Nokia Corporation v. Apple Inc. Doc. 59 Att. 10

EXHIBIT 10

Dockets.Justia.com

http://dockets.justia.com/docket/wisconsin/wiwdc/3:2010cv00249/28263/
http://docs.justia.com/cases/federal/district-courts/wisconsin/wiwdc/3:2010cv00249/28263/59/10.html
http://dockets.justia.com/

United States Patent [

Foster et al.

A T T 0 OO0

US005588105A
[11] Patent Number: 5,588,105
(451 Date of Patent: Dec. 24, 1996

(54]
[75]

(73]

(21]
[22]

[63]
(51]

(52]
[58]

(561

STATUS BAR FOR APPLICATION WINDOWS
Inventors: Gregg S. Foster, Woodside; Stephen P.
Capps, San Carlos, both of Calif.
Assignee: Apple Computer, Inc., Cupertino,
Calif,
Appl. No.: 393,880
Filed: Feb. 24, 1995
Related U.S. Application Data
Continuation of Ser. No. 976,970, Nov. 16, 1992, aban-
doned.
Int. CL® ... GO6F 3/14; GO6F 3/033
US. CL 395/326; 395/348
Field of Search 395/155, 157,
395/159, 156, 158; 345/119, 120, 146,
902
References Cited
U.S. PATENT DOCUMENTS
4,931,783 6/1990 ALKINSON .eevvevvecrnrrscveniriaser 345/146 X
5,121,477 6/1992 Koopmans et al.coerverneees 395/156
5,140,678 8/1992 Torres 395/159
5,179,655 1/1993 Noguchi et al. 395/158
5,230,063 7/1993 Hoeber et al. ...ocveeeecerrerarenne 395/156
5,255,358 10/1993 Busboom et al. . . 395/156 X
5,276,795 171994 Hoeber et al.ccoorrirermrrennene 395/156
5,305,435 4/1994 BIONSON ...ccceeveeverirvenscssessrnences 395/159
5,317,687 5/1994 Torres 395/159
5,375,200 12/1994 Dugan et al. ...oevrverrerrerersvenens 395/159
5,425,141 6/1995 Gedye 395/157

OTHER PUBLICATIONS

Microsoft Windows Version 3.0 User’s Guide, Microsoft
Corporation, 1990, pp. 17-18, 2325, 28-29, 4447, 55-56,
156-157, 398-399.

O’Connor, Rory J., “Apple banking on Newton’s brain,” San
Jose Mercury News, Apr. 22, 1992.

Weiman et al, “A Step Toward the Future” Macworld, Aug.
1992, pp. 129-131.

M. Soviero, “Your World According to Newton” Popular
Science, Sep. 1992, pp. 45-49.

E. Abatemarco, “From the Editor” Popular Sceince, Sep.
1992, p. 4.

Primary Examiner—Raymond J. Bayerl
Attorney, Agent, or Firm—Hickman Beyer & Weaver

[57] ABSTRACT

A status bar characterized by a template generated indepen-
dently of an application program and displayed on a com-
puter screen in contact with an application window. The
template carries at least one active area that can include an
icon for controlling the application program or an area
which displays information generated by the application
program. Alternatively, or additionally, the active area can
include “global functions” of the computer system. A
method for providing a status bar is characterized by the
steps of creating a status bar template having at least one
area to be activated, activating at least one area to create a
status bar, and displaying the status bar on a computer screen
in contact with an associated application window displayed
on the computer screen. The step of creating a status bar
template can include the steps of creating a plurality of status
bar templates, one of which is chosen to be attached to a
particular application window.

40 Claims, 11 Drawing Sheets

96

\:Qmat Card

who Bob Martin

what My Card /”90

where Cupertino, CA
Number 408-555-4321

9
| 100

/_E FAXSLIP

H1

&

]

94

(408) 555 - 1234

yd I'\PPIU UUIII'JULUI, LLIRAY D] \ 92

Ar'\
72

O O Cac gV

o

5,588,105

Sheet 1 of 11

Dec. 24, 1996

U.S. Patent

44!
JHOLS Wvd | | WOH 1
NN A @—.
0¢ gz
1
d3HLO < >
1HOd vI43S < » Ol = NdO e 1 %0010
€ € =7
AR NP\\
\@m
000 ¢ 000
< 02
i
R LR e q]

I

h{,

*

U.S. Patent Dec. 24, 1996 Sheet 2 of 11

35,588,105

10

B /

50
/® (

f

K)(48__T

DEC1,1992 * NOTE'1 [

I

um

M e s e e e e v e e e TN G e e e m e e e e e e e e e ee W G e e

D e e e e e em e e W e MR TS M e e s e e G e e e e e

_____ 58 ,60 ,62 .64 66 68 70 ,”
{](______ £ . (((.(

A y v 7 +
@ view | [FonT] 2531 Al A1 1 Ll4—ss

N/ / \
52 54a 54b

FIG. 2

U.S. Patent

Dec. 24, 1996

Sheet 3 of 11

5,588,105

Gregg Foster
Apple Computer, Inc.

(408) 555 - 1234

/ —72

AN

D

FILTER

ORE

NEW

76

)

78

80J

82

J

84’

86’

FIG. 3

U.S. Patent Dec. 24, 1996 Sheet 4 of 11 5,588,105

Gregg Foster AT 7
Apple Computer, Inc. |
e A
(408) 555 - 12{ Tras
— 74

1 O —J_1L

867

FIG. 4

~ U.S. Patent Dec. 24, 1996 Sheet 5 of 11 5,588,105

who Bob Martin
what My Card A
where Cupertino, CA
Number 408-555-4321

AN Qmat Card % | 100
[Faxsue FREVEW] [@) |
o [FPpresompEeTe | |
»
\ .
(408) 555 - 1234
74
S e

U.S. Patent

5,588,105

TIG6

Dec. 24, 1996 Sheet 6 of 11
106
START A NEW / P 102

APPLACATION PROGRAM

v

COUPLE STATUS BAR TO
APPLICATION PROGRAM WINDOW

I/ms

T

DISPLAY APPLICATION PROGRAM
WINDOW WITH STATUS BAR ON A
COMPUTER SCREEN

/110

112

!

i

APPLICATION FEEDBACK ?

.

116

l no.

0

STATUS BAR ACTION ?

o>,

120

NO

h 4

.

BUTTON ACTIO

INO

YES

114

/

UPDATE AREA
ON STATUS BAR

118
/

YES
DO STATUS
ES

Y

BAR ACTION

122
/

DO BUTTON
ACTION

U.S. Patent Dec. 24, 1996 Sheet 7 of 11

124
126
\

5,588,105

FIG. 7

APPLICATION OBTAINS /108
STATUS BAR TEMPLATE
130
128 /
ANY AREAS TO FILL ? FILL AREAS

ALL AREAS FILLED ?

154 ' NO

156
CREATE A NEW AREA

I

INSTALL NEW AREA IN
STATUS BAR

158

FIG. 9

160

U.S. Patent Dec. 24, 1996 Sheet 8 of 11 5,588,105

5 FIG. 86

i FIG. 8¢

FIG. 84

U.S. Patent Dec. 24, 1996 Sheet 9 of 11 5,588,105

FIG. 10

162 156

&

164 /166
OBTAIN A
BUTTON
TEMPLATE
NO *

CREATE A BUTTON ?

CUSTOMIZE
168 BUTTON

172 174
\

OBTAIN A TEXT
TEMPLATE

CRATE LABEL ?

NO y
176.~] CUSTOMIZE

TEXT
TEMPLATE

180
178 YES N

OBTAIN I

2
CREATE OTHER ? TEMPLATE

NO ¢

182 CUSTOMIZE I__>
170 TEMPLATE

U.S. Patent Dec. 24, 1996 Sheet 10 of 11 5,588,105

B SC (/188
A -
=

U.S. Patent Dec. 24, 1996 Sheet 11 of 11 5,588,105

- FIG.13

&

206

e

204

DO DRAG
210
208
YES /
GESTURE ? DO GESTUR_E__I—>
NO
oio 214
YES /
(OTHER ?3——-» DO OTHER l—-»
NO
216

5,588,105

1
STATUS BAR FOR APPLICATION WINDOWS

This is a continuation of application Ser. No. 07/967,970
filed Nov. 16, 1992, now abandoned.

BACKGROUND OF THE INVENTION

This invention relates generally to computer systems, and
more particularly to graphical user interfaces for computer
systems.

Graphical user interfaces or GUI are becoming increas-
ingly popular with computer users. It is generally accepted
that computers having graphical user interfaces are easier to
use, and that it is quicker to learn an application program in
a GUI environment than in a non-GUI environment.

Apple Computer, Inc. is widely credited with populariz-
ing graphical user interfaces with the GUI provided on their
Macintosh line of computers. The Macintosh GUI includes
a “desk top” area occupying most of the computer screen, a
menu bar provided along the top of the screen which
provides a number of pull-down menus that can be activated
with a pointing device, such as a mouse or track ball. The
output of application programs can be displayed on the
screen within a “window” which can cover part or all of the
desk top. The menu bar, however, is always visible and will
always display certain system required functions regardless
of which application program is currently active.

When multiple windows are open on the screen, it can, at
times, become confusing as to which application is currently
active and which application is being controlled by the menu
bar. For example, even though the Macintosh GUI causes a
title bar associated with an active window to have a distinc-
tive shading, users still sometimes mistake a non-active
window for the active window and try to operate on the
non-active window with the menu bar.

Some graphical user interfaces, such as X-window and
some graphical UNIX user interfaces, permit multiple active
windows on a computer screen. While such systems are
advantageous in that several application programs can be
run at the same time, the user interface becomes more
complex since each application program can provide its
own, idiosyncratic interface to a user. This added complexity
decreases user efficiency and increases leaming time.

In view of the foregoing, it would be desirable to have
similar user interfaces associated with any application pro-
gram window which might be displayed on a screen. With
such an system, it would be immediately clear which appli-
cation was being acted upon, and user efficiency would be
increased due to standardization of the interface.

SUMMARY OF THE INVENTION

The present invention overcomes the disadvantage of the
prior art with a “status bar” which is attached to open
application windows. Since the status bar is attached directly
to the application window, there is no ambiguity as to which
window that status bar controls. Furthermore, the status bar
has a common format to provide a more uniform graphical
user interface for the user of the computer system.

A status bar in accordance with the present invention
includes a status bar template generated independently of an
application program which is displayed on a computer
screen in contact with an application window. The status bar
template carries at least one active area. The active area can
include an icon which, if activated, can control an operation
of the application program. The active area can also be used

10

15

20

25

35

40

45

50

55

65

2

to display information derived from the application pro-
gram, display information derived from the computer sys-
tem (“global information™), or control a function of the
computer system (“global control™).

A method for providing a status bar includes the steps of
creating a status bar template having at least one area to be
activated; activating the area to create a status bar for that
application; and displaying the status bar on a computer
screen in contact with an associated application window.
The step of creating a status bar template can include
creating a number of alternative status bar templates, in
which case an additional step of selecting one of the status
bar templates is performed. Again, the active area can
control a function of the application program, display infor-
mation from the application program, display global infor-
mation, or it can control a function outside of the application
program.

A major advantage of the present invention is that the
status bar is attached directly to an application window so
there is no ambiguity as to which application program that
status bar controls. Another advantage of the status bar is
that it can be configured by the application program with
application specific features. Furthermore, the status bar
ensures a common graphical user interface which makes the
status bar functions easy to learn and use.

BRIEF DESCRIPTION OF THE INVENTION

FIG. 1 is a block diagram of a computer system in
accordance with the present invention;

FIG. 2 is a top plan view of the screen, case, and keypad
of the computer system of FIG. 1;

FIG. 3 illustrates a first screen display showing a pop-up
window with a status bar;

FIG. 4 is a view of the screen where a pop-up window has
been activated from the status bar;

FIG. 5 is a view of the screen where a second window has
been opened with an associated status bar;

FIG. 6 is a flow diagram of a method for providing a status
bar in accordance with the present invention;

FIG. 7 is a flow diagram illustrating, in greater detail, the
“Couple Status Bar” step of FIG. 6;

FIGS. 8a-8b illustrate several status bar templates;

FIG. 9 illustrates the “Fill Areas” step 130 of FIG. 7;

FIG. 10 is a flow diagram illustrating the “Create a New
Area” step 156 of FIG. 9;

FIG. 11 illustrates a completed status bar object;

FIGS. 12A and 12B illustrates the “Install New Area” step
158 of FIG. 9,

FIG. 13 is a flow diagram illustrating the “Do Status Bar
Action” step 118 of FIG. 6.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

The present invention is well suited for pointer based
computer systems such as the pen-based, stylus-based and
mouse driven systems that are currently popular. For the
purposes of illustration, the invention will be described in
connection with a pen-based system. However, the present
invention is well suited to any computer system using a
window-type graphical user interface (GUI), or for non-
window interfaces where a common user interface for
application programs is desired.

5,588,105

3

As shown in FIG. 1, a pen-based computer system 10 in
accordance with the present invention includes a central
processing unit (CPU) 12, read only memory (ROM) 14,
random access memory (RAM) 16, input/output (I/O) cir-
cuitry 18, and a display assembly 20. The pen-based com-
puter system 10 may also optionally include a mass storage
unit 22 such as a disk drive unit or nonvolatile memory such
as flash memory, a keypad 24, and a clock 26.

The CPU 12 is preferably a commercially available,
single chip microprocessor. While CPU 12 can be a complex
instruction set computer (CISC) chip, it is preferable that
CPU 12 be one of the commercially available, reduced
instruction set computer (RISC) chips which are known to
be of generally higher performance than CISC chips. CPU
12 is coupled to ROM 14 by a unidirectional data bus 28.
ROM 14 contains the basic operating system for the pen-
based computer system 10. CPU 12 is connected to RAM 16
by a hi-directional data bus 30 to permit the use of RAM 16
as scratch pad memory. ROM 14 and RAM 16 are also
coupled to CPU 12 by appropriate control and address
busses, as is well known to those skilled in the art. CPU 12
is also coupled to the I/O circuitry 18 by bi-directional data
bus 32 to permit data transfers with peripheral devices.

I/O circuitry 18 typically includes a number of latches,
registers and direct memory access (DMA) controllers. The
purpose of I/O circuitry 18 is to provide an interface between
CPU 12 and such peripheral devices as display assembly 20,
mass storage 22, and the keypad 24.

Clock 26 provides a series of clock pulses and is typically
coupled to an interrupt port of CPU 12 by a data line 34. The
clock pulses are used to time various functions and events
relating to the computer system 10. The clock 26 can be
eliminated and the clock function replace by a software
clock running on CPU 12, but this tends to be a wasteful use
of CPU processing power. In the present invention, clock 26
provides clock pulses at 60 hertz (Hz).

Display assembly 20 of pen-based computer system 10 is
both an input and an output device. Accordingly, it is
coupled to /O circuitry 18 by a bi-directional data bus 36.
When operating as an output device, the display assembly 20
receives data from /O circuitry 18 via bus 36 and displays
that data on a suitable screen. The screen for display
assembly 20 is preferably a liquid crystal display (LCD) of
the type commercially available from a variety of manufac-
turers. The input device of display assembly 20 is preferably
a thin, clear membrane which covers the LCD display and
which is sensitive to the position of a stylus 38 on its surface.
These position sensitive membranes are also readily avail-
able on the commercial market. Combination display assem-
blies such as display assembly 20 which include both the
LCD and the input membrane are commercially available
from such vendors as Scriptel Corporation of Columbus,
Ohio.

The keypad 24 can comprise an array of switches. In the
present embodiment, the keypad 24 comprises mechanical
buttons which overlie the bottom edge of the membrane
which covers the LCD display. When the buttons are
depressed, the membrane senses the pressure and commu-
nicates that fact to the CPU 12 via I/O 18.

Other types of pointing devices can also be used in
conjunction with the present invention. While the method of
the present invention is described in the context of a pen-
based system, other pointing devices such as a computer
mouse, a track ball, or a tablet can be used to manipulate a
pointer on a screen of a general purpose computer. There-

fore, as used herein, the terms “pointer”, “pointing device”,

10

15

20

25

30

35

50

55

60

65

4

“pointing means”, and the like will refer to any mechanism
or device for pointing to a particular location on a screen of
a computer display.

Some type of mass storage 22 is generally considered
desirable. However, the mass storage 22 can be eliminated
by providing a sufficient amount of RAM 16 to store user
application programs and data. In that case, the RAM 16
could be provided with a backup battery to prevent the loss
of data even when the pen-based computer system 10 is
turned off. However, it is generally desirable to have some
type of long term storage 22 such as a commercially
available miniature hard disk drive, nonvolatile memory
such as flash memory, battery backed RAM, PC-data cards,
or the like.

In operation, information is input into the pen-based
computer system 10 by “writing” on the screen of display
assembly 20 with the stylus 38. Information concerning the
location of the stylus 38 on the screen of the display
assembly 20 is input into the CPU 12 via /O circuitry 18.
Typically, this information comprises the Cartesian (i.e. x &
y) coordinates of a pixel of the screen of display assembly
20 over which the tip of the stylus is positioned. Commer-
cially available combination display assemblies such as the
aforementioned assemblies available from Scriptel Corpo-
ration include appropriate circuitry to provide the stylus
location information as digitally encoded data to the I/O
circuitry of the present invention. The CPU 12 then pro-
cesses the data under control of an operating system and
possibly an application program stored in ROM 14 and/or
RAM 16. The CPU 12 next produces data which is output to
the display assembly 20 to produce appropriate images on its
screen.

In FIG. 2, the pen-based computer system 10 is shown
housed within a generally rectangular enclosure 40. The
CPU 12, ROM 14, RAM 16, /O circuitry 18, mass storage
22, and clock 26 are preferably fully enclosed within the
enclosure 40. The display assembly 20 is mostly enclosed
within the enclosure 40, but a viewing screen 42 of the
display assembly is exposed to the user. As used herein, the
termn “screen” will refer to the portion of the display assem-
bly 20 which can display an image that can be viewed by a
user. Also accessible to the user is the keypad 24.

Upon power-up, pen based computer system 10 displays
on screen 42 an initial note area N including a header bar B
and a number of guidelines 44. The header bar B preferably
includes the date of creation 46 of the note N, a note number
48, and a “toolbox” button 50 represented by a toolbox icon.
The optional guidelines 44 aid a user in entering text,
graphics, and data into the pen-based computer system 10.

In this preferred embodiment, the keypad 24 is not a part
of the viewing screen 42 but rather, is a permanent array of
input buttons coupled to the CPU 12 by I/O circuitry 18.
Alternatively, the keypad 24 could comprise “soft buttons”
generated at a convenient location on the screen 42, in which
case a “button” would be activated by touching the stylus to
the screen over the image of the button. The keypad 24
preferably includes a number of dedicated function buttons
52 and a pair of scroll buttons 54A and 54B. The operation
of the scroll buttons 54A and 54B, and other aspects of
computer system 10 are discussed in greater detail in co-
pending U.S. patent application Ser. No. 07/868,013, filed
Apr. 13, 1992, now U.S. Pat. No. 5,398,310, on behalf of
Tchao et al. and entitled “Method for Manipulating Notes on
a Computer Display”. That application is assigned to the
assignee of the present application and its disclosure is
hereby incorporated by reference in its entirety. In this

5,588,105

5

embodiment, the toolbox button 50 is represented as a “soft
button” in the header bar B. However, in alternative embodi-
ments, a permanent, hardwired keypad button could be used
in its place.

The screen illustrated in FIG. 2 is referred to as the
“notepad”, and is an application program running under the
operating system of the pen based computer system 10. In
this preferred embodiment, the notepad is a special or *“base”
application which is always available beneath higher level
applications. The notepad application, like other applica-
tions, run within a window, which in this instance comprises
the entire viewing screen 42. Therefore, as used herein, a
“window” is the entire screen or any portion of an entire
screen which is dedicated to a particular application pro-
gram.

A status bar 56 is provided at the bottom of the notepad
application. The status bar 56 is provided with a number of
active areas including a real time clock 58, a view button 60,
a font button 62, a formulas button 64, a text button 66, a
graphics button 68, and a nib button 70.

The real time clock 58 is an example of a “global” active
area which derives information or controls of function not
necessarily associated with the application window to which
it is attached. The buttons 60 and 62 are examples of active
areas which provide indirect control over the notepad func-
tion. For example, pressing the font button 62 will pop up a
window providing a selection of fonts which can be used
when writing within the notepad window. Buttons 64-70 are
examples of active areas which provide direct control over
the notepad application. For example, the button 70 controls
the nib size of the “ink” produced by the stylus within the
application window area. Buttons 64—68 aid in recognizing
writings made in the window area.

FIG. 3 illustrates a window produced by a “cardfile”
application program. U.S. patent application Ser. No.
07/955,839 filed Oct. 2, 1912, now U.S. Pat. No. 5,446,882,
on behalf of Capps et al., entitled “Computerized Database
With Card & List Interface” and assigned to the assignee of
the present invention describes the operation of such a
cardfile application, and is incorporated herein in its entirety
by reference.

In FIG. 3, the screen 42 is provided with a window 72
associated with the card file application. In this instance, the
window assumes the size and shape of a business card and
displays the name, company and telephone number of a Mr.
Gregg Foster. It should be noted that the window 72 is
considerably smaller than the screen 42 in this example,
leaving the possibility of additional windows being opened
on the screen 42 in an overlapping or non-overlapping
fashion. '

Status bar 74 is attached to the bottom of window 72 by
the process of the present invention. The status bar 74
includes a number of active areas including a close box 76,
a real time clock 78, a filter button 80, a “more” button 82,
a “new” button 84, and a routing slip 86. The close box 76
is an active area which permits the card file application to be
closed, i.e. is either “made invisible” or is completely
deactivated. The real time clock 78 is, once again, an active
area carrying global information which is not necessarily
associated with that particular application. The filter button
80 does not act directly upon the card file application but,
rather, pops up a menu of filter parameters (e.g., business,
personal, etc.) and permits a user to choose one of the filters
to act upon the application program. The more button 82 is
an active area which controls the card file application
program to permit more or less information to be displayed

10

15

20

25

35

45

50

55

60

65

6

on the screen 42. The new button 84 is an active area which
permits a new “business card” to be entered into the card file
application.

The function of the routing slip button 86 will be dis-
cussed in greater detail with reference to FIG. 4. When a user
presses the routing slip button 86, a window 88 pops up from
the status bar 74 to provide a list of options concerning the
desired disposition of the information displayed within
window 72. For example, the information in window 72 can
be faxed by pressing on “fax” within window 88, can be
deleted by pressing “trash” within window 88, etc.

FIG. 5 illustrates the result if “fax” is chosen from
window 88 of FIG. 4. The selection of “fax” within the
window 88 starts an application program which is provided
with a floating window 90 which partially overlies the
window 72 of the card file application. The window 90
includes a number a fields to be filled in by the user
including a who, what, where, and a number field. The
window 90 also permits the user to indicate the format of the
facsimile, which in this case, is “card”.

Attached to the bottom of the fax application window 90
is a status bar 92. The status bar has four active areas
including a closing box 94, an information area 96, a
preview button 98, and a “do it” button 100. The close box
94 operates as in previous examples, i.e., it closes the
window 90 for the fax application program. The information
area 96 displays information concerning the fax application;
in this case, it displays the title of the application program.
Preview button at 98 permits a preview of the image that is
to be faxed, and the do it button 100 starts the faxing process.
If a user activates the closing box before activating the do it
button, the fax will not be sent.

FIG. 6 illustrates a flow diagram of a process 102 for
providing a status bar for application windows. The process
begins at 104 and starts a new application program in a step
106. Next, in a step 108, a status bar is coupled to the
application program window. After the status bar is coupled
to the application program window, the application program
window with status bar is displayed on a computer screen in
a step 110. Next, in a step 112, the process determines
whether there is any feedback from the application program
to the status bar. If there is, the appropriate area oil the status
bar is updated in a step 114. If there is no application
feedback, is determined whether there is any status bar
action in a step 116. If there is, then the status bar action is
processed in a step 118. If there is no status bar action
detected in step 116, then it is determined whether if there
was an button action in step 120. If so, then the button action
is processed in the step 122. If there is no application
feedback (step 112), status bar action (step 116), or button
action (step 120) then process control is returned to step 110
or the application program continues to be displayed on the
screen. After the completion of steps 114, 118, and 122,
process control is also returned to step 110.

It should be noted that the flow diagram of FIG. 6 is a
conceptual representation of the functioning of the process
of the present invention, but that the process can be imple-
mented in a variety of manners. For example, the process
steps 112, 116, and 120 are preferably accomplished in
parallel within the context of a “view system”. In such a
view system, various “views” or “objects” are stacked on top
of each other, like pages of paper on a desk top. These views
include a root view (such as the notepad) and virtually any
number of views (within the limitations of the system)
stacked on top of the root view.

The view system is a software routine which returns two
pieces of information when the screen “tapped” by a stylus.

5,588,105

7

A first piece of information returned which view or “object”
was tapped. The second piece of information returned is the
position of the tap on the tapped view. This location infor-
mation is often returned in the form of Cartesian (x-y)
coordinates. The view system therefore handles much of the
routine input work for the computer system. Taps by stylus
on non-active areas of the screen can be ignored by the view
system. Likewise, inappropriate inputs on active areas of the
screen can be ignored or can generate error conditions which
may or may not be acted upon by the system.

The flow diagram of FIG. 7 illustrates the “Couple Status
Bar” step 108 of FIG. 6 in greater detail. The process starts
at 124, and in a step 126 the application obtains a status bar
template. The application determines whether there are any
areas to fill in the template in a step 128 and, if there are, it
fills the areas in a step 130. If there are not any areas to fill
in step 128 or after the completion of step 130, the step 108
is completed as indicated at 132.

FIGS. 8A-8D illustrate a collection of templates which
can be used by different application programs. These tem-
plates are preferably provided in the form of “objects”. As
is well known to software programmers, an “object” is a
logical software unit comprising data and processes which
give it capabilities and attributes. For example, an object can
be queried as to its type and can return such data as the
number of words that it contains. Objects can contain other
objects of the same or of a different type. Objects can also
be used to project images on a screen according to their
object type. There are many well know texts which describe
object oriented programming. See, for example, Object
Oriented Programming for the Macintosh, by Kurt J. Sch-
mucher, Hayden Book Company, 1986.

In FIG. 8A, a generic or base template 134 is simply
defined by a height H and a width W. An application
program can provide any desired active areas it wishes
anywhere in contact with the template 34.

In FIG. 8B, a template 136 which is used by the notepad
application has one predefined active area 138 correspond-
ing to the real time clock. Therefore, every time that the
notepad application is opened, the status bar associated with
the notepad application window will necessarily include real
time clock 138. Other active areas can be specified by the
notepad application.

In FIG. 8C, another template 140 is provided with two
predefined active areas 142 and 144 corresponding to a close
box and a real time clock, respectively. This template 140 is
associated with such applications as the aforementioned card
file application.

In FIG. 8D, a template 146 is provided with two pre-
defined active areas 148 and 150. This template 146 is
associated with the routing slip and active area 148 is the
close box and area 150 is a mandatory information area. The
remaining portions of the template 146 can be filled in as
desired by the routing slip application.

Preferably, there are a number of different, specialized
status bar templates available to various applications. Alter-
natively, a single, generic status bar template can be pro-
vided, at the cost of increased work in each application
program to customize the status bar for its own use. There-
fore, the step 126 of FIG. 7 can comprise either choosing one
of a plurality of templates or choosing the only template that
is provided.

FIG. 9 is a flow diagram illustrating the “Fill Areas” step
130 of FIG. 7 in greater detail. The step 130 begins at 152
and asks in a step 154 whether all the areas have been filled.
In the first time through the loop of step 130, the answer for

10

20

25

30

35

40

45

50

55

60

65

8

this would, of course, be “no”. In this instance a new area
would be created in step 156 and the new area would be
installed in a step 158. Process control is then returned to
step 154. When all areas have been filled, the step 130 is
completed as indicated at 160.

In FIG. 10, the step 156 “Create a New Area” of FIG. 9
is illustrated in greater detail. The step 156 begins at 162 and
a step 164 determines whether a button is to be created. If
so, a button template is obtained in a step 166, and is
customized in a step 168. The process would then be
completed as indicated at 170. If step 164 determines that a
button is not to be created, a step 172 determines whether a
label is to be created. If so, a text template is obtained in a
step 174, the text template is customized in a step 176, and
the step 156 is completed as indicated at 170. If neither a
button or label is to be created, a step 178 determines
whether there are any other types of areas to be created. If
s0, a template is retrieved in a step 180 and customized in
a step 182. If step 178 determines that there are not any other
areas to create or after the completion of step 182, the step
156 is completed as indicated at 170. ;

As seen in FIG. 11, after step 130 of FIG. 9 is completed,
a status bar 184 is provided including a template 186 and a
number of active areas 188, 190, 192, 194, 196, and 198.
The status bar 184 can be handled as a single object
comprising a template object 186 and a number of button,
label, or other area objects 188-198. This status bar object
184 is then ready to be attached or coupled to an application
program window as indicated in step 108 of FIG. 6.

Since the status bar 184 has been customized for and
attached to a particular application window, it is completely
unambiguous as to which window that status bar controls.
Nonetheless, the status bars provide a common interface in
that they are all similar at least at the generic template level.
A user will always know that an application window will
have a status bar attached to it and that certain similar
application programs will have similar active areas. For
example, all status bars will include a “close box” except for
the status bar for the notepad.

The use of object oriented programming and the afore-
mentioned view system simplifies the implementation of the
process of the present invention. In FIG. 12A, a conceptual
representation of various objects is shown. The screen 42
forms a base or root layer, and a window 200 associated with
an application program forms a second layer above the base
or root layer. The template 186 is positioned over the
window object 200, and the various areas 188-198 are
positioned over the template 186.

In FIG. 12B, a side elevation taken along line 125-12b of
FIG. 12A again illustrates the conceptual layering of various
objects. The aforementioned viewing system automatically
handles “taps” of the stylus 38 on the screen 42 by returning
information concerning which object has been tapped and
where on the object that the tap occurred. For example, a tap
A on the screen 42 would create an action for whatever
application was displayed on that area of the screen. For
example, the tap might activate the notepad on the screen 42.
A tap B on the window 200 could potentially cause an
interaction with the application program being displayed
within that window 200. A tap C on the template 164 could
be part of a gesture formed on that template or it could be
of part of a drag action. A tap D on close button 188 would
cause the application window 200 to close. It is therefore
clear that the object oriented programming and view system
software makes the implementation of the process 102 of
FIG. 6 a relatively less cumbersome process than traditional
programming techniques.

5,588,105

9

In FIG. 13, the “Do Status Bar Action” step 118 of 6 is
illustrated in greater detail. The process 118 begins at 202
and step 204 determines whether a drag action is being
performed. A drag action could be indicated by placing the
tip of the stylus 38 on a portion of the template and then
moving the tip of the stylus across the screen 42. This would
cause both the status bar and the attached window to move
in a step 206. If the drag action is not being indicated, it is
determined in a step 208 whether a gesture action is being
indicated. An example of a gesture is a “scrub” gesture
which could close the window. If a gesture is being indi-
cated, then step 210 performs the gesture. Other actions
might be detected in a step 212 in which case other actions
could be taken in a step 214. After the completion of steps
206, 210, 214, or if recognizable meaning is associated with
status bar action 118, the process is completed as indicated
at 212,

While this invention has been described in terms of
several preferred embodiments, there are alterations, per-
mutations, and equivalents which fall within the scope of
this invention. For example, the status bar could take other
forms than a bar, e.g. it could take the form of a “status slip”
of any convenient shape. Also, the status bar could be
attached to the top or side of the window or within the
window. In fact, the status bar does not have to actually
touch the window as long as it is clearly associated with the
window. For example, the status bar could be provided
within a small distance of each window, or it could be
provided farther from a window and be coupled to the
window by a line or the like.

1t is therefore intended that the following appended claims
be interpreted as including all such alterations, permutations,
and equivalents as fall within the true spirit and scope of the
present invention.

What is claimed is:

1. A computer system for displaying a status bar for a
window of an application program comprising:

a central processing unit (CPU);

read/write memory coupled to said CPU,

a computer screen coupled to said CPU;

means for selecting a status bar template from a plurality

of predefined status bar templates, said selected status
bar template to be associated with an application pro-
gram, each of said plurality of status bar templates
being able to provide a status bar for different appli-
cation programs usable on said computer system and
each template including a different number or type of
active area;

means for providing a status bar from said selected status

bar template independently of said application program
and independently of an application window of said
application program;

means for displaying said status bar on said computer

screen such that said status bar is displayed external to
said window and is visibly associated with a window of
said application program which is also displayed on
said computer screen, wherein said status bar is asso-
ciated only with said application program and is always
displayed when said window of said associated appli-
cation program is displayed; and

means for displaying an active area within said status bar,

said active area always being displayed within said
status bar and being unable to be removed from said
status bar while said status bar is displayed, said active
area including an icon or a label.

2. A computer system for displaying a status bar as recited
in claim 1 wherein said status bar is displayed in contact
with said window.

10

15

20

25

30

35

40

45

50

55

60

65

10

3. A computer system for displaying a status bar as recited
in claim 2 wherein a plurality of active areas are displayed
within said status bar.

4. A computer system for displaying a status bar as recited
in claim 2 wherein said active area includes said icon which,
when activated, controls an operation of said application
program.

5. A computer system for displaying a status bar as recited
in claim 4 wherein said icon comprises a button which can
be activated to control said operation.

6. A computer system for displaying a status bar as recited
in claim 4 wherein said icon comprises a close box which
can be activated to close said application program window.

7. A computer system for displaying a status bar as recited
in claim 2 wherein said active area displays information
provided by said application program.

8. A computer system for displaying a status bar as recited
in claim 2 wherein said active area displays information not
provided by said application program.

9. A computer system for displaying a status bar as recited
in claim 8 wherein said information comprises the current
time of day displayed in the form of a clock.

10. A computer system for displaying a status bar as
recited in claim 2 wherein said active area controls a
function which indirectly controls an operation of said
application program.

11. A computer system for displaying a status bar as
recited in claim 10 wherein said active area opens a new
window on said computer screen.

12. A computer system for displaying a status bar as
recited in claim 11 wherein said application window dis-
plays data provided by said application program, and
wherein said new window comprises a menu of possible
operations to be performed on said data displayed by said
application program.

13. A computer system as recited in claim 1 further
comprising means for moving said status bar template across
said computer screen, wherein when said status bar template
is moved, said application window associated with said
status bar template is also moved across said computer
screen.

14. A computer system as recited in claim 13 wherein said
status bar is a selectable object, and wherein said means for
moving said status bar includes a pointer for selecting
objects displayed on said computer screen, wherein said
status bar is moved by selecting said status bar and dragging
said status bar across said computer screen with said pointer.

15. A computer system as recited in claim 1 wherein each
of said status bar templates includes a different number or
type of predefined active areas and customized active areas,
where said predefined active areas are always included,
unchanged, in a status bar provided frown an associated
status bar template, and wherein said customized active
areas are filled in said template by said application program.

16. A computer system as recited in claim 1 wherein each
of said status bar templates is associated with types of
application programs used on said computer system such
that similar application programs are associated with status
bar templates having similar action areas.

17. A method for providing a status bar for an application
window on a computer screen of a computer system, the
method comprising the steps of:

creating a plurality of status bar templates from each of
which one or more status bars can be provided for
different application programs usable on a computer
system, each of said status bar templates having at least
one area to be filled and having a different number or

5,588,105

11

type of said area from other status bar templates so that
each template provides a status bar having a different
appearance than status bars provided from other tem-
plates;
selecting one of said plurality of status bar templates to be
associated with an application program having an asso-
ciated application window displayed on said computer
screen, such that only said selected status bar template
is associated with said application window;
filling said area of said selected status bar template with
an active area to create a status bar, said active area
being filled in by said application program; and

displaying said status bar on a computer screen such that
it is visually associated only with said application
window and is external to said application window, said
status bar always being displayed when said application
window is displayed, wherein information associated
with said application window is always displayed in
said active area of said status bar when said status bar
is displayed and wherein said information is always
displayed in a same location within said status bar and
is unable to be moved within said status bar.

18. A method for providing a status bar as recited in claim
17 wherein said status bar is displayed on said computer
screen such that it contacts said application window.

19. A method for providing a status bar as recited in claim
18 wherein said status bar includes an active area which
controls a function of said application program.

20. A method for providing a status bar as recited in claim
18 wherein said status bar includes an active area which
displays information generated by said application program.

21. A method for providing a status bar as recited in claim
18 wherein said status bar includes an active area which
displays information derived outside of said application
program.

22. A method for providing a status bar as recited in claim
18 wherein said status bar includes an active area which
controls a function outside of said application program.

23. A method for providing a status bar as recited in claim
17 wherein a plurality of active areas are filled in and
displayed in said status bar, wherein at least one of said
plurality of active areas is a predefined active area not filled
in by said application program.

24. A method for providing a status bar as recited in claim
17 wherein a plurality of application windows, each asso-
ciated with an application program, are displayed, and
wherein a plurality of status bars corresponding to said
plurality of application windows is displayed, wherein each
status bar is visibly associated with a different one of said
application windows.

25. A method as recited in claim 17, wherein each of said
status bar templates is previously associated with types of
application programs used on said computer system such
that templates having similar action areas are selected to be
associated with similar application programs.

26. A method as recited in claim 17 wherein said active
area filled into said area by said application program is a
customized active area, and wherein at least one of said
status bar templates includes at least one predefined active
area that is always included in a status bar generated from
said template having said predefined active area.

27. A method as recited in claim 26 wherein said cus-
tomized active area is created by selecting an active area
template from a plurality of predefined active area templates
and generating said customized active area from said
selected active area template.

28. A method as recited in claim 27 wherein said active
area templates include a button template for providing a

20

25

30

35

40

45

50

55

65

12

button active area on said status bar and a text template for
providing a label active area on said status bar.

29. A computer system for displaying a status bar for a
window of an application program comprising:

a central processing unit (CPU);

read/write memory coupled to said CPU;

a computer screen coupled to said CPU;

a tablet receptive to a stylus, said tablet being coupled to

said CPU;
means for selecting a status bar template for an applica-
tion program from a collection of available, predefined
status bar templates, where said selecting occurs inde-
pendently of said application program and indepen-
dently of an application window of said application
program, each of said status bar templates including a
plurality of areas that are different in number or func-
tion from areas of other status bar templates in said
collection, wherein each of said status bar templates
can be used to provide a status bar for different appli-
cation programs executed by said CPU and wherein
each of said status bar templates is associated with a
type of application program used on said computer
systemn such that similar application programs are asso-
ciated with particular status bar templates to provide a
common status bar appearance for said similar appli-
cation programs:
means for providing a status bar from said selected status
bar template and displaying said status bar on said
computer screen such that said status bar visibly con-
tacts an application window of said application pro-
gram which is also displayed on said computer screen,
said status bar being displayed outside a perimeter of
said application window, wherein said status bar is
associated only with said application window and is
only displayed when said application window of said
associated application program is displayed; and

means for displaying a plurality of active areas in said
areas of said selected template such that said active
areas are displayed within said status bar, said plurality
of active areas always being displayed and being
unable to be removed from said computer screen when
said status bar is displayed, said plurality of active areas
including a button which can be selected by said stylus
on said tablet to control an operation of said application
program.

30. A computer system for displaying a status bar as
recited in claim 29 wherein at least one of said plurality of
active areas displays information provided by said applica-
tion program.

31. A computer system for displaying a status bar as
recited in claim 29 wherein at least one of said plurality of
active areas displays information not provided by said
application program.

32. A computer system for displaying a status bar as
recited in claim 29 wherein said button, when selected,
causes a new application program to start and a new appli-
cation window associated with said new application pro-
gram to be displayed on said computer screen, such that:

said means for selecting a status bar template selects a

new status bar template from said collection of status
templates for said new application window;

said means for displaying said status bar displays said

new status bar such that it visibly contacts said new
application window external to said new application
window, wherein said new status bar is associated only
with said new application window and is always dis-

5,588,105

13

played when said new application window is displayed;
and

said means for displaying a plurality of active areas
displays a new plurality of active areas within said new
status bar, said plurality of new active areas always
being displayed and being unable to be removed from
said computer screen when said new status bar is
displayed.

33. A computer system for displaying a status bar as
recited in claim 29 wherein said status bar is a selectable
object, and further comprising means for dragging said
status bar across said computer screen when said stylus
points to said status bar and is moved, wherein said asso-
ciated application window is moved when said status bar is
dragged.

34. A computer system as recited in claim 29 wherein at
least one of said status bar templates includes a predefined
action area in one of said areas, said predefined action area
always being included in a status bar provided from said
status bar template.

35. A computer system as recited in claim 34 wherein said
status bar includes a customized active area which is filled
into one of said areas by said application program.

36. A computer system as recited in claim 35 wherein said
customized active area is provided by selecting an active
area template from a plurality of available, predefined active
arca templates and generating said customized active area
from said selected active area template.

37. A method for providing a status bar for an application
window on a computer screen of a computer system, the
method comprising the steps of:

creating a plurality of status bar templates from which one

or more status bars can be provided, wherein a status
bar can be provided for application programs using any
of said status bar templates each of said status bar
templates having a plurality of areas, and wherein each
of said status bar templates has a different number or
type of predefined active areas filled into at least one of
said areas and at least one empty area, wherein said
predefined active areas are always included in status
bars derived from said status bar templates;

10

15

20

25

30

35

14

selecting one of said plurality of status bar templates to be
associated with an application program having an asso-
ciated application window displayed on said computer
screen;

filling said empty area of said selected status bar template
with a customized active area to create a status bar, said
empty area being associated with and filled in by said
application program, said status bar including said
status bar template, said predefined active areas, and
said customized active area; and

displaying said status bar on a computer screen such that
it is visually associated only with said application
window, said status bar always being displayed when
said application window is displayed, wherein infor-
mation associated with said application window is
always displayed in said customized active area of said
status bar when said status bar is displayed and wherein
said active areas are always displayed in a same loca-
tion within said status bar and are unable to be moved
within said status bar.

38. A method as recited in claim 37 wherein types of
application programs running on said computer system and
particular status bar templates are associated with each other
such that similar application programs are associated with
templates having similar predefined action areas and empty
areas to provide a common status bar appearance for said
similar application programs.

39. A method as recited in claim 37 further comprising
creating a plurality of active area templates, and wherein
said customized active area is provided by selecting one of
said active area templates from said plurality of active area
templates and generating said customized active area from
said selected active area template.

40. A method as recited in claim 39 wherein said active
area templates include a button template for providing a
button active area on said status bar and a text template for
providing a label active area on said status bar.

* ok ok ok X

