

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

ORDER- 1

UNITED STATES DISTRICT COURT
WESTERN DISTRICT OF WASHINGTON

AT SEATTLE

REC SOFTWARE USA, INC.,

 Plaintiff,

 v.

BAMBOO SOLUTIONS
CORPORATION, et al.,

 Defendants.

CASE NO. C11-0554JLR

ORDER ON
CLAIM CONSTRUCTION

I. INTRODUCTION

This is an order on claim construction in a patent infringement action involving a

single patent related to what the patent names a “code server,” which maintains and

provides information for linking computer code modules that together constitute a

computer program. Plaintiff REC Software USA, Inc. (“REC”) sued Defendants

Bamboo Solutions Corporation, Microsoft Corporation, SAP America Inc., and SAP AG

(collectively, “Defendants”) for infringement of claims 1 and 8 of United States Patent

REC Software USA, Inc. v. Bamboo Solutions Corporation et al Doc. 159

Dockets.Justia.com

http://dockets.justia.com/docket/washington/wawdce/2:2011cv00554/174818/
http://docs.justia.com/cases/federal/district-courts/washington/wawdce/2:2011cv00554/174818/159/
http://dockets.justia.com/

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

ORDER- 2

No. 5,854,936 (“the ’936 Patent”) (the “Patent-in-Suit”).1 The court has considered the

parties’ briefing and supporting materials and has heard both oral argument from the

parties and expert testimony at a Markman hearing, held on January 13, 2011. This order

memorializes the court’s construction of the disputed language in the Patent-in-Suit.

II. BACKGROUND

A. Introduction

Stephen F.B. Pickett is the sole inventor of the Patent-in-Suit, which was assigned

to REC. (See U.S. Patent No. 5,854,936 (‘936 Patent).) REC contends that Microsoft

Corporation’s (“Microsoft”) operating systems that are supported by, or support or

utilize, the .NET Framework—namely, Windows 2000, Windows Server 2003, Windows

Server 2008, Windows Vista, Windows XP, and Windows 7—infringe the above-stated

claims of the Patent-in-Suit. (Joint Claim Construction Statement (Dkt. # 112) at 1-2.)

Additionally, REC contends that SAP America, Inc. and SAP AG’s (collectively, “SAP”)

“NetWeaver” products infringe the above-stated claims of the Patent-in-Suit. (Id. at 2.)

B. Factual Background

The Patent-in-Suit disclose systems and methods related to the behind-the-scenes

work done by a computer’s operating system to prepare complex computer programs for

execution by a “user” computer. (’936 Patent at 1:6-10; Defendants Opening Br. (Dkt. #

119) at 5.) The central component of the invention is a “code server,” which operates in

a multi-module computer operating system to efficiently identify and facilitate the

1 In its complaint, REC asserted claims 1-6, 8-10, 13, 15, 17, 18, and 22 of the ’936
Patent, but by stipulation now only asserts claims 1 and 8. (Stip. (Dkt. # 150).)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

ORDER- 3

provision of modules of computer code that constitute a computer program (known by

the Patent-in-Suit as the “second multi-module program”) to a user computer for

execution of that computer program. (’936 Patent at 1:6-10, 2:12-14.) A multi-module

operating system includes computer programs consisting of modules of computer code

that often contain embedded references (also known as linkage information or associative

information) to other modules of computer code. (Id. at 1:11-13.) Figure 2 below

provides a schematic diagram of a coded computer program divided into modules, which

in turn reference other modules. (Id. at 2:54-57.) Each block of Figure 2 constitutes a

module of computer code, which list other modules referenced by that module. The

arrows in Figure 2 show the connection between a module and the modules that it

references. (Id.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

ORDER- 4

Prior to, or at the time of, execution of the computer program by the “user”

computer, the embedded references within the modules of the computer program must be

linked together (or resolved) by the operating system. (Id. at 1:13-15.) Prior to the

present invention, there were two traditional ways of linking the modules of computer

code together—static linking and dynamic linking. (REC Tutorial (Dkt. # 133-1) at 21.)

In static linking, a program called a “linker,” operating on the “user” computer, pulls all

the various modules together into one large module with fully linked internal references.

(Id. at 21-24.) This large module is then placed by the “user” computer on a hard drive.

When the “user” computer was ready to run the large module (the fully-linked

application), the “user” computer would load the entire module into Random Access

Memory (“RAM”) and operate the instructions from there.2 (Id. at 25.)

In dynamic linking, all of the modules of a multi-module program are stored on

the hard drive, but unlike static linking, they are not linked together. (Id. at 28.) At the

time the “user” computer executes the multi-module program, the operating system

utilizes a linker program to read through the code modules to identify the other modules

that are referenced by each module. (Id. at 29.) For instance, in Figure 2 above, the

linker program would begin at the “Main Code Module,” which references Modules A,

B, and C. (Id. at 29-35.) For each referenced module, the linker program constructs in

RAM a “dynamic link table” including the identification of Modules A, B, and C as

modules referenced by the “Main Code Module,” as well as the RAM address where each

2 RAM is a faster memory type than memory that makes up the hard drive of a computer.
(REC Tutorial at 5.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

ORDER- 5

Module can be found. (Id. at 31.) The information of references between modules (i.e.

linkage information) found in the dynamic link table constitutes what the Patent-in-Suit

refers to as an “association.” (’936 Patent at 2:14-22.) The dynamic linker may continue

to construct an association for the modules referenced by Modules A, B, and C, and so on

for the remaining modules of the multi-module program. (REC Tutorial at 31.)

In practice, the dynamic link table can be used by another program that utilizes

some of the same modules as the first program, such that a specific module is only loaded

into RAM once, saving time and memory space. (Microsoft Tutorial (Dkt. # 132-1) at

28.) This was an improvement over the static linking process. (Id. at 28.) Still, the

dynamic linking process was slow in searching for the location of each module

referenced by the Main Code Module or other modules containing embedded references.

(REC Tutorial at 38.) The present invention purports to improve the efficiency of

running a multi-module program when compared to dynamic linking and static linking.

(Id. at 42.)

The present invention adds a “code server” to the described multi-module

operating system environment. (‘936 Patent at 2:12-14.) The code server includes a

“module information table” containing information that links or associates discrete

modules of a multi-module program. (Id. at 2:14-22; 3:49-50.) Thus, a code server

functions to provide linking information for modules of a multi-module program to a

“user” computer that desires to run the program. (Id. at 28-32.) By storing module

linking information in a code server, the need to search through a multi-module program

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

ORDER- 6

and then find the location of referenced modules in memory is greatly reduced. Figure 3

below depicts the interface between the code server and the “user” computer.

In this matter, REC has asserted claim 1 and 8 of the ‘’936 Patent. Claim 1 is an

independent claim and claim 8 is a dependent claim. Claim 1, a method claim, is

provided below:

1. A method of providing information to a first program that is executing on a
computer for forming an association for a second multi-module program which
includes an embedded reference to a discrete module, said method comprising the
steps of:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

ORDER- 7

(a) receiving in a code server from said first program, at a point prior to execution-
time of said multi-module program being associated, a request associated with said
discrete module;

(b) searching a module information table for module information in response to

said request associated with said discrete module;

(c) in response to finding said module information in said module information table,
reading said module information;

(d) providing said module information in a response to said first program; and

(e) forming an association of said multi-module program by said first program.

(’936 Patent at Claim 1 (bolding added).) The bolded portions of the quoted claim

language represent the claim terms in dispute.

III. ANALYSIS

In Markman v. Westview Instruments, Inc., the Supreme Court placed sole

responsibility for construing patent claims on the court. 517 U.S. 370, 372 (1996). The

Federal Circuit later established that the court construes claims purely as a matter of law.

Cybor Corp. v. FAS Tech., Inc., 138 F.3d 1448, 1456 (Fed. Cir. 1998) (applying de novo

review to all claim construction issues, even “allegedly fact-based questions”).

Executing the Markman mandate requires a court to interpret claims after giving the

appropriate level of consideration to various sources of evidence.

Intrinsic evidence, which includes the patent and its prosecution history, is the

primary source from which to derive a claim’s meaning. Phillips v. AWH Corp., 415

F.3d 1303, 1314 (Fed. Cir. 2005) (en banc). A patent is composed of three parts: (1) a

“written description,” which consists of an often lengthy exposition of the background of

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

ORDER- 8

the invention, at least one embodiment of the invention, and other written material that

assists in understanding how to practice the invention; (2) (in most cases) a set of

drawings that illustrates portions of the written description; and (3) the claims, which

delimit the scope of the invention. General Foods Corp. v. Studiengesellschaft Kohle

mbH, 972 F.2d 1272, 1274 (Fed. Cir. 1992). Together, these three components make up

the patent’s “specification.”3 Atmel Corp. v. Info. Storage Devices, Inc., 198 F.3d 1374,

1384 (Fed. Cir. 1999); 35 U.S.C. § 112.

The prosecution history exists independently of the patent. It consists of the

inventor’s application to the United States Patent and Trademark Office (“PTO”) and all

correspondence between the PTO and the inventor documenting the invention’s progress

from patent application to issued patent. Vitronics Corp. v. Conceptronic, Inc., 90 F.3d

1576, 1582 (Fed. Cir. 1996).

In its review of intrinsic evidence, the court begins with the language of both the

asserted claim and other claims in the patent. Phillips, 415 F.3d at 1314; Biagro Western

Sales, Inc. v. Grow More, Inc., 423 F.3d 1296, 1302 (Fed. Cir. 2005) (“It is elementary

that claim construction begins with, and remains focused on, the language of the

claims.”). The court’s task is to determine the “ordinary and customary meaning” of the

terms of a claim through the eyes of a person of ordinary skill in the art on the filing date

of the patent. Phillips, 415 F.3d at 1313 (quoting Vitronics, 90 F.3d at 1582).

3 Although 35 U.S.C. § 112 includes the claims as part of the specification, many courts
and practitioners use the term “specification” to refer to all portions of a patent except the claims.
In most instances, the context will reveal what portion of the specification is at issue.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

ORDER- 9

Sometimes, the ordinary meaning is “readily apparent even to lay judges,” in which case

claim construction “involves little more than the application of the widely accepted

meaning of commonly understood words.” Id. at 1314.

The court must read claim language, however, in light of the remainder of the

specification. Id. at 1316 (“[T]he specification necessarily informs the proper

construction of the claims.”). In cases where the ordinary meaning of a claim term seems

apparent from its use in the claim, the court must consult the specification either to

confirm that meaning or to establish that the inventor intended a different meaning.

Superguide Corp. v. DirecTV Enters., Inc., 358 F.3d 870, 875 (Fed. Cir. 2004). If the

ordinary meaning is not apparent from its use in the claim, the court looks to the

specification to provide meaning. Johnson Worldwide Assocs., Inc. v. Zebco Corp., 175

F.3d 985, 990 (Fed. Cir. 1999). The specification acts as a “concordance” for claim

terms, and is thus the best source beyond claim language for understanding claim terms.

Phillips, 415 F.3d at 1315. The inventor is free to use the specification to define claim

terms as she wishes, and the court must defer to an inventor’s definition, even if it is

merely implicit in the specification. Id. at 1316 (“[T]he inventor’s lexicography

governs.”), 1320–21 (noting that a court cannot ignore implicit definitions). The court

should “rely heavily” on the specification in interpreting claim terms. Id. at 1317.

When the court relies on the specification, however, it must walk a tightrope

between properly construing the claims in light of the written description and the

“cardinal sin” of improperly importing limitations from the written description into the

claims. SciMed Life Sys., Inc. v. Advanced Cardiovascular Sys., Inc., 242 F.3d 1337,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

ORDER- 10

1340 (Fed. Cir. 2001); Phillips, 415 F.3d at 1323 (citing Comark Commc’ns, Inc. v.

Harris Corp., 156 F.3d 1182, 1186-87 (Fed. Cir. 1998)). A patentee often provides

examples or “embodiments” of his or her invention in the written description, but courts

may not limit the invention to an embodiment absent clear evidence that a patentee

“intends for the claims and the embodiments . . . to be strictly coextensive.” Phillips, 415

F.3d at 1323.

Although a patent’s prosecution history is also intrinsic evidence, it is “less useful

for claim construction purposes,” because it usually “lacks the clarity of the

specification.” Id. at 1317. The prosecution history is useful, however, in determining if

an inventor has disavowed certain interpretations of his or her claim language. Id.

Finally, the court can consider extrinsic evidence, “including expert and inventor

testimony, dictionaries, and learned treatises.” Id. (citing Markman v. Westview

Instruments, Inc., 52 F.3d 967, 980 (Fed. Cir. 1995)). Extrinsic evidence is usually “less

reliable than the patent and its prosecution history” as a source for claim interpretation.

Id. at 1318. The court thus need not admit extrinsic evidence, but may do so in its

discretion if intrinsic evidence does not disclose the meaning of a claim term. Id. at

1319; Vitronics, 90 F.3d at 1583 (“[W]here the public record unambiguously describes

the scope of the patented invention, reliance on any extrinsic evidence is improper.”).

With this general framework in mind, the court turns to the claim terms in dispute.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

ORDER- 11

A. “First program that is executing on a computer”/ “second multi-module
program”

The terms-in-dispute are found in asserted claim 1 of the ’936 Patent. The parties

offer the following proposed constructions:

REC’s Proposed Constructions: “First program that is executing on a

computer” means “a set of computer instructions running on a computer that enables the

computer to perform a specific operation or operations” and “second multi-module

program” means “a set of computer instructions that comprises two or more modules

and enables the computer to perform a specific operation or operations.” (Updated Joint

Claim Chart (Dkt. # 134-1) at 1.4)

Defendants’ Proposed Constructions: The terms-in-dispute should be given

their ordinary meaning.5 (Updated Claim Chart at 1.)

The central dispute between the parties is whether the word “program” must be

defined. Although the parties agree that the specification is silent with respect the word

“program,” they disagree as to how that silence is to be interpreted. Defendants contend

that the word has a well-understood meaning in the computer science field and therefore

needs no construction. (Microsoft Opening Br. at 9-10.) REC responds that without a

4 On January 11, 2012, after completion of Markman briefing, the parties filed a Joint
Claim Chart containing updated proposed constructions for each disputed term. (Dkt. # 134-1.)
The court will rely on the proposed constructions contained in the updated Joint Claim Chart in
this Markman order.

5 During the Markman hearing, for the first time, Microsoft provided the court with the

following proposed construction of the word “program”: “The complete set of computer
instructions to perform a process.” (Transcript (Dkt. # 145) at 98-99.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

ORDER- 12

construction, Microsoft is free to enlarge the scope of the word “program,” through

argument to the finder of fact, to encompass entire software products, which according to

REC constitute multiple “programs.” (REC Opening Br. at 17.) REC seeks to define the

word “program” through dictionary definitions. (Id.)

The court will construe the terms-in-dispute. Here, the parties have a genuine

dispute as to the scope of the word “program.” O2 Micro Intern. Ltd. v. Beyond

Innovation Technology Co., Ltd., 521 F.3d 1351, 1361 (Fed. Cir. 2008) (“In deciding that

‘only if’ needs no construction because the term has a ‘well-understood definition,’ the

district court failed to resolve the parties’ dispute because the parties disputed not the

meaning of the words themselves, but the scope that should be encompassed by this

claim language.”) (internal quotations omitted).

Additionally, although the word “program” may readily be understood by one of

skill in the art, to a lay person finder-of-fact, the word has numerous meanings, e.g., a

computer program versus a baseball game program versus a television program. Thus,

construction of the term is appropriate. Id. (“A determination that a claim term ‘needs no

construction’ or has the ‘plain and ordinary meaning’ may be inadequate when a term has

more than one ‘ordinary’ meaning or when reliance on a term’s ‘ordinary’ meaning does

not resolve the parties’ dispute.”).

As is the case here, where the specification (and other intrinsic evidence) is silent

as to the word “program,” the court may refer to dictionary definitions for guidance. L.B.

Plastics, Inc. v. Amerimax Home Prods., 499 F.3d 1303, 1308 (Fed. Cir. 2007) (“Since

the intrinsic record provides no further guidance to the meaning of the terms ‘weld,’

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

ORDER- 13

‘fuse’ or ‘ultrasonic or heat welding,’ the district court properly turned to extrinsic

evidence in this case and consulted dictionaries.” REC has provided the court with

numerous technical dictionary definitions for the word “program.” (REC Opening Br. at

17 (citing The Illustrated Dictionary of Microcomputers (3rd ed. 1990) (“A set of

instructions . . . directing the computer in performing a desired operation,”); Wiley Electr.

and Electr. Engineering Dictionary (2004) (“A set of instructions which . . . cause a

computer to perform specific operations.”).) The court finds that REC’s proposed

constructions for the terms-in-dispute closely align with the technical dictionary

definitions apt to define the word “program” in the context of the Patent-in-Suit.

 Accordingly, the court adopts REC’s proposed constructions. “ First program

that is executing on a computer” means “a set of computer instructions running on a

computer that enables the computer to perform a specific operation or operations” and

“second multi-module program” means “a set of computer instructions that comprises

two or more modules and enables the computer to perform a specific operation or

operations.

B. “code server”

 The term “code server” is found in asserted claim 1 of the ’936 Patent and also in

numerous other claims of the Patent-in-Suit. As stated, the “code server” constitutes the

crux of the patented invention. The parties propose the following constructions for the

term-in-dispute:

REC’s Proposed Construction: “computer software that (i) is an identifiable set

of computer instructions other than the first program, and (ii) is capable of maintaining,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

ORDER- 14

and providing to the first program upon request, module information for one or more

modules of a multi-module program.” (Updated Joint Claim Chart at 1-2.)

Defendants’ Proposed Construction: “a disjoined task (separate process from

the first program) that maintains and provides to the first program upon request module

information for one or more modules of a multi-module program.” (Updated Claim

Chart at 1.)

While the parties agree that the function of the code server is to maintain and

provide to the first program module information for one or more modules of a multi-

module program, the parties’ competing constructions raise two distinct disputes: (1)

whether the code server is computer software that is capable of performing certain tasks

or process (REC’s position) or is itself a “task” or “process” (Defendants’ position), and

(2) the language to use in describing the distinction between the code server and the first

program. These issues are disused in turn below.

 First, the court agrees with REC that the claim language and the specification

make clear that the code server is a thing, albeit an abstract thing, capable of performing a

task or tasks. The code server is found in the claim language of claim 1, a method claim:

“receiving in a code server from said first program, . . . a request associated with said

discrete module.” The plain claim language indicates that the code server is a thing

which receives a request from the first program as opposed to a task or process, as

Defendants contend. Consistent with the claim language, the specification describes the

code server as a thing, made up of various parts, which can perform a function. For

example, the specification states: “The code server, which provides information to users

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

ORDER- 15

of the data processing system, includes an information storage table containing linkage

information needed to form an association between discrete modules of code” (’936

Patent at 2:13-16.)

Defendants direct the court to the following passage of the specification, which

Defendants assert supports their construction:

The code server is embodied in a transaction oriented protocol for
communication between the user and the code server which allows the
users and the code server to be on two remote computer systems or to be
configured as separate disjoined tasks in a multi-processing system on a
single computer.

(Microsoft Opening Br. at 10 (citing ’936 Patent at 3:21-26).) As REC correctly points

out, this passage from the specification describes a possible configuration of the code

server and the user computer(s), but does not describe the code server itself. Thus,

Defendants’ reliance on this passage is misplaced. The court concludes that the code

server is more aptly described as a thing as opposed to a process or task.

 With respect to the second dispute, although the parties agree that the code server

is distinct from the first program, REC and Defendants disagree as to the language for

describing this distinction. REC seeks to describe the distinction as “an identifiable set of

instructions other than the first program,” whereas Defendants describe the distinction as

a “separate process from the first program.” (REC Opening Br. at 19; Microsoft Opening

Br. at 11.) Essentially, the dispute turns on whether the word “other” or the word

“separate” should be used to describe the distinction.

 REC contends that if the court accepts Defendants’ proposed construction,

Defendants will be free to argue that for the code server to be separate from the first

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

ORDER- 16

program either (1) the code server and first program may not interact, or (2) the code

server and first program must not reside on the same memory hardware. (REC Opening

Br. at 20.) REC contends that both of these arguments, as an extension of Defendants’

proposed construction, are incorrect. (Id.) The court agrees with REC on both accounts.

The claim language and the specification clearly indicate that the first program and the

code server will interact. (‘’936 Patent at Claim 1 (“receiving in a code server from said

first program”).) Additionally, the code server and the first program may exist on the

same hardware. (’936 Patent at 3:21-26 (“the user and the code server [may] be on two

remote computer systems or . . . on a single computer.”).) This is not to say that the code

server and the first program are the same. Indeed, they are certainly distinct from one

another. As Defendants explain, Figures 1 and 3 of the specification explicitly depict the

code server as distinct from the requesting (or user) program. (Microsoft Opening Br. at

11.)

 Returning to the parties’ dispute, the court is concerned that Defendants’ choice of

“separate” affords Defendants the opportunity to improperly argue, as it does in its brief,

that the code server and first program are completely isolated from one another. (See id.

at 11.) On the other hand, REC’s use of the word “other” fails to capture the requisite

distinction required by the specification of the ’936 Patent. Accordingly, the court

believes that the word “different” properly captures the relationship between the code

server and the first program.

 As a final matter, Defendants argue that REC’s inclusion of the phrase “an

identifiable set of computer instructions” in its definition of code server lacks supporting

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

ORDER- 17

intrinsic evidence. The court has fully examined the specification of the ’936 Patent and

finds that the specification fails to provide a clear definition of code server, instead

consistently defining the term by its functionality and purpose. (See generally ’936

Patent.) In such a situation, the court will adopt a “construction that stays true to the

claim language and most naturally aligns with the patent’s description of the invention.”

Phillips, 415 F.3d at 1316. Here, the court finds that the code server is a piece of

software—a computer program. The specification makes clear that the code server may

be a separate piece of hardware, be built into the network, or be a part of the operating

system itself. (’936 Patent at 3:17-20.) Logically, functions performed through hardware

will be the result of the execution of a computer program. Moreover, the claim language

and specification recite interaction between the code server and the first program, which

seemingly could only occur if the code server was a computer program itself. Having

already defined the word “program” as a set of computer instructions, the court finds

REC’s inclusion of the phrase “an identifiable set of computer instructions” accurate and

helpful to the finder of fact. Indeed, the word “identifiable” assists the finder of fact in

distinguishing the code server from the first program.

 In conclusion, based on the claim language and the specification, the court gives

the term “code server” the following construction: “an identifiable set of computer

instructions, different than the first program, which maintains and provides to the first

program upon request module information for one or more modules of a multi-module

program.”

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

ORDER- 18

C. “searching a module information table for module information in response to
said request associated with said discrete module.”

 The term-in-dispute is found in asserted claim 1 of the ’936. The parties propose

the following constructions:

REC’s Proposed Construction: “in response to a request that includes an

identification of the discrete module, the code server searches for module information in

the module information table pertaining to the discrete module.” (Updated Joint Claim

Chart at 2.)

Defendants’ Proposed Construction: “in response to a request that includes an

identification of the discrete module, the code server searches for module information in

the module information table pertaining to the discrete module and any referenced

modules.”6 (Id. at 2.)

Here, the parties’ dispute is clear: whether the term-in-dispute requires (1) search

for module information pertaining to the discrete module (REC’s position) or (2) search

for module information pertaining to the discrete module and to any modules referenced

by the discrete module (Defendants’ position). (Id. at 2 (emphasis added).) The parties’

proposed constructions mirror one another except that Defendants’ construction requires

6 In it opening brief, Defendants proposed the following construction for the term-in-
dispute: “in response to a request that includes an identification of the discrete module, the code
server searches for any and all module information in the module information table pertaining to
the discrete module and any referenced modules.” (Microsoft Opening Br. at 14; REC Opening
Br. at 7.) REC disputed the “any and all” limitation contained in Defendants’ construction, and
in its responsive claim construction brief, Defendants removed the “any and all” language from
its original proposal. (Microsoft Resp. Br. (Dkt. # 124) at 13.) Therefore, the court no longer
must resolve this dispute.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

ORDER- 19

a search not only for information pertaining to the discrete module, but additionally, for

any modules referenced by the discrete module. Both parties cite to intrinsic evidence in

support of their constructions. (See REC Opening Br. at 7-10; Microsoft Opening Br. at

14-16.) The court discusses the intrinsic evidence below, which it finds dispositive of the

proper construction, and for the reasons set forth below, the court agrees with REC’s

proposed construction.

First, REC argues that an ordinary reading of the claim language supports its

proposed construction. (REC Opening Br. at 8.) Essentially, REC argues that “searching

a module information table for module information” per a request as to a discrete module

ordinarily means that a search of that discrete module occurs, and not a search of modules

referenced by the discrete module. (Id.) REC provides an example of a library which

maintains an information table on each of its books. According to REC’s example, if the

someone was to search the library’s information table as to the book Lincoln the Lawyer,

it would ordinarily mean that a search was conducted for information on Lincoln the

Lawyer, but not necessarily all books referenced by Lincoln the Lawyer. (Id.)

Defendants respond that claim construction should not be performed by isolating the

claim language from the specification, and when the term-in-dispute is read in light of the

intrinsic evidence, its construction that requires the search to look for “any referenced

module” is supported. (Microsoft Reply Br. at 13-14.) Here, the court is persuaded that

an ordinary reading of the claim language favors REC’s construction, but agrees with

Defendants that the term-in-dispute must be read in light of the remaining intrinsic

evidence.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

ORDER- 20

The court turns to the specification. Both parties principally cite to the same

passage: “a request by a user for a particular code module will immediately locate all of

the associate information pertaining to that module in the code module information

table.” (’936 Patent at 4:31-35; REC Opening Br. at 10; Microsoft Reply Br. at 14.)

Unsurprisingly, REC emphasizes the phrase of the passage “pertaining to that module,”

to argue that the search is limited to the requested module. In response, Defendants

emphasize the phrase “locate all of the associate information” to argue that all of the

information associated with the requested module must be searched including all modules

referenced by the requested module. The court finds that the natural reading of this

passage of the specification supports REC’s construction. Here, as REC asserts, the

phrase “pertaining to that module” strongly indicates a search of the information table

limited to the code module subject to the request. Although Defendants’ interpretation of

the passage is plausible, the court finds it forced. It is apparent that had the patentee

intended the search to include the requested module as well as all of the referenced

modules, it would have stated so in the passage. Instead the patentee chose to describe

his invention by limiting the search to “that module.”

Indeed, throughout the specification, the patentee makes clear when it is

referencing module information (also described as “associative information” or “linkage

information”) for a specific module as opposed to module information for any referenced

modules. For instance, in describing Figure 2 (shown above), the specification states,

“The main code module includes linkage information linking it with code module A,

code module B, and code module C.” (’936 Patent at 4:13-15.) Examining Figure 2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

ORDER- 21

demonstrates that the main code module links to modules A, B, and C. (Id. at Figure 2.)

Thus, in accord with REC’s proposed construction, the specification described the

linkage information as only the information included in the specific module. For

Defendants’ proposed construction to be correct, the specification would have described

the linkage information as not only modules A, B, and C, but also the modules referenced

by modules A, B, and C. By contrast, when the patentee sought to describe the module

and its referenced modules, it did so expressly. For example, when referring to all of the

linkage information of Figure 2, the specification states, “Collectively the linkage

information referred to above forms an associative set for the main code module and code

modules A through E. (Id. at 4:25-27.) In sum, in describing its invention, the patentee

differentiated between module information relating to a specific module and module

information related to collective or referenced modules. As such, the disputed passage,

which recites a discrete module, supports REC’s position that the search is for only the

information related to that discrete module.

Citing to the Abstract of the specification, Defendants also argue that because the

stated purpose of the invention is to “relieve the first program [user] of the task of

searching for modules and extracting linkage information,” it would be pointless to

search for only a portion of the associative information stored in the module information

table. (Microsoft Opening Br. at 14-15.) The court acknowledges that in certain

instances a search for information pertaining to the discrete module and the referenced

modules may be advantageous. But, as explained above, the claim language and the

specification do not place such a limitation on the term-in-dispute. Here, the court

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

ORDER- 22

declines to read a limitation into the claims based on an advantageous configuration of

the patented invention not required by the intrinsic evidence.

In conclusion, having found that the claim language and the specification require

only that the search be performed for information related to discrete, requested module,

the court gives the term-in-dispute the following construction: “in response to a request

that includes an identification of the discrete module, the code server searches for module

information in the module information table pertaining to the discrete module.”7

D. ”forming an association of said multi-module program by said first program”

 The disputed term is found in asserted claim 1 of the ‘’936 Patent. The parties

propose the following constructions:

REC’s Proposed Construction: “The first program forms a data structure with

information concerning how one or more modules of the second multi-module program

link to one or more other modules.” (Updated Joint Claim Chart at 2.)

Defendants’ Proposed Construction: “The first program creates a table

containing all dynamic links for every module that the second multi-module program will

ever need.” (Id. at 2.)

7 With little explanation, Defendants also argue that the specification describes an
iterative search process, whereby the search process does not stop until all references pertaining
to the requested module are located. (Microsoft Reply at 14.) Defendants cite to Figure 3 of the
Patent-in-Suit as well as passages from the specification describing Figure 3. (Id.) The court has
examined Defendants’ citations and finds Defendant’s reliance on the citations misplaced in the
context of the term-in-dispute, which relates to the search performed by the code server.
Defendants’ citations relate to an iterative process performed by the user computer, and not to an
iterative process performed by the code server, and therefore are not relevant to the term-in-
dispute.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

ORDER- 23

 REC aptly describes the parties’ disputes as two minor disputes and one primary

dispute. (REC Opening Br. at 11.) The first minor dispute is whether the phrase

“forming an association” found in the term-in-dispute should be described as “how

modules link to other modules” (REC’s position) or “dynamic links” (Defendants’

position). The second minor dispute is whether the phrase “forms a data structure”

(REC’s position) or “creates a table” (Defendants’ position) properly defines the

“forming an association” set forth in the claim language. Finally, the major dispute is

over whether “an association” may include linkage information for only part of a

complete program (REC’s position) or whether “an association” must include linkage

information “for every module that the second multi-module program will ever need

(Defendants’ position). The court discusses the three disputes in turn.

i. “how modules link to other modules” vs. “dynamic links”

REC supports its proposed language by a passage in the specification, which

states, “modules contain linkage information which point[s] to additional modules and

which collectively forms an association.” (REC Opening Br. at 11 (citing ’936 Patent at

3:14-16).) In response, Defendants assert that during prosecution of the parent patent to

the ’936 Patent, the patentee described the association in terms of “dynamic links.”

(Microsoft Opening Br. at 16-18.) Defendants provide various excerpts from the

prosecution history, but principally cite to the following portion, which is provided

without ellipses for context:

Dynamic links which are used in conjunction with forming an
association, as that term is defined by the present invention and used in
applicant’s specification and claims, generally refer to linkages used in

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

ORDER- 24

operating systems such as OS/2 from IBM or Windows 3.x from Microsoft,
for the loading and execution of code modules. In principle, under such
systems code modules are simply read into memory by the operating
system just prior to the multi-module program’s execution in order to
extract module information so as to determine the multi-module program’s
interrelationships between the code modules, and few modifications, if any,
are made to the code modules themselves. The code modules, unlike the
process of linking, do not address the other code modules directly, but
instead address internal tables built within the operating system itself,
i.e., tables of dynamic links. These dynamic link tables act under control
of the operating system as an intermediary addressing the other code
modules. For example, using such dynamic link tables provide the added
advantage of not requiring that all the code modules be loaded into memory
while determining the interconnections between them. Another advantage
of using dynamic link tables, over simply linking and loading as described
by Tennant, is that the code modules may be moved without requiring the
referencing modules to be changed, because references are effected via the
dynamic link tables which, in turn, represent and address the other code
modules. When a referenced code module is moved, the dynamic link
tables are simply updated to reflect its new location. As used in the
specification and claims, applicant refers to the creation by the
operating system of the dynamic link tables necessary for the execution
of a multi-mode program as “association”. [sic] In contrast, the process
of linking and loading code pieces, as described by Tennant, is not what
applicant’s invention refers to as association and Tennant’s process is
directed to a system that is much more limited in nature.

(Microsoft Opening Br. at 18 (citing Prosecution History (Dkt. # 112-11) at 6-7 (bolding

and underlining in original).) The patentee made these statements to the United States

Patent and Trademark Office (“PTO”) in an effort to overcome a rejection of two pieces

of prior art, “Tennant” and “Terada.” (See Prosecution History at 3.)

 Without citing the relevant law, Defendants apparently rely on this excerpt to

invoke the doctrine of prosecution disclaimer and argue that REC disavowed a

construction of “forming an association” to include anything other than “dynamic links.”

(Id. at 17 (“REC distinguished its technique of ‘forming an association,’ which REC told

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

ORDER- 25

the PTO in no uncertain terms involved ‘dynamic linking,’ over the prior art Tennant in

order to gain allowance. No backsies.”).) “[S]tatements made during prosecution

may . . . affect the scope of the invention.” Rexnord Corp. v. Laitram Corp., 274 F.3d

1336, 1343 (Fed. Cir. 2001). Specifically, “a patentee may limit the meaning of a claim

term by making a clear and unmistakable disavowal of scope during prosecution.”

Purdue Pharma L.P. v. Endo Pharms., Inc., 438 F.3d 1123, 1136 (Fed. Cir. 2006). A

patentee could do so, for example, by clearly characterizing the invention in a way to try

to overcome rejections based on prior art. See, e.g., Microsoft Corp. v. Multi-Tech Sys.,

Inc., 357 F.3d 1340, 1349 (Fed. Cir. 2004).

 Having carefully reviewed the portions of the prosecution history cited by

Defendants, as well as the entire prosecution record at the PTO placed before the court,

the court can find no statements by the patentee clearly disavowing an association of

everything but “dynamic links.”8 Instead, the patentee distinguished the prior art

(Tennant and Terada) by arguing that its invention “assists in the association of a multi-

module program,” utilized in dynamic linking, whereas the prior art merely taught linking

and loading the modules themselves without the patented code server and information

table to assist. (Prosecution History at 8.) Said a different way, the patentee argued that

the prior art related to traditional static linking, whereas the novelty of the invention was

8 As used throughout the specification and in the prosecution history, the term “dynamic
link” is a term of art describing the references between discrete modules in a dynamic linking
operating system. Limiting the term-in-dispute by a term of art may have the undesirable effect
of narrowing the scope of the claim to accused products which reference themselves by that term
of art.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

ORDER- 26

the code server, including a module information table, to assist in creating an association

for a multi-module program in a dynamic linking environment. (Id. at 3 and 4 (“The

executable program thus created by Tennant is a single file that is static in nature,

meaning that the one executable linked file contains all the code pieces”)

(underlining in original).) Thus, the patentee distinguished its invention through the

novelty of assisting in the formation of an “association.” In making this distinction, the

patentee described the association as comprised of “dynamic links.” This is not a

situation for prosecution disclaimer. Computer Docking Station Corp. v. Dell, Inc., 519

F.3d 1366, 1374-75 (Fed. Cir. 2008) (“Prosecution disclaimer does not apply to an

ambiguous disavowal. Prosecution disclaimer does not apply, for example, if the

applicant simply describes features of the prior art and does not distinguish the claimed

invention based on those features.”).

 Although the court finds that the patentee did not disavow all associations except

for dynamic links, “the statements [in the prosecution history] may offer interpretative

assistance to the court in construing a particular claim.” Prima Tek II, L.L.C. v. Polypap,

S.A.R.L., 318 F.3d 1143, 1149 (Fed. Cir. 2003). Here, the patentee’s repeated references

to the term “dynamic links” when describing the claimed “association” makes clear that

the patentee expected the association to be made up of dynamic links. Accordingly, the

court will incorporate the term “dynamic links” into the definition of the term-in-dispute

as an example of what may constitute an “association.”

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

ORDER- 27

 ii. “forms a data structure” vs. “creates a table”

 In the second minor dispute, the parties disagree on the proper description for the

phrase “forming an association,” found in the term-in-dispute. REC finds support for its

construction in dictionary definitions. (REC Opening Br. at 11-12.) REC further argues

that its proposed language—“forms a data structure”—will be less likely to confuse a

jury than Defendants’ proposed language. (Id.) Specifically, REC asserts that the word

“table,” found in Defendants’ proposed language, imputes rows and columns to the

structure of the “association,” which REC contends has no support in the record. (Id.)

Defendants disagree that the word “table” is more likely to confuse a jury than the term

“data structure,” and further argue that the specification supports a construction including

the word “table.” (Microsoft Resp. Br. at 18.) Here, the court agrees with REC.

 As an initial matter, Defendants reliance on the specification is wholly misplaced.

Defendants direct the court to various portions of the specification which reference the

word “table.” (Id. at 17-18.) Each and every one of Defendants’ citations refer to the

code module information table, found in the claim language. (Id.) The code module

information table is certainly a table, but it is also certainly distinct from the

“association,” that is formed. Indeed, it is the code module information table which

assists in creating the “association” by the “first program” or user. (See ’936 Patent at

Claim 1 (“(c) in response to finding said module information in said module information

table, reading said module information; (d) providing said module information in a

response to said first program; and (e) forming an association of said multi-module by

said first program.”) (emphases added).) Therefore, that the specification describes the

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

ORDER- 28

code module information table as a “table” is irrelevant to the correct structure of the

“association.”

 It appears that once again the specification is of little guidance in determining the

structure of the association. As stated, in such a situation, the court will adopt a

“construction that stays true to the claim language and most naturally aligns with the

patent’s description of the invention.” Phillips, 415 F.3d at 1316. Here, the claim

language leaves little doubt that the “association” is formed by the first program (the user

program). Having already defined the word “program” as a set of computer instructions,

it is logical that any creation of a computer program will be some sort of “data structure,”

as set forth by REC. Moreover, such a description of “association” aligns with the

overall nature of the Patent-in-Suit.

iii “one or more modules of the program” vs. “every module that the
program will ever need”

The major issue between the parties turns on whether an “association,” as recited

in the claim language, must include linkage information “for every module that the

second multi-module program will ever need,” or may include linkage information for

“just parts of” the second multi-module program. REC argues that the claim language

and specification support a construction of “association” including linkage information

for only parts of a complete second multi-module program (as well as linkage

information for the entire second multi-module program). (REC Opening Br. at 12.)

Defendants respond that the prosecution history dictates a limiting construction of

“association” requiring an “association” to include linkage information for every module

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

ORDER- 29

the second multi-module program will ever need. (Microsoft Opening Br. at 18-19.) The

court addresses the parties’ arguments in turn.

The court agrees with REC that the claim language supports a construction of

“association” including linkage information for only parts of a complete second multi-

module program. Claim 1 of the’936 Patent recites a method “for forming an

association” comprised of five distinct steps, (a) through (e). (See ’936 Patent at Claim

1.) The method begins with step (a) and “receiving . . . a request associated with said

discrete module.” The claim language of step (a) describes one discrete module, as

opposed to a request for every module the second multi-module program will ever need.

Next, step (b) is “searching . . . for module information in response to said requested

associated with said discrete module.” The court has already construed this term (supra §

III.C) to require only a search for linkage information related to the discrete module (and

not also a search for information of modules referenced by the discrete module). In

response to finding module information through the search of step (b), step (c) reads the

module information. Again, step (c) relates to only reading information related to the

discrete module. Then, step (d) provides the module information to the first program.

Logically, the module information provided by step (d) is only that of the discrete

module. Finally, in step (e) the first program forms an association of the second multi-

module program. Because each of the aforementioned steps (a) through (d) pertain only

to a discrete module, the only conclusion is that the formed “association” also pertains

only to the discrete module. Thus, the claim language supports a construction of

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

ORDER- 30

“association” including linkage information for only parts of a complete second multi-

module program, indeed, only a discrete module of the second multi-module program.

Consistent with the claim language, the specification expressly contemplates an

“association” comprised of less than a complete second multi-module program. REC

aptly directs the court to the following two passages from the specification (REC

Opening Br. at 12.):

“The code server . . . includes an information storage table containing
linkage information needed to form an association between discrete
modules of code forming at least parts of a coded program.”

(’936 Patent at 2:12-18 (emphasis added).) And, also:

“[T]hese modules contain linkage information which point to additional
modules and which collectively forms an association linking together at
least parts of a complete program.”

(Id. at 3:14-16 (emphasis added).) These passages make clear that the “association” need

not constitute the entire second multi-module program, but can be something less, such as

“parts of a complete program.” Thus, the court finds that the specification supports

REC’s position.9

9 The parties partake in a dispute as to the iterative nature of the invention. Defendants
argue that the iterative nature of the invention indicates that the “association” created constitutes
all the linkage information the second multi-module program will ever need. Principally, the
parties argue over Figure 3 of the ’936 Patent. The court has examined Figure 3 and the
portions of the specification explaining Figure 3 and finds them ambiguous as the iterative nature
of the invention. On one hand, the flow chart in Figure 3 may be interpreted such that the “user”
program continues a search until it knows all of the linkage information of the second multi-
module program. On the other hand, as the claim language and specification indicate that the
“user” program may request discrete modules or only part of the complete second multi-module
program, the Figure may be interpreted to mean that the “user” program continues a search until
it knows all of the linkage information that it seeks via its current search, which could be less

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

ORDER- 31

 Nevertheless, Defendants assert, again without citing the relevant law, that the

prosecution history dictates a limited scope for the term-in-dispute requiring an

“association” to include linkage information “for every module that the second multi-

module program will ever need.” (Microsoft Opening Br. at 18-19.) Here, again,

Defendants seek to limit the scope of a term based on the prosecution history, thereby

invoking the doctrine of prosecution disclaimer set forth above. Defendants again

principally rely on the same passage from the prosecution history (supra § III.D.i), and

particularly on the following sentence: “A s used in the specification and claims,

applicant refers to the creation by the operating system of the dynamic link tables

necessary for the execution of a multi-mode program as ‘association’.” (Microsoft

Opening Br. at 18-19.) Keying on the word “necessary,” Defendants assert that the

“association” must include “all dynamic links necessary for the execution of the

program.” (Id.)

 The court has examined Defendants’ cited sentence within the context of the

prosecution history and does not find that it amounts to a clear disavowal of claim scope.

In Defendants cited prosecution reference, the patentee was generally arguing to

overcome a rejection of the Tennant and Terada prior art. (See generally Prosecution

History.) The patentee made two general arguments to overcome that prior art. First (as

explained, supra § III.D.i), the patentee argued that the prior art did not teach any tool,

such as a code server and code module information table, for assisting in the formation of

than a completed second multi-module program. Thus, because of this ambiguity, the court finds
that Figure 3 has little relevance to its construction of the term “association.”

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

ORDER- 32

an association. (See Prosecution History at 8 (“Tennant only teaches the linking and

loading of programs . . . distinguished from applicant’s claimed system which assists in

the formation of an association.”).) Second, the patentee argued that in the prior art the

operating system itself read code modules directly in order to extract the module

information for creating the association. (Prosecution History at 6 (in the prior art, “code

modules are simply read into memory by the operating system . . . in order to extract

module information so as to determine the multi-module program’s interrelationships

between the code modules”).) But, in the patented invention, the code modules are not

accessed directly to determine linkage information, but instead through internal tables

which contain information about the relationships between the code modules. (Id. at 6-7

(“The code modules, unlike the process of linking do not address other code modules

directly, but instead address internal tables built within the operating system itself, i.e.,

tables of dynamic links.”).) Importantly, at no point did the patentee distinguish the prior

art on the basis that its invention provides for an association containing all the linkage

information the second program will ever need, whereas the prior art only taught creating

an association for less than all of the linkage information the second program will ever

need. In fact, at no point in the prosecution history did the patentee even distinguish the

prior art based on the amount of module information that constitutes an “association.”

Here, Defendants only argue that the patentee’s description of “association” as

“necessary for the execution of a multi-mode program” limited the scope of the term to

“every module that the second multi-module program will ever need.” The court

disagrees. This statement by the patentee did not disclaim an association that includes

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

ORDER- 33

some linkage information necessary for execution of the multi-module program.

Certainly, an association including only some of the linkage information for an entire

multi-module program will still be necessary for execution of the multi-module program.

At most this statement is ambiguous as to the amount of module information constituting

an association. Sandisk Corp. v. Memorex Prods., 415 F.3d 1278, 1287 (Fed. Cir 2005

(“There is no ‘clear and unmistakable’ disclaimer if a prosecution argument is subject to

more than on reasonable interpretation.”); Golight, Inc. v. Wal-Mart Stores, Inc., 355

F.3d 1327, 1332 (Fed. Cir. 2004) (holding that statements in the prosecution history

subject to multiple interpretations do not constitute a clear and unmistakable disavowal).

And, as explained, the statement in question was not made to distinguish the invention

from the prior art. Thus, the court cannot find that REC clearly disavowed the scope of

the term “association” as Defendants suggest. See Computer Docking Station., 519 F.3d

at 1374-75.

In accord with the foregoing, the court construes the term “forming an association

of said multi-module program by said first program” to mean “the first program forms a

data structure with information (such as dynamic links) concerning how one or more

modules of a second multi-module program link to one or more other modules.”

IT IS SO ORDERED.

 Dated this 1st day of May, 2012.

A
JAMES L. ROBART
United States District Judge

