
remote processor. Such a period might occur if the local
processor were a mobile processor detached from its server,
or if two distant pracessors were nun indspendently and
updated nightly.

An advantage of the described synchronization process is
that it does not depend on syachronizing the clocks of the
local and remote processors. However, it does require that
the local processor track its position in the remote proces-
sor’s audit file.

This mechanism does not resolve changes made simulta-
neously to the same file at several sites. If that occurs, an
external resolution mechanism such as, for example, opera-
tor intervention, Is required.

The mechanism lakes as impul a staet time, a local
directory pathname, a remote processor name, and a remote
directory pathname name, and it operates by the following
sleps:

(A) Request a copy of the audit file 132 from the remote
processor using the Request True File remote mechanism.

(B) For each entry 146 in the audit file 132 after the start
time, if the entry indicates a change to a file in the remote
directory, perform the following steps:

15

25

30

35

45

55

63

30

(i) Compute the pathnarae of the corresponding file in the
local directory. Determine the True Name of the cor-
responding file.

(i) If the True Name of the Jocal file is the same as the old
True Name in the audit file, or if there is no local file
and the audit entry indicates a new file is being created,
link the new True Name in the audit file to the local
pathname using the Link Path to True Name primitive
mechanism.

(iit) Otherwise, note that there is a problem with the
synchronization by sending 2 message Lo the operator
of to a problem resolution program, indicating the local
pathname, remote pathname, remote processor, and
time of change.

(C) After synchronization is complete, record the ime of
the final change. This time is to be used as the new start time
the next time this directory is synchronized with the same
Iemaote processor.

4. Publish Region

The publish region mechanism allows a proeessor to offer
the files in a region to any client processors for a limited
pericd of time.

The purpose of the service Is (o eliminate any need for
client processors to make reservations with the publishing
processor. This in turn makes it possible for the publishing
processor 10 service a much larger number of clients.

When a region is published, an expiration date is defined
for all files in the region, and is propagated into the pub-
lishing system’s True File registry entry record 140 for each
fite.

When a remote file is copied, for instance using the Copy
File operating sysiem mechanism, the expiration date is
copied into the source field of the client’s True File registry
entry record 140. When the source is a publishing system, no
dependency need be created.

The client processor must occasionally and in
background, check for expired links, to make sure it still has
access to these files. This is described in the background
mechanism Check for Expired Links.

5. Retire Directory

‘This mechanism makes it possible Lo eliminale safely the
True Files in a directory, or at least dependencies on them,
after ensuring that any client processors depending on those
files remove their dependencies. The files in the directory are
not actually deleted by this process. The directory can be
deleted with the Delete File operating system mechanism.

The mechanism takes the pathname of a piven directory,
and optionally, the identification of a preferred alternate
source processor lor clients to use. The mechanism performs
the following steps:

(A) Traverse the directory. For each file in the directory,
perform the following steps:

(i) Get the True Name of the file from its path and find the
True File registry entry 140 asscciated with the True
Name.

(ii)y Determine an alternate source for the True File, If the
source IDs field of the TFR entry includes the preferred
aliernate source, that is the alternate sonrce. If it docs
not, but includes some other source, that is the allernale
source. If it contains no alternate sources, there is 0o
alternate source.

(iii} For each dependent processor in the True File registry
entry 140, ask that processor to retire the True File,
specifying an alternate source if one was determined,
using the remote mechanism.

5,978,791

3

6. Realize Dircctory at Location

This mechanism allows the user or operating system {o
force copies of files from some source location to the True
File registry 126 at a given location. The purpose of the
mechanism is to ensure that files are accessible in the event
the source location becomes inaccessible. This can happen
for instance if the source or given locztion are on maobile
computers, or are on removable media, or if the network
conmection to the source is expecied to become unavailable,
or if the source is being retired.

This mechanism is provided in the following steps for
each file in the given directory, with the exception of
subdirectories:

(A) Get the local directory exlensions table entry record
138 given the pathnzme of the file. Get the True Name of the
local directory extensions table entry record 138. This
service assimilates the file if it has not already been assimi-
lated.

(B) Realize the corresponding True File at the given
location. This service causes it to be copied to the given
location from a remote system or removable media.

7. Verify True File

This mechanism is used to verify that the data item in a
True File registry 126 is indeed the correct data item given
its True Name. [ts purposc is to guard against device errors,
malicious changes, or other problems.

If an error is found, the system has the ability to “heal”
itself by finding another source for the True File with the
given name. It may also be desirable to verify that the error
has not propagated to other systems, and to log the problem
or indicate it to the computer operator. These details are not
described here.

To verify a data item that is not in a True File registry 126,
use the Caleutate True Name primitive mechanism described
above.

The basic mechanism begins with a True Name, and
operates in the following steps:

(A) Find the True File registry entry record 140 corre-
sponding to the given True Name.

(B) If there is a True File ID for the True File registry
epiry record 140 then use it. Otherwise, indicate that no file
exists to verify.

(C) Calculate the True Name of the data item given the file
ID of the data item.

(D) Confirm that the calculated True Name is equal to the
given True Name.

(E) If the True Names are not equal, there is an error in
the True File registry 126. Remove the True File ID from the
True File registry entry record 140 and place it somewhere
else. Indicate that the True File registry cniry rccord 140
conlained an error.

8. Track for Accounting Purposes

This mechanism provides a way to know reliably which
files have been stored on a system or transmitted from one
system to anotber. The mechanism can be used as a basis for
a value-based accounting systern in which charges are based
on the identity of the data stored or transmitted, rather than
simply on the number of bits.

This mechanism allows the system to track possession of
specific data ilems according 1o content by owner, indepen-
dent of the name, date, or other properties of the data ilem,
and tracks the uses of specific data items and files by content
for accounting purposes. True names make it possible to
identify each file briefly yet uniquely for this purpose.

Tracking the identities of files requires maintaining an
accounting log 134 and processing it for accounting or
billing purposes. The mechanism operates in the following
steps:

10

30

45

50

55

60

65

32

(A) Note every time a file is created or deleted, for
inslance by monitoring audit entries in the Process Audit
File Eniry primitive mechanism. When such an event is
encountered, create an eatry 148 in the accounting log 134
that shows the responsible party and the identity of the fle
created or deleted.

(B) Every time a file is trapsmitted, for instance when a
file is copied with a Request True File remote mechanism or
an Acquire True File remote mechanism, create an eniry in
the accounting log 134 that shows the responsible party, the
identity of the file, and the source and destination proces-
SOTS.

(C) Occasionally rue an accounting program to process
the accounting log 134, distributing the events to the account
records of each responsible party. The account records can
eventually be summarized for billing purposes.

9, Track for Licensing Purposes

This mechanism ensures that licensed files are not used by
unauthorized parties. The True Name provides a safe way 10
identify licensed material. This service allows proof of
possession of specific files according to their contents with-
out disclosing their contents.

Enforcing use of valid licenses can be active (for example,
by refusing to provide access to a file without authorization)
or passive {for example, by creating a report of users who do
not have proper authorization).

One possible way to perform license validation is to
perform occasional audits of employee systems. The service
described herein relies on True Names to support such an
audit, as in the following steps:

(A) For each licensed product, record in the license table
136 the True Name of key files in the product (that is, files
which are required in order to use the product, and which do
not occur in other products) Typically, for a software
product, this would include the main exccutable image and
perhaps other major files such as clip-art, scripis, or onkine
help. Also record the identity of each system which is
authorized to have a copy of the file.

(B) Occasionally, compare the contents of sach user
processor against the license table 136. For each True Name
in the license table do the following:

(1) Unless the user processor is authorized to have a copy

of the file, confirm that the user processor does not have
a copy of the file using the Locale True File mecha-
nism.

(ii) If the user processor is found to have a file that it is
not authorized to have, record the user processor and
True Name in a license violation table.

The System in Operation

Given the mechanisms described above, the operation of
a typical DP system employing these mechanisms is now
described in order 1o demonsirate how the presenl invention
meets its requirements and capabilities.

In operation, data items (for example, files, database
records, messages, data segments, data blocks, directeries,
instances of object classes, and the like) in a DP system
employing the present invention are identified by substan-
tially unique identifiers (True Names), the ideatifiers
depending on all of the data in the data items and only on the
dala in the data items. The primitive mechanisms Calculate
True Name and Assimilate Data Item support this property.
For any given data item, using the Calculate True Name
primitive mechanism, a substantially unique identifier or
True Name for that data item can be determined,

Further, in operation of a DP system incorporating the
present invention, muliple copies of data items are avoided
(unless they are required for some reason such as backups or

5,978,791

33

mirror copies in a fault-tolerant system). Multiple copies of
dala items are avoided evea when multiple names refer 10
the same data item. The primitive mechanisms Assimilate
Data Tiems and New True File support this property. Using
the Assimilate Data [tem primitive mechanism, if a data item
already exists in the system, as indicated by an entry in the
True File registry 126, this existence will be discovered by
this mechanism, and the duplicate data item (the new data
item) will be eliminated (or not added). Thus, for example,
if a data file is being copied onto a system from a floppy
disk, if, based on the True Name of the data file, it is
determined that the data file already exists in the system (by
the same or some other name), then the duplicate copy will
not be installed. If the data item was being installed on the
system by some name other than its current name, then,
using the Link Path to True Name primitive mechanism, the
other (or new) name can be linked 1o the alrcady existing
data item.

In general, the mechanisms of the present invention
operate in such a way as to avoid recreating an actual data
item at a [ocation when a copy of that data item is already
present at that location. In the case of a copy from a floppy
disk, the data item (file) may have to be copied (into a
scratch file) before it can be determined that it is a duplicate.
This is because only one processor is involved. On the other
hand, in a multiprocessor environment or DP system, each
processor has a record of the True Names of the data ilems
on that processor. When a data item is to be copied to
another location (another processor) in the DP system, all
that is necessary is to examine the True Name of the data
item prior to the copying. If a data item with the same True
Name already exists at the destination location {processor),
then there is no need to copy the data item. Note that if a data
ilem which already exists locally at a destination location is
stili copied to the destination location (for example, because
the remote system did not have a lrue Name for the data
item or because it arrives as a stream of un-named data), the
Assimilate Data Ttem primitive mechanism will prevent
multiple copies of the data item from being created.

Since the True Name of a large data item (a compound
data item) is derived from and based on the True Names of
components of the data item, copying of an entire data item
can be avolded. 8ince some (or all) of the components of a
large data item may aiready be present at 2 destination
location, only those components which are not present there
need be copied. This property derives from the manper in
which True Names are determined.

When a file is copied by the Copy File or Directory
operaling system mechanism, only the True Name of the file
is actually replicated.

Wheo z file is opened (using the Open Eile operating
system mechanism), it uses the Make True File Local
primitive mechanism (either directly or indirectly through
the Create Scratch File primitive mechanism) to create a
local copy of the file. The Open File operating system
mechanism uses the Make True File Local primitive
mechanism, which uses the Reatize True File from Location
primitive mechanism, which, in turn uses the Request True
File remole mechaniso.

The Request True File remote mechanism copies only a
single data item from one processor to another. If the data
item is a compound file, its component segments are not
copied, only the indirect block is copied. The segmemnts are
copied only when they are read (or otherwise needed).

The Read File operating system mechanism actually reads
data. The Read File mechanism is aware of compound files
and indirect blocks, and it uses the Realize True File from

h

15

30

33

40

45

50

55

60

65

34

Locaion primitive mechanism to make surc that component
segments are locally available, and then uses the operating
system file mechanisms to read data from the local file.

Thus, when a compound file is copied from a remote
system, only its True Name is copied. When it is opened,
only its indirect block is copied. When the cotresponding file
is read, the required component segments are reahized and
therefore copied.

In operation data items can be accessed by reference to
their identities (True Names) independent of their present
location. The actual data item or True File corresponding to
a given data identifier or True Name may reside anywhere in
the systern (ihat is, locally, remotely, offline, etc). If a
required True File is present locally, then the data in the file
can be accessed. If the data item is not present locally, there
are a number of ways in which it can be obtained from
wherever it is present. Using the source IDs field of the True
File registry table, the location(s) of copies of the True File
corresponding to a given Tree Name can be determined. The
Realize ‘frue File from Location primitive mechanism Iries
to make a local copy of a True File, given its True Name and
the name of a source location (processor or media) that may
contain the True File. If, on the other hand, for some reason
it is not known where there is a copy of the True File, or if
the processors identfied in the source IDs field do not
respond with the required True File, the processor requiring
the data ilemn can make a general request for the data item
using the Request True File remote mechanism from alt
processors in the system that it can contact.

As a result, the system provides transparent access to any
data item by reference to its data identity, and independent
of its present location.

In aperation, data items in the system can be verified and
kave their integrity checked. This is from the maneer in
which True Names are determined. This can be used for
security purposes, for instance, to check for viruses and 1o
verify that data retrieved from another location is the desired
and requested data. For example, the system might store the
True Names of all executable applications on the system and
then periodically redetermine the True Namcs of cach of
these applications to ensure that they match the stored True
Names. Any change in a True Name potentiaily signals
corruption in the system and can be further investigated. The
Verify Region background mechanism and the Verify True
File extended mechanisms provide direct support for this
mode of aperation. The Verify Region mechanism is used to
ensure that the data items in the True File registry have not
been damaged accidentally or maliciously. The Verify True
File mechanism verifies that a data item in a True File
registry is indeed the correct data ilem given ifs True Name,

Once a processor has determined where (that is, at which
olher processer or location) a copy of a data item is in the
DP system, thal processor might need that other processor or
location to keep a copy of that data item. For example, a
processor might want to delete local copies of data items to
make space available locally while knowing that it can rely
on retrieving, the data from somewhere else when needed. To
this end the system allows a processor to Reserve (and
cancel the reservation of) True Files at remole locations
(using the remote mechanism}). In this way the remote
locations are put on notice that another location is relying on
the presence of the True File at their location.

A DP system employing the present invention can be
made inte a fault-tolerant system Ly providing a certain
amount of redundancy of data items at multiple locations in
the system. Using the Acquire True File and Reserve True
File remote mechanisms, a particular processor can imple-

5,978,791

35

meant its own form of fault-tolerance by copying dala items
1o other processors and then reserving them there. However,
the system also provides the Mirror True File background
mechanism to mirror (make copies) of the True File avail-
able elsewhere in the system. Any degree of redundancy
(limited by the number of processors or locations in the
system) can be jmplemented. As a result, this invention
maintains & desired degree or level of redundancy in a
network of processors, to protect against failure of any
particular processor by ensuring that multiple copies of data
items exist at different locations.

The data structures used to implement various features
and mechanisms of this invention store a variety of useful
information which can be used, in conjunction wilh the
various mechanisms, 1o implement storage schemes and
policies in 2 DP system employing the invention. For
example, the size, age and location of a data item {or of
groups of data items) is provided. This information can be
used to decide how the data items should be treated. For
example, a processor may implement a policy of delsting
local copies of ali data items over a certain age if other
copies of those data items are present elsewhere in the
system. The age (or variations on the age) can be determined
using the time of last access or modification in the Jocal
directory extensions table, and the presence of other copies
ol the data item can be delermined either from the Safe Flag
or the source IDs, or by checking which other processors in
the system have copies of the data ilem and then reserving
at least one of those copies.

In operation, the system can keep track of data items
regardless of how those items are named by users (or
regardless of whether the data ilems even have names). The
system can also track data items that have different names
(in different or the same location) as well as different data
items that have the same name. Since 1 data ilem is identified
by the data in the item, without regard for the context of the
data, the problems of inconsistent naming in a DP system are
Overcome,

In operation, the system can peblish data items, allowing
other, possibly anonymous, systems in a network to gain
access to the data items and to rely on the availability of
these data items. True Names are globally unique identifiers
which can be published simply by copying them. For
example, a user might create a textual representation ol a file
on system A with True Name N (for instance as a hexadeci-
mal string), and post it on a computer bulletin board.
Another user on system B could create a directory entry F
for this True Name N by using the Link Path to True Narme
primitive mechanism. (Alternatively, an application could
be developed which hides the True Name from the users, but
provides the same public transfer service.)

‘When a program on system B attempts to open pathname
F tinked to True Name N, the Locate Remote File primitive
mechanism would be used, and would use the Eocate True
File remote mechanism to search for True Name N on one
or more remoele processors, such as system A, If system B
has access 1o system A, it would be abie to realize the True
File (using the Realize True File from Location primitive
mechanism) and use it locally. Aliernatively, system B could
find True Name N by accessing any pubiicly available True
Name server, if the server could eventually forward the
request 1o system A.

Clients of a local server can indicate that they depend on
a given True File (using the Reserve True File remote
mechanism) so that the True File is not deleted from the
server registry as long as some client requires access Lo it
(The Retire True File remote mechanism is used to indicate
thal a client no longer needs a given True File}

1G

25

30

35

40

45

50

55

60

65

36

A publishing server, on the other hand, may want 10
provide access to many clients, and possibly anonymous
ones, without incurring the overhead of tracking dependen-
cies for each client. Therefore, a public server can provide
expiration dates for True Files in its registry. This allows
client systems to safely maintain references to a True File on
the public server. The Check For Expired Links background
mechanism allows the client of a publishing server to
occasionally confirm that its dependencies on the publishing
server are safe.

In a variation of this aspect of the invention, a processor
that is newly connected (or reconnected afier some absence)
1o the system can obtain a current vession of all {or of
needed) data in the system by requesting it from a server
processor. Any such processor can send a request to update
or resynchronize all of its directories (starting at a root
dircctory), simply by using the Synchronize Directories
exlended mechanism on the needed directories.

Using the accounting log or some other user provided
mechanism, a user can prove the existence of certain data
itemns at certain times. By publishing (in a pubiic place) a list
of all True Names in the system on a given day (or al some
given time), a user can later refer back 1o that list to show
that & particular data ilem was present in the system at the
time that list was published. Such a mechanism is useful in
wracking, for example, laboratory notebooks or the like 10
prove dates of conception of inventions. Such a mechanism
also permits proof of possession of a data item at a particular
date and time.

The accounting log file can also track the use of specific
data items and files by content for accounting purposes. For
instance, an information utility company can determine the
data identities of data Hems that are stored and transmitted
through its computer systems, and use these identilies (o
provide bills to its customers based on the identities of the
data ilems being transmitted (as defined by the substantially
unique identifier). The assignment of prices for storing and
rensmilting specific True Files would be made by the
information utility and/or its data suppliers; this information
would be joined periodically with the information in the
accounting fog file to produce customer statements.

Backing up data items in a DP system cmploying the
present invention can be done based on the True Names of
the data items. By tracking backups using True Names,
duplication in the backups is prevented. In operation, the
system maintains a backup record of data identifiers of data
items already backed up, and invokes the Copy File or
Directory operaling system mechanism to copy only those
data items whose data identificrs arc not recorded in the
backup record. Once a data item has been backed up, it can
be restored by retrieving it from its backup location, based
on the identifier of the data item. Using the backup record
produced by the backup to identify the data item, the data
item can be obtained using, for example, the Make True File
Local primitive mechanism.

In operation, the system can be used to cache data items
from a server, so that only the most recently accessed data
items need be retained. To operate in this way, a cache client
is configured to have a local regisiry (its cache) with a
remate Local Direclory Extensions table (from the cache
server). Whenever a file is opened (or read), the lLocal
Directory Extensions table is used 1o identify the True
Name, and the Make True File Local primitive mechanism
inspects the local registry. When the local registry already
has a copy, the file is already cached. Otherwise, the Locate
True File remote mechanism is used 1o get a copy of the file.
This mechanism consults the cache server and uses the

5,978,791

37

Request True File remote mechanism to make a local copy,
effectively loading the cache.

The Groom Cache background mechanism flushes the
cache, removing the least-recently-used files from the cache
client’s True File registry. While a file is being modified on
a cache client, the Lock Cache and Update Cache remote
mechanisms prevent other clients from trying to modify the
same file.

In operation, when the system is being used to cache data
ilems, the problems of maintaining cache consistency are
avoided.

To access a cache and to fill it from its server, a key is
required 10 identify the data item desired. Ordinarily, the key
is a name or address (in this case, it would be the pathname
of a file). If the data associated with such a key is changed,
the client’s cache becomes inconsistent; when the cache
client refers o that name, it will retrieve the wrong data. In
order to mainiain cache consislency il is necessary to notily
every client immediately whenever a change occurs on the
server.

By using an embodiment of the present invention, the
cache key uniquely identifies the data it represents. When
the data associated with a name changes, the key itself
changes. Thus, when a cache client wishes to access the
modified data associated with a given file name, i will use
anew key (the True Name of the new file) rather than the key
1o the old Ble conients in its cache. The client will always
request the correct data, and the old data in its cache will be
eventually aged and flushed by the Groom Cache back-
ground mechanism,

Because it is not necessary to immediately notify clients
when changes on the cache server occur, the present inven-
tion makes it possible for a single server to support a much
larger number of clients than is otherwise possible.

In operation, the system awtomatically archives data items
as they are created or modified. After a file is created or
modified, the Close File operating system mechanism cre-
ates an audit file record, which is eventually processed by
the Process Audit File Eniry primitive mechanism. This
mechanism uses the New True File primitive mechanism for
any file which is newly created, which in turn uses the
Mirror True File background mechanism if the True File is
in a mirrored or archived region. This mechanism causes one
or more copics of the new file to be made on remote
PIOCESSOLS.

In operation, the system can efficiently record and pre-
serve any collection of data items. The Freeze Directory
primitive mechanism creates a Frue File which identifies all
of the files in the dircctory and its subordinates. Because this

True File includes the True Names of its constiluents, it $

represents the exact contents of the directory tree at the time
it was frozen. The frozen directory can be copied with its
components preserved.

The Acquire True File remote mechanism (used in mir-

roring and archiving) preserves the directory tree structure s

by ensuring that all of the component segmenis and True
Files in a compound data item are actually copied fo a
remote system. Of course, no transfer is necessary for data
itemns already in the registry of the remote system.

In operation, the system can efficiently make a copy of
any collection of data items, to support a version control
mechanism for groups of the data items.

The Freeze Directory primitive mechanism is used to
create a collection of data items. The constituent files and
segments referred to by the frozen directory are maintained
in the registry, without any need to make copies of the
constiluents each time the directory is frozen.

15

30

40

a5

63

38

Whenever a pathname is traversed, the Get Files in
Diirectory operating system mechanism is used, and when it
encounters a frozen directory, it uses the Expand Frozen
Directory primitive mechanism.

A frozen directory can be copied from cne pathname to
anothes efficiently, merely by copying its True Name. The
Copy File operating system mechanism is used 1o copy a
frozen directory.

Thus it is possible to efficiently create copies of different
versions of a directory, thereby creating a record of its
history (hence a wersion control system).

In operation, the system can maintain a local inveniory of
all the data items located an a given removable medium,
such as a diskette or CD-ROM. The invenlory is indepen-
dent of other properties of the data items such as their name,
location, and date of creation.

The Inventory Existing Directory extended mechanism
provides a way to create True File Registry entries for ali of
the files in a directory. One use of this inventory is as a way
to pre-load a True File registry with backup record infor-
mation. Those files in the registry (such as previously
installed software) which are on the volumes inventoried
need not be backed up onto other volumes.

The Inventory Removable, Read-only Files extended
mechanism not only determines the True Names for the files
on the medium, but alsc records directory entries for each
file in a frozen direclory structure. By copying and modi-
fying this direciory, it is possible to creale an en line paich,
or small modification of an existing read-only file. For
example, it is possible to create an online representation of
a modified CD-ROM, such that the unmodified files are
actually on the CD-ROM, and only the modified files are
online.

In operation, the system tracks possession of specific data
ilems according lo content by owner, independent of the
name, date, or other properties of the data item, and tracks
the uses of specific data items and files by content for
acoounting purposes. Using the Track for Accounting Pur-
poses extended mechanism provides a way to know reliably
which files have been stored on a systemn or transmitted from
onc system to another.

True Names in Relational and Object-Oriented Databases

Although the preferred embodiment of this inveation has
been presented in the context of a file sysiem, the invention
of True Names would be equaily valuable in a relational or
object-oriented database. A relational or object-oriented
database system using True Names would have similar
benefits to those of the file system ermploying the invention,
For instance, such a database would permit efficient elimi-
nation of duplicate records, support a cache for records,
simplify the process of mainfaining cache consislency, pro-
vide location-independent access to records, maintain
archives and hislories of records, and synchronize with
distant or disconnected systems or databases.

The mechanisms described above can be easily modified
lo serve in such a database environment. The True Name
registry would be used as a repostlory of database records.
Al references o records would be via the True Name of the
record. (The Local Directory Extensions 1able is an example
of a primary index that uses the True Name as the unique
identifier of the desired records.)

In such a database, the operations of inserting, updating,
and deleting records would be implemented by first assimi-
lating records into the registry, and then updating a primary
key index to map the key of the record to is contents by
using the True Name as a pointer io the contents.

The mechanisms described in the preferred embodiment,
or similar mechanisms, would be emploved in such a

5,978,791

39

system. These mechanisms could include, for example, the
mechanisms for calculating true names, assimilating,
locating, realizing, deleting, copyving, and moving True
Files, for mirroring True Files, for maintaining a cache of
True Files, for grooming True Files, and other mechanisms
based on the use of substantially unique identifiers.
While the invention has been described in connection
with what is presently considered to be the most practical
and preferred embodiments, it is to be undersiood that the
invention is not to be limited to the disclosed embodiment,
but on the contrary, is intended to cover various modifica-
tions and equivalent arrangements inciuded within the spirit
and scope of the appended claims.
What is claimed 1s:
1. In a data processing system, an apparatus comprising:
identity means for determining, for any of a plurality of
data items present in the system, a substantially unique
identifier, the identifier being determined using and
depending on all of the data in the data item and only
the data in the data item, whereby two identical data
items iz the system will have the same identifier; and

cxistence means for determining whether a particular data
item is present in the system, by examining the iden-
tifiers of the plurality of data items.

2. An apparatus as in claim 1, further comprising:

local existence means for determining whether an

instance of a particular data item is present at a par-
ticular location: in the system, based on the identifier of
the data item.

3. An apparatus as in claim 2, wherein each location
contains a distinet plurality of data items, and wherein said
local existence means determines whether a particular data
item is present at a particular location in the system by
examining the identifiers of the plurality of data items at said
particular location in the system.

4. An apparatus as in claim 2, further comprising:

data associating means for making and maintaining, for a

data item in the system, an association between the data
ilem and the identifier of the data item; and

access means for accessing a particular data item using

the ideatifier of the data ilem.

5. An apparatus as in claim 2, further comprising:

duplication means for copying a data item from a source

W a destination in the data processing system, by
providing said destination with the data item only if it
is determined using the data identifier that the data item
is not present at the destination.

6. An apparatus as in claim 4, further comprising:

assimilation means for assimilating a new data item into

the system, said assimilation means invoking said
identity means {o determine the identifier of the new
data ilem and invoking said data associaling means Lo
associate the new data items with its identifier.

7. An apparatus as in claim 4, further comprising:

duplication means for duplicating a data item from a

source location to a destination focation in the data
processing system, based on the ideatifier of the data
itern, said duplication means 1invoking sard local exist-
ence means to determine whether an instance of the
data item Is present al the destination location, and
invoking said access means to provide said destination
with the data item only if said local existence means
determines that no instance of the data item is present
at the destination.

8. An apparatus as in claim 7, further comprising:

backup means for making copies of data ilems in the

system, sakd backup means maintaining a backup

30

an

15

50

55

60

40

record of identifiers of data items backed uwp, and
inveking duplication means to copy only those data
ilens whose data identifiers are not recorded in the
backup record.

9. An apparatus as in claim 8, further comprising:

recovery means for reirieving a data item previously

backed up by said backup means, based on the identi-
fier of the data item, said recovery means using the
backup record to identify the data item, and invoking
access means to retrieve the data item.

10. An apparatus as in claim 2, wherein a location is a
computer among a network of computers, the apparatus
further comprising:

remole existence means for delermining whether a data

item is present at a remote location in the system from
a current location in the system, based on the identifier
of the data item, said remote location using local
existence means at the remote location to determine
whether the data item is present at the remote Jocation,
and providing the current location with an indication of
the presence of the data item at the remote location.

11. An apparatus as in claim 4, wherein a location is a
compuler among a network of computers, the apparatuvs
further comprising:

requesiing means for requesting a data item at a currenl

location in the system from a remote location in the
system, based on the identifier of the data item, said
remote location using access means al the remote
location to obtain the data item and to send it to the
current location if it is present.

12. An apparatus as in claim 1, further comprising:

context mcans for making and maintaining a context

association between at least one contextual name of a
data item in the system and the identifier of the data
item; and

referencing means for obtaining the identifier of a data

item in the system given a contextual name for the data
item, using said context association.

13. An apparatus as in claim 12, further comprising:

assignment means for assigning a dala item 1o a contex-

tual name, inveking said identity means 10 determine
the identifier of the data item, and invoking said context
means to make or modify the context association
between the contextual name of the data item and the
identifier of the data item.

14. An apparaius as in claim 12, further comprising:

dlata associating means for making and maintaining, for a

data itern in the system, an association between the data
item and the identifier of the data item;

access means for accessing a particular data item using

the identifier of the panticular data item; and

contextual name access means for accessing a data item 1n
the system for a given context name of the data item,
determining the data identifier associated with the
given context name, and invoking said access means to
access the data item using the data identifier.

15. An apparatus as in claim 11, further comprising:

transparent access means for accessing a data item from
one of several locations, using the identifier of the data
item, said transparent access means invoking said local
existence means (o determine if the particular data item
is present at the current location, and, in the case when
the particular dala item is nol present at the current
location, invoking said requesting means to obtain the
data item from a remote location.

5,978,791

41

16. An apparatus as in claim 15, further comprising:

identifier copy means for copying an identifier of a data

item from a source location to a destination location.

17. An apparatus as in claim 15, further comprising;

context means for making and mainlaining 2 context

association between a contextual name of a data item in
the system and the identifier of the data item;

context copy means for copying a data item from a source

location to a destination location, given the contextuak
name of the data item, by copying only the context
association between the contextual identifier and the
data identifier from the source location to the destina-
tion location; and

transparent referencing means for obtaining a data iter

from one of several locations the system given a
contextual pame for the data item, said transparent
referencing means invoking said context association 10
determine the data identifier of 2 data item given a
contextual name, and invoking said transparent access
means 10 access the data item from one of several
locations given the identifier of the data item.

18. An apparatus as in claim 1, wherein at least some of
said data items are compound data iterns, each compound
data item including at least some componeni data items in a
fixed sequence, and wherein the identity means determines
the identifier of a compound data item based on cach
component data item of the compound data item.

19. An apparatus as in claim 18, wherein said compound
data items are files and said component data items are
scgments, and wherein the identity means determines the
identifier of a fle based on the identifier of each data
segment of the file.

20. An apparatus as in claim 18, wherein said compound
data items are directories and said component data flems are
files or subordinate directories, and whercin the identity
means determines the identifier of a given directory based on
each file and subordinate directory within the given direc-
tory.

21. An apparatus as in claim 11, further comprising:

means for advertising a data item from a location in the

system to al least one other location in the system, said
means for advertising providing each of said at least
one other location with the data identifier of the data
item, and providing the data item to only those loca-
tions of said other locations that request said data item
in response 1o said providing.

22. An apparaius as in claim 18, further comprising:

local existence means for determining whether a particu-

lar data item is present at a particular location in the
systern, based on the identifier of the data item; and

compound copy means for copying a data item from a

source to a destination in the data processing system,
said compound copy means invoking said local exisi-
ence means to determine whether the data item is
present at the destination, and to determine, when the
data item is a compound data item, whether the com-
porent data items of the compound data item are
preseat at the destination, and providing said destina-
tion with the data item only if said local existence
means determines that the data item is not present at the
destination, and providing said destination with each
component data item ooly if said locat existence means
determines that the component data item is not present
at the destination.

23. An apparatus as in claim 11, further comprising:

means for verifying the integrity of a data item obtained

from the requesting means in response to providing the

20

35

H)

45

w
A

42

requesting with a particular data identifier, to confirm
that the data ilem obtained from the requesting means
is the same data ilem as the data item requested, the
verifying means invoking the identity means 1o deter-
mine the data identifier of the cbiained data item, and
comparing the determined data identifier with the par-
ticular data identifier to verify the obtained data item.

24. An apparatus as in claim 2, wherein a location is at
least one of a storage location and a processing location, and
wherein a storage location 1s at least one of a data sterage
device and a data storage volume, and wherein a processing
location is at least one of a data processor and a computer.

25. An apparatus as in claim 3, wherein at least some of
said data items arc compound data items, each compound
data item including at least some component data items i a
fixed sequence, and wherein the identily means determines
the identifier of a compound data item based on the identifier
of each component data item of the compound data item.

26. An apparatus as in claim 3, further comprising:

context associating means for making and maintaining a

context association, for any data item in the system,
between the identifier of the data item and at least one
contextual name of the data item at a particolar location
int the syslem;

means for obtaining the identifler of a data item in the

system given a contextual name for the data item at a
particular location in the system; and

logical copy means for associating the data jdentifier

corresporcling to a contextual name at a source location
with a contextual name at a destination location in the
dafa processing system.

27. An apparatus as in claim 25, wherein said compound
data items are files and said component data items are
segments, and wherein the identity means determines the
identifier of a file based on the idemtifier of cach data
segment of the file.

28. An apparatus as in claim 25, further comprising:

compound copy means for copying a data item from a

sgurce location to a destination location in the data
processing system, said compound cepy means invok-
ing said local existence means (o determine whether the
data item is present at the destination, and to determine,
when the data item is a compound data item, whether
the componeni data items of the compound data item
are present a1 the destination, and providing said des-
tination with the data item only i said local existence
means delermines that the data item is not present at the
destination, and providing said destination with each
component data item only if said local existence means
determines that the component data item is not present
at the destination,

29. Ap apparaltus as in any of claims 1-28, wherein a dala
item is at least cne of a file, a database record, a message,
a data segment, a data block, a directory, and an instance an
object class,

30. A method of identitying a data item present in a data
processing system: for subsequent access to the data item, the
method comprising:

determining a substantially unique idemifier for the data

item, the identifier depending on and being determined
using all of the data in the data item and only the data
in the data item, whereby two identical data items in the
system will have the same identifier; and

accessing a data item in the system using the identifier of

the data item.

5,978,791

43

31. A method as in claim 30, further comprising:

making and maintaining, for a plurality of data items

present in the system, an association between each of
the data ilems and the idemifier of each of the dala
items, wherein said accessing a data item accesses a
data ilem via the associatlion.

32. Amethod as in claim 31, further comprising:

assimilaling a new dala item into the system, by deter-

mining the identifier of the pew data item and associ-
ating the new data item with its identifier.
33. A method for duplicating a given data ilem present at
a source location to a destination location in a data process-
ing system, the method comprising:
determining a substantially unique identifier for the given
data item, the identifier depending on and being deter-
mined using all of the data in the data item and onty the
data in the data item, whereby (wo identical data items
in the system will have the same identifier;

determining, using the data identifier, whether the data
itern is present at the destination location; and

based on the determining whether the data item is present,

providing the destination location with the data item
only if the data item is not present at the destination.

34. A method as in claim 33, wherein the given data item ,

is a compound data item having a plurality of component
data items, the method further comprising:

for each data item of the component data items,

obtaining the component data identifier of the data item
by determining a substantially unique identifier for
the data item, the identifier depending on and being
determined using all of the data in the data item and
only the data in the data item, whereby two identical
data items in the system will have the same identi-
fier;

delermining, using lhe oblained component data
identifier, whether the data item is present at the
destination; and

based on the determining, providing the destination
with the data item only if the data item is not present
at the destination.

35. A method for determining whether a particular data
ilem is present in a dala processing system, the method
comprising:

{(A) for each data item of a piurality of data items present

in the system,

(1} determining a substantially unique identifier for the
data item, the idemifier depending on and being
determined using all of the data in the data item and
only the data in the data item, whereby two identical
data ilems in the system wilt have the same identi-
fier; and

(i} making and maintaining a set of identifiers of the
plurality of daia items; and

(B) for the particular data item,

(i) determining a particular substantially unique iden-
tifier for the data item, the identifier depending on
and being determined using all of the data in the data
item and only the data in the data item, whereby two
identical data items in the system will have the same
identifier; and

(ii) determining whether the particular identifier is in
the set of data items.

36. A method of backing up, of a plurality of data items
present in a data processing system, data itemns modified
since a previous backup time in the data processing system,
the method comprising:

10

20

30

35

45

50

55

60

65

44

{A) maintaining a backup record of identifiers of data
items backed up at the previous backup time; and
(B) for each of the plurality of data items present in the

data processing system,

(1) determining a substantially unique identifier for the
data ilem, the identifier depending on and being
determined using all of the data in the data item and
only the daia in the data item, whereby two identical
data items in the system wil} have the same identi-
fier;

(i) determining those data items of the plurality of data
items whose identifiers are not in the backup record;
and

(iii} based on the determining, copying only those data
Hlems whose daia identities are not recorded in the
backup record.

37. A method as in claim 36, further comprising:

recording in the backup record the identifiers of those data
items copied in said copying.

38. A method of locating a particular data item at a
location in a data processing sysiem, the method compris-
ing:

(A) determining a substantially unique identifier for the
data item, the identifier depending cn and being deter-
mined using all of the data in the data item and only the
data in the data item, whereby iwo identical data ilems
in the system will have the same identifier;

{B) requesting the particular data item by sending the data
identifier of the data item from the requester Iocation to
at least one location of a plurality of provider locations
in the system; and

(C) on at least some of the provider locations,

(a) for each data item of a plurality of data items at the
provider locations,

(1) determining a substantially unique identifier for the
data item, the identifier depending on and being
determined using all of the data in the data item and
only on the dala in the dala item, whereby two
identical data items in the system will have the same
identifier; and

(ii) making and maintaining a set of identifiers of data
items,

(b) determining, based on the set of identifiers, whether
the data item corresponding to the requested data
identifier is present at the provider location; and

{c} based on the determining, when the provider loca-
tion determines that the particular data item is
present at the provider locatiom, notifying the
requestor that the provider has a copy of the given
data itern.

39. The method of claim 38, further comprising:

(a) for each data item of a plurality of data items present
at said provider locations,
making and maintaining an association between the

data jtem and the identifier of the data item,

{(b) in response io said notifying, said client location
copying said data item from one of said responding
remote locations, using said association to access the
data item given the data identifier.

40. A method of locating a particular data item among a
plurality of locations, each of the locations having & plurality
of data items, the method comprising:

determining, for the particular data item and for each data
item of the plurality of data items, a subslaniially
unique identifier for the data item, the identifier
depending on and being determined using all of the

5,978,791

45

data in the data item and caly the data in the data item,
whereby two identical data items in the system will
have the same identifier; and

determining the presence of the particular data item in

each of the plurality of locations by determining
whether the identifier of the particular data item is
present at each of the locations.

41. The method of claim 30, wherein said accessing
further comprises: for a given data identifier and for a given
current location and a remote location in the system:

determining whether the data item corresponding to the

given data identifier is present at the current location,
and

based on said determining, if said data ifem is not present

at the current location, fetching the data item from a
remote location in the system to the current location,

42. The method of ¢laim 41, further comprising:

for each contextual name at a location,

making and maintaining a context association between

the context name of a data item and the identifier of
said data item, and when some centext association
changes at said current location, and
notifying said remote location of a modification to the
coptext association.
43. The method of claim 42, further comprising:
al said remote location, updaling the association between
the contexiual identifier of the data item and the iden-
tifier of the data item.
44. The method of ciaim 43, further comprising:
from said remote location, notifying all other locations
that said data item has been modified, by providing the
contextual identifier and data identifier of said data item
to said other locations.
45, The method of claim 44, further comprising, at each
location notified that the data itern has been modified:
modifying an association between the contextual identi-
fier of the data item and the data identifier of the data
item, to record that the data ilem has been modified.
46. A method of maintaining at least a predetermined
number of copies of & given dala item in a data processing

w

ay

46

system, at different locations in the data processing sysiem,
the data processing system being cne wherein data js iden-
lified by a substantially unique identifier, the identifier
depending on and being determined using all of the data in
the data itern and only the data in the data item, whereby two
identical datz items in ihe system will have the same
identifier, and wherein any data ifem in the system may be
accessed using oaly the identifier of the data item, the
method comprising:

() sending, from a first location: in the system, the data
identifier of the given data item 1o other locations in the
system; and

(i) in response to the sending, at cach of the other
locations,

(A) determining whether the data item corresponding to
the data identifier is present at the other location, and
based on the determining, and

(B) informing the first location whether the data item is
present at the other location; and

(iii} in responsc to the informing from the other locations,
at the [irst location,

(A) determining whether the data liem is present in at [east
the predetermined number of other locations, and based
on the determining,

(B) when less than the predetermined oumber of other
locations have a copy of the data item, requesting some
locations thal do not have a copy of the data ilem make
a copy of the data item.

47. A method as in claim 46, wherein said step (iii) further

comprises:

{C) when more than the predetermined number of other
locations have a copy of the data item preseni, request-
ing some locaticos that do have a copy of the data item
preseal delete the copy of the data item.

48. A method as in any of claims 30-45, 46 and 47,
wherein said data items are at least one of a file, a database
record, a message, 2 data segment, a data block, a directory,
and an instance of an object class.

*® L * &

