EXHIBIT C


http://dockets.justia.com/docket/texas/txedce/6:2012cv00662/139828/
http://docs.justia.com/cases/federal/district-courts/texas/txedce/6:2012cv00662/139828/1/3.html
http://dockets.justia.com/

az United States Patent

Farber et al.

Ty

AR

US 7,802,310 B2
*Sep. 21, 2610

)
2

(10) Patent No.;
(451 Date of Patent:

(34
(75}

(73)

*)

(21
(22)
(65)

(60)

ey

CONTROLLING ACCESS TO DATA IN A DATA

PROCESSING SYSTEM

Inventors: David A. Farber, Ojai, CA (US);
Ronald D. Lachman, Northbrook, 11
(Us)

Assignees: Kinetech, Ine., Studio City, CA (US);
Level 3 Communications, LLC,
Broomfield, CO (US)

Subject to any disclaimer, the term of this
patent is extended or adjusted wunder 35
U.S.C. 154(b) by 79 days.

This patent is subject to a tenminal dis-
claimer.
Appl. No.: 11/980,687
Filed: Oct. 31, 2007
Prior Publication Data

US 2008/0066191 Al Mar. 13, 2008
Related U.S. Application Data

Notice:

Continuation of application No. 11/724,232, filed on
Mar. 15, 2007, which is a continuation of application
No. [1/017,650, filed on Dec. 22, 2004, which is a
continuation of application No. 09/987,723, filed on
Nov. 15, 2001, now Pat. No. 6,928,442, which is a
continuation of application No. 09/283,160, filed on
Apr. 1, 1999, now Pat. No. 6,415,280, which is a divi-
sion of application No. 08/960,079, filed on QOct. 24,
1997, now Pat. No. 5,978,791, which is a continuation
of application No. 08/425,160, filed on Apr. 11, 1995,
now abandoned, application No. 11/980,687, which is
a continnation of application No. 10/742,972, filed on
Dec. 23, 2003, whicl is a division of application No.
09/987,723, filed on Nov. 15, 2001, now Pat. No.
6,928,442, which is a continuation of application No.
09/283,160, filed on Apr. 1, 1999, now Pat. No. 6,415,
280, which is a division of application No. 08/960,079,
filed on Oct. 24, 1997, now Pat. No. 5,978,791, which
is a continuation of application No, 08/425,160, filed
an Apr. 11, 1995, now abandoned.

Int. Cl.
HO4L 2906 (2006.01)
GO6F 21700 (2006.01}

(52) US.Cl wovvvoeeenneecresiieseeeeeeeeeeene T26/28; 7117163
(58) Field of Classification Search ......o.cocvovene 726/28,
' 726/27,29; 713/181

See application file for complete search history.

References Cited
1.8, PATENT DOCUMENTS
3,668,647 A

(56)

6/1972 Evangelisti et al.
{Continued)

FOREIGN PATENT DOCUMENTS

EP 0 268 069 A2 5/1988

(Continued)
OTHER PUBLICATIONS

Cheriton, David R. and Mann, Timothy P., “Decentralizing a global
naming service for improved performance and fault tolerance™, ACM
Transactions on Computes Systerns, vol. 7, No. 2, May 1989, pp.
147-183.

(Continued)

Primary Examiner—Gilberto Barron, Jr.

Assistant Examiner—Samson B Lemma

(74) Attorney. Agent. or Firm—Davidson Berquist Jackson &
Gowdey, LLP; Brian Siritzky

(57) ABSTRACT

Access to and delivery of licensed content is controHed using
content names that were determined based on the content. A
name for a data item is obtained, the name having been
determined based at least in part on the data which comprise
the contents of the data item. Access to the data item is
authorized based at least in part on the name. Once autho-
rized, access may be granted from more than one computer.
The name may have been determined using a hash ormessage
digest function such as MD4, MD5 or SHA. The data item
may comprise a file, a portion of a file, a page in memory, a
digital message, a digita] image, a video signal or an audio
signal.

87 Claims, 31 Drawing Sheets

102 102

STORAGE STORAGE C . PROCESSOR
106
102 102 102
PROCESSOR! PROGESSOR PROCESSOR




US 7,802,310 B2

Page 2
U.S. PATENT DOCUMENTS 5,394,555 A /1995 Hunter et ai.
5,403,639 A 4/1995 Belsan et al.

3,835,260 A 9/1974 Prescher et al. 5,404,508 A 4/1995 Konrad et al.
4,096,568 A 6/1078 Bennett et al. 5438508 A 8/1995 Wyman
4,215402 A 7/1980 Mitchell et ak. 5442343 A 81995 Cato et al.
4,221,003 A 9/1980 Chang et al. 5448,668 A *  9/1995 Perelsonetal. ... 71421
4,290,105 A 9/1981 Cichelli et al. 5448718 A 9/1995 Cohn et al.
4,376,299 A 31983 Rivest 5,452,447 A 91995 Nelson et al.
4405879 A 9/1983 Rivest et al. 5,454,000 A *  9/1995 Dorfman ..........cceceee. 714/54
4412,285 A 10/1983 Neches et al. 5454,039 A 9/1995 Coppersmith et al.
4,414,624 A 11/1983 Swmmer, Jr. et al. 5,459,860 A 10/1995 Burnett
4,441,155 A 4/1984 Fleicher et zl. 5465365 A 11/1995 Winterbottom
4,464,713 A 8/1984 Benhase et al. 5,467,471 A 11/1995 Bader
4,490,782 A 121984 Dixonetal. 5475826 A 12/1995 Fischer
4,558,413 A 12/19835 Schmidt et al. 5479,654 A * 12/1995 Squibb .....coceeeerennene. TOT/695
4,571,700 A 2/1986 Emry, Jr. et al. 5,491,817 A 2/1996 Gopal et al.
4,577,293 A 3/1986 Matick et al. 5,499,294 A 3/1996 Friedman
4,642,793 A 2/1987 Meaden 5,504,879 A 4/1996 Eisenberg ¢t al.
4,658,093 A 4/1987 Hellman 5,330,757 A * 6/1996 Krawezyk .oocooroireeene 713/188
4,675,810 A 6/1987 Gruner et al. 5,537,585 A * 7/1996 Blickenstaffetal. ........ 707/205
4,691,299 A 9/1987 Rivest et al. 5,542,087 A 7/1996 Neimat et al.
4,725.945 A 271988 Kronstadt et al. 5,553,143 A 9/1996 Ross et al.
4,773,039 A 9/1988 Zamora 5,568,181 A 10/1996 Greenwood et al,
4,321,184 A 4/1989 Clancy et al. 5,581,615 A 121996 Stern
4,887,235 A 12/198% Holloway et al. 5,581,758 A 12/1996 Burnett
4,888,681 A 12/198% Barnesetal. 5,581,764 A 12/1996 Fitzgerald et al.
4,914,586 A 4/1990 Swinehart et al. 5583995 A 12/1996 Gardner et al.
4922414 A 5/1990 Iloloway et al. 5,588,147 A 1271996 Neeman et al.
4,922,417 A 5/1990 Churm et al. 5,600,834 A 2/1997 Howard
4,949,302 A 8/1990 Arnold et al. 5,604,803 A 2/1997 Aziz
“4,972367 A 1171990 Burke 5,604,892 A 2/1997 Nuttall et al.
5,007,658 A 4/1991 Bendert et al. 5,630,067 A 5/1997 Kindell et al.
5,014,192 A 571991 Mansfield et al. 5,632,031 A 51997 Velissaropoulos et al.
5,025,421 A 671991 Che 5,638,443 A 6/1997 Stefik et al.
5047918 A 971991 Schwartz et al. 5,640,564 A 6/1997 Hamilton et al.
5,050,074 A 971991 Marca 5,649,196 A 7/1997 Woodhill et al.
5,050,252 A /1991 Dyson 5677952 A 10/1997 Blakley, [l et al.
5,057,837 A 10/1991 Colwell et al. 5,678,038 A 1071997 Dockter et al.
5,077,658 A 12/1991 Benden 5,678,046 A 10/1997 Cazhili et al.
5084815 A 171992 Mazzario 5,694,472 A * 12/1997 Johnsonetal. .......... 7E3/189
5,117,351 A 571992 Miller 5,694,596 A 121997 Campbell
5,129,081 A 7/1992  Kobayashi et ai. 5701316 A 12/1997 Alferness et al,
5,129,082 A 71992 Tirfing e al. 5710822 A 11998 Alley et al.
5,144,667 A 9/1992 Pogue, Ir. et al. 5724425 A 3/1998 Chang ef al.
5,163,147 A * 1171992 Orita .cccceeevrvvececnnneenenn... 70779 5,724,552 A 3/1098 Taoda
5,179,680 A 171993 Colwell et al. 5,742,807 A *  4/1998 Masinter ....coveeverernnns 7071
5,182,799 A 171993 Tamura et al. 5,745,879 A 4/1998 Wyman
5,199,073 A 3/1993 Scott 5,757,983 A 5/1998 Bellare et al.
5,202,982 A % 41993 Gramlichetal ..o 11 5,757,915 A 5/1998 Auesmith et al.
5,204,897 A 4/1993  Wyman 5,781,629 A 7/1998 Haber et al.
5,204958 A 4/1993 Cheng et al. 5,802,291 A 9/1998 Balick et al.
5,204,966 A 4/1993 Wittenberg et al. 5,800,494 A 9/1998 Nguyen
5,208,858 A 5/1993 Vollert et al. 5826049 A 1071998 Ogata et al.
5,247,620 A 9/1993 Fukuzawa et al. 5835087 A 11/1998 Herzetal.
5,260,999 A 11/1993 Wyman 5,864,683 A 1/1999 Boebert et al.
5,276,869 A 171994 Forrest et al. 5907619 A 5/1999 Davis
5,276,901 A 171994 Howell et al. 5,907,704 A 5/1999 Gudmundson et al.
5,287,499 A 21994 Nemes 5,940,504 A 8/1999 Griswold
5,287,514 A 2/1994 Gram 5978791 A 11/1999 Farberetal.
5,207,279 A 3/1994 Bannon et al. 5008414 A 11/1999 Garay et al.
5,301,286 A 4/1994  Rajani 8,006,018 A 12/1999 Burnett et al.
5,301,316 A 4/1994 Hamilton et al. 6,134,603 A 10/2000 Jones et al.
5317693 A 51994 Cuenod et al. 6,135,646 A 102000 Kahn et al.
5,341,477 A 8/t994 Pitkin et al. 6415280 Bt 72002 Farber et al.
5,343,527 A 8/i994 Moore 6,732,180 Bl 572004 Haleetal.
5,347,655 A 9/1994 Flynn et al. 6,816,872 B1* 11/2004 Squibb ........cccoiiiien 141
5351302 A 9/1994 [eighton et al. 6,928,442 B2 872005 Farber et al.
5357440 A 10/1994 Tatbott et al. 2002/0052884 Al 5/2002 Farber et al.
5357623 A 1071994 Megory-Cohen 200200082999 Al 672002 Leeetal.
5359523 A 10/1994 Taibott et al. 2003/0078888 Al 4/2003 Leec et al.
5361356 A 111994 Clark et al. 2003/0078889 AL  4/2003 Leeetal.
5371,897 A 12/19%4 Brown et al. 2003/0095660 Al 52003 Teeetal
5384,565 A 1/1995 Cannon 2004/0139097 Al 7/2004 Farber et al.



US 7,802,310 B2
Page 3

2005/06010792 Al*
2005/0114296 Al
2007/0185848 Al
2008/0065635 Al
2008/0066191 Al
20080071835 Al
2008/0082551 Al

1/2005 Carpentier etal, .......... 713/193
5/2005 Farber et al.
8/2007 Tarber et al.
3/2008 Farber et al.
/2008 Farber et al.
3/2008 Farber et al.
4/2008 Farber et al.

FOREIGN PATENT DOCUMENTS
EP 0315425 5/1989
EP 0558945 A2 9/1993
EP 0566 967 A2 10/1993
EP 0592045 41994
EP 0631226 Al 12/1994
P 0654920 A2 5/1995
EP 0658022 A2 6/1995
GB 2204132 A 4/1996
JP 59058564 4/1984
Jp 63-106048 5/1988
Jp 63-273961 11/1988
JP 2-127755 5/1990
JP 05162529 6/1993
JP 06187384 A2 71994
IP 06348558 A 1241994
WO WO 92/20021 11/1992
WO WO 94/06087 3/1994
WO WO 94/20913 9/1994
WO WO 95/01599 1/1995
WO WO 97/43717 11/1997
OTHER PUBLICATIONS

Request for Reexamination of U.S. Patent No. 6,928,442: Reexam
U.S. Appl. No. 90/010,260, filed on Aug. 29, 2008.

Advances in Cryptology-AUSCRYPT °92—Workshop on the
Theory and Application of Cryptographic Techniques Gold Coast,
Queensland, Australia Dec. 13-16, 1992 Proceedings.

Advances in Cryptology-EUROCRYPT ‘93, Workshop on the
Theory and Application of Cryptographic Techniques Lofthus, Nor-
way, May 23-27, 1993 Proceedings.

Affidavit of Timothy P. Waiker in Support of CWIS” Opening Mark-
man Brief Construing the Terms at Issue in UJ.S. Patent No.
6,415,280, dated Jul. 25, 2003, from Civil Action No. 02-11430
RwWZ.

Akamai and MIT’s Memorandum in Support of Their Claim Con-
struction of UUSPAT 5,978,791, dated Aug. 31, 2001, from Civil
Action No. 00-¢v-11851RWZ.

Akamai’s Answer, Affirmative Defenses and Counterclaims to
Amended Complaint, fited Dec. §, 2002, in Civil Action No. 02-CV-
11430RWZ.

Akamai's Brief on Claim Construction, dated Aug. 8, 2003, [rom
Civil Action No. 02-11430 RWZ.

Albert Langer {(cmf851@anu.oz.an), http://groups.google.com/
groups?selm=1991Aug7.225159.786%40newshost.anu. edu.au
&oe=UTF-8&output=gplain, Aug. 7, [991.

Alexander Dupuy (depuy@smarts.com), “MDS5 and LIFNs (was:
Misc Comments)”, www.acl.lanl.gov/URarchive/uri-94q2.1nes-
sages/0081 html, Apr. 17, 1994.

Alexander Dupuy (dupuy@smarts.com), “RE: MD5 and LIFNs
(was: Misc Comunentsy”’, www.acl.lanl.gov/URV/aschive/uri-94q2.
messagest0113.himl, Apr. 26, [994.

Answer of Defeadant REA A to First Amended Complaint and Coun-
terclaim, dated Feb. 8, 2003, from Civil Action No. CV04-7456 JFW
(CTx).

Berners-Lee, T. et al., “Hypertext Transfer Protocol—HTTP/1.0,”
May 1996, pp. 1-34.

Berners-Lee, T. etal., “Uniform Resource Locators (URL),” pp. 1 -25,
Dec. 1994,

Berners-Lee, T., “Universal Resource Identifiers in WWW," Jun.
1994, pp. 1-25.

Bert dem Boaer, et al., Collisions for the compression function of
MD.sub.5 pp. 292-304, 1994,

Birgit Pfitzinan, Sorting Out Signature Schemes, Nov. 1993, 1 .sup st
Conf. Computer & Comm. Security *93, p. 74-85.

Birgit Pfitzmann, Sorting Out Signature Schemes, Nov. 1993, Ist
Conf. Computer & Comm. Security "93 pp. 74-85.

Bowman, C. Mic, et al., “Harvest: A Scalable, Customizable Discov-
ery and Access System,” Aug. 4, 1994, pp. 1-27.

Bowman, C. Mic, et al., “Harvest: A Scalable, Customizable Discav-
ery and Access System,” Mar. 12, 1995, pp. 1-29.

Brisco, T., “DNS Support for Load Balancing,” Apr. 1995, pp. 1-7.
Browne, Shirley et al., “Location-Irdependent Naming for Virtual
Distributed Software Repositories,” 1993, 7 pages.

Browne, Shirley et al., “Location-Independent Naming for Virtual
Distributed Software Repositories,” 1995, printed from http:/www.
netlib.org/utk/papers/lifn/main. htm! or Mar. 22, 2006, I8 pages.
Carter, J. Lawrence, et al. “Universal Classes of Hash Functions.”
Journal of Computer and System Sciences, vol. 18, No. 2, Apr. 1979,
pp. 143-154.

Chris Charnes and Josef Pieprzky, Linear Nonequivalence versus
Nonlinearity, Pieprzky, pp. 156-164, 1993.

Civil Minutes General dated Jan. 25, 2005, from Civil Action Ne. CV
04-7456-JFW {CTx).

Clifford Lynch (Calur@ueccmvsa bitnet), “ietf urb/uri overview draft
paper (long)”?, www.acllanl.gov/URVarchive/uri-93qt. messages/
0015.html, Mar. 25, 1993,

Complairt for Patent Infringement, Permanent Injunction, and Dam-
ages, dated Sep. 8, 2004, from Civil Action No. CV 04-7456 JFW
(ATWx).

Cormen, Thomas H., et al. Introduction to Algorithms, The MIT
Press, Cambridge, Massachusetts, 1994, pp. 219-243, 991-993.
CWIS' Opening Markman Brief Construing the Terms at Issue in
1J.5. Patent No. 6,415,280, dated Jul. 25, 2003, from Civil Action No.
02-11430 RWZ.

CWIS" Reply Markinan Brief Construing the Terms at Issue in U.S.
Patent No. 6,415,280, dated Aug, 15, 2003, from Civil Action No.
02-11430 RWZ.

Danzig, P.B., et al,, *“Distributed Indexing: A Scalable Mechanism
For Distributed Information Retrieval” Proceedings of the 14th
Annual Internationzl ACM SIGIR Conference on Researck and
Development in Information Retrieval, pp. 220-229, Oct. 13-16,
1991.

Davis, James R., “A Server for a Distributed Digital Technical Report
Library” Jan. 15, 1994, pp. 1-8.

Declaration of Robert B.K. Dewar in Suppost of CWIS’ Construction
of the Terms at Issue in U.S. Patent No. 6,415,280, dated Jul. 25,
2003, from Civil Action No. 02-cv-1 1430RWZ.

Deering, Stephen, et al. “Multicast Routing in Datagram
Internetworks and Fxtended LANs.” ACM Transactions on Com-
puter Systerms, vol. 8, No. 2, May 1990, pp. 85-110.

Defendant Digital Island’s Opening Brief on Claim Construction
Issues dated Aug. 17, 2001, from Civil Action No. 00-cv-1185]-
RWZ.

Defendant Lime Wire, LLC’s Answer, Affinmative Defenses and
Counterclaims dated Nov. 15, 2007, from Civil Action No. 07-06 161
VBF (PLAX).

Defendant Media Sentry, Inc.’s Reply Memorandum of Points and
Authorities in Further Support of [ts Motion to Dismiss, dated Nov.
15, 2004, from Civil Action No. CV04-7456 JEW (CTx).
Defendant MediaSeniry Inc.'s Notice of Motion and Motior to Dis-
miss First Amended Complaint, Memorandam of Points and
Autherities in Suppert Thereof. dated Dec. 13, 2004, from Civil
Action No. CV04-7456 JIT'W.

Defendant MediaSentry, [nc.’s Answer to Plaintiffs’ First Amended
Complaint and Counterclaims, dated Feb, 8, 2003, from Civil Action
No. CV04-7456 JFW (CTx).

Defendant RIAA’s Notice of Motion and Motion to Dismiss First
Amended Complaint; Memorandum of Points and Authorities in
Support Thereof, dated Dec. 13, 2004, from Civil Action No. CV04-
7456 JFW (CTx).

Defendants Loudeye Corp.’s and Overpeer, Inc.’s Answer to Plain-
tiffs’ First Amended Complaint and Counterclaim, dated Feb. 8,
2005, from Civil Action No. (04-7456 JFW (ATWx}.

Defendants’ Preliminary Invalidity Contentions dated Dec. 14, 2006,
from Civil Action Ne. CV 06-5086 SJO (Ex).



US 7,802,310 B2
Page 4

Devine, Robert. “Design and [inplementation of DDH: A Distributed
Dynamic Hashing Algorithm.” In Proc. of 4th International Confer-
ence on Foundations of Data Organizations and Algorithms, 1993,
pp. 101-114. .

European Secarch Report issued Dec. 23, 2004 in correpsonding
European Apptication No. 96910762.2-2201.

Expert Report of Professor Eitis Horowitz, dated Mar. 6, 2006, from
Civil Action No. 04-7456 JFW (CTx).

Expert Report of the Honorable Gerald J. Mossinghoff, dated Mar.
13, 2006, from Civil Action No. 04-7456 JFW (CTx).

Faltstrom, P. et al., “How to Interact with a Whois++ Mesh,” Feb.
1996, pp. §-9.

Feeley, Michael, et al. “Implementing Global Memory Management
in a Workstation Cluster” In Proc. of the 15th ACM Symp. on Oper-
ating Systems Principles, 1995, pp. 201-212,

Fieiding. R. et al., “Hypertext Transfer Protocol—HTTP/1.1.” Jan.
1997, pp. 1-163.

Fielding, R. et al., “Hypertext Transfer ProtocolHTTP/1.1.” Jun.
1999, pp. 1-157.

First Amended Complaint for Patent Infringement, Permanent
Injunction and Damages, dated Nov. 24, 2004, trom Civil Action No.
CV 04-7456 JFW (CTx).

Floyd, Sally, et al. “A reliable Multicast Framework for Light-Weight
Sessions and Application Level Framing.” In Proceeding of ACM
SHGCOMM *95, pp. 342-356.

Fredman, Michael, et al. “Storing a Sparse Table with 0([) Worst
Case Access Time” Journal of the Association for Computing
Machinery, vol. 31, No. 3, Jul. 1984, pp. 538-544.

G. L. Friedman, Digital Camera With Apparatus for Authentication
of Images Produced From an Image File, NASA Case No. NPO-
19108-1-CUJ, U.S. Appl. No. 08/159,980, Nov. 24, 1993,

Grigni, Michelangelo, et al. “Tight Bounds on Minimum Broadcasts
Networks." SIAM Journal of Discrete Mathematics, vol. 4, No. 2,
May 199F, pp. 207-222.

Gwertzman, James, et al, “The Case for Geographical Push-Cach-
ing"” Technical Report HU TR 34-94 (excerpt), Harvard University,
DAS, Cambridge, MA 62138, 1994, 2 pgs.

H. Goodman, Ada, Object-Oriented Techniques, and Concurrency in
Teaching Data Structures and File Management Report Documenta-
tion p. Ad-A275 385-94-04277.

H. Goodman, Feb. 9, 1994 Ada, Object-Oriented Techniques, and
Concurrency in Teaching Data Sructures and File Management
Report Documentation P. AD-A275 385-94-04277.

Hauzeur. B. M., “A Model for Naming, Addressing, and Routing,”
ACM Trans. Inf. Syst. 4, Oct. 4, 1986), 293-311.

International Search Report dated Jun. 24, 1996 in corresponding
international application PCT/US1996/004733.

K. Sollins and L. Masinter, “Functional Requirements for Uniforin
Resource Names”, www.w3.org/ Addressing/rfc 1737 txt, Dec. [994,
pp. 1-7.

Khare, R. and Lawrence, S., “Upgrading to TLS Within HTTP/1.1,”
May 2600, pp. 1-12.

Khoshafian, S. N. et al. 1986. Object identity. In Conf. Proc. On
Object-Oriented Programming Systems, Languages and Applica~
tions (Portland, Oregon, Enited States, Sep. 29-Oct. 2, {986). N.
Meyrowitz, Ed. GOPLSA *86. ACM Press, New York, NY, 406-416.
Kim et al., "Experiences with Tripwire: Using Integrity Checkers for
Intrusion Detection”, COAST Labs. Dept. of Computer Sciences
Purdue University, Feb. 22, 1995, pp. 1-12.

Kim et al., “The Design and Implementation of Tripwire: A file
System Integrity Checker”, COAST Labs. Dept. of Computer Sci-
ences Purdue University, Feb. 23, 1995, pp. 1-18.

Kim et al, *The Design and Implementation of Tripwire: A file
System integrity Checker”, COAST Labs. Dept. of Computer Sci-
ences Purdue University, Nov. 19, 1993, pp. 1-21.

Kim, Gene H., and Spafford, Eugene H., “Writing, Supporting, and
Evaluating Tripwire: A Publicly Available Security Tool” COAST
Labs. Dept. of Computer Sciences Purdue University, Mar. 12, 1994,
pp. 1-23.

Knuth, Donald E., “The Art of Computer Programrming,” 1973, vol.
3, Ch. 6.4, pp. 506-549.

Laniz, K. A.. et al,, “Towards a universal directory service.” In Proc.
4th Annual ACM Symp. on Principles of Distributed Computing
(Minaki, Ontario, Canada). PODC *85. ACM Press, New York, NY,
250-260.

Leach, P. J., et al.. The file system of an integraied [ocal network. In
Proc. 1985 ACM 13th Annuat Conf. on Comp. Sci. CSC "85. ACM
Press, NY, NY, 309-324.

Leach, P.J., et al., “UIDs as [nternal Names in a Distributed File
System,” In Proc. 1st ACM SIGACT-SIGOPS Syinp. on Principles of
Distributed Computing (Ottawa, Canada, Aug. 18-20, 1982). PODC
*82. ACM Press, New York, NY, 34-41.

Ma, C. 1992, On building very large naming systems. In Proc. 5th
‘Workshop on ACM SIGOPS European Workshop: Models and Para-
digms For Distributed Systems Structuring (France, Sep. 21-23,
1992). EW 5. ACM Press, New York, NY, 1-3.

Memorandum ef Points and Autherities in Support of Loudeye’s andt
Overpeer’s Motion to Dismiss the First Amended Complaint for
Failure to State a Claim or, In the Alternative, for a More Definitive
Statement, dated Dec. 13, 2004, from Civil Action No. CV-04-7456
JFW (ATWX).

Ming-Ling Lo et al., On Optimal Processor Allocation to Support
Pipelined Hash Joins, ACM SIGMOD, pp. 69-78, May 1993.
Moats, R., “URN Syntax,” May 1997, pp. 1-8.

Murlidhar Koushik, Dynamic Hashing With Distributed Overflow
Space: A File Organization With Good Insertion Performance, 1993,
Info. Sys., vol. 18, No. 5, pp. 299-317.

Myers, J. and Rose, M., “The Content-WD35 Header Field,” Oct.
1995, pp. 1-4.

Naor, Moni, et al. “The Load, Capacity and Availability of Quorun
Systems.” In Proceedings of the 35th [EEE Symposium on Founda-
tions of Computer Science, Nov. 1994, pp. 214-225.

Nisan, Noam. *Psuedorandom Generators for Space-Bounded Com-
putation.” In Proceedings of the Twenty-Second Annual ACM Sym-
postuin on Theory of Computing, May 1990, pp. 204-212.

Office Action in corresponding Japanese Application No. 531,073/
1996 mailed on Apr. 25, 2006.

Office Communication in comesponding European Apgplication No.
96910762.2-1225 dated Jar. 17. 2007.

QOrder Re Claim Construction dated Nov. 8, 2001, from Civil Action
No.Q0-11851-RWZ.

Palmer, Mark, et al. “Fido: A Cache that Learns to Fetch” In Pro-
ceedings of the 17th International Conference on Very Large Data
Bases, Sep. 1991, pp. 255-264.

Patent Abstracts of Japan, “Pevice for Generating Database and
Method for the Same,” Application Neo. 03-080504, Sun Microsyst.
Inc., published Jun. 1993, 38 pages.

Patent Abstracts of Japan, “Electronic Mail Multiplexing System and
Communication Control Method in The System.” Jun. 30, 1993, JP
051625283,

Patent Abstracts of Japan, “Method for Registering and Retrieving
Data Base,” Application No. 03-187303, Nippon Telegr. & Teleph.
Corp., published Feb. 1993, |1 pages.

Peleg, David, et al. “The Availability of Quorun Systems.™ Informa-
tion and Computation 123, 1995, 210-223.

Peter Deeutsch {peterd@bunyip.com}, “Re: MD3 and LiFNs (was:
Misc Comunents)”, www.acl.lanl.gov/URl/archivernri-94¢2.mes-
sages/0106.html, Apr. 26, 1994.

Peterson, L. L. 1988. A yellow-pages service for a local-area net-
work. In Proc. ACM Workshop on Froatiers in Computer Commu-
nications Technolegy (Vermont, 1987). J. J. Garcia-Luna-Aceves,
Ed. SIGCOMM *87. ACM Press, New York, NY, 235-242.
Plaintiffs’ Memorandum of Points and Authorities in Opposition to
Loudeye Defendants® Motion to Dismiss, dated Nov. §, 2004, from
Civil Action No. CV-04-7456 JFW {ATWX).

Plaintiffs’ Opposition to Media Sentry*s Motion to Dismiss; Memo-
randum of Points and Authorities in Suppost Thereof, dated Nov. 8,
2004, from Civil Action No. CV 04-7456 JEW (CTx).

Plaintiff's Opposition to Recording Industry Association of Awmeri-
ca's Motion to Dismiss; Memorandum of Points and Authorities in
Support Thereof, dated Nov. 8, 2004, from Civil Action No. CV-04-
7456 JFW (CTX).



US 7,802,310 B2
Page 3

Plaintiff’s Reply to Defendant Loudeye Corp.’s and Overpeer, Inc.’s
Counterclaims, dated Mar. 3, 2005, from Civil Action No. CV
04-7456 JFW (CTx).

Plaintiff's Reply to Defendant MediaSentry's Counterclaims, dated
Mar, 3, 2005, from Civil Action No. CV 04-7456 JFW (CTx).
Plaintiff’s Reply to Defendant RIAA’s Counterclaims, dated Mar. 3,
20035, from Civil Action No. 04-7456 JFW (CTx).

Proceedings of the 1993 ACM SIGMOD International Conference on
Managernent of Data, vol. 22, Issue 2, Jun. 1993.

Rabin, Michael. “Efficient Dispersal of Information for Security,
Load Balancing, and Fault Toferance.” Journal of the ACM, vol. 36,
No. 2, Apr. 1989, pp. 335-348,

Ravi, R., “Rapid Rumor Ramification: Approximating the Minimum
Broadcast Time." In Proc. of the 35th IEEE Symp. on Foundatioa of
Computer Science, Nov. 1994, pp. 202-213.

Ravindran, K. and Ramakrishnan, K. K. 1991, A naming system for
feature-based service specification in distributed operating systems.
SIGSMALL/PC Notes }7, 3-4 (Sep. 1991), 12-21.

Reed Wade (wade@cs.utk.edu), “re: Dienst and BFD/LIFN docu-
ment,” Aug. 8, 1994, printed from http://www.webhistory.org/www.
listsharww-Latk 1994q3/0416 . html on Mar. 22, 2006, (7 pages).
Rivest, R., “The MD5 Message-Digest Algoritiun,” Apr. 1992, pp.
1-19 and errata sheet (1 page).

Rose, M., “The Content-ME5 Header Field,” Nov. 1993, pp. 1-3.
Ross, K., “Hash-Routing for Collections of Shared Web Caches,”
IEEE Network Magazine, pp. 37-44, Nov.-Dec. 1997,

Sakti Pramanik et al., Muiti-Directory Hasing, 1993, Info. Sys., vol.
18, No. 1, pp. 63-74.

Schinidt, Jeanette, et al. “Chemoff-Hoeffding Bounds for Applica-
tions with Limited Independence” In Proceedings of the 4th ACS-
S1AM Symposium on Discrete Algorithms, 1993, pp. 331-340.
Schneier, Bruce, “One-Way Hash Functions, Using Crypographic
Algorithms for Hashing,” 1991, printed from http://202.179135.4/
data/DDVarticles/1991/9109/91909g/9109g htwm on Mar. 22, 2006.
Schwartz, M., etal. 1987. A name service for evolving heterogencous
systems. [n Proc. 11th ACM Syinp. on OS Principles (Texas, Nov,
§-11, 1987). SOSP '87. ACM Press, NY, NY 52-62.

Search Report dated Jun. 24, 1996,

Shaheen-Gouda, A. And Loucks, L. 1992. Namne borders. In Proc. 5th
Workshop on ACM SIGOPS European Workshop: Models and Para-
digms For Distributed Systems Structuring (Mont Saint-Michel,
France, Sep. 21-23, £992). EW 5. ACM Press, NY, NY, 1-6.

Sun Microsystems, Inc., "NFS: Network File System Protocol Speci-
fication,” Mar. [989, pp. 1-25.

Tarjan, Robert Endre, et al. “Storing a Sparse Table.” Communica-
tions of the ACM, vol. 22, No. L], Nov. 1979, pp. 606-611.

Terry, . B. 1984. An anatysis of naming conventions for distributed
computer systems. In Proc. ACM SIGCOMM Symp. on Cormuni-
cations Architechires and Protoeols: Tutorials & Symp. SIGCOMM
'84. ACM Press, NY, NY, 218-224.

Thomas A. Berson, Differential Cryptanalysis Mod 2.sup.32 with
Applications to MDS5, pp. 69-81, 1992.

Vijay Kumar., A Concurrency Control Mechanism Based on Extend-
ible Hashing for Main Memory Database Systems, ACM, vol. 3,
1989, pp. 109-113.

Vijay Kumar, A concurrency Contrel Mechanism based on Extend-
ible Hashing for Main Memeory Database Systems, pp. 109-113,
ACM, vel. 3, 1980,

Vincenzetti, David and Cotrrozzi, Massimo, “Anti Tampering Pro-
gram,” Proceedings of the Fourth {USENIX} Security Symposium,
Santa Clara, CA, 1993, 11 pages.

Vincenzeltti, David and Cotrrozzi, Massimo, “Anti Tampering Pro-
gram,” Proceedings of the Fourth {UUSENIX} Security Symposiurm,
Santa Clara, CA, undated, printed from http//wwwja.net/CERI
Vincenzetti and_ Cotrozzi/ATP__Anti_ Tamp on Mar. 22, 2006, 8
pages.

Vitter, Jeffrey Scott, et al. “Optimal Prefetching via Data Compres-
sion.” [n Proceedings of 32nd IEEE Symposium on Foundations of
Computer Science, Nov. 1991, pp. 121-130.

W3C:ID, HTTP: A protocol for networked intormation, “Basic
HTTP as defined in 1992”7, www.w3.org/Protocols’HTTP2 htinl,
1992.

Wegman, Mark, et al, “"New Hash Functions and Their Use in Authen-
tication and Set Equality” Journal of Computer and System Sciences
vol. 22, Jun. 1981, pp. 265-279.

William Perrizo, et al., Distributed Join Processing Performance
Evaluation, 1994, Twenty-Seventh Hawaii International Conference
on System Sciences, vol. IT, pp. 236-244.

Witold Litwin et al., LH.sup.—Linear Hasking for Distributed Files,
HP Labs Tech. Report No. HPL-93-21, Jur. 1593, pp. 1-22.

Witold Litwin et al., Linear Hasking for Distributed Files, ACM
SIGMOD, May 1993, pp. 327-336.

Witold Litwin, et al., LH—Linear Hashing for Distributed Files, HP
Labs Tech. Report No. HPL-93-21 Jun. 1993, pp. [-22.

Yao, Andrew Chi-Chih. “Should Tables be Sorted?” Journal of the
Association for Computing Machinery, vol. 28, No. 3, Jul. 1981, pp.
615-628.

Yuiiang Zheng ¢t al., Haval—A One-Way Hashing Algorithm with
Variable Length of Output (Extended Abstract), pp. 83-105.
Yuliang Zheng, et al., Haval—A One-Way Hashing Algorithm with
Variable Length of Output (Extended Abstract), pp. 83-105,
Advances in Cryptology, AUSCRIPT *92, 1992,

Zhiyu Tian, et al., A New Hashing Function: Statistical Behaviour
and Algorithm, pp. 3-13, SIGIR Ferum, 1993.

Zhiyn Tian, et al., A New Hashing Function: Statistical Behaviour
and Algorithm, pp. 3-13, SIGIR Forum, Spring 1993.

[Proposed] Order Regarding Construction of Terms, filed Mar. 29,
2007 in C.D. Cal. case No. CV 06-5086 SJO (Ex) [ pgs.].
Analysis of Plaintiffs’ Claim Chart for the *280 Patent As Against
Defendant Media Sentry, Inc. 11 pages.

Analysis of Plaintiffs’ Claim Chart for the 791 Patent As Against
Defendant Media Sentry, Inc. (11916.001.0150.a) pp. 1-48.
Analysis of Plaintiffs” Claim Chart for the "791 Patent As Against
Defendant Overpeer pp. 1-40.

Barbara, D, et al., “Exploiting symumetries for low-cost comparison
of file copies”, 8th In¥’l Conf. on Distributed Computing Systems,
Jun. 1988, pp. 471-479, San Jose, CA.

Campbell, M., “The Design of Text Signatures for Text Retrieval
Syslems,” Tech. Reporl, Sep. 5, 1994, Deakin University, School of
Computing & Math., Geelong, Australia.

Chang, W. W. et al., “A signature access method for the Starburst
database system,” in Proc. t5th Int’l Conf. on Very Large Data Bases
(Amsterdam, The Netherlands), pp. 145-153.

Changes to Mar. 23, 2007 Deposition of Robert B. K. Dewar, in C.I}
Cal. case No. CV 06-5086 SJO (Ex) {3 pgs + cover letter.}.
Communication from EPQ in European Application No. 96 910
762.2-1225 dated May 8, 2009 [4 pgs.].

Conununication pursuant to Article 96(2) EPC from EPO (Examina-
tion Report), Jan. 7, 2067, in Application No. EP96 910 762.2-1225
[l pg. with 5 pg. annex].

Complaint for Patent Infringement, Permanent injunction and Dam-
ages, Aug. 8, 2006, in C.D. Cal. case No. CV 06-5086 SJO (Ex) {11
pgs.J.

Complaint for Patent [nfringement, Permanent Injunction and Dam-
ages, filed Sep. 21, 2007 in C.D. Cal. Case No. Cv (7-06161 VBF
(PLAX) [10 pgs.}.

Declaration of Charles S. Baker in Support of Defendant Lime Wire's
Motion to Stay Pending Reexamination of Patenl and Reguest for
Extension of Deadlines, Aug. 29, 2008, in C.I). Cal. Case No. CV
07-06161 VBF (PLAX) [2 pgs.]).

Defendant Lime Wire, ELC's First Amended Answer, Affirmative
Defenses and Counterclaims, QOct. 2, 2068, C.ID. Cal. case No.
07-06161 VBF (PLAxX) {13 pgs.).

Defendant Lime Wire, LLC’s Second Amended Answer, Affirmative
Defenses and Counterclaims, Oct. 27, 2008, From C.D. Cal. case No.
07-06161 VBF (PLAX) 113 pgs.L.

Defendant Michael Weiss's Answer to Plaintiff's Complaint for
Patent Infringement, Permanent Injunction and Damages; Demand
for Jury Trial, Sep. 15, 2006, case No. CV 06-5086 SIO (Ex) {10
pgsl

Defendant Recording Industry Association of America’s Amended
Notice of Motion and Motion for Partial Summary Judgment on
Plaintiffs' Claims for Patent Infringement and Inducing Patent
Infringement, Memorandum of Points and Authorities, May 22,
2006, redacted, original confidential, filed under seal, in C.D. Cal.
case No. CV 04-7456 JFW (CTx) [19 pgs .



US 7,802,310 B2
Page 6

Defendant Recording Industry Association of America’s and
Mediasentry, Inc.’s Notice of Motion and Motien for Partial Sum-
mary Judgment Based on [mplied License or, In the Alternative,
Based on Patent Misuse and Unclean Hands, May 22, 2006,
Redacted, in C.D. Cal. case No. CV 04-7456 JFW {CTx) [2} pgs.).
Defendant Recording Industry Assoctation of Armerica’s and
Mediasentry, Inc’s Notice of Motion and Motion for Partial Sum-
mary Judgment Based on Implied License or, In the Alternative,
Based on Patent Misuse and Unclean Hands, May 8, 2006, in C.D.
Cal. case No. CV 04-7456 JFW (CTx) [20 pgs.].
Defendant StreamCast Networks Inc.’s Apswer to Plaiatiff’s Com-
plaint for Patent Infringement, Permanent Izjunction and Damages;
Demand for Jury Trial, Sep. 5, 2006, C.D. Cal. case No. CV 06-5086
SJO (Ex) {10 pgs.].
Defendants’ Amended Preliminary Claim Constructions [Patent
Rule 4-2], filed Feb. 7, 2007 in C.D. Cal. case No. CV 06-5086 SiO
(Ex) [10 pgs.].
Defendant's Sccond Aunended Preliminary Claim Constructions
[Patent Rule 4-2], filed Feb. 9, 2007 in C.D. Cal. case No. CV
06-5086 SIO (Ex) [0 pgs.].
Diawar, Rebuttal Expert Report of Robert B.K. Dewar, in C.I). Cal.
case No, CV 04-7456 JFW (CTx), Apr. 10, 2006 [87 pgs].
Faloutsos, C. “Access methods for text,” ACM Comput. Surv. 17, 1
{Mar. [985), 49-74.
Faloulsos, C. et al., “Descriplion and performance analysis of signa-
ture file methaods for office filing” ACM Trans. Inf. Syst. 5, 3 (Jul.
1987), 237-257.
Faloutsos, C. et al., “Signamre files: an access method for documents
and its analytical performance evaluation,” ACM Trans. Inf. Syst. 2,
4 (Ocl. 1984), 267-288.
Federal Inforiation Processing Standards (FIPS} Publication 180-1;
Secure Hash Standard, Apr. 17, [995 [17 pgs.].
Feigenbaum, J. et al., “Cryptographic protection of databases and
software,” in Distributed Computing and Cryptography: Proc.
DIMACS Workskop, Apr. 1991, pp. 161-172, American Matkemati-
cal Society, Boston, Mass,
First Amended Answer of Defendant Mediasentry to Second
Amended Complaint and Counterclaim, Apr. 24, 2006, in C.D. Cal.
case No. CV 04-7456 JFW (CTx) [29 pgs.}.
First Amended Answer of Defendant RIAA to Second Amended
Complaint and Counterclaim, Apr. 24, 2006, in C.D. Cal, Case No.
CV 04-7456 JFW (CTx) [27 pgs ].
First Amended Complaint for Patent Infringement, Pemmanent
Injunction and Damages, filed Sep. 8, 2008 in C.D. Cal. Case No. CV
07-06161 VBF (PLAX) [10 pps.].
Harrisen, M. C., “limplementation of the substring test by hashing,”
Commun. ACM i4, 12 (Dec. 1971), 777-779.
IEEE, The Authoritative Dictionary of IEEE Standards Terms, 7th
ed., Copyright 2000, pp. 107, 176, 209, 240, 241,432, 468, 505, 506,
682, 1016, 1113, 1266, and 1267.
Ishikawa, Y., et al., “Evaluation of signature files as set access facili-
ties in QODBs,” In Prac. of the 1993 ACM SIGMOD Inter. Conf. on
Management of Data (Washington, D.C., U.S., May 1993). P. Bune-
man & S. Jajodia, Eds. SIGMOD '93. ACM, NY, NY, 247-256.
Joint Claim Construction and Prehearing Statement, N. D, Cal. Rule
4-3, Feb. 12, 2007, in C.I). Cal. case No. CV (06-5086 SJO (Ex) [20
gs.].
Karp, R. M. and Rabin, M. 0., “Efficient randomized pattern-iatch-
ing algerithins,” IBM J. Res. Dev. 31, 2 (Mar. 1987), 249-260.
List of Asserted Claims and Infringement Chart for Each Asserted
Claim, Jul. 28, 2008, in C.D. Cal. Case No. CV 07-06161 VBF
(PLAX)[31 pgs.].
MecGregor D. R. And Mariani, J. A. “Fingerprinting—A technique
for file identification and maintenance,” Software: Practice and Expe-
rience, vol. 12, No. 12, Dec. 1982, pp. 1165-1166.
Naotice of Interested Parties, filed Sep. 21, 2007 in C.D. Cal. Case No.
CV 07-06161 VBF (PLAX) [2 pgs.].
Notice of Motion and Metion of Defendant Lime Wire to Stay Liti-
gation Pending Reexamination of Patent and Request for Extension
of Deadlines, Sep. 22, 2008. C.D. Cal. Case No. CV 07-06161 VBEF
(PLAx)[11 pgs.].
Notice of Related Cases, filed Sep. 21, 2007 in C.D. Cal. Case No.CV
07-06161 VBF (PLAx) [2 pgs.).

Office Action from PTQ in U.S. Appl. No. 11/980,679, May 6, 2009.
Panagopoulos, G., et al., “Bit-sliced signature files for very larpe text
databases on a parallel machine architecture,” In Proc. of the 4th Inter.
Conf. on Extending Database Technology (EDBT), Cambridge,
UK., Maz. 1994, pp.379-392 (Proc. LNCS 779 Springer 1994, ISBN
3-540-57818-8) {14 pgs.].

Patent Abstract, * Management System for Plural Versions,” Pub. No.
63273961 A, publisked Nav. 1, 1988, NEC Corp.

Patent Abstracts of Japan, *Data Processor,” Appin. No. 05135620,
filed Jun. 7, 1993, Toshiba Corp.

Plaintiff Kinetech, Inc.'s Responses to Defendant Mediasentry's
First set of Interrogateries, May 1, 2006, in C.D. Cal. Case No. CV
04-7456 IFW (CTx) [14 pgs.].

Plaintiff-Counterclaim Defendant Altnet, Inc.’s Supplemenial
Responses to Defendant-Counterclaim Plaintiff Overpeer Inc.’s First
Set of [nterrogatories, Mar. 8, 2006, redacled, in C.D. Cal. case No.
CV (14.7456 JFW (CTx) [24 pgs.).

Plaintiff-Counterclaim Defendant Brilliant Digital Entertainment,
In¢.’s Supplemental Responses to Defendant-Counterclaim Plaintiff
Overpeer Inc.’s First Set of Interrogatories, Mar, 8, 2006, redacted, in
C.D. Cal. case No. CV 04-7456 TFW (CTx) [24 pgs.].
Plaintiff-Counterclaim Defendant Kinetech, Inc.’s Supplemental
Responses to Defendant-Counterclaim Plainti ff Overpeer Inc.’s First
Set of Interrogatories Mar. 8, 2006, redacted, in C.D. Cal. case No.
CV 04-7456 JFW (CTx) [24 pgs.]-

Plaintiffs Altnet, Inc., Brilliant Digital, Inc , and Kinetech, Inc.'s
Responses to Defendant Recording Industry Association of Ameri-
ca's First Set of Requests for Admissions, Jan. 6, 2006, in C.D. Cal.
case No, CV 04-7456 JFW (CTx) [26 pgs.].

Plaintiffs’ Claiin Construction Opening Brief and Exhibits A-D,F, G;
May 7, 2007, in C.D. Cal. case No. CV 06-5086 SJO{Ex) [112 pgs.].
Plaintiffs’ Preliminary Claim Constructions and Extrinsic Evidence,
Feb. 6, 2006, in case CV 06-5085 STO (Ex) [20 pgs..

Plaintiff’s Reply to Defendant Mediasentry’s Counterclaims in its
Answer to the Second Amended Complaint, May 1, 2006, in C.D.
Cal. Case No. CV 04-7456 JFW (CTx) [11 pgs.]. '
Plaintiff's Reply to Defendant REAA’s Counterclaims in its Answer
to the Second Amended Complaint, May 1, 2006, in C.D. Cal. case
No.CV 04-7456 JFW (CTx) [11 pgs.}.

Plaintiffs’ Reply to Defendants’ Claim Construction Briefl, filed Apr.
23, 2007 in C.D Cal. case No. CV 06-5086 ODW (Ex) |15 pes.].
Reply to Examination Report, Jul. 19, 2007, in Application No. EP 96
910 762.2-1225 [7 pgs.}.

Response to Non-Final Office Action filed May 19, 2009 in U.S.
Appl. No. 11017650 [19 pes.].

Rivest, R., RI'C 1320, “The MD4 Message-Digest Algorithn,” Apr.
1992.

Sacks-Davis, R, et al., “Multikey access methods based on superim-
posed coding technicques,” ACM Trans, Database Syst. 12, 4 (Nov,
1987), 655-696.

Siegel. A, et al,, “Deceit: a I'lexible Distributed File System,” Proc.
Workshop on the Management of Replicated Data, Houston, TX, pp.
15-17, Nov. 8-9, 1990,

Siegel. A., et al., “Deceit: a Flexible Distributed File System,” Tech-
nical Report, TR89-1042, Cornell University, Nov. 1989.
Stipulation and Proposed order to (1) Amend the Complaint, (2)
Amend pretrial Schedule, and (3) Withdraw Motionto Stay, filed Sep.
8, 2008 in C.D. Cal. Case No. CV 07-06161 VBF (PLAx) [6 pgs.].
Streameast Networks Inc.’s Supplemental Responses to Certain of
Plaintiffs’ First Set of Interrogatories, Apr. 16, 2007, in C.D. Cal. case
No, CV 06-5086 SJO (Fx) [61 pes.].

StreamCast’s Brief Re Claim Constructior, Apr. 12, 2007, in C.D.
Cal, case No. CV 06-5086 SJO (Ex) [11 pgs.].

Transeripl of Deposition of David Farber, Feb. 16, 2006, in C.I. Cai.
case No. CV 04-7456 JFW (CTx) [94 pgs.].

Transcript of Deposition of Robert B. K. Dewar, Mar. 23, 2007, in
C.D. Cak. case No. CV 06-5086 5JO (Ex) [6] pgs.].

Transcript of Deposition of Renald Lachman, Feb 1, 2006, C.D. Cal.
case No. CV 04-7456 JFW (CTx) [96 pgs..

LSPTO, Final Office Actien mailed Aug. 18, 2009 in U.S. Appl. No.
11/G17,650.

USPTO, Final Office Action mailed Sep. 30, 2009 in U.S. Appl. No.
11/724,232.



US 7,802,310 B2
Page 7

USPTO, Non-Final Office actton mailed Jun. 18, 2009 in U.S. Appl.
No, 90/010,260.

Fowler, et al. “A User-Level Replicated File System,” AT&T Bell
Laboratories Technical Memorandum ©112670-9304:4-05, Apr.
1993, and USENIX 1993 Summer Conference Proceedings, Cincin-
nati, OH, Jun. 1993.

Greene, D, et al., “Multi-Index Hashing for Information Retrieval®,
Nov. 20-22, 1994, Proceedings, 35th Annual Symp on Foundations of
Computer Science, [EEE, pp. 722-731.

Hirane, et al, “Extendible hashing for concurrent insertions and
retrievals,” in Proc 4th Euromicro Workshop on Parallel and Distrib-
uted Processing, 1996 (PDP ’96}, Jan. 24, 19946 to Jan. 26, 1996, pp.
235-242, Braga , Portugal.

Preneel et al., “The Cryptographic Hash Function RIPEMD-160",
appeared in CryptoBytes RSA Laboratories, vol. 3, No. 2, pp. 9-14,
Fall, 1997 (also Bosselaers et al., “The RIPEMD-160 Cryptographic
Hash Function™, Jan. 1997, Dr. Dobb’s Journal, pp. 24-28).
Prusker et al., “The Siphon: Managing Distant Replicated Reposito-
ries” Nov. 8-9, 1990, Proc. Management of Replicated Data IEEE.
Reply to Examination Report, Munich, Nov. 18, 2009, in Application
No. EP 96 910 762.2 [19 pgs.].

Rich, K. et al, “Hobgoblin: A File and Directory Aunditor”, Sep.
30-Oct. 3, 1991, Lisa V., San Diego, CA.

U.5. Reexam U.S, Appl. No. 90/010,260—Apr. 8, 2010 PTO Notice
of Intent to Issue Ex Parte Reexamination Certificate.

USPTO Final Office Actien in U.S. Appt. No. 10/742,972, Dec. 22,
2009.

USPTO, Advisory Action, Mar. 23, 2016, in U.S. Appl. No.
11/980,679.

USPTO, Final Office Action in U.S. Reexam U.S. Appl. No.
90/010,260, Jan. 29, 2010.

USPTO, Final Office Action mailed Jan. 12, 2010 in U.S. Appl. No.
11/980,679.

WIPO, International Preliminary Examination Report (IPER), Jul.
1997, PCTAIS96/04733 [5 pgs.).

USPTO, Non-Final Office Action in U.S. Appl. No. {1/980,677, Jun.
4,2010.

USPTO, Non-Final Office Action mailed Jul. 2, 2010 in U.S. Appl.
No. 11/980.688.

USPTO, U.S. Reexam Control No, 90/010,260, Notice of Inlenl lo
Issue Ex Parte Reexamination Certificate, Apr. 8, 2010.

WITPO, International Preliminary Examination Report (IPER), Jul.
1997, PCT/US96/04733 [5 pgs.].

Karp, R. M. and Rabin, M. O., “Efficient randoized pattern-match-
ing algorithms,” IBM J. Res. Dev. 31, 2 (Mar. 1987), 249-260.

List of Asserted Claims and Infringement Chast for Each Asserted
Claim, Jul. 28, 2008, in C.D. Cal. Case No. CV 07-06161 VBF
(PLAX) [31 pgs.].

McGregor I, R. and Mariani, J. A. “Fingerprinting—A technique for
file identification and maintenance,” Software: Practice and Experi-
ence, vol. 12, No. 12, Dec. 1982, pp. 1165-1166.

Notice of Interested Partics, filed Sep. 21, 2007 in C.D. Cal. Case No.
CV 07-06161 VBF (PLAx) [2 pes.].

Notice of Motion and Motion of Defendant Lime Wire to Stay Liti-
gation Pending Reexamination of Pateat and Request for Extension
of Deadlines, Sep. 22, 2008, C.D. Cal. Case No. CV (7-06161 VBF
(PLAX)[11 pgs.].

Notice of Related Cases, filed Sep. 21, 2007 in C.D. Cal. Case No. CV
07-06161 VBF (PLAX) [2 pgs.].

Panagopoulos, G, etal., “Bit-sliced signature files for very large text
databases on a parailel machine architecture,” In Proc. of the 4th Inter.
Conf. on Extending Database Technology (EDBT), Cambridge,
UK., Mas. 1994,pp. 379-392 (Proc. LNCS 779 Springer 1994, [SBN
3-540-57818-8) [14 pgs.].

Patent Abstract, “Management System for Plural Versions,” Pub. No.
63273961 A, published Nov. 11, 1988, NEC Corp.

Patent Abstracts of Japan, *Data Processor,” Appin. No. 05135620,
filed Jun. 7, 1993, Toshiba Corp.

Plainlifl' Kinelech, Inc.’s Responses to Defendant Mediasenlry's
First set of Interrogatories, May 1, 2006, in C.D. Cal. Case No. CV
04-7456 JFW (CTx) [14 pgs.].

Plaintiff-Counterclaim Defendant Altnet, Inc.’s Supplemental
Responses to Defendant-Counterciaim Plaintiff Overpeer Inc.’s First
Set of Interrogatories, Mar. &, 2006, redacted, in C.D. Cal. case No.
CV 04-7456 JFW(CTx) [24 pgs.].

Plaintiff-Counterclaim Defendant Brilliant Digital Entertainment,
Inc.’s Supplemental Responses to Defendant-Counterclaim Plaintiff
Overpeer Inc.’s First Set of Interrogatories, Mar. 8, 2006, redacted, in
C.D. Cal. case No. CV (4-7456 JFW (CTx) [24 pgs.].
Plaintiff-Counterclaim Defendant Kinetech, Inc.’s Supplemental
Responses ta Defendant-Counterclaim Plaintiff Overpeer Inc.”s First
Set of Interrogateries Mar. 8, 2006, redacted, in C.D. Cal. case No.
CV 04-7456 JFW (CTx) [24 pgs.].

Plaintiffs Altnet, Inc., Briltiant Digital. Inc., and Kinetech, Inc.’s
Responses to Defendant Recording Industry Association of Ameri-
ca’'s First Set of Requests for Admissions, Jar. 6, 2006, in C.I). Cal.
case No. CV 04-7456 JFW (CTx) [26 pgs.].

Plaintiffs’ Claim Construction Opening Briefand Exhibits A-D, F, G;
May 7, 2007, in C.D. Cal. case No. CV 06-5086 SJO (Ex) [1 12 pgs.].
Plaintiffs’ Preliminary Claim Constructions and Extrinsic Evidence,
Feb. 6, 2006, in case CV 056-5086 SIO (Ex) [20 pgs.]-

Plaintiffs Reply to Defendant Mediasentry’s Counterclaims in its
Answer to the Second Amended Complaint, May [, 2006, in C.D.
Cal. Case No. CV 04-7456 JFW (CTx) [11 pgs.].

Plaintiffs Reply to Defendant RIAA’s Counterclaims in its Answer to
the Second Amended Complaint, May 1. 2006, in C.D. Cal. case No.
CV 04-7456 JFW (CTx) [11 pes.).

Plaintiffs’ Reply to Defendants’ Claim Construction Brief, filed Apr.
23, 2007 in C.D. Cal. case No. CV 06-5086 ODW (Ex) [135 pgs.].
Reply to Exarnination Report, Jul. £9, 2007, in Application No. EP 96
910 762.2.1225 {7 pgs.].

Response to Non-Final Office Action filed May 19, 2009 in U.S.
Appl. No. 11417,650 [19 pgs.].

Rivest, R., RFC 1320, “The MD4 Message-Digest Algorithm,” the
Internet Engineering Task Force (ILFF), Apr. 1992,

Sacks-Davis, R., et al,, “Multikey access methods based on superim-
posed coding techniques,” ACM Trans. Database Syst. 12, 4 (Nov.
1987), 655-696.

Siegel, A., et al., “Deceit: a Flexible Distribuied Fite System.” Proc.
Workshop on the Management of Replicated Data, Houston, TX, pp.
15-17, Nov. 8-9, 1990.

Siegel, A, et al., “Deceit: a Flexible Distributed File System,” Tech-
nicat Report, TR89-1042, Cornell University, Nov. 1989.
Stipulation and Proposed order to (1)} Amend the Complaint, (2)
Amend pretrial Schedute, and (3) Withdraw Motion to Stay, filed Sep.
8,2008 in C.D. Cal. Case No. CV 07-06161 VBF{PLAX) [6 pgs.].
Streamcast Networks Inc.’s Supplemental Responses to Certain of
Plaintiffs’ First Set of Interrogatories, Apr. 16, 2007, in C.D. Cal. case
No. CV 06-5086 SIO {Ex) [61 pgs.].

Stream(ast's Brief Re Claim Construction, Apr. 12, 2007, in C.ID.
Cal. case No. CV 06-5086 SJO (Ex)[L1 pgs.}.

Transcript of Deposition of David Farber, Feb. 16, 2006, in C.D. Cal.
casc No. CV 04-7456 JFW (CTx) [94 pes.].

Transcript of Deposition of Robert B, K. Dewar, Mar. 23, 2007, in
C.D. Cal. case No. CV 06-5086 SJO (Ex) (61 pgs.].

Transcript of Deposition of Renald Lachman, Feb. 1, 2006, C.D. Cal.
case No, CV 04-7456 JFW (CTx)} [96 pgs.].

USPTO, Non-Final Office Action mailed May 6, 2009 in U.S. Appl.
No. E1/980,679.

USPTO, Non-Final Office action mailed Jun. 15, 2009 in U.S. Appl.
No. 11/980,687.

TSPTO, Nor-Final Office action mailed Jun. L8, 2009 in Reexam
No. 90/010,260.

Cheriton, David R. and Mann, Timothy P., “Decentralizing a global
naming service forimproved performance and fault tolerance”, ACM
Transactions on Computer Systems, vol. 7, No. 2, May 1989, pp.
i47-183.

Request for Reexamination of 1.S. Patent No. 6,928,442: Reexam
Control No. 90/010,260, filed on Aug. 29, 2008.

* cited by examiner



US 7,802,310 B2

Sheet 1 of 31

Sep. 21, 2010

U.S. Patent

001
YOSSAV0Yd ¥0S$390Ud HOSSA0Ud
204 20l 20l
904
Zonaa |, .. | 3oiAda
¥0S$aAN0Yd 4OSSII0Nd ol e
201 2 C por D < por_ >
(D)1 Ol



US 7,802,310 B2

Sheet 2 of 31

Sep. 21, 2010

U.S. Patent

— ey S b = o e e = i A = e A AL e - -

1447

J31IA34

3OVHOLS

ndd

S --
; 19
' avs 851
¥S1 -

“ 1
! 149 oL
" 51

" 1S
! aws ogl
" 051

1
! L\ azs
) yel

m ydL
" v ozZ1
) ZeL

! 341
: AMOWSIW L
: oLl

“ 201
L

WS i Bt et e ) e —  — min S i f—— — ——— — —— —

801

¥OSSI00Hd



US 7,802,310 B2

Sheet 3 of 31

Sep. 21, 2010

U.S. Patent

ININOIS

‘._.zms_wm_m ﬂ ININOAS

2Tl 7zl 2zl
374 114 I
0zl 0zL 0z}
ANOLOTHIO ANOLO3NIG AMoLoTHId
811 i 8Ly
NOIDaM NOIDAM e NOI93d NOIDAN
i Liy L I
W21SAS 2 9ld
T4

-3 %




U.S. Patent Sep. 21, 2010 Sheet 4 of 31 US 7,802,310 B2

FIG.3

Region ID
Pathname

True Name
 Type

rile ID

138-

Time of last accese

Time of last modification

safe flag
Lock flag

Size

ownex

FIG. 4

Trus Name

File ID

140

Compressed Flle ID

Source IDs

Dependent processors

Use count

Time of last access

Expiration

Grooning delete count

42

Region ID

Region f£ile system

Region pathname

Region status

Mirror processor(s)

Hirror duplication count
Policy

FIG.5




US 7,802,310 B2

Sheet 5 of 31

Sep. 21, 2010

U.S. Patent

D9SUaDTT

DWEN oniL

0l

omuy onil

Araue 3o odAj

Xajue o o3ep

841

auey anig,

oweul}ed

GQmelgauT.y

I J0883a20JJ1

odAlL,

uotyexado

suweN TeUTbTIO

S

uo13ed0T 8daAnos

ASZTITOUIIRAR 2DXNOS

sS3ubTI epanos

adA] 90IN0S

I saanon

yad

6 914

8014

L 94

9014



U.S. Patent Sep. 21,2010 Sheet 6 of 31 US 7,802,310 B2

FIG. 10(a)
S!MPL

DATA ITEM

P L R e —— e A W e A A e e WS

/ S5212 \

COMPUTE MD FUNCTION ON
DATA ITEM

\ 4
S214

APPEND LENGTH MODULO 32 OF
DATA ITEM

-..—n_--u-——-——-.-—————.-.-_._

L ad

—-——-—.—-._.‘.-—_—---4—----——o--——--—————-p-




U.S. Patent Sep. 21, 2010 Sheet 7 of 31 US 7,802,310 B2

8216

0.
DATA ITEM | FlG- ‘O(b)
SIMPLE?
5220
PARTITION DATA [TEMINTO
SEGMENTS

5222

ASSIMILATE EACH SEGMENT
(COMPUTING ITS TRUE NAME)

; COMPUTE TRUE !
| NAME OF SIMPLE |
\  DATAITEM ot

-------------- CREATE INDIRECT BLOCK OF
SEGMENT TRUE NAMES

e

5226
ASSIMILATE INDIRECT BLOCK
(COMPUTING TS TRUE NAME)

5228
REPLACE FINAL 32 BITS OF TRUE
NAME WITH LENGHT MOD 32 OF DATA
ITEM




US 7,802,310 B2

Sheet 8 of 31

Sep. 21, 2010

U.S. Patent

t

di 374 F401S
BECS

)

a0 374 SAYH
AYLN3 5300

!

al 3714 2157340

9€CS

L=/

LAH1SIDAY

A1 FNYL NI LSIX3
AINVN 3NYL 83040

%

Sa1 I ¥=EH10 13S »
i 3714 3HO0LS »

b OLINAOCDIASN 1IS»
AYLINT M3N JLVIHO &

9€es

JWYN 3Nyl
aNINNEL3a

0EZS

*

ON

119l




U.S. Patent Sep. 21, 2010 Sheet 9 of 31 US 7,802,310 B2

5238 5240
FILE YES 5| _UPDATE
DEPENDENCY
LOCKED? ST
NO l
5242
SEND MESSAGE TO
v¢ CACHE SERVER TO
5244 UPDATE CACHE
COMPRESS
(IF DESIRED)
$246
MIRROR

(IF DESIRED)




U.S. Patent Sep. 21,2010

!

5250
SEARCH FOR
THE
PATHNANME

JRUE NAME?

LDE INCLUDES

Sheet 10 of 31 US 7,802,310 B2
FIG.13
NOT EQUND > FAIL
ANO

5258

4| ASSIMILATE

FILEID

LDE IDENTIFIES
DIRECTORY?

FREEZE

DIRECTORY




U.S. Patent Sep. 21, 2010 Sheet 11 of 31 US 7,802,310 B2

S260

CONFIRM THAT
TRUE NAME
EXISTS LOCALLY

v FIG.14

SEARCH FOR
PATHNAME IN
LDE TABLE

S264

CONFIRM THAT
DIRECTORY
EXISTS

5266

5268
NAMED FILE VES y| DELETE
EXISTS? TRUE FILE

8270
CREATE
ENTRY IN LDE
& UPDATE




US 7,802,310 B2

Sheet 12 of 31

Sep. 21, 2010

U.S. Patent

t

d4L

OLNI QaNunL3Y
0 FINAL ¥IENT

9428

ASNOdSzY
IAILISOd

A

HASNOdSEY
HO- Hvm
2 3OVES3IN
H14 ONJS
pLeS

{aaxuisag
datd
ANYL AN
2828

<

Gl Old

v

gSNOdSTY
FALYSOIN

S3A

¢H0SS300Y

Y NOLLVOG1 Si

314 ANId
08¢8

+.

ANNOW
ASAENLDAY

8.¢S




US 7,802,310 B2

Sheet 13 of 31

Sep. 21, 2010

U.S. Patent

(D)9l 9I4

Tivd

ON

.....  J—
FSNOJSIY
JAIISOd
S.LIVAA
IN3ID .II_
88¢S 1N03NL
A ¥0
FSNOISIY
sSLlsyouvoua FJALLYOIN
INTMD
99zs

S3A

Q3210313
SH0SSA20Ud
ANY
5g¢s

(shuossaood
SL03713s
INIMD
pBES

)




US 7,802,310 B2

Sheet 14 of 31

Sep. 21, 2010

U.S. Patent

1S OL Aav aNv

N

. .Em»@.wv
21va NOLLVHIdXH Lo |A ONIHSITSNG
aNKNaLEa SEATN. s13ounos on]

PLECS

0082S

X

Gl NOLLYOOT 2DUN0S

SNVN INYL
{04 8A1 AJHUNOS OL

Qv 2 JNVYN 3NXL
HOd HdL 4N MO0
80623

LNOLLYNILSAA
WO S¥3341Q JWVYN
ML 40 OUNOS

HOSS3IO0U
dUNO0S NO
374 3INYL SAUISTY
OL 39VvSS3aW aN3s

916¢S

dl H08S300d
FH0IS

06¢s

o

(4)ol 914



US 7,802,310 B2

Sheet 15 of 31

Sep. 21, 2010

U.S. Patent

-

AU ERIE ]

SS3IUAN0DFA a3ssIUdNoD

8623 SIA 9628

ON

JAMULNT SIHL
¥od at31d

/

<3WYN
HNAULUOL HAL NI
AHINI 714 3Ny

(D)LI'Old



US 7,802,310 B2

Sheet 16 of 31

Sep. 21, 2010

U.S. Patent

(9)L1©1d

(5)a24N0s
WoNd Fid
3Nyl F217v3

80es

4

Sai I2UN0Ss
193738

YOES

di 3H0lLS
0o€s

A

d43sn
AdILLON
(AU

o

a1 30470S._p! g 1 SN
THOW ON
80¢s
Y




US 7,802,310 B2

Sheet 17 of 31

Sep. 21, 2010

U.S. Patent

——

TvoQT AN
SNYLIAVIN

[AA%

ANOC |y

(D)8l "Old

*

o

434 INYL
o3 aiaid

aNOa

1

24 HOLVHOS
MGEIN SLYIO

0Z€S8

4 ANYL
3137130

8L€8

L

43N

IMIL 10 Ad02 389

+

o)

¢34
ANYL ONLLSIX3
SALIANZA AT

ales




US 7,802,310 B2

Sheet 18 of 31

Sep. 21,2010

U.S. Patent

AHLNZ

4L JAONTY
2 4l 374 FAYS

8¢ES

A

S3A

L

NNOD 3sN
2423

INNOD
SN ININIAWD3A
‘19VL1 AT NI
ai a4 oLs ‘atid

M3N 0L 3T1d AdOD
0EES

%

ON

(9)81 914



US 7,802,310 B2

Sheet 19 of 31

Sep. 21,2010

U.S. Patent

%

PEIRR AR (4
M3N FLV3HD

LEES

a

,
ANOLOTHIO zmawj
37 JHL NI AHOLOTMIO
X40.LO3HIG
ammwm.__ﬁwm%_ flie di 3232 mpmnmw._o_m ns
pees
9EES Hovd Hod
>\
(D)6] 914 4907 323344
ANTWIHONI
72688

J

I



US 7,802,310 B2

Sheet 20 of 31

Sep. 21, 2010

U.S. Patent

(9)6l 914

NOLLYWYO:NI
a3uIsaag W3

| vivaman
TYNOLLAaY
GHOODS OL AULNZ Qv

P E—

L

!

prelon
3Z3aUd FHL
ANIWIHOEA

vreS

WALl V1VQG MIN
SHL ILVIINISSY

ZhES

a

ﬂmo._.uwm_.u zm>_muJ

FHL NI AMOLOAIT
aNY 3714

ALVYNIGHO8Nns
HOVA W04

1



US 7,802,310 B2

Sheet 21 of 31

Sep. 21, 2010

U.S. Patent

JWNVYN ANYL
OL HLvVd ANI1

[ASIAS

+

JNVYNHLYd
TINd FLVIID

0SES

%

AdOLOIA
avay

8¥ES

 ——STNLINT

Y

JHON

AYLNZ
AHOLOZNIA
HOV3 HO4d
£GES

ﬂ

Vo011 3Td
ANUL IAVIA

gres

I

SN
SMOWN ON

aNOd
YSES

0¢ 9ld



U.S. Patent

Sep. 21, 2010

v

8354
WAIT FOR

FREEZE LOCK
TO TURN QOFF

85356

FIND TFR
ENTRY

5358
DECREMENT
REFERENCE

COUNT

REFERENCE COUNT IS
ZERO & NO DEPENDENT
SYSTEMS IN TFR?

NO

Sheet 22 of 31

FIG. 21

YES

US 7,802,310 B2

S362
DELETE

TRUEFILE

Yy

5364

REMOVE FILEID
AND COMPRESSED
FILEID




U.S. Patent Sep. 21,2010 Sheet 23 of 31 US 7,802,310 B2

!

S365
GET
OPERATION
5366 5355
CREATE OR YES. > ASSIMILATE
MODIFY?
S369
NEW TRUE
COPY OR DELETE _YES FILE
COMPOUND? l
8378 S370
MODIFY USE RECORD TRUE
CQUNT OF EACH NAME IN AUDIT
CONMPONENT FILE
» l
b 4
§379
FOR EACH PARENT
DIRECTORY OR FILE,
UPDATE USE COUNT,
LASTACCESS AND
MODIFY TIMES

'



U.S. Patent Sep. 21, 2010 Sheet 24 of 31 US 7,802,310 B2

v

5382
VERIFY

FIG. 23 GROOMING

LOCK OFF

5384
SET
GROOMING

LOCK

v

S386

SET GROOM
COUNTS




U.S. Patent Sep. 21, 2010 Sheet 25 of 31 US 7,802,310 B2

l

5388 .

FIND LDE
RECORD

FIG. 24

8390

FIND TFR
RECORD

8392

INCREMENT
GROOMING
DELETE COUNT

5394

ADJUST FILE
SIZES




U.S. Patent Sep. 21, 2010 Sheet 26 of 31 US 7,802,310 B2

FIG. 25

5306
DELETE
FILE

h 4
S398

UNLOCK
GROOMING
! LOCK

R




US 7,802,310 B2

Sheet 27 of 31

Sep. 21, 2010

U.S. Patent

N3dO
LIBIHOX

LATNO

AHO0LOZUIC
ATNO-aVv3H

avay
oS

NOI93Y
NI I

BOPS

(P)92 9id

ON—

Nado LQ31vIND
ligiHoYd [€—¢ ONISE
y0bS

20pS

LATIVOOT
S18DE AT

ON



US 7,802,310 B2

Sheet 28 of 31

Sep. 21, 2010

U.S. Patent

a

Hdl WON
Aal 3714 NenLay
? NOISUIA
YO0 XY
0evS

$

(9

Y92 9ld

I

>

AdOD
HOLVHOS
ALV
LIPS

(i

ON

QEANO0T
LON J1M201

al
114 HOLYHOS
NN LY
YZ¥S

21ys

A_

S3A

NILLRIANT

ONiE"
girs

4A3HOYO
and

A1a313TdWOD

< .
T4 HOLVEDS
SLYRHUD
ao¥s
7|12 Isvd
12vS
A




US 7,802,310 B2

Sheet 29 of 31

Sep. 21, 2010

U.S. Patent

(D)22 Old ANYN

-

INUL NOoNA 311
3NYL AJLINIGI

pers

A

NOLIF130
AgIHO¥d

JAYOLOTUA

KINC-aQv3d
NI 50 QaMD2013Ud
{0 Q¥OJa 3071 0P

Fd
HCd SQYOO3Y
AYINZ 1Y
2 347 ANINNALEG
[A4eS

1




US 7,802,310 B2

Sheet 30 of 31

Sep. 21, 2010

U.S. Patent

HNO A9 1NNOCD
asn I2NA

LEVS

A ()22 9l4
214 Liany
OLAYLING aav|*
aTys
% I INAAL
213130
0evs
i 40
AdOD HOLYHOS sax
3137130
LZ¥S
LIWYN 3NAL

ON

ON SYH 311d

3INO
S1ANNOD EASN
SaT1d INY,

S3A



US 7,802,310 B2

Sheet 31 of 31

Sep. 21, 2010

U.S. Patent

ASNO4S3Y
FALLYOEN

2erS

*

2AaQUVMAUOL
44 01 1saN0IY

1s3novay
saA— ™ aquvmuod (40

(A4

<4aQNNOd

8¢ Ol4

ON

ISNOJdSa
3AILISOd

vP¥S

+

SIA

A1 8= it

(ASSTAJINQD HO
al 37 SAANION

obvsS

revs

ANVN INAUL
dN¥00T

ZEVS

1

S3A




US 7,802,310 B2

1

CONTROLLING ACCESS TO DATA IN A DATA
PROCESSING SYSTEM

RELATED APPLICATIONS

This application is a continuation of an claims priority to
pending U.S. patent application Ser. No. 11/724,232, whichis
..a continuation of application Ser. No. 11/017,650), filed Dec.
22, 2004, which is a continuation of pending application Ser.
No. 10/742,972, filed Dec. 23, 2003, which is a continuation
of Ser. No. 09/987,723, filed Nov. 15, 2001, patented as U.S.
Pat. No. 6,928,442; which is a which is a continuation of
application Ser. No. 09/283,160, filed Apr. 1, 1999, now U.S.
Pat. No. 6,415,280, which is a division of application Ser. No.
08/960,079, fited Oct. 24, 1997, now U.3, Pat. No. 5,978,791,
which is a continuation of Ser. No. 08/425,160, filed Apr. 11,
1995, now abandoned, the contents of which each of these
applications are hereby incorporated herein by reference.
This application is a continuation of and claims priority to
application Ser. No. 11/017,650, filed Dec. 22, 2004, whichis
a continuation of application Ser. No. 09/987,723, filed Nov.
15, 2001, now U.S. Pat. No. 6,928,442, which is a continua-
tion of application Ser. No. 09/283,160, filed Apr. 1, 1999,
now U.S. Pat. No. 6,415,280, which is a division of applica-
tion Ser. No. 08/960,079, filed Oct. 24, 1997, now U.S, Pat.
No. 5,978,791, which is a continvation of Ser. No. 08/425,
160, filed Apr. 11, 1995, now abandoned, the contents of
which each of these applications are hereby incorporated
herein by reference. This is also a continuation of and claims
pricrity to application Ser. No. 10/742,972, filed Dec. 23,
2003, which is a division of application Ser. No. 09/987,723,
filed Nov. 13, 2001, now U.S. Pat. No. 6,928,442, which is a
continuation of application Ser. No. 09/283,160, filed Apr. 1,
1999, now U.S, Pat. No. 6,415,280, which is a diviston of
application Ser. No. 08/960,079, filed Oct. 24, 1997, now
U.S. Pat. No. 5,978,791, which is a continuation of Ser. No.
08/425,160, filed Apr. 11, 1995, now abandoned, the contents
of which each of these applications are hereby incorporated
herein by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to data processing systems and, more
particularly, to data processing systems wherein data items
are identified by substantially unique identifiers which
depend on all of the data in the data items and only on the data
in the data items.

2. Background of the Invention

Data processing (DP) systems, computers, networks of s

computers, or the like, typically offer users and programs
various ways to identify the data in the systems.

Users typically identify data in the data processing system
by giving the data some form of name. For example, a typical
operating system (OS) on a computer provides a file system in
which data items are named by alphanumeric identifiers. Pro-
grams typically identify data in the data processing system
using a location or address. For example, a program may
identify a record in a file or database by using a record number
which serves to locate that record.

In all but the most primitive operating systems, users and
programs are able to create and use collections of named data
items, these collections themselves being named by identifi-
ers. These named collections can then, themselves, be made
part of other named collections. For example, an OS may
provide mechanisms to group files (data items) into directo-
ries (collections). These directories can then, themselves be

e

5

L]

0

35

40

Lh
o

60

65

2

made part of other directories. A data item may thus be
idemtified relative to these nested directories using a sequence
of names, or a so-called pathname, which defines a path
through the directories to a particular data item (file or direc-
tory).

As another example, a database management system may
group data records (data items) into tables and then group
these tables into database files (collections). The complete
address of any data record can then be specified using the
database file name, the table name, and the record number of
that data record.

Other examples of identifying data items include: identi-
fying files in a network file system, identifying objects in an
object-oriented database, identifying images in an image
database, and identifying articles in a text database.

In general, the terms “data” and “data item” as used herein
refer to sequences of bits. Thus a data item may be the con-
tents of a file, a portion of a file, a page in memory, an object
in an objeci-oriented program, a digital message, a digital
scanned image, a part of a video or audio signal, or any other
entity which can be represenied by a sequence of bits. The
term “data processing” herein refers to the processing of data
items, and is sometimes dependent on the type of data item
being processed. For example, a data processor for a digital
image may differ from a data processor for an audio signal.

In all of the prior data processing systems the names or
identifiers provided to identify data items (the data items
being files, directories, records in the database, objects in
object-oriented programming, locations in memory or on a
physical device, or the like) are always defined relative to a
specific context. For instance, the file identified by a particu-
lar file name can only be determined when the directory
containing the file (the context) is known. The file identified
by a pathname can be determined only when the file system
{context) is known. Similarly, the addresscs in a process
address space, the keys in a database table, or domain names
on a global computer network such as the Internet are mean-
ingful enly because they are specified relative to a context.

In prior art systems for identifying data items there is no
direct relationship between the data names and the data item.
The same data name in two different contexts may refer to
different data items, and two different data names in the same
context may refer to the same data item.

In addition, because there is no correlation hetween a data
name and the data it refers to, there is no a priori way to
confirm that a given data item is in fact the one named by a
dala name. For instance, in a DP system, if one processor
requests that another processor deliver a data item with a
given data name, the requesting processor cannot, in general,
verify that the data delivered is the correct data (givenonly the
name). Therefore it may require further processing, typically
on the part of the requester, to verify that the data item it has
obtained is, in fact, the item it requested.

A common operation in a DP system is adding a new data
item to the system. When a new data item is added to the
system, a name can be assigned to it only by updating the
context in which names are defined. Thus such systems
require a centralized mechanism for the management of
names. Such a mechanism is required even in a multi-pro-
cessing system when data items are created and identified at
separate processors in distinet locations, and in wlich there is
no other need for communication when data items are added.

In many data processing systems or enviromments, data
items are transferred between different locations in the sys-
tem. These locations may be processors in the data processing,
syslem, storage devices, memory, or the like. For example,
one processor may obtain a data item from another processor



US 7,802,310 B2

3

or from an external storage device, such as a floppy disk, and
may incorporate that data item into its system (using the name
provided with that data item).

However, when a processer (or some location) obtains a
data item from another location in the DP system, it is pos-
sible that this obtained data item is already present in the
system (cither at the location of the processor or at some other
location accessible by the processor) and therefore a dupli-
cate of the data item is created. This situation is comunon in a
network data processing environment where proprietary soft-
ware products are installed from floppy disks onte several
processors sharing a commeon file server. In these systems, it
is often the case that the same product wil} be installed on
several systems, so that several copies of each file will reside
on the common file server.

In some data processing systems in which several proces-
sors are connected in a network, one system is designated as
a cache server to maintain master copies of data items, and
other systems are designated as cache clients 1o copy local
copies of the master data items into a local cache on an
as-needed basis. Before using a cached item, a cache chHent
must either reload the cached item, be informed of changes to
the cached item, or confirm that the master item correspond-
ing to the cached item has not changed. In other words, a
cache client must synchronize its data items with those on the
cache server. This synchronization may involve reloading
data items onto the cache client. The need to keep the cache
synchronized or reload it adds significant overhead to existing
caching mechanisms.

In view of the above and other problems with prior art
systems, it is therefore desirable 1o have a mechanism which
allows each processor in a multiprocessor system 1o deter-
mine a conmon and substantially unique identifier for a data
item, using only the data in the data item and not relying on
any sort of context.

It is further desirable to have a mechanism for reducing
multiple copies of data items in a data processing system and
to have a mechanism which enables the identification of iden-
tical data items so as to reduce multiple copies. It is further
desirable to determine whether twe instances of a data item
are in fact the same data item, and to perform various other
systems’ functions and applications on data items without
relying on any context information or properties of the data
item.

It is also desirable to pravide such a mechanism in such a
way as o make it transparent to users of the data processing
system, and it is desirable thal a single mechanism be used to
address each of the prablems described above.

SUMMARY OF THE INVENTION

This invention provides, in a data processing system, a
method and apparatus for identifying a data item in the sys-
lem, where the identity of the dala item depends on all of the
data in the data itemand only on the data in the data item. Thus
the identity of a data item is independent of its name, origin,
location, address, or other information not derivable directly
from the data, and depends only on the data itself.

This invention further provides an apparatus and a method
for detenmnining whether a particular data item is present in the
system or at a location in the system, by examining only the
data identities of a plarality of data items.

Using the method or apparatus of the present invention, the
efficiency and integrity of a data processing system can be
inproved. The present invention improves the design and
operation of a data storage system, file system, relational
database, object-oriented database, or the like that stores a

2¢

30

50

60

85

4

plurality of data items, by making possible or improving the
design and operation of at least some or all of the following
features:

the system stores at most one copy of any data item at a
given location, even when multiple data names in the system
refer to the same contents;

the system avoids copying data from source to destination
locations when the destination lecations already have the
data;

the system provides transparent access to any data item by
reference only to its identity and independent of i1s present
locatien, whether it be local, remote, or offline;

the system caches data items from a server, so that only the
mos! recently accessed data items need be retained;

when the system is being used to cache data items, prob-
lems of maintaining cache consistency are avoided;

the system maintains a desired level of redundancy of data
items in a network of servers, to protect against failure by
ensuring that multiple copies of the data items are present at
different locations in the systemn;

the system automatically archives data items as they are
created or modified;

the system provides the size, age. and location of groups of
data items in order to decide whether they can be safely
removed from a local file system;

the system can efficiently record and preserve any collec-
tion of data items;

the system can efficiently make a copy of any collection of
data items, to support a version contrel mechanism for groups
of the data items;

the system can publish data items, allowing other, possibly
anonymous, systems in 2 network to gain access 1¢ the data
items and to rely on the availability of the data items;

the system can maintain a local inventory of all the data
items located on a given removable mediwn, such as a dis-
kette or CD-ROM, the inventory is independent of other
properties of the data items such as their nanie, location, and
date of creation;

the system allows closely related sets of data items, such as
matching or corresponding directories on disconnected com-
puters, te be periodically resynchronized with one another;

the systemn can verify that data retrieved from another loca-
tion is the desired or requested data, using only the data
identifier used to retrieve the data;

the system can prove possession of specific data items by
content without disclosing the content of the data items, for
purposes of later legal verification and to provide anonymity;

the system tracks possession of specific data items accord-
ing to content by owner, independent of the name, date, or
other properties of the data item, and tracks the uses of spe-
cific data items and files by content for accownting purposes.

Other objects, features, and characteristics of the present
invention as well as the methods of operation and functions of
the related elements of structure, and the combination of parts
and economies of manufacture, will become more apparent
upen consideration of the following description and the
appended claims with reference to the accompanying draw-
ings. all of which form a part of this specification.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1{a) and 1{&) depict a typical data processing system
in which a preferred embodiment of the present invention
operates;

FIG. 2 depicis a hierarchy of data ilems stored at any
location in such a data processing system;



US 7,802,310 B2 ’

5

FIGS. 39 depict data structures used to implement an
embodiment of the present invention; and

FIGS. 10{a)-28 are flow charts depicting operation of vari-
ous aspects of the present invention.

DETAILED DESCRIPTION OF THE PRESENTLY
PREFERRED EXEMPLARY EMBODIMENTS

An embodiment of the present invention is now described
with reference to 2 typical data processing system 100, which,
with reference to FIGS. 1(a) and 1(5}, includes one or more
processors (or computers) 102 and various storage devices
104 connected in some way, for example by a bus 106.

Each processor 102 includes a CPU 108, a memory 110
and one or more local storage devices 112. The CPU 108,
memory 110, and local storage device 112 may be intemally
connected, for example by abus 114, Each processor 102 may
also include other devices (not shown), such as a keyboard, a
display, a printer, and the like.

In a data processing system 160, wherein more than one
processor 102 is used, that is, in a multiprocessor system, the
processors may be in one of various relationships. For
example, two processors 102 may be in a clent/server, client/
client, or a server/server relationship. These inter-processor
relationships may be dynamic, changing depending on par-
ticular sitvations and functions. Thus, a particular processor
102 may change its relationship to other processors as
neaded, essentially setting vp a peer-io-peer relationship with
other processors. In a peer-to-peer refationship, semetimes a
particular processor 102 acts as a client processor, whereas at
other times the same processor acts as a server processor, In
other words, there is no hierarchy imposed on or required of
processors 102,

In a multiprocessor system, the processors 102 may be

homogeneous or heterogeneous. Further, in a mubltiprocessor

data processing system 100, some or all of the processors 102
may be disconnected from the network of processors Tor
periods of time. Such discannection may be part of the normat
operation of the system 100 or it may be because a particular
processor 102 is in need of repair.

Within a data processing system 100, the data may be
organized to form a hierarchy of data storage elements,
wherein lower level data storage elements are combined 1o
form higher level elements. This hierarchy can consist of, for
example, precessors, file systems, regions, directeries, data
files, segments, and the like. For example, with reference to
FIG. 2, the data items on a particular processor 102 may be
organized or structured as a file system 116 which comprises
regions 117, each of which comprises directories 118, eachof
which can contain other directories 118 or files 120. Each file
120 being made up of one or more data segments 122,

In a typical data processing system, some or all of these
elements can be named by users given certain implementation
gpecific naming conventions, the name (or pathname) of an
element being relative to a context. In the context of a data
processing system 100, a pathname is fully specified by a
processor pame, a filesystem name, a sequence of zero or
more directory names identifying nested directories, and a
final file name. (Usually the lowest level elements, in this case
segments 122, cannot be named by users.)

In other words, a file system 116 is a collection of directo-
ries 118. A directory 118 is a collection of named files 120—
both data files 120 and other directory files 118. A file 120 is
a named data item which is either a data file (which may be
simple or compeund) or a directory file 118. A simple file 120
consists of a single data segment 122. A compound file 120
consists of a sequence of data segments 122, A data segment

[
L

40

45

50

§0

65

6

122 is a fixed sequence of bytes. An important property of any
data segment is its size, the number of bytes in the sequence.

A single processor 102 may access one or more file systems
116, and a sinple storage device 104 may contain one or more
file systems 116, or portions of 2 file system 116. For instance,
a file system 116 may span several storage devices 104,

In order to implement controls in a file system, file system
116 may be divided into distinct regions, where each region is
aunitof management and control. A region consists of a given
directory 118 and is identified by the pathname (user defined)
of the directory.

In the following, the term “location”, with respect to a data
processing system 100, refers to any of a particular processor
192 in the system, a memory of a particular processor, a
storage device, a removable storage medium (such as a floppy
disk or compact disk), or any other physical location in the
system. The term “local” with respect to a particular proces-
sor 102 refers to the memory and storage devices of that
particular processor.

In the following, the terms “True Name”, “data identity™
and “data identifier” refer to the substantially unique data
identifier for a particular data item. The term “True File”
refers to the actual file, segment, or data item identified by a
True Name.

A file system for a data processing system 100 is now
described which is intended to work with an existing operat-
ing system by augmenting some of the operating system'’s file
management system codes. The embodiment provided relies
on the standard file management primitives for actually stor-
ing to and retrieving data items from disk, but uses the mecha-
nisms of the present invention to reference and access those
data items.

The processes and mechanisms (services) provided in this
embodiment are grouped inte the following categories: primi-
tive mechanisms, operating system mechanisms, remote
mechanisms, background mechanisms, and extended mecha-
nisms.

Primitive mechanisms provide fundamental capabilities
used to suppori other mechanisms. The following primitive
mechanisms are described:

. Calculate True Name;

. Assimilate Data Item;

. New True File;

. Get True Name from Path;

. Link path to True Name;

Realize True File from Location;
Locate Remote File;

. Make True File Local;

. Create Scratch File;

10. Freeze Directory;

i1. Expand Frozen Directory;

12. Delete True File;

13. Process Audit File Entry;

14. Begin Grooming;

15. Select For Removal; and

16. End Grooming.

Operating system mechanisms provide typical familiar file
system mechanisms, while maintaining the data structures
required to offer the mechanisms of the, present invention.
Operating system mechanisms are designed to augment exist-
ing operating systems, and in this way to make the present
invention compatible with, and generally transparent to,
existing applications. The following operating system
mechanisms are described:

1. Open File,

2. Close File;

3, Read File;



US 7,802,310 B2

_ 7

4, Write Iile;

5. Delete File or Directory;

6. Copy File or Directory;

7. Move File or Directory;

8. Get File Status; and

9. Get Files in Directory.

Reniote mechanisms are used by the operating system in
responding to requests from other processors. These mecha-
nisms enable the capabilities of the present invention in a
peer-to-peer network mode of operation. The following
remote mechanisms are described:

1. Locate True File;

2. Reserve True File;

3, Request True File;

4. Retire True File;

5. Cancel Reservation,

6. Acquire True File;

7. Lock Cache;

8. Update Cache; and

9. Check Expiration Date.

Background mechanisms are intended to run occasionally
and at a low priority. These provide automated management
capabilities with respect to the present invention. The follow-
ing background mechanisms are described:

1. Mirror True File;

2. Grootn Region;

3. Check for Expired Links; and

4. Verify Region; and

5. Groom Source List.

Extended mechanisms run within application programs
over the operating system. These mechanisms provide solu-
tions to specific problems and applications. The following
extended mechanisms are described:

1. Inventory Existing Directory;

2. Inventory Removable, Read-only Files;

3. Synchronize directories;

4. Publish Region;

5. Retire Directory;

6. Realize Directory at location;

7. Verify True File;

8. Track for accounting purposes; and

9. Track for licensing purposes.

The file system herein described maintains sufficient infor-
mation to provide a variety of mechanisms not ordinarily
offered by an operating system, some of which are listed and
described here. Various processing performed by this
embodiment of the present invention will now be described in
greater detail.

In some embodiments, some files 129 in a data processing
system. 100 do not have True Names because they have been
recently received or created or modified, and thus their True
Names have not yel been computed. A file that does not yet
have a True Name is called a scratch file. The process of
assigning a True Name to a file is referred to as assimilation,
and is described later. Note that a scratch file may have a user
provided name.

Some of the processing petformed by the present invention
can tzke place in a background mode or on a delayed or
as-needed basis. This background processing 1s used to deter-
mine information that is not immediately required by the
system or which may never be required. As an example, in
some cases a scratch file is being changed at arate greater than
the rate at which it is useful to determine its True Name. In
these cases, delermining the True Name of the file can be
postponed or performed in the background.

15

20

25

30

as

40

45

50

55

60

65

8

Data Structures

The following data structures, stored in memory 110 of one
of more processors 102 are used to implement the mecha-
nisms described herein. The data structures can be Jocal o
each processor 102 of the system 100, or they can reside on
only some of the processors 102.

The data structures described are assumed to reside on
individual peer processors 102 in the data processing system
100. However, they can also bé shared by placing them on a
remote, shared file server (for instance, in a local area network
of machines). In order to accommodate sharing data struc-
tures, it is necessary that the processors accessing the shared
database use the appropriate locking techniques to ensure that
changes to the shared database do not interfere with one
another but are appropriately serialized. These locking tech-
niques are well understood by ordinarily skilled programmers
of distributed applications.

It is sometimes desirable to allow some regions to be local
to a particular processor 102 and other regions to be shared
among processors 102. (Recall that a region is a unit of file
system management and control consisting of a givea direc-
tory identified by the pathname of the directory.) In the case of
local and shared regions, there would be both local and shared
versions of each data structure. Simple changes to the pro-
cesses described below must be made to ensure that appro-
priate data structures are selected for a given operation.

The local directory extensions (LDE) tabie 124 is a data
structure which provides information about files 120 and
directories 118 in the data processing system 100. The locat
directory extensions table 124 is indexed by a pathname or
contextual name (that is, a user provided name) of a file and
includes the True Name for most files. The information in
local directory extension table 124 is in addition te that pro-
vided by the native file system of the operating system.

The Frue File registry (TFR} 126 is a data store for listing
actual data items which have True Names, both files 120 and
sepments 122. When such data items occur in the True File
registry 126 they are known as True Files. True Files are
identified in True File registry 126 by their True Names or
identities. The table True File registry 126 also stores loca-
tion, dependency, and migration information about True
Files.

The region table (RT) 128 defines areas in the network
storage which are to be managed separately. Regiontable 128
defines the rules for access to and migration of files 120
among various regions with the local file system 116 and
remote peer file systems.

The source table (ST) 130 is a list of the sowrces of True
Files other than the current True File registry 126. The source
table 130 includes removable volumes and remote proces-
SOTS.

The audit file (AF) 132 is a list of records indicating
changes 1o be made in local or remote files, these changes to
be processed in background.

The accounting log (AL) 134 is a log of file transactions
used to create accounting information in a manner which
preserves the identity of files being tracked independent of
their name or location.

The license table {LT) 136 is a table identifying files, which
may onty be used by licensed users, in a manner independent
of their name or location, and the users licensed to use them.

Detailed Descriptions of the Data Structures

The following table sumnmarizes the fields ofan local direc-
tory extensions table entry, as illustrated by record 138 in
FI1G. 3.



Us 7,802,310 B2

Field Description
Region ID identifies the region in which this file is contained.
Pathname the user provided name or contextual pame of the file
or directory, relative to the region in which it
OCCUIS.
True Name the computed True Mame or identity of the file or

directory. This True Name is not always up 1o date,
and it is set to a special value when a fle is
modified and is later recomputed in the background.

Type indicates whether the file is a data file ora
directory.
Scratch File the physical location of the file in the file system,
D when no True Mame has been calculsted for the file.
As noted above, such a file is called a scratch file.
Time of last the last access time to this file. [{'this file isa
access directory, this is the |ast access time to any file
in the directory.
Time of last the time of last change of this file. I this file
modification is a directory, this is the last modification time
of any file in the directory.
Safe flag indicates that this file (and, if this file is a.

dircctory, all of its subordinate files) have been
backed up o some other system, and it is therefore
safe to remove them.

Lock flag indicates whether a file is locked, that is, it is
being modified by the local processor or 2 remote
processor. Only one processor may modify a file at
atime.

Size the fi:l! size of this directory {including al}
subordinate files), if all files in it were fully
expanded and duplicated. For a file that is not &
directory this is the size of the actual True File,

Owner the identity of the user who owns this file, for
accounting and license tracking purposes.

Each record of the True File registry 126 has the fields
shown in the True File registry record 140 in FIG. 4. The True
File registry 126 consists of the database described in the
table below as well as the actual True Files identified by the
True File IDs below.

Field Description

True Name computed True Name or identity of the file.
Compressed compressed version of the True File may be stored
Filec ID instead of, or in additioa to, an uncomprossed

version, This field provides the identily of the
actun! representation of the compressed version

of the file.
Grooming tentative count of how many references have been
delete connt selected for deletion during a grooming operation.
Time of last miost recent date and time the content of this file
access was accessed.
Expiration date and time after which this file may be deleted
by this server.
Dependent processor IDs of other processors which contain
processors references to this True File.
Source IDs source ID(s) of zero or more sources from which
this file or data item may be retrigved,
True File ID identity or disk location of the actual physical

representation of the file or file sepment. It
is sufficient to usc a fiicname in the registration
directory of the underlying operating system. The
True File ID Is absent if the actusl file is not
currently present at the current location.

TUse count number of ather recerds on this processor which
identify this True File.

A region table 128, specified by a directory pathname,
records storage policies which allow files in the file system to
be stared, accessed and migrated in different ways. Storage
policies are programmed in a configurable way using a set of
rules described below.

20

25

30

35

45

55

63

10

Each region table record 142 of region table 128 includes
the fields described in the following table (with reference to

FIG. 5):

Field Description

Region 1D internally used identifier for this region.

Region file file system on the local processor of which this

system TEEION I8 & part.

Region a pathname relative to the region file system

pathname which defines the location of this region. The
region consists of all files and directories
subordinate o this patheame, except those in a
region subordinate to this region.

Mirrer zero or more identifiers of processors which are

processor(s) to keep mirror or archival copies of all files in
the current region. Multiple mirror processors
can be defined to form a mirror group.

Mirrer number of copies of each Rle in this region

duplication that should be retained in a mirror group.

count

Region specifies whether this region is locai to a

status single processor 102, shared by several processors
102 (if, for instance, it resides on a shared file
server), or mansged by a remote processor.

Policy the migration policy to apply to this region. A

single region might paricipate in several
palicies. The palicies are as follows (parameters
in brackets are specified as part of the policy):
region is a cached version from [processor ID];
region is a member of a mirror set defined by
{processor [D].

region is 1o be archived on [processor [D].
region is to be backed up locally, by placing
new copies in [region [D].

region is read ozly and may not be changed.
region is published and expires on [date].

Files i this region should be compressed.

A source table 130 identifies a source location for True
Files. The source table 130 is also used to identify client
processors making reservations on the current processot.
Each source record 144 of the source table 130 includes the
fields sununarized in the following table, with reference to

FIG. 6:
Ficld Deseription
source 1D interna! identifier used to identify a
particular source.
source type type of source location:
Removable Storage Volume
Local Region
Cache Server
Mirror Group Server
Ceoperative Server
Publishing Server
Chient
source includes information about the rights of this
rights processor, such as whether it can ask the toeal
processor to store data items for it.
souce measurement of the bandwidth, cost, and
availability reliability of the connection to this source
of True Files. The availability is used to
select from among several possible sources,
source information on how the local processor is to
location access the source. This may be, for example,

the name of a remavabie storage valume, or
the processor ID and region path of a region
O & ICMOLE Processor,

The audit file 132 is a table of events ordered by timestamp,
each record 146 in audit file 132 including the fields summa-
rized in the following table (with reference to FIG. 7



US 7,802,310 B2

11

Fleld Description

Original path of the file in question.

Name

Operation whether the file was created, read, written,
copied or deleted,

Type specifies whether the source is a file ora
direclory.

Processor 1D of the remote processor generating this

D event (if not local).

Timestamp time and date file was closed {required only
for accessed/modified files).

Pathname Name of the file (required only for rename).

True Name compured Tiue Name of the file, This is used

by remote systems to mirror changes to the
directory and is filled in during background
processing.

Each record 148 of the accounting log 134 records an event
which may later be used to provide information for billing
mechanisms. Each accounting log entry record 148 includes
at least the information summarized in the following table,
with reference to FIG. 8:

Field Deseription

date of entry
type of entry
True Name
owner

date and time of this log entry.

Entry types include create file, delete file, and transmit file.
True Name of data item in question.

identity of the user responsible for this action.

Each record 150 of the license table 136 records a relation-
ship between a licensable data item and the user licensed 1o
have access to it. Each license table record 150 includes the
information summarized in the following table, with refer-
ence to FIG. 9:

Field Deseription
True Name True Name of a datr item subject to lcense validation.

licensee identity of a user authorized to have access to this object.

Various other data structures are employed on sorme or all
ofthe processors 102 in the data processing system 100. Each
processor 102 has a global freeze lock (GIL) 152 (FIG. 1),
which is nsed to prevent synchronization errors when a direc-
tory is {rozen or copied. Any processor 102 may include a
special archive directory (SAD) 154 into which directories
may be copied for the purposes of archival. Any processor
102 may include a special media dircctory (SMD) 156, into
which the directories of removable volumes are stored te form
a media inventory. Each processor has a grooming lock 158,
which is sct during a grooming operation. During this period
the grooming delete count of True File registry entries 140 is
active, and no True Files should be deleted until grooming is
complete. While grooming is in effect, grooming information
includes a table of pathnames selected for deletion, and keeps
track of the amount of space that would be freed if all of the
files were deleted.

Primitive Mechanisms

The first of the mechanisms provided by the present inven-
tion, primitive mechanisms, are now described. The mecha-
nisms described here depend on underiying data management
mechanisms to create, copy, read, and delete data items in the

10

20

30

35

40

43

50

55

60

&5

12

True File registry 126, as identified by a True File ID. This
support may be provided by an undertying operating system
or disk storage manager.
The following primitive mechanisms are described:
1. Calculate True Name;
2. Assimilate Data Item;
3. New True File;
4. Get True Name from Path;
5. Link Path to True Name;
6. Realize True File from Location;
7. Locate Remote File;
. Make True File Local,
9. Create Seratch File;
10. Freeze Directory;
11. Expand Frozen Directory;
12. Delete True File;
13. Process Audit File Entry;
14. Begin Grooming;
15. Select For Removal; and
16. End Grooming.

o0

1. Calculate True Name

A True Name is computed using a function, MD, which
reduces a data block B of arbitrary length to a relatively smali,
fixed size identifier, the True Name of the data block, such that
the True Name of the data block is virtually gnaranteed to
represent the data block B and only data bloek B.

The function MD must have the following properties:

1. The domain of the function MD is the set of all data
items. The range of the function MD is the set of True
Names.

2. The function MD must take a data item of arbitrary
length and reduce it to an integer value in the range 0 to
N-1, where N is the cardinality ofthe set of True Names.
That is, for an arbitrary length data block B, 0=MD(B)
<N.

3. The results of MID{B) must be evenly and randomly
distributed over the range of N, in such a way that simple
or regular changes to B are virtually guaranteed to pro-
duce a different value of MD(B).

4. 1t must be computationally difficult to find a different
value B' such that MD(B)=MD(B").

5. The function MD(B) must be efficiently computed.

A family of functions with the above propertics are the
so-called message digest functions, which are used in digital
security systems as techniques for authentification of data.
These functions (or algorithms) include MD4, MD5, and
SHA.

In the presently preferred embodiments, either MD5 or
SHA is emploved as the basis for the computation of True
Names. Whichever of these two message digest functions is
employed, that same function must be employed on a system-
wide basis.

It is impossible te define a function having a unique output
for each possible input when the number of elements in the
range of the function is smaller than the number of elements
in its domain. However, a crucial observation is that the actual
data iterms that will be encountered in the operation of any
system embodying this invention form a very sparse subset of
all the possible inputs.

A colliding set of data items is defined as a set wherein, for
one or more pairs X and y in the set, MDG)=MD(y). Since a
firnction conforming 1o the requirements for MD must evenly
and mndomly distribute its outputs, it is pessible, by making
the range of the function large enough. to make the probabil-
ity arbitrarily small that actual inputs encountered in the
operation of an embodiment of this invention will form a
colliding set.

To roughly quantify the probability of a collision, assume
that there are no more than 2°° storage devices in the world,



US 7,802,310 B2

13

and that each storage device has an average of at most 2°°
different data items. Then there are at most 2°° data items in
the world. If the cutputs of MD range between @ and 2'*®, it
can be demonstrated that the probability of a collision is
approximately 1 in 2%°. Details on the derivation of these
probability values are found, for example, in P Flajoletand A.
M. Odlyzko, “Random Mapping Statistics,” Lecture Notes in
Computer Science 434: Advances in Cryptology—Eurocrypt
89 Proceedings, Springer-Verlag, pp. 329-354.

Note that for some less preferred embodiments of the
present invention, lower probabilities of uniqueness may be
acceptable, depending on the types of applications and
mechanisms used. Insome embodiments it may also be useful
1o have more than one level of True Names, with some of the
True Names having different degrees of uniqueness. Ifsuch a
scheme is implemented, it is necessary to ensure that less
unique True. Names are not propagated in the system.

‘While the invention is described herein using only the True
Name of a data itemn as the identifier for the data item, other
preferred embeodiments use tagged, typed, categorized or
classified data items and use a combination of both the True
Name and the tag, type, category or class of the data item as
an identifier. Examples of such cateporizations are files,
directories, and segments; executable files and data files, and
the like. Examples of classes are classes of objects in an
object-oriented system. In such a system, a lower depree of
True Name uniqueness is acceptable over the entire universe
of data items, as long as suilicient uniqueness. is provided per
category of data items. This is because the taps provide an
additional level of uniqueness.

A mechanism for calculating a True Naime given a data
item is now described, with reference to FIGS. 10(a) and
10(5).

A simple data item is a data item whose size is less than a
particular given size (which must be defined in each particular
implementation of the invention). To determine the Trie
Name of a simple data item, with reference to F1G. 10(a), first
compute the MD function (described above) on the given
simple data item (Step S212). Then append to the resulting
128 bits, the byte length modulo 32 of the data item (Step
5214). The resuiting 160-bit value is the True Name of the
simple data item.

A compourd data item is one whose size is greater than the
particular given size of a simple data item. To determine the
True Name of an arbitrary (simple or compound) data item,
with reference to FIG. 10{b), first determine if the data item is
a simple ora compound data item (Step S216). If the data item
is a simple data item, then compute its True Name in step
5218 (using steps S212 and 5214 described above}, otherwise
partition the data item into segments (Step $S220) and assimi-
late each segment (Step S222) (the primitive mechanism,
Assimilate a Data Item, is described below), computing the
True Name of the segment. Then create an indirect block
consisting of the computed segment True Names (Step 5224).
An indirect block is a data item which consists of the
sequence of True Names of the segments. Then, in step 8226,
assimilate the indirect block and compute its True Name.
Finally, replace the final thirty-two (32) bits of the resulting
True Name (that is, the length of the indirect block) by the
length modulo 32 of the compound data 1tem (Step 5228).
The result is the True Name of the compound data item.

Note that the compound data item may be so large that the
indirect block of segment True Names is itself a compound
data item. In this case the mechanism is invoked recursively
until only simple data items are being processed.

Both the use of segments and the attachment of a length to
the True Name are not strictly required in a system using the
present invention, but are currently considered desirable fea-
tures in the preferred embodiment.

40

a5

53

60

63

14

2. Assimilate Data item

A mechanism for asstmilating a data item (scratch file or
segiment) into a file system, given the scratch file ID of the
data item, is now described with reference to FIG. 11. The
purpose of this mechanism is 10 add a given data item to the
True File registry 126. If the data item already exists in the
True File registry 126, this will be discovered and used during
this process, and the duplicate wiil be eliminated.

Thereby the system stores at most one copy of any data
item or file by content, even when multiple names refer to the
sarhe content.

First, determine the True Name of the data item corre-
sponding to the given scratch File ID using the Calculate True
Name primitive mechanism {Step 5230). Next, look for an
entry for the True Name in the True File registry 126 (Step
5232) and determine whether a True Name entry, record 140,
exists in the True File registry 126. If the entry record includes
a corresponding True File ID or compressed File ID (Step
3237), delete the file with the scratch File ID (Step S238).
Otherwise store the given True File ID in the entry record
(step 5239).

If it is determined (in step 8232) that no True Name entry
exists in the True File registry 126, then, in Step S236, create
a new entry in the True File registry 126 for this True Name.
Set the True Name of the entry to the calculated True Name,
set the use count for the new entry to one, store the given True
File ID i the entry and set the other fields of the entry as
appropriate,

Because this procedure may take some time to complite, it
is intended 1o run in background after a file has ceased 10
change. In the meantime, the file is considered an unassimi-
lated scratch file.

3. New True File

‘The New True File process is invoked when processing the
audit file 132, some time after a True File has been assimilated
(using the Assimilate Data Item primitive mechanismy). Given
a Jocal directory extensions table entry record 138 in the local
directory extensions table 124, the New True File process can
provide the following steps (with reference to FI1G. 12),
depending on how the local processor is configured:

First, in step 5238, examine the local directory extensions
table entry record 138 to determine whether the file is locked
by a cache server. If the file is locked, then add the ID of the
cache server to the dependent processor list of the True File
registry table 126, and then send a message to the cache server
to update the cache of the current processor using the Update
Cache remote mechanism {Step 242).

If desired, compress the True File (Step S246), and, if
desired, mirror the True File using the Mirror True File back-
ground mechanism (Step S248).

4. Get True Name from Path

The True Name of a file can be used to identify a file by
contents, to confirm that a file matches its original contents, or
to compare two files. The mechanism to get a True Name
given the pathname of a file is now described with reference
to FIG. 13.

First, search the local directory extensions table 124 for the
entry record 138 with the given pathname (Step S250). If the
pathname is net found, ls process fails and no True Name
corresponding to the given pathname exists. Next, determine
whether the local direclory extensions table entry record 138
includes a True Name (Step $252), and if so, the mechanism’s
task is complete. Otherwise, determine whether the local
directory extensions table entry record 138 identifies a direc-
tory (Step S254), and if so, freeze the directory (Step 5256)
(the primitive mechanism Freeze Directory is described
below).

Otherwise, in step S258, assimilate the file (using the
Assimilate Data Hem primitive mechanism) defined by the



US 7,802,310 B2

15

File ID field to generate its True Name and store its True
Name in the local directory extensions entry record. Then
return the True Name identified by the local directory exten-
sions table 124,

~ 5. Link Path to True Name

The mechanism to link a path to a True Name provides a
way of creating a new directory entry record identifying an
existing, assimilated file. This basic process may be used to
copy. move, and rename files without a need to copy their
contents. The mechanism to link a path to a True Name is now
described with reference to FIG. 14.

First, if desired, confirm that the True Name exists locally
by searching for it in the True Name registry or local directory
extensions table 135 (Step 5260). Most uses of this mecha-
nism will requite this form of validation. Next, search for the
path in the local directory extensions table 135 (Step S262).
Confirm that the directory containing the file named in the
path already exists (Step $264). 1T the named file itself exists,
delete the File using the Delete True File operating system
mechanism (see below) (Step S268).

Then, create an enitry record in the focal directory exten-
sions with the specified path {Step $270) and update the entry
record and other data structures as follows: fill in the True
Name field of the entry with the specified True Name; incre-
ment the use count for the True File registry entry record 140
of the corresponding True Name; note whether the entry is a
directory by reading the True File to see if it contains a tag
{magic number) indicating that it represents a frozen direc-
tory (see also the description of the Freeze Directory primi-
tive mechanism regarding the tag); and compute and set the
other fields of the local directory extensions appropriately.
For instance, search the region takle 128 10 identify the region
of the path, and set the time of last access and time of last
madification to the current time.

6. Realize True File from Location

This mechanism is used to try to make a focal copy of a
True File, given its True Name and the name of a source
location {processor or media) that may contain the True File.
This mechanism is now described with reference to FIG, 15,

First, in step $272, determine whether the location speci-
fied is a processor. If it is determined that the Jocation speci-
fied is a processer, then send a Request True File message
(using the Request True File remote mechanism} to the
remote processor and wait for a response (Step S274). If a
negative response is received or no response is received after
a timeout period, this mechanism fails. If a positive response
is received, enter the True File returned in the True File
registry 126 (Step 8276). (Ifthe file received was compressed,
enter the True File ID in the compressed File 1D field.)

If, on the other hand, it is determined in step S272 that the
location specified is not a processor, then, if necessary,
request the nser or operator to mount the indicated volume
(Step S278). Then (Step S280) find the indicated file on the
given volame and assimilate the file using the Assimilate Data
Item primitive mechanism. If the vohume does not contain a
True File registry 126, scarch the media inventory to find the
path of the file onthe volume. If no such file can be found, this
mechanism fails.

At this point, whether or not the location is determined (in
step S272) to be a processor, if desired, verify the TrueFile (in
step S282).

7. Locate Remete File

This mechanism allows a processor to locate a file or data
item from a remote scurce of True Files, when a specific
source is unknown or unavailable. A client processor system
may ask one of several or many sources whether it can supply
a data object with a given True Name. The steps to perform
this mechanisim are as follows (with reference to FIGS. 16(a)
and 16(d)).

10

20

25

30

35

40

a5

50

55

60

65

16

The client processor 102 uses the source table 145 1o select
one or more source processors {Step S284). If no source
processor can be found, the mechanisim fails. Next, the client
processor 102 broadcasts to the selected sources a request to
locate the file with the given True Name using the Locate True
File remote mechanism (Step S286). The request to locate
may be augmented by asking to propagate this request to
distant servers. The client processor then waits for one or
more servers to respond positively (Step $288). After all
servers respond negatively, or after a timeout period with no
positive response, the mechanism repeats selection (Step
$5284) to attempt to identify altemative sources. If any
selected source processor responds, its processor ID is the
result of this mechanism. Store the processor ID in the scurce
field of the True File registry entry record 140 of the given
True Name (Step S290).

If the source location of the True Name is a different
pracessor or medium than the destination (Step $290q), per-
form the following steps:

(i) Lock up the True File registry entry recerd 140 for the

corresponding True Name, and add the source location
ID to the list of sources for the True Name (Step S2905);
and

(i) If the source is a publishing system, determine the

expiration date on the publishing system for the True
WName and add that to the list of sources. If the source is
not a publishing system, send a message 10 reserve the
True File on the source processor (Step S290¢).

Source selection in step S284 may be based on optimiza-
tions involving general availability of the source, access time,
bandwidth, and transmission cost, and ignoring previously
selected processors which did not respond in step $288.

8. Make True File Local

This mechanism is used when a True Naime is known and a
locally accessible copy of the corresponding file ar data item
is required. This mechanism makes it possible to actually read
the data in a True File. The mechanisin takes a True Wame and
returns when there is a local, accessible copy of the True File
in the True File registry 126. This mechanism is described
here with reference to the flow chart of FIGS. 17(a) and 17(&).

First, look in the True File registry 126 for a True File entry
record 140 for the corresponding True Name (Step $292). If
no such entry is found this mechanism fails. If there is already
a True File ID for the entry (Step 5294), this mechanism’s
task is complete. If there is a compressed file 1D for the entry
{Step 8296), decompress the file corresponding te the file ID
{Step 3298) and store the decompressed file ID in the entry
{Step S300), This mechanism is then compiete.

If there is no True Fiie ID for the entry (Step $294) and
there is no compressed file D for the entry (Step 5296}, then
continue searching for the requested file. A1 this time it may
be necessary to notify the user that the system is searching for
the requested file.

If there are one or more source 1Ds, then select an order in
which to attempt to realize the source ID (Step S304}. The
order may be based on optimizations involving general avail-
ability of the source, access time, bandwidth, and transmis-
sion cost. For each source in the order chosen, realize the True
File from the source location (using the Realize True File
from Location primitive mechanism), until the True File is
realized (Step 3306). If it is realized, continue with step S294.
If no known source can realize the True File, use the Locate
Remote File primitive mechanism to attempt to find the True
File (Step 5308). If this succeeds, realize the True File from
the identified source location and continue with step 3296.

9. Create Scratch File

A scratch copy of a file is required when a file is being
created or is about to be modified. The scratch copy is stored
in the file system of the underlying operating system. The



Us 7,802,310 B2

17

scratch copy is eventually assimilated whea the audit file
record entry 146 is processed by the Process Audit File Entry
printitive mechanism. This Create Scratch File mechanism
requires a local directory extensions table entry record 138.
When it succeeds, the local directory extensions table entry
record 138 contains the scratch file ID of a scratch file that is
not contained in the True File registry 126 and that may be
modified. This mechanism is now described with reference to
FIGS. 18(x) and 18(%).

First determine whether the scratch file should be a copy of
the existing True File (Step S310). If so, continue with step
S312. Otherwise, determine whether the local directory
extensions table entry record 138 identifies an existing True
File (Step $316), and if so, delete the True File using the
Delete True File primitive mechanism (Step $318). Then
create a new, empty scratch file and store its scratch file [IDin
the local directory extensions table entry record 138 (step
$320). This mechanism is then complete.

If the local directory extensions table entry record 138
identifies a scratch file ID (Step S312), then the entry already
has a scratch file, so this mechanism succeeds.

If the local directory extensions table entry record 138
identifies a True File (S316), and there is no True File ID for
the True File (S312), then make the True File local using the
Make True File Local primitive mechanism (Step 8322). If
there is still no True File ID, this mechanism fails.

There is now a local True File for this file. If the use count
in the corresponding True File registry entry record 14¢ isone
(Step 8326), save the True File 1D in the scratch file ID of the
local directory extensions table entry record 138, and remove
the True File registry entry record 140 (Step S328). (This step
makes the True Fileinto a scratch file.) This mechanism’s task
is complete,

Otherwise, if the use count in the coresponding True File
registry entry record 140 is not one (in step $326), capy the

file with the given True File ID to a new scratch file, using the

Read File OS mechanism and store its file 1D in the local
directory extensions table entry record 138 (Step S330), and
reduce the use count for the True File by one. If there is
insufficient space to make a copy, this mechanism fails.

10. Freeze Directory

This mechanism freezes a directory in order to calculate its
True Name. Since the True Name of a directory is a fimetion
of the files within the directory, they must not change during
the computation of the True Name of the directory. This
mechanism requires the pathname of a directory to freeze.
This mechanism is described with reference to FIGS. 19(a)
and 19(%).

Instep 5332, add one to the global freeze lock. Then search
the local directory extensions table 124 to find eachi subordi-
nate data file and directory of the given directory, and freeze
each subordinate directory found using the Freeze Directory
priniitive mechanism (Step $334). Assimilate each unassimi-
lated data file in the directory using the Assimilate Data Item
primitive mechanism (Step 5336). Then create a data item
which begins with a tag or marker {a “magic sumber”™) being
a unique data item indicating that this data item is a frozen
directory {Step 5337). Then list the file name and True Name
for each file in the current directory {Step S338). Record any
additional information required, such as the type, time of last
access and modification, and size (Step 5340). Next, in step
5342, using the Assimilate Data Ttem primitive mechanism,
assimilate the data item created in step S338. The resulting
True Name is the True Name of the frozen directory. Finally,
subtract one from the global freeze lock (Step 5344).

11. Expand Frozen Directory

This mechanism expands a frozen directory in a given
location. It requires a given pathname into which to expand

20

3¢

40

65

18

the directory, and the True Name of the directory and is
described with reference to FIG. 20.

First, in step 8346, make the True File with the given True
Name local using the Make True File Local primitive mecha-
nism. Then read each directory entry in the local file created
in step S346 (Step S348). For each such directory entry, do the
following:

Create a full pathname vsing the given pathname and the
file name of the entry (Step S350); and

link the created path to the True Name (Step S352) using
the Link Path to True Name primitive mechanism.

12. Delete True File

This mechanism deletes a reference 1o a True Name. The
underlying True File is not removed from the True File reg-
istry 126 unless there are no additional references to the file.
With reference to FIG. 21, this mechanism is performed as
follows:

If the global freeze lock is on, wait until the global freeze
lock is tumed off (Step S354). This prevents deleting a True
File while a directory which might refer to it is being frozen.
Next, find the True File registry entry record 140 given the
True Name (Step $356). If the reference count field of the
True File registry 126 is greater than zero, subtract one from
the reference count field (Step S358). If it is determined (in
step S360) that the reference count field of the True File
registry entry record 140 is zero, and if there are no dependent
systems listed in the True File registry entry record 140, then
perform the following steps:

(i) If the True File is a simple data itern, then delete the True
File, otherwise,

(i) (the True File is a compound data item) for each True
Name in the data item, recursively delete the True File corre-
sponding to the True Name (Step 5362).

(iii) Remove the file indicated by the True File ID and
compressed file ID from the True File registry 126, and
remove the True File registry entry record 140 (Step S364).

13. Process Audit File Entry

This mechanism performs tasks which are required to
maintain information in the local directory extensions table
124 and True File registry 126, but which can be delayed
while the processor is busy doing more time-critical tasks.
Entries 142 in the audit file 132 should be processed at a
background priority as long as there are entries to be pro-
cessed. With reference to FIG. 22, the steps for processing an
entry are as fotlows:

Determine the operation in the entry 142 currently being
processed (Step $365). If the operation indicates that a file
was created or written (Step S366), then assimilate the file
using the Assimilate Data Item primitive mechanism (Step
$368), use the New True File primitive mechanism to do
additional desired processing (such as cache update, com-
pression, and mirroring) (Step $369), and record the newly
computed True Name for the file in the audit file record entry
(Step $370).

Otherwise, if the entry being processed indicates that a
compound data item or directory was copied (or deleted)
(Step §376), then for each component True Name in the
compound data item or directory, add (or subtract) one to the
use count of the True File registry eniry record 140 corre-
sponding to the component True Name (Step S378).

In all cases, for each parent directory of the given file,
update the size, time of last access, and time of last modifi-
cation, according to the operation in the audit record (Step
$379).

Note that the audit record is not removed afier processing,
but is retained for some reascuable period so that it may be
used by the Synchronize Directory extended mechanism to
allow a disconnected remote processor to updare its represen-
tation of the local system.



US 7,802,310 B2

19

14. Begin Grooming,

This mechanism makes it possible to select a set of files for
removal and determine the overall amount of space to be
recovered, With reference to FIG. 23, first verify that the
global grooming lock is currently unlocked (Step $382).
Then set the global grooming lock, set the total amount of
space freed during grooming to zero and empty the list of files
selected for deletion (Step S384). For each True File in the
True File registry 126, set the delete count to zero (Step
5386).

15. Select For Remaval

This grooming mechanism tentatively selects a pathname
to allow its corresponding True File to be removed, With
reference to F1G. 24, first find the local directory extensions
table entry record 138 corresponding to the given pathname
{Step S388). Then find the True I'ile registry entry record 140
corresponding to the True File name in the local directory
extensions table entry record 138 (Step $390). Add oneto the
grooming delete count in the True File registry entry record
140 and add the pathname to a list of files selected for deletion
{Step 5392). If the grooming delete count of the True File
registry entry record 140 is equal to the use count of the True
File registry entry record 140, and if the there are no entries in
the dependency list of the True File registry entry record 140,
then add the size of the file indicated by the True File ID and
or compressed file ID to the total amount of space freed
during grooming (Step S394).

16, End Grooming

This grooming mechanism ends the grooming phase and
removes all files selected for removal, With reference to FIG.
25, for each file in the list of files selected for deletion, delete
the file (Step S396) and then unlock the global grooming lock
{Step S398).

Operating System Mechanisms
The next of the mechanisnis provided by the present inven-

tion, operating system mechanisms, are now described.
The following operating system mechanisms

described:

. Open File;

. Close File;

. Read Fiie;

. Write Tile;

. Delete File or Directory;

. Copy File or Directory;

. Move File or Directory;

. Get File S1atus; and

. Get Files in Directory.

1. Open File

A mechanism to open a file is described with reference 1o
FIGS. 26{a) and 26(b). This mechanism is given as input a
pathname and the type of access required for the file (for
examptle, read, write, read/write, create, etc.) and produces

are

OGO IR A R W =

either the File 1D of the file to be opened or an indication that _

no file should be opened. The local directory extensions table
record 138 and region table record 142 associated with the
opened file are associated with the open file for later use in
other processing functions which refer to the file, such as
read, write, and close.

First, determine whether or not the named file exists locally
by examining the local directory extensions table 124 1o
determine whether there is an eniry comresponding to the
given pathname (Step S400). If it is determined that the file
name does not exist locally, then, using the access type, deter-
mine whether or not the file is being created by this opening
process (Step S402). If the file is not being created, prohibit
the open (Step S404). If the file is being created, create a

10

—

5

30

35

40

45

50

20

zero-length scratch file using an entry in local directory exten-
sions table 124 and preduce the scraich file ID of this scratch
file as the result (Step $406).

If, on the other hand, it is determined in step S400 that the
file name does exist locally, then determine the region in
which the file is focated by searching the regicn table 128 to
find the record 142 with the longest region path which is a
prefix of the file pathname (Step S408). This record identifies
the region of the specified file.

Next, determine using the access type, whether the file is
being opened for writing or whether it is being opened only
for reading (Step S419). If the file is being opened for reading
only, then, if the file is a scratch file (Step S419), return the
scratch File ID of the file (Step 5424). Otherwise get the True
Name from the local directory extensions table 124 and make
a local version of the True File associated with the True Name
using the Make True File Local primitive mechanism, and
then return the True File ID associated with the True Name
(Step 5420).

If the file is not being opened for reading only (Step S410),
then, if it is determined by inspecting the repion table entry
record 142 that the file is in a read-only directory (Step S416),
then prolubit the opening, (Step 5422).

If it is determined by inspecting the region table 128 that
the file is in a cached region (Step S423), then send a Lock
Cache message to the corresponding cache server, and wait
for a retern message (Step S418). If the return message says
the file is already locked, prohibit the opening.

If the access type indicates that the file being modified is
being rewritten completely (Step S419), so that the original
data will not be required, then Delete the File using the Delete
File OS mechamsm {Step S421} and perform step S5406.
Otherwise, make a scratch copy of the file (Step S417) and
produce the scratch file ID of the scratch file as the result (Step
S424).

2. Close File

This mechanisiz takes as input the local directory exten-
sions table entry record 138 of an open file and the data
maintained for the open file. To close a file, add an entry to the
audit file indicating the time and operation (create, read or
write). The audit file processing (using the Process Audit File
Entry primitive mechanisin) will take care of assimilating the
file and thereby updating the cther records.

3. Read File

To read a file, a program must provide the offset and length
of the data to be read, and the location of a buffer into which
to copy the data read.

The file to be read from is identified by an open file descrip-
tor which includes a File ID as computed by the Open File
operating system mechanism defined above. The File ID may
identify either a scratch file or 2 True File (or True File
segment). If the File ID identifies a True File, it may be either
a simple or a compound True File. Reading a file is accom-
plished by the following steps:

In the case where the File ID identifies a scratch file or a
simple True File, use the read capabilities of the underlying
operating system.

In the case where the File ID identifies a compound file,
break the read operation inte one or more read operations on
component segments as follows:

A Identify the segment(s) to be read by dividing the speci-
fied file offset and length each by the fixed size of a segment
(a system dependent parameter), to determine the segment
number and number of segments that must be read.

B. For each segment number computed above, do the fol-
lowing:

i. Read the compourd True File index Mock to determine

the True Name of the segment 1 be read.



US 7,802,310 B2

21

1. Use the Realize True File from Location primitive
mechanism to make the True File segment available
locally. (If that mechanism fails, the Read File mecha-
nism fails).

iii. Determine the File ID of the True File specified by the
True Name corresponding to this segment,

iv. Use the Read File mechanism (recursively) to read from
this segment into the corresponding location in the
specified buffer.

4. Write File

File writing uses the file ID and data management capa-
bilities of the underlying operating system. File access (Make
Fiie Local described above) can be deferred until the first read
or write.

5. Delete File or Directory

The process of deleting a file, for a given pathname, is
described here with reference to FIGS. 27{a) and 27(5).

First, determine the local directory extensions table entry
record 138 and region table entry record 142 for the file (Step
$422). If the file has no local directory extensions able entry
record 138 oris locked oris in a read-only region, prohibit the
deletion.

Identify the corresponding True File given the True Name
of the file being deleted using the True File registry 126 (Step
5424). 1f the file has no True Name, (Step S426) then delete
the scratch copy of the file based on its scratch file ID in the
lacal directory extensions table 124 (Step 5427), and con-
tinue with step S428.

Tf the file has a True Name and the Frue File’s use count is
one (Step 5429), then delete the True File (Step $430), and
continue with step S428.

If the file has a True Name and the True File’s use count is
greater than one, reduce its use count by onc (Step S431).
Then proceed with step S428.

In Step 8428, delete the local directory extensions table
entry record, and add an entry to the andit file 332 indicating
the time and the operation petformed (delete).

6. Copy File or Directory

A mechanism is provided to copy a file or directory given
a source and destination processor and pathname. The Copy
File mechanism does not actually copy the data in the file,
onty the True Name of the file. This mechanism: is performed
as follows:

(A) Given the source path, get the True Name from the
path. If this step fails, the mechanism fails.

(B) Given the True Name and the destination path, link the
destination path to the True Name.

(C) If the scurce and destination processors have different
True File registries, find (or, if necessary, create) an entry for
the True Name in the True File registry table 126 of the
destination processor. Enter into the source ID field of this
new entry the source processor identity.

(D) Add an entry to the audit file 132 indicating the time
and operation performed (copy).

This mechanism addresses capability of the system to
avoid copying data from a source location to a destination
location when the destination already has the data. In addi-
tion, because of the ability to freeze a directory, this mecha-
nism also addresses capability of the system immediately to
make a copy of any collection of files, thereby to support an
efficient version control mechanisms for groups of files.

7. Move File or Directory

A mechanism is described which moves (or renames) a file
from a source path to a destination path. The move operation,
like the copy cperation, requires no actual transfer of data,
and is performed as follows:

(A) Copy the file from the source path to the destination
path.

20

30

43

60

65

22

(B} Ifthe source path is different from the destination path,
delete the source path.

8. Get File Status

This mechanism takes a file pathname and provides infor-
mation about the pathname. First the local directory exten-
sions table entry record 138 corresponding to the pathname
given is found. If no such entry exists, then this mechanism
fails, otherwise, gather information about the file and iis
corresponding True File from the local directory extensions
table 124. The information can include any information
shown in the data structures, including the size, type, owner,
True Name, sources, time of last access, time of last modifi-
cation, state (local or not, assimilated or not, compressed or
not), use count, expiration date, and reservations.

'9. Get Files in Directory

This mechanism enumerates the files in a directory. 11 is
used (implicitly) whenever it is necessary to determine
whether a file exists (is preseat) in a directory. For instance, it
is impiicitly used in the Open File, Delete File, Copy File or
Directory, and Move File operating system mechanisms,
because the files operated on are referred to by pathnames
containing directory names. The mechanism works as fol-
lows:

The local directory extensions table 124 is searched for an
entry 138 with the given directory pathname. If no such entry
is found, or if the entry found s not a directory, then this
mechanism fails.

If there is a corresponding Frue File field in the local
directary extensions table record, then it is assumed that the
True File represents a frozen directory. The Expand Frozen
Directory primitive mechanisim is used to expand the existing
True File into directory entries in the local directory exten-
sions table.

Finally, the local directory extensions table 124 is again
searched, this time to find each directory subordinate to the
given directory. The names found are provided as the result.

Remote Mechanisms

The remote mechanisms provided by the present invention
are now described. Recall that remete mechanisms are used
by the operating systern in responding to requests from other
processors. These mechanisms enable the capabilities of the
present invention In a peer-to-peer network mode of opera-
tion.

In a presently preferred embodiment, processors commu-
nicate with each other using a remote procedure call (RPC)
styie interface, ranning over one of any number of commu-
nication protocels such as IPX/SPX or TCP/IP. Each peer
processor which provides access to its True File registry 126
or file regions, or which depends on another peer processor,
provides a number of mechanisms which can be used by its
peers.

The following remote mechanisms are described:

. Locate True Tile;

. Reserve True File;

. Request True File;

. Retire True File;

. Carncel Reservation:

. Acquire True File;

. Lock Cache;

. Update Cache; and

. Check Expiration Date,

N 09 =1 Ch LA BB

1. Locate True File

This mechanism allows a remote processor to determine
whether the local processor contains a copy of a specific True
File. The mechanism begins with a True Name and a flag
indicating whether to forward requests for this file to other
servers. This mechanism is now described with reference to
FiG. 28.



US 7,802,310 B2

23

First determine if the True File is available locally or if
there is sonte indication of where the True File is located {for
example, in the Source 1Ds field). Look up the requested True
Name in the True File registry 126 (Step S432).

If a True File registry entry record 149 is not found for this
True Name (Step S434), and the flag indicates that the request
is not to be forwarded (Step 8436), respond negatively (Step
3438). That 15, respond to the effect that the True File is not
available.

Oue the other hand, if a True File registry entry record 146
is not found (Step S434), and the flag indicates that the
request for this True Tile is to be forwarded (Step S436), then
forward a request for this True File to some other processors
in the system (Step S442). If the source table for the current
processor identifies one or more publishing servers which
should have a copy of this True File, then forward the request
to each of those publishing servers (Step S436).

If a True File registry entry record 140 is found for the
required True File (Step S434), and if the entry includes a
True File ID or Compressed File [1D (Step $440), respond
positively (Step 8444). If the entry includes a True File 1D
then this provides the identity or disk location of the actual
physical representation of the file or file segment required. If
the entry include a Compressed File 1D, then a compressed
version of the True File may be stored instead of, or in add:-
tion to, an uncompressed version. This field provides the
identity of the actual representation of the compressed ver-
sion: of the file,

If the True File registry entry record 140 is found (Step
5434) but does notinclude a True File 1D (the File ID is absent
iftheactual file is not currently present at the current location)
(Stcp 5440), and if'the True File registry entry record 140
inchides one or more source processors, and if the request can
be Torwarded, then forward the request for this True File to
one or more of the source processors (Step S5444).

2. Reserve True File

This mechanism allows a remote processor to indicate that
it depends on the local processor for access to a specific True
File. It takes a True Name as input. This mechanisim is
described here.

(A) Find the True File registry entry record 140 associated
with the given True File. If no entry exists, reply negatively.

(B) If the True File registry entry record 140 does not
include a True File ID or compressed File ID, and if the Trre
File registry entry record 140 includes no source IDs for
removable storage volumes, then this processor does not have
access 10 a copy of the given file. Reply negatively.

(C) Add the ID of the sending processor to the list of
dependent processors for the True File registry entry record
140. Reply positively, with an indication of whether the
reserved True Tile is on line or off line.

3. Requesi True File

This mechanism allows a remote processor to request a
copy of a True File from the local processor. It requires a True
Name and responds positively by sending a True File back 1o
the requesting processor. The mechanism operates as follows:

(A) Find the True File registry entry record 140 asscciated
with the given True Name. If there is no such True File
registry entry record 140, reply negatively.

{B) Make the True File local using the Make True File
Local primitive mechanism. If this mechanism fails, the
Request True File mechanism also fails.

(C) Send the local True File in either it is uncompressed or
compressed form to ihe requesting remote processor. Note
that if the True File is acompound file, the components are not
sent.

(D) If the remote file is listed in the dependent process list
of the True File registry entry record 140, remove it,

35

50

60

65

24

4. Retire True File

This mechanism allows a remote processer to indicate that
it no fonger plans to maintain a copy of a given True File. An
altemate source of the True File can be specified, if, for
instance, the True File is being moved from one server to
another. It begins with a True Name, a requesting processor
ID, and an optional alternate source. This mechanism oper-
ates as follows:

(A)Find a True Name entry in the True File registry 126. I
there is no entry for this True Name, this mechanism’s task is
complete.

(B) Find the requesting precessor on the source list and, if
it is there, remove it.

(C) If an alternate source is provided, add it to the source
list for the True File registry entry record 140.

(D) If the source list of the True File registry entry record
140 has ne items in it, use the Locate Remote File primitive
mechanism to search for another copy of the file. If it fails,
raise a serious error.

5. Cancel Reservation

This mechanism altows a remote processor to indicate that
it no longer requires access 1o a True File stored on the local
processor. It begins with a True Name and a requesting pro-
cessor 1) and proceeds as follows:

{A)Find the True Name entry in the True File registry 126.
If there is no entry for this True Name, this mechanistn's task
is complete.

(B) Remove the idemntity of the requesting processor from
the list of dependent processors, if it appears.

(C) If the list of dependent processors becomes zero and the
use count is also zero, delete the True File.

6. Acquire True File

This mechanism aflows a remote processor to insist that a
local processor makea copy of a specified True File. Itis used,
for example, when a cache client wants to write through a new
version of a file. The Acquire True File mechanism begins
with a data item and an optional True Name for the data item
and proceeds as follows:

(A) Confirm that the requesting processor has the right to
require the local processor to acquire data iterns. If not, send
a negative reply.

(B) Make a local copy of the data iiem transmitted by the
remote processor.

{C) Assimilate the data item into the True File registry of
the local processor.

{D) If a True Name was provided with the file, the True
Name calculation can be avoided, or the mechanism can
verify that the file received matches the True Name sent.

(E) Add an entry in the dependent processor list of the true
file registry record indicating that the requesting processor
depends cn this copy of the given True File.

(F) Send a positive reply.

7. Lock Cache

This mechanism allows a remote cache client to lock a
local file so that local users or other cache clients cannot
change it while the remote processor is using it. The mecha-
nism begins with a pathname and proceeds as {ollows:

(A) Find the local directory extensions table entry record
138 of the specified pathname. If no such entry exists, reply
negatively.

(B) If an local directory extensions table entry record 138
exists and is already locked, reply negatively that the file is
atready locked.

(C) I an local directory extensions table entry record 138
exists and 1s not Jocked, Jock the entry. Reply positively.

8. Update Cache
This mechanism allows a remote cache client to unlock a
local file and update it with new contents. It begins with a



US 7,802,310 B2

25

patlmame and a True Name. The file corresponding to the
True Name must be accessible from the remote processor.
This mechanism operates as follows:

Find the local directory extensions table entry record 138
corresponding to the given pathname. Reply negatively if no
such entry exists or if the entry is not locked.

Link the given pathname to the given True Name using the

‘Link Path to True Name primitive mechanism.

Unlock the local directory extensions table entry record
138 and return positively.

9. Check Expiration Date
Return current or new expiration date and possible alter-
native source to cailer.

Background Processes and Mechanisms

The background processes and mechanisms provided by
the present invention are now described. Recall that back-
ground mechanisms are intended to run occastonally and at a
Jow pricrity to provide automated management capabilities
with respect to the present invention.

The following background mechanisms are described:

1. Mirrer True File;

2. Groom Region;

3. Check for Expired Links;

4, Verify Region; and

5. Groom Source List.

1. Mirror True File

This mechanism is used to ensure that files are available in
alternate locations in mirror groups or archived on archival
servers. The mechanism depends on application-specific
migration/archival criterta (size, time since last access, num-
ber of copies required, number of existing alternative sources)
which determine under what conditions a file shounld be
moved. The Mirror True File mechanism operates as follows,
using the True File specified, perform the following steps:

20

{A) Count the number of available locations of the True

File by inspecting the source list o[ the True File registry entry
record 140 for the Trne File. This step determines how many
copies of the True. File are available in (he system.

{(B) If the True File meets the specified migration criteria,
select a mirror group server to which a copy of the file shouid
be sent. Use the Acquire True File remote mechanisim to copy
the True File to the selected mirror group server. Add the
identity of the selected system to the source list for the True
File.

2. Groom Region

This mechanism is used to automatically free up space in a
pracessor by deleting data items that may be available else-
where. The mechanism depends on application-specific
grooming criteria (for instance, a file may be removed if there
is an alternate online source for it, it has not been accessed in
a given number of days, and it is larger than a given size). This
mechanism operates as follows:

Repeat the following steps (i) to (i11) with more aggressive
grooming criteria until sufficient space is freed or until all
grooming criteria have been exercised. Use grooming infor-
mation to determine how much space has been freed, Recall
that, while grooming is in effect, grooming information
includes a table of pathnames selected for deletion, and keeps
track of the amount of space that would be freed if all of the
files were deleted.

(i) Begin Grooming (using the primitive mechanism).

(i) For each pathnaine in the specified region, for the True
File corresponding to the pathname, ifthe True File is present,
has at least one alternative source, and meets application
specific grooming criteria for the region, select the file for
removal {using the primitive mechanism}.

(iii) End Grooming (using the primitive mechanism).

45

€0

45

26

If the region is used as a cache, no other processors are
dependent on True Files to which it refers, and all such True
Files are mirrored elsewhere. In this case, Trie Files can be
removed with impunity. For a cache region, the groeming
criteria would ordinarily eliminate the least recently accessed
True Files first. This is best done by sorting the True Files in
the region by the most recent access time before performing
step (ii) above. The application specific criteria would thus be
to select for removal every True File encountered (beginning
with the least recently used) until the required amount of free
space is reached.

3. Check for Expired Links

This mechanism is used to determine whether dependen-
cies on published files should be refreshed. The following
steps describe the operation of this mechanism:

For each pathname in the specified region, for each True
File corregponding to the pathname, perform the following
step:

¥ the True File registry entry record 140 corresponding to
the True File contains at least one source which is a publishing
server, and if the expiration date on the dependency is past or
close, then perform the following steps:

(A) Determine whether the True File registry entry record
contains other sources which have not expired.

(B) Check the True Name expiration of the server, If the
expiration date has been extended, or an alternate source is
suggested, add the source to the True File registry entry
recard 140.

(C) If no acceptable alternate source was found in steps (A)
or (B) above, make a local copy of the True File.

(I3} Remove the expired source.

4. Verify Region

This mechanism can be used (o ensure that the data items in
the True File registry 126 have not been damaged accidentally
or maliciously. The operation of this mechanism is described
by the foliowing steps:

(A)Searchthe local directery extensions table 124 for each
pathname in the specified region and then perform the fol-
lowing steps:

(i) Get the True File name corresponding to the pathname;

(ii) If'the Lrue File registry entry 140 for the Lrue File does

not have a True File ID or compressed file ID, ignore it.

(iii) Use the Verify True File mechanism (see extended

mechanisms below) to confirm that the True File speci-
fied is comrect.

5. Groom Source List

The source list in a True File entry should be groomed
sometimes to ensure there are not too many mirror or archive
copies. When a file is deleted or when a region definition or its
mirror criteria are changed, it may be necessary to inspect the
affected True Files to determine whether there are too many
mirror copies. This can be done with the following steps:

For each affected True File,

(A) Search the lacal directory extensions table to find each
region that refers (o the True File.

(B) Create a set of “required sources™, initially empty.

(C) For each region found,

(a) determine the mirroring criteria for that region,

(b) determine which sources for the True File satisfy the

mirroring criteria, and

{c) add these sources to the set of required sources.

(D) For each source in the True File registry entry, if the
source identifies 2 remote processor (as opposed to removable
media), and if the source is not a publisher, and if the source
is not in the set of required sources, then eliminate the source,
and use the Cancel Reservation remote mechanism to elimi-
nate the given processor from the list of dependent processors
recorded at the remote processor ideniified by the source.



US 7,802,310 B2

27

Extended Mechanisms

The extended mechanisms provided by the present inven-
tion are now described. Recall that extended mechanisms run
within application programs over the operating system (o
provide soluticns 1o specific problems and applications. 5

The following extended mechanisms are described:

i. Imventory Existing Directory;

2. Inventory Removable, Read-only Files;

3. Synchrenize Directories;

4, Publish Region;

5. Retire Directory;

6. Realize Directory at Location;

7. Verity True File;

8. Track for Accounting Purposes; and

9. Track for Licensing Purposes.

1. Inventory Existing Directory

This mechanisim determines the True Names of files in an
existing on-line directory in the underlying operating system.
One purposc of this mechanism is to install True Name
mechanisms in an existing file system. 20

An effect of such an installation is to eliminate immedi-
ately all duplicate files from the file system being traversed. If
scveral file systems are inventoried in a single True File
registry, duplicates across the volumes are also eliminated.

{A) Traverse the underlying file system in the operating
system. For each file encountered, excluding directaries, per- 25
form the following:

(i} Assimilate the file encountered (using the Assimilate
File primitive mechanism). This process computes its
True Name and moves its data inte the True File registry
126.

(11) Create a pathname consisting of the path to the volume
directory and the relative path of the file on the media.
Link this path to the computed True Name using the Link
Path to True Name primitive mechanism.

30

2. Inveniory Removable, Read-only Files ¥

A systetn with access o removable, read-only media vol-
umes (such as WORM disks and CD-ROMs) can create a
usable inventory of the files on these disks without having to
make online copies. These objects can then be used for archi-
val purposes, directory overlays, or other needs. An operator 40
must request that an inventory be created for such a volume.

This mechanism allows for maintaining inventories of the
contents of files and data items on removable media, such as
diskettes and CT>-ROMs, independent of other properties of
the files such as name, location, and date of creation.

The mechanism creates an online inventory of the files on
one or more removable volumes, such as a floppy disk or
CD-ROM, when the data on the volume is represented as a
directory. The inventory service uses a True Name to identify
eacl file, providing a way to locate the data independent ofits
name, date of creation, or location.

The inventory can be used for archival of data (making it
possible to avoid archiving data when that data is already on
a separate volume), for grooming (making it possible to
delete infrequently accessed files if they can be retrieved from
removable volumes), for version control {making it possible
10 generate a new version of a CD-ROM without having to
copy the eld version), and for other purposes.

The inventory is made by creating a volume directory in the
media invenlory in which each file named identifies the data
item on the volume being inventoried. Data items are not
copied from the removable volunie during the inventory pro-
cess.

An operator must request that an inventory be created for a
specific volume. Once created, the volume directory can be
frozen or copied like any other directory. Data items from
either the physical volume or the volume directory can be
accessed using the Open File operating systemn mechanism

50

@

0

28

which will cause them to be read from the physical volume
using the Realize True Fiie from Location primitive mecha-
nism.

To create an inventory the following steps are taken:

{A)A volume directory in the media inventory is created to
correspond to the volume being inventoried. Its contextual
name identifies the specific volume.

(B) A source table entry 144 for the volume is created inthe
source table 130. This entry 144 identifies the physical source
volume and the volume directory created in step (A).

(C) The filesystem on the voluine is traversed. For each file
encountered, excluding directories, the following steps are
taken:

(i} The True Name of the file is computed. An entry is
created in the True Name registry 124, including the
Tirue Name of the file using the primitive mechanism.
The source field of the True Name registry entry 140
identifies the source table entry 144.

(ii) A pathname is created consisting of the path to the
volume directory and the relative path of the file on the
media. This path is linked to the computed True Name
using Link Path to True Name primitive mechanisim,

(D) After all files have been inventoried, the volume direc-
tory is frozen. The volume directory serves as a table of
contents for the volume. It can be copied using the Copy File
or Directory primitive mechanism to create an “overlay”™
directory which can then be modified, making it possible to
edit a virtual copy of a read-only medivm.

3. Synchronize Directories

Given two versions of a directory derived from the same
starting point, this mechanism creates a new, synchronized
version which includes the changes from each. Where a file is
changed in both versions, this mechanism provides a user exit
for handling the discrepancy. By using True Names, compari-
sons are instantaneous, and no copies of files are necessary.

This mechanism lets a local processor synchronize a direc-
tory to account for changes made at a reimmote processor. Its
purpose is to bring a local copy of a directory up to date after
a period of no commmaication between the local and remote
processor. Such a period might occur if the local processor
were a mobile processor detached from its server, or if two
distant processors were run independently and updated
mightly.

An advantage of the described synchronization process is
that it does nol depend on synchronizing the clocks of the
local and remote processors. However, it does require that the
local processor track its position in the remole processor’s
audit file.

This mechanism does not resalve changes made simulta-
neously to the same file at several sites. If that cccurs, an
external resolution mechanism such as, for example, operator
intervention, is required.

The mechanism takes as input a start time, a Jocal directory
pathname, a remote processor name, and a remote directory
pathname name, and it operates by the following sieps:

(A) Request a copy of the audit file 132 from the remote
processor using the Request True File remote mechanisim.

{B) For each entry 146 in the andit file 132 after the start
time, if the entry indicates a change to a file in the remote
directory, perform the following steps:

(1) Compute the pathname of the corresponding file in the
focal directory. Determine the True Name of the corre-
sponding file.

(31} If the True Name of the local file is the same as the 0ld
True Name in the audit file, or if there is no local file and
the audit entry indicates a new file is being created, link
the new True Name in the audit file 1o the local pathname
using the Link Path to True Name primitive mechanism.



US 7,802,310 B2

29

(iii) Otherwise, note that there is a problem with the syn-
chronization by sending a message to the operator or to
a problem resolution prograim, indicating the local path-
name, remote pathname, remote processor, and time of
change.

(C) After synchronization is complete, record the time of
the final change. This time is 1o be used as the new start time
the next time this directory is synchronized with the same
remote processor.

4. Publish Regien

The publish region mechanism allows a processor to offer
ihe files in a region to any clienl processors for a limited
period of time.

The purpose of the service is to eliminate any need for
client processors to make reservations with the publishing
processor. This in turn makes it possible for the publishing
processor to service a much Jarger number of clients.

When a region is published, an expiration date is defined
for all files in the region, and is propagated into the publishing
system’s True File registry entry record 140 for each file.

When a remoze file is copied, for instance using the Copy
File operating system mechanism, the expiratior date is cop-
ied into the source field of the client’s True File registry entry
record 140, When the source is a publishing system, no
dependency need be created.

The client processor must cccasionally and in background,
check for expired links, to make sure it still has access tothese
files. This is described in the background mechanism Check
for Expired Links.

5. Retire Directory

This mechanism makes it possible to eliminate safely the
True Files in a directory, or at least dependencies on them,
afier ensuring that any client processors depending on those
files remove their dependencies. The files in the directory are
not actually deleted by this process. The directory can be
deteted with the Delete File operating system mechanism.

The mechanism takes the pathname of a given directory,
and optionally, the identification of a preferred altemate
source processor for clients 10 use. The mechanism performs
the following steps:

(A) Traverse the directory. For each file in the directory,
perform the following steps:

(i) Get the True Name of the file from its path and find the
True File registry entry 140 associated with the True
Name.

(ii) Determine an alternate source for the True File. If the
source IDs field of the TFR entry includes the preferred
alternate source, that is the alternate source. If it does
not, but includes some other source, that is the alternate
source, If it contains no alternate sources, there is no
alternate source.

(ii1) For cach dependent processor in the True File registry
entry 140, ask that processor to retire the True File,
specifying an alternate source if cne was determined,
using the remote mechanism.

6. Realize Directory at Location

This mechanism allows the user or operating system [0
force copies of files from some source location to the True
File registry 126 at a given location. The purpose of the
mechanisim is 1o ensure that files are accessible in the event
the source focation becomes inaccessible. This can happen
for instance if the scurce or given location are o mobile
computers, or are on removable media, or if the network
connection to the source is expected to become unavailable,
or if the source is being retired.

—

5

30

35

-

30

This mechanism is provided in the following steps for each
file in the given directory, with the exception of subdirecto-
ries:

(&) Get the local directory extensions table eniry record
138 given the pathname of the file. Get the True Name of the
local directory extensions table entry record 138. This service
assimilates the file if it has not already been assimilated.

(B) Realize the corresponding True File at the given loca-
tion. This service causes it to be copied to the given location
from a remote system or removable media.

7. Verify True File

This mechanisnt is used to verify that the data item ina True
File registry 126 is indeed the correct data item given its True
MName. Its purpose is to guard against device errors, malicious
changes, or other problems.

If an error is found, the system has the ability to “heal”
itself by finding another source for the True File with the
given name. It may also be desirable to verify that the error
has not propagated to other systems, and to log the problem or
indicate it to the computer operator. These details are not
described here.

To verify a data item that is not in a True File registry 126,
use the Caleulate Trie Name primitive mechanism described
above.

The basic mechanism begins with a True Name, and oper-
ates in the following steps:

(A) Find the True File registry entry record 140 corre-
sponding to the given True Name.

(B) If there is a True File ID for the True File registry entry
record 140 then use it. Otherwise, indicate that no file exists to
verify.

(C) Calculate the Truc Name of the data item given the file
1D of the data item.

(D) Confirm that the caleulated True Name is equal to the
given True Name.

(E) If the True Names are not equal, there is an error in the
True File registry 126, Remove the True File ID from the True
TFile registry entry record 140 and place it somewhere else.
Indicate that the True File registry entry record 140 contained
an error.

8. Track for Accounting Purposes

This mechanism provides a way io know reliably which
files have been stored on a system or transmitted from one
system to another. The mechanism can be used as a basis for
a value-based accounting system in which charges are based
on the identity of the data stored or transmitted, rather than
simply on the number of bits.

This mechanism allows the system to track possession of
specific data items according to content by owner, indepen-
dentof the name, date, or other properties of the data item, and
tracks the uses of specific data items and files by content for
accounting purposes. True names make it possible to identify
each file briefly yet uniquely for this purpose.

Tracking the identities of files requires maintaining an
accounting log 134 and processing it for acconnting or bifling
purposes. The mechanism operates in the following steps:

{A) Note every time a file is created or deleted, for instance
by monitoring audit entries in the Process Audit File Entry
primitive mechanism. When such an event is encountered,
create an entry 148 in the accounting log 134 that shows the
responsible party and the identity of the file created or
deleted.

(B) Every time a file is transmitied, for instance when a file
is copied with a Request True File remote mechanism or an
Acquire True File remote mechanism, create an entry in the
accounting log 134 that shows the responsible party, the iden-
tity of the file, and the source and destination processors.

(C) Occasionally run an accounting program 1o process the
accounting log 134, distributing the events to the account



Us 7,802,310 B2

3

records of each responsible party. The account records can
eventually be summarized for billing purposes.

9. Track for Licensing Purposes

This mechanism ensures that lcensed files are not used by
unauthorized parties. The True Name provides a safe way to
identify licensed material. This service allows proof of pos-
session of specific files according to their contents without
disclosing their contents.

Enforcing use of valid licenses can be active (for example,
by refusing to provide access to a file without authorization)
or passive (for example, by creating a report of users who do
not have proper authorization).

One possible way to perform license validation is to per-
form occasional andits of employee systems. The service
described herein relies on True Names to support such an
audit, as in the following steps:

{A) For each licensed product, record in the license table
136 the True Name of key files in the product (that is, files
which are required in order to use the product, and which do
not accur in ather products) Typically, for a software product,
this would include the main executable image and perhaps
other major files such as clip-art, scripts, or online help. Also
record the identity of each system which is authorized to have
a copy of the file.

(B) Occasionally, compare the contents of each user pro-
cessor against the license table 136. For each True Name in
the license table do the following:

(i) Unless the user processor is autherized to have a copy of
the file, confirm that the user processor does noi have a
copy of the file using the Locate True File mechanism.,

{i1) If the user processor is found to have a file that it is not
authorized to have, record the user processor and True
Name in a license violation table.

The System in Operation

Given the mechanisms described above, the operation of a
typical DP system employing these mechanisms is now
described in order to demonstrate how the present invention
meets its requirements and capabilities.

In operation, data items (for example, (iles, database
records, messages, data segments, data blocks, directories,
instances of object classes, and the like} in a DP system
employing the present invention are identified by substan-
tiaily unique identifiers { True Names). the identifiers depend-
ing on all of the data in the data items and only on the data in
the data items. The primitive mechanisms Calculaie True
Name and Assimilate Data ftem support this property. Forany
given data item, using the Calculate True Name primilive
mechanism, a substantially unique identifier or True Name
{or that data item can be determined.

Further, in operation of a DP system incorporating the
present invention, multiple copies of data items are avoided
(unless they are required for some reason such as backups or
mirror copies in a fault-tolerant system). Multiple copies of
data items are avoided even when multiple names refer to the
same data item. The primitive mechanisms Assimilate Data

Items and New True File support this property. Using the .

Assimilate Data Item primitive mechanism, if a data item
already exists in the system, as indicated by an entry in the
True File registry 126, this existence will be discovered by
this mechanism, and the duplicate data item (the new data
item) will be eliminated (or not added). Thus, for example, if
adata file is being copied onto a system from a floppy disk, if,
based on the True Name of the data file, it is determined that
the data file already exists in the system (by the same or some
other name), then the duplicate copy will not be installed. If
the data itemn was being installed on the system by some name
other than its current name, then, using the Link Path to True
Name printitive mechanism, the other (or new) name can be
linked to the already existing data item.

a5

50

63

32

In general, the mechanisms of the present invention operate
in such a way as to avoid recreating an actual data item at a
location when a copy of that data item is already present at
that location. In the case of a copy from a floppy disk, the data
item (file) may have to be copied (into a scratch file) before it
can be determined that it is a duplicate. This is because only
one processor is involved. On the other hand, in a multipro-
cessor environment or DP system, each processor has a record
of the True Names of the data items on that processor. When
a data item is to be copied to another location (another pro-
cessor) in the DP systemn, all that is necessary is to examine
the True Name of the data item prior to the copying. If a data
item with the same True Name already exists at the destina-
tion location (processor), then there is no need to copy the
data item. Note that if a data item which already exists locally
at a destination location is still copied to the destination
location (for example, because the remote system did not
have a True Name for the data item or because it armives as a
stream of un-named data), the Assimilate Data [tem primitive
mechanism will prevent multiple copies of the data item from
being created.

Since the True Name of a large data item (a compound data
item) is derived from and based on the True Names of com-
ponents of the data item, copying of an entire data item can be
avoided. Since some (or all) of the components of a large data
item may already be present at a destination location, enly
those components which are not present there need be copied.
This property derives from the manner in which True Names
are determined.

When a file is copied by the Copy File or Directory oper-
ating system mechanism, only the True Name of the file is
actually replicated.

When a file is opened (using the Open File operating sys-
tem mechanism), it uses the Make True File Local primitive
mechanism (either directly or indirectly through the Create
Scratch File primitive mechanism) to create a local copy of
the file. The Open File operating system mechanism uses the
Make True File Local primitive mechanism, which uses the
Realize Tme File from Location primitive mechanism,
which, in turn uses the Request True File remote mechanism.

The Request True File remote mechanism copies only a
single dataitem from one processor to another. If the data item
is a compound file, its componert segments are not copied,
onty the indirect block is copied. The segments are copied
only when they are read (or otherwise needed).

The Read File operating system mechartism actually reads
data. The Read File mechanism is aware of compound files
and indirect blocks, and it uses the Realize True File from
Lacation primitive mechanism to make sure that component
segments are locally available, and then uscs the operating
system file mechanisms to read data from the local file.

Thus, when a compound file is copied from a remote sys-
tem, only its True Name is copied. When it is opened, only its
indirect block is copied. When the corresponding file is read.
the required component segments are realized and therefore
copied.

in operation data items can be accessed by reference to
their identities (True Names) independent of their present
location. The actual data item or True File corresponding to a
given data identifier or True Name may reside anywhere in the
system (that is, locally, remotely, offline, etc). If a required
True File is present jocally, then the data in the file can be
accessed. If the data item is not present lecally, there are a
number of ways in which it can be obtained from wherever it
is present. Using the source IDs field of the True File registry
table, the location(s) of copies of the True File corresponding
to a given True Name can be determined. The Realize True
File from Location primitive mechanism tries to make alocal
copy of a True File, given its True Name and the name of a
source location (processor or media) that may contain the



US 7,802,310 B2

33

True File. i, on the other hand, for some reason it is not
known where there is a copy of the True File, oz if the pro-
cessors identified in the source IDs field do not respond with
the required True File, the processor requiring the data item
can make a general request for the data item wsing the Request
True File remote mechanism from all processors in the sys-
tem that it can contact.

As a result, the system provides transparent access to any
data item by reference to its data identity, and independent of
its present location.

In operation, data items in the system can be verified and
have their integrity checked. This is from the manner in which
True Names are determined. This can be used for security
purposes, for instance, to check for viruses and to verify that
data retrieved from another location is the desired, and
requested data. For example, the system might stere the True
Names of all executable applications on the system and then
periodically redetermine the True Names of each of these
applications to ensure that they match the stored True Names.
Any change in a True Name potentially signals corruption in
the system and can be further investigated. The Verify Region
background mechanism and the Verify True File extended
mechanisms provide direct support for this mode of opera-
tion. The Verify Region mechanism is nsed 1o ensure that the
data items in the True File registry have not been damaged
accidentally or maliciously. The Verify True File mechanism
verifies that a data item in a True File registry is indeed the
correct data item given its True Name.

Once a processor has determined where (that is, at which
other processer or location) a copy of a data ftem is in the DP
system, that processor might need that other processor or
location to keep a copy of that data item. For example, a
processor might want to delete local copies of data items to
make space available locally while knowing that it can rely on
retrieving the data from scimmewhere else when needed. To this
end the system allows a processor to Reserve (and cancel the
reservation of) True Files at remote locations (using the
remote mechanism). In this way the remote locations are put
on notice that another location is relying on the presence of
the True File at their Jocation.

A DP system employing the present invention can be made
into a fault-tolerant system by providing a certain amount of
redundancy of data iterns at multiple locations in the system.
Using the Acquire True File and Reserve True File remote
meclhanisms, a particular processor can implement its own
form of fault-tolerance by copying data items to other pro-
cessors and then reserving them there. However, the systemn
also provides the Mirror True File background mechanism to
mirror (make copies) of the Tme File available elsewhere in
the system. Any degree of redundancy (limited by the number
of processors or locations in the system) can be implemented.
As a result, this invention maintains a desired degree or fevel
of redundancy in a network of processors, to protect against
failure of any particular processor by ensuring that multiple
copies of data items exist at different locations.

The data structures used to implement various features and
mechanisms of this invention store a variety of useful infor-
mation which can be used, in conjunction with the various
mechanisms, to implement storage schemes and policies in a
DP system employing the invention. For example, the size,
age and location of a data item (or of groups of data items) is
provided. This infermation can be used to decide how the data
items should be treated. For example, a processor may imple-
ment a policy of deleting local copies of all data items over a
certain age if other copies of those data items are present
elsewhere in the system. The age {or variations on the age) can
be determined using the time of last access or medification in
the local directory extensions table, and the presence of other
copies of the data item can be determined either from the Safe

w

10

—

5

30

35

e

45

v

0

34

Flag or the source IDs, or by checking which other processors
in the system have copies of the data item and then reserving
at least one of those copies.

I operation, the system can keep track of data items
regardless of how those items are named by users (or regard-
less of whether the data items even have names). The system
can also track data items that have diflerent names {in differ-
ent or the same location) as well as different data items that
have the same name. Sirce a data item is identified by the data
in the item, without regard for the context of the data, the
problems of inconsislent naming in a DP sysiem are over-
come.

In operation, the systern can publish data items, allowing
other, possibly anonymous, systems in a network to gain
access to the data items and to rely on the availability of these
data items. True Names are globally unique identifiers which
can be published simply by copying them. For example, a
user might create a textual representation of a file on system
A with True Name N {for instance as a hexadecimal string).
and post it on a computer bulletin board. Another user on
system B could create a directory entry F for this True Name
N by using the Link Path to True Name primitive mechanism.
(Alternatively, an application could be developed whichk hides
the True Name from the users, but provides the same public
transfer service.)

When a program on system B attempts to open pathname F
linked to True Name N, the Locate Remote File primitive
mechanism would be used, and would use the Locate True
File remote mechanism to search for True Name N on one or
more remotie processors, such as system A. If system B has
access to system A, it would be able to realize the True File
(using the Realize True File from Location primitive mecha-
nism) and use it locally. Alternatively, system B could find
True Name N by accessing any publicly available True Name
server, if the server could eventually forward the request to
systemn A.

Clients of a local server can indicate that they depend on a
given True File (using the Reserve True File remote mecha-
nism) so that the True File is not deleted from the server
registry as long as some cHent requires access to it. (The
Retire True File remote mechanism is vsed to indicate that a
client no longer needs a given True File)

A publishing server, on the other hand, may want to pro-
vide access to many clients, and possibly anonymous cnes,
without incurring the overhead of tracking dependencies for
each client. Therefore, a public server can provide expiration
dates for True Files in its regisiry. This allows client systems
to safely maintain references to a True File on the public
server. The Check For Expired Links background mechanism
allows the client of a publishing server to occasionally con-
firm: that its dependencies on the publishing server are safe.

In a vartation of this aspect of the invention, a processor
that is newly connected (or reconnected after some absence)
to the system can obtain a current version of all (or of needed)
data in the system by requesting it from a server processor.
Any such processor can send a request to update or resyn-
chronize all of its directories (starting at a root directory),
simply by using the Synchronize Directories extended
mechanism on the needed directories.

Using the accounting log or some other user provided
mechanism, a user can prove the existence of certain data
items at certain times. By publishing (in a public place) alist
of all True Names in the system on a given day (or at some
given time), & user can later refer back to that list to show that
aparticular data item was present in the system at the time that
fist was published. Such a mechanismis useful in tracking, for
example, laboratory notebooks or the like to prove dates of
conception of inventions. Such a mechanism also permits
proofof possession of a data item at a particular date and time.



US 7,802,310 B2

35

The accounting log file can also track the use of specific
data iterns and files by content for accounting purposes. For
instance, an information utility company can determine the
data identities of data items that are stored and transmitted
through its computer systems, and use these identities to
provide bills to its customers based on the identities of the
data items being transmitted (as defined by the substantially
unique identifier). The assignment of prices for storing and
transmitting specific True Files would be made by the infor-
mation utility and/or its data suppliers; this information
would be joined periodically with the information in the
accounting log file 10 produce customer statements.

Backing up data items in a DP system employing the
present invention can be done based on the True Names of the
data items. By tracking backups using True Names, duplica-
tion in the backups is prevented. In operation, the system
maintains a backup record of daia tdentifiers of data items
alrcady backed up, and invokes the Copy File or Directory
operating system mechagism to copy only those data jlems
whose data jdentifiers are not recorded in the backup record.
Once a data item has been backed up, it can be restored by
retrieving it from its backup location, based on the identifier
of the data item. Using the backup record preduced by the
backup to identify the data item, the data item can be obtained
using, for example, the Make True File Local primitive
mechanisim.

In operation, the system can be used to cache data items
from a server, so that only the most recently accessed data
items need be retained. To operate in this way, a cache client
is configured t¢ have a local registry (its cache) with a remote
Local Directory Exiensions table (from the cache server).
Whenever a file is opened (or read), the Local Directory
Extensions table is used to identify the True Name, and the
Make True File Local primitive mechanism inspects the local
registry. When the local registry already has a copy, the file is
already cached. Otherwise, the Locate True File remote

mechanisn: is used to get a copy of the file. This mechanism -

consults the cache server and uses the Request True File
remote mechanism to make a local copy, effectively loading
the cache.

The Groom Cache background mechanism flushes the
cache, removing the least-recently-used files from the cache
client’s True File registry. While a file is being medified on 2
cache client, the Lock Cache and Update Cache remote
mechanisms prevent other clients from trying to modify the
same file.

In operation, when the system is being used to cache data
itemns, the problems of maintaining cache consistency are
avoided.

To access a cache and to fill it from its server, a key is
required to identify the data item desired. Ordinarily, the key
is a name or address (in this case, it would be the pathname of
a file). 1f the data associated with such a key is changed, the
client’s cache becomes inconsistent; when the cache client
refers to that name, it will retrieve the wrong data. In order to
matintain cache consistency it is necessary to notify every
client immediately whenever a change occurs on the server.

By using an embodiment of the present invention, the
cache key uniquely identifies the data it represents. When the
data associated with a name changes, the key itself changes.
Thus, when a cache client wishes to access the modified data
associated with a given file name, it will use a new key (the
‘True Name of the new file) rather than the key to the old file
conterts in its cache. The clent will always request the cor-
rect data, and the old data in its cache will be eventually aged
and flushed by the Groom Cache background mechanism.

Because it is not necessary to imumediately notify clients
when changes on the cache server oceur, the present invention
makes it possible for a single server to support 2 much larger
number of clients than is octherwise possible.

0

—

5

25

40

n
wh

60

65

36

In operation, the system autematically archives data items
as they are created or modified. After a file is created or
modified, the Close File operating system mechanism creates
an audit file record, which is evenmally processed by the
Process Audit File Entry primitive mechanisim. This mecha-
nism uses the New True File primitive mechanism for any file
which is newly created, which in tum vses the Mirror True
File background mechanism if the True File is in amirrored or
archived region. This mechanism causes one or more copies
of the new file to be made on remote processors.

In operation, the system can efficiently record and preserve
any collection of data items. The Freeze Directory primitive
mechanism creates a True File which identifies all of the files
in the directory and its subordinates. Because this True File
includes the True Names of its constituents, it represents the
exact contents of the directory tree at the time 1t was frozen.
The frozen directory can be copied with its components pre-
served.

The Acquire True File remote mechanism (used in mirror-
ing and archiving) preserves the directory tree structure by
ensuring that all of the component segments and True Files in
a compound data item are actually copied to a remote system.
Of course, no transfer is necessary for data items already in
the registry of the remote systern.

In operation, the system can efficiently make a copy of any
collection of data items, to support a version control mecha-
nism for groups of the data items.

The Freeze Directory primitive mechanism is used 1o cre-
ate a collection of data iterns. The constitnent files and seg-
ments referred to by the frozen directory are maintainedin the
registry, without any need to make copies of the constituents
each time the directory is frozen.

Whenever a pathname is traversed, the Get Files in Direc-
tory operating system mechanism is used, and when it
encounters a frozen directory, it vses the Expand Frozen
Directory primitive mechanism.

A frozen directory can be ¢opied from one pathname to
another efliciently, merely by copying its True Name. The
Copy File operating system mechanism is used 1o copy a
{rozen directory.

Thus it is possible to efficiently create copies of different
versions of a directory, thereby creating a record of its history
(hence a version centrol system).

In operation, the system can maintain a local inventory of
all the data items located on a given removable medium, such
as a diskette or CD-ROM. The mventory is independent of
other properties ¢f the data items such as their name, location,
and date of creation.

The Inventory Existing Directory exiended mechanisim
provides a way to create True File Registry entries for all of
the files in a directory. One use of this inventory is as a way to
pre-load a True File registry with backup record information.
Those files in the registry (such as previously installed soft-
ware) which are on the volumes inventoried need not be
backed up onto other volumes.

The Inventory Removable, Read-cnly [iles extended
mechanism not only determines the True Names for the files
on the medium, but also records directory entries for each file
in a frozen directory structure. By copying and modifying this
directory, it 15 possible to create an on line patch, or smail
modification of an existing read-only file. For example, it is
possible to create an online representation of a modified CD-
ROM, such that the unmodified files are actually on the CD-
ROM, and only the modified files are online.

In operation, the system tracks possession of specific data
items according to content by owner, independent of the
nare, date, or other properties of the data item, and tracks the
uses of specific data items and files by content for accounting
purposes. Using the Track for Accounting Purposes extended



US 7,802,310 B2

37

mechanism provides a way to know reliably which files have
been stored on a system or transmitted from one system to
another.

True Names in Relational and Object-Oriented Databases

Although the preferred embodiment of this invention has
been presented in the context of a file system, the invention of
True Names would be equally valuable in a relational or
object-oriented database. A relational or object-oriented data-
base system using True Names would have similar benefits to
those of the file system employing the invention. For instance,
such a database would permit efficient elimination of dupli-
cate records, support a cache for records, simplify the process
of maintaining cache consistency, provide location-indepen-
dent access to records, maintain archives and histories of
records, and synchronize with distant or disconnected sys-
tems or databases.

The mechanisms described ahove can be easily modified ta
serve in such a database environment. The True Name regis-
try would be used as a repository of database records. All
references to records would be via the True Name of the
record. (The Local Directory Extensions table is an exampie
of a primary index that uses the True Name as the unique
identifier of the desired records.)

In such a database, the operations of inserting, updating,
and deleting records would be implemented by first assimi-
Jating records into the registry, and then updating a primary
key index to map the key of the record to its contents by using
the True Name as a pointer to the contents.

The mechanisms described in the preferred embodiment,
or similar mechanisms, would be employed in such a system.
These mechanisms could include, for example, the mecha-
nisms for calculating true names, assimilating, locating, real-
izing, deleting, copying, and moving True Files, for mirroring
True Files, for maintaining a cache of True Files, for groom-
ing True Files, and other mechanisms based on the use of
substantially unigue identifiers.

While the invention has been described in connection with

what is presently considered to be the most practical and
preferred embodinzents, it is to be understood that the inven-
tion is not to be limited to the disclosed embodiment, but an
the contrary, is intended 10 cover various madifications and
equivalent arrangements included within the spirit and scope
of the appended claims.

We claim:

1. A computer-implemented method in a system which
includes a network of computers, the method implemented at
least in part by hardware comprising at least one processor,
the method comprising the steps:

(a) at a first computer, obtaining a content-based name for

a particular data item from a second computer distinct
from the first computer, the content-based name being
based at least in part on a function of at lcast some of the
data which comprise the contents of the particular data
item, wherein the function comprises a message digest
function or a hash function, and wherein two identical
data items will have the same content-based name; and

{b) by hardware in combination with software, a processor
at said first computer ascertaining whether or not the
content-based name for the particular data item corre-
sponds to an entry in a database comprising a plurality of
identifiers; and

(c) based at least ir part on said ascertaining in (b), deter-
mining whether or not access to the particular data item
is authorized.

2. A method as recited in claim 1 farther comprising:

(d) based at least in part on said determining in (c), causing
access to the particular data item to be denied when it is
determined that access to the particular data item is not
authorized.

45

G5

38

3. A method as recited in claim 1 wherein the content-based
name for the particular data item was included in a request to
access the particular data item, the request having been
received from a particular requestor, and wherein said step (c)
of determining comprises: determining whether or not the
particular requestor is authorized.

4. A method as recited in ¢laim 3 further comprising:

if it is determined that the particular requestor is not autho-

rized, causing the particular requestor's request to
access the particular data item to be denied.

5. A method as recited in claim 1 wherein said database
comprises a table or a list comprising said plurality of iden-
tifiers.

6. A method as recited in claim 1 wherein the plurality of
identifiers in the database are identifiers of licensed content
items, and wherein the identifier of each licensed content item
is based at least in part on the function of at least some of the
data comprising the licensed content item.

7. A method as recited in claim 1 further comprising:

(d) collecting information regarding the particular data

item.

8. A methed as recited in claim 7, wherein the information
collected includes at least one of: (a) information about which
data items have been stored on a computer; (b) information
about the content of the particular data item, (c) information
about an owner of the particular data item, (d) informatien
about a type of particular data item, (e) information about a
contextual name of the particular data item, (f) information
about whether the particular data item was copied; (g) the
content-based name of the particular data item; (h) informa-
tion about an identity of a requestor; (i) a timestarp; (j)
information about whether the particular data item was cre-
ated; and (k) information about whether the particular data
item was read,

9. A method as recited in claim 7 wherein at least some of
the information collected is maintained for accounting or
billing purposes.

10. A method as recited in claim 1 further comprising:

(d) tracking identities of data items.

11. A method as recited in claim 1 wherein the content-
based name of the particular data item is based, at least in part,
on.a function of all of the data which comprise the contents of
the particiar data item.

12. A method as recited in claim 1 wherein the message
digest function or hash function is selected from the func-
tions: MD4, MD5, and SHA.

13. A method as recited in claim 1 wherein the content-
based name of the particular data item is a True Name of the
particular data item.

14. A method as recited in claim 1 wherein the particular
dala ilem is selected from the group comprising: a file, a
portion of a file, a page in memory, a digital message, a
portion of a digital message, a digital image, a portion of a
digital image, a video signal, a portion of a video sigpal, an
audio signal, a portion of an audio signal, a software product,
and a portion of a sofiware product.

15. A method as recited in claim 1 wherein at least some
computers make up part of a peer-to-peer network of com-
puters.

16. A method as recited in claim 1 further comprising:

(d} authorizing access (o the particular data ilem when it is

not determined that the data item is unautherized.

17. A method as recited in claim 16 wherein the authorized
access permits copying of the particular data item to or from
at least one of the computers in said network of computers.

18. A method as recited in claim 16 wherein the conteni-
based name of the particular data item is received at the first
computer and wherein, if it is not determined that said par-



US 7,802,310 B2

39

ticular data item is unauthorized, access to the data item is
permitted from at least one of a plurality of computers distinct
from the first computer.

19. A method as recited 1 clairn 16 wherein, if it is not
determined that access to said particular data item is unau-
thorized, access to the data item is permitted from more than
one of a plurality of computers in the network of computers.

20. A computer-implemented method operable in a system
which includes a plurality of computers, the method compris-
ing:

controlling distribution of content from a first computer to

at least one other computer, in response to a request
obtained by a first device in the system from a second
device in the system, the first device comprising hard-
ware including at least one processor, the request includ-
inp at feast acontent-dependent name of a particulardata
itermn, the content-dependent name being based at least in
part on a function of at least some of the data comprising
the particular data item, wherein the function comprises
a message digest function or a hash function, and
wherein two identical data items will have the same
content-dependent name,

based at least in part on said content-dependent name of

said particular data item, the first device (A) permitting
the content to be provided to or accessed by the at least
one other computer if it is not detennined that the con-
tent is unauthorized or unlicensed, otherwise, (B) ifit is
determined that the content is wauthorized or unli-
censed, not permitting the content to be provided to or
accessed by the at least one other computer.

21. A computer-implemented methed implemented at least
in part by hardware comprising one or more processors, the
method comprising:

(a) obtaining a list of content-dependent names, one for

each of a plurality of data items, wherein, for each par-
ticuiar data item of the plurality of data items, the cor-
responding centent-dependent name for that particular
data item 1s based at least in part on a function of at least
some of the contents of the particular data item, wherein
the function comprises a message digest function or a
hasl function, and wherein two identical data items have
the same content-dependent name on the list of content-
dependent names;

(b) receiving at a first location, and from a second location
distinet from said first location, a content-dependent
identifier corresponding o a particular data item, said
content-dependent identifier being based at least in part
on at least some of the contents of the particular data
itemt;

(c) at said first location, by a processot, in combination
with software, detennining, based at leastia part on said
content-dependent identifier for said particular data
item, and wsing said list of content-dependent names,
whether a requestor may access the particular data itein;
and

(d) based on said determining in (¢}, if it is determined that
the requestor may not access the particular data item,
causing access to the particular data item to be denied.

22. A method as recited in claim 21 wherein the Tist of

content-dependent names comprises a list of True Names of
authorized data items and wherein the content-dependent
identifier of the particular data item is 2 True Name of the
particular data item.

23. A method as recited in claim 21 wherein at least some

of said computers make up part of a peer-to-peer network of
computers.

w

1G

45

50

o

5

40

24. A computer-implemented method implemented at least
in part by hardware comprising one or more processors, the
method comprising:

(a) using a processor, receiving at a first computer from a
second computer, a request regarding a particular data
item, said request including at least a content-dependent
name for the particular data item, the content-dependent
name being based, at least in part, on at least a function
of the data in the particular data item, wherein the data
used by the function to determine the content-dependent
name comprises at least some of the contents of the
particular data item, wherein the function that was used
comprises a message digest function or a hash function,
and wherein two identical data items will have the same
content-dependent name; and

(b) in response to said request:

(1) causing the content-dependent name of the particular
data item to be compared to a plurality of values;

(ii) bardware in combination with software detennining
whether or not access to the particular data jtem is
upautherized based on whether the content-depen-
dent name of the particular data item corresponds to at
least one of said plurality of values, and

{ii1) based on said determining in step (ii), not allowing
the particular data item to be provided to or accessed
by the second computer if it is determnined that access
to the particular data item is not authorized.

25, A method as recited in claim 24 further comprising:

in response to said request;

(iv) allowing the particular data item 10 be provided to or
accessed by the second computer if it is not deter-
mined that access to the particular data item is unau-
thorized.

26. The method of claim 1 wherein the content-based bame
of the particular data item is based on a function of only the
data which comprise the contents of the particular data item.

27. The method of claimn 20 wherein the content-dependent
name of the particular data item s based on a function of cnly
the data comprising the particular data item.

28. The method of claim 21 wherein, for each particular
data item of the plurality of data items, the corresponding
content-dependent name for that particular data item was
determined as a function of only the contents of that particular
data item.

29, The method of claim 24 wherein the data used by the
function to detenmine the content-dependent name of the
particular data item comprises only the contents of the par-
ticular data jtem.

30. The method of ¢laim 20 wherein the content-dependent
name of the particular data item is based on a function of all
of the data comprising the particular data item.

31. The method of claim 21 wherein, for each particular
data ttem of the plurality of data Hems, the corresponding
content-dependent name for that particular data item was
based ona function of all of the contents ol that particuiar data
ftem.

32. The method of claim 24 wherein the data used by the
funetion 1o detenmine the content-dependent name of the
particular data item comprises of all of the contents of the
particular data item.

33. The method of clatm 1 wherein the hardware comprises
a processor and memory.

34. The method of claim 20 wherein the hardware com-
prises a processor and memory.

35. The method of claim 21 wherein the hardware com-
prises a pracessor and meinory.

36. The method of claim 24 wherein the hardware com-
prises a processar and memory.

37. The method of claim T wherein the hardware comprises
a computer.



UsS 7,802,310 B2

41

38. The methed of claim 20 wherein the hardware com-
prises a computer.

39. The method of claim 21 wherein the hardware com-
prises a computer.

40. The method of claim 24 wherein the hardware com-
prises a computer.

41. The method of claim 1 wherein said content-based
name for said particular data item was obtained as part of a
request to allow providing of the particular data item to one or
more computers in the network of computers, and wherein the
determining in (¢} whether or not access to the particular data
item is authorized comprises:

using at least the contemt-based name of the particular data
item and information in the database to determine
whether or not to allow the particular data item to be
provided to computers in the network of computers.

42. The method of claim 41 further comprising;

(d) based at least in part on said determining in (c), causing
permission to provide the particular data item to com-
puters to be denied when it is determined that access to
the particular data item is not authonzed.

43. The method as in claim 1 wherein:

the function comprises a message digest function or ahash
function applied to at least some of the data in the par-
ticular data item to obtain a digital fingerprint of the
particular data item.

44. The method of claim 1 wherein the content-based name
for the particular data item comprises a digital fingerprint of
the particular data item, and wherein each of the plurality of
identifiers in the database comprises a digital fingerprint of
the corresponding data item.

45. The method of claim 1 wherein, when the particunlar
data item comprises a file or a portion of a file comprising an
audio signal, the content-based name of the particular data
item is a function of at least some of the data comprising the
audio signal.

46. The method as in claim 1 wherein, when the particular
data item comprises a file or a portion of a file comprising a
video signal, the content-based name of the particular data
item is a function of at least some of the data comprising the
video signal.

47. A method as recited in claim 1 wherein, when it is not
determined in step (c) that access to said particular data item
is unauthorized, providing of the particular data item is per-
mitted to or from one or more computers in the network of
computers.

48. A method as recited in claim 16 wherein the authorizing
access to the particular data item awthorizes providing the
particular data item to or from one or more compuiers i the
network of computers.

49. The method of claim 21 wherein determining in (c)
whether the requestor may access the particular data item
comprises:

using at least the content-dependent identifter of the par-

ticular data item and the list of content-dependent names
to determine whether or not the requestor is anthorized
to allow copying of the particnlar data item.

50. The method of claim 1 wherein determining whether or
not access to the particular data item is authorized comprises
determining whether or not access to the particular data item
is not unauthorized.

51. The method of claim 1 wherein the content-based name
for the particular data item corresponds to an entry in the
database when the conteni-based name for the particular data
item matches one of the plurality of identifiers in the database.

52. The method of claim 1 wherein said database maps
each identifier of said plurality of identifiers in said database
to information relating to a corresponding data item.

20

30

35

40

55

60

63

42

53. A method as recited in claim 1 further comprising:

(d) permitting at least one copy of the particular data item
to be distributed to or from at least one computer in the
network when it is determined that the particular data
item is not unauthorized.

54. The method of ctaim 1 further comprising:

(d) based at least in part on said determining in (c), causing
denial of permission for at least one copy of the particu-
lar file to be distributed across the plurality of computers
in a network when it is determined that the file is not
authorized.

55. The method of claim 1 further comprising the step:

(3) by hardware in combination with software, determining
said content-based name for said particular data item.

56. The method of claim 55 further comprising:

obtaining a copy of the particular data item, and wherein
the step (i) determines the content-based name using the
copy of the particular data item.

57. The method of claim 1 further comprising:

obtaining the database.

58_The method of claim 1 wherein the content-based name
for said particular data item is based, at least in part, on a size
or length of the particular data item.

59. The method of claim 51 wherein the content-based
name for the particular data item corresponds to an entry in
the database when the content-based name for the particular
data item exactly matches one of the plurality of identifiers in
the database.

60, The methed of claim 1 wherein the database comprises
atable or a list identifying data items which may only be used
by licensed users.

6. The method of claim 1 wherein the database comprises
a table identifying license information associated with data
items, and wherein the table 1s indexed at least by the identi-
fiers of data items.

62. The method of claim 1 wherein, wherein the database
comprises a table containing a plurality of recerds, and
wherein a record of the table records a relationship between a
specific data item and users Hcensed to have access to that
specific data item.

63. The method of claim 1, wherein the plurality of iden-
tifiers in the database are identifiers of licensed content items.

64. The method of claim 5 wherein the table or list identi-
fies conditions under which certain data items may be vsed.

65. A method as recited in claim 1 wherein access to said
data item comprises one or more of: (a) copying the data item
to or from at least one of a purality of computers; (b) provid-
ing the data item to at least one of a plurality of computers; (c)
reading the data item; (d) copying the data item; (e) distrib-
uting the data item; {f) modifying the data item; (g) storing the
data item; (h) opening the data item; (i) publishing the data
item; (j) writing the data item; (k) moving the data item; and
(1) deleting the data item.

66. A system operable in a network of computers, the
system comprising hardware including at least one processor
to:

(a) obtain at a first computer, from a second computer
distinct from said first computer, a content-based name
for a particular data itemn, the conteni-based name being
based at least in part oiz a function of at least some of the
data which comprise the contents of the particular daia
item, wherein the function comprises a message digest
function or a hash function, and wherein two identical
data items will have the same content-based name; and
to

(b) ascertain whether or not the content-based name for the
particular data item corresponds lo an entry in a database
comprising a plurality of identifiers; and to

(c) deterinine, based at least in part on whether or not the
particular data item comesponds to an entry in a data-



US 7,802,310 B2

43

base, whether or ot access to the data item is unautho-
rized at or by one or more computers distinct from the
first computer.

67. A system operable in a network of computers, the
systein conprising hardware including at least one processor
tor

control distribution of content from a first computer in said
network, at a first computer, in response to a request
from a second computer distinct from the first computer,
the request including at least a content-dependent name
of a particular data iter, the content-dependent name
being based at least in part on a function of at least some
of the data comprising the particular data item, wherein
the function comprises a message digest function or a
hash function, and wherein two identical data items will
have the same content-dependent name, and to

based at least in part on said content-dependent name of
said particular data item, selectively permit the content
to be provided to or from at least one other computer if
providing of the content is not determined to unautho-
rized or unlicensed.

68. A device operable in a network of computers, the device
comptising hardware including at least one processor, and
software, in cornbination with said hardware:

(a) to obtain a list of content-dependent names, one con-
teni-dependent namme for each of a plurality of data
items, wherein, for each of the plurality of data items, the
corresponding content-dependent name for that data
item is based at least in part on a function of at least some
of the contents of that data item, wherein the function is

- & message digest function or a hash function, and
wherein two identical data items have the same content-
dependent name;

(b) to receive at a first location, from a second location
distinct from said first location, an identifier for a par-
ticular data item;

(c) to determine, based at least in part on said identifier for
said particular data item, and using said list of content-
dependent names, whether a requestor may access the
particular data item; and

(d) based at least in part on said determining, if it is deter-
mined that requestor may not access the particular data
item, to cause access to the particular data item to be
denied.

69. A system operable in a network of computers, the
systemn comptrising hardware including at least a processor,
and software, in combination with said hardware:

(a) to receive at a first computer, from a second computer,
a request regarding a data item, said request including at
least a content-dependent name for the data iten, the
content-dependent name being hased at least in partona
function of the data in the data item, wherein the data
used by the funciion to determine the content-dependent
name comprises at least some of the contents of the data
item, wherein the function that was used is a message
digest function or a hash function, and wherein two
identical data items will have the same content-depen-
dent name; and

(b) in response to said request:

(1) to cause the content-dependent name of the data item
to be compared to a plurality of values; and

(ii) to determine il access to the data item is authorized or
unauthorized based on whether or not the content-
dependent rame corresponds (o at least one of said
plurality of values, and

(iii) based on whether or not it is detennined that access
to the data item is authorized or unautherized, to allow
the data item to be provided to or accessed by the
second computer if it is not determined that access to
the data item is unauthorized.

13

20

23

40

43

44

70. A computer-implemented metliod operable in a system
which includes a network of computers, the system imple-
mented at least in part by hardware including at least one
processor, the method comprising the steps of:

in response te a request at a first computer, from another
computer, said request comprising at least a content-
hased identifier for a particular data item, the content-
based identifier for the particular data item being based
at least in part on a given function of at least some data
which comprise the contents of the particular data item,
wheretn the given function comprises 2 message digest
or a hash function, and wherein two identical data items
will have the same content-based identifier:

(A) bardware in combination with seftware, determin-
ing whether the content-based identifier for the par-
ticular data item corresponds to an entry in a database
comprising a plurality of content-based identifiers;
and

(B) based at least in part on said determining in step (A),
sclectively permitting the particular data item to be
accessed at or by one or more computers in the net-
work of computers, said one or more computers being
distinct from said first computer.

71. A computer-implemented method implemented at least
in part by hardware comprising at least one processor and
software, in combination with said hardware, the method
comprising the steps:

at a first location, by a first computer,

{A) for a particular data item, said particular data item
comprising a plurality of segments, for at least some of
said plurality of segments, obtaining a corresponding
content-dependent segment identifier from another
computer at another location, each said corresponding,
content-dependent segment identifier being based, at
least in part, on a given function of at least some of the
data comprising the corresponding segment, wherein
said given function for content-dependent segment iden-
tifier of at jeast one of the segments comprises at least a
message digest function or hash function, and wherein
two identical segments will have the same content-de-
pendent segment identifier; and

(B) hardware in combination with software, ascertaining
whether or not at least some of said content-dependent
segment identifiers have corresponding entries in a data-
base comprising a plurality of content-dependent iden-
tifiers; and

(C) based at least in part on said ascertaining in {B), selec-
tively permitting access to the particular data item at one
or more locations distinct from the first location,

wherein, when the particular data item comprises afileora
portion of a file comprising an audio signal, the content-
dependent segment identifier of at least one of the plu-
rality of segments for particular data item is a function of
at least some of the data comprising the audio signal; and

wherein, when the particular data item comprises a file ora
portion ol a [ile comprising an video signal, the content-
dependent segment identifier of at least one of the plu-
rality of segments for particular data ilem is a function of
at least some of the data comprising the video signal, and
wherein said selectively permitting access fo said particu-
lar data item in step (C) comprises one or more oft (a)
selectively permitting copying of the data item to or
from at least one of a plurality of computers; (b) selec-
tively permitting providing of the data item to at least
one of a plurality of computers; (c) selectively permit-
ting reading of the data item; (d) selectively permitting
copying of the data item; () selectively permitting dis-
tribution of the data item; (f) selectively penmitiing
modification of the data item; {g} selectively permitting
storage of the data item; (h) selectively permitting open-



US 7,802,310 B2

45

ing of the data item; (i) selectively permitting publishing
of the data item; (j} selectively permitting writing the
data item; (k) selectively permitting moving the data
item; and (1) selectively permitting deleting the data
item. .

72. The method of claim 1 wherein step (¢) comprises:

determining whether or not access to the particular data
item is authorized at or by one or more computers dis-
tinct from the first computer.

73. The method of claim 20 wherein the first location is the

first computer.

74. The method of elaim 20 wherein the second location is
the second computer.

75. The method of claim 21 wherein the step (c) of deter-
mining takes place at said first location.

76. The method of claim 21 wherein the first location
receives the content-dependent identifier from the requestor.

77. The systern as in claim 67 wherein the at least one other
computer is distinct from the first computer.

78. The system as in claim 68 wherein the identifier 1s
received a the first location from the requestor.

79. The system of claim 68 wherein access to the particutar
data item comprises one or more of (a) copying the data item
to or from at least one of a plurality of computers; (b) provid-
ing the data item 10 at least one of a plurality of computers; (¢)
reading the data item; (d) copying the data item, (e) distrib-
uting the data item; (f) modifying the data item; (g) storing the
data item; (I) opening the data item; (i) publishing the data
item; {j) writing the data item; (k) moving the data item; and
(1) deleting the data item.

80. The system of claim 69 wherein

based on whether or not it is determined that access 1o the
data item is authorized or vnauthorized, the system
allows the dala jitem to be provided to the second com-
puter from the first computer if it is not determined that
access o the data item is unauthorized.

81. A device operable ir a network of computers, the device
comprising hardware including at least one processor and
memory, to:

(a) receive, at said device, from another device in the net-
wark, a content-based identifier for a particular
sequence of bits, the content-based identifier beirg
based at least in part on a function of at least some of the
particular sequence of bits, whercin the function com-
priscs a message digest function or a hash function, and

5

10

i5

30

i5

46

wherein two identical sequences of bits will have the
same content-based identifier; and to

(b) compare the content-based identifier of the particular

sequence of bits to a phurality of values; and to

() selectively allow said particular sequence of bits to be

provided to or accessed by other devices depending on
whether or not said content-dependent identifier corre-
sponds to one of the plurality of values.

82. The device of claim 81 wherein the particular sequence
of bits represent data selected from the group comprising: a
file, a portion of a file, a page in memory, a digital message, a
portion of a digital message, a digital image, a portion of a
digital image, a video signal, a portion of a video signal, an
audio signal, a pertion of an audio signal, a software product,
and a portion of a software product.

83. The method of claim ¥ wherein the content-based name
for the particular data item comprises a request for the par-
ticular data item.

84. The method of claim 24 wherein the request regarding
the particular data item is a request for the particular data
Kem.

85. The system as in claim 69 wherein the request regard-
ing the data item is a request for the data item.

86. A device operable ina network of computers, the device
comprising hardware, including at least one processor and

5 memory, o

(a) receive at said device, from another device in the net-
work, a digital identifier for a particular sequence of bits,
the digital identifier being based, at least in part, on a
given functionofat least some of the bits in the particular
sequence of bits, wherein the given function comprises a
message digest function or a hash function, and wherein
two identical sequences of bits will have the same digital
identifier; and

(b) selectively allow the particular sequence of bits to be
provided to or accessed by other devices in the system,
based at least in part on whether or not the digital iden-
tifier for the particular sequence of bits corresponds to a
value in a plurality of values, each of the plurality of
values being based, at least in part, on the given function
of at least some of the bits in a corresponding sequence
of hits.

87. A device as in claim 86 wherein the device is a com-

puter.



