
IN THE UNITED STATES DISTRICT COURT
FOR THE EASTERN DISTRICT OF TEXAS

TYLER DIVISION

DATA ENGINE TECHNOLOGIES LLC ,

 Plaintiff,

vs.

INTERNATIONAL BUSINESS
MACHINES CORP.,

 Defendant.

§
§
§ CAUSE NO. 6:13-CV-860-RWS-JDL
§
§
§
§
§
§
§

MEMORANDUM OPINION AND ORDER

This Memorandum Opinion construes the disputed claim terms in U.S. Patent Nos.

6,247,020 (“the ’020 Patent”), 6,237,135 (“the ’135 Patent”), 6,851,107 (“the ’107 Patent”),

6,976,243 (“the ’243 Patent”), and 7,051,316 (“the ’316 Patent”) (collectively, “the patents-in-

suit”). On April 23, 2015, the parties presented arguments on the disputed claim terms at a

Markman hearing. For the reasons stated herein, the Court adopts the constructions set forth

below.

BACKGROUND

Plaintiff Data Engine Technologies LLC (“Data Engine”) alleges that Defendant

International Business Machines Corporation (“IBM”) infringes the five patents-in-suit owned

by Data Engine. The ’020 Patent is directed to providing synchronization between screen panel

displays of the user interface of a software development system. The ’135 Patent is directed to

automatic source code generation conforming to selected design patterns, where the generated

source code is subject to post-generation editing. The ’107 Patent is directed to a software

development tool which allows a programmer to simultaneously view a textual display of source

Data Engine Technologies LLC v. International Business Machines Corp. Doc. 83

Dockets.Justia.com

https://dockets.justia.com/docket/texas/txedce/6:2013cv00860/148359/
https://docs.justia.com/cases/federal/district-courts/texas/txedce/6:2013cv00860/148359/83/
https://dockets.justia.com/

2

code and a graphical display of source code. The ’243 Patent is directed to an ability to search

within a Unified Modeling Language to isolate a portion of the software program that is being

visualized. The ’316 Patent is directed to a software development tool that generates code for a

computing component to be deployed onto a server for client-server interactions.

APPLICABLE LAW

 “It is a ‘bedrock principle’ of patent law that ‘the claims of a patent define the invention

to which the patentee is entitled the right to exclude.’” Phillips v. AWH Corp., 415 F.3d 1303,

1312 (Fed. Cir. 2005) (en banc) (quoting Innova/Pure Water Inc. v. Safari Water Filtration Sys.,

Inc., 381 F.3d 1111, 1115 (Fed. Cir. 2004)). In claim construction, courts examine the patent’s

intrinsic evidence to define the patented invention’s scope. See id.; C.R. Bard, Inc. v. U.S.

Surgical Corp., 388 F.3d 858, 861 (Fed. Cir. 2004); Bell Atl. Network Servs., Inc. v. Covad

Commc’ns Group, Inc., 262 F.3d 1258, 1267 (Fed. Cir. 2001). This intrinsic evidence includes

the claims themselves, the specification, and the prosecution history. See Phillips, 415 F.3d at

1314; C.R. Bard, Inc., 388 F.3d at 861. Courts give claim terms their ordinary and accustomed

meaning as understood by one of ordinary skill in the art at the time of the invention in the

context of the entire patent. Phillips, 415 F.3d at 1312–13; Alloc, Inc. v. Int’l Trade Comm’n,

342 F.3d 1361, 1368 (Fed. Cir. 2003).

The claims themselves provide substantial guidance in determining the meaning of

particular claim terms. Phillips, 415 F.3d at 1314. First, a term’s context in the asserted claim

can be very instructive. Id. Other asserted or unasserted claims can also aid in determining the

claim’s meaning because claim terms are typically used consistently throughout the patent. Id.

Differences among the claim terms can also assist in understanding a term’s meaning. Id. For

3

example, when a dependent claim adds a limitation to an independent claim, it is presumed that

the independent claim does not include the limitation. Id. at 1314–15.

“[C]laims ‘must be read in view of the specification, of which they are a part.’” Id.

(quoting Markman v. Westview Instruments, Inc., 52 F.3d 967, 979 (Fed. Cir. 1995) (en banc)).

“[T]he specification ‘is always highly relevant to the claim construction analysis. Usually, it is

dispositive; it is the single best guide to the meaning of a disputed term.’” Id. (quoting Vitronics

Corp. v. Conceptronic, Inc., 90 F.3d 1576, 1582 (Fed. Cir. 1996)); see also Teleflex, Inc. v.

Ficosa N. Am. Corp., 299 F.3d 1313, 1325 (Fed. Cir. 2002). This is true because a patentee may

define his own terms, give a claim term a different meaning than the term would otherwise

possess, or disclaim or disavow the claim scope. Phillips, 415 F.3d at 1316. In these situations,

the inventor’s lexicography governs. Id.

The specification may also resolve ambiguous claim terms “where the ordinary and

accustomed meaning of the words used in the claims lack sufficient clarity to permit the scope of

the claim to be ascertained from the words alone.” Teleflex, Inc., 299 F.3d at 1325. But,

“‘[a]lthough the specification may aid the court in interpreting the meaning of disputed claim

language, particular embodiments and examples appearing in the specification will not generally

be read into the claims.’” Comark Commc’ns, Inc. v. Harris Corp., 156 F.3d 1182, 1187 (Fed.

Cir. 1998) (quoting Constant v. Advanced Micro-Devices, Inc., 848 F.2d 1560, 1571 (Fed. Cir.

1988)); see also Phillips, 415 F.3d at 1323. The prosecution history is another tool to supply the

proper context for claim construction because a patent applicant may also define a term in

prosecuting the patent. Home Diagnostics, Inc., v. Lifescan, Inc., 381 F.3d 1352, 1356 (Fed. Cir.

2004) (“As in the case of the specification, a patent applicant may define a term in prosecuting a

patent.”).

4

Although extrinsic evidence can be useful, it is “‘less significant than the intrinsic record

in determining the legally operative meaning of claim language.’” Phillips, 415 F.3d at 1317

(quoting C.R. Bard, Inc., 388 F.3d at 862). Technical dictionaries and treatises may help a court

understand the underlying technology and the manner in which one skilled in the art might use

claim terms, but technical dictionaries and treatises may provide definitions that are too broad or

may not be indicative of how the term is used in the patent. Id. at 1318. Similarly, expert

testimony may aid a court in understanding the underlying technology and determining the

particular meaning of a term in the pertinent field, but an expert’s conclusory, unsupported

assertions as to a term’s definition are entirely unhelpful to a court. Id. Generally, extrinsic

evidence is “less reliable than the patent and its prosecution history in determining how to read

claim terms.” Id. In cases where subsidiary facts, such as the background science or the

meaning of the term in the relevant art, are in dispute, “courts will need to make subsidiary

factual findings about that extrinsic evidence.” Teva Pharm. USA, Inc. v. Sandoz, Inc., 135 S.

Ct. 831, 841 (2015). The “evidentiary underpinnings” and “subsidiary factfinding” of claim

construction are reviewed for clear error on appeal. Id.

AGREED CLAIM TERMS

 The parties agree to the construction of the following terms:

Claim Term Agreed Construction
design pattern(s)

certain naming conventions for properties,
methods, and events

synchronizing to update the display of respective information
in panes based on the occurrence of a user
event in one of the navigation pane, the
structure pane, or the content pane such that all
panes show corresponding information

suitable for modification modifiable

5

instructions compiled source code

type of link relationship between elements

data processing system Plain meaning.

distributed computing component a software component that runs on a computer
and is designed to perform business logic for
client application(s) requiring a solution to a
business problem

deployment descriptor file a file for describing an enterprise java bean and
any runtime properties of the EJB to the EJB
application server where the EJB is to be
deployed and run

deployment information information describing the enterprise java bean
and any runtime properties of the EJB to the
EJB application server where the EJB is to be
deployed and run

implementation class the class which implements all methods
defined in the remote interface

Docket Nos. 72, 74.

DISPUTED CLAIM TERMS

A. “automatically synchronized”

Data Engine’s Proposed Construction IBM’s Proposed Construction
Plain and ordinary meaning. No construction
necessary.

“synchronized without user intervention”

 Claim 1 of the ’020 Patent contains the term “automatically synchronized.” Data Engine

argues that no construction is necessary because “‘automatically’ does not have any specialized

meaning as used in the patent and is easily understood based on its plain and ordinary meaning.”

Docket No. 67 at 4. Data Engine contends that “automatically synchronized” merely means

“that synchronization is not performed manually.” Id. at 5. Data Engine argues that IBM’s

6

proposal is overly broad because the user “plays a role in triggering automatic synchronization.”

Id. at 5–6. IBM responds that the patentee made a disclaimer during prosecution to traverse the

Leshem reference. Docket No. 69 at 2–3. According to IBM, the Leshem reference taught

synchronization “through manual intervention—by clicking on individual icons.” Id. at 3

(emphasis omitted). Thus, IBM argues, the act of synchronization cannot involve user

interaction. Id.

 Figure 4B of the specification illustrates synchronization among the different panes of the

browser. ’020 Patent fig.4B; id. at col.3 ll.66–67. The patentee’s statements regarding the

Leshem reference were not the unequivocal disclaimer of claim scope that IBM proposes. The

patentee merely distinguished the system in Leshem which relied on a user manually

synchronizing content in a separate program based on the patentee’s amended claim limitation.

The patentee did so not only on the basis of adding “automatically,” but also by adding “by the

system.” A construction demanding synchronization “without user intervention” would

therefore run the risk of reading out preferred embodiments disclosed in the specification. See

id.

At the hearing, the Court proposed a construction clarifying that synchronization “is not

performed manually.” Tr. Apr. 23, 2015, Docket No. 82 (“Hearing Transcript”) at 53:4–6. IBM

expressed concern about the meaning of “manually” in the context of computers, and Data

Engine re-urged that such a construction would read out a user’s interaction to begin

synchronization. Id. at 53:10–19, 54:9–55:13. In light of the parties’ inability to reach an

agreement, and having rejected IBM’s argument above, the Court finds that the term

“automatically synchronized” needs no construction.

7

B. “structural information about Java code”

Data Engine’s Proposed Construction IBM’s Proposed Construction
“information regarding the classes interfaces,
ancestor classes, variables and methods of the
java code”

Alternatively, plain and ordinary meaning. No
construction necessary.

“information about how designable objects are
nested and interrelated in a java file”

Claims 13–15, 17, 30, and 31 of the ’020 Patent contain the term “structural information

about Java code.” Both parties rely on a portion of the specification in support of their

proposals:

D. Structure pane
The Structure pane of the AppBrowser shows a structural analysis of

the file that the user has selected in the Navigation pane. When the user
has selected a java file and then selects the Design tab at the bottom of the
Content pane, the Structure pane displays the designable objects in the
file, and how they are nested and interrelated. For example, if one selects
a java file, the Structure pane shows structural information about the java
code in that file, such as

Imported packages.
The classes and/or interfaces in the file.
Any ancestor classes and/or interfaces.
Variables and methods.

’020 Patent col.11 ll.13–24. Data Engine argues that its proposal properly accounts for “what the

structural information is,” as opposed to “what the structure pane displays.” Docket No. 67 at 7.

IBM responds that Data Engine’s proposal improperly recites a subset of examples provided in

the specification. Docket No. 69 at 6. IBM contends that its proposal more clearly describes the

“structural information” rather than limiting the construction to certain examples. Id.

 At the hearing, the parties reached an agreement that “structural information about Java

code” is not limited to merely the examples recited in the specification. Hearing Transcript at

65:22–66:2, 66:5–7. The parties further agreed that no construction is necessary. Id. at 66:5–15.

8

C. “Java bean component”

Data Engine’s Proposed Construction IBM’s Proposed Construction
“a collection of one or more Java classes that
has a constructor with no parameters, that is
often bundled into a single JAR (Java Archive)
file, that serves as a self-contained reusable
component, and that usually has properties,
methods and events which follow certain
naming conventions”

“a collection of one or more Java classes, often
bundled into a single JAR (Java Archive) file
that serves as a self-contained reusable
component”

 Claims 6, 15, 16, 23, 31, and 38 of the ’135 Patent contain the term “Java bean

component.” The parties rely on the same portion of the specification in support of their

proposals:

At the outset, it is helpful to briefly explain what a “Java Bean” (also
“JavaBean” or simply, “bean”) is. A Java Bean is a collection of one or
more Java classes, often bundled into a single JAR (Java Archive) file,
that serves as a self-contained, reusable component. A Java Bean can be a
discrete component used in building a user interface, or a non-UI
component such as a data module or computation engine. At its simplest,
a Java Bean is a public Java class that has a constructor with no
parameters. Java Beans usually have properties, methods, and events that
follow certain naming conventions (also known as “design patterns”).

’135 Patent col.10 ll.23–33. Data Engine argues that “[t]here is no justification for IBM’s

selective omission of two-thirds of the patentee’s definition.” Docket No. 67 at 13. Data Engine

also contends that IBM’s definition would allow “‘java bean components’ that lack a constructor

with no parameters, even though this is a requirement for such components.” Id. IBM responds

that Data Engine’s proposal includes optional elements of a Java bean component and “does not

include [the] purported requirement” that a Java bean component include a constructor with no

parameters. Docket No. 69 at 13.

9

 Both parties’ proposals include optional elements of a Java bean component and extend

beyond the definition provided in the specification. At the hearing, the Court proposed “a

collection of one or more Java classes that has a constructor with no parameters and serves as a

self-contained reusable component.” Hearing Transcript at 74:20–22, 76:3–5. Data Engine and

IBM agreed to this proposal. Id. at 76:9–15. Accordingly, the Court construes “Java bean

component” as “a collection of one or more Java classes that has a constructor with no

parameters and serves as a self-contained reusable component.”

D. “ parsing said emitted source code”

Data Engine’s Proposed Construction IBM’s Proposed Construction
“to analyze or separate the emitted source code
into more easily processed components”

“to analyze the emitted source code in order to
uncover properties, events, and methods”

 Claim 1 of the ’135 Patent contains the term “parsing said emitted source code” and

claim 19 of the ’135 Patent contains the term “parsing the emitted source code.” Data Engine

argues that its proposal avoids technical language and will thus be more helpful to a lay jury than

IBM’s proposal. Docket No. 67 at 16. Data Engine also criticizes IBM’s proposal because

parsing itself need “not, by definition, yield ‘a list of properties, events, and methods.’” Id. at

14–15. Instead, Data Engine, argues, yielding such a list is one result of “parsing.” Id. In

response, IBM emphasizes that “the patented system ‘provide[s] a list of properties, events, and

methods,’” the underlying source of which is “parsed code.” Docket No. 69 at 14 (emphasis

omitted). IBM also argues that its proposal “directly corresponds to the inventors’ description in

the patent.” Id. at 15 (citing Docket No. 69-4, Ex. C (’135 Patent File History) at 14).

 The parties’ proposed constructions improperly define the term “parsing said emitted

source code” using a result that follows the actual act of parsing. The purpose of parsing—to

eventually uncover properties, events, and methods—need not be part of a construction that

10

describes what constitutes parsing. Instead, the specification and claim language make clear that

the act of parsing source code involves separating its constituent parts so that they can be isolated

for use in separate processing operations. ’135 Patent col.20 ll.22–24; id. at col.39 ll.56–60. The

construction should avoid conflating the act of “parsing” with the functionality of the code

generator. Id. at col.20 ll.22–24 (“The code generator parses the source code such that it can

enumerate this information from source code.”) (emphasis added). Accordingly, the Court

construes “parsing said emitted source code” and “parsing the emitted source code” as

“separating the emitted source code.”

E. “ synchronized so that a modification in one is automatically reflected in the other”

Data Engine’s Proposed Construction IBM’s Proposed Construction
“automatically updating the graphical
representation of the source code to reflect
changes to the textual representation of the
source code or updating the textual
representation of the source code to reflect
changes to the graphical representation of the
source code with no repository no batch code
generation and no risk of losing code”

“simultaneously, without user intervention,
reflecting any modifications to the source code
in both the display of the graphical
representation as well as the textual display of
the source code, with no repository, no batch
code generation, and no risk of losing code”

 Claims 1, 8, 15, 22, 29, 31, 36, 43, 50, 57, 63, and 69 of the ’107 Patent contain the term

“synchronized so that a modification in one is automatically reflected in the other.” The parties

first dispute whether the term “automatically” means “simultaneously, without user interaction.”

Data Engine argues that “automatic” requires no construction. Docket No. 67 at 17. Data

Engine also contends that IBM’s proposal “is invented wholesale by IBM” and conflicts with the

patent’s teaching that “the system waits for certain events” before “automatic synchronization is

triggered.” Id. at 17–19. IBM responds that the synchronization must be “simultaneous” and

“without user intervention.” Docket No. 69 at 17. In support, IBM relies on the patentee’s

statement during prosecution that certain “amended claims provide for an improved software

11

development tool . . . that allows a developer to simultaneously view a graphical and a textual

display of source code.” Id. at 18 (quoting Docket No. 69-5, Ex. D (’107 Patent File History) at

17–18).

 The term “automatically” as used here does not equate to “simultaneously.” In making

this proposal, IBM relies on the fact that a developer may “simultaneously view a graphical and

a textual display of source code.” However, the word “simultaneously” within that statement

does not modify “automatically,” but instead merely describes how a developer may view

graphical and textual representations of source code at the same time. Further, as discussed

above with respect to the term “automatically synchronized,” synchronization can be automatic

despite user interaction in the moments preceding synchronization. Finally, IBM’s proposal

would place a timing requirement on the system that is not supported by the specification.

“Simultaneously” reflecting changes in either the graphical or textual displays of source code

would by definition require continuous updating with every keystroke by a user. This regime

would be problematic, for example, when a user enters a single character into the textual

representation of source code, giving the graphical display no indication of what object or

method that character will eventually become. See Docket No. 67 at 18 n.6. Thus, the Court

rejects IBM’s argument that the construction should require modifications to be reflected

“simultaneously” and “without user intervention.”

 Second, the parties dispute whether the synchronization must be “one-way” or “two-

way.” Data Engine argues that the claim term “so that a modification in one is automatically

reflected in the other” does not “mean that ‘any modification’ must be reflected in ‘both.’” Id. at

19. According to Data Engine, “[w]hile the patentee’s preferred embodiment discusses both of

these capabilities, . . . the plain language of the disputed term itself contradicts [IBM’s]

12

construction: the term requires only that ‘modification in one is automatically reflected in the

other’—not that any modification in either display is reflected in the other.” Id. (quoting ’107

Patent col.18 ll.52–53). IBM responds that the patent is clear that “if one of either the source

code or the graphical representation is modified, it must be reflected in the other.” Docket No.

69 at 19–20 (citing ’107 Patent col.4 l.42–col.5 l.2).

 IBM’s argument that synchronization must be “two-way” is without merit. Although the

specification describes two-way synchronization between the textual and graphical

representations of source code, IBM points to nothing which limits the invention to this kind of

synchronization. Instead, a preferred embodiment in the specification merely includes two-way

synchronization. ’107 Patent col.4 l.42–col.5 l.2. Without more, such a disclosure does not

support limiting this term to the two-way synchronization which IBM proposes. See Netword,

LLC v. Centraal Corp., 242 F.3d 1347, 1352 (Fed. Cir. 2001). Further, the claim language itself

counsels against IBM’s proposed limitation. The term “synchronized so that a modification in

one is automatically reflected in the other” does not specify that a modification in either

representation is reflected in both displays.

Accordingly, the Court construes “synchronized so that a modification in one is

automatically reflected in the other” as “automatically updating the graphical

representation of the source code to reflect changes to the textual representation of the

source code or updating the textual representation of the source code to reflect changes to

the graphical representation of the source code with no repository, no batch code

generation, and no risk of losing code.”

13

F. “computer-readable medium”

Data Engine’s Proposed Construction IBM’s Proposed Construction
Plain and ordinary meaning. No construction
necessary.

“transitory and non-transitory media upon
which a computer can store and retrieve data,
including: secondary storage devices, like hard
disks, floppy disks or CD-ROM; a carrier wave
from a network, such as Internet; or other
forms of RAM or ROM”

 Claims 76–150 of the ’243 Patent contain the term “computer-readable medium” and

claims 1, 10, and 19 of the ’316 Patent contain the term “computer readable medium.” The

parties’ dispute centers on whether a carrier wave from a network is a computer-readable

medium. Data Engine argues that the specification and claim language make clear that the

“computer-readable medium” is an article of manufacture which cannot include transitory

signals like a carrier wave from a network. Docket No. 67 at 22. Data Engine criticizes IBM’s

proposal for “inject[ing] language . . . that is not found in the specification” and for being

“directed solely to an invalidity defense.” Id. IBM responds that “the ordinary meaning of

‘computer readable medium’ encompasses both transitory and non-transitory media.” Docket

No. 69 at 22. According to IBM, the patentee claimed a “computer readable medium” without

restriction and expressly defined the term to include carrier waves from a network. Id. (quoting

’243 Patent col.7 ll.36–42). In support of its proposal, IBM cites not only from the patent

specification and prosecution history, but also from a number of administrative decisions

interpreting the term “computer readable medium.” Id. at 22–27.

 As an initial matter, IBM’s citation of unrelated patent applications, district court

interpretations, and administrative guidance is of limited utility in assessing the instant claims.

IBM points to no binding authority which construes the term “computer-readable medium” based

on the same set of facts and the same disclosure. There is no “law of the case” with respect to

14

the term, since claims must be “read in view of the specification, of which they are a part.”

Phillips, 415 F.3d at 1314–15.

The ’243 Patent specification discusses a computer-readable medium containing

instructions specifically in the context of an article of manufacture:

In accordance with articles of manufacture consistent with the present
invention, a computer-readable medium is provided. The computer-
readable medium contains instructions for controlling a data processing
system to perform a method.

’243 Patent col.4 ll.25–29 (emphasis added). Likewise, the claim language makes clear that the

computer-readable medium must “contain instructions.” Claim 94 is representative:

A computer-readable medium containing instructions for controlling a
data processing system to perform a method, the data processing system
having source code comprising a plurality of elements, the method
comprising the steps of: receiving a selection of one of the plurality of
elements; receiving an indication of a distance; receiving an indication of
a type of link; and determining which of the plurality of elements is
connected to the selected element via a link of the indicated type and
within the indicated distance.

’243 Patent col.25 ll.54–62 (emphasis added). The parties agree that “instructions” should be

construed as “compiled source code.” Docket No. 72-4, App. D at 2. A carrier wave from a

network, while it is a medium that is computer-readable, cannot contain instructions under the

parties’ agreed construction.

 IBM attempts to distinguish these portions of the specification by citing to a different

passage:

Although aspects of the present invention are described as being stored in
memory, one skilled in the art will appreciate that these aspects can also
be stored on or read from other types of computer-readable media, such as
secondary storage devices, like hard disks, floppy disks or CD-ROM; a
carrier wave from a network, such as Internet; or other forms of RAM or
ROM either currently known or later developed.

15

’243 Patent col.7 ll.36–42. However, this passage does not support IBM’s proposal. The

specification describes a data processing system having a hardware memory that stores the

software development tool and is accessed by a processor. Id. at col.7 ll.25–35. This indicates

that aspects “can be stored on or read from other types of computer-readable media.” One type

of media identified is a carrier wave from a network. Therefore, the data processing system

processor could read the software development tool instructions as they are being transmitted

over a network carrier wave instead of accessing hardware memory. This description merely

describes the various ways in which the processor of the data processing system can obtain the

instructions for execution of the method.

 Thus, the specification only clearly ties a computer-readable medium “containing

instructions for controlling a data processing system to perform a method” to an article of

manufacture. Construing the term as IBM requests would amount to rewriting the claim to

require that the data processing system “obtains instructions from” the computer-readable

medium, rather than simply requiring that the computer-readable medium “contains instructions”

for controlling the data processing system. As written in the claims, the term “computer-

readable medium” does not include a carrier wave from a network.

 Having rejected IBM’s argument, the Court finds that no construction is necessary.

G. “remote interface”

Data Engine’s Proposed Construction IBM’s Proposed Construction
“interface that enumerates the business
methods defined in the implementation class”

“interface used to invoke the business methods
defined in the bean class”

 Claims 11, 14, 18, and 22 of the ’316 Patent contain the term “remote interface.” Data

Engine first argues that its use of “implementation class” in the construction is preferable to

“bean class” because the latter does not appear in the claims. Docket No. 67 at 27. Data Engine

16

further argues that IBM’s proposal “merely describ[es] [a remote interface] with reference to

how it interacts with a browser.” Id. at 28. IBM responds that its proposal should be adopted

because it derives from the specification. Docket No. 69 at 28. IBM criticizes Data Engine’s

proposed construction for coming “from a book written by a third party” and being circular. Id.

at 28–29.

 IBM’s proposal improperly sets forth the purpose for which the remote interface is used,

rather than what constitutes a remote interface. The specification statement on which IBM relies

states that “[t]he browser 2012 also invokes methods through a remote interface that includes

signatures for the business methods of the EJB 2002.” ’316 Patent col.24 ll.40–46 (emphasis

added). Thus, it is the browser, and not the remote interface itself, that invokes the business

methods. Data Engine’s proposal, which stems from a source that is incorporated by reference

into the intrinsic record, better defines a remote interface. ’243 Patent col.25 ll.26–40 (expressly

incorporating by reference four sources); Docket No. 67-16, Ex. P at 82. Finally, contrary to

IBM’s assertion, Data Engine’s construction is not circular because it uses the term

“implementation class.” Rather, a jury will more readily understand the term “implementation

class” than “bean class” because the parties have agreed on a construction of the former.

 Accordingly, the Court construes “remote interface” as “interface that enumerates the

business methods defined in the implementation class.”

CONCLUSION

For the foregoing reasons, the Court interprets the claim language in this case in the

manner set forth above. For ease of reference, the Court’s claim interpretations are set forth in a

table in Appendix A and the parties’ agreed constructions are set forth in a table in Appendix B.

.

 JOHN D. LOVE

 UNITED STATES MAGISTRATE JUDGE

So ORDERED and SIGNED this 27th day of May, 2015.

17

APPENDIX A

Claim Term Court’s Construction
automatically synchronized

No construction

structural information about Java code No construction

Java bean component

a collection of one or more Java classes that
has a constructor with no parameters and
serves as a self-contained reusable component

parsing said emitted source code

separating the emitted source code

synchronized so that a modification in one is
automatically reflected in the other

automatically updating the graphical
representation of the source code to reflect
changes to the textual representation of the
source code or updating the textual
representation of the source code to reflect
changes to the graphical representation of the
source code with no repository, no batch code
generation, and no risk of losing code

computer-readable medium No construction

remote interface interface that enumerates the business methods
defined in the implementation class

18

APPENDIX B

Claim Term Agreed Construction
design pattern(s)

certain naming conventions for properties,
methods, and events

synchronizing to update the display of respective information
in panes based on the occurrence of a user
event in one of the navigation pane, the
structure pane, or the content pane such that all
panes show corresponding information

suitable for modification modifiable

instructions compiled source code

type of link relationship between elements

data processing system No construction

distributed computing component a software component that runs on a computer
and is designed to perform business logic for
client application(s) requiring a solution to a
business problem

deployment descriptor file a file for describing an enterprise java bean
and any runtime properties of the EJB to the
EJB application server where the EJB is to be
deployed and run

deployment information information describing the enterprise java bean
and any runtime properties of the EJB to the
EJB application server where the EJB is to be
deployed and run

implementation class the class which implements all methods
defined in the remote interface

home interface an interface that defines methods for creating,
destroying and finding instances of Enterprise
Java Beans

